反比例函数k的几何意义专项练习
八年级数学下册专题九反比例函数中k的几何意义作业新版华东师大版
![八年级数学下册专题九反比例函数中k的几何意义作业新版华东师大版](https://img.taocdn.com/s3/m/eedb4591cf2f0066f5335a8102d276a201296073.png)
1.如图,在平面直角坐标系中,A 是反比例函数 y=k 在第二象限的图象上的 x
点,过点 A 作 y 轴的垂线交 y 轴于点 B,点 C 在 x 轴上.若△ABC 的面积为 8,则
k 的值为___-__1_6___.
2.如图,点 P(x,y)在双曲线 y=k x
的直线 l∥y 轴,且直线 l 分别与反比例函数 y=8 和 y=k 的图象交于 P,Q 两点.若
x
x
S△POQ=15,则 k 的值为( D )
A.38 B.22 C.-7 D.-22
10.如图,直线 l⊥x 轴于点 P,且与反比例函数 y1=kx1 (x>0)及 y2=kx2 (x>0)的
图象分别交于 A,B 两点,连结 OA,OB.已知△OAB 的面积为 4,则 k1-k2=__8__.
x
8.如图,点 A 在双曲线 y=3 (x>0)上,点 B 在双曲线 y=k (k≠0,x>0),AB
x
x
∥x 轴,分别过点 A,B 向 x 轴作垂线,垂足分别为 D,C.若矩形 ABCD 的面积是 8,
则 k 的值为( D )
A.5 B.7 C.9 D.11
9.(内江中考)如图,在平面直角坐标系中,点 M 为 x 轴正半轴上一点,过点 M
11.如图,过 x 轴上任意一点 P 作 y 轴的平行线,分别与反比例函数 y=3 (x>0), x
y=-6x (x>0)的图象交于 A 点和 B 点.若 C 为 y 轴上任意一点,连结 AC,BC,则 9
△ABC 的面积为____2_____.
的图象上,PA⊥x 轴,垂足为 A,若 S△AOP
=2,则该反比例函数的表达式为___y_=__-__4x____.
反比例函数k的几何意义专项练习题
![反比例函数k的几何意义专项练习题](https://img.taocdn.com/s3/m/033bbcae6bec0975f465e2b1.png)
反比例函数k 的几何意义专项练习1、如图.矩形AOCB 的两边OC 、OA 分别位于x 轴、y 轴上.点B 的坐标为B (20,53-).D 是AB 边上的一点.将△ADO 沿直线OD 翻折.使A 点恰好落在对角线OB 上的点E 处.若点E 在一反比例函数的图像上.那么该函数的解析式 是 .2、如图.点P 在反比例函数的图象上.过P 点作PA ⊥x 轴于A 点.作PB ⊥y 轴于B 点.矩形OAPB 的面积为9.则该反比例函数的解析式为 .3、如图, 如果函数y=-x 与y=x4-的图像交于A 、B 两点, 过点A 作AC 垂直于y轴, 垂足为点C, 则△BOC 的面积为___________.4、如图.正方形OABC.ADEF 的顶点A.D.C 在坐标轴上.点F 在AB 上.点B.E 在函数()10y x x=>的图象上.则点E 的坐标是( )5、反比例函数xky =的图象如图所示.点M 是该函数图象上一点.MN 垂直于x 轴.垂足是点N .如果S △MON =2.则k 的值为( ) (A)2 (B)-2 (C)4 (D)-46、如图.A 、B 是反比例函数y =x2的图象上的两点.AC 、BD 都垂直于x 轴.垂足分别为C 、D .AB 的延长线交x 轴于点E .若C 、D 的坐标分别为(1.0)、(4.0).则ΔBDE 的面积与ΔACE 的面积的比值是( ).A .21 B .41 C.81 D .161 7、如图.A 、B 是函数2y x=的图象上关于原点对称的任意两点. BC ∥x 轴.AC ∥y 轴.△ABC的面积记为S .则( )A . 2S =B . 4S =C .24S <<D .4S > 8、如图.直线y=mx 与双曲线y=xk交于A 、B 两点.过点A 作AM ⊥x 轴.垂足为M.连结BM,若ABM S ∆=2.则k 的值是( ) A .2B 、m-2C 、mD 、49、如图.双曲线)0(>k xky =经过矩形QABC 的边BC 的中点E.交AB 于点D 。
反比例函数k的几何意义专项训练及答案
![反比例函数k的几何意义专项训练及答案](https://img.taocdn.com/s3/m/6255c511182e453610661ed9ad51f01dc28157f4.png)
反比例函数K 的几何意义专项训练及答案(中考复习)1、如图(1)所示,已知反比例函数 y =x k 和 y =x 1分别过点 A 和点 B ,且 AB // x 轴, S ABC △ =23,点C 是 x 轴上任意一点,则 k =____________. 2、如图(2)所示,矩形ABOC 的顶点B ,C 分别在x 轴,y 轴上,顶点A 在第二象限,点B 的坐标为(-2,0),将线段OC 绕点O 逆时针旋转60°至线段0D,若反比例函数y=xk (k ≠0)的图像经过A ,D 两点,则k 的值为_____________. 3、如图(3)所示,面积为25的Rt △OAB 的斜边OB 在x 轴上,∠ABO=30°,反比例函数y=xk 的图象恰好经过点A ,则k 的值为______________.4、如图(4)所示,A ⎪⎭⎫ ⎝⎛1y 21,,B ()2y 2,为反比例数y=x 2图象上的两点,动点P(x,0)在x 轴上运动,当|AP-BPI 的值最大时,连接OA ,则△AOP 的面积为_________.5、如图(5)所示,反比例函数y=x12在第一象限内的分支经过菱形OACB 的顶点A,B,且点A,B 的横纵坐标都为正整数,则点C 的坐标为__________________.6、如图(6)所示,在反比例函数y=xk 的图象上有A,B 两点,过点A 作AC ⊥x 轴,交x 轴于点C ,连接BC 并延长交y 轴于点D,连接AB,AD,若BD=4CD,ABD S △=8,则k 的值为__________________.(1)(2) (3)7、如图(7)所示,直线y=3x-6分别交x ,y 轴于点A ,B ,M 是反比例函数y=xa (x>0)的图象上位于直线AB 上方的一点,MC//x 轴交AB 于点C,MD ⊥MC 交AB 于点D,若AC ·BD=43则a 的值为__________.8如图(8)所示,正方形ABCD 的顶点A.B 分别在x ,y 轴上,tan ABO=3,正方形的面积为10,反比例函数y=xk 的图象经过点D,则k 的值是_______________. 9如图(9)所示,在平面直角坐标系中,△OAB 的顶点A 在反比例函数y=x 1上,顶点B 在反比例函数y=xk 上,AB ∥x 轴,△OAB 的面积是3,则k 的值为____________. 10、如图(10)所示,在平面直角坐标系中,等边三角形的顶点 A 在反比例函数y=x 1(x>0)上,顶点B,C 在反比例函数y=xk (x>0)上,且点B,C 关于直线y=x 对称.若等边三角形的边长为62,则k 的值为________________.(4) (5) (6) (7) (8) (9) (10)参考答案1、-22、3316-3、5-4、55、(13,13)或(8,8)或(7,7)6、-47、-38、-69、7 10、13。
2023年中考数学重难点专题练习-反比例函数系数k的几何意义(含答案)
![2023年中考数学重难点专题练习-反比例函数系数k的几何意义(含答案)](https://img.taocdn.com/s3/m/32872afe77eeaeaad1f34693daef5ef7ba0d12f9.png)
2023年中考数学重难点专题练习-反比例函数系数k 的几何意义1.如图,点C 是反比例函数k y x=图象的一点,点C 的坐标为(4,)1-.(1)求反比例函数解析式;(2)若一次函数3y ax =+与反比例函数k y x=相交于A ,C 点,求点A 的坐标; (3)在x 轴上是否存在一个点P ,使得PAC △的面积为10,如果存在,求出点P 的坐标,如果不存在,请说明理由.2.如图,已知反比例函数k y x=(k 为常数,0k ≠)的图像经过第二象限内的点A ,过A 点作AB x ⊥轴,垂足为B ,AOB 的面积为1,A 的半径为1.(1)k =___________,当A 与x 轴相切时,A 点坐标为___________(2)点C 为y 轴上一动点,当AOB 为等腰直角三角形且AOC 面积为3时,求出点C 坐标.3.如图,已知反比例函数y =k x图象的一支经过点A (2,3)和点B (点B 在点A 的右侧),作BC ⊥y 轴,垂足为C ,连接AC ,AB .(1)求反比例函数的解析式;(2)若⊥ABC 的面积为7,求B 点的坐标.4.如图,一次函数1y x =+与反比例函数k y x=的图象相交于2A m (,),B 两点,分别连接OA ,OB .(1)求这个反比例函数的表达式(2)求AOB ∆的面积.5.如图,点A 为函数()>0k y x x=图象上的一点,过点A 作x 轴的平行线交 y 轴于点B ,连接OA ,如果AOB 的面积为2,求k 的值.6.如图,已知在平面直角坐标系xOy 中,Rt OAB ∆的直角顶点B 在x 轴的正半轴上,点A 在第一象限,反比例函数(0)k y x x =>的图象经过OA 的中点C .交AB 于点D ,连结CD .若ACD ∆的面积是43,则k 的值是_____.7.如图,已知反比例函数1m y x =和一次函数2y kx b =+的图像交于点()3,,621A B n ⎛⎫ ⎪⎝⎭,两点.(1)求m 、n 的值;(2)连接OA OB 、,求AOB 的面积.8.如图,一次函数()20y kx k k =-≠的图象与反比例函数1(10)m y m x-=-≠的图象交于点C ,与x 轴交于点A ,过点C 作CB y ⊥轴,垂足为B ,若3ABC S =△.(1)求点A 的坐标及m 的值;(2)若AB =9.如图,已知一次函数1y kx b =+与反比例函数2k y x=的图象交于第一象限内的点(16)A ,和(6)B m ,,与x 轴交于点C ,交y 轴于点D .(1)分别求出这两个函数的表达式;(2)连接OA 、OB ,求AOB ∆的面积;(3)点P 为坐标平面内的点,若点O ,A ,C ,P 组成的四边形是平行四边形,请直接写出点P 的坐标.10.如图,直线2y x =-+与反比例函数k y x=(0k ≠)的图象交于(),3A a ,()3,B b 两点,过点A 作AC x ⊥轴于点C ,过点B 作BD x ⊥轴于点D .(1)求a 、b 的值及反比例函数的解析式;(2)若点P 在直线2y x =-+上,且ACP BDP SS =,请求出此时点P 的坐标.11.如图,点A 、B 分别在反比例函数11(0)k y x x =>和22(0)k y x x =>的图象上,线段AB 与x 轴相交于点P .(1)如图⊥,若AB x ⊥轴,且||2||AP PB =,121k k +=.求1k 、2k 的值;(2)如图⊥,若点P 是线段AB 的中点,且OAB 的面积为2.求12k k -的值.12.如图,点P 在反比例函数6y x=第一象限的图象上,PA x ⊥轴于点A ,则OPA 的面积为___________.13.如图,Rt ⊥ABO 的顶点A 是双曲线k y x =与直线y =-x +(k +1)在第四象限的交点,AB ⊥x 轴于B ,且32ABO S ∆=.(1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A 、C 的坐标和⊥AOC 的面积.14.如图,已知一次函数22y x =+的图像与x 轴交于点A ,与y 轴交于点B ,与反比例函数(0,0)k y k x x=>>的图像交于点C ,且2BC AB =,点(,1)E a 在反比例函数的图像上.(1)求反比例函数的表达式;(2)若直线EC 交y 轴于点D ,求BCD △的面积.15.如图,一次函数(0)y kx b k =+≠与反比例函数m y x=(0m ≠,0)x >的图象交于(1,6)A ,(3,)B n 两点,AE x ⊥轴于点E ,BC x ⊥轴于点C .(1)求反比例函数和一次函数的表达式;(2)根据图象直接写出+kx b >m x(0)x >时的x 的取值范围; (3)求AOB 的面积.16.如图,一次函数()10y k x b k =+≠与反比例函数()20k y x x =>的图像交于()1,6A ,()3,B m 两点.(1)求反比例函数和一次函数的解析式:(2)根据图象直接写出21k k x b x +<时,x 的取值范围: (3)求AOB 的面积.17.如图,反比例函数1(0)k y x x =>的图像与一次函数2y ax b =+的图像交于A (1,m ),B (3,n )两点,过点A 作AC 垂直于x 轴于点C , 3.OAC S ∆=(1)求反比例函数和一次函数的表达式;(2)当12y y >时,求x 的取值范围.参考答案:1.(1)4y x=-; (2)()14-,; (3)存在,P 点的坐标为()1,0-或()7,0.2.(1)2-,()2,1-;(2)(或(0,-.3.(1)6y x =; (2)209(,)310B4.(1)2y x =; (2)32 .5.46.1697.(1)6m =,4n = (2)454AOB S =△8.(1)(2,0),m =-5;(2)2455y x -=+ 9.(1)6y x=,7y x =-+ (2)352 (3)点P 的坐标为:(86),,(66)-,,(66)-,10.(1)a =-1,b =-1,3y x=- (2)()0,2P 或()3,5-11.(1)12k =,21k =-;(2)124k k -=.12.313.(1)3y x=-,y =-x -2 (2)A (1,-3),C (-3,1),Δ4AOC S =14.(1)12(0)y x x=> (2)515.(1)6y x =,28y x =-+ (2)13x <<(3)816.(1)28y x =-+,6y x=(2)01x <<或3x >(3)817.(1)反比例函数关系式为16y x =,一次函数的关系式为228y x +=- (2)0<x <1或x >3。
