7、二次函数

合集下载

二次函数

二次函数

二次函数一、基础知识1.二次函数解析式的三种形式一般式:f(x)=ax2+bx+c(a≠0);顶点式:f(x)=a(x-h)2+k(a≠0);两根式:f(x)=a(x-x1)(x-x2)(a≠0).2.二次函数的图象与性质二次函数系数的特征(1)二次函数y=ax2+bx+c(a≠0)中,系数a的正负决定图象的开口方向及开口大小;(2)-b2a的值决定图象对称轴的位置;(3)c的取值决定图象与y轴的交点;(4)b2-4ac的正负决定图象与x轴的交点个数.(-∞,+∞)(-∞,+∞)二、常用结论1.一元二次不等式恒成立的条件(1)“ax 2+bx +c >0(a ≠0)恒成立”的充要条件是“a >0,且Δ<0”. (2)“ax 2+bx +c <0(a ≠0)恒成立”的充要条件是“a <0,且Δ<0”. 2.二次函数在闭区间上的最值设二次函数f (x )=ax 2+bx +c (a >0),闭区间为[m ,n ]. (1)当-b2a≤m 时,最小值为f (m ),最大值为f (n );(2)当m <-b 2a ≤m +n2时,最小值为f ⎝⎛⎭⎫-b 2a ,最大值为f (n ); (3)当m +n 2<-b2a≤n 时,最小值为f ⎝⎛⎭⎫-b 2a ,最大值为f (m ); (4)当-b2a >n 时,最小值为f (n ),最大值为f (m ).考点一 求二次函数的解析式求二次函数的解析式常利用待定系数法,但由于条件不同,则所选用的解析式不同,其方法也不同.[典例] 已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定此二次函数的解析式.[解] 法一:利用二次函数的一般式 设f (x )=ax 2+bx +c (a ≠0). 由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.故所求二次函数为f (x )=-4x 2+4x +7. 法二:利用二次函数的顶点式 设f (x )=a (x -m )2+n .∵f (2)=f (-1),∴抛物线对称轴为x =2+(-1)2=12.∴m =12,又根据题意函数有最大值8,∴n =8,∴y =f (x )=a ⎝⎛⎭⎫x -122+8. ∵f (2)=-1,∴a ⎝⎛⎭⎫2-122+8=-1,解得a =-4, ∴f (x )=-4⎝⎛⎭⎫x -122+8=-4x 2+4x +7. 法三:利用零点式由已知f (x )+1=0的两根为x 1=2,x 2=-1, 故可设f (x )+1=a (x -2)(x +1), 即f (x )=ax 2-ax -2a -1.又函数有最大值y max =8,即4a (-2a -1)-a 24a =8.解得a =-4或a =0(舍去),故所求函数解析式为f (x )=-4x 2+4x +7.[题组训练]1.已知二次函数f (x )的图象的顶点坐标是(-2,-1),且图象经过点(1,0),则函数的解析式为f (x )=________.解析:法一:设所求解析式为f (x )=ax 2+bx +c (a ≠0).由已知得⎩⎨⎧-b2a=-2,4ac -b24a=-1,a +b +c =0,解得⎩⎪⎨⎪⎧a =19,b =49,c =-59,所以所求解析式为f (x )=19x 2+49x -59.法二:设所求解析式为f (x )=ax 2+bx +c (a ≠0).依题意得⎩⎪⎨⎪⎧-b2a =-2,4a -2b +c =-1,a +b +c =0,解得⎩⎪⎨⎪⎧a =19,b =49,c =-59,所以所求解析式为f (x )=19x 2+49x -59.法三:设所求解析式为f (x )=a (x -h )2+k . 由已知得f (x )=a (x +2)2-1,将点(1,0)代入,得a =19,所以f (x )=19(x +2)2-1,即f (x )=19x 2+49x -59.答案:19x 2+49x -592.已知二次函数f (x )的图象经过点(4,3),它在x 轴上截得的线段长为2,并且对任意x ∈R ,都有f (2-x )=f (2+x ),则函数的解析式f (x )=____________.解析:∵f (2-x )=f (2+x )对x ∈R 恒成立, ∴f (x )的对称轴为x =2.又∵f (x )的图象被x 轴截得的线段长为2, ∴f (x )=0的两根为1和3.设f (x )的解析式为f (x )=a (x -1)(x -3)(a ≠0). 又∵f (x )的图象经过点(4,3), ∴3a =3,a =1.∴所求f (x )的解析式为f (x )=(x -1)(x -3), 即f (x )=x 2-4x +3. 答案:x 2-4x +3考点二 二次函数的图象与性质考法(一) 二次函数图象的识别[典例] 若一次函数y =ax +b 的图象经过第二、三、四象限,则二次函数y =ax 2+bx 的图象只可能是( )[解析] 因为一次函数y =ax +b 的图象经过第二、三、四象限,所以a <0,b <0,所以二次函数的图象开口向下,对称轴方程x =-b2a<0,只有选项C 适合.[答案] C考法(二) 二次函数的单调性与最值问题[典例] (1)已知函数f (x )=-x 2+2ax +1-a 在x ∈[0,1]时,有最大值2,则a 的值为________.(2)设二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,且f (m )≤f (0),则实数m 的取值范围是________.[解析] (1)函数f (x )=-x 2+2ax +1-a =-(x -a )2+a 2-a +1,对称轴方程为x =a . 当a <0时,f (x )max =f (0)=1-a , 所以1-a =2,所以a =-1. 当0≤a ≤1时,f (x )max =a 2-a +1, 所以a 2-a +1=2,所以a 2-a -1=0, 所以a =1±52(舍去).当a >1时,f (x )max =f (1)=a ,所以a =2. 综上可知,a =-1或a =2.(2)依题意a ≠0,二次函数f (x )=ax 2-2ax +c 图象的对称轴是直线x =1,因为函数f (x )在区间[0,1]上单调递减,所以a >0,即函数图象的开口向上,所以f (0)=f (2),则当f (m )≤f (0)时,有0≤m ≤2.[答案] (1)-1或2 (2)[0,2][解题技法]1.二次函数最值问题的类型及解题思路 (1)类型:①对称轴、区间都是给定的; ②对称轴动、区间固定; ③对称轴定、区间变动.(2)解决这类问题的思路:抓住“三点一轴”数形结合,“三点”是指区间两个端点和中点,“一轴”指的是对称轴,结合配方法,根据函数的单调性及分类讨论的思想解决问题.2.二次函数单调性问题的求解策略(1)对于二次函数的单调性,关键是开口方向与对称轴的位置,若开口方向或对称轴的位置不确定,则需要分类讨论求解.(2)利用二次函数的单调性比较大小,一定要将待比较的两数通过二次函数的对称性转化到同一单调区间上比较.考法(三) 与二次函数有关的恒成立问题[典例] (1)已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________;(2)已知函数f (x )=x 2+2x +1,f (x )>x +k 在区间[-3,-1]上恒成立,则k 的取值范围为________.[解析] (1)作出二次函数f (x )的草图如图所示,对于任意x ∈[m ,m +1],都有f (x )<0,则有⎩⎪⎨⎪⎧f (m )<0,f (m +1)<0,即⎩⎪⎨⎪⎧m 2+m 2-1<0,(m +1)2+m (m +1)-1<0, 解得-22<m <0. (2)由题意得x 2+x +1>k 在区间[-3,-1]上恒成立. 设g (x )=x 2+x +1,x ∈[-3,-1], 则g (x )在[-3,-1]上递减. ∴g (x )min =g (-1)=1.∴k <1.故k 的取值范围为(-∞,1). [答案] (1)⎝⎛⎭⎫-22,0 (2)(-∞,1)[解题技法]由不等式恒成立求参数取值范围的思路及关键(1)一般有两个解题思路:一是分离参数;二是不分离参数.(2)两种思路都是将问题归结为求函数的最值,至于用哪种方法,关键是看参数是否已分离.这两个思路的依据是:a ≥f (x )恒成立⇔a ≥f (x )max ,a ≤f (x )恒成立⇔a ≤f (x )min .[题组训练]1.(2019·杭州模拟)已知f (x )=-4x 2+4ax -4a -a 2在[0,1]内的最大值为-5,则a 的值为( )A.54 B .1或54C .-1或54D .-5或54解析:选D f (x )=-4⎝⎛⎭⎫x -a 22-4a ,对称轴为直线x =a 2. ①当a2≥1,即a ≥2时,f (x )在[0,1]上单调递增,∴f (x )max =f (1)=-4-a 2.令-4-a 2=-5,得a =±1(舍去).②当0<a2<1,即0<a <2时,f (x )max =f ⎝⎛⎭⎫a 2=-4a . 令-4a =-5,得a =54.③当a2≤0,即a ≤0时,f (x )在[0,1]上单调递减,∴f (x )max =f (0)=-4a -a 2.令-4a -a 2=-5,得a =-5或a =1(舍去). 综上所述,a =54或-5.2.若函数y =x 2-3x +4的定义域为[0,m ],值域为⎣⎡⎦⎤74,4,则m 的取值范围为( ) A .(0,4] B.⎣⎡⎦⎤32,4 C.⎣⎡⎦⎤32,3D.⎣⎡⎭⎫32,+∞解析:选C y =x 2-3x +4=⎝⎛⎭⎫x -322+74的定义域为[0,m ],显然,在x =0时,y =4,又值域为⎣⎡⎦⎤74,4,根据二次函数图象的对称性知32≤m ≤3,故选C. 3.已知函数f (x )=a 2x +3a x -2(a >1),若在区间[-1,1]上f (x )≤8恒成立,则a 的最大值为________.