27.1图形的相似(第4课时)
北师大版数学九年级上册《探索三角形相似的条件》图形的相似(第4课时)
F
C
如果把图中用虚线表示的矩形画成如图所示的矩形ABCD,
以矩形ABCD B的E 宽 B为C边在其内部作正方形AEFD,那么我们可以 惊奇地发现BC AB , 点E是AB 的黄金分割点吗?矩形ABCD
的宽与长的比是黄金比吗?为什么?
BE BC BC AE BE = AE
BC AB
AE AB
AE BE AB AE
人的俊美,体现在头部及 躯干是否符合黄金分割.
美神维纳斯,她身体的 各个部位都暗藏比例0.618 ,虽然雕像残缺,却能仍 让人叹服她不可言喻的美 .
黄金分割的魅力
古希腊巴台农神庙
巴黎圣母院
联合国总部大厦
黄金分割,尤其宽与长的比为黄金比的矩形,在古典及
现代建筑中都有广泛的应用.
黄金分割的魅力
B C A
点E是AB的黄金分割点
A
AAEB(即 BACB)是黄金比 矩形ABCD的宽与长的比是黄金比 D
E
B
F
C
宽与长的比等于黄金比的矩形也称为黄金矩形.
例1:在人体躯干与身高的比例上,肚脐是理想的黄金分割点,即比值 越接近0.618越给人以美感.小明的妈妈脚底到肚脐的长度与身高的比为 0.60,她的身高为1.60m,她应该穿多高的高跟鞋看起来会更美?
BE
AB2 AE 2
12
1 2
2
5. 2
F
于是EF BE 5 ,
A
2
AH AF BE AE 5 1 5 1 .
22
2
E
BH AB AH 1 5 1 3 5 .
D 2
2
因此 AH BH ,点H就是HB的黄金分割点.
AB AH
G H
北师大版九年级数学上册 (探索三角形相似的条件)图形的相似课件教学(第4课时)
3. 我们把“宽与长的比等于黄金比的矩形称为金矩 形”,如图所示,矩形 ABCD 是黄金矩形,且 BC= 5+1, BC>AB,则 AB= 2 .
例题精讲
知识点 1 黄金分割的理解
例1 (教材 P96 例 4 变式) 如图,已知 AB=1,点 C 是线
段 AB 的黄金分割点,试用一元二次方程求根公式验证黄金
解:原矩形 ABCD 是黄金矩形.
理由如下:设矩形 BCFE 的长 BC 为 x,
∵四边形 BCFE 为黄金矩形,
∴宽 FC 为
5-1 2 x.
∵四边形 AEFD 是正方形,
∴AB=x+ 52-1x= 52+1x,
则BACB=
x 5+1
=
52-1,
2x
∴原矩形 ABCD 是黄金矩形.
【归纳总结】要证明一个矩形是黄金矩形,只要根据已 知条件证明这个矩形的宽与长的比是 52-1即可.
宽为 AC 的矩形面积,则 S1 与 S2 的大小关系为( C )
A. S1>S2
B. S1<S2
C. S1=S2
D. 不能确定
3. 已知线段 AB 的长为 10 cm,点 C 是线段 AB 的黄金 分割点,且 AC>BC,则 AC= ((55 5--55)) cm.(结果保留根 号)
4. 如图,在△ ABC 中,AB=AC,AC 的垂直平分线交 AC 于点 D,交 AB 于点 E,若 AE=BC,则点 E 是线段 AB 的黄金分割点吗?说明你的理由.
解:如图所示.
【归纳总结】画物体在同一灯光下的影子,首先确定光 源的位置,然后再画出物体的影子.
知识点 2 中心投影的应用 例2 如图,足球场边有一路灯 P,在灯下足球门横梁 AB 在地面上的影子为 CD,经测量得知 CD=10.8 米,已知足球 门横梁 AB=7.2 米,高 AE=BF=2.44 米,试求路灯 P 距地 面的高度.