中考数学专题复习-反比例函数专题复习-反比例函数K的几何意义专项练习试卷 含解析
![中考数学专题复习-反比例函数专题复习-反比例函数K的几何意义专项练习试卷 含解析](https://img.taocdn.com/s3/m/f0af02c2fe4733687f21aa3b.png)
反比例函数k 的几何意义专项练习一.选择题(共10小题)1.过反比例函数222m m y x+-=图象上一点向A 分别向x 轴作垂线,垂足为B ,若三角形OAB 的面积为3,则此函数图象必经过点( )A .(4,3)B .(2,3)--C .(1,3)-D .(3,1)-2.如图,已知A 为反比例函数(0)k y x x=<的图象上一点,过点A 作AB y ⊥轴,垂足为B .若OAB ∆的面积为1,则k 的值为( )A .2B .2-C .4D .4-3.如图,点A 在反比例函数8(0)y x x=>的图象上,过点A 作AB x ⊥轴,垂足为B ,点C 在y 轴上,则ABC ∆的面积为( )A .16B .8C .4D .24.在平面直角坐标系中,O 为坐标原点,点A 在第一象限,点B 在x 轴正半轴上,OAB ∆的面积是9,P 是AB 的中点,若函数(0)k y x x =>的图象经过点A ,P ,则k 的值为( ) A .6 B .4 C .3 D .25.如图,点A 是反比例函数k y x=的图象上的一点,过点A 作AB x ⊥轴,垂足为B ,点C 为y 轴上的一点,连接AC 、BC ,若ABC ∆的面积为2,则k 的值是( )A .4B .4-C .2-D .26.如图,A ,B 两点在双曲线4(0)y x x=>上,分别过A ,B 两点向坐标轴作垂线段,若阴影部分的面积为1.7,则12S S +的值为( )A .4.6B .4.2C .4D .57.如图,在平面直角坐标系中,函数2(0)y x x=>的图象经过矩形OABC 的边BC 的中点D ,且与边AB 相交于点E ,则四边形ODBE 的面积为( )A .32B .2C .3D .48.如图,AOB ∆和ACD ∆均为正三角形,且顶点B 、D 均在双曲线(0)k y x x =>上,若图中4OBP S ∆=,则k 的值为( )A .23B .23-C .4-D .49.如图,点A 在反比例函数3(0)y x x =-<的图象上,点B 在反比例函数3(0)y x x=>的图象上,点C 在x 轴的正半轴上,则平行四边形ABCO 的面积是( )A .6B .5C .4D .310.如图,在平面直角坐标系中,矩形OABC 的面积为10,反比例函数(0)k y x x =>与AB 、BC 分别交于点D 、E ,若2AD BD =,则k 的值为( )A .53B .103C .203D .52二.填空题(共8小题)11.如图,在ABCD Y 的面积为6,(4,)A a ,(6,)B b ,反比例函数k y x=的图象经过点A 与点C ,则k 的值为 .12.如图,OAB ∆的顶点A 在双曲线8(0)y x x =>上,顶点B 在双曲线6(0)y x x=-<上,AB 中点P 恰好落在y 轴上,则OAB ∆的面积为 .13.如图,已知双曲线(0)k y x x =>经过矩形OABC 的边AB 、BC 上的点F 、E ,其中13CE CB =,13AF AB =,且四边形OEBF 的面积为6,则k 的值为 .14.如图,点A 在双曲线4y x =上,点B 在双曲线(0)k y k x =≠上,//AB x 轴,分别过点A ,B 向x 轴作垂线,垂足分别为D ,C ,若矩形ABCD 的面积是9,则k 的值为 .15.如图,点A 、B 都在反比例函数(0)k y k x=>的图象上,过点B 作//BC x 轴交y 轴于点C ,连接AC 并延长交x 轴于点D ,连接BD ,3DA DC =,6ABD S ∆=.则k 的值为 .16.如图,平行于x 轴的直线与函数11(0k y k x =>,0)x >和22(0k y k x =>,0)x >的图象分别相交于A ,B 两点.点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC ∆的面积为4,则12k k -的值为 .17.如图,在平面直角坐标系中,菱形形ABCD 的顶点A 、B 在反比例函数(0,0)k y k x x =>>的图象上,横坐标分别为1,4,对角线//BD x 轴,若菱形ABCD 的面积为9.则k 的值为 .18.如图,已知点A 是一次函数1(0)3y x x =…图象上一点,过点A 作x 轴的垂线l ,B 是l 上一点(B 在A 上方),在AB 的右侧以AB 为斜边作等腰直角三角形ABC ,反比例函数(0)k y x x=>的图象过点B ,C ,若OAB ∆的面积为8,则ABC ∆的面积是 .三.解答题(共8小题)19.如图,Rt ABC ∆的顶点B 在反比例函数12y x =的图象上,AC 边在x 轴上,已知90ACB ∠=︒,30A ∠=︒,4BC =,求图中阴影部分的面积.20.如图,在矩形OABC 中,5OA =,4OC =,F 是AB 上的一个动点(F 不与A ,B 重合),过点F 的反比例函数(0)k y k x=>的图象与BC 边交于点E . (1)当F 为AB 的中点时,求该函数的表达式;(2)当k 为何值时,EFA ∆的面积最大,最大面积是多少?21.如图,在平面直角坐标系xOy 中,已知四边形DOBC 是矩形,且(0,4)D ,(6,0)B .若反比例函数(0)k y x x=>的图象经过线段OC 的中点A ,交DC 于点E ,交BC 于点F . (1)求反比例函数;(2)求OEF ∆的面积.22.如图,在平面直角坐标系中,菱形ABDC 的顶点D ,C 在反比例函数k y x=上(0,0)k x >>,横坐标分别为12和2,对角线//BC x 轴,菱形ABDC 的面积为9. (1)求k 的值及直线CD 的解析式;(2)连接OD ,OC ,求OCD ∆的面积.23.如图,已知90AOB ∠=︒,30OAB ∠=︒,反比例函数3(0)y x x=-<的图象过点(3,)B a -,反比例函数(0)k y x x=>的图象过点A . (1)求a 和k 的值;(2)过点B 作//BC x 轴,与双曲线k y x=交于点C .求OAC ∆的面积.。
专题训练(10)反比例函数中k的几何意义(含答案)
![专题训练(10)反比例函数中k的几何意义(含答案)](https://img.taocdn.com/s3/m/27a327d0ddccda38366baf35.png)
专题训练(十)反比例函数中k的几何意义(本专题部分习题有难度,请根据实际情况选做)一一31 .如图,在平面直角坐标系中,点A是双曲线y = -(x > 0)上的一个动点,过点A作x轴的垂线,交x轴于点B,X点A运动过程中△AOB的面积将会()A . 逐渐增大B .逐渐减小C.先增大后减小 D .不变.2 •如图,过反比例函数y= X2(x >0)图象上任意两点A, B分别作x轴的垂线,垂足分别为C, D,连接OA OB设AC与0B的交点为AOE与梯形ECDB勺面积分别为S, S,比较它们的大小,可得()A . S i > S2B . S i v S2C . S i = S2D . S i、S2的大小关系不能确定k3. (鄂州中考)点A为双曲线y = x(k丰0)上一点,B为x轴上一点,且△ AOE为等边三角形,△ AOB的边长为2,则k的值为()A . 2 :3B . ± 2 3C. D . ± .34. 设P是函数y = 2■在第一象限的图象上的任意一点,点P关于原点的对称点为点P',过点P作PA平行于y轴,x过点P'作P' A平行于x轴,PA与P' A交于A点,侧厶PAP的面积()A .随P点的变化而变化B .等于1C .等于2D .等于4k5. 如图,点A是反比例函数y = -图象上的一点,过点A作AB丄x轴,垂足为点B,点C为y轴上的一点,连接AC,xBC.若厶ABC的面积为3,贝U k的值是()A . 3B . —3C . 6D . —6k (黔西南中考)如图,点A 是反比例函数y =-图象上的一个动点,过点A 作AB 丄x 轴,ACL y 轴,垂足点分别为 XC,矩形ABOC 的面积为4,贝y k = ______ . 4 (临沂中考)如图,反比例函数 y = -的图象 经过直角厶OAB 的顶点A, D 为斜边OA 的中点,则过点 D 的反比例函 X数的表达式为 _________ .一 一 69.如图,矩形ABCD 的边AB 与y 轴平行,顶点 A 的坐标为(1 , 2),点B 与点D 在反比例函数y = -(x > 0)的图象上, X则点C 的坐标为 _________ .的面积为2,贝U k 的值是11.(资阳中考)如图,在平面直角坐标系中,点 M 为x 轴正半轴上一点,过点 M 的直线I // y 轴,且直线I 分别与B 、 4 y =-的图象交于A, 8. 10.(铁岭中考)如图,点P 是正比例函数7.B 两点,则四边形 MAOB 勺面积为 y 轴的垂线与反比例函数 PAL OP 交x 轴于点A , △ POA求k 和m 的值.ii y =-的图象于点A, PD 丄y 轴,垂足为D,交y = -的图象于点B.已知点A(m , 1)为线段PC 的中点. X—(1)求m 和k 的值; ⑵求四边形OAPB 的面积. 参考答案11. D2. C3. D4. D5. D6. — 47. 108. y = -9. (3 , 6) 10. 2 11. — 20 12.设点 A 的坐标为(—,y) . v— 1 1△ AOB 的面积为飞:3,「. 2凶 Tyl = 2同=1: 3.解得|k| = 2苓3又v k v 0,「. k = — 2 3.二反比例函数 表达式为y = .解得 m = 2.综上可知:k =— 2 \3, n = 2. 13. (1)把1 A(m, 1)代入y = -,得m= 1,二A 点坐标为(1 , 1) .v 点A(1 , 1)为线段PC 的中点,.••点 P 坐标为(1 , 2).把(1 , —k 1 2)代入y = -,得k = 1X 2= 2.(2) v 点P 坐标为(1 , 2) ,•••四边形 OCPD 勺面积为1 X 2= 2.又:公ODB 的面积为-, — 21 1 1 △ OAQ 的面积为§,•四边形 OAPB 的面积为2 — 2 — 2= 1.反比例函数y = 8(x > 0)和 y = X (x >0)的图象交于P 、Q 两点,若 &PO F 14,则k 的值为12.如图,已知反比例函数k y = x (k v 0)的图象经过点 A( — .'3, m),过点A 作AB 丄x 轴于点B ,且厶AOB 的面积为 13 .反比例函数y = f 和y = X (k 丰0)在第一象限内的图象如图所示,点k P 在 y =x 的图象上, 年3. v 反比例函数图象经过点 A( — , m),「. m=—三备。
_第17训练八反比例函数比例系数k的几何意义作业课件 2023—2024学年华东师大版数学八年级下册
![_第17训练八反比例函数比例系数k的几何意义作业课件 2023—2024学年华东师大版数学八年级下册](https://img.taocdn.com/s3/m/bf47ab47f02d2af90242a8956bec0975f565a452.png)
·|13
|=12
Hale Waihona Puke ×13=1 6,S 矩形 PCOD=1,
∴S 四边形 PAOB=1-2×16
=2 3
11.如图,在平面直角坐标系 xOy 中,△OAB 的顶点 A 在 x 轴正半轴上,OC 是 △OAB 的中线,点 B,C 在反比例函数 y=k) (x>0)的图象上,若△OAB 的面积等于 6,
解:作 AD⊥x 轴于 D,BE⊥x 轴于 E,BF⊥AD 于 F,如图,∵A,B 两点的横坐 标分别为 1,2,∴A(1,k),B(2,k ),∴OD=1,DE =1,AF =FD=BE ,易证
2 △ABF≌△BCE,AD=AF+FD=2BE,∴CE=FB=DE=1,∴OC=3,∵△AOC 的 面积为 6,∴1 ·3·k=6,∴k=4
x 则 k 的值为( B )
A.2 B.4 C.6 D.8
12.如图,反比例函数 y=2 的图象经过长方形 OABC 的边 AB 的中点 D,则矩形 x
OABC 的面积为____4_____.
