小学四年级奥数知识点
小学奥数四年级知识点
小学奥数四年级知识点一、整数的概念及运算整数是由正整数、零和负整数组成的数集,可以进行加法、减法、乘法和除法四则运算。
其中,加法可以用于计算物体的数量增加,减法可以用于计算物体的数量减少,乘法可以用于计算物体的倍数关系,除法可以用于计算物体的平均分配。
二、小数的概念及运算小数是由整数和小数点组成的数,分为有限小数和无限循环小数。
小数可以进行加法、减法、乘法和除法四则运算。
小数的运算结果要注意保留正确的小数位数,并进行合理的进位和舍位操作。
三、分数的概念及运算分数由一个整数被另一个非零整数除得到,分数可以进行加法、减法、乘法和除法四则运算。
在分数运算中,需要注意分母的相同化和通分操作,保持正确的分数形式,最后进行约分。
四、几何图形与空间几何1. 几何图形- 点、线和面的概念- 直线、线段、射线的认识和区分- 正方形、长方形、三角形、圆形等几何图形的特征和性质2. 空间几何- 空间图形的观察与认识:立方体、长方体、球体、圆柱体、圆锥体等- 空间图形的表达与绘制:技巧和方法五、时间与日期1. 时间- 时、分、秒的概念及读法- 时间的加减运算2. 日期- 大小月份的认识和区分- 平年和闰年的概念及计算六、数据与统计1. 数据的收集与整理- 调查数据的方法和技巧- 整理数据的形式与方法2. 统计分析- 数据的图表展示:柱状图、折线图、饼图等- 数据的比较和归纳七、逻辑与推理1. 推理与类比- 根据已知条件进行推理和判断- 利用类比关系解决问题2. 排列与组合- 排列问题的解决方法- 组合问题的解决方法以上是小学奥数四年级的知识点,通过学习这些内容,可以提高学生的数学思维能力和解决问题的能力。
在实际应用中,要注重灵活运用知识,培养学生的综合运算能力和逻辑推理能力。
希望同学们能够善于发现数学的美妙,探索数学的奥秘。
最新小学四年级奥数知识点
小学四年级奥数知识点标蓝:基础小学四年级奥数知识点1.常用特殊数的乘积25×4=100 125×8=1000625×16=10000 25×8=200 125×4=500 125×3=小学四年级奥数知识点3=1001 37×3=1112.加减法运算性质:同级运算时,如果交换数的位置,应注意符号搬家.加、去括号时要注意以下几点:括号前面是加号,去掉括号不变号;加号后面添括号,括号里面不变号;括号前面是减号,去掉括号要变号;减号后面添括号,括号里面要变号.100+(21+58)=100+21+ 58100-(21+58)=100-21- 583.乘除法运算性质乘法中性质:(1)乘法交换律(2)乘法结合律(3)乘法分配律(4)乘法性质(5)积的变化规律:一扩一缩法.除法中性质:当被除数为几个数字之和或者差时才可以用除法分配律.积的变化规律:同扩同缩法.同级运算时,如果有交换数的位置,应该注意符号搬家.加、去括号时注意以下几点:括号前面是乘号,去掉或加上括号不变号;括号前面是除号,去掉或加上括号要变号.100×(4×5)=100×4×5100÷(4÷5)=100÷4÷54.最大最小1、解答最大最小的问题,可以进行枚举比较.在有限的情况下,通过计算,将所有情况的结果列举出来,然后比较出最大值或最小值.2、运用规律.(1)两个数的和一定,则它们的差越接近,乘积越大;当它们相等(差为0)时,乘积最大.3、考虑极端情况.如“连接两点间的线段最短”、“作对称点”、“联系实际考虑问题”等.5.比较大小估算最常用的技巧是“放大缩小”,即先对某个数或算式进行适当的“放大”或“缩小”,确定它的取值范围,再根据其他条件得出结果,调整放缩幅度的方法有两条:一是分组(分段),并尽可能使每组所对应的标准相同;另一种方法是按近似数乘除法计算法则,比要求的精确度多保留一位,进行计算.6.平均数求平均数必须知道总数和份数,常用公式:平均数=总数÷份数份数=总数÷平均数总数=平均数×份数(总数=所有数之和)7.余数问题(周期问题,个位数是几)闰年日期周期一个带余数除法算式包含4个数:被除数÷除数=商……余数.相互关系还有:被除数=除数×商+余数,或(被除数-余数)÷除数=商.余数小于除数.周期现象:事物在运动变化的过程中,某些特征有规律循环出现.周期:我们把连续两次出现所经过的时间叫周期.问题类型:找图形(图形计数),找字符,找数字(统计),年月日、星期几问题,个位数是几.关键问题:确定循环周期.闰年:一年有366天;①年份能被4整除;②如果年份能被100整除,则年份必须能被400整除.平年:一年有365天.①年份不能被4整除;②如果年份能被100整除,但不能被400整除.例题1小张在计算有余数的除法时,把被除数113错写成131,结果商比原来多3,但余数恰巧相同.那么该题的余数是多少?解析:被除数增加了131-113=18,余数相同,但结果的商是3,所以,除数应该是18÷3=6.又因为113÷6的余数是5,所以该题的余数也是5.例题2:1991年1月1日是星期二,(1)该月的22日是星期几?该月28日是星期几?(2)1994年1月1日是星期几?解析:(1)一个星期是7天,因此,7天为一个循环,这类题在计算天数时,可以采用“算尾不算头”的方法.(22-1)÷7=3,没有余数,该月22日仍是星期二;(28-1)÷7=3…6,从星期三开始(包括星期三)往后数6天,28日是星期一. (2)1991年、1993年是平年,1992年是闰年,从1991年1月2日到1994年1月1日共1096天,1096÷7=156…4,从星期三开始往后数4天,1994年1月1日是星期六.8.奇数与偶数加法:偶数+偶数=偶数奇数+奇数=偶数偶数+奇数=奇数减法:偶数-偶数=偶数奇数-奇数=偶数偶数-奇数=奇数乘法:偶数×偶数=偶数奇数×奇数=奇数偶数×奇数=偶数9.等差数列(简算数列金字塔找规律)数列是指按一定规律顺序排列成一列数.如果一个数列中从第二个数开始,相邻两个数的差都相等,我们就把这样的一列数叫做等差数列,等差数列中的每一个数都叫做项,第一个数叫第一项,通常也叫“首项”,第二个数叫第二项,第三个数叫第三项……最后一项叫做“末项”.等差数列中相邻两项的差叫做“公差”,等差数列中项的个数叫做“项数”.公式:和=(首项+末项)×项数÷2项数=(末项-首项)÷公差+1第n项=首项+(n-1)×公差 an = a1+(n-1)d关键问题:确定已知量和未知量,确定使用的公式;例题1:有一个数列:4、7、10、13、…、25,这个数列共有多少项?解析:仔细观察可以发现这是一个以4为首项,以公差为3的等差数列,根据等差数列的项数公式即可解答.由等差数列的项数公式:项数=(末项-首项)÷公差+1,可得出答案.例题2:有一等差数列:2,7,12,17,…,这个等差数列的第100项是多少?解析:仔细观察可以发现这是一个以2为首项,以公差为5的等差数列,根据等差数列的通项公式即可解答,由等差数列的通项公式:第几项=首项+(项数-1)×公差,可得出答案.例题3:计算2+4+6+8+…+98的和.解析:仔细观察该数列,公差为2,首项是2,末项是100,所以可以用等差数列的求和公式来求.总和=(首项+末项)×项数÷210.和倍问题己知几个数的和及这几个数之间的倍数关系,求这几个数的应用题叫和倍问题.解答和倍问题,一般是先确定较小的数为标准数(或称一倍数),再根据其他几个数与较小数的倍数关系,确定总和相当于标准数的多少倍,然后用除法求出标准数,再求出其他各数,最好采用画线段图的方法.和倍公式:和÷(倍数+1)=小数11.差倍问题己知两个数的差及它们之间的倍数关系,求这两个数的应用题叫差倍问题.解答差倍问题,一般以较小数作为标准数(一倍数),再根据大小两数之间的倍数关系,确定差是标准数的多少倍,然后用除法先求出较小数,再求出较大数.