人教版数学九年级下册教案:27.1 图形的相似
第27章相似27.1 图形的相似一、教学目标1.核心素养通过图形相似的学习,初步形成基本的几何直观、运算能力、推理能力.2.学习目标(1)理解并掌握两个图形相似的概念.(2)了解成比例线段的概念,会确定线段的比.(3)了解比例尺的概念.(4)记住相似多边形的性质,会辨别两个多边形是否相似,并会运用其性质进行相关的计算.3.学习重点相似图形的概念和与成比例线段的概念;相似多边形的性质与识别.4.学习难点线段成比例的意义;运用相似多边形的性质进行相关的计算.二、教学设计(一)课前设计1.预习任务任务1.阅读教材P24-25,思考:什么是相似图形?你能正确判断两个图形是否相似吗?任务2.阅读教材P26—P28,思考:什么是相似多边形?什么是相似比?相似多边形有怎样的性质?什么是成比例线段?2.预习自测(1)下列各组图形相似的是()答案:B解析:略(2)下列各组数中成比例的是()A. 2,3,4,1B. 3,5,13,9C. 6,8,9,10D. 10,20,20,40答案:D解析:略(3)如图,四边形EFGH 相似于四边形ABCD,则∠A=______度,∠C=______度,∠H=_____度,x=_____,y=_____,z=_____。
答案:70 120 60 40 45 75解析:∵四边形ABCD 和EFGH 相似,所以它们的对应角相等, 由此可得∠A=∠E=70°,∠C=∠G=120°,∠H=∠D=60°.∵四边形ABCD 和EFGH 相似,所以它们的对应边成比例, 由此可得05203018010===z y x , 解得x=40,y=45,z=75. (二)课堂设计1.知识回顾1.全等形的概念:能够完全重合的两个图形叫做全等形。
2.全等多边形的性质:全等多边形的对应角相等,对应边相等。
3.比的意义:两个数相除又叫做两个数的比。
比号前面的数叫做比的前项,比号后面的数叫做比的后项。
初中人教版数学九年级下册27.1核心素养【教学设计】《图形的相似》
《27.1.1图形的相似》教学模式介绍:数学的核心素养包括数学抽象、逻辑推理、数学建模、直观想象、数学运算和数据分析。
这些数学学科素养既相对独立,又互相交融,是一个有机的整体。
核心素养下的教学设计是利用设计好的核心问题在课堂中培养学生的数学核心素质,重视学生在学习活动中的主体地位,让学生在积极参与学习活动的过程中得到发展。
教师创设情境设计问题,或通过富有启发性的讲授,或引导学生独立思考、自主探索、合作交流,组织学生操作实验、观察现象、提出猜想、推理论证等,有效地启发学生思考,使学生成为学习的主体,学会学习。
课堂教学中,要注重让学生理解和掌握数学的基础知识和基本技能,让学生感悟数学思想,积累数学活动经验,在学习数学和应用数学的过程中,发展数学抽象、逻辑推理、数学建模、直观想象、数学运算、数据分析等数学学科核心素养,让学生能与他人建立良好关系,有效地管理自己的学习、生活,能够发掘自身潜力,战胜学习数学中的困难,让学生能够适应未来社会、进行终身学习,实现全面发展。
设计思路说明:“相似的图形”是在学习了全等形及全等三角形的有关内容的基础上的进一步研究。
这节课从复习全等形有关的知识入手,通过对其中一个图形的缩小产生新疑问导入新课,接着通过对生活中形状相同的图形的观察和欣赏,让学生体会数学来源于生活,激发学生学习的兴趣,同时感受数学和生活中的美,再在教师以小问题的形式层层设问下,让学生观察、思考、分析、探究,然后归纳出相似图形的特征。
相似图形只与形状有关,与图形大小、位置无关,培养了学生观察事物的能力,提高了学生分析问题与归纳的能力。
最后学生以小组合作交流的形式探究放大镜下的三角形、四边形与原图形的对应边、对应角之间的关系,归纳出相似多边形的主要特征,例题的探究让学生体会到数形结合及方程思想的运用,让学生获得成功的体验,发展学生的数学核心素养。
