5.3.1平行线的性质(2)(新版人教版)
5.3.1《 平行线的性质》教材解读-人教版数学七年级下册
5.3.1《平行线的性质》教材解读一、课标内容《课程标准》相关内容:1.在探索直线平行的性质的过程中,掌握平行线的三条性质,并能用它们进行简单的推理和计算。
2.进一步发展空间观念,体会通过合情推理探索数学结论,运用演绎推理加以证明的过程,在多种形式下的数学活动中,发展合情推理和演绎推理的能力。
3.经历观察、操作、想象、推理、交流等活动,培养学生参与活动和交流合作的意识。
4.敢于发表自己的想法,勇于质疑、敢于创新,养成认真勤奋、独立思考、合作交流等学习习惯,形成严谨求实的科学态度。
二、教材分析(一)教材的地位作用《平行线的性质》是新人教版七年级数学下册第五章第三小节的内容,本节课是在学生已经学习了同位角、内错角、同旁内角和平行线的判定的基础上进行教学的。
这节课是空间与图形领域的基础知识,在以后的学习中经常要用到。
它为今后三角形内角和、三角形全等、三角形相似等知识的学习奠定了理论基础。
(二)知识要点及重难点平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补。
重点:探究平行线的性质。
难点:明确平行线的性质和判定的区别。
三、教材编写特点教材由平行线的判定引入对平行线性质的研究,既渗透了图形的判定和性质之间的互逆关系,又体现了知识的连贯性,平行线的三条性质都是需要证明的,但是为了与学生思维发展水平相适应,性质1是通过操作确认的方式得出的,在性质1的基础上经过进一步推理,得到性质2和性质3,这一过程体现了由实验几何到论证几何的过渡,渗透了简单推理,体现了数学在培养良好思维品质方面的价值。
四、教学建议教材所选的例题及课后练习题1,都是平行线性质的直接运用,较为简单。
练习题2是平行线判定和性质的综合运用,是为了让学生区分判定和性质,推理也比较简单。
考虑到学生还处于几何初步阶段,进度不可过快,教师可以设计一些有两步推理的证明题,让学生填充理由。
在应用知识的过程中,组织学生进行讨论,结合题目的已知条件和结论,让学生自己总结出判定和性质的区别,只有自己构造起的知识,才能真正被灵活应用。
(新人教版)数学七年级下册:5.3.1《平行线的性质(第2课时)》教学设计(两套)
5.3.2平行线的性质(第2课时)平行线的性质(二)教学目标1.经历观察、操作、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力.2.理解两条平行线的距离的含义,了解命题的含义,会区分命题的题设和结论.3.能够综合运用平行线性质和判定解题. 重点、难点重点:平行线性质和判定综合应用,两条平行的距离,命题等概念. 难点:平行线性质和判定灵活运用. 教学过程 一、复习引入1.平行线的判定方法有哪些?(注意:平行线的判定方法三种,另外还有平行公理的推论)2.平行线的性质有哪些.3.完成下面填空.已知:如图,BE 是AB 的延长线,AD ∥BC,AB ∥CD,若∠D=100°,则∠C=_____, ∠A=______,∠CBE=________.4.a ⊥b,c ⊥b,那么a 与c 的位置关系如何?为什么?cb二、进行新课1.例1 已知:如上图,a ∥c,a ⊥b,直线b 与c 垂直吗?为什么?学生容易判断出直线b 与c 垂直.鉴于这一点,教师应引导学生思考:(1)要说明b ⊥c,根据两条直线互相垂直的意义, 需要从它们所成的角中说明某个角是90°,是哪一个角?通过什么途径得来?(2)已知a ⊥b,这个“形”通过哪个“数”来说理,即哪个角是90°.(3)上述两角应该有某种直接关系,如同位角关系、内错角关系、同旁内角关系,你能确定它们吗?让学生写出说理过程,师生共同评价三种不同的说理. 2.实践与探究(1)下列各图中,已知AB ∥EF,点C 任意选取(在AB 、EF 之间,又在BF 的左侧).请测量各图中∠B 、∠C 、∠F通过上述实践,试猜想∠B 、∠F 、∠C 之间的关系,写出这种关系,试加以说明.E D C B AFECBAFECBA(1) (2) 教师投影题目:学生依据题意,画出类似图(1)、图(2)的图形,测量并填表,并猜想:∠B+∠F=∠C.在进行说理前,教师让学生思考:平行线的性质对解题有什么帮助? 教师视学生情况进一步引导:①虽然AB ∥EF,但是∠B 与∠F 不是同位角,也不是内错角或同旁内角. 不能确定它们之间关系.②∠B 与∠C 是直线AB 、CF 被直线BC 所截而成的内错角,但是AB 与CF 不平行.能不能创造条件,应用平行线性质,学生自然想到过点C 作CD ∥AB,这样就能用上平行线的性质,得到∠B=∠BCD.③如果要说明∠F=∠FCD,只要说明CD 与EF 平行,你能做到这一点吗?以上分析后,学生先推理说明, 师生交流,教师给出说理过程.FEDCB A作CD ∥AB,因为AB ∥EF,CD ∥AB,所以CD ∥EF(两条直线都与第三条直线平行, 这两条直线也互相平行).所以∠F=∠FCD(两直线平行,内错角相等).因为CD ∥AB.所以∠B=∠BCD(两直线平行,内错角相等).所以∠B+∠F=∠BCF. (2)教师投影课本P23探究的图(图5.3-4)及文字.①学生读题思考:线段B 1C 1,B 2C 2……B 5C 5都与两条平行线的横线A 1B 5和A 2C 5垂直吗?它们的长度相等吗?②学生实践操作,得出结论:线段B 1C 1,B 2C 2……,B 5C 5同时垂直于两条平行直线A1B5和A 2C 5,并且它们的长度相等.③师生给两条平行线的距离下定义.学生分清线段B 1C 1的特征:第一点线段B 1C 1两端点分别在两条平行线上,即它是夹在这两条平行线间的线段,第二点线段B 1C 1同时垂直这两条平行线. 教师板书定义:(像线段B 1C 1)同时垂直于两条平行线, 并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.④利用点到直线的距离来定义两条平行线的距离.F EDCBA教师画AB ∥CD,在CD 上任取一点E,作EF ⊥AB,垂足为F.学生思考:EF 是否垂直直线CD?垂线段EF 的长度d 是平行线AB 、CD 的距离吗? 这两个问题学生不难回答,教师归纳:两条平行线间的距离可以理解为:两条平行线中,一条直线上任意一点到另一条直线的距离.教师强调:两条平行线的距离处处相等,而不随垂线段的位置改变而改变. 3.了解命题和它的构成.(1)教师给出下列语句,学生分析语句的特点.