13.如图,A,B 是双曲线 y=kx (x>0)上两点,A,B 两点的横坐标分别为 1,2, 线段 AB 的延长线交 x 轴于点 C,若△AOC 的面积为 6,求 k 的值.
专题训练八 反比例函数比例系数k的几何意义
1.如图,点 A 是反比例函数 y=kx 的图象上的一点,过点 A 作 AB⊥x 轴,垂足为 B.点 C 为 y 轴上的一点,连结 AC,BC.若△ABC 的面积为 4,则 k 的值是( D )
A.4 B.-4 C.8 D.-8
2.如图,点 P 是反比例函数 y=6 (x>0)的图象上的任意一点,过点 P 分别作两坐 x
解:∵点 B 与点 A 关于 x 轴对称,△OAB 的面积为 6,∴△OAC 的面积为 3.
反比例函数K的几何意义课后练习
![反比例函数K的几何意义课后练习](https://img.taocdn.com/s3/m/c140df5033687e21af45a923.png)
反比列函数应用课后练习反比例函数K 的几何意义专题1. 反比例函数xk y 1-=与一次函数)1(+=x k y 只可能是( )(A ) (B ) (C ) (D )2. 在反比例函数2y x=(0x >)的图象上,有点1234P P P P ,,,,它们的横坐标依次为1,2,3,4.分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为123S S S ,,,则123S S S ++= .2y x= x y O P 1 P 2 P 3P 4 1 2 3 43.反比例函数()2213--=mx m y 的图象所在的象限内,y 随x 增大而增大,则反比例函数的解析式是( )(A )x y 4= (B )x y 4-= (C )xy 4= 或x y 4-= (D )不能确定 4 如图,已知正方形OABC 的面积为9,点O 为坐标原点,点A 在x 轴上,点C 在y 轴上,点B 在函数()0,0>>=x k xk y 的图象上,点()n m P ,为其双曲线上的任一点,过点P 分别作x 轴、y 轴的垂线,垂足分别为E 、F ,并设矩形OEPF 和正方形OABC 不重合部分的面积为S .(1)求B 点坐标和k 的值;(2)当29=S 时,求P 点坐标; (3)写出S 关于m 的函数关系式.5.如图,直线b kx y +=与反比例函数x k y '=(x <0)的图象相交于点A 、点B ,与x 轴交于点C ,其中点A 的坐标为(-2,4),点B 的横坐标为-4.(1)试确定反比例函数的关系式;(2)求△AOC 的面积.6.(09北京)如图,A 、B 两点在函数()0m y x x=>的图象上.(1)求m 的值及直线AB 的解析式;(2)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.请直接写出图中阴影部分(不包括边界)所含格点的个数。
中考数学总复习《反比例函数系数k的几何意义》练习题(含答案)
![中考数学总复习《反比例函数系数k的几何意义》练习题(含答案)](https://img.taocdn.com/s3/m/6c7d1e7cf342336c1eb91a37f111f18583d00c35.png)
反比例函数系数k 的几何意义一 、选择题(本大题共1小题)1.反比例函数xky =的图像如图所示,点M 是该函数图像上一点,MN 垂直于x 轴,垂足是点N ,如果2MON S ∆=,则k 的值为( )A. 2B. 2-C. 4D. 4-二 、填空题(本大题共5小题)2.直线y kx =(0k >)与双曲线4y x=交于11(,)A x y 、22(,)B x y 两点,则122127x y x y -的值等于3.如图,已知双曲线()0k y x x=>经过矩形OABC 边AB 的中点F 且交BC 于E ,四边形OEBF 的面积为2,则k = .4.如图,在Rt AOB ∆中,点A 是直线y x m =+与双曲线my x=在第一象限的交点,且2AOB S ∆=,则m 的值是_____.5.已知反比例函数8y x=上两点A ,B 的横坐标分别为2-,8,则OAB ∆的面积为6.两个反比例函数ky x =和1y x =在第一象限内的图象如图所示,点P 在k y x=的图象上,PC x ⊥轴于点C ,交1y x =的图象于点A ,PD y ⊥轴于点D ,交1y x=的图象于点B ,当点P 在k y x=的图象上运动时,以下结论: ①ODB ∆与OCA ∆的面积相等; ②四边形PAOB 的面积不会发生变化; ③PA 与PB 始终相等;④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是 (把你认为正确结论的序号都填上,少填或错填不给分).三 、解答题(本大题共5小题)7.如图,已知一次函数y kx b =+的图象与反比例函数8y x=-的图象交于A 、B 两点,且A 点的横坐标和B 点的纵坐标都是2- ⑴求一次函数解析式1x⑵AOB ∆的面积8.如图,一次函数y kx b =+的图像与反比例函数my x=的图像交于(21)(1)A B n -,,,两点.(1)试确定上述反比例函数和一次函数的表达式; (2)求AOB ∆的面积.9.如图,函数y x =-与4y x=-的函数图象交于A B 、两点,过点A 作CA y ⊥轴于C 点,则BOC △的面积为 .10.如图,一次函数y kx b =+的图像与反比例函数my x=的图像交于(21)(1)A B n -,,,两点.(1)试确定上述反比例函数和一次函数的表达式; (2)求AOB ∆的面积.11.如图,点A 、B 在反比例函数k y x=(0k >)的图象上,且点A 、B 的横坐标分别为a 和2a (0a >)AC x ⊥轴,垂足为C ,AOC ∆的面积为2. (1)求反比例函数的解析式;(2)若点(a -,1y ),(2a -,2y )也在反比例函数的图象上,试比较1y 与2y 的大小;(3)求AOB ∆的面积.反比例函数系数k 的几何意义答案解析一 、选择题1.D二 、填空题2.20;双曲线以及正比例函数图象都是关于原点成中心对称,因此12x x =-,12y y =-,∴12224x y x y =-=-,21224x y x y =-=-3.24.4;已知2AOB S ∆=. ∴22m =,∵0m >,∴4m =.5.15;反比例函数k 的几何意义及双曲线的中心对称性6.①②④①根据上节课结论易知成立;②1PAOB PDOC BDO ACO S S S S k ∆∆=--=-,结论成立.③根据题意可得:PC PD k ⋅=,1BD PC ⋅=,1AC PD ⋅=,111PC PD k PA PC AC PC PD PD PD ⋅--=-=-==,111PC PD k PB PD BD PD PC PC PC⋅--=-=-==, PC PD ≡/,所以PA PB ≡/.④根据1BD PC AC PD ⋅==⋅,故PC PDAC BD=可知成立.也可利用结论③中的推导. 其中一定正确的是①②④.三 、解答题7.利用反比例函数k 的几何意义以及中心对称转化面积⑴一次函数解析式为2y x =-+ ⑵6AOB S ∆=x∴(2)12m =-⨯=-.∴反比例函数的表达式为2y x=-.∵点()1B n ,也在反比例函数2y x=-的图像上, ∴2n =-,即()12B -,. 把点()21A -,,点()12B -,代入一次函数y kx b =+中,得 212k b k b -+=⎧⎨+=-⎩,解得11k b =-⎧⎨=-⎩∴一次函数的表达式为1y x =--.(2)方法一、在1y x =--中,当0y =时,得1x =-.∴直线1y x =--与x 轴的交点为()10C -,. ∵线段OC 将AOB ∆分成AOC ∆和BOC ∆,∴1113121112222AOB AOC BOC S S S =+=⨯⨯+⨯⨯=+=△△△.方法二、延长BO 交双曲线于点D ,连接AD ,过点A ,D 作x 轴的垂线,垂足分别为E 、F ,则点B 与点D 关于原点对称,所以1()2OAB ODA ADFE S S S AE DF EF ∆∆===+⋅梯形∵(1,2)B - ∴(1,2)D - ∴1AE =,2DF =,1EF =, ∴13()22OAB ODA ADFE S S S AE DF EF ∆∆===+⋅=梯形9.2x∴(2)12m =-⨯=-.∴反比例函数的表达式为2y x=-.∵点()1B n ,也在反比例函数2y x=-的图像上, ∴2n =-,即()12B -,. 把点()21A -,,点()12B -,代入一次函数y kx b =+中,得 212k b k b -+=⎧⎨+=-⎩,解得11k b =-⎧⎨=-⎩∴一次函数的表达式为1y x =--.(2)方法一、在1y x =--中,当0y =时,得1x =-.∴直线1y x =--与x 轴的交点为()10C -,. ∵线段OC 将AOB ∆分成AOC ∆和BOC ∆,∴1113121112222AOB AOC BOC S S S =+=⨯⨯+⨯⨯=+=△△△.方法二、延长BO 交双曲线于点D ,连接AD ,过点A ,D 作x 轴的垂线,垂足分别为E 、F ,则点B 与点D 关于原点对称,所以1()2OAB ODA ADFE S S S AE DF EF ∆∆===+⋅梯形∵(1,2)B - ∴(1,2)D - ∴1AE =,2DF =,1EF =, ∴13()22OAB ODA ADFE S S S AE DF EF ∆∆===+⋅=梯形∴(1)反比例函数的表达式为2y x=-,一次函数的表达式为1y x =--.(2)32.11.解析反比例函数k 的几何意义,以及面积的转化⑴由题意设A (a ,k a ),则11222AOC k S a k a ∆=⋅⋅==,得4k = 故反比例函数的解析式为4y x=⑵因为反比例函数4y x=,在每一象限内,y 随x 的增大而减小,由0a >,得2a a ->-,所以12y y <⑶如图,作BD x ⊥轴于D ,设AC 与OB 相交于点E , 易知AOE ECDB S s ∆=梯形,故AOB ACDB S s ∆=梯形,易求4AC a =,2BD a =,CD a =,所以142()32AOB ACDB S S a a a∆==+⋅=梯形。
反比例函数K的几何意义专项练习
![反比例函数K的几何意义专项练习](https://img.taocdn.com/s3/m/d45f11a955270722182ef71c.png)
反比例函数K 的几何意义专项练习1(2015•黔西南州)如图,点A是反比例函数y=图象上的一个动点,过点A作AB⊥x轴,AC⊥y轴,垂足点分别为B、C,矩形ABOC的面积为4,则k= .2(2015•四川凉山州)以正方形ABCD两条对角线的交点O为坐标原点,建立如图所示的平面直角坐标系,双曲线经过点D,则正方形ABCD的面积是()3(2014•湘潭)如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A.3B.4C.5D.&64(2015•孝感)如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y=的图象上.若点B在反比例函数y=的图象上,则k的值为()A.﹣4 B. 4 C.﹣2 D. 25如图,在平面直角坐标系中,菱形OABC的面积为12,点B在y轴上,点C在反比例函数y=的图象上,则k的值为.6(2015•四川眉山)如图,A、B是双曲线y=上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C.若△ADO的面积为1,D为OB的中点,则k的值为()A.B.C. 3 D. 4【7(2014•山东临沂)如图,反比例函数y=的图象经过直角三角形OAB的顶点A,D为斜边OA的中点,则过点D的反比例函数的解析式为.8(2014•山东淄博)关于x的反比例函数y=的图象如图,A、P为该图象上的点,且关于原点成中心对称.△PAB中,PB∥y轴,AB∥x轴,PB与AB相交于点B.若△PAB的面积大于12,则关于x的方程(a﹣1)x2﹣x+=0的根的情况是.`9(2015湖北鄂州)如图,直线y=x-2与y轴交于点C,与x轴交于点B,与反比例函数的图象在第一象限交于点A,连接OA,若S△AOB S△BOC= 1:2,则k的值为()A.2 B.3C.4'10(2015•广东广州)已知反比例函数y=的图象的一支位于第一象限.(1)判断该函数图象的另一支所在的象限,并求m的取值范围;(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于x 轴对称,若△OAB的面积为6,求m的值.…23.如图,反比例函数y=的图象与一次函数y=kx+b的图象交于A,B两点,点A的坐标为(2,6),点B的坐标为(n,1).(1)求反比例函数与一次函数的表达式;(2)点E为y轴上一个动点,若S=5,求点E的坐标.△AEB。
反比例函数系数k的几何意义专题训练