解答这类问题,先画线段图,帮助分析数量关系.差倍公式:差÷(倍数-1)=小数12.和差问题和差问题是根据大小两个数的和与两个数的差求大小两个数各是多少的应用题.解答和差问题的基本公式是:(和-差)÷2=较小数(和+差)÷2=较大数13.年龄问题己知两个人或几个人的年龄,求他们年龄之间的某种数量关系;或己知某些人年龄之间的数量关系,求他们的年龄等,这种题称为年龄问题.年龄问题的特点是:一般用和差或者和倍问题的方法解答.(1)两人的年龄之差是不变的,称为定差.(2)两个人的年龄同时都增加同样的数量.(3)两个年龄之间的倍数关系,年龄增长,倍数缩小.年龄问题的解题方法是:几年后=大小年龄之差÷倍数差-小年龄几年前=小年龄-大小年龄差÷倍数差14.植树问题(排方阵)周期在首尾不相接的路线上植树,段数与棵数关系可分为4类:(1)两端都种树:段数=棵数-1(2)一端种一端不种:段数=棵数(3)两端都不种:段数=棵数+1(4)在首尾相接的路线上种树(如圆、正方形、闭合曲线等):段数=棵棵距×段数=总长关键问题:确定所属类型,从而确定棵数与段数的关系15.盈亏问题(可以直接套公式,注意理解题目即可)一盈一亏一盈一正好一亏一正好两盈两亏通常是比较法和对应法结合使用.公式是:(同盈同亏用减法,一亏一盈用加法)即:两次分配结果差÷两次分配数差=人数(份数)基本特点:对象总量和总的组数是不变的.关键问题:分析差量关系,确定对象总量和总的组数.16.还原问题(逆推问题)还原问题又叫逆推问题.己知一个数的结果,再经过逆运算反求原数,叫做还原问题.解决这类题要从结果出发,逐步向前一步一步推理,每一步运算都是原来运算的逆运算(即变加为减,变减为加,变乘为除,变除为乘).解题关键:在从后往前推算的过程中,每一步都是做同原来相反的运算,原来加的,运算时用减;原来减的,运算时用加;原来乘的,运算时用除;原来除的,运算时用乘.17.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差.基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差.18.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示.关键问题:根据题目中的条件确定并求出单一量.19.定义新运算基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算.基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算.关键问题:正确理解定义的运算符号的意义.注意事项:①新的运算不一定符合运算规律,特别注意运算顺序.②每个新定义的运算符号只能在本题中使用.20.加法乘法原理和几何计数(排列组合)加法原理:如果完成一件任务有n类方法,在第一类方法中有m1种不同方法,在第二类方法中有m2种不同方法……,在第n类方法中有mn种不同方法,那么完成这件任务共有:m1+ m2....... +mn种不同的方法.关键问题:确定工作的分类方法.基本特征:每一种方法都可完成任务.乘法原理:如果完成一件任务需要分成n个步骤进行,做第1步有m1种方法,不管第1步用哪一种方法,第2步总有m2种方法……不管前面n-1步用哪种方法,第n步总有mn种方法,那么完成这件任务共有:m1×m2....... ×mn种不同的方法.关键问题:确定工作的完成步骤.基本特征:每一步只能完成任务的一部分.①数线段规律:总数=1+2+3+…+(点数一1);②数角规律=1+2+3+…+(射线数一1);③数长方形规律:个数=长的线段数×宽的线段数:④数长方形规律:个数=1×1+2×2+3×3+…+行数×列数.例题1:从天津到上海的火车,上午、下午各发一列;也可以乘飞机,有3个不同的航班,还有一艘轮船直达上海.那么从天津到上海共有多少种不同的走法?解析:我们把坐火车看成第一类走法,有2种不同的选法;乘飞机是第二类走法,有3种不同的选法;坐轮船为第三类走法,只有1种选法.无论哪一种选法,都可以直接完成这件事.例题2:用1角、2角和5角的三种人民币(每种的张数没有限制)组成1元钱,有多少种方法?解析:运用加法原理,把组成方法分成三大类:①只取一种人民币组成1元,有3种方法:10张1角;5张2角;2张5角. ②取两种人民币组成1元,有5种方法:1张5角和5张1角;一张2角和8张1角;2张2角和6张1角;3张2角和4张1角;4张2角和2张1角.③取三种人民币组成1元,有2种方法:1张5角、1张2角和3张1角的;1张5角、2张2角和1张1角的.21.逻辑推理(举例子倒推列表)基本方法简介:①条件分析—假设法:假设可能情况中的一种成立,然后按照这个假设去判断,如果有与题设条件矛盾的情况,说明该假设情况是不成立的,那么与他的相反情况是成立的.例如,假设a是偶数成立,在判断过程中出现了矛盾,那么a一定是奇数.②条件分析—列表法:当题设条件比较多,需要多次假设才能完成时,就需要进行列表来辅助分析.列表法就是把题设的条件全部表示在一个长方形表格中,表格的行、列分别表示不同的对象与情况,观察表格内的题设情况,运用逻辑规律进行判断.③条件分析——图表法:当两个对象之间只有两种关系时,就可用连线表示两个对象之间的关系,有连线则表示“是,有”等肯定的状态,没有连线则表示否定的状态.例如A和B两人之间有认识或不认识两种状态,有连线表示认识,没有表示不认识.④逻辑计算:在推理的过程中除了要进行条件分析的推理之外,还要进行相应的计算,根据计算的结果为推理提供一个新的判断筛选条件.⑤简单归纳与推理:根据题目提供的特征和数据,分析其中存在的规律和方法,并从特殊情况推广到一般情况,并递推出相关的关系式,从而得到问题的解决. 1.等价条件的转换2.列表法3.对阵图:竞赛问题,涉及体育比赛常识4.假设问题假设法是解答应用题时经常用到的一种方法.所谓“假设法”就是依据题目中的己知条件或结论作出某种设想,然后按照己知条件进行推算,根据数量上出现的矛盾,再适当调整,从而找到正确答案.例1:公路上按一路纵队排列着五辆大客车.每辆车的后面都贴上了该车的目的地的标志.每个司机都知道这五辆车有两辆开往A市,有三辆开往B市;并且他们都只能看见在自己前面的车的标志.调度员听说这几位司机都很聪明,没有直接告诉他们的车是开往何处的,而让他们根据已知的情况进行判断.他先让第三个司机猜猜自己的车是开往哪里的.这个司机看看前两辆车的标志,想了想说“不知道”.第二辆车的司机看了看第一辆车的标志,又根据第三个司机的“不知道”,想了想,也说不知道.第一个司机也很聪明,他根据第二、三个司机的“不知道”,作出了正确的判断,说出了自己的目的地.请同学们想一想,第一个司机的车是开往哪儿去的;他又是怎样分析出来的?解析:根据第三辆车司机的“不知道”,且已知条件只有两辆车开往A市,说明第一、二辆车不可能都开往A市.(否则,如果第一、二辆车都开往A市的,那么第三辆车的司机立即可以断定他的车一定开往B市).再根据第二辆车司机的“不知道”,则第一辆车一定不是开往A市的.(否则,如果第一辆车开往A市,则第二辆车即可推断他一定开往B市).运用以上分析推理,第一辆车的司机可以判断,他一定开往B市.例题2:李明、王宁、张虎三个男同学都各有一个妹妹,六个人在一起打羽毛球,举行混合双打比赛.事先规定.兄妹二人不许搭伴. 第一盘,李明和小华对张虎和小红;第二盘,张虎和小林对李明和王宁的妹妹. 请你判断,小华、小红和小林各是谁的妹妹.解析:因为张虎和小红、小林都搭伴比赛,根据已知条件,兄妹二人不许搭伴,所以张虎的妹妹不是小红和小林,那么只能是小华,剩下就只有两种可能了. 