①如果两条直线都与第三条直线平行,那么这条直线也互相平行; ②等式两边都加同一个数,结果仍是等式; ③对顶角相等;④如果两条直线不平行,那么同位角不相等.这些语句都是对某一件事情作出“是”或“不是”的判断. (2)给出命题的定义.判断一件事情的语句,叫做命题.教师指出上述四个语句都是命题,而语句“画AB ∥CD”没有判断成分,不是命题.教师让学生举例说明是命题和不是命题的语句. (3)命题的组成.①命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项. ②命题的形成.命题通常写成“如果……,那么……”的形式,“如果”后接的部分是题设,“那么”后接的部分是结论.有的命题没有写成“如果……,那么……”的形式,题设与结论不明显,这时要分清命题判断了什么事情,有什么已知事项,再改写成“如果……,那么……”形式. 师生共同分析上述四个命题的题设和结论,重点分析第②、③语句. 第②命题中,“存在一个等式”而且“这等式两边加同一个数”是题设, “结果仍是等式”是结论。
人教版七年级数学下册课件第五章相交线与平行线5.3.1平行线的性质
● A.平行
B.相交C.平行或相交 D.不能确定
● 4.如果∠A与∠B的两边分别平行,∠A比∠B的3倍少36°,则∠A的度数是
(
)
● A.18°
B.126°
C.18°或126°
D.以上都不对
● 5.下列说法:①垂直于同一条直线的两条直线互相平行;②相等的角是对顶 角;③两条直线被第三条直线所截,同位角相等;④两点之间直线最短,其 中正确的有( )
● A.0个
B.1个 C.2个 D.3个
● 6.小明从A处出发沿正东方向行驶至B处,又沿南偏东15°方向行驶至C处,此时需把 方向调整到正东方向,则小明应该( )
● A.右转165° B.左转75°
C.右转15°
D.左转15°
9∴1∴∴∴A直(④性1三平两简内解性∴∵理位求再小①线C解1A思∴讨A1问的1∴2直A④(解●●●●●●●●●1. .、 .22....AA∠∠∠∠∠∠.线两两质、行直单错:质由置角任结在所:考论题角线两两:...BM3A31B1∵∵下下 掌下004277①的位A8①平是A9A相1==+=a直 点 3平 线 线 说 角 1: 关 的 意 : 同 截 : : 。 得 a点 直 A∥小BA若若∥个个个0aa0∠列列 ∥::握面∥BCE. . . . . . 0C°//°C1∠∠线之行和平成相∵系度画平一,类平到之线明//∠∠2bb∥bb=在 两 角 内 行 这 交1=D.说命 两两平的N2AA(AA, ,平间线角行:等得数一行平所似行新间平5在C两((((下 已 下10若B(B∠∠与与内两法°题 条条行语同D所所同 条 相 错 ; 两 ,(行直的的时两,C到的条线面得地线的直行∥楼个 若A直B已已等∠∠,错直一: 平平线句位+列 知 列直CCC以以,线基大,直两角基截的内的,三一线,BBB上线BB知知量一 线 等 角 ④ 点 则BDD理角D线两定① 行行的,...角∠∠∠的的同最本小应线直的本线判,同已个组最内点平))((.说 下 说线.代2由已相2两 2平正相 线线基不113相两两平 段 ; 相 同 间 它=位短性关联平线数思定不位知性平短错dA个==行,,个个个换如知等直行确等 被被本正,等处1a法列法边边1角,质系想行平量路与相角两质行,角∠∠,)同面必⑤等旁的们下8),线∥角的 的第 第 , 性 确同.,行11分分,相其是到,行关:性交相直的线其相30中 结 一==位:两平是角 三三质的样同°两到别别内 平 两 ; 内 距 互等中紧平内系根质的等线条,中等,的b77角行直(是 条条,是度位直楼正 论 定平平,00)正密行错,据两⑤平件这正)CCC相, 行 条 ② 角 离 相BC°°,线两对 直直能(量角线...下行行..确联线角通平条两行是种确. .确 : 正a等同平顶 线线用各相)平222点,,不 ; 平 相 互 ; 平的系的相过行直条,什角的边∥个个个)位行角 所所几个等)行B.22的 确且且有在三等上线线平能么的有处重 ③ 行 等 补 其 行))角分; 截截何个角c)∠∠..(一个述的必行否?大(..有 的的,相,,语A的A合 相 线 的 ; 中D起性相判平线得结小别比比小等同同言度.( 是的质互定行被到论关则DDD))∠∠丽的 等 被 角 ⑤ 正CD)平旁位准数....BB,,转由②第同是系. . 两(的b内角确,的的331两 的 第 是 垂 确由化角过三旁什与行个 个 个∥俯角相表你3333条两,的一条内么直倍倍角条 角 三 对 直 的,个互等述的)c条从数点直角?少少不是补性猜.B直 是 条 顶 于 有直而量有线之它而443.质想.00相2且所间与)°°线 对 直 角 同D(°其,还,,,一只截的判. 交会成则则那若 顶 线 ; 一有,数定中条用立∠∠4的么一一量有BB不 角 所 ③ 条一个基吗)点直条对关什==直个本?B相 ; 截 过 直直内系么__个线性__处线线错?区__交 ④ , 直 线角质的__的与角别__叫进小度度, 两 一 线 的已的?比平行丽做..知角(则 条 对 外 两另简看行直平分平单点必 直 内 一 条线分组一线的A行垂线讨处平 线 错 点 直个推有直互论的线理行 被 角 有 线③相)角小且,相平明; 第 的 且 平的并只等行的能②三角只行的3仰有有倍角角在条平有;条一是是少理同直分一⑥对_条地_4顶_一线线条两将0_C角_°过.平所互直点:__程④,_若面截相线之写_两_那出两_内,平与间条_来_直么条_,所行已的,_线这度且线不得.知线被.能第两段相的直段解三个决不交同线就条实直际 角的度数是( )
5.3.1 平行线的性质 人教版七年级数学下册重难点专项练习(含答案)