![反比例函数系数k的几何意义专题训练](https://img.taocdn.com/s3/m/3d38abd8a1c7aa00b52acb5a.png)
反比例函数系数k的几何意义1.(2013•牡丹江)如图,反比例函数的图象上有一点A,AB平行于x轴交y轴于点B,△ABO的面积是1,则反比例函数的解析式是()A.B.C.D.2.(2013•淄博)如图,矩形AOBC的面积为4,反比例函数的图象的一支经过矩形对角线的交点P,则该反比例函数的解析式是()A.B.C.D.1题2题4题3.(2013•六盘水)下列图形中,阴影部分面积最大的是()A.B.C.D.4.(2013•宜昌)如图,点B在反比例函数y=(x>0)的图象上,横坐标为1,过点B分别向x轴,y轴作垂线,垂足分别为A,C,则矩形OABC的面积为()A.1B.2C.3D.45.(2013•内江)如图,反比例函数(x>0)的图象经过矩形OABC对角线的交点M,分别于AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为()5题A.1B.2C.3D.4二、填空题(共3小题)(除非特别说明,请填准确值)6.(2013•永州)如图,两个反比例函数y=和y=在第一象限内的图象分别是C1和C2,设点P在C1上,PA⊥x轴于点A,交C2于点B,则△POB的面积为_________.6题7题8题7.(2013•自贡)如图,在函数的图象上有点P1、P2、P3、P4点P1的横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点P1、P2、P3、P4分别作x轴、y轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为S1、S2、S3则+ S1+S2+S3=8.(2013•张家界)如图,直线x=2与反比例函数和的图象分别交于A、B两点,若点P是y轴上任意一点,则△PAB的面积是_________.9.(2011辽宁阜新,6,3分)反比例函数6yx=与3yx=在第一象限的图象如图所示,作一条平行于x轴的直线分别交双曲线于A、B两点,连接OA、OB,则△AOB的面积为()10.过反比例函数y=(k≠0)图象上一点A,分别作x轴,y轴的垂线,垂足分别为B,C,如果△ABC的面积为3.则k的值为.11.(2011湖北孝感,15,3分)如图,点A在双曲线y=1x,点B在双曲线y=3x上,且AB∥x轴,C.D在x轴上,若四边形ABCD为矩形,则它的面积为9题11题。
反比例函数K的几何意义试题与答案
![反比例函数K的几何意义试题与答案](https://img.taocdn.com/s3/m/bb3e0c64182e453610661ed9ad51f01dc281570e.png)
反比例函数K的几何意义试题一.选择题(共30小题)1.如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B,则△OAC与△BAD的面积之差S△OAC ﹣S△BAD为()A.36B.12C.6D.32.如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S △AOB=2,则k的值为()A.2B.3C.4D.53.如图,点A、C为反比例函数y=图象上的点,过点A、C分别作AB⊥x轴,CD⊥x轴,垂足分别为B、D,连接OA、AC、OC,线段OC交AB于点E,点E恰好为OC的中点,当△AEC的面积为时,k的值为()A.4B.6C.﹣4D.﹣64.如图,点A为反比例函数图象上一点,过A作AB⊥x轴于点B,连接OA,则△ABO的面积为()A.﹣4B.4C.﹣2D.25.如图,反比例函数y=的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为()A.2B.4C.5D.86.如图,在平面直角坐标系中,点P(1,4)、Q(m,n)在函数y=(x>0)的图象上,当m>1时,过点P分别作x轴、y轴的垂线,垂足为点A,B;过点Q分别作x轴、y轴的垂线,垂足为点C、D.QD交PA于点E,随着m的增大,四边形ACQE的面积()A.减小B.增大C.先减小后增大D.先增大后减小7.如图,P,Q分别是双曲线y=在第一、三象限上的点,PA⊥x轴,QB⊥y轴,垂足分别为A,B,点C是PQ与x轴的交点.设△PAB的面积为S1,△QAB的面积为S2,△QAC 的面积为S3,则有()A.S1=S2≠S3B.S1=S3≠S2C.S2=S3≠S1D.S1=S2=S38.如图,矩形ABCD的顶点D在反比例函数y=(x<0)的图象上,顶点B,C在x轴上,对角线AC的延长线交y轴于点E,连接BE,若△BCE的面积是6,则k的值为()A.﹣6B.﹣8C.﹣9D.﹣129.如图,A,B,C为反比例函数图象上的三个点,分别从A,B,C向xy轴作垂线,构成三个矩形,它们的面积分别是S1,S2,S3,则S1,S2,S3的大小关系是()A.S1=S2>S3B.S1<S2<S3C.S1>S2>S3D.S1=S2=S310.如图,A、B是双曲线上的点,A、B两点的横坐标分别是a、2a,线段AB的延长线交x轴于点C,若S△AOC=9.则k的值是()A.9B.6C.5D.411.如图,直线l和双曲线(k>0)交于A、B两点,P是线段AB上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分别是C、D、E,连接OA、OB、OP,设△AOC面积是S1,△BOD面积是S2,△POE面积是S3,则()A.S1<S2<S3B.S1>S2>S3C.S1=S2>S3D.S1=S2<S312.如图,矩形OABC的顶点A在y轴上,C在x轴上,双曲线y=与AB交于点D,与BC交于点E,DF⊥x轴于点F,EG⊥y轴于点G,交DF于点H.若矩形OGHF和矩形HDBE 的面积分别是1和2,则k的值为()A.B.+1C.D.213.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数y=(x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE的面积是9,则k=()A.B.C.D.1214.如图,双曲线y=(k>0)与⊙O在第一象限内交于P、Q两点,分别过P、Q两点向x轴和y轴作垂线,已知点P坐标为(1,3),则图中阴影部分的面积为()A.1B.2C.3D.415.如图,过反比例函数(x>0)的图象上任意两点A、B分别作x轴的垂线,垂足分别为C、D,连接OA、OB,设△AOC和△BOD的面积分别是S1、S2,比较它们的大小,可得()A.S1>S2B.S1=S2C.S1<S2D.大小关系不能确定16.如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B.点C 为y轴上的一点,连接AC,BC.若△ABC的面积为3,则k的值是()A.3B.﹣3C.6D.﹣617.如图,Rt△AOC的直角边OC在x轴上,∠ACO=90°,反比例函数y=经过另一条直=3,则k=()角边AC的中点D,S△AOCA.2B.4C.6D.318.如图,点A是反比例函数y=(x>0)的图象上任意一点,AB∥x轴交反比例函数y=﹣的图象于点B,以AB为边作平行四边形ABCD,其中C、D在x轴上,则S平行四边形ABCD 为()A.2B.3C.4D.519.如图,点A是反比例函数y=(x>0)的图象上任意一点,AB∥x轴并反比例函数y=﹣的图象于点B,以AB为边作▱ABCD,其中点C,D在x轴上,则▱ABCD的面积为()A.3B.5C.7D.920.如图,在x轴正半轴上依次截取OA1=A1A2=A2A3=…=A n﹣1A n(n为正整数),过点A1、A2、A3、…、A n分别作x轴的垂线,与反比例函数y=(x>0)交于点P1、P2、P3、…、P n,连接P1P2、P2P3、…、P n﹣1P n,过点P2、P3、…、P n分别向P1A1、P2A2、…、P n﹣1A n﹣1作垂线段,构成的一系列直角三角形(见图中阴影部分)的面积和是()A.B.C.D.21.在平面直角坐标系中,点O是坐标原点,点A是x轴正半轴上的一个动点,过A点作y轴的平行线交反比例函数y=(x>0)的图象于B点,当点A的横坐标逐渐增大时,△OAB的面积将会()A.逐渐增大B.逐渐减小C.不变D.先增大后减小22.如图,平面直角坐标系中,点A是x轴负半轴上一个定点,点P是函数(x<0)上一个动点,PB⊥y轴于点B,当点P的横坐标逐渐增大时,四边形OAPB的面积将会()A.逐渐增大B.先减后增C.逐渐减小D.先增后减23.如图,在平面直角坐标系中,点B在y轴上,第一象限内点A满足AB=AO,反比例函数y=的图象经过点A,若△ABO的面积为2,则k的值为()A.1B.2C.4D.24.如图,两个反比例函数y1=(其中k1>0)和y2=在第一象限内的图象依次是C1和C2,点P在C1上.矩形PCOD交C2于A、B两点,OA的延长线交C1于点E,EF⊥x轴于F点,且图中四边形BOAP的面积为6,则EF:AC为()A.﹕1B.2﹕C.2﹕1D.29﹕1425.如图,已知矩形OABC面积为,它的对角线OB与双曲线相交于D且OB:OD=5:3,则k=()A.6B.12C.24D.3626.如图,▱OABC的顶点C在x轴的正半轴上,顶点A、B在第一象限内,且点A的横坐标为2,对角线AC与OB交于点D,若反比例函数y=的图象经过点A与点D,则▱OABC的面积为()A.30B.24C.20D.1627.如图,A、C分别是x轴、y轴上的点,双曲线y=(x>0)与矩形OABC的边BC、AB分别交于E、F,若AF:BF=1:2,则△OEF的面积为()A.2B.C.3D.28.如图,过原点O的直线与双曲线y=交于A、B两点,过点B作BC⊥x轴,垂足为C,=5,则k的值是()连接AC,若S△ABCA.B.C.5D.1029.如图,已知A(﹣3,0),B(0,﹣4),P为反比例函数y=(x>0)图象上的动点,PC⊥x轴于C,PD⊥y轴于D,则四边形ABCD面积的最小值为()A.12B.13C.24D.2630.如图,点A在双曲线上,点B在双曲线上,且AB∥y轴,点P是y轴上的任意一点,则△PAB的面积为()A.0.5B.1C.1.5D.2反比例函数K 的几何意义试题答案一.选择题(共30小题)1.(菏泽)如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B ,则△OAC 与△BAD 的面积之差S △OAC ﹣S △BAD 为()A .36B .12C .6D .3【分析】设△OAC 和△BAD 的直角边长分别为a 、b ,结合等腰直角三角形的性质及图象可得出点B 的坐标,根据三角形的面积公式结合反比例函数系数k 的几何意义以及点B 的坐标即可得出结论.【解答】解:设△OAC 和△BAD 的直角边长分别为a 、b ,则点B 的坐标为(a +b ,a ﹣b ).∵点B 在反比例函数y=的第一象限图象上,∴(a +b )×(a ﹣b )=a 2﹣b 2=6.∴S △OAC ﹣S △BAD =a 2﹣b 2=(a 2﹣b 2)=×6=3.故选D .【点评】本题考查了反比例函数系数k 的几何意义、等腰三角形的性质以及面积公式,解题的关键是找出a 2﹣b 2的值.本题属于基础题,难度不大,解决该题型题目时,设出等腰直角三角形的直角边,用其表示出反比例函数上点的坐标是关键.2.(河南)如图,过反比例函数y=(x >0)的图象上一点A 作AB ⊥x 轴于点B ,连接AO ,若S △AOB =2,则k 的值为()A .2B .3C .4D .5【分析】根据点A 在反比例函数图象上结合反比例函数系数k 的几何意义,即可得出关于k 的含绝对值符号的一元一次方程,解方程求出k 值,再结合反比例函数在第一象限内有图象即可确定k 值.【解答】解:∵点A 是反比例函数y=图象上一点,且AB ⊥x 轴于点B ,∴S=|k|=2,△AOB解得:k=±4.∵反比例函数在第一象限有图象,∴k=4.故选C.【点评】本题考查了反比例函数的性质以及反比例函数系数k的几何意义,解题的关键是找出关于k的含绝对值符号的一元一次方程.本题属于基础题,难度不大,解决该题型题目时,根据反比例函数系数k的几何意义找出关于k的含绝对值符号的一元一次方程是关键.3.(本溪)如图,点A、C为反比例函数y=图象上的点,过点A、C分别作AB ⊥x轴,CD⊥x轴,垂足分别为B、D,连接OA、AC、OC,线段OC交AB于点E,点E 恰好为OC的中点,当△AEC的面积为时,k的值为()A.4B.6C.﹣4D.﹣6【分析】设点C的坐标为(m,),则点E(m,),A(m,),根据三角形的面积公式可得出S=﹣k=,由此即可求出k值.△AEC【解答】解:设点C的坐标为(m,),则点E(m,),A(m,),=BD•AE=(m﹣m)•(﹣)=﹣k=,∵S△AEC∴k=﹣4.故选C.【点评】本题考查了反比例函数图象上点的坐标特征,解题的关键是设出点C的坐标,利用点C的横坐标表示出A、E点的坐标.