江北区2017学年中考数学模拟试卷

合集下载

中考数学模拟测试题 (17)

中考数学模拟测试题 (17)

2017年河南省中考数学试卷一、选择题(每小题3分,共30分)1.(3分)下列各数中比1大的数是()A.2 B.0 C.﹣1 D.﹣32.(3分)2016年,我国国内生产总值达到74.4万亿元,数据“74.4万亿”用科学记数法表示()A.74.4×1012B.7.44×1013C.74.4×1013D.7.44×10153.(3分)某几何体的左视图如图所示,则该几何体不可能是()A. B.C.D.4.(3分)解分式方程﹣2=,去分母得()A.1﹣2(x﹣1)=﹣3 B.1﹣2(x﹣1)=3 C.1﹣2x﹣2=﹣3 D.1﹣2x+2=35.(3分)八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是()A.95分,95分 B.95分,90分 C.90分,95分 D.95分,85分6.(3分)一元二次方程2x2﹣5x﹣2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根 D.没有实数根7.(3分)如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠28.(3分)如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()A.B.C.D.9.(3分)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB 在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A.(,1) B.(2,1)C.(1,) D.(2,)10.(3分)如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是()A.B.2﹣C.2﹣D.4﹣二、填空题(每小题3分,共15分)11.(3分)计算:23﹣= .12.(3分)不等式组的解集是.13.(3分)已知点A(1,m),B(2,n)在反比例函数y=﹣的图象上,则m与n的大小关系为.14.(3分)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP 的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是.15.(3分)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,点M,N分别是边BC,AB上的动点,沿MN 所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM的长为.三、解答题(本题共8个小题,满分75分)16.(8分)先化简,再求值:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),其中x=+1,y=﹣1.17.(9分)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表组别分组(单位:元)人数A 0≤x<30 4B 30≤x<60 16C 60≤x<90 aD 90≤x<120 bE x≥120 2请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有人,a+b= ,m= ;(2)求扇形统计图中扇形C的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.18.(9分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC边于点D,过点C作CF∥AB,与过点B的切线交于点F,连接BD.(1)求证:BD=BF;(2)若AB=10,CD=4,求BC的长.19.(9分)如图所示,我国两艘海监船A,B在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C,此时,B船在A船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C在其南偏东53°方向,已知A船的航速为30海里/小时,B船的航速为25海里/小时,问C船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41)20.(9分)如图,一次函数y=﹣x+b与反比例函数y=(x>0)的图象交于点A(m,3)和B(3,1).(1)填空:一次函数的解析式为,反比例函数的解析式为;(2)点P是线段AB上一点,过点P作PD⊥x轴于点D,连接OP,若△POD的面积为S,求S的取值范围.21.(10分)学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.22.(10分)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.23.(11分)如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.2017年河南省中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)(2017•河南)下列各数中比1大的数是()A.2 B.0 C.﹣1 D.﹣3【分析】根据正数大于零、零大于负数,可得答案.【解答】解:2>0>﹣1>﹣3,故选:A.【点评】本题考查了有理数大小比较,利用正数大于零、零大于负数是解题关键.2.(3分)(2017•河南)2016年,我国国内生产总值达到74.4万亿元,数据“74.4万亿”用科学记数法表示()A.74.4×1012B.7.44×1013C.74.4×1013D.7.44×1015【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:将74.4万亿用科学记数法表示为:7.44×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2017•河南)某几何体的左视图如图所示,则该几何体不可能是()A. B.C.D.【分析】左视图是从左边看到的,据此求解.【解答】解:从左视图可以发现:该几何体共有两列,正方体的个数分别为2,1,D不符合,故选D.【点评】考查了由三视图判断几何体的知识,解题的关键是了解该几何体的构成,难度不大.4.(3分)(2017•河南)解分式方程﹣2=,去分母得()A.1﹣2(x﹣1)=﹣3 B.1﹣2(x﹣1)=3 C.1﹣2x﹣2=﹣3 D.1﹣2x+2=3【分析】分式方程变形后,两边乘以最简公分母x﹣1得到结果,即可作出判断.【解答】解:分式方程整理得:﹣2=﹣,去分母得:1﹣2(x﹣1)=﹣3,故选A【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.5.(3分)(2017•河南)八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是()A.95分,95分 B.95分,90分 C.90分,95分 D.95分,85分【分析】将题目中的数据按照从小到大排列,从而可以得到这组数据的众数和中位数,本题得以解决.【解答】解:位于中间位置的两数分别是95分和95分,故中位数为95分,数据95出现了3次,最多,故这组数据的众数是95分,故选A.【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义,会找一组数据的众数和中位数.6.(3分)(2017•河南)一元二次方程2x2﹣5x﹣2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根 D.没有实数根【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【解答】解:∵△=(﹣5)2﹣4×2×(﹣2)=41>0,∴方程有两个不相等的实数根.故选B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.7.(3分)(2017•河南)如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠2【分析】根据平行四边形的性质.菱形的判定方法即可一一判断.【解答】解:A、正确.对角线垂直的平行四边形的菱形.B、正确.邻边相等的平行四边形是菱形.C、错误.对角线相等的平行四边形是矩形,不一定是菱形.D、正确.可以证明平行四边形ABCD的邻边相等,即可判定是菱形.故选C.【点评】本题考查平行四边形的性质、菱形的判定等知识,解题的关键是熟练掌握菱形的判定方法.8.(3分)(2017•河南)如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两个数字都是正数的情况数,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,两个数字都是正数的有4种情况,∴两个数字都是正数的概率是:=.故选:C.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件,解题时注意:概率=所求情况数与总情况数之比.9.(3分)(2017•河南)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A.(,1) B.(2,1)C.(1,) D.(2,)【分析】由已知条件得到AD′=AD=2,AO=AB=1,根据勾股定理得到OD′==,于是得到结论.【解答】解:∵AD′=AD=2,AO=AB=1,∴OD′==,∵C′D′=2,C′D′∥AB,∴C′(2,),故选D.【点评】本题考查了正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题的关键.10.(3分)(2017•河南)如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是()A.B.2﹣C.2﹣D.4﹣【分析】连接OO′,BO′,根据旋转的性质得到∠OAO′=60°,推出△OAO′是等边三角形,得到∠AOO′=60°,推出△OO′B是等边三角形,得到∠AO′B=120°,得到∠O′B′B=∠O′BB′=30°,根据图形的面积公式即可得到结论.【解答】解:连接OO′,BO′,∵将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,∴∠OAO′=60°,∴△OAO′是等边三角形,∴∠AOO′=60°,∵∠AOB=120°,∴∠O′OB=60°,∴△OO′B是等边三角形,∴∠AO′B=120°,∵∠AO′B′=120°,∴∠B′O′B=120°,∴∠O′B′B=∠O′BB′=30°,∴图中阴影部分的面积=S△B′O′B﹣(S扇形O′OB﹣S△OO′B)=×1×2﹣(﹣×2×)=2﹣.故选C.【点评】本题考查了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.