第一种可能是:李明的妹妹是小红,王宁的妹妹是小林;第二种可能是:李明的妹妹是小林,王宁的妹妹是小红.22.方阵问题很多的人或物按一定条件排成正方形(简称方阵),再根据己知条件求总人数,这类题叫方阵问题.在解决方阵问题时,要搞清方阵中一些量(如层数,最外层人数,最里层人数,总人数)之间的关系.方阵问题的基本特点是:(1)方阵不管在哪一层,每边的人数都相同,每向里面一层,每边上的人数减少2,每一层就少8.(2)每层人数=(每边人数-1)×4(3)每边人数=每层人数÷4+1(4)外层边长数-2=内层边长数(5)实心方阵人数=每边人数×每边人数23.相遇与追及问题(学校同步提高)路程=速度×时间时间=路程÷速度速度=路程÷时间.追及问题运动的物体或人同向而不同时出发,后出发的速度快,经过一段时间追上先出发的,这样的问题叫做追及问题,解答追及问题的基本条件是“追及路程”和“速度差”.追及问题的公式是:追及时间=追及路程÷速度差追及路程=速度差×追及时间速度差=追及路程÷追及时间相遇问题它的特点是两个运动物体或人,同时或不同时从两地相向而行,或同时同地相背而行,要解答相遇问题,掌握以下数量关系:速度和×相遇时间=路程路程÷速度和=相遇时间速度÷相遇时间=速度和24.幻方与数阵幻方的特点:一个幻方每行、每列、每条对角线上的几个数的和都相等.这相相等的和叫“幻和”.两种方法:奇阶:1、九子排列法2、罗伯法,3、巴舍法.偶阶:1、对称交换法2、圆心方阵法.数阵有三种基本类型:(1)封闭型,(2)辐射型(3)综合型解数阵问题一般思路是从和相等入手,确定重处长使用的中心数,是解答解数阵类型题的解题关键.一般答案不唯一.例题1:把1 ~ 6六个数分别填入图中的六个圆圈中,使每条边上三个数的和都等于9.解析:每边上三个数的和都等于9,三条边上数的和等于9×3=27,27-(1+2+3+4+5+6)=6.所以,三个顶点处被重复加了一次的三个数的和为 6.在 1 ~ 6,只有1+2+3=6,故三个顶点只能填1、2、3.这样就得到一组解:1、5、3;1、6、2;3、4、2.例题2:三阶幻方解法“萝卜”法一居上行正中央依次填在右上角上出框时下边填右出框时左边放斜出框时下边放(出角重复一个样)排重便在下格填25.剪纸问题公式:2对折后剪的次数+1=段数.26.一笔画和多笔画(1)凡是由偶点组成的连通图,一定可以一笔画成;画时可以任一偶点为起点,最后能以这个点为终点画完此图.(2)凡是只有两个奇点(其余均为偶点)的连通图,一定可以一笔画完;画时必须以一个奇点为起点,另一个奇点为终点.(3)多笔画定理有2n(n>1)个奇点的连通图形,可以用n笔画完(彼此无公共线),而且至少要n次画完.27.100内质数:2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 28.行船问题船在江河里航行,前进的速度与水流动的速度有关系.船在流水中行程问题,叫做行船问题(也叫流水问题),船顺流而下的速度和逆流而上的速度与船速、水速的关系是:顺水速度=船速+水速逆水速度=船速-水速由于顺水速度是船速与水速的和,逆水速度是船速与水速的差,因此行船问题就是和差问题,所以解答行船问题有时需要驼用和差问题的数量关系.船速=(顺水速度+逆水速度)÷2 水速=(顺水速度-逆水速度)÷2因为行船问题也是行程问题,所以在行船问题中也反映了行程问题的路程、速度与时间的关系.顺水路程=顺水速度×时间逆水路程=逆水速度×时间例:某船在静水中的速度是每小时15千米,它从上游甲港开往乙港共用8小时.已知水速为每小时3千米.此船从乙港返回甲港需要多少时?解:此船顺水的速度是:15+3=18(千米/小时)甲乙两港之间的路程是:18×8=144(千米)此船逆水航行的速度是:15-3=12(千米/小时)此船从乙港返回甲港需要的时间是:144÷12=12(小时)综合算式:(15+3)×8÷(15-3)=144÷12=12(小时)29.过桥问题过桥问题的一般数量关系是:路程=桥长+车长车速=(桥长+车长)÷通过时间通过时间=(桥长+车长)÷车速车长=车速×通过时间-桥长桥长=车速×通过时间-车长例:一列火车经过南京长江大桥,大桥长6700米,这列火车长140米,火车每分钟行400米,这列火车通过长江大桥需要多少分钟?解析:这道题求的是通过时间.根据数量关系式,我们知道要想求通过时间,就要知道路程和速度.路程是用桥长加上车长.火车的速度是已件.总路程:6700+140=6840 (米)通过时间:6840÷400=17.1 (分钟)答:这列火车通过长江大桥需要17.1分钟.30.抽屉原理抽屉原则一:把n+1(或更多)个苹果放到n个抽屉里,那么至少有一个抽屉里有两个或两个以上的苹果.抽屉原则二:把(m×n+1)个(或更多个)苹果放进n个抽屉里,必须一个抽屉里有(m+1)个(或更多的)苹果.说明:应用抽屉原则解题,要从最坏的情况去思考.例题:黑色、白色、黄色的筷子各有8根,混杂地放在一起,黑暗中想从这些筷子中取出颜色不同的2双筷子(每双筷子两根的颜色应一样),问至少要取材多少根才能保证达到要求?解析:这道题并不是品种单一,不能够容易地找到抽屉和苹果,由于有三种颜色的筷子,而且又混杂在一起,为了确保取出的筷子中有2双不同颜色的筷子,可以分两步进行.第一步先确保取出的筷子中有1双同色的;第二步再从余下的筷子中取出若干根保证第二双筷子同色. 首先,要确保取出的筷子中至少有1双是同色的,我们把黑色、白色、黄色三种颜色看作3个抽屉,把筷子当作苹果,根据抽屉原则,只需取出4根筷子即可.其次,再考虑从余下的20根筷子中取多少根筷子才能确保又有1双同色筷子,我们从最不利的情况出发,假设第一次取出的4根筷子中,有2根黑色,1根白色,1根黄色.这样,余下的20根筷子,有6根黑色的,7根白色的,7根黄色的,因此,只要再取出7根筷子,必有1根是白色或黄色的,能与第一次取出的1根白色筷子或黄色筷子配对,从而保证有2双筷子颜色不同,总之,在最不利的情况下,只要取出4+7=11根筷子,就能保证达到目的.解题方法(结合杂题的处理)(1)假设法(尝试、尝试尝试)(2)推理法(推导、找关系)(3)代换法(替换)(4)画图法(画线段、列表格)(5)列表法(6)消元法(7)倒推法(8)极值法(9)设数法(10)整体法(11)排除法11 / 11。
小学奥数所有知识点大汇总(最全)
1.和差倍问题和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数小学奥数很简单,就这30个知识点和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
四年级奥数知识点归纳
四年级奥数知识点归纳一、数与计算1、整数四则运算这是四年级奥数的基础,包括加、减、乘、除的运算规则,以及它们的混合运算。
要熟练掌握运算顺序,先乘除后加减,有括号先算括号内的。
同时,要学会运用运算定律进行简便计算,如加法交换律、结合律,乘法交换律、结合律和分配律。
例如:计算 25×44,可以将 44 拆分成 4×11,然后先计算 25×4=100,再乘以 11 得到 1100,这样就简便多了。
2、小数的认识与计算了解小数的意义和性质,能够进行小数的加减法计算。
要注意小数点的对齐,计算方法与整数加减法类似。
比如:35 +28,先将小数点对齐,然后从低位开始相加,得到63。
3、整数和小数的巧算通过观察数字的特点,运用凑整、拆分等方法进行简便计算。
例如:计算 99×78 + 78,可以将 78 提取出来,变成 78×(99 + 1)= 7800。
二、图形与几何1、角的度量认识角的分类,如锐角、直角、钝角、平角和周角,掌握角的度量方法,会用量角器测量角的度数。