本题属于基础题,难度不大,解决该题型题目时,利用反比例函数图象上点的坐标特征表示出点的坐标是关键.4.(毕节市)如图,点A为反比例函数图象上一点,过A作AB⊥x轴于点B,连接OA,则△ABO的面积为()A.﹣4B.4C.﹣2D.2【分析】根据反比例函数系数k的几何意义:在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变,可计算出答案.【解答】解:△ABO的面积为:×|﹣4|=2,故选D.【点评】本题考查了反比例函数系数k的几何意义,关键是掌握比例系数k的几何意义:①在反比例函数y=xk图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.②在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.5.(黔西南州)如图,反比例函数y=的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为()A.2B.4C.5D.8【分析】由反比例函数的系数k的几何意义可知:OA•AD=2,然后可求得OA•AB的值,从而可求得矩形OABC的面积.【解答】解:∵y=,∴OA•AD=2.∵D是AB的中点,∴AB=2AD.∴矩形的面积=OA•AB=2AD•OA=2×2=4.故选:B.【点评】本题主要考查的是反比例函数k的几何意义,掌握反比例函数系数k的几何意义是解题的关键.6.(长春)如图,在平面直角坐标系中,点P(1,4)、Q(m,n)在函数y=(x>0)的图象上,当m>1时,过点P分别作x轴、y轴的垂线,垂足为点A,B;过点Q分别作x 轴、y轴的垂线,垂足为点C、D.QD交PA于点E,随着m的增大,四边形ACQE的面积()A.减小B.增大C.先减小后增大D.先增大后减小【分析】首先利用m和n表示出AC和AQ的长,则四边形ACQE的面积即可利用m、n表示,然后根据函数的性质判断.【解答】解:AC=m﹣1,CQ=n,则S=AC•CQ=(m﹣1)n=mn﹣n.四边形ACQE∵P(1,4)、Q(m,n)在函数y=(x>0)的图象上,∴mn=k=4(常数).=AC•CQ=4﹣n,∴S四边形ACQE∵当m>1时,n随m的增大而减小,=4﹣n随m的增大而增大.∴S四边形ACQE故选B.【点评】本题考查了反比例函数的性质以及矩形的面积的计算,利用n表示出四边形ACQE 的面积是关键.7.(三明)如图,P,Q分别是双曲线y=在第一、三象限上的点,PA⊥x轴,QB⊥y轴,垂足分别为A,B,点C是PQ与x轴的交点.设△PAB的面积为S1,△QAB的面积为S2,△QAC的面积为S3,则有()A.S1=S2≠S3B.S1=S3≠S2C.S2=S3≠S1D.S1=S2=S3【分析】根据题意可以证明△DBA和△DQP相似,从而可以求出S1,S2,S3的关系,本题得以解决.【解答】解:延长QB与PA的延长线交于点D,如右图所示,设点P的坐标为(a,b),点Q的坐标为(c,d),∴DB=a,DQ=a﹣c,DA=﹣d,DP=b﹣d,∵DB•DP=a•(b﹣d)=ab﹣ad=k﹣ad,DA•DQ=﹣d(a﹣c)=﹣ad+cd=﹣ad+k=k﹣ad,∴DB•DP=DA•DQ,即,∵∠ADB=∠PDQ,∴△DBA∽△DQP,∴AB∥PQ,∴点B到PQ的距离等于点A到PQ的距离,∴△PAB的面积等于△QAB的面积,∵AB∥QC,AC∥BQ,∴四边形ABQC是平行四边形,∴AC=BQ,∴△QAB的面积等于△QAC,∴S1=S2=S3,故选D.【点评】本题考查反比例函数系数k的几何意义、反比例函数的性质,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.8.(抚顺)如图,矩形ABCD的顶点D在反比例函数y=(x<0)的图象上,顶点B,C在x轴上,对角线AC的延长线交y轴于点E,连接BE,若△BCE的面积是6,则k的值为()A.﹣6B.﹣8C.﹣9D.﹣12【分析】先设D(a,b),得出CO=﹣a,CD=AB=b,k=ab,再根据△BCE的面积是6,得出BC×OE=12,最后根据AB∥OE,得出=,即BC•EO=AB•CO,求得ab的值即可.【解答】解:设D(a,b),则CO=﹣a,CD=AB=b,∵矩形ABCD的顶点D在反比例函数y=(x<0)的图象上,∴k=ab,∵△BCE的面积是6,∴×BC×OE=6,即BC×OE=12,∵AB∥OE,∴=,即BC•EO=AB•CO,∴12=b×(﹣a),即ab=﹣12,∴k=﹣12,故选(D).【点评】本题主要考查了反比例函数系数k的几何意义,矩形的性质以及平行线分线段成比例定理的综合应用,能很好地考核学生分析问题,解决问题的能力.解题的关键是将△BCE 的面积与点D的坐标联系在一起,体现了数形结合的思想方法.9.(钦州校级自主招生)如图,A,B,C为反比例函数图象上的三个点,分别从A,B,C 向xy轴作垂线,构成三个矩形,它们的面积分别是S1,S2,S3,则S1,S2,S3的大小关系是()A.S1=S2>S3B.S1<S2<S3C.S1>S2>S3D.S1=S2=S3【分析】过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值,即S=|k|.【解答】解:设点A坐标为(x1,y1)点B坐标(x2,y2)点C坐标(x3,y3),∵S1=x1•y1=k,S2=x2•y2=k,S3=x3•y3=k,∴S1=S2=S3.故选D.【点评】主要考查了反比例函数中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k |,是经常考查的一个知识点.10.(邯郸校级自主招生)如图,A 、B 是双曲线上的点,A 、B 两点的横坐标分别是a 、2a ,线段AB 的延长线交x 轴于点C ,若S △AOC =9.则k 的值是()A .9B .6C .5D .4【分析】作AD ⊥x 轴于D ,BE ⊥x 轴于E ,设反比例函数解析式为y=(k >0),根据反比例函数图象上点的坐标特征得A 、B 两点的纵坐标分别是、,再证明△CEB ∽△CDA ,利用相似比得到===,则DE=CE ,由OD :OE=a :2a=1:2,则OD=DE ,所以OD=OC ,根据三角形面积公式得到S △AOD =S △AOC =×9=3,然后利用反比例函数y=(k ≠0)系数k 的几何意义得|k |=3,易得k=6.【解答】解:作AD ⊥x 轴于D ,BE ⊥x 轴于E ,如图,设反比例函数解析式为y=(k >0),∵A 、B 两点的横坐标分别是a 、2a ,∴A 、B 两点的纵坐标分别是、,∵AD ∥BE ,∴△CEB ∽△CDA ,∴===,∴DE=CE ,∵OD :OE=a :2a=1:2,∴OD=DE ,∴OD=OC ,∴S △AOD =S △AOC =×9=3,而k>0,∴k=6.故选B.【点评】本题考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.也考查了三角形相似的判定与性质.11.(福州校级二模)如图,直线l和双曲线(k>0)交于A、B两点,P是线段AB上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分别是C、D、E,连接OA、OB、OP,设△AOC面积是S1,△BOD面积是S2,△POE面积是S3,则()A.S1<S2<S3B.S1>S2>S3C.S1=S2>S3D.S1=S2<S3【分析】由于点A在y=上,可知S△AOC =k,又由于点P在双曲线的上方,可知S△POE>k,而点B在y=上,可知S△BOD=k,进而可比较三个三角形面积的大小【解答】解:如右图,∵点A在y=上,∴S△AOC=k,∵点P在双曲线的上方,∴S△POE>k,∵点B在y=上,△BOD∴S1=S2<S3.故选;D.【点评】本题考查了反比例函数与一次函数的交点问题,解题的关键是观察当x不变时,双曲线上y的值与直线AB上y的值大小.12.(盐都区模拟)如图,矩形OABC的顶点A在y轴上,C在x轴上,双曲线y=与AB交于点D,与BC交于点E,DF⊥x轴于点F,EG⊥y轴于点G,交DF于点H.若矩形OGHF 和矩形HDBE的面积分别是1和2,则k的值为()A.B.+1C.D.2【分析】设D(t,),由矩形OGHF的面积为1得到HF=,于是根据反比例函数图象上点的坐标特征可表示出E点坐标为(kt,),接着利用矩形面积公式得到(kt﹣t)•(﹣)=2,然后解关于k的方程即可得到满足条件的k的值.【解答】解:设D(t,),∵矩形OGHF的面积为1,DF⊥x轴于点F,∴HF=,而EG⊥y轴于点G,∴E点的纵坐标为,当y=时,=,解得x=kt,∵矩形HDBE的面积为2,∴(kt﹣t)•(﹣)=2,整理得(k﹣1)2=2,而k>0,∴k=+1.故选B.【点评】本题考查了反比例函数比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.13.(昆山市一模)如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数y=(x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE的面积是9,则k=()A.B.C.D.12【分析】所给的三角形面积等于长方形面积减去三个直角三角形的面积,然后即可求出B 的横纵坐标的积即是反比例函数的比例系数.【解答】解:∵四边形OCBA是矩形,∴AB=OC,OA=BC,设B点的坐标为(a,b),∵BD=3AD,∴D(,b),∵点D,E在反比例函数的图象上,∴=k,∴E(a,),∵S △ODE =S 矩形OCBA ﹣S △AOD ﹣S △OCE ﹣S △BDE =ab ﹣﹣﹣•(b ﹣)=9,∴k=,故选C .【点评】此题考查了反比例函数的综合知识,利用了:①过某个点,这个点的坐标应适合这个函数解析式;②所给的面积应整理为和反比例函数上的点的坐标有关的形式.14.(蒙阴县一模)如图,双曲线y=(k >0)与⊙O 在第一象限内交于P 、Q 两点,分别过P 、Q 两点向x 轴和y 轴作垂线,已知点P 坐标为(1,3),则图中阴影部分的面积为()A .1B .2C .3D .4【分析】根据反比例函数图象和圆的性质得到点P 与点Q 关于直线y=x 对称,Q 点的坐标为(3,1),则图中阴影部分为两个边长分别为1和2的矩形,然后根据矩形的面积公式求解.【解答】解:∵双曲线y=(k >0)与⊙O 在第一象限内交于P 、Q 两点,∴点P 与点Q 关于直线y=x 对称,∴Q 点的坐标为(3,1),∴图中阴影部分的面积=2×(3﹣1)=4.故选D .【点评】本题考查了反比例函数y=(k ≠0)系数k 的几何意义:从反比例函数y=(k ≠0)图象上任意一点向x 轴和y 轴作垂线,垂线与坐标轴所围成的矩形面积为|k |.15.(呼伦贝尔校级一模)如图,过反比例函数(x >0)的图象上任意两点A 、B 分别作x 轴的垂线,垂足分别为C 、D ,连接OA 、OB ,设△AOC 和△BOD 的面积分别是S 1、S 2,比较它们的大小,可得()A .S 1>S 2B .S 1=S 2C .S 1<S 2D .大小关系不能确定【分析】根据反比例函数的几何意义,直接求出S 1、S 2的值即可进行比较.【解答】解:由于A 、B 均在反比例函数y=的图象上,且AC ⊥x 轴,BD ⊥x 轴,则S 1=;S 2=.故S 1=S 2.故选B .【点评】此题考查了反比例函数k 的几何意义,找到相关三角形,求出k 的一半即为三角形的面积.16.(许昌二模)如图,点A 是反比例函数y=的图象上的一点,过点A 作AB ⊥x 轴,垂足为B .点C 为y 轴上的一点,连接AC ,BC .若△ABC 的面积为3,则k 的值是()A .3B .﹣3C .6D .﹣6【分析】连结OA ,如图,利用三角形面积公式得到S △OAB =S △CAB =3,再根据反比例函数的比例系数k 的几何意义得到|k |=3,然后去绝对值即可得到满足条件的k 的值.【解答】解:连结OA ,如图,∵AB ⊥x 轴,∴OC ∥AB ,∴S △OAB =S △CAB =3,而S △OAB =|k |,∴|k |=3,∵k <0,∴k=﹣6.故选D .【点评】本题考查了反比例函数的比例系数k 的几何意义:在反比例函数y=图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k |.17.(港南区二模)如图,Rt △AOC 的直角边OC 在x 轴上,∠ACO=90°,反比例函数y=经过另一条直角边AC 的中点D ,S △AOC =3,则k=()A .2B .4C .6D .3【分析】由直角边AC 的中点是D ,S △AOC =3,于是得到S △CDO =S △AOC =,由于反比例函数y=经过另一条直角边AC 的中点D ,CD ⊥x 轴,即可得到结论.