解析:令a x =t ,因为a >1,x ∈[-1,1],所以1a ≤t ≤a ,原函数化为g (t )=t 2+3t -2,显然g (t )在⎣⎡⎦⎤1a ,a 上单调递增,所以f (x )≤8恒成立,即g (t )max =g (a )≤8恒成立,所以有a 2+3a -2≤8,解得-5≤a ≤2,又a >1,所以a 的最大值为2.答案:2[课时跟踪检测]A 级1.(2019·重庆三校联考)已知二次函数y =ax 2+bx +1的图象的对称轴方程是x =1,并且过点P (-1,7),则a ,b 的值分别是( )A .2,4B .-2,4C .2,-4D .-2,-4解析:选C ∵y =ax 2+bx +1的图象的对称轴是x =1,∴-b2a =1. ①又图象过点P (-1,7),∴a -b +1=7,即a -b =6. ②由①②可得a =2,b =-4.2.已知函数f (x )=-x 2+4x +a ,x ∈[0,1],若f (x )有最小值-2,则a 的值为( ) A .-1 B .0 C .1D .-2解析:选D 函数f (x )=-x 2+4x +a 的对称轴为直线x =2,开口向下,f (x )=-x 2+4x +a 在[0,1]上单调递增,则当x =0时,f (x )的最小值为f (0)=a =-2.3.一次函数y =ax +b 与二次函数y =ax 2+bx +c 在同一坐标系中的图象大致是( )解析:选C 若a >0,则一次函数y =ax +b 为增函数,二次函数y =ax 2+bx +c 的图象开口向上,故可排除A ;若a <0,一次函数y =ax +b 为减函数,二次函数y =ax 2+bx +c 的图象开口向下,故可排除D ;对于选项B ,看直线可知a >0,b >0,从而-b2a <0,而二次函数的对称轴在y 轴的右侧,故可排除B.故选C.4.已知a ,b ,c ∈R ,函数f (x )=ax 2+bx +c ,若f (0)=f (4)>f (1),则( ) A .a >0,4a +b =0 B .a <0,4a +b =0 C .a >0,2a +b =0D .a <0,2a +b =0解析:选A 由f (0)=f (4),得f (x )=ax 2+bx +c 图象的对称轴为x =-b2a =2,∴4a +b=0,又f (0)>f (1),f (4)>f (1),∴f (x )先减后增,于是a >0,故选A.5.若关于x 的不等式x 2-4x -2-a >0在区间(1,4)内有解,则实数a 的取值范围是( ) A .(-∞,-2) B .(-2,+∞) C .(-6,+∞)D .(-∞,-6)解析:选A 不等式x 2-4x -2-a >0在区间(1,4)内有解等价于a <(x 2-4x -2)max , 令f (x )=x 2-4x -2,x ∈(1,4), 所以f (x )<f (4)=-2,所以a <-2.6.已知函数f (x )=x 2+2ax +3,若y =f (x )在区间[-4,6]上是单调函数,则实数a 的取值范围为________.解析:由于函数f (x )的图象开口向上,对称轴是x =-a , 所以要使f (x )在[-4,6]上是单调函数, 应有-a ≤-4或-a ≥6,即a ≤-6或a ≥4. 答案:(-∞,-6]∪[4,+∞)7.已知二次函数y =f (x )的顶点坐标为⎝⎛⎭⎫-32,49,且方程f (x )=0的两个实根之差等于7,则此二次函数的解析式是________.解析:设f (x )=a ⎝⎛⎭⎫x +322+49(a ≠0), 方程a ⎝⎛⎭⎫x +322+49=0的两个实根分别为x 1,x 2, 则|x 1-x 2|=2-49a=7, 所以a =-4,所以f (x )=-4x 2-12x +40. 答案:f (x )=-4x 2-12x +408.(2018·浙江名校协作体考试)y =2ax 2+4x +a -1的值域为[0,+∞),则a 的取值范围是________.解析:当a =0时,y =4x -1,值域为[0,+∞),满足条件;当a ≠0时,要使y =2ax 2+4x +a -1的值域为[0,+∞),只需⎩⎪⎨⎪⎧2a >0,Δ=16-8a (a -1)≥0,解得0<a ≤2.综上,0≤a ≤2.答案:[0,2]9.求函数f (x )=-x (x -a )在x ∈[-1,1]上的最大值.解:函数f (x )=-⎝⎛⎭⎫x -a 22+a 24的图象的对称轴为x =a 2,应分a 2<-1,-1≤a 2≤1,a2>1,即a <-2,-2≤a ≤2和a >2三种情形讨论.(1)当a <-2时,由图①可知f (x )在[-1,1]上的最大值为f (-1)=-1-a =-(a +1). (2)当-2≤a ≤2时,由图②可知f (x )在[-1,1]上的最大值为f ⎝⎛⎭⎫a 2=a24. (3)当a >2时,由图③可知f (x )在[-1,1]上的最大值为f (1)=a -1.综上可知,f (x )max=⎩⎪⎨⎪⎧-(a +1),a <-2,a24,-2≤a ≤2,a -1,a >2.10.已知二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1. (1)求f (x )的解析式;(2)当x ∈[-1,1]时,函数y =f (x )的图象恒在函数y =2x +m 的图象的上方,求实数m 的取值范围.解:(1)设f (x )=ax 2+bx +1(a ≠0), 由f (x +1)-f (x )=2x ,得2ax +a +b =2x . 所以,2a =2且a +b =0,解得a =1,b =-1, 因此f (x )的解析式为f (x )=x 2-x +1.(2)因为当x ∈[-1,1]时,y =f (x )的图象恒在y =2x +m 的图象上方, 所以在[-1,1]上,x 2-x +1>2x +m 恒成立; 即x 2-3x +1>m 在区间[-1,1]上恒成立. 所以令g (x )=x 2-3x +1=⎝⎛⎭⎫x -322-54, 因为g (x )在[-1,1]上的最小值为g (1)=-1, 所以m <-1.故实数m 的取值范围为(-∞,-1).B 级1.如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为x =-1.给出下面四个结论:①b 2>4ac ;②2a -b =1;③a -b +c =0;④5a <b . 其中正确的是( ) A .②④ B .①④ C .②③D .①③解析:选B 因为图象与x 轴交于两点,所以b 2-4ac >0,即b 2>4ac ,①正确; 对称轴为x =-1,即-b2a =-1,2a -b =0,②错误;结合图象,当x =-1时,y >0,即a -b +c >0,③错误; 由对称轴为x =-1知,b =2a .又函数图象开口向下,所以a <0,所以5a <2a ,即5a <b ,④正确.2.已知y =f (x )是偶函数,当x >0时,f (x )=(x -1)2,若当x ∈⎣⎡⎦⎤-2,-12时,n ≤f (x )≤m 恒成立,则m -n 的最小值为( )A.13 B.12C.34 D .1解析:选D 当x <0时,-x >0,f (x )=f (-x )=(x +1)2,因为x ∈⎣⎡⎦⎤-2,-12,所以f (x )min =f (-1)=0,f (x )max =f (-2)=1,所以m ≥1,n ≤0,m -n ≥1.所以m -n 的最小值是1.3.已知函数f (x )=x 2+(2a -1)x -3.(1)当a =2,x ∈[-2,3]时,求函数f (x )的值域;(2)若函数f (x )在[-1,3]上的最大值为1,求实数a 的值. 解:(1)当a =2时,f (x )=x 2+3x -3,x ∈[-2,3], 对称轴为x =-32∈[-2,3],∴f (x )min =f ⎝⎛⎭⎫-32=94-92-3=-214, f (x )max =f (3)=15,∴函数f (x )的值域为⎣⎡⎦⎤-214,15. (2)∵函数f (x )的对称轴为x =-2a -12.①当-2a -12≤1,即a ≥-12时,f (x )max =f (3)=6a +3,∴6a +3=1,即a =-13,满足题意;②当-2a -12>1,即a <-12时,f (x )max =f (-1)=-2a -1,∴-2a -1=1,即a =-1,满足题意. 综上可知,a =-13或-1.4.求函数y =x 2-2x -1在区间[t ,t +1](t ∈R)上的最大值.解:函数y =x 2-2x -1=(x -1)2-2的图象的对称轴是直线x =1,顶点坐标是(1,-2),函数图象如图所示,对t 进行讨论如下:(1)当对称轴在闭区间右边,即当t +1<1,即t <0时,函数在区间[t ,t +1]上单调递减,f (x )max =f (t )=t 2-2t -1.(2)当对称轴在闭区间内时,0≤t ≤1,有两种情况: ①当t +1-1≤1-t ,即0≤t ≤12时,f (x )max =f (t )=t 2-2t -1;②当t +1-1>1-t ,即12<t ≤1时,f (x )max =f (t +1)=(t +1)2-2(t +1)-1=t 2-2.(3)当对称轴在闭区间左侧,即当t >1时,函数在区间[t ,t +1]上单调递增, f (x )max =f (t +1)=(t +1)2-2(t +1)-1=t 2-2.综上所述,t ≤12时,所求最大值为t 2-2t -1;t >12时,所求最大值为t 2-2.第七节幂函数一、基础知识1.幂函数的概念一般地,形如y=xα(α∈R)的函数称为幂函数,其中底数x是自变量,α为常数.幂函数的特征(1)自变量x处在幂底数的位置,幂指数α为常数;(2)xα的系数为1;(3)只有一项.2.五种常见幂函数的图象与性质R R R{x|x≥0}{x|x≠0} 二、常用结论对于形如f(x)=x nm(其中m∈N*,n∈Z,m与n互质)的幂函数:(1)当n为偶数时,f(x)为偶函数,图象关于y轴对称;(2)当m,n都为奇数时,f(x)为奇函数,图象关于原点对称;(3)当m为偶数时,x>0(或x≥0),f(x)是非奇非偶函数,图象只在第一象限(或第一象限及原点处).