二、填空题(每小题3分,共15分)11.(3分)(2017•河南)计算:23﹣= 6 .【分析】明确表示4的算术平方根,值为2.【解答】解:23﹣=8﹣2=6,故答案为:6.【点评】本题主要考查了算术平方根和有理数的乘方的定义,是一个基础题目,比较简单.12.(3分)(2017•河南)不等式组的解集是﹣1<x≤2 .【分析】先求出不等式的解集,再求出不等式解集的公共部分.【解答】解:解不等式①得:x≤2,解不等式②得:x>﹣1,∴不等式组的解集是﹣1<x≤2,故答案为﹣1<x≤2.【点评】题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是求出不等式组的解集.13.(3分)(2017•河南)已知点A(1,m),B(2,n)在反比例函数y=﹣的图象上,则m与n的大小关系为m<n .【分析】由反比例函数y=﹣可知函数的图象在第二、第四象限内,可以知道在每个象限内,y随x的增大而增大,根据这个判定则可.【解答】解:∵反比例函数y=﹣中k=﹣2<0,∴此函数的图象在二、四象限内,在每个象限内,y随x的增大而增大,∵0<1<2,∴A、B两点均在第四象限,∴m<n.故答案为m<n.【点评】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出反比例函数图象所在的象限是解答此题的关键.14.(3分)(2017•河南)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是12 .【分析】根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,BP先变小后变大,从而可求出BC与AC的长度.【解答】解:根据图象可知点P在BC上运动时,此时BP不断增大,由图象可知:点P从B向C运动时,BP的最大值为5,即BC=5,由于M是曲线部分的最低点,∴此时BP最小,即BP⊥AC,BP=4,∴由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,∴PA=3,∴AC=6,∴△ABC的面积为:×4×6=12故答案为:12【点评】本题考查动点问题的函数图象,解题的关键是注意结合图象求出BC与AC的长度,本题属于中等题型.15.(3分)(2017•河南)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM 的长为+或1 .【分析】①如图1,当∠B′MC=90°,B′与A重合,M是BC的中点,于是得到结论;②如图2,当∠MB′C=90°,推出△CMB′是等腰直角三角形,得到CM=MB′,列方程即可得到结论.【解答】解:①如图1,当∠B′MC=90°,B′与A重合,M是BC的中点,∴BM=BC=+;②如图2,当∠MB′C=90°,∵∠A=90°,AB=AC,∴∠C=45°,∴△CMB′是等腰直角三角形,∴CM=MB′,∵沿MN所在的直线折叠∠B,使点B的对应点B′,∴BM=B′M,∴CM=BM,∵BC=+1,∴CM+BM=BM+BM=+1,∴BM=1,综上所述,若△MB′C为直角三角形,则BM的长为+或1,故答案为:+或1.【点评】本题考查了翻折变换﹣折叠问题,等腰直角三角形的性质,正确的作出图形是解题的关键.三、解答题(本题共8个小题,满分75分)16.(8分)(2017•河南)先化简,再求值:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),其中x=+1,y=﹣1.【分析】首先化简(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),然后把x=+1,y=﹣1代入化简后的算式,求出算式的值是多少即可.【解答】解:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y)=4x2+4xy+y2+x2﹣y2﹣5x2+5xy=9xy当x=+1,y=﹣1时,原式=9(+1)(﹣1)=9×(2﹣1)=9×1=9【点评】此题主要考查了整式的混合运算﹣化简求值问题,要熟练掌握,解答此题的关键是要明确:先按运算顺序把整式化简,再把对应字母的值代入求整式的值.17.(9分)(2017•河南)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表组别分组(单位:元)人数A 0≤x<30 4B 30≤x<60 16C 60≤x<90 aD 90≤x<120 bE x≥120 2请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有50 人,a+b= 28 ,m= 8 ;(2)求扇形统计图中扇形C的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.【分析】(1)根据B组的频数是16,对应的百分比是32%,据此求得调查的总人数,利用百分比的意义求得b,然后求得a的值,m的值;(2)利用360°乘以对应的比例即可求解;(3)利用总人数1000乘以对应的比例即可求解.【解答】解:(1)调查的总人数是16÷32%=50(人),则b=50×16%=8,a=50﹣4﹣16﹣8﹣2=20,A组所占的百分比是=8%,则m=8.a+b=8+20=28.故答案是:50,28,8;(2)扇形统计图中扇形C的圆心角度数是360°×=144°;(3)每月零花钱的数额x在60≤x<120范围的人数是1000×=560(人).【点评】本题考查了扇形统计图,观察统计表、扇形统计图获得有效信息是解题关键,扇形统计图直接反映部分占总体的百分比大小.18.(9分)(2017•河南)如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC边于点D,过点C作CF∥AB,与过点B的切线交于点F,连接BD.(1)求证:BD=BF;(2)若AB=10,CD=4,求BC的长.【分析】(1)根据圆周角定理求出BD⊥AC,∠BDC=90°,根据切线的性质得出AB⊥BF,求出∠ACB=∠FCB,根据角平分线性质得出即可;(2)求出AC=10,AD=6,根据勾股定理求出BD,再根据勾股定理求出BC即可.【解答】(1)证明:∵AB是⊙O的直径,∴∠BDA=90°,∴BD⊥AC,∠BDC=90°,∵BF切⊙O于B,∴AB⊥BF,∵CF∥AB,∴CF⊥BF,∠FCB=∠ABC,∵AB=AC,∴∠ACB=∠ABC,∴∠ACB=∠FCB,∵BD⊥AC,BF⊥CF,∴BD=BF;(2)解:∵AB=10,AB=AC,∴AC=10,∵CD=4,∴AD=10﹣4=6,在Rt△ADB中,由勾股定理得:BD==8,在Rt△BDC中,由勾股定理得:BC==4.【点评】本题考查了切线的性质,勾股定理,角平分线性质,等腰三角形的判定等知识点,能综合运用定理进行推理是解此题的关键.19.(9分)(2017•河南)如图所示,我国两艘海监船A,B在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C,此时,B船在A船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C在其南偏东53°方向,已知A船的航速为30海里/小时,B船的航速为25海里/小时,问C船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41)【分析】如图作CE⊥AB于E.设AE=EC=x,则BE=x﹣5,在Rt△BCE中,根据tan53°=,可得=,求出x,再求出BC、AC,分别求出A、B两船到C的时间,即可解决问题.【解答】解:如图作CE⊥AB于E.在Rt△ACE中,∵∠A=45°,∴AE=EC,设AE=EC=x,则BE=x﹣5,在Rt△BCE中,∵tan53°=,∴=,解得x=20,∴AE=EC=20,∴AC=20=28.2,BC==25,∴A船到C的时间≈=0.94小时,B船到C的时间==1小时,∴C船至少要等待0.94小时才能得到救援.【点评】本题考查解直角三角形的应用﹣方向角问题、锐角三角函数、速度、时间、路程之间的关系等知识,解题的关键是学会构建方程解决问题,属于中考常考题型.20.(9分)(2017•河南)如图,一次函数y=﹣x+b与反比例函数y=(x>0)的图象交于点A(m,3)和B (3,1).(1)填空:一次函数的解析式为y=﹣x+4 ,反比例函数的解析式为y=;(2)点P是线段AB上一点,过点P作PD⊥x轴于点D,连接OP,若△POD的面积为S,求S的取值范围.【分析】(1)先将B(3,1)代入反比例函数即可求出k的值,然后将A代入反比例函数即可求出m的,再根据B两点的坐标即可求出一次函数的解析式.(2)设P的坐标为(x,y),由于点P在直线AB上,从而可知PD=y,OD=x,由题意可知:1≤x≤3,从而可求出S的范围【解答】解:(1)将B(3,1)代入y=,∴k=3,将A(m,3)代入y=,∴m=1,∴A(1,3),将A(1,3)代入代入y=﹣x+b,∴b=4,∴y=﹣x+4(2)设P(x,y),由(1)可知:1≤x≤3,∴PD=y=﹣x+4,OD=x,∴S=x(﹣x+4),∴由二次函数的图象可知:S的取值范围为:≤S≤2故答案为:(1)y=﹣x+4;y=.【点评】本题考查反比例函数与一次函数的综合问题,解题的关键是求出一次函数与反比例函数的解析式,本题属于中等题型.21.(10分)(2017•河南)学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B 种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.【分析】(按买3个A种魔方和买4个B种魔方钱数相同解答)(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据“购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进A种魔方m个(0<m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据两种活动方案即可得出w活动一、w活动二关于m的函数关系式,再分别令w活动一<w活动二、w活动一=w活动二和w活动一>w活动二,解出m的取值范围,此题得解.(按购买3个A种魔方和4个B种魔方需要130元解答)(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据“购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进A种魔方m个(0<m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据两种活动方案即可得出w活动一、w活动二关于m的函数关系式,再分别令w活动一<w活动二、w活动一=w活动二和w活动一>w活动二,解出m的取值范围,此题得解.【解答】(按买3个A种魔方和买4个B种魔方钱数相同解答)解:(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据题意得:,解得:.