教材分析《相似的图形》九年级数学第27章的第一节的内容属于《全日制义务教育数学课程标准2011版》中的“图形与几何”领域,是在已经学习了全等形与全等三角形之后集中研究图形形状的内容,不仅是对图形全等内容的进一步深化和发展,而且是对图形研究方法的综合运用。
人教版数学九年级下册27.1《图形的相似》教案
(3)相似变换的性质:相似变换是本节课的另一个难点,教师需要详细讲解相似变换的性质,如对应点、对应线段的比等,并通过实例使学生理解这些性质。
举例:讲解旋转变换、平移变换等相似变换的性质,让学生在实际操作中体会相似变换的特点。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《图形的相似》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两个形状看起来很相似的物体?”(如两个相似的三角形装饰品)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索图形相似的奥秘。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与相似图形相关的实际问题,如相似三角形的周长比、面积比等。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如制作两个相似三角形并比较它们的性质。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
教学内容与课本紧密相关,旨在帮助学生掌握图形相似的相关知识,提高解决问题的能力。
二、核心素养目标
《图形的相似》章节的核心素养目标如下:
1.培养学生的空间观念,提高对图形相似性的认识,增强观察、分析图形的能力。
2.培养学生运用数学语言进行表达、交流、合作的能力,提高解决实际问题的能力。
3.培养学生逻辑思维和推理能力,能运用相似性质进行严密的论证。
举例:分析相似四边形的性质,解决面积、周长等与相似多边形相关的问题。
2.教学难点
(1)相似图形的识别:学生往往在识别相似图形时存在困难,需要教师通过丰富的实例和引导,帮助学生掌握识别相似图形的方法。
27.1 图形的相似教案
27.1 图形的相似《图形的相似》是继“轴对称、平移、旋转”之后集中研究图形形状的内容,从实际问题引入,通过对生活中的实例认识图形的相似,让学生理解图形相似的概念,让学生体验图形与现实世界的密切联系,体会图形相似与图形全等等内容之间的内在联系.本节课是学生在认识了全等形的基础上进行教学的,研究相似比研究全等更具一般性,相似图形、相似多边形的概念是后续学习相似三角形的基础,是空间与图形领域中的重要内容.本节课所涉及的内容来源于实际生活,为学生的数学建模能力搭建了一个平台,从中学到的不仅仅是知识、方法,还会将生活语言转化为数学语言,提高了学生的应用意识,有着承上启下、贯穿始终的作用.【情景导入】播放一些著名建筑物的图片(如图所示),让学生在音乐中欣赏,感受生活中形状相同的图形.欣赏并找出图中哪些图形是相同的.【说明与建议】说明:让学生留心观察生活中存在的大量形状相同的图形,增强学生的感性认识.伴着音乐欣赏美丽的图片,提高了学生的学习兴趣,从而让学生感受到数学学习的内容都是现实的、有趣的,让学生体会到数学就在我们身边.建议:让学生经历从现实世界中抽象出平面图形的过程,直观地感受图片中有很多相同的图形,从而引出课题.【置疑导入】下图中每一组图形的形状相同吗?大小相同吗?每一组图形是全等图形吗?(1)等边三角形(2)正方形(3)矩形【说明与建议】说明:通过图形的比较,让学生感受相似图形所具备的共同特征,同时引导学生自然地得出相似多边形的定义.建议:在得到相似多边形定义的时候要抓住两个关键点:一是各角对应相等,二是各边对应成比例.【回顾导入】如图,下边格点图中有一个四边形,请在右边的格点图中画出一个与该四边形相似的图形.问题:对于图中两个相似的四边形,它们的对应角是否相等?对应边的比是否相等?