【解答】解:∵直角边AC 的中点是D ,S △AOC =3,∴S △CDO =S △AOC =,∵反比例函数y=经过另一条直角边AC 的中点D ,CD ⊥x 轴,∴k=2S △CDO =3,故选D .【点评】本题考查了反比例函数系数k 的几何意义,求得D 点的坐标是解题的关键.18.(同安区一模)如图,点A 是反比例函数y=(x >0)的图象上任意一点,AB ∥x 轴交反比例函数y=﹣的图象于点B ,以AB 为边作平行四边形ABCD ,其中C 、D 在x 轴上,则S 平行四边形ABCD 为()A .2B .3C .4D .5【分析】连结OA 、OB ,AB 交y 轴于E ,由于AB ⊥y 轴,根据反比例函数y=(k ≠0)系数k 的几何意义得到S △OEA 与S △OBE ,则四边形ABCD 为平行四边形,然后根据平行四边形的性质得到S 平行四边形ABCD =2S △OAB =5.【解答】解:连结OA 、OB ,AB 交y 轴于E ,如图,∵AB ∥x 轴,∴AB ⊥y 轴,∴S △OEA =×3=,S △OBE =×2=1,∴S △OAB =1+=,∵四边形ABCD 为平行四边形,∴S 平行四边形ABCD =2S △OAB =5.故选:D .【点评】本题考查反比例函数系数k 的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k |.本知识点是中考的重要考点,同学们应高度关注.19.(肥城市校级模拟)如图,点A 是反比例函数y=(x >0)的图象上任意一点,AB ∥x轴并反比例函数y=﹣的图象于点B ,以AB 为边作▱ABCD ,其中点C ,D 在x 轴上,则▱ABCD 的面积为()A.3B.5C.7D.9【分析】连结OA、OB,如图,AB交y轴于E,根据反比例函数k的几何意义得到S△OAE=1,S△OBE=,则S△OAB=,然后根据平行四边形的面积公式求解.【解答】解:连结OA、OB,如图,AB交y轴于E,∵AB∥x轴,∴S△OAE =×|2|=1,S△OBE=×|﹣3|=,∴S△OAB=,∵四边形ABCD为平行四边形,∴▱ABCD的面积=2S△OAB=5.故选B.【点评】本题考查了反比例函数系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.20.(启东市一模)如图,在x轴正半轴上依次截取OA1=A1A2=A2A3=…=A n﹣1A n(n为正整数),过点A1、A2、A3、…、A n分别作x轴的垂线,与反比例函数y=(x>0)交于点P1、P2、P3、…、P n,连接P1P2、P2P3、…、P n﹣1P n,过点P2、P3、…、P n分别向P1A1、P2A2、…、P n﹣1A n﹣1作垂线段,构成的一系列直角三角形(见图中阴影部分)的面积和是()A.B.C.D.【分析】由OA1=A1A2=A2A3=…=A n﹣1A n=1可知P1点的坐标为(1,y1),P2点的坐标为(2,y2),P3点的坐标为(3,y3)…P n点的坐标为(n,y n),把x=1,x=2,x=3代入反比例函数的解析式即可求出y1、y2、y3的值,再由三角形的面积公式可得出S1、S2、S3…S n﹣1的值,故可得出结论.【解答】解:(1)设OA1=A1A2=A2A3=…=A n﹣1A n=1,∴设P1(1,y1),P2(2,y2),P3(3,y3),…P4(n,y n),∵P1,P2,P3…Bn在反比例函数y=(x>0)的图象上,∴y1=2,y2=1,y3=…y n=,∴S1=×1×(y1﹣y2)=×1×1=;∴S1=;(3)∵S1=×1×(y1﹣y2)=×1×(2﹣)=1﹣;∴S2=×1×(y2﹣y3)=﹣;S3=×1×(y3﹣y4)=×(﹣)=﹣;…∴S n=﹣,﹣1∴S1+S2+S3+…+S n﹣1==1﹣+﹣+﹣+…﹣=.故选A.【点评】本题考查的是反比例函数综合题,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.21.(平房区模拟)在平面直角坐标系中,点O是坐标原点,点A是x轴正半轴上的一个动点,过A点作y轴的平行线交反比例函数y=(x>0)的图象于B点,当点A的横坐标逐渐增大时,△OAB的面积将会()A.逐渐增大B.逐渐减小C.不变D.先增大后减小【分析】因为过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|,所以当点A的横坐标逐渐增大时,△OAB的面积将不变.【解答】解:依题意,△OAB的面积=|k|=1,所以当点A的横坐标逐渐增大时,△OAB的面积将不变.故选:C.【点评】此题主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴的垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.22.(临沂模拟)如图,平面直角坐标系中,点A是x轴负半轴上一个定点,点P是函数(x<0)上一个动点,PB⊥y轴于点B,当点P的横坐标逐渐增大时,四边形OAPB的面积将会()A.逐渐增大B.先减后增C.逐渐减小D.先增后减【分析】由双曲线y=﹣(x>0)设出点P的坐标,运用坐标表示出四边形OAPB的面积函数关系式即可判定.【解答】解:设点P的坐标为(x,﹣),∵PB⊥y轴于点B,点A是x轴正半轴上的一个定点,∴四边形OAPB是个直角梯形,∴四边形OAPB的面积=(PB+AO)•BO=(﹣x+AO)•﹣=2﹣,∵AO是定值,∴四边形OAPB的面积是个增函数,即点P的横坐标逐渐增大时四边形OAPB的面积逐渐增大.故选A.【点评】本题主要考查了反比例函数系数k的几何意义,解题的关键是运用点的坐标求出四边形OAPB的面积的函数关系式.23.(兴化市校级三模)如图,在平面直角坐标系中,点B在y轴上,第一象限内点A满足AB=AO,反比例函数y=的图象经过点A,若△ABO的面积为2,则k的值为()A.1B.2C.4D.【分析】如图,过点A作AD⊥y轴于点D,结合等腰三角形的性质得到△ADO的面积为1,根据反比例函数系数k的几何意义求得k的值.【解答】解:如图,过点A作AD⊥y轴于点D,∵AB=AO,△ABO的面积为2,∴S=|k|=1,△ADO又反比例函数的图象位于第一象限,k>0,则k=2.故选:B.【点评】本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.24.(深圳二模)如图,两个反比例函数y1=(其中k1>0)和y2=在第一象限内的图象依次是C1和C2,点P在C1上.矩形PCOD交C2于A、B两点,OA的延长线交C1于点E,EF⊥x轴于F点,且图中四边形BOAP的面积为6,则EF:AC为()A .﹕1B .2﹕C .2﹕1D .29﹕14【分析】首先根据反比例函数y 2=的解析式可得到S △ODB =S △OAC =×3=,再由阴影部分面积为6可得到S 矩形PDOC =9,从而得到图象C 1的函数关系式为y=,再算出△EOF 的面积,可以得到△AOC 与△EOF 的面积比,然后证明△EOF ∽△AOC ,根据对应边之比等于面积比的平方可得到EF ﹕AC 的值.【解答】解:∵B 、C 反比例函数y 2=的图象上,∴S △ODB =S △OAC =×3=,∵P 在反比例函数y 1=的图象上,∴S 矩形PDOC =k 1=6++=9,∴图象C 1的函数关系式为y=,∵E 点在图象C 1上,∴S △EOF =×9=,∴==3,∵AC ⊥x 轴,EF ⊥x 轴,∴AC ∥EF ,∴△EOF ∽△AOC ,∴=,故选:A .【点评】此题主要考查了反比例函数系数k 的几何意义,以及相似三角形的性质,关键是掌握在反比例函数y=图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k |;在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k |,且保持不变.25.(富顺县校级一模)如图,已知矩形OABC面积为,它的对角线OB与双曲线相交于D且OB:OD=5:3,则k=()A.6B.12C.24D.36【分析】先找到点的坐标,然后再利用矩形面积公式计算,确定k的值.【解答】解:由题意,设点D的坐标为(x D,y D),则点B的坐标为(x D,y D),矩形OABC的面积=|x D×y D|=,∵图象在第一象限,∴k=x D•y D=12.故选B.【点评】本题考查了反比例函数与几何图形的结合,综合性较强,同学们应重点掌握.26.(重庆模拟)如图,▱OABC的顶点C在x轴的正半轴上,顶点A、B在第一象限内,且点A的横坐标为2,对角线AC与OB交于点D,若反比例函数y=的图象经过点A与点D,则▱OABC的面积为()A.30B.24C.20D.16【分析】根据平行四边形的性质的性质及反比例函数k的几何意义,判断出OE=EF,再由△AOD的面积,即可求出结果.【解答】解:过点A作AE⊥OC于E,过点D作DF⊥OC于F,∵反比例函数y=的图象经过点A,且点A的横坐标为2,∴y==5,∴A(2,5),∴AE=5,∵四边形OABC是平行四边形,∴AD=CD,∴DF=AE=,OF=4,∵反比例函数y=的图象经过点A 与点D ,∴S △AOD =S 四边形AEFD =(+5)×2=,∴▱OABC 的面积=4×S △AOD =4×=30.故选A .【点评】本题考查了平行四边形的性质及反比例函数k 的几何意义,涉及的知识点较多,注意理清解题思路,分步求解.27.(河南模拟)如图,A 、C 分别是x 轴、y 轴上的点,双曲线y=(x >0)与矩形OABC 的边BC 、AB 分别交于E 、F ,若AF :BF=1:2,则△OEF 的面积为()A .2B .C .3D .【分析】设F 点的坐标为(t ,),由AF :BF=1:2得到AB=3AF ,则B 点坐标可表示为(t ,),再利用反比例函数解析式确定E 点坐标为(,),然后利用△OEF 的面积=S 矩形ABCO ﹣S △OEC ﹣S △OAF ﹣S △BEF 和三角形的面积公式进行计算.【解答】解:设F 点的坐标为(t ,),∵AF :BF=1:2,∴AB=3AF ,∴B 点坐标为(t ,),把y=代入y=得x=,。
第六章反比例函数及反比例函数k的几何意义专题训练北师大版2024—2025学年九年级上册
![第六章反比例函数及反比例函数k的几何意义专题训练北师大版2024—2025学年九年级上册](https://img.taocdn.com/s3/m/23d6af6a53ea551810a6f524ccbff121dc36c57c.png)
第六章反比例函数及反比例函数k的几何意义专题训练北师大版2024—2025学年九年级上册反比例函数比例系数k的几何意义(1)意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|,以该点、一个垂足和原点为顶点的三角形的面积为1/2|k|.(2)常见的面积类型:例1.如图,点P是反比例函数y=(k≠0)的图象上任意一点,过点P作PM⊥x轴,垂足为M,若△POM的面积等于3,则k的值等于()A.﹣6B.6C.﹣3D.3变式1.如图,在▱AOBC中,对角线AB、OC交于点E,双曲线经过A、E两点,若▱AOBC的面积为18,则k的值是()A.5B.6C.7D.8变式2.如图,平行于x轴的直线与函数y=(k1>0,x>0),y=(k2>0,x>0)的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点.若△ABC的面积为4,则k1﹣k2的值为()A.8B.﹣8C.4D.﹣4变式3.如图,点P是反比例函数图象上的一点,PF⊥x轴于F点,且Rt△POF面积为4.则k的值为()A.8B.﹣8C.﹣4D.4变式4.如图,点M是反比例函数y=(x<0)图象上一点,MN⊥y 轴于点N.若P为x轴上的一个动点,则△MNP的面积为()A.2B.4C.6D.无法确定变式5.如图,点P是双曲线C:y=(x>0)上的一点,过点P作x轴的垂线交直线AB:y=x﹣2于点Q,连接OP,OQ,当点P在曲线C上运动,且点P在Q上方时,△POQ面积的最大值为()A.2B.3C.4D.6变式6.如图,已知点A为反比例函数y=(x<0)的图象上一点,过点A作AB⊥y轴,垂足为B,若△OAB的面积为3,则k的值为()A.3B.﹣3C.6D.﹣6变式7.关于x的反比例函数y=的图象如图,A、P为该图象上的点,且关于原点成中心对称.△P AB中,PB∥y轴,AB∥x轴,PB 与AB相交于点B.若△P AB的面积大于12,则关于x的方程(a ﹣1)x2﹣x+=0的根的情况是()A.2个不相等的实数根B.2个相等的实数根C.1个实数根D.无实数根变式8.如图,两个反比例函数y1=和y2=在第一象限内的图象分别是C1和C2,设点P在C1上,P A⊥x轴于点A,交C2于点B,则△POB的面积为()A.4B.2C.1D.6变式9.如图,若反比例函数的图象经过点A,AB⊥x轴于点B,C点是y轴上一点,且△ABC的面积4,则k的值为()A.