答:A种魔方的单价为20元/个,B种魔方的单价为15元/个.(2)设购进A种魔方m个(0<m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据题意得:w活动一=20m×0.8+15(100﹣m)×0.4=10m+600;w活动二=20m+15(100﹣m﹣m)=﹣10m+1500.当w活动一<w活动二时,有10m+600<﹣10m+1500,解得:m<45;当w活动一=w活动二时,有10m+600=﹣10m+1500,解得:m=45;当w活动一>w活动二时,有10m+600>﹣10m+1500,解得:45<m≤50.综上所述:当m<45时,选择活动一购买魔方更实惠;当m=45时,选择两种活动费用相同;当m>45时,选择活动二购买魔方更实惠.(按购买3个A种魔方和4个B种魔方需要130元解答)解:(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据题意得:,解得:.答:A种魔方的单价为26元/个,B种魔方的单价为13元/个.(2)设购进A种魔方m个(0<m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据题意得:w活动一=26m×0.8+13(100﹣m)×0.4=15.6m+520;w活动二=26m+13(100﹣m﹣m)=1300.当w活动一<w活动二时,有15.6m+520<1300,解得:m<50;当w活动一=w活动二时,有15.6m+520=1300,解得:m=50;当w活动一>w活动二时,有15.6m+520>1300,不等式无解.综上所述:当0<m<50时,选择活动一购买魔方更实惠;当m=50时,选择两种活动费用相同.【点评】本题考查了二元一次方程组的应用、一次函数的应用、解一元一次不等式以及解一元一次方程,解题的关键是:(1)找准等量关系,列出关于x、y的二元一次方程组;(2)根据两种活动方案找出w活动一、w活m的函数关系式.动二关于22.(10分)(2017•河南)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图1中,线段PM与PN的数量关系是PM=PN ,位置关系是PM⊥PN ;(2)探究证明把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.【分析】(1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论,再利用三角形的中位线得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出结论;(2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN=BD,即可得出PM=PN,同(1)的方法即可得出结论;(3)方法1、先判断出MN最大时,△PMN的面积最大,进而求出AN,AM,即可得出MN最大=AM+AN,最后用面积公式即可得出结论.方法2、先判断出BD最大时,△PMN的面积最大,而BD最大是AB+AD=14,即可.【解答】解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN,(2)由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,同(1)的方法,利用三角形的中位线得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形,(3)如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,在Rt△ABC中,AB=AC=10,AN=5,∴MN最大=2+5=7,∴S△PMN最大=PM2=×MN2=×(7)2=.方法2、由(2)知,△PMN是等腰直角三角形,PM=PN=BD,∴PM最大时,△PMN面积最大,∴点D在AB的延长线上,∴BD=AB+AD=14,∴PM=7,∴S△PMN最大=PM2=×72=【点评】此题是几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质,解(1)的关键是判断出PM=CE,PN=BD,解(2)的关键是判断出△ABD≌△ACE,解(3)的关键是判断出MN最大时,△PMN的面积最大,是一道中考常考题.23.(11分)(2017•河南)如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.【分析】(1)把A点坐标代入直线解析式可求得c,则可求得B点坐标,由A、B的坐标,利用待定系数法可求得抛物线解析式;(2)①由M点坐标可表示P、N的坐标,从而可表示出MA、MP、PN、PB的长,分∠NBP=90°和∠BNP=90°两种情况,分别利用相似三角形的性质可得到关于m的方程,可求得m的值;②用m可表示出M、P、N的坐标,由题意可知有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,可分别得到关于m的方程,可求得m的值.【解答】解:(1)∵y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,∴0=﹣2+c,解得c=2,∴B(0,2),∵抛物线y=﹣x2+bx+c经过点A,B,∴,解得,∴抛物线解析式为y=﹣x2+x+2;(2)①由(1)可知直线解析式为y=﹣x+2,∵M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,∴P(m,﹣m+2),N(m,﹣m2+m+2),∴PM=﹣m+2,AM=3﹣m,PN=﹣m2+m+2﹣(﹣m+2)=﹣m2+4m,∵△BPN和△APM相似,且∠BPN=∠APM,∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°,当∠BNP=90°时,则有BN⊥MN,∴BN=OM=m,∴=,即=,解得m=0(舍去)或m=2.5,∴M(2.5,0);当∠NBP=90°时,则有=,∵A(3,0),B(0,2),P(m,﹣m+2),∴BP==m,AP==(3﹣m),∴=,解得m=0(舍去)或m=,∴M(,0);。

浙江省宁波市2017届中考数学一模试卷(含解析)

浙江省宁波市2017届中考数学一模试卷(含解析)

2017年浙江省宁波市七校联考中考数学一模试卷一、选择题1.﹣3的相反数是()A.3 B.﹣3 C.D.﹣2.下列计算正确的是()A.B.(a2)3=a5C.2a﹣a=2 D.a•a3=a43.2016年鄞州区财政收入仍保持持续增长态势,全年财政收入为373.9亿元,其中373.9亿元用科学记数法表示为()A.373.9×108元 B.37.39×109元 C.3.739×1010元D.0.3739×10114.如图是由五个相同的小立方块搭成的几何体,则它的俯视图是()A.B.C.D.5.使代数式有意义的x的取值范围为()A.x>2 B.x≠0 C.x<2 D.x≠26.一组数据为1,5,3,4,5,6,这组数据的众数、中位数分为()A.4,5 B.5,4.5 C.5,4 D.3,27.如图,直线l1∥l2,以直线l1上的点A为圆心、适当长为半径画弧,分别交直线l1、l2于点B、C,连接AC、BC.若∠ABC=67°,则∠1=()A.23° B.46° C.67° D.78°8.如图,点A、B、C在⊙O上,若∠B AC=45°,OB=2,则图中阴影部分的面积为()A.π﹣2 B.C.π﹣4 D.9.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是()A. B. C. D.10.如图,已知二次函数y=ax2+bx+c(a≠0)图象过点(﹣1,0),顶点为(1,2),则结论:①abc>0;②x=1时,函数最大值是2;③4a+2b+c>0;④2a+b=0;⑤2c<3b.其中正确的结论有()A.1个B.2个C.3个D.4个11.如图,在四边形ABCD中,AB∥CD,∠A=90°,AB=5,CD=2.以A为圆心,AD为半径的圆与BC边相切于点M,与AB交于点E,将扇形A﹣DME剪下围成一个圆锥,则圆锥的高为()A.1 B.4 C. D.12.当m,n是实数且满足m﹣n=mn时,就称点Q(m,)为“奇异点”,已知点A、点B是“奇异点”且都在反比例函数y=的图象上,点O是平面直角坐标系原点,则△OAB的面积为()A .1B .C .2D .二、填空题(本题共6小题,每小题4分,共24分)13.分解因式:a 2﹣4a+4= .14.若方程x 2+kx+9=0有两个相等的实数根,则k= .15.直角三角形两直角边为3,4,则其外接圆和内切圆半径之和为 .16.如图所示,一个宽为2cm 的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm ),那么该光盘的直径是 cm .17.在△ABC 中,点D ,E 分别在AB ,AC 上,且CD 与BE 相交于点F ,已知△BDF 的面积为6,△BCF 的面积为9,△CEF 的面积为6,则四边形ADFE 的面积为 .18.赵爽弦图是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,若这四个全等直角三角形的两条直角边分别平行于x 轴和y 轴,大正方形的顶点B 1、C 1、C 2、C 3、…、C n 在直线y=﹣x+上,顶点D 1、D 2、D 3、…、D n 在x 轴上,则第n 个阴影小正方形的面积为 .三、解答题(本题有8小题,共78分)19.(6分)计算:﹣|2﹣9tan30°|+()﹣1﹣(1﹣π)0.20.(8分)宁波轨道交通4号线已开工建设,计划2020年通车试运营.为了了解镇民对4号线地铁票的定价意向,某镇某校数学兴趣小组开展了“你认为宁波4号地铁起步价定为多少合适”的问卷调查,并将调查结果整理后制成了如下统计图,根据图中所给出的信息解答下列问题:(1)求本次调查中该兴趣小组随机调查的人数;(2)请你把条形统计图补充完整;(3)如果在该镇随机咨询一位居民,那么该居民支持“起步价为2元或3元”的概率是(4)假设该镇有3万人,请估计该镇支持“起步价为3元”的居民大约有多少人?21.(8分)2014年3月,某海域发生航班失联事件,我海事救援部门用高频海洋探测仪进行海上搜救,分别在A、B两个探测点探测到C处是信号发射点,已知A、B两点相距400m,探测线与海平面的夹角分别是30°和60°,若CD的长是点C到海平面的最短距离.(1)问BD与AB有什么数量关系,试说明理由;(2)求信号发射点的深度.(结果精确到1m,参考数据:≈1.414,≈1.732)22.(10分)如图,已知反比例函数y1=与一次函数y2=k2x+b的图象交于点A(1,8),B(﹣4,m)两点.(1)求k1,k2,b的值;(2)求△AOB的面积;(3)请直接写出不等式x+b的解.23.(10分)某服装店购进一批秋衣,价格为每件30元.物价部门规定其销售单价不高于每件60元,不低于每件30元.