【说明与建议】教师可以让学生依据相似图形的概念画出后,利用量角器和直尺测量对应角、对应边,从而引导学生得出相似多边形的概念.命题角度1 识别相似图形、判断相似多边形1.下列图形一定相似的是(C)A.两个平行四边形B.两个矩形C.两个正方形D.两个等腰三角形命题角度2 利用相似多边形的性质求线段和角2.如图,四边形ABCD∽四边形EFGH,∠A=80°,∠C=90°,∠F=70°,则∠H=(D)A.70°B.80°C.110° D.120°3.已知四边形ABCD与四边形A′B′C′D′相似,相似比为3∶4,其中四边形ABCD 的周长为18 cm,则四边形A′B′C′D′的周长为24cm.命题角度3 判断四条线段是否成比例及利用成比例线段的定义求线段的长4.下列各组线段中,线段a,b,c,d是成比例线段的是(A)A.a=1,b=2,c=4,d=8 B.a=2,b=1,c=4,d=8C.a=1,b=2,c=8,d=4 D.a=1,b=4,c=8,d=25.已知a,b,c,d是成比例线段,其中a=1 cm,b=4 cm,c=2 cm,则d=(C) A.2 cm B.4 cm C.8 cm D.10 cm命题角度4 利用比例尺求距离6.若一张地图的比例尺是1∶150 000,在地图上量得甲、乙两地的距离是5 cm,则甲、乙两地的实际距离是(D)A.3 000 m B.3 500 m C.5 000 m D.7 500 m《苏轼巧分田产》相传,北宋大文学家苏轼在凤翔作官时,为官清正,秉公执法,深得百姓拥戴.一天,有兄弟四人前来告状.苏轼坐在公案前,展开状纸一看:“小民杨大毛,家住城南寨.先父临终时,留下两顷田,只因分不均,兄弟反目.青天大老爷,请把理来断.”苏轼接过地契,心中暗暗盘算,杨家田地为工字形,如何分配,才能让四兄弟满意呢?沉思片刻,计上心来,遂唤一名差役耳语道:“只需如此如此……”差役遵嘱叫上四兄弟当场丈量,不一会儿,只见四兄弟满面带笑地跑过来,叩头不迭道:“多谢恩公明断!”你知道苏轼是怎样使分开后的四块田地形状相同,面积相等的吗?分法如下:课题27.1 图形的相似授课人素养目标1.理解相似图形的特征,掌握相似图形的识别方法.2.了解成比例线段的含义,会判断四条线段是不是成比例线段.3.理解相似多边形的概念、性质及判定,会计算和相似多边形有关的角度和线段的长.教学重点1.理解并掌握相似图形、相似多边形的概念及特征.2.探索相似多边形的性质中的“对应”关系.教学难点能利用成比例线段的概念及相似多边形的性质进行有关计算. 授课类型新授课课时教学步骤师生活动设计意图回顾1.什么是全等形?全等形的形状和大小有什么关系?2.下面两个图形是不是全等形?如何判断?通过复习全等形的概念和判定,为本节课相似形的学习做铺垫.同时,通过欣赏、识别生活中的全等图片,让学生体会数学来源于生活,激发学生学习的兴趣,感受数学中的美.活动一:创设情境、导入新课【课堂引入】1.欣赏下面各组图片:(1)在空中不同高度飞行的两架型号相同的直升机;(2)大小不同的两个足球;(3)汽车和它的模型.2.你能看出上面各组图片的共同之处吗?把你的想法说给同学听听.通过对生活中形状相同的图形的观察和欣赏,从实际模型中抽象概括得出数学概念,自然地引出课题,使学生初步感受相似,同时进行美育渗透.活动二:实践探究、交流新知探究新知:1.探究相似图形的定义问题:(1)全等图形的形状和大小之间有什么关系?1.让学生亲自观察实际生活中的图形,在教师提出学生在教师的引导下,边动手操作边思考、回答问题,师生共同归纳出相似多边形的概念.相似多边形:两个边数相同的多边形,如果它们的角分别相等,边成比例,那么这两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比.中,教师通过设置层层深入的小问题,引导学生完成探究活动,降低了学生学习新知识的难度,让学生体验了知识的形成过程,提高了学生分析问题的能力.