﹣8B.﹣4C.4D.8变式10.如图,反比例函数的图象经过矩形OABC的边AB的中点D,若矩形OABC的面积为6,则k的值为()A.﹣3B.3C.﹣6D.6变式11.如图,点A是反比例函数的图象上的一点,过点A作AB ⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC 的面积为3,则k的值是()A.3B.﹣6C.6D.﹣3变式12.下面四个图中反比例函数的表达式均为,则阴影部分的图形的面积为3的有()A.1个B.2个C.3个D.4个变式13.如图,将一块含30°角的三角板AOB按如图所示摆放在平面直角坐标系中,∠B=60°,∠BAO=90°,△AOB的面积为4,BO与x轴的夹角为30°,若反比例函数的图象经过点A,则k的值为()A.3B.C.6D.9变式14.如图1,在△OAB中,∠AOB=45°,点B的坐标为,点A在反比例函数的图象上,设△OAB的面积为S1;如图2,在△ABC中,AB=AC,BC在x轴上,且OB:BC=1:2,点A在反比例函数的图象上,设△ABC的面积为S2,则S1+S2的值为()A.B.5C.D.变式15.如图,已知四边形OABC是矩形,边OA在x轴上,边OC在y轴上,双曲线过OB的中点E,且与边BC交于点D,若△DOE的面积为7.5,则k的值是()A.5B.10C.15D.变式16.如图,点A是反比例函数y=(x>0)图象上的一点,AB垂直于x轴,垂足为B,△OAB的面积为8.若点P(a,4)也在此函数的图象上,则a的值是()A.2B.﹣2C.4D.﹣4变式17.如图,在平面直角坐标系xOy中,点A、B分别在y、x 轴上,BC⊥x轴,点M、N分别在线段BC、AC上,BM=CM,NC=2AN,反比例函数y=(x>0)的图象经过M、N两点,P为x轴正半轴上一点,且OP:BP=1:4,△APN的面积为3,则k的值为()A.B.C.D.变式18.如图,在平面直角坐标系中,平行四边形ABCD与y轴分别交于E、F两点,对角线BD在x轴上,反比例函数的图象过点A并交AD于点G,连接DF.若BE:AE=1:2,AG:GD=3:2,且△FCD的面积为,则k的值是()A.B.3C.D.5变式19.如图,平面直角坐标系中,矩形OABC的边与函数y=(x>0)图象交于E,F两点,且F是BC的中点,则四边形ACFE的面积等于()A.4B.6C.8D.不能确定例2.如图,矩形OABC的顶点A,C分别在x轴、y轴的正半轴上,它的对角线OB与函数的图象相交于点D,且,若矩形OABC的面积为24,则k的值是.变式1.如图,已知在平面直角坐标系xOy中,点P是▱ABCO对角线OB的中点,反比例函数的图象经过点A,点P.若▱ABCO的面积为30,且y轴将▱ABCO的面积分为1:3,则k的值为.变式2.如图,在平面直角坐标系xOy中,点A,B都在反比例函数y=(x>0)的图象上,延长AB交y轴于点C,过点A作AD⊥y轴于点D,连接BD并延长,交x轴于点E,连接CE.若AB=2BC,△BCE的面积是4.5,则k的值为.变式3.如图,在平面直角坐标系xOy中,等腰Rt△OAB,∠B=90°,点A在x轴正半轴上,点B在第一象限内,反比例函数y=的图象与AB交于点C,连接OC,若BC=2AC,△OBC的面积为6,则k的值为.变式4.如图,在平面直角坐标系中,C,A分别为x轴、y轴正半轴上的点,以OA,OC为边,在第一象限内作矩形OABC,且S矩形OABC=8,将矩形OABC翻折,使点B与原点O重合,折痕为MN,点C的对应点C'落在第四象限,过M点的反比例函数y=(k ≠0)的图象恰好过MN的中点,则点C'的坐标为.变式5.如图,在平面直角坐标系中,点A、C在y轴上,且,点B(﹣2,0)在x轴上,将△ABC绕点A逆时针旋转90°后得到△AB'C′,线段AB′与双曲线交于点D,连接B′C、C′C,当点D为AB′中点,且S△B'CC′=6时,则k的值是.变式6.如图,在△AOB中,OC平分∠AOB,=,反比例函数y=(k<0)图象经过点A、C两点,点B在x轴上,若△AOB的面积为9,则k的值为.变式7.如图,点A,B,C,D是菱形的四个顶点,其中点A,D在反比例函数y=(m>0,x>0)的图象上,点B,C在反比例函数y=(n<0)的图象上,且点B,C关于原点成中心对称,点A,C的横坐标相等,则的值为;过点A作AE∥x轴交反比例函数y=(n<0)的图象于点E,连结ED并延长交x轴于点F,连结OD.若S△DOF=7,则m的值为.变式8.如图,A(a,b)、B(﹣a,﹣b)是反比例函数y=的图象上的两点,分别过点A、B作y轴的平行线,与反比例函数y=的图象交于点C、D,若四边形ACBD的面积是8,则m、n之间的关系是.变式9.如图,平面直角坐标系xOy中,Rt△ABO的斜边BO在x轴正半轴上,OB=5,反比例函数y=(x>0)的图象过点A,与AB边交于点C,且AC=3BC,则a的值为,射线OA,射线OC分别交反比例函数y=(b>a>0)的图象于点D,E,连接DE,DC,若△DEC的面积为45,则b的值为.变式10.如图,点A、B在反比例函数y=(x>0)的图象上,延长AB交x轴于C点,若△AOC的面积是12,且点B是AC的中点,则k=.变式11.如图,菱形ABCD中,∠ABC=120°,顶点A,C在双曲线上,顶点B,D在双曲线上,且BD经过点O.若k1+k2=2,则菱形ABCD面积的最小值是.变式12.如图,在平面直角坐标系xOy中,正方形ABCD的顶点A、C恰好落在双曲线上,且点O在AC上,AD交x轴于点E.①当A点坐标为(1,m)时,D点的坐标为;②当CE平分∠ACD时,正方形ABCD的面积为.例3.如图,O为坐标原点,点A(﹣1,5)和点B(m,﹣1)均在反比例函数图象上(1)求m,k的值;(2)当x满足什么条件时,﹣x+4>﹣;(3)P为y轴上一点,若△ABP的面积是△ABO面积的2倍,直接写出点P的坐标.变式1.已知点A(a,ma+2)、B(b,mb+2)是反比例函数y=图象上的两个点,且a>0,b<0,m>0.(1)求证:a+b=﹣;(2)若OA2+OB2=2a2+2b2,求m的值;(3)若S△OAB=3S△OCD,求km的值.变式2.如图,双曲线y=上的一点A(m,n),其中n>m>0,过点A作AB⊥x轴于点B,连接OA.(1)已知△AOB的面积是3,求k的值;(2)将△AOB绕点A逆时针旋转90°得到△ACD,且点O的对应点C恰好落在该双曲线上,求的值.。
反比例函数中K的几何意义专题训练
![反比例函数中K的几何意义专题训练](https://img.taocdn.com/s3/m/ee0268377dd184254b35eefdc8d376eeaeaa171f.png)
反比例函数中K的几何意义专题训练【知识梳理】1.反比例函数图象中有关图形的面积2.涉及三角形的面积型当一次函数与反比例函数结合时,可通过面积作和或作差的形式来求解.(1)正比例函数与一次函数所围成的三角形面积.如图①,S△ABC=2S△ACO=|k|;(2)如图②,已知一次函数与反比例函数y=kx交于A、B两点,且一次函数与x轴交于点C,则S△AOB=S△AOC+S△BOC=12OC⋅|y A|+12OC⋅|y B|=12OC⋅(|y A|+|y B|);(3)如图③,已知反比例函数y=kx的图象上的两点,其坐标分别为(x A,y A),(x B,y B),C为AB延长线与x轴的交点,则S△AOB=S△AOC–S△BOC=12OC⋅|y A|–12OC⋅|y B|=12OC⋅(|y A|−|y B|).【精典训练】【01】如图,反比例函数y=kx(k≠0)的图象上有一点A,AB平行于x轴交y轴于点B,△ABO 的面积是3,则反比例函数的解析式是()A. y=32x B. y=3xC. y=6xD. y=34x【02】如图,P是反比例函数图象在第二象限上的一点,矩形PEOF的面积为5,则反比例函数的表达式是________.【03】如图,点A在反比例函数y=kx(x>0)的图象上,过点A作AD⊥y轴于点D,延长AD至点C,使AD=DC,过点A作AB⊥x轴于点B,连接BC交y轴于点E.若△ABC 的面积为6,则k的值为.【04】如图,在平面直角坐标系xOy中,反比例函数y=−8x在第二象限的图象上有一点A,过点A作AB⊥x轴于点B,则S△AOB=.【05】如图,双曲线y=kx与△OAB交于点A,C,已知A,B,C三点横坐标的比为5:5:2,且S△OAB=21,则k=.【06】如图,矩形ABCD的顶点A和对称中心在反比例函数y=kx(k≠0,x>0)的图象上,若矩形ABCD的面积为12,则k的值为()A.6 B.3√3C.4√2D.12【07】如图,点A、B在反比例函数y=kx的图象上,过点A、B作x轴的垂线,垂足分别是M、N,射线AB交x轴于点C,若OM=MN=NC,四边形AMNB的面积是3,则k的值为()A.-2 B.-4 C.2 D.4【08】如图,在平面直角坐标系中,矩形ABCO的两边OA,OC落在坐标轴上,反比例函数y=kx 的图象分别交BC,OB于点D,点E,且BDCD=54,若S△AOE=24,则k的值为.【09】如图,过原点的直线与反比例函数y=kx(k>0)的图象交于A,B两点,点A在第一象限点C在x轴正半轴上,连结AC交反比例函数图象于点D.AE为∠BAC的平分线,过点B作AE的垂线,垂足为E,连结DE.若AC=3DC,ΔADE的面积为8,则k的值为________.【10】如图,在平面直角坐标系中,△OAB的顶点A在x轴正半轴上,OC是△OAB的中线,点B、C在反比例函数y=2x(x>0)的图象上,则△OAB的面积等于.【11】如图,Rt△AOB的一条直角边OB在x轴上,双曲线y=kx(x>0)经过斜边OA的中点C,与另一直角边交于点D.若S△OCD=9,则S△OBD的值为.【12】在平面直角坐标系中,对于不在坐标轴上的任意一点A(x,y),我们把点B(1x ,1y)称为点A的“倒数点”.如图,矩形OCDE的顶点C为(3,0),顶点E在y轴上,函数y=2x(x>0)的图象与DE交于点A.若点B是点A的“倒数点”,且点B在矩形OCDE的一边上,则△OBC的面积为_________.【13】如图,经过原点O 的直线与反比例函数y =ax (a >0)的图象交于A ,D 两点(点A 在第一象限),点B ,C ,E 在反比例函数y =bx (b <0)的图象上,AB ∥y 轴,AE ∥CD ∥x 轴,五边形ABCDE 的面积为56,四边形ABCD 的面积为32,则a ﹣b 的值为__,ba 的值为__.【14】如图,直线l ⊥x 轴于点P ,且与反比例函数y 1=k 1x(x >0)及y 2=k 2x(x >0)的图象分别交于点A ,B ,连接OA ,OB ,已知△OAB 的面积为3,则k 1﹣k 2= .【15】双曲线C 1:y =k 1x和C 2:y =k 2x如图所示,点A 是C 1上一点,分别过点A 作AB ⊥x 轴,AC ⊥y 轴,垂足分别为点B 、点C ,AB ,AC 与C 2分别交于点D 、点E ,若四边形ADOE 的面积为4,则k 1﹣k 2= .【16】如图,点A 是第一象限内双曲线y =mx (m >0)上一点,过点A 作AB ∥x 轴,交双曲线y =nx (n <0)于点B ,作AC ∥y 轴,交双曲线y =nx (n <0)于点C ,连接BC .若△ABC 的面积为92,则m ,n 的值不可能是( )A.m=19,n=−109B.m=14,n=−54C.m=1,n=﹣2 D.m=4,n=﹣2。
反比例函数k的几何意义专项练习题
![反比例函数k的几何意义专项练习题](https://img.taocdn.com/s3/m/c83ecd0af111f18583d05ac0.png)