2、三角形了解三角形的特性,如稳定性。
掌握三角形的分类,按角分有锐角三角形、直角三角形和钝角三角形;按边分有等边三角形、等腰三角形和不等边三角形。
同时,要会计算三角形的周长和面积。
比如:一个等腰三角形的腰长是 5 厘米,底边长是 6 厘米,它的周长就是 5×2 + 6 = 16 厘米。
3、平行四边形和梯形认识平行四边形和梯形的特征,知道平行四边形具有不稳定性,会计算它们的面积。
例如:一个平行四边形的底是 8 厘米,高是 5 厘米,面积就是 8×5 = 40 平方厘米。
三、应用题1、行程问题包括相遇问题和追及问题。
相遇问题的基本公式是:路程=速度和×相遇时间;追及问题的基本公式是:路程差=速度差×追及时间。
比如:甲、乙两人分别从 A、B 两地同时出发相向而行,甲的速度是每小时 5 千米,乙的速度是每小时 4 千米,经过 3 小时相遇,A、B 两地的距离就是(5 + 4)×3 = 27 千米。
小学生四年级奥数知识点汇总
小学生四年级奥数知识点汇总1.圆周率常取数据3.14 ×1=3.14 3.14 ×2=6.28 3.14 ×3=9.42 3.14 ×4=12.56 3.14 ×5=15.73.15 ×6=18.84 3.14 7×=21.98 3.14 8×= 25.12 3.14 9×=28.262.常用特别数的乘积125×8 = 1000 25×4 = 100 125×3 = 375 625×16 = 10000 7×11×13=1001 25 ×8=200 125×4=500 37 ×3=1113.100 内质数974.单位换算1 米=3 尺=3.2808 英尺 =1.0926 码 1 公里 =1000 米=2 里 1 码=3 英尺=36英寸 1 海里 =1852米=3.704里=1.15 英里 1 平方公里 =1000000 平方米 =100 公顷 =4 平方里 =0.3861 平方英里 1 平方米 =100 平方分米=10000 平方厘米1 公顷=100 公亩=15 亩=2.4711 英亩1 立方米=1000 立方分米 =1000000 立方厘米 1 立方米 =27 立方尺 =1.308 立方码=35.3147 立方英尺 1 吨=1000 公斤 =1000 千克 1 公斤 =1000 克=2斤(市制) =2.2046 磅5.加减法运算性质同级运算时,假如互换数的地点,应注意符号迁居。
加、去括号时要注意以下几点:括号前面是加号,去掉括号不变号;加号后边添括号,括号里面不变号;括号前面是减号,去掉括号要变号;减号后边添括号,括号里面要变号。
6.乘除法运算性质乘法中性质:(1)乘法互换律( 2)乘法联合律(3)乘法分派律(4)乘法性质( 5)积的变化规律:一扩一缩法。
四年级奥数知识点总结
四年级奥数知识点总结奥数,全称为奥林匹克数学竞赛,是一种培养学生数学思维能力和解决实际问题能力的数学竞赛活动。
作为一项普及性较强的数学竞赛,奥数在小学阶段就开始培养学生的数学素养和逻辑思维能力。
在四年级的学习生活中,孩子们将接触到一些重要的奥数知识点,下面我们就来总结一下四年级的奥数知识点。
1. 四则运算在四年级的学习中,四则运算是数学的基础,这包括加法、减法、乘法和除法。
了解四则运算的性质和规则,能够熟练运用四则运算进行简单的计算,是进行高级数学学习的基础。
2. 数字华容道数字华容道是一种培养逻辑思维能力和解决问题能力的数学游戏。
通过将数字从一个位置移动到另一个位置,孩子们需要使用逻辑思维和推理能力来找到正确的解决方法。
玩数字华容道不仅可以锻炼孩子的思维能力,还可以培养他们对数学的兴趣。
3. 快速计算快速计算是指在有限的时间内完成大量数学计算的能力。
通过训练和练习,孩子们可以提高计算的速度和准确性。
快速计算的训练不仅可以培养孩子的数学思维能力,还可以增强他们的应对压力和解决问题的能力。
4. 数字填空数字填空是一种通过填写数字使等式成立的数学题目。
在解答数字填空题时,孩子们需要运用四则运算的知识和逻辑推理能力,找到合适的数字填入空格,使等式成立。
这种题型可以培养孩子的逻辑思维和推理能力。
5. 推理与逻辑奥数中的推理与逻辑题是一种培养孩子的逻辑思维能力和推理能力的题目。
通过分析和判断,孩子们可以找到问题的规律和解决方案。
推理与逻辑题不仅培养了学生的思维能力,还能够提高他们对数学问题的理解能力。
6. 几何图形在四年级的奥数中,几何图形是一个重要的知识点。
孩子们需要学习不同几何图形的名称、性质和特点,包括直线、曲线、图形的对称性等。
通过了解几何图形的知识,可以提高孩子们的几何思维能力和空间想象能力。
7. 模式与推理在模式与推理题中,孩子们需要根据一定的规律和顺序进行分析和推理。
通过观察和思考,孩子们可以找到问题的解决方法。
四年级奥数启蒙知识点总结
四年级奥数启蒙知识点总结四年级的奥数启蒙知识点主要涵盖了数学的基础知识和解题技巧。
“奥数”是指奥林匹克数学竞赛的简称,是一项培养学生数学兴趣和提高数学能力的数学竞赛活动。
四年级的学生正处于数学启蒙阶段,通过“奥数”启蒙的学习可以帮助他们提前接触并掌握数学的基本概念和解题方法,为将来更深入的数学学习打下坚实的基础。
一、基础知识点总结1. 加减乘除的基本运算四年级的学生应该熟练掌握一位数和两位数的加减乘除运算。
他们需要通过大量的练习,掌握进位借位运算的方法,学会用竖式计算和横式计算解决加减乘除的问题。
2. 数的整数和小数四年级的学生应该对数的整数和小数有一定的了解。
他们需要知道整数和小数的概念,掌握小数点的运用和小数的加减乘除运算方法。
3. 分数四年级的学生需要了解分数的概念和意义,熟练掌握分数的加减乘除运算方法,掌握分数表达和分数的化简方法。
4. 数量关系四年级的学生需要通过各种实际问题,了解并掌握多个数的数量关系、分数比较大小等概念和方法。
5. 几何图形四年级的学生需要熟悉各种几何图形的名称、特点和性质,掌握对称图形和不规则图形的操作方法。
6. 时间和日历四年级的学生需要掌握时间的读法和表示方法,了解一年中的月份、天数和星期,学会使用日历解决时间问题。
7. 数据统计四年级的学生需要掌握收集数据、整理数据、表示数据和分析数据的基本方法,了解饼图、直方图、折线图等图形表示数据的方法。
二、解题技巧总结1. 理解问题在解题过程中,学生首先需要理解问题的意思,以确保自己正确理解了问题的要求和条件。
要善于抓住问题的主要内容,排除无关因素。
2. 分析问题在理解问题的基础上,学生需要进行问题分析,找到问题的关键点、要点和规律,确定解题的策略和方法。
3. 求解问题在分析清楚问题后,学生需要运用所学知识,选择合适的解题方法,进行具体求解。
对于需要计算的题目,要注意细节,做准确计算。
4. 检验问题在完成题目后,学生需要对自己的答案进行检验,确认答案是否符合题目要求。
小学四年级奥数知识点
小学四年级奥数知识点国际数学奥林匹克作为一项国际性赛事,由国际数学教育专家命题,出题范围超出了所有国家的义务教育水平,难度大大超过大学入学考试。
下面是店铺整理的关于四年级奥数知识点,欢迎大家参考!数论1. 奇偶性问题奇+奇=偶奇×奇=奇奇+偶=奇奇×偶=偶偶+偶=偶偶×偶=偶2. 位值原则形如:abc =100a+10b+c3. 数的整除特征:整除数特征2 末尾是0、2、4、6、83 各数位上数字的和是3的倍数5 末尾是0或59 各数位上数字的和是9的倍数11 奇数位上数字的和与偶数位上数字的和,两者之差是11的倍数4和25 末两位数是4(或25)的倍数8和125 末三位数是8(或125)的.倍数7、11、13 末三位数与前几位数的差是7(或11或13)的倍数4. 整除性质① 如果c|a、c|b,那么c|(a b)。