经市场调查发现:日销售量y(件)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)求该服装店销售这批秋衣日获利w(元)与销售单价x(元)之间的函数关系式.(3)当销售单价为多少元时,该服装店日获利最大?最大获利是多少元?(10分)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE•CA.24.(1)求证:BC=CD;(2)分别延长AB,DC交于点P,若PB=OB,CD=2,求⊙O的半径.25.(12分)若一个四边形的一条对角线把四边形分成两个等腰三角形,且其中一个等腰三角形的底角是另一个等腰三角形底角的2倍,我们把这条对角线叫做这个四边形的黄金线,这个四边形叫做黄金四边形.(1)如图1,在四边形ABCD中,AB=AD=DC,对角线AC,BD都是黄金线,且AB<AC,CD<BD,求四边形ABCD各个内角的度数;(2)如图2,点B是弧AC的中点,请在⊙O上找出所有的点D,使四边形ABCD的对角线AC 是黄金线(要求:保留作图痕迹);(3)在黄金四边形ABCD中,AB=BC=CD,∠BAC=30°,求∠BAD的度数.26.(14分)已知:如图一,抛物线y=ax2+bx+c与x轴正半轴交于A、B两点,与y轴交于点C,直线y=x﹣2经过A、C两点,且AB=2.(1)求抛物线的解析式;(2)若直线DE平行于x轴并从C点开始以每秒1个单位的速度沿y轴正方向平移,且分别交y轴、线段BC于点E,D,同时动点P从点B出发,沿BO方向以每秒2个单位速度运动,(如图2);当点P运动到原点O时,直线DE与点P都停止运动,连DP,若点P运动时间为t秒;设s=,当t为何值时,s有最小值,并求出最小值.(3)在(2)的条件下,是否存在t的值,使以P、B、D为顶点的三角形与△ABC相似;若存在,求t的值;若不存在,请说明理由.2017年浙江省宁波市七校联考中考数学一模试卷参考答案与试题解析一、选择题(2016•新疆)﹣3的相反数是()A.3 B.﹣3 C.D.﹣【考点】相反数.【分析】根据相反数的概念解答即可.【解答】解:﹣3的相反数是3,故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.下列计算正确的是()A.B.(a2)3=a5C.2a﹣a=2 D.a•a3=a4【考点】幂的乘方与积的乘方;算术平方根;合并同类项;同底数幂的乘法.【分析】直接利用算术平方根的定义结合幂的乘方运算法则、同底数幂的乘法运算法则、合并同类项法则分别化简求出答案.【解答】解:A、=4,故此选项错误,不合题意;B、(a2)3=a6,故此选项错误,不合题意;C、2a﹣a=a,故此选项错误,不合题意;D、a•a3=a4,故此选项正确,符合题意;故选:D.【点评】此题主要考查了算术平方根的定义、幂的乘方运算、同底数幂的乘法运算、合并同类项等知识,正确掌握相关运算法则是解题关键.3.2016年鄞州区财政收入仍保持持续增长态势,全年财政收入为373.9亿元,其中373.9亿元用科学记数法表示为()A.373.9×108元 B.37.39×109元 C.3.739×1010元D.0.3739×1011【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:373.9亿元用科学记数法表示3.739×1010元,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.如图是由五个相同的小立方块搭成的几何体,则它的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看易得上面一层有3个正方形,下面中间有一个正方形.故选A.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.5.使代数式有意义的x的取值范围为()A.x>2 B.x≠0 C.x<2 D.x≠2【考点】分式有意义的条件.【分析】先根据分式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:由题意,得x﹣2≠0,解得x≠2,故选:D.【点评】本题考查的是分式有意义的条件,熟知分式有意义的条件是分母不等于零是解答此题的关键.6.一组数据为1,5,3,4,5,6,这组数据的众数、中位数分为()A.4,5 B.5,4.5 C.5,4 D.3,2【考点】众数;中位数.【分析】根据众数和中位数的概念求解.【解答】解:这组数据按照从小到大的顺序排列为:1,3,4,5,5,6,则众数为:5,中位数为:4.5.故选B.【点评】本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.7.如图,直线l1∥l2,以直线l1上的点A为圆心、适当长为半径画弧,分别交直线l1、l2于点B、C,连接AC、BC.若∠ABC=67°,则∠1=()A.23° B.46° C.67° D.78°【考点】等腰三角形的性质;平行线的性质.【分析】首先由题意可得:AB=AC,根据等边对等角的性质,即可求得∠ACB的度数,又由直线l1∥l2,根据两直线平行,内错角相等,即可求得∠2的度数,然后根据平角的定义,即可求得∠1的度数.【解答】解:根据题意得:AB=AC,∴∠ACB=∠ABC=67°,∵直线l1∥l2,∴∠2=∠ABC=67°,∵∠1+∠ACB+∠2=180°,∴∠1=180°﹣∠2﹣∠ACB=180°﹣67°﹣67°=46°.故选B.【点评】此题考查了平行线的性质,等腰三角形的性质.此题难度不大,解题的关键是注意掌握两直线平行,内错角相等与等边对等角定理的应用.8.如图,点A、B、C在⊙O上,若∠BAC=45°,OB=2,则图中阴影部分的面积为()A.π﹣2 B.C.π﹣4 D.【考点】圆周角定理;扇形面积的计算.【分析】先证得△OBC是等腰直角三角形,然后根据S阴影=S扇形OBC﹣S△OBC即可求得.【解答】解:∵∠BAC=45°,∴∠BOC=90°,∴△OBC是等腰直角三角形,∵OB=2,∴S阴影=S扇形OBC﹣S△OBC=π×22﹣×2×2=π﹣2.故选A.【点评】本题考查的是圆周角定理及扇形的面积公式,熟记扇形的面积公式是解答此题的关键.9.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是()A. B. C. D.【考点】相似三角形的判定.【分析】根据网格中的数据求出AB,AC,BC的长,求出三边之比,利用三边对应成比例的两三角形相似判断即可.【解答】解:根据题意得:AB==,AC=,BC=2,∴AC:BC:AB=:2: =1::,A、三边之比为1::2,图中的三角形(阴影部分)与△ABC不相似;B、三边之比为::3,图中的三角形(阴影部分)与△ABC不相似;C、三边之比为1::,图中的三角形(阴影部分)与△ABC相似;D、三边之比为2::,图中的三角形(阴影部分)与△ABC不相似.故选C.【点评】此题考查了相似三角形的判定,熟练掌握相似三角形的判定方法是解本题的关键.10.如图,已知二次函数y=ax2+bx+c(a≠0)图象过点(﹣1,0),顶点为(1,2),则结论:①abc>0;②x=1时,函数最大值是2;③4a+2b+c>0;④2a+b=0;⑤2c<3b.其中正确的结论有()A.1个B.2个C.3个D.4个【考点】二次函数图象与系数的关系.【分析】根据抛物线开口向下判断出a<0,再根据对称轴判断出b>0,根据抛物线与y轴的交点判断出c>0,然后根据有理数的乘法判断出①错误;根据抛物线的顶点坐标判断②正确;根据图象,抛物线与x轴的另一交点坐标为(3,0),然后根据x=2时的函数值大于0判断出③正确;根据抛物线对称轴求出④正确;根据x=﹣1时的函数值为0,再把a用b 表示并代入整理得到2c=3b,判断出⑤错误.【解答】解:∵抛物线开口向下,∴a<0,∵对称轴为直线x=﹣=1,∴b=﹣2a>0,∵抛物线与y轴的交点在正半轴,∴c>0,∴abc<0,故①错误;∵顶点坐标为(1,2),∴x=1时,函数最大值是2,故②正确;根据对称性,抛物线与x轴的另一交点为(0,3),∴x=2时,y>0,∴4a+2b+c>0,故③正确;∵b=﹣2a,∴2a+b=0,故④正确;当x=﹣1时,y=a﹣b+c=0,∴﹣﹣b+c=0,∴2c=3b,故⑤错误;综上所述,正确的结论有②③④共3个.故选C.【点评】本题考查了二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定,要注意特殊值的利用.11.如图,在四边形ABCD中,AB∥CD,∠A=90°,AB=5,CD=2.以A为圆心,AD为半径的圆与BC边相切于点M,与AB交于点E,将扇形A﹣DME剪下围成一个圆锥,则圆锥的高为()A.1 B.4 C. D.【考点】切线的性质;圆锥的计算.【分析】如图,作CF⊥AB于F,连接AM.则四边形ADCF是矩形,再证明△AMB≌△CFB,推出BM=BF=3,在Rt△AMB中,AM===4,设圆锥的高为h,底面半径为r,由题意2π•r=•2π•4,推出r=1,由此即可解决问题.【解答】解:如图,作CF⊥AB于F,连接AM.∵AD∥CF,CD∥AF,∴四边形ADCF是平行四边形,∴∠A=90°,∴四边形ADCF是矩形,∴AD=CF=AM,CD=AF=2,∵AB=5,∴BF=3,在△AMB和△CFB中,,∴△AMB≌△CFB,∴BM=BF=3,在Rt△AMB中,AM===4,设圆锥的高为h,底面半径为r,由题意2π•r=•2π•4,∴r=1,∴h==,故选C .【点评】本题考查切线的性质、全等三角形的判定和性质、圆锥的侧面展开图等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.12.当m ,n 是实数且满足m ﹣n=mn 时,就称点Q (m ,)为“奇异点”,已知点A 、点B是“奇异点”且都在反比例函数y=的图象上,点O 是平面直角坐标系原点,则△OAB 的面积为( )A .1B .C .2D . 【考点】反比例函数系数k 的几何意义.【分析】设A (a ,),利用新定义得到a ﹣b=ab ,再利用反比例函数图象上点的坐标特征得到a•=2,a ﹣=a 3,则可解得a 和b 的值,所以A (﹣2,﹣1),B (1,2),接着利用待定系数法求出直线AB 的解析式.从而得到直线AB 与y 轴的交点坐标,然后根据三角形面积公式计算△OAB 的面积.【解答】解:设A (a ,),∵点A 是“奇异点”,∴a ﹣b=ab ,∵a•=2,则b=,∴a ﹣=a 3, 而a ≠0,整理得a 2+a ﹣2=0,解得a 1=﹣2,a 2=1,当a=﹣2时,b=2;当a=1时,b=,∴A (﹣2,﹣1),B (1,2),设直线AB 的解析式为y=mx+n ,把A(﹣2,﹣1),B(1,2)代入得,解得,∴直线AB与y轴的交点坐标为(0,1),∴△OAB的面积=×1×(2+1)=.故选B.【点评】本题考查了反比例函数比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|,在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.二、填空题(本题共6小题,每小题4分,共24分)13.