通过用几何语言表示相似多边形的定义和性质,完成文字语言与符号语言之间的转化,培养学生用符号语言表达数学知识的能力.活动三:开放训练、体现应用【典型例题】例(教材第25页练习第2题)如图,图形(a)~(f)中,哪些与图形(1)或(2)相似?解:图形(d)和图形(1)相似,图形(e)和图形(2)相似.【变式训练】如图所示的图形中,哪些是相似图形?通过经历对例题的探究过程,加深学生对相似图形的基本特征的理解,达到巩固知识的目的,培养学生分析问题、解决问题的能力.活动四:课堂检测【课堂检测】1.下列四组长度的线段中,是成比例线段的是(C)A.4 cm,5 cm,6 cm,7 cm B.3 cm,4 cm,5 cm,8 cmC.5 cm,15 cm,3 cm,9 cm D.8 cm,4 cm,1 cm,3 cm2.观察下面图形,指出(1)~(9)中的图形有没有与给出的图形(a),(b),(c)形状相同的?解:通过观察可以发现图形(4)、(8)与图形(a)形状相同;图形(6)与图形(b)形状相同;图形(5)与图形(c)形状相同.3.如图,四边形ABCD与四边形EFGH相似,求角α,β的大小和EF的长度x.解:α=83°,β=81°,x=28.通过课堂检测,进一步巩固所学的新知,同时检测学习效果,做到“堂堂清”.课堂小结1.课堂小结:(1)通过本节课的学习,你有哪些收获?还有什么疑感?说给老师或同学听听.(2)教师与同学聆听部分同学的收获,解决部分同学的疑惑.教学说明:梳理本节课的重要方法和知识点,加深对本节课知识的理解.让学生在总结的过程中理清思路、整理经验,对本节课所学的知识结构有一个清晰的认识,再通过排忧解难让学生对知识形成正向迁移,从而构建出合理的知识体系,养成良好的学习习惯.2.布置作业:教材第27~28页习题27.1第1,3,5,6题.学生在反思中整理知识、梳理思维,获得成功的体验,积累学习的经验,养成系统整理所学知识的习惯.板书设计27.1 图形的相似提纲挈领,重点突出.教学反思反思教学过程和教师表现,进一步提升操作流程和自身素质.。
27.1 图形的相似课件(共30张PPT)
比)与另两条线段的比相等,如
a b
c
d(即
ad
=
bc),我们就说这四
条线段成比
27.1 图形的相似
观察与思考 1.观察多面体模型与五棱柱教具中的正五边形回答下列问题
27.1 图形的相似
问题1 这些正五边形两两之间相似吗?
相似
问题2 在这两个正五边形中,是否有对应相等的内角?
是
问题3 在这两个正五边形中,对应内角的两边是否成比例?
78° 83°
B
C
F
α G
27.1 图形的相似
解:∵ 四边形 ABCD 和 EFGH 相似, ∴ 它们的对应角相等.由此可得
∠α = ∠C = 83°,∠A = ∠E=118°.
在四边形 ABCD 中,
β = 360°-(78°+83°+118°) = 81°.
21 D
A
β
18
78° 83°
B
C
x E
27.1 图形的相似 如果放在教室最后面展示又有什么不同? 2. 图形的放大:
两个图形相似,其中一个图形可以 看作由另一个图形放大或缩小得到.
通过上面两 组图形的观 察,发现了 什么?
27.1 图形的相似 例1 放大镜观察学具的一个角和原来的角有什么关系?
放大之后的角与原来的 角是相似关系
27.1 图形的相似
118° 24
F
H
α G
27.1 图形的相似
∵ 四边形 ABCD 和四边形 EFGH 相似, ∴它们的对应边成比例,由此可得
EH AD
EF AB
,即
x 21
24 18
.
解得 x = 28 cm.
九年级下册27.1图形 相似 课件PPT
放大镜下的角与原 图形中角是什么关 系?
你看到过哈哈镜吗?哈哈镜中的形 象与你本人相似吗?
(A)
(B)
(C)
观察下列图形,哪些是相似形?
?
⑴ ⑵ ⑶ ⑷ ⑸ ⑹ (7)
(8)
(9)
?
(10) (11)
(12)
(13)
(14)
观察下面的图形(a)~(g),其中哪些 是与图形(1)、(2)或(3)相似的?