5.3.1《平行线的性质》重难点题型专项练习考查题型一两直线平行同位角相等的应用典例1.(2022秋·重庆铜梁·七年级校考阶段练习)如图,直线,被直线所截,若,,则的度数为()A.B.C.D.【答案】A【分析】由,根据两直线平行,同位角相等,即可求得的度数,又由邻补角的定义即可求得的度数.【详解】解:如图:∵,,∴,∵,∴.故选:A.【点睛】此题考查了平行线的性质与邻补角的定义.解题的关键是熟练掌握平行线的性质,正确运用数形结合思想.变式1-1.(2022·四川德阳·模拟预测)如图,直线,将三角尺的直角顶点放在直线上,如果,那么的度数为( )A.B.C.D.【答案】A【分析】根据平行线的性质求出,由平角性质可知即可得出结论.【详解】如图:,,,故选:.【点睛】本题考查了平行线的性质,熟练运用平行线的性质推理是解题的关键.变式1-2.(2022·宁夏固原·校考模拟预测)如图,把一个三角尺的直角顶点放在直尺的一边上,如果,那么的大小为()A.B.C.D.【答案】D【分析】根据余角的定义求出,再根据两直线平行,同位角相等可得.【详解】解:∵,∴,∵直尺的两边互相平行,∴.故选:D.【点睛】本题考查了平行线的性质,熟记性质并准确识图是解题的关键.变式1-3.(2022秋·陕西西安·七年级校考期中)如图,将直尺与角的三角尺叠放在一起,若,则的大小是()A.B.C.D.【答案】B【分析】由三角尺可知,由平角可求,再根据平行线的性质可知.【详解】解:如图:由三角尺可知,∵,∴,由平行线的性质可知.故选:B.【点睛】本题考查了平行线的性质及直角三角形的性质,充分运用三角板和直尺的几何特征是解题的关键.考查题型二两直线平行内错角相等的应用典例2.(2021·新疆乌鲁木齐·校考一模)如图,直线,直角三角板的直角顶点C在直线上,一锐角顶点B在直线上,若,则的度数是()A.B.C.D.【答案】B【分析】先根据角的和差求出的度数,然后根据平行线的性质求解即可.【详解】解:如图,,,,又,.故选:B.【点睛】本题考查了平行线的性质,掌握两直线平行,内错角相等是解题的关键.变式2-1.如图,,,则的度数为()A.160B.140C.50D.40【答案】B【分析】利用平行线的性质先求解,再利用邻补角的性质求解即可.【详解】解:∵,,∴,∴,故选B.【点睛】本题考查的是平行线的性质,邻补角的性质,熟知两直线平行,内错角相等是解题的关键.变式2-2.(2022·河南洛阳·统考一模)如图,是的外角,,,,则的度数为( )A.B.C.D.【答案】B【分析】由可得进而即可求;【详解】∵,∴∵∴.故选:B.【点睛】本题主要考查平行线的性质,掌握“两直线平行,内错角相等”定理是解题的关键.变式2-3.如图,直线,被直线所截,,,则的度数为()A.20°B.40°C.50°D.140°【答案】B【分析】根据两直线平行内错角相等可得出答案.【详解】解:∵,,∴,故选:B.【点睛】本题考查了平行线的性质,熟知两直线平行,内错角相等是解本题的关键.考查题型三两直线平行同旁内角互补的应用典例3.(2022春·黑龙江哈尔滨·七年级校考阶段练习)如图,已知直线,,,则的度数为()A.B.C.D.【答案】D【分析】由,可得,由得,进而可求出的度数.【详解】解:如下图所示,∵,∴,∵,∴,∴∵,∴,∴,故选:D.【点睛】本题考查了平行线的性质,解题的关键是根据平行线的性质找出图中角度之间的关系.变式3-1.如图,已知直线,把三角板的直角顶点放在直线b上.若,则的度数为()A.140°B.130°C.120°D.110°【答案】B【分析】根据互余计算出,再根据平行线的性质由得到.【详解】解:∵,∴,∵,∴.∴.故选:B.【点睛】本题考查了平行线的性质,熟记性质并准确识图是解题的关键.变式3-2.(2022秋·福建福州·七年级校考期中)如图,,,则( )A.B.C.D.【答案】C【分析】先利用对顶角相等,再利用两直线平行,同旁内角互补得出答案.【详解】解:,,,.故选:.【点睛】此题主要考查了平行线的性质,对顶角相等,熟练掌握性质是解答题的关键.变式3-3.如图,,平分交于点E,若,则( )A.B.C.D.【答案】A【分析】如图:根据平角的定义及角平分线的性质求得的度数,再根据平行线的性质求解即可.【详解】解:如图:∵,∴,∵平分∴,∵,∴,∴.故选:A.【点睛】本题主要考查了平行线的性质、角平分线的定义等知识点,灵活运用平行线的性质是解答本题的关键.考查题型四根据平行线的性质探究角的关系典例4.(2022秋·重庆铜梁·七年级校考期中)如图,已知,且∠C=110°,则∠1与∠2的数量关系为__________________ .【答案】【分析】过点C作,则,根据平行线的性质可得角之间的关系,从而∠1与∠2的数量关系即可求解.【详解】解:过点C作,如图:则,∴,,∵,∴,∴,∴.故答案为:.【点睛】本题考查了平行线的性质,解题的关键是作出平行线,利用平行线的性质得出角之间的关系.变式4-1.(2022·浙江杭州·杭州绿城育华学校校考模拟预测)如图,已知,,则______ .【答案】##180度【分析】根据两直线平行,同位角相等与两直线平行,同旁内角互补,得到,,等量代换即可求得的值.【详解】解:如图,设与交于点H,∵,,∴,,∴.故答案为:.【点睛】此题考查了平行线的性质.解题的关键是注意两直线平行,同位角相等与两直线平行,同旁内角互补定理的应用,注意数形结合思想的应用.变式4-2.(2022秋·内蒙古乌海·七年级校考期中)如图,AB∥EF,则∠A,∠C,∠E满足的数量关系是______.【答案】【分析】根据两直线平行,同旁内角互补可直接得到答案.【详解】如下图所示,过点C作,∵,∴(两直线平行,同旁内角互补),∵,,∴,∴(两直线平行,同旁内角互补),∴,∴,∴在原图中,故答案为:.【点睛】本题考查平行直线的性质,解题的关键是熟练掌握两直线平行,同旁内角互补.变式4-3.(2022秋·山东青岛·七年级统考期末)如图,直线AB//CD,∠AEM=2∠MEN,∠CFM=2∠MFN,则∠M和∠N的数量关系是________.【答案】∠EMF=∠ENF【分析】利用平行线的性质以及已知条件解决问题即可.【详解】解:过点M作MJ∥AB,过点N作NK∥AB.∵AB∥CD,∴MJ∥AB∥CD,NK∥AB∥CD,∴∠EMJ=∠AEM,∠FMJ=∠CFM,∠ENK=∠AEN,∠FNK=∠CFN,∴∠EMF=∠AEM+∠CFM,∠ENF=∠AEN+∠CFN,∵∠AEM=2∠MEN,∠CFM=2∠MFN,∴∠AEM+∠CFM=(∠AEN+∠CFN),即∠EMF=∠ENF.故答案为:∠EMF=∠ENF.【点睛】本题考查平行线的性质,解题的关键是学会探究规律的方法,属于中考常考题型.考查题型五利用平行线的性质求角的度数典例5.(2022秋·北京西城·七年级期中)如图,若,EF与AB,CD分别相交于点E,F,,平分线与EP相交于点P,,则__________°.【答案】【分析】由题可求出,然后根据两直线平行,同旁内角互补可知,根据角平分线的定义可得到结果.【详解】∵,∴,∵,∴,∵,∴,∵平分,∴.【点睛】本题考查了平行线的性质与角平分线的定义,以及三角形的内角和定理,注意数形结合思想是解题关键.变式5-1.(2022春·黑龙江哈尔滨·七年级哈尔滨市第四十九中学校校考阶段练习)如图,已知,,若,则________.【答案】【分析】先根据“两直线平行,内错角相等”得出,再根据“两直线平行,同旁内角互补”得出答案.【详解】如图所示.∵,∴.∵,∴,∴.故答案为:.