分解因式:a2﹣4a+4= (a﹣2)2.【考点】因式分解﹣运用公式法.【分析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,本题可用完全平方公式分解因式.【解答】解:a2﹣4a+4=(a﹣2)2.【点评】本题考查用完全平方公式法进行因式分解,能用完全平方公式法进行因式分解的式子的特点需熟练掌握.14.若方程x2+kx+9=0有两个相等的实数根,则k= ±6 .【考点】根的判别式.【分析】根据根判别式△=b2﹣4ac的意义得到△=0,即k2﹣4×1×9=0,然后解方程即可.【解答】解:∵方程x2+kx+9=0有两个相等的实数根,∴△=0,即k2﹣4•1•9=0,解得k=±6.故答案为±6.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的根判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.15.直角三角形两直角边为3,4,则其外接圆和内切圆半径之和为 3.5 .【考点】三角形的内切圆与内心;三角形的外接圆与外心.【分析】首先根据勾股定理求得该直角三角形的斜边是5,再根据其外接圆的半径等于斜边的一半和内切圆的半径等于两条直角边的和与斜边的差的一半进行计算.【解答】解:∵直角三角形两直角边为3,4,∴斜边长==5,∴外接圆半径==2.5,内切圆半径==1,∴外接圆和内切圆半径之和=2.5+1=3.5.故答案为:3.5.【点评】本题考查的是三角形的内切圆与内心,此题要熟记直角三角形外接圆的半径和内切圆的半径公式:外接圆的半径等于斜边的一半;内切圆的半径等于两条直角边的和与斜边的差的一半.16.如图所示,一个宽为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的直径是10 cm.【考点】切线的性质;勾股定理;垂径定理.【分析】本题先根据垂径定理构造出直角三角形,然后在直角三角形中已知弦长和弓形高,根据勾股定理求出半径,从而得解.【解答】解:如图,设圆心为O,弦为AB,切点为C.如图所示.则AB=8cm,CD=2cm.连接OC,交AB于D点.连接OA.∵尺的对边平行,光盘与外边缘相切,∴OC⊥AB.∴AD=4cm.设半径为Rcm,则R2=42+(R﹣2)2,解得R=5,∴该光盘的直径是10cm.故答案为:10【点评】此题考查了切线的性质及垂径定理,建立数学模型是关键.17.在△ABC中,点D,E分别在AB,AC上,且CD与BE相交于点F,已知△BDF的面积为6,△BCF的面积为9,△CEF的面积为6,则四边形ADFE的面积为24 .【考点】三角形的面积.【分析】可设S△ADF=m,根据题中条件可得出三角形的面积与边长之间的关系,进而用m表示出△AEF,求出m的值,进而可得四边形的面积.【解答】解:如图,连AF,设S△ADF=m,∵S△BDF:S△BCF=6:9=2:3=DF:CF,则有m=S△AEF+S△EFC,S△AEF=m﹣6,而S△BFC:S△EFC=9:6=3:2=BF:EF,又∵S△ABF:S△AEF=BF:EF=3:2,而S△ABF=m+S△BDF=m+6,∴S△ABF:S△AEF=BF:EF=3:2=(m+6):(m﹣6),解得m=12.S△AEF=12,S ADEF=S△AEF+S△ADF=12+12=24.故答案为:24.【点评】本题主要考查了三角形的面积计算问题,能够利用三角形的性质进行一些简单的计算.18.赵爽弦图是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,若这四个全等直角三角形的两条直角边分别平行于x轴和y轴,大正方形的顶点B1、C1、C2、C3、…、C n在直线y=﹣x+上,顶点D1、D2、D3、…、D n在x轴上,则第n个阴影小正方形的面积为.【考点】相似三角形的判定与性质;一次函数的性质.【分析】设第n个大正方形的边长为a n,则第n个阴影小正方形的边长为a n,根据一次函数图象上点的坐标特征即可求出直线y=﹣x+与y轴的交点坐标,进而即可求出a1的值,再根据相似三角形的性质即可得出a n=a1=,结合正方形的面积公式即可得出结论.【解答】解:设第n个大正方形的边长为a n,则第n个阴影小正方形的边长为a n,当x=0时,y=﹣x+=,∴=a1+a1,∴a1=.∵a1=a2+a2,∴a2=,同理可得:a3=a2,a4=a3,a5=a4,…,∴a n=a1=,∴第n个阴影小正方形的面积为==.故答案为:.【点评】本题考查了相似三角形的判定与性质、一次函数图象上点的坐标特征以及正方形的面积,找出第n个大正方形的边长为a n=a1=是解题的关键.三、解答题(本题有8小题,共78分)19.计算:﹣|2﹣9tan30°|+()﹣1﹣(1﹣π)0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】本题涉及二次根式化简、绝对值、负整数指数幂、零指数幂4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:﹣|2﹣9tan30°|+()﹣1﹣(1﹣π)0.=3﹣|2﹣9×|+2﹣1=3﹣|2﹣3|+1=3﹣+1=2+1.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20.宁波轨道交通4号线已开工建设,计划2020年通车试运营.为了了解镇民对4号线地铁票的定价意向,某镇某校数学兴趣小组开展了“你认为宁波4号地铁起步价定为多少合适”的问卷调查,并将调查结果整理后制成了如下统计图,根据图中所给出的信息解答下列问题:(1)求本次调查中该兴趣小组随机调查的人数;(2)请你把条形统计图补充完整;(3)如果在该镇随机咨询一位居民,那么该居民支持“起步价为2元或3元”的概率是(4)假设该镇有3万人,请估计该镇支持“起步价为3元”的居民大约有多少人?【考点】条形统计图;用样本估计总体;扇形统计图;概率公式.【分析】(1)根据5元在扇形统计图中的圆心角和人数可以解答本题;(2)根据(1)中的答案和统计图中的数据可以求得条形统计图中的未知数据,从而可以将条形统计图补种完整;(3)根据统计图中的数据可以得到该居民支持“起步价为2元或3元”的概率;(4)根据前面求得的数据可以估计该镇支持“起步价为3元”的居民人数.【解答】解:(1)由题意可得,同意定价为5元的所占的百分比为:18°÷360°×100%=5%,∴本次调查中该兴趣小组随机调查的人数为:10÷5%=200(人),即本次调查中该兴趣小组随机调查的人数有200人;(2)由题意可得,2元的有:200×50%=100人,3元的有:200﹣100﹣30﹣10=60人,补全的条形统计图如右图所示;(3)由题意可得,该居民支持“起步价为2元或3元”的概率是:,故答案为:;(4)由题意可得,(人),即该镇支持“起步价为3元”的居民大约有9000人.【点评】本题考查条形统计图、扇形统计图、用样本估计总体、概率公式,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题,注意第(2)问中是求2元和3元的概率,不要误认为求3元和4元的.21.2014年3月,某海域发生航班失联事件,我海事救援部门用高频海洋探测仪进行海上搜救,分别在A、B两个探测点探测到C处是信号发射点,已知A、B两点相距400m,探测线与海平面的夹角分别是30°和60°,若CD的长是点C到海平面的最短距离.(1)问BD与AB有什么数量关系,试说明理由;(2)求信号发射点的深度.(结果精确到1m,参考数据:≈1.414,≈1.732)【考点】解直角三角形的应用.【分析】(1)易证三角形ABC的是等腰三角形,再根据30°所对直角边是斜边的一半可求出DB的长,(2)由(1)结合勾股定理即可求出CD的长.【解答】解:(1)由图形可得∠BCA=30°,∴CB=BA=400米,∴在Rt△CDB中又含30°角,得DB=CB=200米,可知,BD=AB,(2)由勾股定理DC==,=200米,∴点C的垂直深度CD是346米.【点评】本题考查了解直角三角形的应用,难度适中,解答本题的关键是构造直角三角形,解直角三角形,也考查了把实际问题转化为数学问题的能力.22.(10分)(2017•宁波一模)如图,已知反比例函数y1=与一次函数y2=k2x+b的图象交于点A(1,8),B(﹣4,m)两点.(1)求k1,k2,b的值;(2)求△AOB的面积;(3)请直接写出不等式x+b的解.【考点】反比例函数与一次函数的交点问题.【分析】(1)由点A的坐标利用反比例函数图象上点的坐标特征即可得出反比例函数解析式,再结合点B的横坐标即可得出点B的坐标,根据点A、B的坐标利用待定系数法即可求出一次函数解析式;(2)根据一次函数图象上点的坐标特征即可求出一次函数图象与y轴的交点坐标,再利用分割图形法即可求出△AOB的面积;(3)根据两函数图象的上下位置关系即可得出不等式的解集.【解答】解:(1)∵反比例函数y=与一次函数y=k2x+b的图象交于点A(1,8)、B(﹣4,m),∴k1=1×8=8,m=8÷(﹣4)=﹣2,∴点B的坐标为(﹣4,﹣2).将A(1,8)、B(﹣4,﹣2)代入y2=k2x+b中,,解得:.∴k1=8,k2=2,b=6.(2)当x=0时,y2=2x+6=6,∴直线AB与y轴的交点坐标为(0,6).∴S△AOB=×6×4+×6×1=15.(3)观察函数图象可知:当﹣4<x<0或x>1时,一次函数的图象在反比例函数图象的上方,∴不等式x+b的解为﹣4≤x<0或x≥1.【点评】本题考查了反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征以及待定系数法求一次函数解析式,解题的关键是:(1)根据点的坐标利用待定系数法求出函数解析式;(2)利用分割图形法求出△AOB的面积;(3)根据两函数图象的上下位置关系找出不等式的解集.23.(10分)(2017•宁波一模)某服装店购进一批秋衣,价格为每件30元.物价部门规定其销售单价不高于每件60元,不低于每件30元.经市场调查发现:日销售量y(件)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)求该服装店销售这批秋衣日获利w(元)与销售单价x(元)之间的函数关系式.(3)当销售单价为多少元时,该服装店日获利最大?最大获利是多少元?【考点】二次函数的应用.【分析】(1)根据y与x成一次函数解析式,设为y=kx+b,把x与y的两对值代入求出k 与b的值,即可确定出y与x的解析式,并求出x的范围即可;(2)根据利润=单价×销售量列出W关于x的二次函数解析式即可;(3)利用二次函数的性质求出W的最大值,以及此时x的值即可.【解答】解:(1)设y=kx+b,根据题意得,解得:k=﹣2,故y=﹣2x+200(30≤x≤60);(2)W=(x﹣30)(﹣2x+200)﹣450=﹣2x2+260x﹣6450=﹣2(x﹣65)2+2000;(3)W=﹣2(x﹣65)2+2000,∵30≤x≤60,∴x=60时,w有最大值为1950元,∴当销售单价为60元时,该服装店日获利最大,为1950元.【点评】此题考查了二次函数的应用,待定系数法求一次函数解析式,以及二次函数的性质,熟练掌握二次函数性质是解本题的关键.24.