相似多边形 对应边的比 称为相似比
全等
例题.如图,四边形ABCD和EFGH相似,求∠α、∠ β的大小和EH 的长度x. H
A
18cm
21cm
D
x E
24cm
118°
78
83
G
B
C
解: ∵ 四边形ABCD和EFGH相似 ∴ ∠α=∠C=83 °, ∠A=∠E=118 ° 又 在四边形ABCD中 ∠β= 360°-( 78°+ 83°+ 118° )=81 ° ∵ 四边形ABCD和EFGH相似
ABDF
这两个三角形是否为相似形?
A
D
C
F B
E
图(1)中的△A1B1C1是由正△ABC放大后得到 的,观察这两个图形,它们的对应角有什么关系? 对应边呢?
对于图(2)中的两个相似的正六边形,你是否 也能得到类似的结论?
A1 A B C C1
B1 (1)
(2)
在△ABC和 △A1B1C1中,由正三角形的每个角 都等于600,可得
∴ ∴
Fபைடு நூலகம்
EH EF AD AB
即
x 24 21 18
x=28(cm)
例2:如图,点E、F分别是矩形ABCD的边AD、 BC的中点,若矩形ABCD与矩形EABF相似, AB=1,求矩形ABCD的面积. E A D
人教版九年级数学下册第二十七章27.1 图形的相似
解:∠A=65° , ∠B=65° , ∠D=∠C=180° -65° =115° , 15 15 A′D′= 4 cm,B′C′=A′D′= 4 cm.
15. 在△ ABC 中,AB=12,点 E 在 AC 上,点 D AD AE 在 AB 上,若 AE=6,EC=4,且DB=EC. (1)求 AD 的长; DB EC (2)试问 AB =AC能成立吗?请说明理由.
13. 一个四边形的边长分别是 3,4,5,6,另一 个和它相似的四边形的最小边长为 6,那么另一个四 边形的周长为 36 .
14. 如 图所 示 , 等腰 梯 形 ABCD 与等 腰 梯 形 A′B′C′D′相似,∠A′=65° ,A′B′=6 cm,AB=8 cm, AD=5 cm,试求梯形 ABCD 各角的度数与 A′D′,B′C′ 的长.
(2)请归纳出相似体的 3 条主要性质: ①相似体的一切对应线段(或弧)长的比等 于
相似比
; ; .
②相似体表面积的比等于 相似比的平方 ③相似体体积的比等于 相似比的立方
17. (1)已知图①中的两个矩形相似,求它们的对 应边的比;
(2)如图②,两个六边形的边长分别都为 a 和 b, 且每一个六边形的内角均是 120° ,它们相似吗?为什 么?
S甲 6 a2 a2 则 =6b2 =b ,又设 V 甲、V 乙分别表示这两个正 S乙 V甲 a3 a3 方体的体积,则 =b3=b . V乙
(1)下列几何体中,一定属于相似体的是( A ) A.两个球体 C.两个圆柱体 B.两个圆锥体 D.两个长方体
8. 在比例尺为 1∶n 的某市地图上,A,B 两地相 距 5 cm,则 A,B 之间的实际距离为( C ) 1 A.5n cm C.5n cm 1 2 B.25n cm D是相似形的是 ( B )
人教版数学九年级下册27.1《图形的相似》教学设计
人教版数学九年级下册27.1《图形的相似》教学设计一. 教材分析人教版数学九年级下册第27.1节《图形的相似》是整个初中数学的重要内容,也是九年级数学的重点和难点。
本节内容主要介绍了相似图形的概念、性质和判定方法,以及相似图形的应用。
通过本节的学习,学生能够理解相似图形的概念,掌握相似图形的性质和判定方法,并能运用相似图形解决实际问题。
二. 学情分析九年级的学生已经具备了一定的几何基础知识,对图形的性质和判定方法有一定的了解。
但是,对于相似图形的概念和性质,以及如何运用相似图形解决实际问题,学生可能还存在一定的困难。
因此,在教学过程中,需要注重引导学生从实际问题中抽象出相似图形的概念,并通过大量的练习,使学生能够熟练掌握相似图形的性质和判定方法。
三. 教学目标1.了解相似图形的概念,掌握相似图形的性质和判定方法。
2.能够运用相似图形解决实际问题。
3.培养学生的抽象思维能力和解决问题的能力。
四. 教学重难点1.相似图形的概念和性质。