② 如果bc|a,那么b|a,c|a。
③ 如果b|a,c|a,且(b,c)=1,那么bc|a。
④ 如果c|b,b|a,那么c|a.⑤ a个连续自然数中必恰有一个数能被a整除。
5. 带余除法一般地,如果a是整数,b是整数(b≠0),那么一定有另外两个整数q和r,0≤r当r=0时,我们称a能被b整除。
当r≠0时,我们称a不能被b整除,r为a除以b的余数,q为a 除以b的不完全商(亦简称为商)。
用带余数除式又可以表示为a÷b=q……r, 0≤r6. 唯一分解定理任何一个大于1的自然数n都可以写成质数的连乘积,即n= p1 × p2 ×...×pk7. 约数个数与约数和定理设自然数n的质因子分解式如n= p1 × p2 ×...×pk 那么:n的约数个数:d(n)=(a1+1)(a2+1)....(ak+1)n的所有约数和:(1+P1+P1 +…p1 )(1+P2+P2 +…p2 )…(1+Pk+Pk +…pk )8. 同余定理① 同余定义:若两个整数a,b被自然数m除有相同的余数,那么称a,b对于模m同余,用式子表示为a≡b(mod m)②若两个数a,b除以同一个数c得到的余数相同,则a,b的差一定能被c整除。
小学四年级深度奥数知识点
小学四年级深度奥数知识点奥数,即奥林匹克数学竞赛。
它是一项旨在培养学生逻辑思维能力、创造力和解决问题能力的数学竞赛活动。
在小学四年级,学生已经掌握了基本的数学知识,而深入学习奥数知识,可以帮助他们更好地理解数学,培养他们的数学思维。
本文将介绍小学四年级深度奥数知识点。
1. 数的分类数可以分为自然数、整数、有理数和实数四类。
自然数是正整数,从1开始逐个增加;整数包括正整数、负整数和0;有理数包括整数和分数,可以表示为有限小数或循环小数;实数是所有有理数和无理数的集合。
2. 逆运算逆运算是指与某个运算相反的运算。
例如,加法的逆运算是减法,乘法的逆运算是除法。
逆运算可以帮助我们解决一些复杂的计算问题。
3. 数的进制数的进制是指数的基数,常见的进制有十进制、二进制和八进制。
十进制是我们日常生活中最常用的进制,二进制是计算机系统中使用的进制,八进制在一些特定的应用中使用较多。
了解不同进制的转换方法可以帮助我们更好地理解数的概念。
4. 数形关系数形关系是指数与图形之间的关系。
通过数形关系,我们可以将抽象的数学概念与具体的几何图形联系起来,帮助我们更好地理解和记忆数学知识。
5. 等差数列和等差数列的前n项和等差数列是指一个数列中任意两项之差都相等的数列。
等差数列有一个重要的性质,即它的前n项和可以通过一个公式来计算。
了解等差数列和前n项和的计算方法,可以帮助我们更好地理解数列的规律。
6. 最大公约数和最小公倍数最大公约数是指两个或多个数的公共约数中最大的一个数,最小公倍数是指两个或多个数的公共倍数中最小的一个数。
最大公约数和最小公倍数在解决分数的约分和通分问题中起到重要的作用。
7. 分数的加减运算分数的加减运算是指对分数进行求和或求差的运算。
在分数的加减运算中,我们需要找到它们的公共分母,并根据公共分母进行计算。
掌握分数的加减运算方法,可以帮助我们解决实际生活中的一些实际问题。
8. 数字排列组合数字排列组合是指将一组数字进行排列或组合,形成不同的序列或组合方式。
小学四年级奥数基础教程大全
第一章:加减法1.1加法加法是数学中的基本运算之一、在小学四年级奥数中,加法是最基础的数学运算之一、在进行加法运算时,需要掌握竖式加法和横式加法的运算方法。
此外,还需掌握十进位的加法运算。
1.2减法减法是数学中的基本运算之一、在小学四年级奥数中,减法也是一项重要的数学运算。
减法的运算方法有竖式减法和横式减法两种。
同时,对于借位和退位也需要掌握。
第二章:乘除法2.1乘法乘法是数学中的基本运算之一、在小学四年级奥数中,乘法的运算方法主要有竖式乘法和横式乘法两种。
此外,还需掌握乘法的分配律和乘法的交换律等基本概念。
2.2除法除法是数学中的基本运算之一、在小学四年级奥数中,除法也是一项重要的数学运算。
除法的运算方法有竖式除法和横式除法两种。
此外,还需掌握整除和余数的概念。
第三章:整数3.1正整数和负整数在小学四年级奥数中,要了解正整数和负整数的概念和区别。
同时,还需掌握负整数的加法和减法运算方法。
3.2相反数和绝对值相反数是指两个数绝对值相等、符号相反的两个数。
绝对值是指一个数离原点的距离。
在小学四年级奥数中,需要了解相反数和绝对值的概念,并能够进行相反数和绝对值的计算。
第四章:分数4.1分数的基本概念在小学四年级奥数中,要了解分数的基本概念,包括分数的组成、分子和分母的含义等。
4.2分数的大小比较在小学四年级奥数中,要学会比较分数的大小,包括相同分母的分数和相同分子的分数的大小比较。
第五章:小数5.1小数的基本概念在小学四年级奥数中,要了解小数的基本概念,包括小数点的使用、小数的读法和写法等。
5.2小数的大小比较在小学四年级奥数中,要学会比较小数的大小,包括相同整数部分和相同小数部分的小数的大小比较。
第六章:面积和周长6.1面积的计算在小学四年级奥数中,要学会计算简单图形的面积,包括长方形、正方形和三角形等。
6.2周长的计算在小学四年级奥数中,要学会计算简单图形的周长,包括长方形、正方形和三角形等。
第七章:逻辑推理7.1逻辑判断在小学四年级奥数中,要学会进行简单的逻辑推理和判断,包括找出规律和填入合适的数字等。
小学四年级奥数知识点
小学四年级奥数知识点【小学四年级奥数知识点】奥数,即奥林匹克数学竞赛,是指专门针对小学生的一项数学竞赛活动。
它的目的是培养学生的逻辑思维能力、解决问题的能力和数学创新思维。
对于小学四年级的学生来说,掌握一些基础的奥数知识点有助于提升数学水平。
本文将介绍几个适合四年级学生的奥数知识点。
一、倍数和约数倍数是指一个数可以被另一个数整除,而约数则是指能整除一个数的所有数。
在奥数竞赛中,对倍数和约数的掌握非常重要。
例如,求一个数的倍数时,可以通过不断地加上这个数来得到。
而求一个数的约数时,可以列举所有可以整除这个数的数。
在解答问题时,我们经常需要用到倍数和约数的概念,因此掌握这些基本概念对于解题非常有帮助。
二、分数的计算在奥数竞赛中,分数的计算也是一个重要的考点。
学生需要掌握分数的加减乘除运算,以及分数与整数的混合运算。
比如,学生需要知道分数的相加减时,要先找到分母的公倍数,然后根据公倍数的分母进行计算。
同时,学生还需要学会将分数化简为最简形式,如将分子和分母的公约数约掉。
三、几何形状几何形状是奥数竞赛中的另一个考点。
学生需要熟悉常见的几何形状,如正方形、长方形、三角形、圆等,并了解它们的性质和计算方法。
比如,在计算长方形的面积时,学生需知道长方形的面积等于底边乘以高。
同时,学生还需要了解几何形状之间的关系,如正方形是长方形的特殊情况,圆的半径和直径的关系等。
四、逻辑推理逻辑推理是奥数竞赛中的一大考点,也是培养学生思维能力的重要内容。
在逻辑推理题中,学生需要根据已知条件进行推理,找出问题的解答。
这需要学生具备良好的观察力和思维灵活性。
通过做一些逻辑推理题,可以提高学生的思维能力和解题能力。
五、运算数据的估算在奥数竞赛中,运算数据的估算是一个常见的题型。
学生需要根据问题中给定的信息,对数据进行合理的估算,而不是进行精确的计算。
这需要学生能够迅速抓住问题的主要矛盾,灵活运用数字的大小关系。
培养学生估算能力不仅可以提高计算速度,还可以培养他们的数学直觉。
最新小学四年级奥数知识点.docx
③条件分析 ——表法:当两个 象之 只有两种关系,就可用 表示两个 象之 的关系,有 表示“是,有”等肯定的状,没有 表示否定的状
.例如A和B两人之 有 或不 两种状,有 表示,没有表示不.