(10分)(2017•宁波一模)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE•CA.(1)求证:BC=CD;(2)分别延长AB,DC交于点P,若PB=OB,CD=2,求⊙O的半径.【考点】相似三角形的判定与性质;圆周角定理.【分析】(1)由DC2=CE•CA和∠ACD=∠DCE,可判断△CAD∽△CDE,得到∠CAD=∠CDE,再根据圆周角定理得∠CAD=∠CBD,所以∠CDB=∠CBD,于是利用等腰三角形的判定可得BC=DC;(2)连结OC,如图,设⊙O的半径为r,先证明OC∥AD,利用平行线分线段成比例定理得到==2,则PC=2CD=4,然后证明△PCB∽△PAD,利用相似比得到=,再利用比例的性质可计算出r的值.【解答】(1)证明:∵DC2=CE•CA,∴=,而∠ACD=∠DCE,∴△CAD∽△CDE,∴∠CAD=∠CDE,∵∠CAD=∠CBD,∴∠CDB=∠CBD,∴BC=DC;(2)解:连结OC,如图,设⊙O的半径为r,∵CD=CB,∴=,∴∠BOC=∠BAD,∴OC∥AD,∴===2,∴PC=2CD=4,∵∠PCB=∠PAD,∠CPB=∠APD,∴△PCB∽△PAD,∴=,即=,∴r=4,即⊙O的半径为4.【点评】本题考查了相似三角形的判定与性质:三角形相似的判定一直是中考考查的热点之一,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;或依据基本图形对图形进行分解、组合;或作辅助线构造相似三角形,判定三角形相似的方法有时可单独使用,有时需要综合运用,无论是单独使用还是综合运用,都要具备应有的条件方可.也考查了圆周角定理.。

2017-2018学年重庆市江北区九年级上期末模拟数学试卷含答案解析

2017-2018学年重庆市江北区九年级上期末模拟数学试卷含答案解析

2017-2018学年重庆市江北区九年级(上)期末模拟数学试卷一、选择题(共10题;共30分)1.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.2.如图,四边形ABCD内接于半圆O,已知∠ADC=140°,则∠AOC的大小是()A. 40°B. 60°C. 70°D. 80°3.如果反比例函数的图象经过点(-1,-2),则k的值是()A. 2B. -2C. -3D. 34.如图,已知:如图,在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D 点,双曲线y=(x>0)经过D点,交BC的延长线于E点,且OB•AC=160,有下列四个结论:①双曲线的解析式为y=(x>0);②E点的坐标是(5,8);③sin∠COA=;④AC+OB=12.其中正确的结论有()A. 1个B. 2个C. 3个D. 4个5.某县大力推进义务教育均衡发展,加强学校标准化建设,计划用三年时间对全县学校的设施和设备进行全面改造,2014年县政府已投资5亿元人民币,若每年投资的增长率相同,预计2016年投资7.2亿元人民币,那么每年投资的增长率为()A. 20%B. 40%C. -220%D. 30%6.随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止2015年底某市汽车拥有量为16.9万辆.己知2013年底该市汽车拥有量为10万辆,设2013年底至2015年底该市汽车拥有量的平均增长率为x,根据题意列方程得()A. 10(1+x)2=16.9B. 10(1+2x)=16.9C. 10(1﹣x)2=16.9D. 10(1﹣2x)=16.97.二次根式有意义,则x的取值范围是()A. x≤﹣7B. x≥﹣7C. x<﹣7D. x>﹣78.如图,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BAO=30°,则∠OCB的度数为()A. 30°B. 60°C. 50°D. 40°9.已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A. 当a=1时,函数图象过点(﹣1,1)B. 当a=﹣2时,函数图象与x轴没有交点C. 若a>0,则当x≥1时,y随x的增大而减小D. 若a<0,则当x≤1时,y随x的增大而增大10.以点O为圆心,以5cm为半径作⊙O,若线段OP的长为8cm,那么OP的中点A与⊙O的位置关系是()A. A点在⊙O外B. A点在⊙O上C. A点在⊙O内D. 不能确定二、填空题(共8题;共24分)11.如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠DCF=________.12.如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D,连接BD、BE、CE,若∠CBD=32°,则∠BEC的度数为________.13.计算:=________.14.在△ABC中,BA=BC,∠BAC=α,M是AC的中点,P是线段BM上的动点,将线段PA绕点P顺时针旋转2α得到线段PQ.(1)若α=60°,且点P与点M重合(如图1),线段CQ的延长线交射线BM于点D,此时∠CDB的度数为________(2)在图2中,点P不与点B、M重合,线段CQ的延长线交射线BM于点D,则∠CDB的度数为(用含α的代数式表示)________ .(3)对于适当大小的α,当点P在线段BM上运动到某一位置(不与点B、M重合)时,能使得线段CQ 的延长线与射线BM交于点D,且PQ=DQ,则α的取值范围是________15.如图,直线l与半径为4的⊙O相切于点A,P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l,垂足为B,连接PA.设PA=x,PB=y,则(x﹣y)的最大值是________.16.如图所示,以边长为2的等边△ABO的顶点O为坐标原点,点B在x轴上,则经过点A的反比例函数的表达式为________17.已知⊙O半径为3cm,点P到圆心O的距离为3cm,则点P与⊙O的位置关系是 ________.18.如图,△ABC中,∠C是直角,AB=12cm,∠ABC=60°,将△ABC以点B为中心顺时针旋转,使点C旋转到AB的延长线上的点D处,则AC边扫过的图形(阴影部分)的面积是________.三、解答题(共6题;共36分)19.解方程:x2﹣x﹣12=0.20.某批乒乓球的质量检验结果如下:优等品频率(1)画出这批乒乓球“优等品”频率的折线统计图;(2)这批乒乓球“优等品”的概率的估计值是多少?(3)从这批乒乓球中选择5个黄球、13个黑球、22个红球,它们除颜色外都相同,将它们放入一个不透明的袋中.①求从袋中摸出一个球是黄球的概率;②现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后使从袋中摸出一个是黄球的概率不小于,问至少取出了多少个黑球?21.在Rt△ABC中,∠C=90°,BC=3,AC=4,以C点为圆心、BC长为半径画圆,请你判断点A与⊙C的位置关系.22.如图,在⊙O中,AB为弦,C、D在AB上,且AC=BD,请问图中有几个等腰三角形?把它们分别写出来,并说明理由.23.D、E是圆O的半径OA、OB上的点,CD⊥OA、CE⊥OB,CD=CE,则弧CA与弧CB 的关系是?24.如图,2×2网格(每个小正方形的边长为1)中,有A,O,B,C,D,E,F,H,G九个格点.抛物线l 的解析式为y=x2+bx+c.(1)若l经过点O(0,0)和B(1,0),则b= ,c= ;它还经过的另一格点的坐标为.(2)若l经过点H(﹣1,1)和G(0,1),求它的解析式及顶点坐标;通过计算说明点D(1,2)是否在l上.(3)若l经过这九个格点中的三个,直接写出所有满足这样的抛物线的条数.四、综合题(共10分)25.如图,在平面直角坐标系中,直角△ABC的三个顶点分别是A(﹣3,1),B(0,3),C(0,1)(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1;(2)分别连结AB1、BA1后,求四边形AB1A1B的面积.2017-2018学年重庆市江北区九年级(上)期末模拟数学试卷参考与答案与试题解析一、选择题1.【答案】D【考点】中心对称及中心对称图形【解析】【解答】解:A、是轴对称图形,但不是中心对称图形,故A错误;B、是中心对称图形,不是轴对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、既是轴对称图形,也是中心对称图形,故D正确.故选:D.【分析】依据轴对称图形的定义和中心对称图形的定义回答即可.2.【答案】D【考点】圆周角定理,圆内接四边形的性质【解析】【解答】解:∵四边形ABCD是圆内接四边形,∴∠ADC+∠B=180°,又∠ADC=140°,∴∠B=40°,∴∠AOC=2∠B=80°,故选:D.【分析】根据圆内接四边形的性质求出∠B的度数,根据圆周角定理得到答案.3.【答案】D【考点】待定系数法求反比例函数解析式【解析】【分析】根据反比例函数图象上点的坐标特征,将(-1,-2)代入已知反比例函数的解析式,列出关于系数k的方程,通过解方程即可求得k的值.【解答】根据题意,得-2=,即2=k-1,解得,k=3.故选D.【点评】此题考查的是用待定系数法求反比例函数的解析式,是中学阶段的重点.解答此题时,借用了“反比例函数图象上点的坐标特征”这一知识点.4.【答案】B【考点】反比例函数的应用【解析】【解答】解:过点C作CF⊥x轴于点F,∵OB•AC=160,A点的坐标为(10,0),∴OA•CF=OB•AC=×160=80,菱形OABC的边长为10,∴CF==8,在Rt△OCF中,∵OC=10,CF=8,∴OF==6,∴C(6,8),∵点D时线段AC的中点,∴D点坐标为,即(8,4),∵双曲线y=(x>0)经过D点,∴4=,即k=32,∴双曲线的解析式为:y=(x>0),故①错误;∵CF=8,∴直线CB的解析式为y=8,∴,解得x=4,y=8,∴E点坐标为(4,8),故②错误;∵CF=8,OC=10,∴sin∠COA= ,故③正确;∵A(10,0),C(6,8),∴AC= ,∵OB•AC=160,∴OB= ,∴AC+OB=4+8=12,故④正确.故选:B.【分析】过点C作CF⊥x轴于点F,由OB•AC=160可求出菱形的面积,由A点的坐标为(10,0)可求出CF的长,由勾股定理可求出OF的长,故可得出C点坐标,对角线OB、AC相交于D点可求出D点坐标,用待定系数法可求出双曲线y=(x>0)的解析式,由反比例函数的解析式与直线BC的解析式联立即可求出E点坐标;由sin∠COA=可求出∠COA的正弦值;根据A、C两点的坐标可求出AC的长,由OB•AC=160即可求出OB的长.5.【答案】A【考点】一元二次方程的应用【解析】【解答】设每年投资的增长率为x ,根据题意,得:5(1+x)2=7.2,解得:x1=0.2=20%,x2=-2.2(舍去),故每年投资的增长率为为20%.故选:A.【分析】先设每年投资的增长率为x ,再根据2014年县政府已投资5亿元人民币,若每年投资的增长率相同,预计2016年投资7.2亿元人民币,列方程求解.