【点睛】本题主要考查了平行线的性质,灵活选择平行线的性质是解题的关键.变式5-2.如图,,若,,则∠E=______.【答案】##66度【分析】如图所示,过点E作,则,根据两直线平行内错角相等分别求出,则.【详解】解:如图所示,过点E作,∵,∴,∴,∴,故答案为:.【点睛】本题主要考查了平行线的性质,正确作出辅助线求出是解题的关键.变式5-3.将一块长方形纸折成如图的形状,若已知,则____.【答案】【分析】根据平行线的性质以及折叠的性质,即可得到的度数.【详解】解:如图所示:∵,∴,∵由折叠可知,∴,故答案为:.【点睛】本题主要考查了平行线的性质和折叠的性质,根据题意正确作出辅助线是解答本题的关键.考查题型六平行线的判定与性质的综合应用典例6.(2022秋·陕西渭南·七年级统考期中)如图,已知点B、C在线段的异侧,连接,点E、F分别是线段上的点,连接,分别与交于点G,H,且,.(1)求证:;(2)若,求证:;(3)在(2)的条件下,若,求的度数.【答案】(1)证明见解析(2)证明见解析(3)【分析】(1)只需要证明即可证明;(2)先证明得到则,再由即可证明;(3)根据平行线的性质得到,,再结合已知条件求出的度数即可得到答案.【详解】(1)证明:∵,,,∴,∴;(2)证明:∵,∴,∴,∴,又∵,∴;(3)解:由(2)得,∴,,又∵,∴,∴,∴.【点睛】本题主要考查了平行线的性质与判定,对顶角相等,熟知平行线的性质与判定条件是解题的关键.变式6-1.(2022秋·广东东莞·七年级统考期中)如图,点,在线段的异侧,点,分别是线段,上的点,已知,.(1)求证:;(2)若,求证:;(3)在(2)的条件下,若,求的度数.【答案】(1)见解析(2)见解析(3)【分析】(1)已知,所以,又因为,可以得出即可判定;(2)已知,,可以得出,即可得出;(3)由(1)(2)可知,,可以得出,;可以得出,可以得出,又因为,即可求出的度数.【详解】(1)证明:,,,,;(2)证明:,,,,;(3),,,,,,,,.【点睛】本题考查了对顶角相等,平行线的性质与判定,掌握平行线的性质与判定是解题的关键.变式6-2.如图,已知.(1)求证:;(2)若平分,交于点,交于点,且,求的度数.【答案】(1)见解析(2)【分析】(1)根据平行线的性质及等量代换得出,即可判定;(2)过点作,根据平行公理得出,根据平行线的性质及角平分线定义得到,根据三角形外角性质求解即可.【详解】(1)证明:∵,∴,∵,∴,∴;(2)解:如图,过点作,∵,∴,∴,∴,∵平分,∴,∴.【点睛】此题考查了平行线的判定与性质,角平分线的定义,熟记平行线的判定与性质是解题的关键.变式6-3.(2022秋·福建福州·七年级校考期中)如图,在中,,.(1)求证:;(2)若,,求的度数.【答案】(1)见解析(2)【分析】(1)由于,可判断,则,由得出判断出;(2)由,得到,由得出,得出的度数.【详解】(1)解:,理由如下:,,,,,;(2)解:,,,,,,.【点睛】本题考查了平行线的判定与性质:内错角相等,两直线平行;两直线平行,同位角相等,同旁内角互补.。
广东省汕头市龙湖实验中学七年级下册数学《5.3.1平行线的性质》教案二(新人教版)
初一数学备课组,主备课人:闵高德授课时间:第2周一、教学目标1. 经历观察、操作、推理、交流等活动,进一步发展空间观念,推理能力和有条件表达能力 2. 理解两条平行线的距离的含义.3. 能够综合运用平行线性质和判定解题.二、教学重难点(一)重点平行线性质和判定综合运用,两条平行线的距离等概念.(二)难点平行线性质和判定灵活运用.三、教学流程设计(一)揭示课题前面我们学习了平行线的判定方法和平行线的性质,这节课我们来研究二者的综合运用. (二)出示目标1.经历观察、操作、推理、交流等活动,进一步发展空间观念,推理能力和有条件表达能力2.理解两条平行线的距离的含义.3.能够综合运用平行线性质和判定解题. (三) 复习引入:1.平行线的判定方法有哪些? 2.平行线的性质有哪些? 3.完成下面填空已知:BE 是AB 的延长线,AD//BC ,AB//CD ,若ο100=∠D , 求EBC A C ∠∠∠,,的度数4.如果b c b a ⊥⊥, 那么a ,c 的位置关系如何? (四)新课1.例1,已知a//c,,b a ⊥直线b 与c 垂直吗?为什么?例2如图是一块梯形铁片的残余部分,量得οο115,100=∠=∠B A ,梯形另外两个角分别是多少度?2.实践 与探究(1)学生操作:用三角尺和直尺画平行线,做成一张55⨯个格子的方格纸。
观察并思考:做出的方格纸的一部分,线段2211,C B C B …55C B 都与两条平行线5251,C A B A 垂直吗?它们的长度相等吗?教师给出两条平行线的距离定义:同时垂直于两条平行线,并且夹在这两条平行线间的线段长度叫做两条平行线的距离。
问题:AB//CD ,在CD 上任取一点E ,作,AB EF ⊥垂足F ,问EF 是否垂直DC ?垂线段EF 是平行线AB 、CD 的距离吗?结论:两条平行线的距离处处相等,而不随垂线段的位置而改变 (五)当堂练习1.如图所示,直线a,b 被直线c 所截,现给出下列四个条件:•①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能说明a ∥b 的条件序号为( ) A.①② B.①③ C.①④ D.③④2. 如图所示,已知直线a,b,c,d,e,且∠1=∠2,∠3+∠4=180°,则a 与c 平行吗?•为什么?(第1题)(第2题) 3.如图11,∠5=∠CDA =∠ABC ,∠1=∠4,∠2=∠3,∠BAD+∠CDA=180°,填空: ∵∠5=∠CDA (已知)∴// ()8765cb a3412d ecba 3412平行线平行线性质的应用平行线判定的应用∵∠5=∠ABC (已知)∴ // ( ) ∵∠2=∠3(已知)∴ // ( ) ∵∠BAD+∠CDA=180°(已知)∴ // ( )∵∠5=∠CDA (已知),又∵∠5与∠BCD 互补( ) ∠CDA 与 互补(邻补角定义) ∴∠BCD=∠6( )∴ // ( )(六)课堂小结谈谈这节课的收获……还有些疑惑…… (七)布置作业1.如图9,若∠1与∠2、∠3与∠4分别互补,d c //且∠4=145°,试求∠1、 ∠2、∠3的度数.2.《全品学练考》课时作业(九).四、板书设计。
5.3.1 平行线的性质(第2课时)平行线的性质和判定的综合运七年级数学下册同步备课系列(人教版)
又∵∠A=100°,∠C=110°(已知),
∴∠ 1 = 80 °,∠ 2 = 70 °(等量代换).