④ 算:在推理的 程中除了要 行条件分析的推理之外,要 行相 的 算,根据 算的 果 推理提供一个新的判断 条件.⑤ 与推理:根据 目提供的特征和数据,分析其中存在的 律和方法,并从特殊情况推广到一般情况,并 推出相关的关系式,从而得到 的解决.
有:被除数=除数×商+余数,或(被除数-余数)÷除数=商.余数小于除数.
周期 象:事物在运 化的 程中,某些特征有 律循 出.
周期:我 把 两次出 所 的 叫周期.
型:找 形( 形 数),找字符,找数字( ),年月日、星期几,个位数是几.
关 :确定循 周期.
年:一年有366天;
①年份能被4整除;②如果年份能被100整除,年份必 能被400整除.
加、去括号时注意以下几点:括号前面是乘号,去掉或加上括号不变号;括号前
面是除号,去掉或加上括号要变号.
100×(4×5)=100×4×5
100÷(4÷5)=100÷4÷5
4.最大最小
1、解答最大最小的问题,可以进行枚举比较.在有限的情况下,通过计算,将所有情况的结果列举出来,然后比较出最大值或最小值.
5/11
④数 方形 律:个数=1×1+2×2+3×3+⋯+行数×列数.
例1:从天津到上海的火,上午、下午各 一列;也可以乘 机,有
3个不同的航班,有一艘 船直达上海.那么从天津到上海共有多少种不同的走法?
解析:我 把坐火 看成第一 走法,有2种不同的 法; 乘 机是第二 走法,有3种不同的 法;坐 船 第三 走法,只有1种 法.无 哪一种 法,都可以直接完成 件事.
四年级奥数单元知识点总结
四年级奥数单元知识点总结一、数学基础1.数字:认识0-9999以内的整数,了解数字的大小顺序和大小比较。
掌握数字的读法和写法,可以运用数字填空或者补全。
2.加减法:掌握加法的运算规则和加法口诀,进行十以内、百以内的加减法计算。
学会用竖式进行多位数的加减法计算。
3.乘法:掌握乘法口诀,能够完成乘法口诀表的背诵和填空,了解乘法的意义和应用,进行十以内、百以内的乘法计算。
4.除法:了解除法的定义和运算规则,能够进行十以内的除法计算,理解商和余数的概念,掌握列竖式解决多位数的除法问题。
5.数的整体关系:懂得数字之间的大小比较,了解数轴和数线图,能够找出一组数字中的最大值、最小值和中间值。
6.分数:认识分数的定义和基本概念,能够读写分数,进行分数的比较和加减运算,理解分数的意义和应用。
7.小数:了解小数的概念和性质,能够读写小数,进行小数的比较和加减运算,掌握小数与分数之间的转化。
8.数学应用题:能够灵活运用所学的数学知识解决日常生活中的实际问题,包括物品的购买和交换、时间的计算和转换、长度、容积、重量等各种计量单位的转换等。
二、图形和空间1.平面图形:认识圆、正方形、长方形、三角形、梯形等各种平面图形的性质和特征,能够进行图形的辨认、分类和比较。
2.立体图形:认识立方体、长方体、圆柱体、圆锥体、球体等各种立体图形的性质和特征,能够进行立体图形的辨认、分类和比较。
3.对称与相似:了解图形的对称性和相似性,能够找出图形的中心对称轴,进行图形的对称和旋转,了解图形的相似判定和相似比例的计算。
4.空间方位:学会描述和分析平面图形和立体图形的方位关系,包括上下、前后、左右、内外等各种方位关系。
5.图形的分解和组成:了解图形的分解和组成方法,可以使用小正方体拼装立体图形,或者使用平面图形组成更复杂的图形。
6.空间的计量:能够使用尺子、量角器等工具测量平面图形和立体图形的边长、面积、体积等物理量,掌握计量单位的转换和计算。
小学四年级奥数讲义
小学四年级奥数讲义第一部分:数学基础知识1.1 自然数和整数- 自然数是指从1开始的正整数,用符号$N$表示。
- 整数是自然数和其相反数的集合,用符号$Z$表示。
1.2 加法和减法- 加法是将两个数合并在一起,得到它们的总数。
- 例如:$2 + 3 = 5$。
- 减法是从一个数中减去另一个数,得到它们的差。
- 例如:$5 - 2 = 3$。
1.3 乘法和除法- 乘法是将两个数相乘,得到它们的积。
- 例如:$2 × 3 = 6$。
- 除法是将一个数分割成若干等份,得到它们的商。
- 例如:$6 ÷ 3 = 2$。
第二部分:奥数技巧和练2.1 快速计算- 利用9的乘法法则,可以快速计算一个数乘以9的结果。
- 例如:$4 × 9 = 36$。
- 利用倍数关系,可以快速计算一个数的倍数。
- 例如:$3 × 4 = 12$。
2.2 算式变换- 利用算式的性质,可以将复杂的算式转化为简单的算式。
- 例如:$(3 + 4) × 5 = 7 × 5 = 35$。
- 利用分配律,可以将一个数拆分成两个数的和或差。
- 例如:$8 × 7 = (5 + 3) × 7 = 5 × 7 + 3 × 7 = 35 + 21 = 56$。
2.3 枚举法和猜想法- 枚举法是一种通过列举所有可能情况来解决问题的方法。
- 例如:求两个数的最大公约数,可以列举出所有可能的公约数,然后找出其中最大的一个。
- 猜想法是一种根据已有规律猜测答案的方法,然后通过严谨的推理来证明猜想是否正确。
- 例如:猜测一个数是偶数时,它一定能被2整除,然后通过证明偶数定义来证明猜想的正确性。
第三部分:练题1. 计算:$2 + 3 × 4 - 5 = ?$2. 计算:$7 - (4 × 2 + 1) = ?$3. 快速计算:$6 × 9 = ?$4. 快速计算:$5 × 7 = ?$5. 利用枚举法找出10以内的所有偶数。
小学四年级奥数知识点和典型题型解答
第一课时等量代换第一站:倒酒例1:群宴时,曹丞相让曹冲给大家倒酒。
于是,曹冲就把720毫升酒倒入6个小杯和1个大杯,正好倒满。
大杯的容量是小杯的3倍,小杯和大杯各可以装多少毫升酒?思路点拨:一个大杯的容量可以换成3个小杯,“把720毫升酒倒入6个小杯和1个大杯”,就可以替换成“把720毫升酒倒入()个小杯”。
尝试解答:第二站:奖赏例2:曹操为了把宴会搞得更加隆重,他对每个大臣都进行了赏赐。
他给每个文官奖励4只羊,每个武官奖励2头猪。
如果6只同样的小猪和18只同样的小羊总共价值648文钱,且2只小猪和三只小羊的价钱相等。
问:每只小猪和每只小羊各是多少文钱?思路点拨:已知2只小猪和3只小羊的价钱相等,如果把小猪替换成小羊,那么6只小猪的价钱= 只小羊的价钱。
尝试解答:第三站:取剑例3:宴会结束后,曹操把曹冲带到一个藏宝室。
曹操对曹冲说:“这里有很多宝剑和宝刀,你可以任选一样,但得回答我的一个问题。
”曹冲说:“没问题!”曹操说:“3把同样的宝刀和20把同样的宝剑,一共价值134两银子;同样的3把宝刀和16把宝剑,一共价值118两银子。
宝刀和宝剑的单价各是多少两银子?”思路点拨:把两组条件进行比较,可以发现,第一组比第二组多两银子,是因为第一组比第二组多了把宝剑的价钱。
尝试解答:大胆闯关1、曹冲把40个同样质量的苹果和5个同样质量的西瓜一起称了一下,一共重12千克,并且每个西瓜的质量是每个苹果质量的8倍。
问每个苹果和每个西瓜各重多少克?2、一个大臣先取出5个同样质量的橙子和6个同样质量的梨子,一共重3120克;又取出5个同样质量的橙子和9个同样质量的梨子,一共重4080克。
你知道每个橙子和每个梨子的质量分别是多少克吗?3、曹冲用大小两种车运石头,大车运了9次,小车运了10次,一共运了132吨,大车3次运的石头等于小车4次运的石头。
大、小车的载重量各是多少吨?4、小强在3个同样的大盒和5个同样的小盒里装满乒乓球,正好是98个。
小学四年级奥数知识点完整版
小学四年级奥数知识点 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】小学四年级奥数知识点1.和差倍问题和差问题和倍问题差倍问题几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数公式②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本类型基本公式在直线或者不封闭的曲线上植树,两端都植树棵数=段数+1在直线或者不封闭的曲线上植树,两端都不植树棵距×段数=总长棵数=段数-1在直线或者不封闭的曲线上植树,只有一端植树棵距×段数=总长棵数=段数封闭曲线上植树棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