此题主要考查了一元二次方程的实际应用,解题的关键是掌握增长率问题中的一般公式为a(1+x)n,其中n为共增长了几年,a为第一年的原始数据,x是增长率.6.【答案】A【考点】一元二次方程的应用【解析】【解答】解:设2013年底至2015年底该市汽车拥有量的平均增长率为x,根据题意,可列方程:10(1+x)2=16.9,故选:A.【分析】根据题意可得:2013年底该市汽车拥有量×(1+增长率)2=2015年底某市汽车拥有量,根据等量关系列出方程即可.此题主要考查了由实际问题抽象出一元二次方程,关键是掌握平均变化率的方法,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.7.【答案】B【考点】二次根式有意义的条件【解析】【解答】解:由题意,得x+7≥0,解得x≥﹣7,故选:B.【分析】根据被开房数是非负数,可得答案.8.【答案】B【考点】切线的性质,切线的判定与性质【解析】【解答】解:∵AB是⊙O的切线,B为切点,∴∠OBA=90°,∵∠BAO=30°,∴∠O=60°,∵OB=OC,∴△OBC是等边三角形,∴∠OCB=60°,故选:B.【分析】根据切线性质得出∠OBA=90°,求出∠O=60°,证出△OBC是等边三角形,即可得出结果.9.【答案】D【考点】二次函数的性质【解析】【解答】解:A、∵当a=1,x=﹣1时,y=1+2﹣1=2,∴函数图象不经过点(﹣1,1),故错误;B、当a=﹣2时,∵△=42﹣4×(﹣2)×(﹣1)=8>0,∴函数图象与x轴有两个交点,故错误;C、∵抛物线的对称轴为直线x=﹣=1,∴若a>0,则当x≥1时,y随x的增大而增大,故错误;D、∵抛物线的对称轴为直线x=﹣=1,∴若a<0,则当x≤1时,y随x的增大而增大,故正确;故选D.【分析】把a=1,x=﹣1代入y=ax2﹣2ax﹣1,于是得到函数图象不经过点(﹣1,1),根据△=8>0,得到函数图象与x轴有两个交点,根据抛物线的对称轴为直线x=﹣=1判断二次函数的增减性.10.【答案】C【考点】点与圆的位置关系【解析】【解答】解:∵OP=8cm,A是线段OP的中点,∴OA=4cm,小于圆的半径5cm,∴点A在圆内.故选C.【分析】知道OP的长,点A是OP的中点,得到OA的长与半径的关系,求出点A与圆的位置关系.二、填空题11.【答案】20°【考点】圆周角定理【解析】【解答】解:∵⊙O的直径CD过弦EF的中点G,∴弧ED=弧DF(垂径定理),∴∠DCF=∠EOD(等弧所对的圆周角是圆心角的一半),∴∠DCF=20°.【分析】欲求∠DCF,又已知一圆心角,可利用圆周角与圆心角的关系求解.12.【答案】122°【考点】圆周角定理,三角形的内切圆与内心【解析】【解答】解:在⊙O中,∵∠CBD=32°,∵∠CAD=32°,∵点E是△ABC的内心,∴∠BAC=64°,∴∠EBC+∠ECB=(180°﹣64°)÷2=58°,∴∠BEC=180°﹣58°=122°.故答案为:122°.【分析】根据圆周角定理可求∠CAD=32°,再根据三角形内心的定义可求∠BAC,再根据三角形内角和定理和三角形内心的定义可求∠EBC+∠ECB,再根据三角形内角和定理可求∠BEC的度数.13.【答案】12【考点】二次根式的乘除法【解析】【解答】解:=3 × ÷=3=12.故答案为:12.【分析】直接利用二次根式乘除运算法则化简求出答案.14.【答案】30°;90°﹣α;45°<α<60°【考点】圆周角定理,生活中的旋转现象【解析】【解答】解:(1)如图1,∵BA=BC,∠BAC=60°,∴AB=BC=AC,∠ABC=60°,∵M为AC的中点,∴MB⊥AC,∠CBM=30°,AM=MC.∵PQ由PA旋转而成,∴AP=PQ=QM=MC.∵∠AMQ=2α=120°,∴∠MCQ=60°,∠QMD=30°,∴∠MQC=60°.∴∠CDB=30°.故答案为:30°;(2)如图2,连接PC,∵由(1)得BM垂直平分AC,∴AP=PC,∠ADB=∠CDB,∠PAD=∠PCD,又∵PQ=PA,∴PQ=PC=PA,∴Q,C,A在以P为圆心,PA为半径的圆上,∴∠ACQ=∠APQ=α,∴DC∥BA,∴∠CDB=∠ABD=90°﹣α.故答案为:90°﹣α;(3)∵∠CDB=90°﹣α,且PQ=QD,∴∠PAD=∠PCQ=∠PQC=2∠CDB=180°﹣2α,∵点P不与点B,M重合,∴∠BAD>∠PAD>∠MAD,∴2α>180°﹣2α>α,∴45°<α<60°.故答案为:45°<α<60°.【分析】(1)由条件可得出AB=BC=AC,再利用旋转可得出QM=MC,证得CB=CD=BA,再由三角形外角的性质即可得出结论;(2)由(1)可得BM为AC的垂直平分线,结合条件可以得出Q,C,A在以P为圆心,PA为半径的圆上,由圆周角定理可得∠ACQ=∠APQ=α,可得出∠CDB和α的关系;(3)借助(2)的结论和PQ=QD,可得出∠PAD=∠PCQ=∠PQC=2∠CDB=180°﹣2α,结合∠BAD>∠PAD>∠MAD,代入可得出α的范围.15.【答案】2【考点】切线的性质【解析】【解答】解:如图,作直径AC,连接CP,∴∠CPA=90°,∵AB是切线,∴CA⊥AB,∵PB⊥l,∴AC∥PB,∴∠CAP=∠APB,∴,∵PA=x,PB=y,半径为4,∴,∴y= x2,∴x﹣y=x﹣x2=﹣x2+x=﹣(x﹣4)2+2,当x=4时,x﹣y有最大值是2,故答案为:2.【分析】作直径AC,连接CP,得出△APC∽△PBA,利用,得出y= x2,所以x﹣y=x﹣x2=﹣x2+x=﹣(x﹣4)2+2,当x=4时,x﹣y有最大值是2.16.【答案】y=-【考点】反比例函数系数k的几何意义【解析】【解答】解:过A作AM⊥BO于点M,∵△ABO为等边三角形,∴AB=BO=AO=2,∵AM⊥BO,∴OM=BO=1,∴AM=则点A的坐标为(﹣1,)则这个反比例函数的解析式为y=-.故答案为:y=-.【分析】过A作AM⊥BO于点M,根据等边三角形的性质和B点坐标求出A点坐标,然后用待定系数法求出解析式.17.【答案】点P在⊙O上【考点】点与圆的位置关系【解析】【解答】解:PO=r=3,点P在⊙O上,故答案为:点P在⊙O上.【分析】根据d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.18.【答案】36πcm2【考点】扇形面积的计算,旋转的性质【解析】【解答】解:∵∠C是直角,∠ABC=60°,∴∠BAC=90°﹣60°=30°,∴BC= AB= ×12=6cm,∵△ABC以点B为中心顺时针旋转得到△BDE,∴S△BDE=S△ABC,∠ABE=∠CBD=180°﹣60°=120°,∴阴影部分的面积=S扇形ABE+S△BDE﹣S扇形BCD﹣S△ABC=S扇形ABE﹣S扇形BCD= ﹣=48π﹣12π=36πcm2.故答案为:36πcm2.【分析】根据直角三角形两锐角互余求出∠BAC=30°,再根据直角三角形30°角所对的直角边等于斜边的一半可得BC= AB,然后求出阴影部分的面积=S扇形ABE﹣S扇形BCD,列计算即可得解.三、解答题19.【答案】解:分解因式得:(x+3)(x﹣4)=0,可得x+3=0或x﹣4=0,解得:x1=﹣3,x2=4.【考点】解一元二次方程-因式分解法【解析】【分析】方程左边利用十字相乘法分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.20.【答案】解:(1)如图;(2)这批乒乓球“优等品”概率的估计值是0.946;(3)①∵袋中一共有球5+13+22=40个,其中有5个黄球,∴从袋中摸出一个球是黄球的概率为:②设从袋中取出了x个黑球,由题意得≥,解得x≥8,故至少取出了9个黑球.【考点】利用频率估计概率【解析】【分析】(1)根据统计表中的数据,先描出各点,然后折线连结即可;(2)根据频率估计概率,频率都在0.946左右波动,所以可以估计这批乒乓球“优等品”概率的估计值是0.946;(3)①用黄球的个数除以球的总个数即可;②设从袋中取出了x个黑球,根据搅拌均匀后使从袋中摸出一个是黄球的概率不小于,列出不等式,解不等式即可.21.【答案】解:如图所示:∵∠C=90°,BC=3,AC=4,以点C为圆心、BC长为半径画圆,∴AC>BC,则点A在⊙C外.【考点】点与圆的位置关系【解析】【分析】直接利用点与圆的位置关系进而得出答案.22.【答案】解:等腰三角形有:△OAB、△OCD.证明:∵OA=OB(同圆半径相等),∴△OAB是等腰三角形,∴∠A=∠B,又∵AC=BD,OA=OB,∴△OAC≌△OBD,∴OC=OD,∴△OCD是等腰三角形.【考点】圆的认识【解析】【分析】图中等腰三角形有两个,圆中半径处处相等,所以△OAB是等腰三角形,根据所给的已知条件,易证△OAC≌△OBD,根据全等三角形的性质,OC=OD,所以△OCD也是等腰三角形.23.【答案】解:连CO∵DC⊥AD,CE⊥OBCD=EC∠1=∠2【考点】圆心角、弧、弦的关系【解析】【解答】连CO∵DC⊥AD,CE⊥OBCD=EC∠1=∠2【分析】此题考查了圆心角弦弧的关系,作好辅助线,利用好相关条件.24.【答案】解:(1)根据题意得:,解得:,故函数的解析式是:y=x2﹣x,点中H(﹣1,1)满足函数解析式,则另一个格点的坐标是(﹣1,1).故答案是:-,0,(﹣1,1);(2)根据题意得:,解得:,则函数的解析式是:y=x2+x+1,y=x2+x+1=(x+)2+,则顶点坐标为(﹣,),点D(1,2)在抛物线l上;(3)因为题目中的a=0.5,在这个条件下,抛物线的开口方向和开口大小是确定的.应该是4条,分别过HOB三点,AOC三点,HGD三点,还有FGC三点,综上所述,满足这样的抛物线有4条.【考点】二次函数的应用【解析】【分析】(1)把两个点代入解析式即可得到关于b、c的方程组,从而求得b和c的值,然后把格点坐标代入解析式即可判断;(2)与(1)的解法相同;(3)二次函数的二次项系数不变,则抛物线的形状和开口方向不变,则移动抛物线的顶点到图中的一个点,同时,经过另外两个的抛物线就是符合要求的图形.四、综合题25.【答案】(1)解:如图,△A1B1C1为所作,(2)解:四边形AB1A1B的面积= ×6×4=12【考点】作图-旋转变换【解析】【分析】(1)利用网格特点,延长AC到A1使A1C=AC,延长BC到B1使B1C=BC,C点的对应点C1与C点重合,则△A1B1C1满足条件;(2)四边形AB1A1B的对角线互相垂直平分,则四边形AB1A1B为菱形,然后利用菱形的面积公式计算即可.本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.。

2017年重庆市江北区中考模拟数学试卷

2017年重庆市江北区中考模拟数学试卷