2.相似图形的判定方法。
3.相似图形的应用。
五. 教学方法1.采用问题驱动的教学方法,引导学生从实际问题中抽象出相似图形的概念。
2.通过大量的练习,使学生能够熟练掌握相似图形的性质和判定方法。
3.采用小组合作的学习方式,让学生在合作中思考,在思考中合作。
六. 教学准备1.准备相关的教学PPT和教学素材。
2.准备一些实际的例子,用于引导学生从实际问题中抽象出相似图形的概念。
3.准备一些练习题,用于巩固学生的学习成果。
七. 教学过程1.导入(5分钟)通过展示一些实际的例子,让学生观察并思考:这些图形有什么共同的特点?引导学生从实际问题中抽象出相似图形的概念。
2.呈现(10分钟)介绍相似图形的定义、性质和判定方法。
通过PPT和教材,详细解释相似图形的概念,以及相似图形的性质和判定方法。
3.操练(10分钟)让学生通过练习题,运用相似图形的性质和判定方法,解决实际问题。
教师可以设置一些难度不同的练习题,让学生根据自己的能力选择相应的题目。
专题27.1 图形的相似(解析版)
专题27.1 图形的相似1.相似图形定义:形状相同的图形叫做相似图形。
2.相似多边形定义:两个边数相同的多边形,如果它们的角分别相等,边成比例,那么这两个多边形叫做相似多边形。
相似多边形对应边的比叫做相似比。
3.性质相似多边形的对应角相等,对应边成比例。
【例题1】在如图所示的相似四边形中,求未知边x、y的长度和角α的大小.【答案】x=31.5,y=27,α=83°.【解析】∵两个四边形相似,它们的对应边成比例,对应角相等. ∴67418y x ==, ∴27,5.31==y x .︒=︒+︒+︒-︒=83)1178377(360α.【点拨】利用图形相似,对应边成比例,对应角相等的性质来进行解题。
【例题2】要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm ,6cm 和9cm ,另一个三角形的最短边长为2.5cm ,则它的最长边为( )A .3cmB .4cmC .4.5cmD .5cm【答案】C .【解析】设另一个三角形的最长边长为xcm ,根据题意,得:=,解得:x=4.5,即另一个三角形的最长边长为4.5cm ,故选:C .【点拨】根据相似三角形的对应边成比例求解可得.【例题3】所有的正方形都相似吗?为什么?所有的矩形都相似吗?为什么?【答案】见解析。
【解析】所有的正方形都相似,因为正方形的每个角都是90°,因此对应角都相等,而每一个正方形的边长都相等,因此对应边成比例.所有的矩形不一定相似,虽然所有的矩形的角都相等,但对应的边不一定成比例,因此,矩形不一定相似.1. 图中的两个多边形相似吗?说说你的理由.【答案】见解析。
【解析】不相似.︒=︒-︒-︒-︒=∠587295135360D ,而︒=︒-︒-︒-︒=∠715995135360E ,不可能有“对应角相等”.2.已知图中的两个梯形相似,求出未知边x 、y 、z 的长度和βα∠∠、的度数.【答案】见解析。
27.1图形的相似
下列各组图形中,不是相似图形的是( B ).
A
B
C
D
知识点二:四条线段成比例.
两条线段 对于四条线段 a,b,c,d,如果其中________ 的比 ____(即它们______ )与另两条线段的比_____ , 长度的比 相等 如 四条线段成比例 ad=bc ),我们就说这 (即 _______ _________________. 比例线段 简称________ 。
a c b d
注意:(1)两条线段的比与所采用的长度单位
单位 ; 没有关系,在计算时要注意统一_______
(2)线段的比是一个没有单位的____ 正 数;
a c (3)四条线段a,b,c,d成比例,记作______ b d
a︰b=c︰d ; 或____________
a c ad=bc . (4)若四条线段满足 b d ,则有_______
特殊的 相似图形, 全等图形是________ 不一定 是全等图形. 相似图形_______
探究新知
思考:如图是一个女孩从平面镜和哈哈镜里看到的 自己的形象,这些镜中的形象相似吗?