∴∠AEC=∠1+∠2= 80 °+ 70 ° = 150 °.
当堂巩固
1. 填空:如图,
A
(1)∠1=∠2 时,AB∥CD.
1
(2)∠3= ∠5 或∠4 时,AD∥BC. B
D
5 2
3 C
4 F
解:过点C作CF∥AB,
A
则 _∠__B_=_∠__1( 两直线平行,内错角相等 )
C
又∵AB∥DE,AB∥CF,
D
∴___C_F__∥__D_E___(平行于同一直线的两条直线互相平行 )
∴∠E=∠__2__( 两直线平行,内错角相等 )
∴∠B+∠E=∠1+∠2
即∠B+∠E=∠BCE.
B 1F 2
感受中考
2.(3分)(2021•包头8/26)如图,直线l1∥l2,直线l3交l1于点A,交l2于点B, 过点B的直线l4交l1于点C.若∠3=50°,∠1+∠2+∠3=240°,则∠4等于( )
A.80°
B.70°
C.60°
D.50°
【 分 析 】 由 题 意 得 , ∠ 2=60° , 由 平 角 的 定 义 可 得 ∠5=70°,再根据平行线的性质即可求解.
c 图1
b
c
a 图2
3. 运用平行线的性质填一填
图形
同a 位 角b
1 2 c
内 错 角
a 3
b
2
c
同 旁
a
内 角
b
42 c
已知 a//b
结果 ∠1 = ∠2
新人教版七年级下5.3.1平行线的性质学案
新人教版七年级下5.3.1平行线的性质学案一、课前自主学习: (一)填空题 1. 如图(1),若l 1∥l 2,∠1=45°,则∠2=_____.2.如图(2),已知直线a ∥b ,c ∥d ,∠1=115°,则∠2=_____,∠3=_____.3.如图(3)已知AB ∥CD ,∠1=100°,∠2=120°,则∠ =_____.4.如图(4)所示,直线a ,b 被c 所截,,现给出下列四个条件:①∠2=∠6;②∠2=∠8;③∠1+∠4=180°;④∠3=∠8.其中能判定a ∥b 的条件的序号是( ) A . ①、② B . ①、③ C . ①、④ D . ③、④5.一辆汽车在笔直的公路上行驶,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是_________. A .第一次向右拐40°,第二次向左拐40° B .第一次向右拐50°,第二次向左拐130° C .第一次向右拐50°,第二次向右拐130° D .第一次向左拐50°,第二次向左拐130° (二)选择题:6.如图(5),已知DE ∥AB ,那么表示∠3的式子是( )A .∠1+∠2-180°B .∠1-∠2C .180°+∠1-∠2D .180°-2∠1+∠27.已知下列命题 ①内错角相等;②相等的角是对顶角;③互补的两个角是一定是一个为锐角,另一个为钝角;④同旁内角互补.其中正确命题的个数为 ( )A .0B .1C .2D .3 8如图(6),可以得到DE ∥BC 的条件是_________.A .∠ACB =∠BAC B .∠ABC +∠BAE =180° C .∠ACB +∠BAD =180° D .∠ACB =∠BAD9. 两条直线被第三条直线所截,若有一对同位角相等,则一对同旁内角的角平分线( ) A .互相垂直 B .互相平行 C .相交但不垂直 D .不能确定 10. 如图(7),如果∠1=∠2,那么下面结论正确的是( )A .AD ∥BCB .AB ∥CDC .∠3=∠4D .∠A =∠C (三)解答题:d c b a 321α21E D C B A 321F E D C B A 87654321c b a 4321D CBA (2) (3) (4) (5) (6) (7)11. 如图(8),已知∠1=∠2,求∠3+∠4的度数.12. 如图(9),已知∠AEC=∠A+∠C,试说明:AB∥CD.课前自主学习答案:1.135°;2.115°,115°;3.20°;4A;.5.A;6.A;7.A;8.B;9.A;10.B;11.解:∵∠1=∠2,∴AB∥CD,∴∠3+∠MND=180°,又∠4+∠MND==180°,∴∠3=∠4;12.解:如图(10)过点E作EF∥AB,∴∠A=∠AEF,∵∠AEC=∠A+∠C∴∠AEC=∠AEF+∠C∴∠AEC-∠AEF=∠C∴∠FEC=∠C∴EF∥CD,∴AB∥CD.二、课堂互动探究(1)知识要点梳理8的度数:可以发现,∠1=∠5,∠2=∠6,∠3=∠7,∠4=∠8知识点一:平行线的性质1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等;知识点二:平行线的性质2:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等;EDCBAF EDCBAa (8)(9)(10)如图(12),a ∥b ,求证:∠1=∠2.∵a ∥b , ∴∠3=∠2, ∵∠1=∠3, ∴∠1=∠2.知识点三:平行线的性质3两条平行线被第三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补;如图(13),a ∥b ,求证:∠1+∠2=180°.∵a ∥b , ∴∠3=∠2∵∠3+∠1=180°∴∠1+∠2=180°.(2)典型例题分析例一:如图(14)所示,已知180ABC C ∠+∠=︒,BD 平分,与D ∠相等吗?请说明理由.分析:本题考查的是平行线的判定和性质的应用.由已知可得AB ∥CD ,∠ABD =∠D ,∠ABD =∠DBC ,问题得证.解:∠D =∠DBC .理由如下: ∵180ABC C ∠+∠=︒,∴AB ∥CD , ∴∠D =∠ABD , 又∠ABD =∠DBC , ∴∠D =∠DBC .变式一:已知:如图(15),∠+∠=∠=∠BAP APD 18012,. 求证:∠E=∠F.分析:分析:本题考查的是平行线的判定和性质的应用.证明:,180=∠+∠APD BAP∴AB ∥CD ,∴∠BAP =∠CP A , ∵∠1=∠2,∴∠BAP -∠1=∠CP A -∠2, ∴∠EAP =∠FP A . ∴PF ∥AE , ∴∠E=∠F.DCBAP21F E DCB Ac ac a(14)(15)变式二:已知:如图(16):∠AHF +∠FMD =180°,GH 平分∠AHM ,MN 平分∠DMH 。