考点一幂函数的图象与性质[典例](1)(2019·赣州阶段测试)幂函数y=f(x)的图象经过点(3,33),则f(x)是()A .偶函数,且在(0,+∞)上是增函数B .偶函数,且在(0,+∞)上是减函数C .奇函数,且在(0,+∞)上是增函数D .非奇非偶函数,且在(0,+∞)上是减函数 (2)已知幂函数f (x )=(n 2+2n -2)x 23-n n(n ∈Z)的图象关于y 轴对称,且在(0,+∞)上是减函数,则n 的值为( )A .-3B .1C .2D .1或2 [解析] (1)设f (x )=x α,将点(3,33)代入f (x )=x α,解得α=13,所以f (x )=x 13,可知函数f (x )是奇函数,且在(0,+∞)上是增函数,故选C.(2)∵幂函数f (x )=(n 2+2n -2)x23-n n在(0,+∞)上是减函数,∴⎩⎪⎨⎪⎧n 2+2n -2=1,n 2-3n <0,∴n =1, 又n =1时,f (x )=x-2的图象关于y 轴对称,故n =1.[答案] (1)C (2)B[解题技法] 幂函数y =x α的主要性质及解题策略(1)幂函数在(0,+∞)内都有定义,幂函数的图象都过定点(1,1).(2)当α>0时,幂函数的图象经过点(1,1)和(0,0),且在(0,+∞)内单调递增;当α<0时,幂函数的图象经过点(1,1),且在(0,+∞)内单调递减.(3)当α为奇数时,幂函数为奇函数;当α为偶数时,幂函数为偶函数.(4)幂函数的性质因幂指数大于零、等于零或小于零而不同,解题中要善于根据幂指数的符号和其他性质确定幂函数的解析式、参数取值等.[题组训练]1.[口诀第3、4、5句]下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的为( ) A .y =x -4B .y =x -1C .y =x 2D .y =x 13解析:选A 函数y =x -4为偶函数,且在区间(0,+∞)上单调递减;函数y =x -1为奇函数,且在区间(0,+∞)上单调递减;函数y =x 2为偶函数,且在区间(0,+∞)上单调递增;函数y =x 13为奇函数,且在区间(0,+∞)上单调递增.2.[口诀第2、3、4句]已知当x ∈(0,1)时,函数y =x p 的图象在直线y =x 的上方,则p 的取值范围是________.解析:当p >0时,根据题意知p <1,所以0<p <1;当p =0时,函数为y =1(x ≠0),符合题意;当p <0时,函数y =x p 的图象过点(1,1),在(0,+∞)上为减函数,符合题意.综上所述,p 的取值范围是(-∞,1).答案:(-∞,1)考点二 比较幂值大小[典例] 若a =⎝⎛⎭⎫1223,b =⎝⎛⎭⎫1523,c =⎝⎛⎭⎫1213,则a ,b ,c 的大小关系是( ) A .a <b <c B .c <a <b C .b <c <aD .b <a <c[解析] 因为y =x 23在第一象限内是增函数,所以a =⎝⎛⎭⎫1223>b =⎝⎛⎭⎫1523,因为y =⎝⎛⎭⎫12x 是减函数,所以a =⎝⎛⎭⎫1223<c =⎝⎛⎭⎫1213,所以b <a <c . [答案] D[题组训练]1.若a =⎝⎛⎭⎫3525,b =⎝⎛⎭⎫2535,c =⎝⎛⎭⎫2525,则a ,b ,c 的大小关系是( ) A .a >b >c B .a >c >b C .c >a >bD .b >c >a解析:选B 因为y =x 25在第一象限内为增函数,所以a =⎝⎛⎭⎫3525>c =⎝⎛⎭⎫2525,因为y =⎝⎛⎭⎫25x是减函数,所以c =⎝⎛⎭⎫2525>b =⎝⎛⎭⎫2535,所以a >c >b . 2.若(a +1)12<(3-2a )12,则实数a 的取值范围是________. 解析:易知函数y =x 12的定义域为[0,+∞),在定义域内为增函数, 所以⎩⎪⎨⎪⎧a +1≥0,3-2a ≥0,a +1<3-2a ,解得-1≤a <23.答案:⎣⎡⎭⎫-1,23[课时跟踪检测]1.若幂函数y =f (x )的图象过点(4,2),则f (8)的值为( ) A .4 B. 2 C .2 2D .1解析:选C 设f (x )=x n ,由条件知f (4)=2,所以2=4n ,n =12,所以f (x )=x 12,f (8)=812=2 2.2.若幂函数f (x )=x k 在(0,+∞)上是减函数,则k 可能是( ) A .1 B .2 C.12D .-1解析:选D 由幂函数的性质得k <0,故选D. 3.已知幂函数f (x )=(m 2-3m +3)x m +1为偶函数,则m =( )A .1B .2C .1或2D .3解析:选A ∵函数f (x )为幂函数,∴m 2-3m +3=1,即m 2-3m +2=0,解得m =1或m =2.当m =1时,幂函数f (x )=x 2为偶函数,满足条件;当m =2时,幂函数f (x )=x 3为奇函数,不满足条件.故选A.4.(2018·邢台期末)已知幂函数f (x )的图象过点⎝⎛⎭⎫2,14,则函数g (x )=f (x )+x 24的最小值为( )A .1B .2C .4D .6解析:选A 设幂函数f (x )=x α.∵f (x )的图象过点⎝⎛⎭⎫2,14,∴2α=14,解得α=-2. ∴函数f (x )=x -2,其中x ≠0.∴函数g (x )=f (x )+x 24=x -2+x 24=1x 2+x 24≥21x 2·x 24=1, 当且仅当x =±2时,g (x )取得最小值1. 5.(2019·安徽名校联考)幂函数y =x |m -1|与y =x23-m m (m ∈Z)在(0,+∞)上都是增函数,则满足条件的整数m 的值为( )A .0B .1和2C .2D .0和3解析:选C 由题意可得⎩⎪⎨⎪⎧|m -1|>0,3m -m 2>0,m ∈Z ,解得m =2.6.已知a =345,b =425,c =1215,则a ,b ,c 的大小关系为( ) A .b <a <c B .a <b <c C .c <b <aD .c <a <b解析:选C 因为a =8115,b =1615,c =1215,由幂函数y =x 15在(0,+∞)上为增函数,知a >b >c ,故选C.7.设x =0.20.3,y =0.30.2,z =0.30.3,则x ,y ,z 的大小关系为( ) A .x <z <y B .y <x <z C .y <z <xD .z <y <x解析:选A 由函数y =0.3x 在R 上单调递减,可得y >z .由函数y =x 0.3在(0,+∞)上单调递增,可得x <z .所以x <z <y .8.已知幂函数f (x )=(m -1)2x242-+m m 在(0,+∞)上单调递增,函数g (x )=2x -k ,当x∈[1,2)时,记f (x ),g (x )的值域分别为集合A ,B ,若A ∪B =A ,则实数k 的取值范围是( )A .(0,1)B .[0,1)C .(0,1]D .[0,1]解析:选D ∵f (x )是幂函数,∴(m -1)2=1,解得m =2或m =0.若m =2,则f (x )=x-2在(0,+∞)上单调递减,不满足条件.若m =0,则f (x )=x 2在(0,+∞)上单调递增,满足条件,即f (x )=x 2.当x ∈[1,2)时,f (x )∈[1,4),即A =[1,4);当x ∈[1,2)时,g (x )∈[2-k,4-k ),即B =[2-k,4-k ).∵A ∪B =A ,∴B ⊆A ,∴2-k ≥1且4-k ≤4,解得0≤k ≤1.9.若f (x )是幂函数,且满足f (9)f (3)=2,则f ⎝⎛⎭⎫19=________. 解析:设f (x )=x α,∵f (9)f (3)=9α3α=3α=2,∴f ⎝⎛⎭⎫19=⎝⎛⎭⎫19α=⎝⎛⎭⎫132α=132α=122=14. 答案:1410.已知函数f (x )=(m 2-m -5)x m 是幂函数,且在(0,+∞)上为增函数,则实数m 的值是________.解析:由f (x )=(m 2-m -5)x m 是幂函数⇒m 2-m -5=1⇒m =-2或m =3.又f (x )在(0,+∞)上是增函数,所以m =3.答案:311.当0<x <1时,f (x )=x 2,g (x )=x 12,h (x )=x -2,则f (x ),g (x ),h (x )的大小关系是________________.解析:分别作出y =f (x ),y =g (x ),y =h (x )的图象如图所示,可知h (x )>g (x )>f (x ).答案:h (x )>g (x )>f (x )12.(2019·银川模拟)已知幂函数f (x )=x 12-,若f (a +1)<f (10-2a ),则a 的取值范围是________.解析:由题意得,幂函数f (x )=x -12的定义域为(0,+∞),且函数f (x )在(0,+∞)上单调递减,由f (a +1)<f (10-2a ),得⎩⎪⎨⎪⎧a +1>10-2a ,a +1>0,10-2a >0,解得3<a <5.答案:(3,5)13.已知幂函数f (x )=x ()21-+m m (m ∈N *)的图象经过点(2,2).(1)试确定m 的值;(2)求满足条件f (2-a )>f (a -1)的实数a 的取值范围. 解:(1)∵幂函数f (x )的图象经过点(2,2), ∴2=2()21-+m m ,即212=2()21-+m m .∴m 2+m =2,解得m =1或m =-2. 又∵m ∈N *,∴m =1. (2)由(1)知f (x )=x 12,则函数的定义域为[0,+∞),并且在定义域上为增函数. 由f (2-a )>f (a -1),得⎩⎪⎨⎪⎧2-a ≥0,a -1≥0,2-a >a -1,解得1≤a <32.∴a 的取值范围为⎣⎡⎭⎫1,32.。