(完整版)小学四年级奥数知识点(自己整理综合)
小学四年级奥数知识点总复习1.常用特殊数的乘积25×4=100 125×8=1000625×16=10000 25×8=200 125×4=500 125×3=375 7×11×13=1001 37×3=1112.加减法运算性质:同级运算时,如果交换数的位置,应注意符号搬家。
加、去括号时要注意以下几点:括号前面是加号,去掉括号不变号;加号后面添括号,括号里面不变号;括号前面是减号,去掉括号要变号;减号后面添括号,括号里面要变号。
100+(21+58)=100+21+ 58100-(21+58)=100-21- 583.乘除法运算性质乘法中性质:(1)乘法交换律(2)乘法结合律(3)乘法分配律(4)乘法性质(5)积的变化规律:一扩一缩法。
除法中性质:当被除数为几个数字之和或者差时才可以用除法分配律。
积的变化规律:同扩同缩法。
同级运算时,如果有交换数的位置,应该注意符号搬家。
加、去括号时注意以下几点:括号前面是乘号,去掉或加上括号不变号;括号前面是除号,去掉或加上括号要变号。
100×(4×5)=100×4×5100÷(4÷5)=100÷4÷54.最大最小1、解答最大最小的问题,可以进行枚举比较。
在有限的情况下,通过计算,将所有情况的结果列举出来,然后比较出最大值或最小值。
2、运用规律。
(1)两个数的和一定,则它们的差越接近,乘积越大;当它们相等(差为0)时,乘积最大。
3、考虑极端情况。
如“连接两点间的线段最短”、“作对称点”、“联系实际考虑问题”等。
5.比较大小估算最常用的技巧是“放大缩小”,即先对某个数或算式进行适当的“放大”或“缩小”,确定它的取值范围,再根据其他条件得出结果,调整放缩幅度的方法有两条:一是分组(分段),并尽可能使每组所对应的标准相同;另一种方法是按近似数乘除法计算法则,比要求的精确度多保留一位,进行计算。
小学四年级奥数有几个知识点
小学四年级奥数有几个知识点小学四年级是学生接触奥数的起点,奥数在培养学生逻辑思维、解题技巧和数学能力方面起到了重要的作用。
在小学四年级的奥数学习中,学生需要掌握一些基本的数学概念和解题方法。
下面将介绍小学四年级奥数中的几个重要知识点。
1. 算术运算小学四年级的奥数学习中,算术运算是一个重要的知识点。
这包括四则混合运算、整数的加减法、乘法口诀等。
学生需要通过大量的练习,掌握各种运算的方法和技巧,使其能够熟练地进行计算。
2. 数量关系数量关系是小学四年级奥数中的另一个重要知识点。
学生需要学会解决有关数量关系的问题,包括数量的比较、相等关系、多少倍关系等。
通过分析和判断,学生能够准确地描述和比较不同物体之间的数量关系。
3. 几何图形在小学四年级奥数中,学生需要学习几何图形的相关知识。
这包括识别各种常见的几何图形,如圆、三角形、矩形、正方形等。
学生还需要掌握几何图形的性质和特点,能够通过图形的属性进行判断和证明。
4. 数据分析在小学四年级奥数中,数据分析也是一个重要的知识点。
学生需要学会收集和整理数据,并能够准确地读取和分析图表中的信息。
学生还需要学会运用统计方法,比如计算平均数、众数等,对数据进行分析和解读。
5. 排列组合排列组合是小学四年级奥数中的一项较难的知识点。
学生需要学会解决有关排列组合的问题,包括计算不同颜色的珠子排成项链的方法数、从一组数字中选取若干个数字进行组合等。
通过学习排列组合的知识,学生能够培养逻辑思维和解决问题的能力。
6. 数论数论是小学四年级奥数中的一个拓展内容,对学生的数学能力和逻辑思维能力提出了更高的要求。
学生需要学习素数、倍数、因数等数论的基本概念,并能够解决一些与数论相关的问题。
通过学习以上几个重要的知识点,学生能够在小学四年级的奥数学习中建立起坚实的数学基础,提高解题能力和数学思维能力。
同时,这些知识点也为学生今后更高级别的数学学习打下了良好的基础。
在学习过程中,学生需要通过大量的练习和实际问题的解答来提高自己的数学水平,全面培养自己的数学能力。
(完整版)小学四年级奥数知识点(自己整理综合)
小学四年级奥数知识点总复习1.常用特殊数的乘积25×4=100 125×8=1000625×16=10000 25×8=200 125×4=500 125×3=375 7×11×13=1001 37×3=1112.加减法运算性质:同级运算时,如果交换数的位置,应注意符号搬家。
加、去括号时要注意以下几点:括号前面是加号,去掉括号不变号;加号后面添括号,括号里面不变号;括号前面是减号,去掉括号要变号;减号后面添括号,括号里面要变号。
100+(21+58)=100+21+ 58100-(21+58)=100-21- 583.乘除法运算性质乘法中性质:(1)乘法交换律(2)乘法结合律(3)乘法分配律(4)乘法性质(5)积的变化规律:一扩一缩法。
除法中性质:当被除数为几个数字之和或者差时才可以用除法分配律。
积的变化规律:同扩同缩法。
同级运算时,如果有交换数的位置,应该注意符号搬家。
加、去括号时注意以下几点:括号前面是乘号,去掉或加上括号不变号;括号前面是除号,去掉或加上括号要变号。
100×(4×5)=100×4×5100÷(4÷5)=100÷4÷54.最大最小1、解答最大最小的问题,可以进行枚举比较。
在有限的情况下,通过计算,将所有情况的结果列举出来,然后比较出最大值或最小值。
2、运用规律。
(1)两个数的和一定,则它们的差越接近,乘积越大;当它们相等(差为0)时,乘积最大。
3、考虑极端情况。
如“连接两点间的线段最短”、“作对称点”、“联系实际考虑问题”等。
5.比较大小估算最常用的技巧是“放大缩小”,即先对某个数或算式进行适当的“放大”或“缩小”,确定它的取值范围,再根据其他条件得出结果,调整放缩幅度的方法有两条:一是分组(分段),并尽可能使每组所对应的标准相同;另一种方法是按近似数乘除法计算法则,比要求的精确度多保留一位,进行计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
标红:难点或常考标蓝:基础小学四年级奥数知识点总复习1.常用特殊数的乘积25×4=100 125×8=1000625×16=10000 25×8=200 125×4=500 125×3=375 7×11×13=1001 37×3=1112.加减法运算性质:同级运算时,如果交换数的位置,应注意符号搬家。
加、去括号时要注意以下几点:括号前面是加号,去掉括号不变号;加号后面添括号,括号里面不变号;括号前面是减号,去掉括号要变号;减号后面添括号,括号里面要变号。
100+(21+58)=100+21+ 58100-(21+58)=100-21- 583.乘除法运算性质乘法中性质:(1)乘法交换律(2)乘法结合律(3)乘法分配律(4)乘法性质(5)积的变化规律:一扩一缩法。
除法中性质:当被除数为几个数字之和或者差时才可以用除法分配律。
积的变化规律:同扩同缩法。
同级运算时,如果有交换数的位置,应该注意符号搬家。
加、去括号时注意以下几点:括号前面是乘号,去掉或加上括号不变号;括号前面是除号,去掉或加上括号要变号。
100×(4×5)=100×4×5100÷(4÷5)=100÷4÷54.最大最小1、解答最大最小的问题,可以进行枚举比较。
在有限的情况下,通过计算,将所有情况的结果列举出来,然后比较出最大值或最小值。
2、运用规律。
(1)两个数的和一定,则它们的差越接近,乘积越大;当它们相等(差为0)时,乘积最大。
3、考虑极端情况。
如“连接两点间的线段最短”、“作对称点”、“联系实际考虑问题”等。