人教版数学七年级下册5.3.1平行线的判定(教案)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与平行线相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,比如使用直尺和量角器来验证平行线的判定方法。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“平行线的判定”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两条直线永远不会相交的情况?”比如,铁轨或者教室的黑板边缘。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索平行线的奥秘。
人教版数学七年级下册5.3.1平行线的判定(教案)
一、教学内容Biblioteka 本节课选自《人教版数学七年级下册》第五章第三节第一部分“5.3.1平行线的判定”。教学内容主要包括以下两点:
1.掌握平行线的定义:在同一平面内,两条直线不相交,且在平面内没有任何其他直线与这两条直线同时相交,则这两条直线互相平行。
2.学会平行线的判定方法:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行。
举例解释:在讲解平行线的判定方法时,可以通过具体图形展示同位角、内错角、同旁内角的概念,并通过实际例题让学生练习如何使用这些方法。
2.教学难点
-理解“同一平面”的概念:学生需要理解为什么要在同一平面内讨论直线是否平行,不同平面内的直线是否有平行的可能性。
-判定方法的适用条件:学生需要明确在什么情况下可以使用同位角相等、内错角相等、同旁内角互补这些判定方法,以及这些方法之间的关系。
2022-2023学年人教版七年级下册数学:5.3.1平行线的性质(2)说课稿
2022-2023学年人教版七年级下册数学:5.3.1平行线的性质(2)说课稿一、教学目标1.知识与技能:–掌握平行线的性质:平行线的定义、平行线的判定条件。
–能够判断两条线段是否平行。
2.过程与方法:–通过引入学生日常生活中的场景,激发学生的学习兴趣;–引导学生观察、发现规律,培养学生的思维能力和观察力;–利用演绎法和归纳法进行知识的传递和归纳。
3.情感态度与价值观:–培养学生积极思考和动手实践的能力;–培养学生对数学知识的兴趣和好奇心;–培养学生合作学习的意识和团队精神。
二、教学重难点1.教学重点:–平行线的概念与性质:平行线的定义、平行线的判定条件。
–判断两条线段是否平行的方法。
2.教学难点:–平行线与垂直线之间的关系。
三、教学过程1. 导入新课通过观察一个图形,让学生来判断两根线段是否平行。
引导学生思考并给出自己的判断依据,引入平行线的概念。
2. 探究平行线的性质•引导学生回顾上节课所学习的平行线的定义,让学生复述并展示出来。
•通过给出几个示例,让学生观察线段的位置关系,引导他们尝试总结得出判定两条线段平行的条件。
•引导学生根据已掌握的知识,对给出的几组线段进行判断是否平行。
•分析并总结判断线段平行的方法和条件。
3. 练习和巩固•让学生在黑板上写出用于判断线段平行的条件,并帮助学生梳理知识。
•给学生发放练习册,让学生在课堂上独立完成相关习题。
•点评学生的作业,解答学生存在的问题。
4. 拓展应用•设计一些更加复杂的问题,让学生综合运用平行线的性质进行解答。
•鼓励学生思考,提高解决问题的能力。
5. 总结与展望•对本节课的学习内容进行总结和回顾,强调平行线的性质和判定方法。
•展望下节课的内容,告知学生将学习平行线的性质(3)。
四、板书设计平行线的性质•定义:平行线是在同一个平面内,不相交且无论如何延长也不会相交的两条直线。
•判定条件:1.两条平行线上的任意一对相交线段对顶角相等;2.两条平行线上的任意一对对顶角相等。
5.3.1 平行线的性质(2)
5.布置作业
教科书 习题5.3 第7、8、14题, 复习题5 第6题
从来没有人读书,只有人在书中读自己, 发现自己或检查自己.
——罗曼·罗兰
答:CD∥EF.
A
G1D E
C
2 F
B
2.综合运用,巩固提高
理由如下: ∵ ∠AGD =∠ACB ,
A G1D
∴ GD∥BC.
E
∵∠1和∠3是内错角,
C3 2
F
B
∴∠1=∠3(两直线平行,内错角相等).
∵∠1=∠2,
∴∠2=∠3.
∵∠2和∠3是同位角,
∴ CD∥EF(同位角相等,两直线平行).
3.应用迁移,拓展升华
∴∠E=∠__2_( 两直线平行,内错角相等 )
∴∠B+∠E=∠1+∠2
即∠B+∠E=∠BCE.
辅助线:为帮助解题而添加的线 辅助线一般画成虚线
1,过转折点作平行线 2,利用平行线相关性质
4.归纳小结
(1)平行线的性质与判定的区别是什么? (2)在解决具体问题过程中,你能区别 什么时候需要使用平行线的性质,什么时 候需要使用平行线的判定吗?
答: BE∥CF.
A
B
E F
C
D
2.综合运用,巩固提高
理由如下:
∵ BE平分∠ABC,
∴
1
1 2
ABC.
同理 2 1 BCD.
2
∵ AB∥CD,
∴∠ABC=∠BCD.
∴∠1=∠2.
A
1
E
2
C
B F D
∵∠1和∠2是内错角,
∴ BE∥CF(内错角相等,两直线平行).
2.综合运用,ACB, ∠1=∠2,CD与EF平行吗?为什么?
5.3.1平行线的性质
回答:如图
(1)∠3=∠B,则EF∥AB,依据是
同位角相等,两直线平行
(2)∠2+∠A=180°,则DC∥AB, 依据是 同旁内角互补,两直线平行 (3)∠1=∠4,则GC∥EF,依据是
内错角相等,两直线平行
(4) GC∥EF,AB∥EF,则GC∥AB, 依据是 平行于同一直线的两直线平行. (5)EF⊥BC,AB⊥BC,则EF∥AB, 依据是 平面内,垂直于同一直线的两直线平行.
比一比
平行线的“判定”与“性质”有什么不
判定:已知角的关系得平行的关系. 推平行,用判定. 性质:已知平行的关系得角的关系. 知平行,用性质.
已知 判定
同位角相等 内错角相等 同旁内角互补
得到
两直线平行
性质 已知
得到
4.如图,已知AB、CD、EF互相平行,且 ∠ABE =70°,∠ECD = 150°,则 ∠BEC =________.
整理归纳: 平行线的性质 性质1:两直线平行,同位角相等. ∵ a∥b ( 已知 )
∴ ∠1=∠2(两直线平行,同位角相等) 性质2:两直线平行,内错角相等. ∵a∥b( 已知 ) ∴ ∠1=∠3(两直线平行,内错角相等)
性质3:两直线平行,同旁内角互补. ∵a∥b( 已知 ) ∴ ∠1+∠4=180° (两直线 平行,同旁内角互 补)
1.已知:如图,a// b ,那么3与2有什么关系? 解: ∠ 2 = ∠3,理由如下: ∵ a∥b ∴∠1= ∠2( 两直线平行,同位角相等 ) ∠1 又∵∠3 = ___(对顶角相等), ∴∠ 2 = ∠3.