二次函数的图像

二次函数的图像

二次函数的图像二次函数的图像是一条关于对称的曲线,这条曲线叫抛物线。

抛物线的主要特征:①有开口方向,a表示开口方向:a>0时,抛物线开口向上;a<0时,抛物线开口向下;②有对称轴;③有顶点;④c 表示抛物线与y轴的交点坐标:(0,c)。

二次函数图像性质:轴对称:二次函数图像是轴对称图形。

对称轴为直线x=-b/2a对称轴与二次函数图像唯一的交点为二次函数图像的顶点P。

特别地,当b=0时,二次函数图像的对称轴是y轴(即直线x=0)。

a,b同号,对称轴在y轴左侧b=0,对称轴是y轴a,b异号,对称轴在y轴右侧顶点:二次函数图像有一个顶点P,坐标为P ( h,k )当h=0时,P在y轴上;当k=0时,P在x轴上。

即可表示为顶点式y=a(x-h)^2+k。

h=-b/2a,k=(4ac-b^2)/4a。

开口:二次项系数a决定二次函数图像的开口方向和大小。

当a>0时,二次函数图像向上开口;当a<0时,抛物线向下开口。

|a|越大,则二次函数图像的开口越小。

决定对称轴位置的因素:一次项系数b和二次项系数a共同决定对称轴的位置。

当a>0,与b同号时(即ab>0),对称轴在y轴左;因为对称轴在左边则对称轴小于0,也就是- b/2a<0,所以b/2a要大于0,所以a、b要同号当a>0,与b异号时(即ab<0),对称轴在y轴右。

因为对称轴在右边则对称轴要大于0,也就是- b/2a>0, 所以b/2a要小于0,所以a、b要异号可简单记忆为左同右异,即当a与b 同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0 ),对称轴在y轴右。

事实上,b有其自身的几何意义:二次函数图像与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的斜率k的值。

可通过对二次函数求导得到。

决定与y轴交点的因素:常数项c决定二次函数图像与y轴交点。

二次函数图像与y轴交于(0,C)注意:顶点坐标为(h,k),与y轴交于(0,C)。

专题07 二次函数 (7大考点)九年级数学上学期期末考点(北师大版)

专题07 二次函数 (7大考点)九年级数学上学期期末考点(北师大版)

2a
2a
y最小值
4ac b2 4a
最大值,
y最大值
4ac 4a
b2
期末复习
【典例 1】(2022•绍兴)已知函数 y=﹣x2+bx+c(b,c 为常数)的图象经过点(0,﹣3),(﹣6,﹣3).
(1)求 b,c 的值.
(2)当﹣4≤x≤0 时,求 y 的最大值.
(3)当 m≤x≤0 时,若 y 的最大值与最小值之和为 2,求 m 的值.
变式 3:(2023•神木市一模)把抛物线 y=x2+bx+c 向右平移 4 个单位,再向下平移 3 个单位,得到抛物 线 y=x2﹣4x+3,则 b、c 的值分别为 ( ) A.b=﹣12,c=32B.b=4,c=﹣3 C.b=0,c=6 D.b=4,c=6
【解答】解:将抛物线 y=x2﹣4x+3 化成顶点式为 y=(x﹣2)2﹣1, 将抛物线 y=x2﹣4x+3 向左平移 4 个单位,再向上平移 3 个单位得新抛物线解析式为 y=(x﹣2+4)2 ﹣1+3,即 y=x2+4x+6,即抛物线 y=x2+bx+c 的解析式为 y=x2+4x+6,∴b=4,c=6,故选:D.
∴﹣ =1,∴b=﹣2a<0,∵抛物线与 y 轴交点在 x 轴下方,
∴c<0,∴abc>0,故①错误;∵x=﹣1 时,y>0,∴a﹣b+c>0, ∵a>0,∴2a﹣b+c>0,故②错误;∵b=﹣2a,∴a=﹣ ,
由图象可得 x=﹣1 时,y=a﹣b+c=﹣ b+c>0,∴3b﹣2c<0,故③正确;
由 x=1 时函数取最小值可得 am2+bm+c≥a+b+c,∴am2+bm≥a+b, ∵a=﹣ ,∴am2+bm≥ ,∴2am2+2bm﹣b≥0,故④正确.故选:D.

二次函数知识点归纳

二次函数知识点归纳

二次函数知识点归纳二次函数是高中数学中的重要章节,它在数学和实际生活中有着广泛的应用。

所以,对于二次函数的知识点的掌握对于学习数学和解决实际问题都是非常重要的。

下面将从定义、图像、性质、解析式和实际应用等方面详细归纳二次函数的知识点。

一、定义和基本形态二次函数是指一个一元二次方程确定的函数,它的一般形式可以表示为:f(x) = ax² + bx + c,其中a、b、c为实数且a ≠ 0。

它的定义域是全体实数集R。

二次函数的图像是一个抛物线,其开口方向和抛物线的开口相同。

当a > 0时,抛物线向上开口;当a < 0时,抛物线向下开口。

这个基本形态是理解二次函数的关键。

二、图像的性质1. 零点:二次函数的零点是使得f(x) = 0的x值。

二次函数的零点可以通过解一元二次方程来求得,也就是求解 ax² + bx + c = 0 的解。

当零点存在时,它的个数最多为2个。

2. 对称轴:二次函数的图像总是关于一个直线对称的。

这条直线称为二次函数的对称轴。

对称轴方程的求法是x = -b / 2a。

3. 顶点和最值:二次函数总是有一个最值点,也就是函数的最大值或最小值。

当a > 0时,函数的最小值出现在顶点上;当a < 0时,函数的最大值出现在顶点上。

顶点的坐标可以通过对称轴的x坐标带入函数中求得。

4. 开口:二次函数的开口决定了其函数值的增减。

当 a > 0时,函数是向上开口的,函数值随着x的增大而增大;当a < 0时,函数是向下开口的,函数值随着x的增大而减小。

三、解析式及其对称性根据二次函数的定义,我们可以得到它的一般解析式 f(x) = ax² + bx + c。

在解析式中,a是二次项的系数,b是一次项的系数,c是常数项。

二次函数的解析式可以通过给定的系数a、b、c进一步确定函数的性质。

1. 对称性:二次函数具有对称性,也就是函数图像在对称轴两侧关于对称轴对称。

《二次函数》教案(优秀7篇)

《二次函数》教案(优秀7篇)

《二次函数》教案(优秀7篇)《二次函数》教案篇一教学目标:1、使学生能利用描点法正确作出函数y=ax2+b的图象。

2、让学生经历二次函数y=ax2+b性质探究的过程,理解二次函数y=ax2+b的性质及它与函数y=ax2的关系。

教学重点:会用描点法画出二次函数y=ax2+b的图象,理解二次函数y =ax2+b的性质,理解函数y=ax2+b与函数y=ax2的相互关系。

教学难点:正确理解二次函数y=ax2+b的性质,理解抛物线y=ax2+b 与抛物线y=ax2的关系。

教学过程:一、提出问题导入新课1.二次函数y=2x2的图象具有哪些性质?2.猜想二次函数y=2x2+1的图象与二次函数y=2x2的图象开口方向、对称轴和顶点坐标是否相同?二、学习新知1、问题1:画出函数y=2x2和函数y=2x2+1的图象,并加以比较问题2,你能在同一直角坐标系中,画出函数y=2x2与y=2x2+1的图象吗?同学试一试,教师点评。

问题3:当自变量x取同一数值时,这两个函数的函数值(既y)之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?让学生观察两个函数图象,说出函数y=2x2+1与y=2x2的图象开口方向、对称轴相同,顶点坐标,函数y=2x2的图象的顶点坐标是(0,0),而函数y=2x2+1的图象的顶点坐标是(0,1)。

师:你能由函数y=2x2的性质,得到函数y=2x2+1的一些性质吗?小组相互说说(一人记录,其余组员补充)2、小组汇报:分组讨论这个函数的性质并归纳:当x<0时,函数值y随x的增大而减小;当x>0时,函数值y随x的增大而增大,当x=0时,函数取得最小值,最小值y=1。

3、做一做在同一直角坐标系中画出函数y=2x2-2与函数y=2x2的图象,再作比较,说说它们有什么联系和区别?三、小结 1、在同一直角坐标系中,函数y=ax2+k的图象与函数y=ax2的图象具有什么关系? 2.你能说出函数y=ax2+k具有哪些性质?四、作业:在同一直角坐标系中,画出 (1)y=-2x2与y=-2x2-2;的图像五:板书《二次函数》教案篇二1、会用描点法画二次函数=ax2+bx+c的图象。