5.比较大小估算最常用的技巧是“放大缩小”,即先对某个数或算式进行适当的“放大”或“缩小”,确定它的取值范围,再根据其他条件得出结果,调整放缩幅度的方法有两条:一是分组(分段),并尽可能使每组所对应的标准相同;另一种方法是按近似数乘除法计算法则,比要求的精确度多保留一位,进行计算。
6.平均数求平均数必须知道总数和份数,常用公式:平均数=总数÷份数份数=总数÷平均数总数=平均数×份数(总数=所有数之和)7.余数问题(周期问题,个位数是几)闰年日期周期一个带余数除法算式包含4个数:被除数÷除数=商……余数。
相互关系还有:被除数=除数×商+余数,或(被除数-余数)÷除数=商。
余数小于除数。
周期现象:事物在运动变化的过程中,某些特征有规律循环出现。
周期:我们把连续两次出现所经过的时间叫周期。
问题类型:找图形(图形计数),找字符,找数字(统计),年月日、星期几问题,个位数是几。
关键问题:确定循环周期。
闰年:一年有366天;①年份能被4整除;②如果年份能被100整除,则年份必须能被400整除。
平年:一年有365天。
①年份不能被4整除;②如果年份能被100整除,但不能被400整除。
例题1小张在计算有余数的除法时,把被除数113错写成131,结果商比原来多3,但余数恰巧相同。
那么该题的余数是多少?解析:被除数增加了131-113=18,余数相同,但结果的商是3,所以,除数应该是18÷3=6。
又因为113÷6的余数是5,所以该题的余数也是5。
例题2:1991年1月1日是星期二,(1)该月的22日是星期几?该月28日是星期几?(2)1994年1月1日是星期几?解析:(1)一个星期是7天,因此,7天为一个循环,这类题在计算天数时,可以采用“算尾不算头”的方法。
(22-1)÷7=3,没有余数,该月22日仍是星期二;(28-1)÷7=3…6,从星期三开始(包括星期三)往后数6天,28日是星期一。
(2)1991年、1993年是平年,1992年是闰年,从1991年1月2日到1994年1月1日共1096天,1096÷7=156…4,从星期三开始往后数4天,1994年1月1日是星期六。
8.奇数与偶数加法:偶数+偶数=偶数奇数+奇数=偶数偶数+奇数=奇数减法:偶数-偶数=偶数奇数-奇数=偶数偶数-奇数=奇数乘法:偶数×偶数=偶数奇数×奇数=奇数偶数×奇数=偶数9.等差数列(简算数列金字塔找规律)数列是指按一定规律顺序排列成一列数。
如果一个数列中从第二个数开始,相邻两个数的差都相等,我们就把这样的一列数叫做等差数列,等差数列中的每一个数都叫做项,第一个数叫第一项,通常也叫“首项”,第二个数叫第二项,第三个数叫第三项……最后一项叫做“末项”。
等差数列中相邻两项的差叫做“公差”,等差数列中项的个数叫做“项数”。
公式:和=(首项+末项)×项数÷2项数=(末项-首项)÷公差+1第n项=首项+(n-1)×公差 an = a1+(n-1)d关键问题:确定已知量和未知量,确定使用的公式;例题1:有一个数列:4、7、10、13、…、25,这个数列共有多少项?解析:仔细观察可以发现这是一个以4为首项,以公差为3的等差数列,根据等差数列的项数公式即可解答。
由等差数列的项数公式:项数=(末项-首项)÷公差+1,可得出答案。
例题2:有一等差数列:2,7,12,17,…,这个等差数列的第100项是多少?解析:仔细观察可以发现这是一个以2为首项,以公差为5的等差数列,根据等差数列的通项公式即可解答,由等差数列的通项公式:第几项=首项+(项数-1)×公差,可得出答案。
例题3:计算2+4+6+8+…+98的和。
解析:仔细观察该数列,公差为2,首项是2,末项是100,所以可以用等差数列的求和公式来求。
总和=(首项+末项)×项数÷210.和倍问题己知几个数的和及这几个数之间的倍数关系,求这几个数的应用题叫和倍问题。
解答和倍问题,一般是先确定较小的数为标准数(或称一倍数),再根据其他几个数与较小数的倍数关系,确定总和相当于标准数的多少倍,然后用除法求出标准数,再求出其他各数,最好采用画线段图的方法。
和倍公式:和÷(倍数+1)=小数11.差倍问题己知两个数的差及它们之间的倍数关系,求这两个数的应用题叫差倍问题。
解答差倍问题,一般以较小数作为标准数(一倍数),再根据大小两数之间的倍数关系,确定差是标准数的多少倍,然后用除法先求出较小数,再求出较大数。
解答这类问题,先画线段图,帮助分析数量关系。
差倍公式:差÷(倍数-1)=小数12.和差问题和差问题是根据大小两个数的和与两个数的差求大小两个数各是多少的应用题。
解答和差问题的基本公式是:(和-差)÷2=较小数(和+差)÷2=较大数13.年龄问题己知两个人或几个人的年龄,求他们年龄之间的某种数量关系;或己知某些人年龄之间的数量关系,求他们的年龄等,这种题称为年龄问题。
年龄问题的特点是:一般用和差或者和倍问题的方法解答。
(1)两人的年龄之差是不变的,称为定差。
(2)两个人的年龄同时都增加同样的数量。
(3)两个年龄之间的倍数关系,年龄增长,倍数缩小。
年龄问题的解题方法是:几年后=大小年龄之差÷倍数差-小年龄几年前=小年龄-大小年龄差÷倍数差14.植树问题(排方阵)周期在首尾不相接的路线上植树,段数与棵数关系可分为4类:(1)两端都种树:段数=棵数-1(2)一端种一端不种:段数=棵数(3)两端都不种:段数=棵数+1(4)在首尾相接的路线上种树(如圆、正方形、闭合曲线等):段数=棵棵距×段数=总长关键问题:确定所属类型,从而确定棵数与段数的关系15.盈亏问题(可以直接套公式,注意理解题目即可)一盈一亏一盈一正好一亏一正好两盈两亏通常是比较法和对应法结合使用。
公式是:(同盈同亏用减法,一亏一盈用加法)即:两次分配结果差÷两次分配数差=人数(份数)基本特点:对象总量和总的组数是不变的。
关键问题:分析差量关系,确定对象总量和总的组数。
16.还原问题(逆推问题)还原问题又叫逆推问题。
己知一个数的结果,再经过逆运算反求原数,叫做还原问题。
解决这类题要从结果出发,逐步向前一步一步推理,每一步运算都是原来运算的逆运算(即变加为减,变减为加,变乘为除,变除为乘)。
解题关键:在从后往前推算的过程中,每一步都是做同原来相反的运算,原来加的,运算时用减;原来减的,运算时用加;原来乘的,运算时用除;原来除的,运算时用乘。
17.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
18.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量。
19.定义新运算基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。
基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。
关键问题:正确理解定义的运算符号的意义。
注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。
②每个新定义的运算符号只能在本题中使用。
20.加法乘法原理和几何计数(排列组合)加法原理:如果完成一件任务有n类方法,在第一类方法中有m1种不同方法,在第二类方法中有m2种不同方法……,在第n类方法中有mn种不同方法,那么完成这件任务共有:m1+ m2....... +mn种不同的方法。
关键问题:确定工作的分类方法。
基本特征:每一种方法都可完成任务。
乘法原理:如果完成一件任务需要分成n个步骤进行,做第1步有m1种方法,不管第1步用哪一种方法,第2步总有m2种方法……不管前面n-1步用哪种方法,第n步总有mn种方法,那么完成这件任务共有:m1×m2....... ×mn种不同的方法。
关键问题:确定工作的完成步骤。
基本特征:每一步只能完成任务的一部分。
①数线段规律:总数=1+2+3+…+(点数一1);②数角规律=1+2+3+…+(射线数一1);③数长方形规律:个数=长的线段数×宽的线段数:④数长方形规律:个数=1×1+2×2+3×3+…+行数×列数。