平行线的性质2 两条平行线被第三条直线所截,内错角相等 简单说成:两直线平行,内错角相等。
《平行线的性质和判定及其综合运用》教案
板书设计
5.3.1 平行线的性质(2)
错误!两直线平行
教学设计流程 图
导入新课
明确目标
研读课文
知识体验
基础训练
强化训练
归纳小结
课堂检测
教学反思
本节内容的重点是平行线的性质及判定的综合,直接运用了“∵”“ ∴”的推理形式,为学生创设了一个学习推理的环境,逐步培养学生的逻 辑推理能力.因此,这一节课有着承上启下的作用,比较重要.本节内容 的难点是理解平行线的性质和判定的区别,并在推理中正确地应用.由于 学生还没有学习命题的概念和命题的组成,不知道判定和性质的本质区别 和联系是什么,所以在教学中,应让学生通过应用和讨论,体会到如果已 知角的关系,推出两直线平行,就是平行线的判定;反之,如果两直线平 行,得出角的关系,就是平行线的性质
教学目标 教学重难点
1.分清平行线的性质和判定.
2.已知平行用性质,要证平行用判定.
3.能够综合运用平行线性质和判定解题.
重点
平行线性质和判定综合应用
难点
平行线性质和判定灵活运用
本节课我的设计理念是:重组教材,恰当的创设情境,激发学生对教学内容
教学策略与
设计说明
的好奇心和 求知欲,通过独立思考,不断发问和提出问题,让学生在探究
授权书
本人对执教课例《初中数学
人教版
5.3.1平行线的性质
第2课时》拥有全部著作权,同意授权北京继教网教育科技发展有限公司永久使用。使用范
围:北京继教网教育科技发展有限公司所有经营范围(包括但不限于:其他专家主讲课程 中作为课例使用,在资源平台中展示等)。
本授权书自本人签字之日起生效。 授权人(签字): 2018 年 4 月 26 日
平行线的性质
5.3.1 平行线的性质【学习目标】1使学生掌握平行线的三个性质,并能应用它们进行简单的推理论证;2使学生经过对比后,理解平行线的性质和判定的区别和联系.【学习重点】平行线的三个性质及其应用.【学习难点】正确理解性质与判定的区别和联系,并正确运用它们去推理证明.【学习过程】一、学前准备:1、已知直线AB 及其外一点P,画出过点P的AB 的平行线。
2、回答:如图(1)∠3=∠B,则EF∥AB,依据是____________________________(2)∠2+∠A=180°,则DC∥AB,依据是___________________________________(3)∠1=∠4,则GC∥EF,依据是_________________________________________(4) GC ∥EF,AB ∥EF,则GC∥AB,依据是_______________________________思考:平行线的判定方法有哪三种?它们是先知道什么……、后知道什么?二、实践探究:1、问题:根据同位角相等,内错角相等,同旁内角互补可以判定两直线平行,反过来如果两直线平行,同位角,内错角、同旁内角之间有什么关系呢?猜一猜:如果a//b,∠1和∠2相等吗?结论:平行线的性质1两条平行线被第三条直线所截,___________.简写为:两直线平行,___________符号语言: ∵a∥b( )∴∠___=∠_____( ).如图:已知a//b,那么∠2与∠3相等吗?为什么?结论:平行线的性质2两条平行线被第三条直线所截,_____________简写为:两直线平行,________________符号语言:∵a∥b( )∴∠___=∠_____( ).如图,已知a//b,那么∠2与∠4有什么关系呢?为什么?结论:平行线的性质3两条平行线被第三条直线所截,________________.简写为:两直线平行,____________符号语言: ∵a∥b( )∴∠___=∠_____( ).思考:平行线的性质有哪三种?它们是先知道什么……、后知道什么?和判定有什么不同?已知角之间的关系(相等或互补),得到两直线平行的结论,是平行线的_____。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学表达式:
∵ a//b (已知)
∴ ∠1=∠2 (两直线平行,同位角相等)
c
1 2
a
b
问题: (1) 凡是同位角相等这句话对吗?
(2) 两直线被第三条直线所截,同位角相等吗? (3) 两条直线在什么情况下, 同位角会相等呢?
b
1
a
c
2
a1
b
3
2 4 5 6
c
7
8
平行线性质1:两直线平行,同位角相等.
E
D
∴DE∥BC
C
(同位角相等,两直线平行)
B
(2)∵ DE∥BC
(已证)
∴∠AED=∠C (两直线平行,同位角相等)
又∵∠AED=40° (已知)
∴∠C=40 ° (等量代换)
2.综合运用,巩固提高
问题4 已知,如图,∠1=∠2,CE∥BF,
试说明: AB∥CD.
理由如下: ∵ CE∥BF, E A B 1 ∴∠1=∠B. ∵∠1=∠2 , 2 C D F ∴∠2=∠B. ∵∠2和∠B是内错角, ∴ AB∥CD(内错角相等,两直线平行).
5.3.1 平行线的性质
判定平行线的方法:
1、平行线的定义:在同一平面内不相交的两条直线。 2、同位角相等,两直线平行;
3、内错角相等,两直线平行;
4、同旁内角互补,两直线平行;
c
5、垂直于同一条直线的两条直线互相平行; 6、平行于同一条直线的两条直线互相平行。
a b c
a
b
问题1
平行线的判定方法有哪三种?它
证明:∵ ∠ADE=60° ∠B=60(已知)
∴ DE//BC( 同位角相等,两直线平行)
∴ ∠AED=∠C=80°( 两直线平行,同位角相等)
例1:如图,是梯形有上底的一部分,已经量 得∠A=115°,∠D=100°,梯形另外 两个角各是多少度?
解:∵梯形上下底互相平行 ∴∠A+∠B=180 ° ,
理由如下:
A G 1 2 D E F B
∵ ∠AGD =∠ACB ,
∴ GD∥BC.
3 C ∴∠1=∠3(两直线平行,内错角相等). ∵∠1=∠2, ∴∠2=∠3.
∴ CD∥EF(同位角相等,两直线平行).
练习:如图,CD⊥AB,垂足为D,点F是BC上任意一点, FE⊥AB,垂足为E,且∠1=∠2,∠3=80°, 求∠BCA的度数
同旁内角互补.
b c
4 2
两条平行线被第三条直线所截,
简写为: 两直线平行,同旁内角互补 . 符号语言: ∵a∥b,
∴ 2+ 4=180°.
1.梳理旧知,归纳方法
问题3 对比平行线的性质和判定方法,你能说出 它们的区别吗?