二次函数专题复习

二次函数专题复习

二次函数专题复习考点一 二次函数的概念一般地,如果y =ax 2+bx +c (a ,b ,c 是常数,a ≠0),那么y 叫做x 的二次函数.注意:(1)二次项系数a ≠0;(2)ax 2+bx +c 必须是整式;(3)一次项可以为零,常数项也可以为零,一次项和常数项可以同时为零;(4)自变量x 的取值范围是全体实数.二次函数y =ax 2+bx +c (a ,b ,c 为常数,a ≠0)图象(a >0)(a <0)开口方向 开口向上开口向下对称轴 直线x =-b2a直线x =-b2a顶点坐标⎝⎛⎭⎫-b 2a ,4ac -b 24a⎝⎛⎭⎫-b 2a,4ac -b 24a增减性当x <-b2a 时,y 随x 的增大而减小;当x >-b2a时,y 随x 的增大而增大当x <-b2a 时,y 随x 的增大而增大;当x >-b2a时,y 随x 的增大而减小最值当x =-b2a 时,y 有最小值4ac -b 24a当x =-b2a 时,y 有最大值4ac -b 24a考点三 二次函数图象的特征与a ,b ,c 及b2-4ac 的符号之间的关系考点四 二次函数图象的平移抛物线y =ax 2与y =a (x -h )2,y =ax 2+k ,y =a (x -h )2+k 中|a |相同,则图象的形状和大小都相同,只是位置的不同.它们之间的平移关系如下表:考点五 二次函数关系式的确定(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=考点六 二次函数与一元二次方程的关系1.二次函数y =ax 2+bx +c (a ≠0),当y =0时,就变成了ax 2+bx +c =0(a ≠0). 2.ax 2+bx +c =0(a ≠0)的解是抛物线与x 轴交点的横坐标.3.当Δ=b 2-4ac >0时,抛物线与x 轴有两个不同的交点;当Δ=b 2-4ac =0时,抛物线与x 轴有一个交点;当Δ=b 2-4ac <0时,抛物线与x 轴没有交点.1.抛物线23(1)2y x =-+的对称轴是( )A .1x =B .1x =-C . 2x =D .2x =-2.抛物线3)2(2+-=x y 的顶点坐标是( ) A .(2,3) B .(-2,3) C .(2,-3) D .(-2,-3)3.(2009年泸州)在平面直角坐标系中,将二次函数22x y =的图象向上平移2个单位,所得图象的解析式为A .222-=x y B .222+=x y C .2)2(2-=x y D .2)2(2+=x y 类型一:二次函数的图象1.(2012•泰安)二次函数y=a (x+m )2+n 的图象如图,则一次函数y=mx+n的图象经过( )A .第一、二、三象限B .第一、二、四象限 B .C .第二、三、四象限D .第一、三、四象限2.(2011•湘潭)在同一坐标系中,一次函数y=ax+1与二次函数y=x 2+a 的图象可能是( )3.(2010•达州)抛物线图象如图所示,根据图象,抛物线的解析式可能是( )A .y=x 2-2x+3B .y=-x 2-2x+3C .y=-x 2+2x+3D .y=-x 2+2x-34.(2011•威海)二次函数y=x 2-2x-3的图象如图所示.当y <0时,自变量x 的取值范围是( )A .-1<x <3B .x <-1C .x >3D .x <-3或x >35.已知函数y 1=x 2与函数y 2=-21x+3的图象大致如图.若y1<y 2,则自变量x 的取值范围是( )A .-23<x <2 B .x >2或x <-23 C .-2<x <23 D .x <-2或x >23 类型二:二次函数的性质(2010•兰州)二次函数y=-3x 2-6x+5的图象的顶点坐标是( )A .(-1,8)B .(1,8)C .(-1,2)D .(1,-4)(2010•毕节地区)已知抛物线y=-2(x-3)2+5,则此抛物线( )A .开口向下,对称轴为直线x=-3B .顶点坐标为(-3,5)C .最小值为5D .当x >3时y 随x 的增大而减小 (2012•德阳)设二次函数y=x 2+bx+c ,当x ≤1时,总有y ≥0,当1≤x ≤3时,总有y ≤0,那么c 的取值范围是( )A .c=3B .c ≥3C .1≤c ≤3D .c ≤3类型三:二次函数的增减性 1.已知函数215322y x x =---,设自变量的值分别为x 1,x 2,x 3,且-3< x 1< x 2<x 3,则 对应的函数值的大小关系是( )A .y 3>y 2>y 1B .y 1>y 3>y 2C .y 2<y 3<y 1D .y 3<y 2<y 12.小明从右边的二次函数2y ax bx c =++图象中,观察得出了下面的五条信息:①0a <,②0c =,③函数的最小值为3-,④当0x <时, 0y >,⑤当1202x x <<<时,12y y >.你认为其中正确0 2 3-y的个数为( ) A.2B.3C.4D.53.若123135(,),(1,),(,)43A yB yC y --的为二次函数245y x x =--+的图像上的三点,则y 1,y 2,y 3的大小关系是( )A. y 1<y 2<y 3B. y 3<y 2<y 1C. y 3<y 1<y 2D. y 2<y 1<y 34.从y=x 2的图象可看出,当-3≤x≤-1时,y的取值范围是 A 、y≤0或9≥y B 、0≤y≤9 C 、0≤y≤1 D 、1≤y≤95.小颖在二次函数y =2x 2+4x +5的图象上,依横坐标找到三点(-1,y 1),(21,y 2), (-321,y 3),则你认为y 1,y 2,y 3的大小关系应为( ) A.y 1>y 2>y 3 B.y 2>y 3>y 1 C.y 3>y 1>y 2 D.y 3>y 2>y 1二、利用二次函数图象判断a ,b ,c 的符号【例2】 如图所示,二次函数y =ax 2+bx +c 的图象开口向上,图象经过点(-1,2)和(1,0),且与y 轴交于负半轴.(1)给出四个结论:①a >0;②b >0;③c >0;④a +b +c =0,其中正确结论的序号是__________;(2)给出四个结论:①abc <0;②2a +b >0;③a +c =1;④a >1.其中正确结论的序号是__________.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列结论:①b 2-4ac >0;②abc >0;③8a +c >0;④9a +3b +c <0. 其中,正确结论的个数是( ). A .1 B .2 C .3 D .4(2012•玉林)二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,其对称轴为直线x=1,有如下结论:①c <1;②2a+b=0;③b 2<4ac ;④若方程ax 2+bx+c=0的两根为x 1,x 2,则x 1+x 2=2, 则正确的结论是( )A .①②B .①③C .②④D .③④(2012•威海)已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,下列结论错误的是( )A .abc >0B .3a >2bC .m (am+b )≤a-b (m 为任意实数)D .4a-2b+c <0(2011•兰州)如图所示的二次函数y=ax 2+bx+c 的图象中,刘星同学观察得出了下面四条信息:(1)b 2-4ac >0;(2)c >1;(3)2a-b <0;(4)a+b+c <0.你认为其中错误的有( ) A .2个 B .3个 C .4个D .1个四、确定二次函数的解析式【例】 已知一抛物线与x 轴的交点是A (-2,0),B (1,0),且经过点C (2,8). (1)求该抛物线的表达式; (2)求该抛物线的顶点坐标.1.在直角坐标系中,△AOB 的顶点坐标分别为A (0,2),O (0,0),B (4,0),把△AOB 绕O 点按逆时针方向旋转900到△COD 。

二次函数知识点归纳

二次函数知识点归纳

二次函数知识点归纳二次函数是高中数学中重要的内容之一,它在数学以及其他科学领域中有着广泛的应用。

下面是针对二次函数的相关知识点的归纳,希望能够对您理解和掌握二次函数有所帮助。

一、基本概念1. 二次函数的定义: 二次函数是形如f(x) = ax^2+bx+c的函数,其中a、b、c为常数且a不等于零。

2. 二次函数的图像: 二次函数的图像是一个抛物线,其开口方向由二次项系数a的符号确定。

- 若a>0,则抛物线开口向上;- 若a<0,则抛物线开口向下。

二、图像的性质1. 对称轴:二次函数的图像关于直线x=-b/2a对称。

2. 最值点:二次函数的最值点即为图像的顶点,其横坐标为-x/2a,纵坐标为f(-x/2a)。

- 当a>0时,函数的最小值为f(-x/2a);- 当a<0时,函数的最大值为f(-x/2a)。

3. 零点:二次函数的零点即为使函数取值为零的x值,可通过解二次方程ax^2+bx+c=0来求得。

三、函数的变换1. 平移:二次函数可以通过改变h和k的值来进行平移操作。

- f(x)的图像向左平移|k|个单位,新函数为f(x+h);- f(x)的图像向右平移|k|个单位,新函数为f(x-h);- f(x)的图像向上平移|k|个单位,新函数为f(x)+k;- f(x)的图像向下平移|k|个单位,新函数为f(x)-k。

2. 压缩和拉伸:二次函数可通过改变a的值来改变图像的形状。

- 若|a|>1,则函数图像纵向压缩;- 若0<|a|<1,则函数图像纵向拉伸。

四、函数的性质1. 定义域:对于二次函数,其定义域为实数集R,即所有实数x都在定义域内。

2. 奇偶性:二次函数一般是偶函数,除非存在线性项b,则二次函数为奇函数。

3. 单调性:当a>0时,二次函数在抛物线的开口范围内是单调递增的;当a<0时,二次函数在抛物线的开口范围内是单调递减的。

4. 零点和交点: 二次函数与x轴的交点即为零点,与y轴的交点为常数项c,与抛物线的交点为实数解。

二次函数知识点总结

二次函数知识点总结

二次函数知识点总结二次函数是数学中一个重要的函数类型,它在许多领域都有广泛的应用。

二次函数的一般形式为 f(x) = ax^2 + bx + c,其中 a、b、c 是常数,且a ≠ 0。

以下是二次函数的主要知识点总结:1. 定义:二次函数是最高次项为二次的多项式函数。

2. 标准形式:二次函数的标准形式是 y = ax^2 + bx + c,其中 a、b、c 是常数,且a ≠ 0。

3. 系数意义:系数 a 决定了抛物线的开口方向和宽度,b 和 c 决定了抛物线的位置。

4. 开口方向:当 a > 0 时,抛物线向上开口;当 a < 0 时,抛物线向下开口。

5. 顶点:二次函数的顶点是抛物线的最值点,其坐标可以通过公式(-b/2a, f(-b/2a)) 计算得出。

6. 对称轴:二次函数的对称轴是一条垂直于 x 轴的直线,其方程为x = -b/2a。

7. 极值:当 a > 0 时,抛物线有最小值;当 a < 0 时,抛物线有最大值。

8. 零点:二次函数的零点是函数图像与 x 轴的交点,可以通过求解方程 ax^2 + bx + c = 0 得到。

9. 判别式:二次方程 ax^2 + bx + c = 0 的判别式为Δ = b^2 -4ac,它决定了方程的根的性质。

- 当Δ > 0 时,方程有两个不相等的实数根。

- 当Δ = 0 时,方程有两个相等的实数根。

- 当Δ < 0 时,方程没有实数根。

10. 应用:二次函数在物理、工程、经济学等领域有广泛应用,如抛体运动、最优化问题等。

11. 图像特征:二次函数的图像是一个抛物线,其形状和位置由系数a、b、c 共同决定。

12. 函数性质:二次函数具有连续性、可导性等性质,其导数为 f'(x) = 2ax + b。

13. 函数图像绘制:通过确定顶点、对称轴和零点,可以绘制出二次函数的图像。

14. 函数变换:通过对二次函数进行平移、伸缩等变换,可以得到新的二次函数图像。

二次函数知识点汇总(全)