哈哈镜中看到的图像,有的被“压扁”了,有的被 不相似 . “拉长”了,它们________
巩固新知
1.想一想 (1)所有的圆都是相似形吗? (2)所有的等边三角形都是相似形吗? (3)所有的三角形都是相似形吗? (4)所有的正方形都是相似形吗? (5)所有的长方形都是相似形吗?
典例示范,应用新知
问题5 如图,四边形 ABCD 和 EFGH 相似,求角 α,β 的大小和 EH 的长度 x.
找对应角和对应边
P27. 1,2,3
课堂小结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(第4课时)
【自学指导】性质
1、两个三角形已知相似,可推出:
⑴、相似三角形对应边、对应中线,对应高线、对应角平分线的比等于相似比 ⑵、相似三角形周长的比等于相似比
⑶、相似三角形面积的比等于相似比的平方 【尝试练习】
1、如图,在和
中,
,
,
,
的周长是24,面
积是48,求的周长和面积.
解:在和
中,
,
又
∽
,相似比为2
1.
的周长为
122421
=⨯,的面积是1248)2
1(
2
=⨯. 建议:记住上面的解题格式,规范你的步骤。
2、如图,已知中,,
,
,
,点
在
上,(与点
不
重合),点在
上.
当的面积与四边形的面积相等时,求
的长.
(1)当
的周长与四边形
的周长相等时,求
的长.
(2)
(3)在
上是否存在点
,使得为等腰直角三角形?要不存在,请说
明理由;若存在,请求出的长.
归纳:相似三角形的常见图形及其变换:
【巩固练习】
1.如图 :AD ⊥BC ,∠BAC=90°,那么△ABC ∽ ∽
2.下列条件中,判断△ABC 与△A ´B ´C ´是否相似?并说明理由.
⑴∠C=∠C ´=90°,∠B=∠B ´=50°.( )理由 . ⑵AB=AC,A ´B ´=A ´C ´,∠B=∠B ´. ( )理由 . ⑶∠B=∠B ´,
'
'''C B BC B A AB =
. ( )理由 .
⑷∠A=∠A ´,''''C B BC B A AB =. ( )理由 .
3.如图,要使△AEF∽△ACB,已具备的条件是 , 还需补充的条件是 或 或 .
4.点P 是△ABC 边AB 上一点,且AB 垂直AC,过点P 作直线截△ABC ,使截得三角形与△ABC 相似,满足这样条件得直线有( )条。
A 、1 B 、2 C 、3 D 、4
5.如图:已知△ABC 与△ADE 的边BC 、AD 相交于点O ,且∠1=∠2=∠3。
求证:(1)△ABO ∽△CDO ;(2)△ABC ∽△ADE
6.如图,AD 、BC 交于点O,BA 、DC 的延长线交于点P, PA ·PB=PC ·PD. 试说明:①△PBC ∽△PDA; ②△AOB ∽△COD.
F E C
B
A 1
2
3
O
B
D
C
E
A
D
C B
A P O
D
C
B
A
7、 △ABC 的三边之比为3:5:6,与其相似的△DEF 的最长边是24cm,那么它的周长是 。
8、如右图,∠ABD=∠C ,AB=5,AD=3.5,则AC=( ) A
750 B 507 C 203 D 320
9、如图,B 、C 在△ADE 的边AD 、AE 上,且AC=6,AB=5,EC=4,DB=7,则BC:DE= .
10、如果两个相似三角形的相似比是1:2,那么它们的周长的 比是( ),高之比是( ),面积比是( ) A 、 1:2 B 、2:4
C 、1:4
D 、2:1
11、在△ABC 中,∠C =900
,CD 是高。
(1)、写出图中所有与△ABC 相似的三角形。
(2)、试证明:BD AD CD ∙=2
12、有一块三角形的土地,它的底边BC =100米,高AH =80米。
某单位要沿着地边BC 修一座底面是矩形DEFG 的大楼,D 、G 分别在边AB 、AC 上。
若大楼的宽是40米(即DE =40米),求这个矩形的面积。
A
C
B
D
M
A
B C
H D
E G
F
B
A
D C
A
B
C D
E。