判 定 性 质
条件 同位角相等 内错角相等 同旁内角互补 两直线平行
结论 两直线平行 同位角相等 内错角相等 同旁内角互补
∴ ∠1=∠3(等量代换)
∴ AE∥DF( 同位角相等,两直线平行 )
练一练
如图所示,已知直线MN分别与直线AB、CD相 交于E、F,AB∥CD,EG平分∠BEF,FH平 分∠CFE. 求证:EG∥FH.
范例 例2、如图,AB∥CD,试说明∠B、 ∠D 、∠BED 之间的大小关系。 A B
E
C D 辅助线:为帮助解题而添加的线
3.应用迁移,拓展升华
已知条件:如图,AB∥CD,∠1=∠2, ∠3=∠4. 猜想:∠2和∠3有什么关系,并说明理由;
试说明:PM∥NQ.
答:∠2=∠3. 理由如下: ∵ AB∥CD , ∴ ∠2=∠3(两直线平行,内错角相等).
3.应用迁移,拓展升华
已知条件:如图,AB∥CD,∠1=∠2, ∠3=∠4. 试说明:PM∥NQ. 理由如下: ∵∠1=∠2 ,∠3=∠4, 又∵∠2=∠3. ∴∠1=∠2 =∠3=∠4. ∵∠1+∠2 +∠5=180º ,∠3+∠4 +∠6=180º , ∴∠5=∠6. ∵∠5和∠6是内错角, ∴ PM∥NQ (内错角相等,两直线平行).
找一找!
如图所示,a∥b,c∥d。 找出与∠1相等的角。
c d
16
12 13 14 1 15 4 3 2 8 9 10
a
5 6 7
b
解: 如图,与∠1相等的角有:
∠ 3, ∠ 5, ∠ 7, ∠ 9, ∠11, ∠13, ∠15;
课堂练习
A D B E C
1.已知:如图∠ADE=60°, ∠B=60°,∠C=80°。 问∠AED等于多少度?为什么?
F
辅助线一般画成虚线
作业 1、如图,AB∥CD,试说明∠B、
∠D 、∠BED之间的大小关系。 A B
C E
D
作业 2、如图,AB∥CD,试说明∠ABE 、∠D 、∠E之间的大小关系。 E
A
C
B
D
作业 3、如图,已知三角形ABC,试说 明∠BAC+∠B +∠C=180°。 A
B
C
1
F ∵ AB∥CD, 2 ∴∠ABC=∠BCD. D C ∴∠1=∠2. ∵∠1和∠2是内错角, ∴ BE∥CF(内错角相等,两直线平行).
2.综合运用,巩固提高
练习2 已知:如图,∠AGD=∠ACB,
∠1=∠2,CD与EF平行吗?为什么?
答:CD∥EF.
G A 1 2 D E C F B
2.综合运用,巩固提高
分析:首先从已知不难发现EF∥CD, 再从平行的性质可以找到∠2 的同位角∠DCB,此时本题的 思路就基本打开了,∠1和 ∠DCB是内错角,所以DG∥BC。
3.应用迁移,拓展升华
问题5 如图,潜望镜中的两面镜子是互相平行放 置的,光线经过镜子反射时,∠1=∠2,∠3=∠4, ∠2和∠3有什么关系?为什么进入潜望镜的光线 和离开潜望镜的光线是平行的?
a 1
b
∠2+∠3=180°(两直线平行,同旁内角互补)
∴ ∠3= 180°- ∠2= 180° - 54°=126° 即 ∠2=54° ,∠3=126°, ∠4=54°。
2、已知
∠ADE=60 ° ∠B=60 °∠AED=40°
证:(1)DE∥BC (2) ∠C的度数
A
(1)∵∠ADE=60 ° ∠B=60 ° (已知) ∴∠ADE=∠B (等量代换)
直线a,b被直线c所截,a∥b. 求证:∠1=∠2
证明:∵a∥b(已知) ∴∠2=∠3(两直线平行,同位角相 等) ∵∠1=∠3(对顶角相等) ∴∠1=∠2(等量代换)
通过证明,猜想2是成立,并称为定理.
a 1
3
b
2
c
平行线性质2:两直线平行,内错角相等.
如图:如果a//b,那么2与 3有什么关系呢?
∠D+∠C=180 ° ∴∠B=180°-115°=65° ∴∠C=180°-100°=80°
1、如图,直线a∥b, ∠1=54°,∠2, ∠3, ∠4各是多少度?
解:
∵ ∠2=∠1 (对顶角相等) ∴ ∠2=∠1 =54° ∵ a∥b(已知) ∴ ∠4=∠1=54°(两直线平行,同位角相等)
3 2 4
b
a∥b
∠1=∠5
请你动动手
方 法 二 : 裁 剪 叠 合 法
c
a∥b
1 3 4 5 6 8 7 2
a
∠1=∠5
1
b
c
图中还有其它同位角吗? 它们的大小有什么关系? 1
3 2 4
a
6 8
a∥b
由此得到
∠1=∠5 ∠2=∠6 ∠3=∠7 ∠4=∠8
5
7
b
如果两条平行直线被第三条直线所截,同位角相等 简记为:两直线平行,同位角相等
们是先知道什么……、 后得到什么?
同位角相等
内错角相等
两直线平行
同旁内角互补
实
验
(1)已知练习本上任意两条线 a//b,任意画一条直线c与平行 线a、b相交。 (2)任选一对同位角,用适当 的 方法实验,看看这一 c 对同位角有什么关系?
a b
方法一:度量法
65°
c
1
3
2 4
a
6 7 8
65°
5
a
3
2
b
如图:已知a//b,那么2与 3有什么关系呢?
解: a//b (已知)
1= 2(两直线平行,同位角相等)
c
a
2 3 1
1+ 3=180°(邻补角定义)
2+ 3=180°(等量代换)
b
通过证明,我们得到平行线性质3: 两直线平行,同旁内角互补。
性质发现
a
1
结论
平行线的性质3
2.综合运用,巩固提高
练习1 如图,AB∥CD,BE平分∠ABC,CF平分
∠BCD,你能发现BE与CF的位置关系吗?说明理由. 答: BE∥CF.
A EBF CFra bibliotekD2.综合运用,巩固提高
理由如下:
∵ BE平分∠ABC,
1 ∴ 1 2 ABC. 1 同理 2 BCD. 2
A E B
例1、 已知:AC∥DE, AE平分∠CAB, DF平∠EDB C 求证:AE∥DF 证明:∵ AC∥DE(已知)
∴ ∠CAB= ∠EDB ( 两直线平行,同位角相等 )
A 4 3 D 2 1 B E F
∵ AE平分∠CAB, DF平∠EDB(已知)
∴ ∠3=1/2(∠CAB),∠1=1/2( ∠EDB ) ( 角平分线定义 )