二次函数知识点汇总(全)

二次函数知识点(第一讲)、二次函数概念:1. 二次函数的概念:一般地,形如y=aχ2∙bx ∙c ( a , b , C是常数,a =O )的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数 a = 0 ,而b ,c可以为零•二次函数的定义域是全体实数.2. 二次函数y =aχ2∙bx C的结构特征:⑴ 等号左边是函数,右边是关于自变量X的二次式,X的最高次数是2 .⑵a ,b ,c是常数,a是二次项系数,b是一次项系数,C是常数项.二、二次函数的基本形式1. 二次函数基本形式:y =aχ2的性质:a的绝对值越大,抛物线的开口越小。

2. y =aχ2 C的性质:(上加下减)23. y =a (x —h )的性质:(左加右减)a 的符号 开口方向顶点坐 标 对称 轴性质a >0向上(h ,0) X=hx>h 时,y 随X 的增大而增大;Xeh 时,y 随X 的增大而减小;X = h 时,y 有最小值0 .a cθ向下(h ,0) X=hx>h 时,y 随X 的增大而减小;XVh 时,y 随X 的增大而增大;X = h 时,y 有最大值0 .24. y=a(x —h)+k 的性质:a 的符号 开口方向顶点坐 标 对称 轴性质a >0向上(h, k ) X=hx>h 时,y 随X 的增大而增大;XCh 时,y 随X 的增大而减小;x=h 时,y 有最小值k .a v0向下 (h, k ) X=hXAh 时,y 随X 的增大而减小;XVh 时,y 随X 的增大而增大;X = h 时,y 有最大值k .三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式 y =a X -∙h j 亠k ,确定其顶点坐标 h , k ; ⑵ 保持抛物线y =aχ2的形状不变,将其顶点平移到h ,k 处,具体平移方法如下:2. 平移规律在原有函数的基础上 h 值正右移,负左移;k 值正上移,负下移”概括成八个字“左加右减, 上加下减”.y=ax 2* y=ax 2+k向上(k>0)【或下(k<0)] y=a (x-h)2向右(h>0)【或左(h<0)] 平移|k|个单位y=a(x-h)2+k向上(k>0)【或向下(k<0)】平移Ikl 个单位向上(k>0)【或下(k<0)]平移|k 个单位向右(h>0)【或左(h<0)] 平移Kl 个单位向右(h>0)【或左(*0)] 平移Ikl 个单位平移∣k ∣个单位方法二:⑴y = ax 2 bx c 沿y 轴平移:向上(下)平移 m 个单位,y = ax 2 ∙ bx ∙ c 变成2 卜 2y = ax bx C m (或 y = ax bx c - m )⑵y =ax 2 ∙ bx C 沿轴平移:向左(右)平移 m 个单位,y = ax 2 bx C 变成2 卜 2y = a(x m) b(x m) c (或 y = a(x _ m) b(x _ m) c )四、二次函数y =a X _h i 亠k 与y =aχ2 bx c 的比较2从解析式上看,y =a X _h ]亠k 与y =aχ2 ∙ bx C 是两种不同的表达形式,后者通过配方可以得到五、二次函数y =aχ2 bx c 图象的画法五点绘图法:利用配方法将二次函数y =aχ2 bx C 化为顶点式y=a(x-h)2 ∙k ,确定其开口方 向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图 •一般我们选取的五点为: 顶点、与y 轴的交点O, c 、以及O,c 关于对称轴对称的点 2h ,C 、与X 轴的交点x 1, 0,X 2,O (若与X 轴没有交点,则取两组关于对称轴对称的点)画草图时应抓住以下几点:开口方向,对称轴,顶点,与 X 轴的交点,与y 轴的交点•六、二次函数y =ax 2 bx c 的性质随X 的增大而增大;当 ^-―时,y 随X 的增大而减小;当X b 时,2a2a七、二次函数解析式的表示方法1. 一般式: y =ax bx c ( a , b , C 为常数,a =O );2.顶点式: y =a(x-h) k ( a , h , k 为常数,a =O );3.两根式: y =a(x -x ι)(x -X 2) ( a =O , X i , X 2是抛物线与X 轴两交点的横坐标)前者,即y =a,其中Ta24ac — b 4a1.当a O 时,抛物线开口向上,对称轴为X b,顶点坐标为2ab 4ac-b 2— ,2a 4a当X 时,y 随X 的增大而减小;当X^ 时,2a2a最小值4ac "2 .4ay随X 的增大而增大;当X=E 时,y 有2.当a :::0时,抛物线开口向下, X =-b,顶点坐标为( b 4ac-b 2•当X ::」时,I ■—, 2a2a 4a2ay 有最大值4ac - b 2 4a对称轴为 y注意:任何二次函数的解析式都可以化成一般式或顶点式, 但并非所有的二次函数都可以写成交点式,只有抛物线与X 轴有交点,即b 2_4ac_o 时,抛物线的解析式才可以用交点式表示.二次函数 解析式的这三种形式可以互化•八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数y =aχ2 ∙ bx ∙ c 中,a 作为二次项系数,显然 a 厂0 .⑴当a 0时,抛物线开口向上,a 的值越大,开口越小,反之 a 的值越小,开口越大; ⑵ 当a :::0时,抛物线开口向下,a 的值越小,开口越小,反之 a 的值越大,开口越大. 总结起来,a 决定了抛物线开口的大小和方向, a 的正负决定开口方向,a 的大小决定开口的大小.2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴在a 0的前提下,当b 0时,一卫:::0 ,即抛物线的对称轴在 y 轴左侧;2a当b =0时,一丄=0 ,即抛物线的对称轴就是 y 轴;2a当b <0时,—b .0,即抛物线对称轴在 y 轴的右侧.2a⑵ 在a <0的前提下,结论刚好与上述相反,即当b 0时,—卫∙0 ,即抛物线的对称轴在 y 轴右侧;2a当b =0时,—b =O ,即抛物线的对称轴就是 y 轴;2a当b <0时,一P ::: 0 ,即抛物线对称轴在 y 轴的左侧.2a总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.Kab 的符号的判定:对称轴X —在y 轴左边则ab • 0,在y 轴的右侧则ab ::: 0 ,概括的说就2a是“左同右异” 总结: 3. 常数项C总结起来,C 决定了抛物线与y 轴交点的位置.总之,只要a, b , C 都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法•用待定系数法求二次函数的解析式必 须根据题目的特点,选择适当的形式,才能使解题简便•一般来说,有如下几种情况:⑴当C 0时,抛物线与 y 轴的交点在X 轴上方,即抛物线与 y 轴交点的纵坐标为正; ⑵当C =0时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0 ; ⑶当C <0时,抛物线与 y 轴的交点在X 轴下方,即抛物线与 y 轴交点的纵坐标为负.1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与X轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1. 关于X轴对称y = aX ∙ bx关于X轴对称后,得到的解析式是y - -aχ2 -bx -C ;2 2y=ax-h]亠k关于X轴对称后,得到的解析式是y - -a X -h k ;2. 关于y轴对称^aX bx关于y轴对称后,得到的解析式是y =aχ2 -bx ∙ c ;2 2y=ax-h「k关于y轴对称后,得到的解析式是y = a X^i ^k ;3. 关于原点对称y = ax2 bx C关于原点对称后,得到的解析式是y =-aχ2∙ bx-c ;2 2y = a X- h ■关于原点对称后,得到的解析式是y - -a X ∙ h k ;4.关于顶点对称(即:抛物线绕顶点旋转180°)y=aX ∙ bx关汙顶点对称后,得到的解析式是y»bx c 卫;2a2y =a x-h k关于顶点对称后,得到的解析式是2y = -a X - h j 亠k •5. 关于点m, n对称2 2y =a X -h i亠k关于点m , n 对称后,得到的解析式是y = -a x ■ h —2m i亠2n —k根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a永远不变•求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与X轴交点情况):一元二次方程ax2 bx C 0是二次函数y=aχ2 bx G当函数值y =O时的特殊情况• 图象与X轴的交点个数:①当厶-b2 -4ac 0时,图象与X轴交于两点Axl,0 , B X2 , 0 (X^-X2),其中的X i,X2是一元次方程ax2 bx C =0 a十0的两根.这两点间的距离②当=0时,图象与X轴只有一个交点;③当.—::0时,图象与X轴没有交点•1'当a 0时,图象落在X轴的上方,无论X为任何实数,都有y ∙0 ;2'当a :::0时,图象落在X轴的下方,无论X为任何实数,都有y:::0 .2.抛物线y =aχ2 bx C的图象与y轴一定相交,交点坐标为(0,C);3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与X轴的交点坐标,需转化为一元二次方程;⑵求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数y =aχ2∙ bx ∙ c中a,b,C的符号,或由二次函数中a,b,C的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与X轴的一个交点坐标,可由对称性求出另一个交点坐标⑸ 与二次函数有关的还有二次三项式,二次三项式ax2 bx C(^--=0)本身就是所含字母X的二次函数;下面以a 0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:Δ>0抛物线与X轴有两个交点二次三项式的值可正、可零、可负一元二次方程有两个不相等实根A =0抛物线与X轴只有一个交点二次三项式的值为非负一元二次方程有两个相等的实数根A <0抛物线与X轴无交占二次三项式的值恒为正一元二次方程无实数根.AB = X2 - X i I =b 4ac二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以X为自变量的二次函数y = (m「2)x2∙ m2「m「2的图像经过原点,则m的值是___________2 .综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:如图,如果函数y =kx ∙ b的图像在第一、二、三象限内,那么函数3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:5已知一条抛物线经过(0,3) , (4,6)两点,对称轴为X ,求这条抛物线的解析式。