反比例函数k 的几何意义专项练习1 、如图.矩形AOCB 的两边OC 、OA 分别位于x 轴、y 轴上.点B 的坐标20为B(,5 ).D 是AB 边上的一点.将△ADO 沿直线OD 翻折.使A 点3恰好落在对角线OB 上的点 E 处.若点 E 在一反比例函数的图像上.那么该函数的解析式是.2、如图.点P 在反比例函数的图象上.过P 点作PA ⊥x轴于 A 点. 作PB ⊥y轴于 B 点. 矩形OAPB 的面积为9. 则该反比例函数的解析式为.3、如图, 如果函数y=-x 与y= 4的图像交于A、B 两点, 过点 A 作AC 垂直于y x轴, 垂足为点C, 则△BOC 的面积为.4、如图.正方形OABC.ADEF 的顶点 A.D.C 在坐标轴上.点F 在AB1上. 点B.E 在函数y xx0 的图象上.则点E 的坐标是( )5、反比例函数ky 的图象如图所示.点M 是该函数图象上一点.MN 垂直于x 轴.x垂足是点N.如果S△MON=2. 则k 的值为()(A)2 (B)-2(C)4 (D)-46、如图.A、B 是反比例函数y=2的图象上的两点.AC 、BD 都垂直于x 轴. x垂足分别为C、D.AB 的延长线交x 轴于点 E .若C 、D 的坐标分别为(1.0) 、(4.0). 则ΔBDE 的面积与ΔACE 的面积的比值是( ).1 1A .B.2 41 1 C. D .8 167、如图.A、B 是函数y 2的图象上关于原点对称的任意两点. BC∥x 轴.AC∥y 轴.△ABC xyAOxB C的面积记为S .则()A. S 2 B .S 4 C.2 S 4kD.S 48、如图.直线y=mx 与双曲线y= 交于A、B 两点.过点 A 作AM ⊥x轴.垂足为M. 连结BM,x若S ABM =2. 则k 的值是()A .2 B、m-2 C 、m D、49、如图.双曲线y k(k>0) 经过矩形QABC 的边BC 的中点 E. 交AB 于点xD。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反比例函数k的几何意义专项练习1、如图,矩形AOCB 的两边OC 、OA 分别位于x 轴、y 轴上,点B 的坐标为B (20,53-),D 是AB 边上的一点.将△ADO 沿直线OD 翻折,使A 点恰好落在对角线OB 上的点E 处,若点E 在一反比例函数的图像上,那么该函数的解析式 是 .2、如图,点P 在反比例函数的图象上,过P 点作PA ⊥x 轴于A点,作PB ⊥y 轴于B 点,矩形OAPB 的面积为9,则该反比例函数的解析式为 . 3、如图, 如果函数y=-x 与y=x4-的图像交于A 、B 两点, 过点A 作AC 垂直于y 轴, 垂足为点C, 则△BOC 的面积为___________.4、如图,正方形OABC ,ADEF 的顶点A ,D ,C 在坐标轴上,点F 在AB 上,点B ,E 在函数()10y x x=>的图象上,则点E 的坐标是( ) 5、反比例函数xky =的图象如图所示,点M 是该函数图象上一点,MN 垂直于x 轴,垂足是点N ,如果S △MON =2,则k 的值为( )(A)2 (B)-2 (C)4 (D)-46、如图,A 、B 是反比例函数y =x2的图象上的两点.AC 、BD 都垂直于x 轴,垂足分别为C 、D .AB 的延长线交x 轴于点E .若C 、D 的坐标分别为(1,0)、(4,0),则ΔBDE 的面积与ΔACE 的面积的比值是( ).A .21 B .41 C.81 D .161 7、如图,A 、B 是函数2y x=的图象上关于原点对称的任意两点, BC ∥x 轴,AC ∥y 轴,△ABC 的面积记为S ,则( )A . 2S =B . 4S =C .24S <<D .4S >8、如图,直线y=mx 与双曲线y=xk 交于A 、B 两点,过点A 作AM ⊥x 轴,垂足为M ,连结BM,若ABM S ∆=2,则k 的值是( ) A .2B 、m-2C 、mD 、49、如图,双曲线)0(>k xk y =经过矩形QABC 的边BC 的中点E ,交AB 于点D 。
若梯形ODBC 的面积为3,则双曲线的解析式为A .x y 1=B .x y 2= C . x y 3= D .xy 6=10、如图,在直角坐标系中,点A 是x 轴正半轴上的一个定点,点B 是 双曲线3y x=(0x >)上的一个动点,当点B 的横坐标逐渐增大时, OAB △的面积将会 A .逐渐增大 B .不变 C .逐渐减小 D .先增大后减小 斜边OB 11、如图,已知双曲线)0k (xk y >=经过直角三角形OAB的中点D ,与直角边AB 相交于点C .若△OBC 的面积为3,则k=____________.13、如图,点A 、B 是双曲线3y x=上的点,分别经过A 、B 两点向x 轴、y 轴作垂O B CA xy O AB线段,若1S =阴影,则12S S +=.14、如图,⊙A 和⊙B 都与x 轴和y 轴相切,圆心A 和圆心B 都在反比例函数1y x=的图象上,则图中阴影部分的面积等于 . 15、如图,已知一次函数1y x =+的图象与反比例函数ky x=的图象在第一象限相交于点A ,与x 轴相交于点C AB x ,⊥轴于点B ,AOB △的面积为1,则AC 的长为(保留根号).16、如图,过原点的直线l 与反比例函数1y x=-的图象交于M ,N 两点,根据图象猜想线段MN 的长的最小值是___________.17、如图11,若正方形OABC 的顶点B 和正方形ADEF 的顶点E 都在函数 1y x=(0x >)的图象上,则点E 的坐标是( , )C 向18、如图1,已知点C 为反比例函数6y x=-上的一点,过点坐标轴引垂线,垂足分别为A 、B ,那么四边形AOBC 的面积Oy x MNl yO x AC BxyABO 图1yB A o为 .19、如图,已知双曲线(0)k y k x=<经过直角三角形OAB斜边OA 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为(6-,4),则△AOC 的面积为 A .12 B .9 C .6 D .4 ),(),,(2211y x B y x A 两点,20、如图,直线)0(<=k kx y 与双曲线xy 2=交于则122183y x y x -的值为( )B.-10C.521、如图,已知梯形ABCO 的底边AO 在x 轴上,BC ∥AO ,AB ⊥AO ,过点C 的双3,则k 的曲线ky x= 交OB 于D ,且OD :DB=值( )A . 等于2B .等于34C .等于245D .无法确定22、如图,已知在直角梯形AOBC 中,AC ∥OB ,CB ⊥OB ,OB =18,BC =12,AC =9,对角线OC 、AB 交于点D ,点E 、F 、G 分别是CD 、BD 、BC 的中点,以O 为原点,直线OB 为x 轴建立平面直角坐标系,则G 、E 、D 、F 四个点中与点A 在同一反比例函数图像上的是( )A .点GB .点EC .点DD .点F .O ABCDxy DB AyxO C【答案】A .23、如图,直线l是经过点(1,0)且与y 轴平行的直线.Rt △ABC 中直角边AC=4,BC=3.将BC 边在直线l上滑动,使A ,B 在函数xky =的图象上. 那么k 的值是A .3B .6 C.12 D .415 【答案】D24、如图,反比例函数y =k x(x >0)的图象经过矩形OABC 对角线的交点M ,分别与AB 、BC 相交于点D 、E .若四边形ODBE 的面积为6,则k 的值为A .1B .2C .3D .4【答案】B 作25、双曲线xy xy 21==与在第一象限内的图象如图所示,一条平行于y 轴的直线分别交双曲线于A 、B 两点,连接OA 、OB ,则△AOB 的面积为( ) A .1 B .2C .3D .4【答案】A27、直线l 与双曲线C 在第一象限相交于A 、B 两点,其图象信息如图4所示,则AB C D E y x OM阴影部分(包括边界)横、纵坐标都是整数的点(俗称格点)有: ( ) A .4个 B .5 个 C .6个 D .8个 【答案】B28、如图所示,已知菱形OABC ,点C 在x 轴上,直线y =x 经过点A ,菱形OABC 的面积是若反比例函数的图象经过点B ,则此反比例函数表达式为( )A .1y x=B.y =C.y =D.y =180° 【答案】C29、反比例函数xk y =的图象如图所示,则k 的值可能是( )A .-1B .21C .1D .2【答案】B30、如图5,等腰直角三角形ABC 位于第一象限,AB=AC=2,直角顶点A 在直线y = x 上,其中A 点的横坐标为1,且两条直角边AB 、AC 分别平行于x 轴、y 轴。
若双曲线y =xk(k ≠0)与△ABC 的边有交点,则k 的取值范围是( ) A .1<k <2 B .1≤k ≤3 C .1≤k ≤4 D .1≤k <4【答案】C31、已知点(1,3)在函数)0(>=x xk y 的图像上。
正方形ABCD 的边BC 在x 轴上,点E 是对角线BD 的中点,函坐数)0(>=x xk y 的图像又经过A 、E 两点,则点E 的横标为__________。
【答案】632、如图,A 、B 是双曲线 y = kx(k >0) 上的点, A 、B 两点的横坐标分别是a 、2a ,线段AB 的延长线交x 轴于点C ,若S △AOC =6.则k= .【答案】433、如图,已知双曲线)0k (xk y >=经过直角三角形OAB 斜边OB 的中点D ,与直角边AB 相交于点C .若△OBC 的面积为3,则k =____________. 【答案】2y xOB C A (第18A Oyx B C图34、如图,直线y =3x b +与y 轴交于点A ,与双曲线y=k x在第一象限交于点B ,C 两点,且AB ⋅AC =4,则k = . 答案:335、如图,已知一次函数1y x =+的图象与反比例函数ky x=的图象在第一象限相交于点A ,与x 轴相交于点C AB x ,⊥轴于点B ,AOB △的面积为1,则AC 的长为 (保留根号).【答案】2236、如图,已知点A 在双曲线y=6x上,且OA=4,过A 作AC⊥x 轴于C ,OA 的垂直平分线交OC 于B .(1)则△AOC 的面积= ,(2)△ABC 的周长为 . 【答案】(1)3,(2)72.37、如图7所示,点1A 、2A 、3A 在x 轴上,且32211A A A A OA ==,分别过点1A 、2A 、3A 作y 轴的平行线,与分比例函数)0(8>=x xy 的图像分别 交于点1B 、2B 、3B ,分别过点1B 、2B 、3B 作x 轴的平行线,分别与y 轴交于点1C 、2C 、3C ,连接1OB 、2OB 、3OB ,那么图中阴影部分的面积之和为 .【答案】94938、如图,A 是反比例函数图象上一点,过点A 作y AB ⊥轴于点B ,点P 在x 轴上,yO A C B△ABP 面积为2,则这个反比例函数的解析式为 。
【答案】xy 4=39、如图3,Rt△ABC 在第一象限,90BAC ∠=,AB=AC=2, 点A 在直线y x =上,其中点A 的横坐标为1,且AB ∥x 轴,AC ∥y 轴,若双曲线ky x=()0k ≠与△ABC 有交点,则k 的 取值范围是 .40、如图,矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,点C 在反比例函数221k k y x++=的图象上。
若点A 的坐标为(-2,-2),则k 的值为A .1B .-3C .4D .1或-341、如图,直线l 和双曲线(0)ky k x=>交于A 、B 亮点,P 是线段AB 上的点(不与A 、B 重合),过点A 、B 、P 分别向x 轴作垂线,垂足分别是C 、D 、E,连接OA 、OB 、OP,设△AOC 面积是S 1、△B OD 面积是S 2、△P OE 面积是S 3、则( ) A. S 1<S 2<S 3 B. S 1>S 2>S 3 C. S 1=S 2>S 3 D. S 1=S 2<S 3 【答案】D图345、如图,点A 在双曲线1y x =上,点B 在双曲线3y x=上, 且AB ∥x 轴,C 、D 在x 轴上,若四边形ABCD 的面积为矩形,则它的面积为 . 48、如图,过点C (1,2)分别作x 轴、y 轴的平行线,交直线与△y=-x+6于A 、B 两点,若反比例函数k y x=(x >0)的图像ABC 有公共点,则k 的取值范围是( )A .2≤k ≤9 B. 2≤k ≤8 C. 2≤k ≤5 D. 5≤k ≤849、如图,若点M 是x 轴正半轴上的任意一点,过点M 作PQ ∥y 轴,分别交函数xk 1y =则(x >0)和xk 2y =(x >0)的图象于点P 和Q ,连接OP 、OQ,下列结论正确的是( )A.∠POQ 不可能等于900B. 21K K QMPM=C.这两个函数的图象一定关于x 轴对称D. △POQ 的面积是)(|k ||k |2121+ 50、如图,两个反比例函数1y x =和2y x=-的图象分别是1l 和2l .设点P 在1l 上,PC ⊥x 轴,垂足为C ,交2l 于点A ,PD ⊥y 轴,垂足为D ,交2l 于点B ,则三角形PAB 的面积为( )(A )3 (B )4 (C )92(D )5【解析】可设P (a , 1a),∵P 和A 的纵坐标相同,又A 在2l 上,可得A 点的纵坐可得标为2-a,∴PA=3a.P 点和B 点的纵坐标相同,同理B 点横坐标为-2a ,即PB=3a ,所以三角形PAB 的面积为xyAP BD C O13××32aa =92.故选C . 51、如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x 轴平行. 点P(3a,a)是反比例函数)0(>=K xk y 的图象与正方形的一个交点.若图中阴影部分的面积为9,则这个反比例函数的解析式为 ..52、如图,A 、B 是函数2y x =的图像上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴,△ABC 的面积记为S ,则( )A .S=2B .S=4C .2<S <4D .S >453、如图5,双曲线()k y k x=>0与⊙O 在第一象限内交于P 、Q两点,分别过P 、Q 两点向x 轴和y 轴作垂线。