中考数学专题复习资料-二次函数

中考数学专题复习资料-二次函数

专题12 二次函数1.二次函数的概念:一般地,自变量x 和因变量y 之间存在如下关系: y=ax 2+bx+c(a≠0,a 、b 、c 为常数),则称y 为x 的二次函数。

抛物线)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。

2.二次函数y=ax 2+bx+c(a ≠0)的图像与性质(1)对称轴:2b x a=-(2)顶点坐标:24(,)24b ac b a a-- (3)与y 轴交点坐标(0,c ) (4)增减性:当a>0时,对称轴左边,y 随x 增大而减小;对称轴右边,y 随x 增大而增大; 当a<0时,对称轴左边,y 随x 增大而增大;对称轴右边,y 随x 增大而减小。

3.二次函数的解析式三种形式。

(1)一般式 y=ax 2+bx+c(a ≠0).已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式 2()y a x h k =-+224()24b ac b y a x a a-=-+ 已知图像的顶点或对称轴,通常选择顶点式。

(3)交点式 12()()y a x x x x =--专题知识回顾已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式。

4.根据图像判断a,b,c 的符号(1)a 确定开口方向 :当a>0时,抛物线的开口向上;当a<0时,抛物线的开口向下。

(2)b ——对称轴与a 左同右异。

(3)抛物线与y 轴交点坐标(0,c ) 5.二次函数与一元二次方程的关系抛物线y=ax 2+bx+c 与x 轴交点的横坐标x 1, x 2 是一元二次方程ax 2+bx+c=0(a ≠0)的根。

抛物线y=ax 2+bx+c ,当y=0时,抛物线便转化为一元二次方程ax 2+bx+c=024b ac ->0时,一元二次方程有两个不相等的实根,二次函数图像与x 轴有两个交点; 24b ac -=0时,一元二次方程有两个相等的实根,二次函数图像与x 轴有一个交点; 24b ac -<0时,一元二次方程有不等的实根,二次函数图像与x 轴没有交点。

二次函数相关知识点

二次函数相关知识点

二次函数相关知识点二次函数是高中数学中一个重要的内容,它常用于描述实际问题中的关系。

本文将通过分析二次函数的特点和相关知识点,帮助读者更好地理解和应用二次函数。

一、二次函数的定义二次函数是指以x的二次幂为最高次项的函数,一般形式为f(x) = ax^2 + bx + c,其中a、b、c分别为实数且a≠0。

二次函数通常在坐标平面上表示为抛物线,其开口方向和抛物线的顶点位置与系数a的正负有关。

二、二次函数的图像抛物线是二次函数的图像特点,它可以向上或向下开口,具体取决于系数a的正负。

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

抛物线的顶点是二次函数的重要特征点,也是二次函数图像的最低或最高点。

顶点的x坐标为-b/2a,y坐标为f(-b/2a)。

通过顶点的坐标可以进一步了解二次函数的对称性和位置。

三、二次函数的性质1. 对称性:由于抛物线是关于y轴对称的,所以二次函数具有对称性。

对于f(x) = ax^2 + bx + c,若将x坐标取反,函数值不变,即f(-x) = f(x)。

2. 零点:二次函数的零点是使得f(x) = 0的x值。

二次函数的零点可以通过解一元二次方程获得。

当一元二次方程有实数解时,抛物线与x轴有交点;当一元二次方程无实数解时,抛物线与x轴无交点,零点只存在于复数领域。

3. 平移变换:二次函数可以通过平移进行变换,分别沿x轴和y轴平移。

沿x轴平移时,函数的顶点横坐标随之改变,沿y轴平移时,函数的整体位置上下移动。

四、二次函数的应用二次函数的应用广泛,特别是在物理学和经济学等实际问题中。

以下举几个例子:1. 抛物线轨迹:物体受到重力作用下落的轨迹通常可以用二次函数进行描述。

通过二次函数可以分析物体的运动状态,如最高点、最远距离等。

2. 利润最大化:某企业生产某种产品,其总成本和总收益分别可以表示为二次函数。

通过求解该二次函数的极值点,可以找到最大利润对应的产量。

二次函数单调递增区间

二次函数单调递增区间

二次函数单调递增区间二次函数单调递增区间二次函数是高中数学中的一个重要概念,它的图像是一个开口朝上或朝下的抛物线。

在二次函数中,单调性是一个非常重要的概念。

如果一个函数在某个区间内单调递增,那么这个区间内任意两个点的函数值之差都是正数。

本文将详细介绍如何求解二次函数的单调递增区间。

一、什么是二次函数?二次函数是指形如 $y=ax^2+bx+c$ 的函数,其中 $a,b,c$ 都是实数且 $a\neq 0$。

其中 $a$ 控制着抛物线的开口方向和大小,$b$ 控制着抛物线在 $x$ 轴上的位置,$c$ 控制着抛物线在 $y$ 轴上的位置。

二、如何求解二次函数单调递增区间?我们知道,在一条直线上,如果它斜率为正,则表示这条直线单调递增;如果它斜率为负,则表示这条直线单调递减。

同样地,在一个二次函数图像上,如果它开口朝上,则表示它在左右两侧都是单调递增;如果它开口朝下,则表示它在左右两侧都是单调递减。

因此,我们只需要找到二次函数的开口方向,就可以求出它的单调递增区间。

三、如何确定二次函数的开口方向?二次函数的开口方向,是由 $a$ 的正负性来决定的。

如果 $a>0$,则抛物线开口朝上;如果 $a<0$,则抛物线开口朝下。

四、如何求解二次函数单调递增区间?在确定了二次函数的开口方向之后,我们就可以进一步求解它的单调递增区间了。

1. 当 $a>0$ 时当 $a>0$ 时,抛物线开口朝上。

此时,我们需要找到抛物线的顶点,并确定它是不是单调递增的。

首先,根据二次函数顶点公式:$$x = -\frac{b}{2a}$$可以求出抛物线顶点的横坐标。

然后,我们只需要判断这个点左右两侧是否单调递增即可。

具体地说,如果一个二次函数在某个区间内单调递增,则这个区间必须满足以下两个条件:(1)该区间必须包含抛物线顶点;(2)该区间左侧和右侧的斜率都大于零。

因此,在求解二次函数单调递增区间时,我们需要分别求出抛物线顶点左右两侧的斜率,并判断它们是否都大于零。

解二次函数的三种方法

解二次函数的三种方法

解二次函数的三种方法一、根据二次函数函数表示式求解方法二次函数函数表示式是$y = ax^2 + bx + c$,其中a,b,c都是常数。

以此公式求一般二次函数的几何意义主要包括:判断拐点、确定单调性(即函数的上下单调性,对称轴,极值)和计算函数的极限值:(1)判断拐点可以用一元二次函数的判别式来判断拐点,它的形式为:$D = b^2 - 4ac$,如果$D>0$,则这个函数有唯一的拐点,即$(-b \pm \sqrt{D})/2a$;如果$D=0$,则这个函数有一个重拐点,即$(-b \pm \sqrt{D})/2a$;如果$D<0$,则这个函数没有拐点。

(2)确定单调性即确定函数$y=ax^2+bx+c$在任意一点上的单调性,主要就是通过求a的取值来判断:当a>0时,此函数是一个开口向上的抛物线,即在a>0的任一x处的函数值都大于其附近的函数值,此时此二次函数是单调递增的;(3)确定对称轴由于一元二次函数$y=ax^2+bx+c$有关于$x$轴的对称性,因此我们可以求出它的对称轴。

其斜率为:$m=-b/2a$,求出斜率之后,根据斜率公式可以得到对称轴的方程为:$y+b/2a=ax^2$,即$x = -b/2a,y = -b/4a$。

(4)确定极值在求极值之前,首先需要找到函数的极值点,要找到极值点首先要求求导,函数$y=ax^2+bx+c$的一阶导数为:$y'=2ax+b$,称$2ax+b=0$为导函数的根,即为求极值点。

它的极值值可以通过函数的表达式替换形式求得,即用$2ax+b=0$的根代替$x$求函数$y=ax^2+bx+c$的值就是该函数的极值。

(5)计算函数的极限一元二次函数的极限的形式为:$\lim\limits_{x \to-\infty}ax^2+bx+c=+\infty$,$\lim\limits_{x \to+\infty}ax^2+bx+c = +\infty$,可以根据极限的运算规则去计算极限。

二次函数常考题型

二次函数常考题型

二次函数常考题型
二次函数常考题型主要包括:
一、求二次函数的解析式
该类问题的关键是将给定的条件表示成二次函数的形式,并根据给出的条件进行求解。

二、求二次函数的最大值或最小值
该类问题的关键在于分析二次函数图像的性质,运用二次函数的性质求得最大值或最小值。

三、求二次函数的极值点
该类问题的关键在于根据二次函数的性质,求二次函数的导数,然后求出极值点。

四、求二次函数的拐点
该类问题的关键在于根据二次函数的性质,求出二次函数的一阶导数,然后再求出二次函数的拐点。

二次函数的基本解法

二次函数的基本解法

二次函数的通式是y= ax²+bx+c如果知道三个点将二个点的坐标代入也就是说三个方程解三个未知数如题方程一8=a²+b²+c 化简8=c 也就是说c就是函数与Y轴的交点。

方程二7=a×36+b×6+c 化简7=36a+6b+c。

方程三7=a×(-6)2+b×(-6)+c化简7=36a-6b+c。

解出a,b,c 就可以了。

上边这种是老老实实的解法。

对(6,7)(-6,7)这两个坐标可以求出一个对称轴也就是X=0 。

通过对称轴公式x=-b/2a 也可以算。

如果知道过x轴的两个坐标(y=0的两个坐标的值叫做这个方程的两个根)也可以用对称轴公式x=-b/2a算。

或者使用韦达定理一元二次方程ax²+bx+c=0 (a≠0 且△=b²-4ac≥0)中。

设两个根为X1和X2则X1+X2= -b/aX1·X2=c/a已知顶点(1,2)和另一任意点(3,10),设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2一般式y=ax²+bx+c(a≠0,a、b、c为常数),顶点坐标为(-b/2a,(4ac-b²)/4a)顶点式y=a(x-h)²+k(a≠0,a、h、k为常数),顶点坐标为(h,k)对称轴为x=h,顶点的位置特征和图像的开口方向与函数y=ax^2的图像相同,有时题目会指出让你用配方法把一般式化成顶点式。

交点式y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点A(x1,0)和B(x2,0)的抛物线,即b^2-4ac≥0]由一般式变为交点式的步骤:∵X1+x2=-b/a x1·x2=c/a∴y=ax²+bx+c=a(x²+b/ax+c/a)=a[﹙x²-(x1+x2)x+x1x2]=a(x-x1)(x-x2)重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位7、二次函数(八上ch22)一、二次函数概念:1.二次函数的概念; 2. 二次函数2y ax bx c =++的结构特征: 二、二次函数的性质1. 2y ax =的性质:a 的绝对值越大,开口越小。

(a 的符号、开口方向、顶点、对称轴、性质)2. 2y ax c =+的性质:(上加下减)。

3. ()2y a x h =-的性质:(左加右减)。

4. ()2y a x h k =-+的性质: 三、二次函数图象的平移1. 平移步骤:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,;⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:2. 平移规律:“h 值正右移,负左移;k 值正上移,负下移”.“左加右减,上加下减”. 四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法:五点绘图法画草图时应抓住:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 六、二次函数2y ax bx c =++的性质1. 当0a >时,开口:向上;对称轴:2b x a =-;顶点:2424b ac b a a ⎛⎫-- ⎪⎝⎭,.增减性:2bx a <-时, y 随x 增大而减小;2b x a >-时,y 随x 增大而增大。

最值:2bx a =-时,y 有最小值244ac b a-. 2. 当0a <时(略)七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是与x 轴两交点的横坐标)(适用于实根存在时). 八、二次函数的图象与各项系数之间的关系1. 二次项系数a : 0a >时开口向上,0a <时开口向下;a 越大开口越小,a 越小开口越大。

2. 一次项系数b :b 决定对称轴.3. 常数项c 确定抛物线与y 轴的交点位置 4、解析式的确定:待定系数法.(1) 已知三点用一般式;(2)已知顶点或对称轴或最值用顶点式;(3) 已知与x 轴两交点用两根式; 九、二次函数图象的对称:1. 关于x 轴对称: 2y ax bx c =++关于x 轴对称后,是2y ax bx c =---; (用-y 换y )2. 关于y 轴对称: 2y ax bx c =++关于y 轴对称后,是2y ax bx c =-+; (用-x 换x )3. 关于原点对称: 2y ax bx c =++关于原点对称后,是2y ax bx c =-+-; (用-x,-y 换x,y )4. 关于顶点对称(即:抛物线绕顶点旋转180°) ()2y a x h k =-+关于顶点对称后,是()2y a x h k =--+. 十、二次函数与一元二次方程: 1. 二次函数与一元二次方程的关系① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠, 12x x ,方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-. ② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常见题型:⑴ 求函数图象与x 轴交点坐标,化为一元二次方程; ⑵ 求二次函数的最值,配方法将二次函数转化为顶点式;⑶ 根据图象位置判断函数a ,b ,c 的符号,或由a ,b ,c 的符号判断图象的位置,要数形结合; ⑷ 二次函数图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. 十一、函数的应用y=-2(x+3)2y=-2x 2二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是 2.综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如: 已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。

4. 考查用配方法求抛物线的顶点坐标、对称轴、二次函数的极值,有关试题为解答题,如:已知抛物线2y ax bx c =++(a ≠0)与x 轴的两个交点的横坐标是-1、3,与y 轴交点的纵坐标是-32(1)确定抛物线的解析式;(2)用配方法确定抛物线的开口方向、对称轴和顶点坐标.5.考查代数与几何的综合能力,常见的作为专项压轴题。

【例题经典】bx +),(acb M 在( ) D .第四象限2所示,•则下列结论:①a 、b 同号;②当x=1的值只能取0.其中正确的个数是( ) 2-32(1) (2)【点评】弄清抛物线的位置与系数a ,b ,c 之间的关系,是解决问题的关键.例2.已知二次函数y=ax 2+bx+c 的图象与x 轴交于点(-2,O)、(x 1,0),且1<x 1<2,与y 轴的正半轴的交点在点(O ,2)的下方.下列结论:①a<b<0;②2a+c>O ;③4a+c<O;④2a -b+1>O ,其中正确结论的个数为( )A 1个 B. 2个 C. 3个 D .4个 答案:D会用待定系数法求二次函数解析式例3.已知:关于x 的一元二次方程ax 2+bx+c=3的一个根为x=-2,且二次函数y=ax 2+bx+c 的对称轴是直线x=2,则抛物线的顶点坐标为( )A(2,-3) B.(2,1) C(2,3) D .(3,2) 答案:C例4、(2006年烟台市)如图(单位:m ),等腰三角形ABC 以2米/秒的速度沿直线L 向正方形移动,直到AB 与CD 重合.设x 秒时,三角形与正方形重叠部分的面积为y m 2. (1)写出y 与x 的关系式;(2)当x=2,3.5时,y 分别是多少? (3)当重叠部分的面积是正方形面积的一半时, 三角形移动了多长时间?求抛物线顶点坐标、 对称轴.例5、已知抛物线y=12x 2+x-52.(1)用配方法求它的顶点坐标和对称轴.(2)若该抛物线与x 轴的两个交点为A 、B ,求线段AB 的长.【点评】本题(1)是对二次函数的“基本方法”的考查,第(2)问主要考查二次函数与一元二次方程的关系.例6.已知:二次函数y=ax 2-(b+1)x-3a 的图象经过点P(4,10),交x 轴于)0,(1x A ,)0,(2x B 两点)(21x x ,交y 轴负半轴于C 点,且满足3AO=OB .(1)求二次函数的解析式;(2)在二次函数的图象上是否存在点M ,使锐角∠MCO>∠A CO?若存在,请你求出M 点的横坐标的取值范围;若不存在,请你说明理由. (1)解:如图∵抛物线交x 轴于点A(x 1,0),B(x2,O), 则x 1·x 2=3<0,又∵x 1<x 2,∴x 2>O ,x 1<O ,∵30A=OB ,∴x 2=-3x 1. ∴x 1·x 2=-3x 12=-3.∴x 12=1. x 1<0,∴x 1=-1.∴.x 2=3.∴点A(-1,O),P(4,10)代入解析式得解得a=2 b=3 ∴.二次函数的解析式为y-2x 2-4x-6.(2)存在点M 使∠MC0<∠ACO .(2)解:点A 关于y 轴的对称点A ’(1,O),∴直线A ,C 解析式为y=6x-6直线A'C 与抛物线交点为(0,-6),(5,24). ∴符合题意的x 的范围为-1<x<0或O<x<5.当点M 的横坐标满足-1<x<O 或O<x<5时,∠MCO>∠ACO . 例7、 “已知函数c bx x y ++=221的图象经过点A (c ,-2),求证:这个二次函数图象的对称轴是x=3。

”题目中的矩形框部分是一段被墨水污染了无法辨认的文字。

(1)根据已知和结论中现有的信息,你能否求出题中的二次函数解析式?若能,请写出求解过程,并画出二次函数图象;若不能,请说明理由。

(2)请你根据已有的信息,在原题中的矩形框中,填加一个适当的条件,把原题补充完整。

点评: 对于第(1)小题,要根据已知和结论中现有信息求出题中的二次函数解析式,就要把原来的结论“函数图象的对称轴是x=3”当作已知来用,再结合条件“图象经过点A (c ,-2)”,就可以列出两个方程了,而解析式中只有两个未知数,所以能够求出题中的二次函数解析式。

对于第(2)小题,只要给出的条件能够使求出的二次函数解析式是第(1)小题中的解析式就可以了。

而从不同的角度考虑可以添加出不同的条件,可以考虑再给图象上的一个任意点的坐标,可以给出顶点的坐标或与坐标轴的一个交点的坐标等。

[] (1)根据c bx x y ++=221的图象经过点A (c ,-2),图象的对称轴是x=3,得⎪⎪⎩⎪⎪⎨⎧=⋅--=++,3212,2212b c bc c 解得⎩⎨⎧=-=.2,3c b 所以所求二次函数解析式为.23212+-=x x y 图象如图所示。

(2)在解析式中令y=0,得023212=+-x x ,解得.53,5321-=+=x x所以可以填“抛物线与x 轴的一个交点的坐标是(3+)0,5”或“抛物线与x 轴的一个交点的坐标是).0,53(-令x=3代入解析式,得,25-=y所以抛物线23212+-=x x y 的顶点坐标为),25,3(-所以也可以填抛物线的顶点坐标为)25,3(-等等。

相关文档
最新文档