2017年重庆市江北区中考模拟数学试卷一、选择题(共12小题;共60分)1. −3的相反数是 A. 3B. −3C. 13D. −132. 在下列四个图形中,是中心对称图形的是 A. B.C. D.3. 计算6x6÷3x2的结果是 A. 2x3B. 3x4C. 2x4D. 3x34. 下列调查中,最适宜采用抽样调查方式的是 A. 对全班同学体能测试达标情况的调查B. 对嘉陵江水域水流污染情况的调查C. 对乘坐飞机的旅客是否携带了违禁物品的检查D. 对奥运会参赛者是否服用了兴奋剂的检查5. 如图,直线a、直线b被直线c所截,且a∥b,若∠1=40∘,则∠2的度数是 A. 30∘B. 60∘C. 120∘D. 140∘6. △ABC与△AʹBʹCʹ是相似图形,且△ABC与△AʹBʹCʹ的相似比是1:2,已知△ABC的面积是3,则△AʹBʹCʹ的面积是 A. 3B. 6C. 9D. 127. 若分式1x−2有意义,则x的取值范围是 A. x≠0B. x≠2C. x≥2D. x>28. 已知a2+2a−3=0,则代数式2a2+4a−3的值是 A. −3B. 0C. 3D. 69. 如图,正方形ABCD的边长为2,连接BD,先以D为圆心,DA为半径作弧AC,再以D为圆心,DB为半径作弧BE,且D,C,E三点共线,则图中两个阴影部分的面积之和是 A. 12π B. 12π+1 C. π D. π+110. 下列图形是由同样大小的棋子按照一定规律排列而成的,其中,图1中有5个棋子,图2中有10个棋子,图3中有16个棋子,⋯⋯,则图7中有 个棋子.A. 35B. 40C. 45D. 5011. 如图是某水库大坝的横截面示意图,已知AD∥BC,且AD,BC之间的距离为15米,背水坡CD的坡度i=1:0.6,为提高大坝的防洪能力,需对大坝进行加固,加固后大坝顶端AE比原来的顶端AD加宽了2米,背水坡EF的坡度i=3:4,则大坝底端增加的长度CF是 米.A. 7B. 11C. 13D. 2012. 从−3,−2,−1,0,1,2这六个数中,随机抽取一个数,记为m.若数m使关于x的分式方程12x−1−1=m1−2x的解是正实数或零;且使二次函数y=−x2+2m−1x+1的图象,在x>1时,y随x的增大而减小,则满足条件的所有m之和是 A. −2B. −1C. 0D. 2二、填空题(共6小题;共30分)13. 据报道,西部地区最大的客运枢纽系统——重庆西站,一期工程已经完成90%,预计在年内建成投入使用.届时,预计每年客流量可达42000000人次,将数42000000用科学记数法表示为.14. 计算:π−30−∣−2∣+ −12−2=.15. 如图,AB是⊙O的直径,点C和点D是⊙O上两点,连接AC,CD,BD,若CA=CD,∠ACD=80∘,则∠CAB=∘.16. 从−1,−2,12,23四个数中,任取一个数记为k,再从余下的三个数中,任取一个数记为b.则一次函数y=kx+b的图象不经过第四象限的概率是.17. 甲、乙两人在1800米长的直线道路上跑步,甲、乙两人同起点、同方向出发,并分别以不同的速度匀速前进.已知,甲出发30秒后,乙出发,乙到终点后立即返回,并以原来的速度前进,最后与甲相遇,此时跑步结束.如图,y(米)表示甲、乙两人之间的距离,t(秒)表示甲出发的时间,图中折线及数据表示整个跑步过程中y与t函数关系.那么,乙到终点后秒与甲相遇.18. 如图,正方形ABCD中,F为BC边上的中点,连接AF交对角线BD于G,在BD上截BE=BA,连接AE.将△ADE沿AD翻折得△ADEʹ,连接EʹC交BD于H.若BG=2,则四边形AGHEʹ的面积是.三、解答题(共8小题;共104分)19. 如图,在△ABC和△AEF中,AC∥EF,AB=FE,AC=AF,求证:∠B=∠E.20. 为了了解某校初三学生体能水平,体育老师从刚结束的“女生800米,男生1000米”体能测试成绩中随机抽取了一部分同学的成绩,按照“优秀、良好、合格、不合格”进行了统计,并绘制了下列不完整的统计图,请根据图中信息解答下列问题:(1)体育老师总共选取了多少人的成绩?扇形统计图中“优秀”部分的圆心角度数是多少?(2)把条形统计图补充完整;(3)已知某校初三在校生有2500人,从统计情况分析,请你估算此次体能测试中达到“优秀”水平的大约有多少人?21. 计算:(1)2a−b2−2b b−2a;(2) x−xx−1÷x3−2x2x−2x+1−xx+1.22. 如图,在平面直角坐标系中,一次函数y=kx+b k≠0的图象与反比例函数y=mxm≠0的图象交于点C n,3,与x轴、y轴分别交于点A,B,过点C作CM⊥x轴,垂足为M.若tan∠CAM=34,OA=2.(1)求反比例函数和一次函数的解析式;(2)点D是反比例函数图象在第三象限部分上的一点,且到x轴的距离是3,连接AD,BD,求△ABD的面积.23. 我市“尚品”房地产开发公司预计今年10月份将竣工一商品房小区,其中包括高层住宅区和别墅区一共60万平方米,且高层住宅区的面积不少于别墅区面积的3倍.(1)别墅区最多多少万平方米?(2)今年一月初,“尚品”公司开始出售该小区,其中高层住宅区的销售单价为8000元/平方米,别墅区的销售单价为12000元/平方米,并售出高层住宅区6万平方米,别墅区4万平方米,二月时,受最新政策“去库存,满足刚需”以及银行房贷利率打折的影响,该小区高层住宅区的销售单价比一月增加了a%,销售面积比一月增加了2a%;别墅区的销售单价比一月份减少了10%,销售面积比一月增加了a%,于是二月份该小区高层住宅区的销售总额比别墅区的销售总额多10080万元,求a的值.24. 如图,△ABC和△BDE都是等腰直角三角形,其中∠ACB=∠BDE=90∘,AC=BC,BD=ED,连接AE,点F是AE的中点,连接DF.(1)连接BF,如图1,若B,C,D共线,且AC=CD=2,求BF的长度;(2)如图2,若A,C,F,E共线,连接CD,求证:DC=2DF.25. 一个四位数,记千位上和百位上的数字之和为x,十位上和个位上的数字之和为y,如果x=y,那么称这个四位数为“和平数”.例如:1423,x=1+4,y=2+3,因为x=y,所有1423是“和平数”.(1)直接写出:最小的“和平数”是,最大的“和平数”是;(2)求个位上的数字是千位上的数字的两倍且百位上的数字与十位上的数字之和是12的倍数的所有“和平数”;(3)将一个“和平数”的个位上与十位上的数字交换位置,同时,将百位上与千位上的数字交换位置,称交换前后的这两个“和平数”为一组“相关和平数”.例如:1423与4132为一组“相关和平数”.求证:任意的一组“相关和平数”之和是1111的倍数.26. 如图1,抛物线y=−65x2+455x+2的图象与x轴交于点A,B,与y轴交于点C,作直线BC,过点A作AD∥BC交抛物线的对称轴于点D.(1)求点D的坐标;(2)如图2,点P是抛物线在第一象限内的一点,作PQ⊥BC于Q,当PQ的长度最大时,在BM的值最小,求点M的坐标及线段BC上找一点M(不与点B、点C重合),使PM+23BM的最小值;PM+23(3)抛物线的顶点为点E,平移抛物线,使抛物线的顶点E在直线AE上移动,点A,E平移后的对应点分别为点Aʹ,Eʹ.在平面内有一动点F,当以点Aʹ,Eʹ,B,F为顶点的四边形为菱形时,求出点Aʹ的坐标.答案第一部分1. A2. D3. C4. B5. D6. D 【解析】相似三角形的面积比等于相似比的平方.7. B 8. C 9. A 10. D11. C 12. B第二部分13. 4.2×10714. 315. 4016. 1617. 360718. 607−9214第三部分19. ∵EF∥AC,∴∠EFA=∠BAC,且AB=EF,AC=AF,在△ABC和△FEA中,AB=EF,∠BAC=∠EFA,AC=AF,∴△ABC≌△FEA SAS,∴∠B=∠E.20. (1)80÷40%=200(人),360∘×60200=108∘,总共选取了200人,“优秀”部分的圆心角为108∘.(2)合格人数为200−60−80−20=40(人).(3)2500×60200=750(人).答:此次体能测试中达到“优秀”水平的大约有750人.21. (1)原式=4a 2+b2−4ab−2b2+4ab=4a2−b2.(2)原式=x x−2x−1×x−12x2x−2−xx+1 =x−1x−xx+1=−1x+x.22. (1)由题tan∠CAM=CMAM =34,CM=3,∴AM=4,∵OA=2,∴OM=2,A−2,0,∴C2,3.∴反比例函数的解析式为y=6x.将A−2,0,C2,3代入y=kx+b k≠0得:−2k+b=0, 2k+b=3.解得k=34,b=32.∴一次函数的解析式为y=34x+32.(2)由题设D d,−3代入y=6x,∴D−2,−3.∴AD⊥x轴,∴S△ABD=12AD⋅AO=3.23. (1)设别墅区有x万平方米.则60−x≥3x解得x≤15所以别墅区最多15万平方米.(2)由题80001+a%⋅61+2a%−120001−10%×41+a%=10080解a1=5,a2=−110舍去所以a=5.24. (1)∵△ABC是等腰直角三角形,∴AC=BC=2,∠ABC=45∘,AB=2,∵AC=CD=2,∴BD=BC+DC=4,∵△BDE是等腰直角三角形,∴BD=DE=4,∠DBE=45∘,BE=42,∴∠ABE=∠DBE+∠ABC=90∘,∴AE= AB2+BE2=210,∵F是AE的中点,∴BF=1AE=10(2)作AM∥DE交DF的延长线于M,交BD于N,连接CM.∴∠MAF=∠DEF,∵点F是AE的中点,∴AF=EF,在△AFM和△EFD中,∠MAF=∠DEF,AF=EF,∠AFM=∠EFD,∴△AFM≌△EFD ASA,∴AM=ED=BD,MF=DF,∵∠ACB=90∘,∴∠BCE=90∘,设BD与CE交于点O,∵∠BCE=∠BDE=90∘,∠BOC=∠DOE,∴∠CBD=∠DEF=∠MAF,在△ACM和△BCD中,AM=BD,∠MAC=∠DBC,AC=BC,∴△ACM≌△BCD SAS,∴∠ACM=∠BCD,CM=CD,∴∠MCD=90∘,∴△CDM是等腰直角三角形,∵MF=DF,∴∠CFD=90∘,CF=DF,∴CD=2DF.25. (1)1001;9999(2)设这个“和平数”为abcd,即abcd=1000a+100b+10c+d,则d=2a,a+b=c+d,b+c=12k(k为正整数),∴2c+a=12k,则a为偶数,即a=2,4,6,8,d=4,8,12舍去,16舍去.①当a=2,d=4时,2c+1=12k,可知c+1=6k,则k=1,又a+b=c+d,∴c=5,b=7.②当a=4,d=8时,2c+2=12k,可知c+2=6k,则k=1,又a+b=c+d,∴c=4,b=8,综上所述,这个数为2754,4848.(3)设任意的一组“相关和平数”为mnpq,nmqp(m,n,p,q分别取0,1,2,⋯,9且m≠0,n≠0),则mnpq+nmqp=1100m+n+11p+q=1111m+n,即任意的一组“相关和平数”之和是1111的倍数.26. (1)由题−65x2+455x+2=0,解得:x1=5,x2=−53,即A −53,0,B 5,0,C0,2.设直线BC的解析式为y=mx+n,将B 0,C0,2代入直线BC的解析式得:5m+n=0,n=2,解得m=−255,n=2.∴直线BC的解析式为y=−255x+2,∵AD∥BC,∴设直线AD的解析式为y=−255x+q,将A −53,0代入得0=−255× −53+q.解得q=−23,∴直线AD的解析式为y=−255x−23,由题意得抛物线的对称轴为直线x=53,∴D53,−43.(2)如图,作PR∥y轴交BC于R,则△PQR∽△BOC,∴PQPR =OBBC=53,即PQ=53PR,设P t,−65t2+455t+2,R t,−255t+2,∴PR=−65t2+655t,当t=52时,PR取最大值,则PQ取最大值.此时P52,52,作MN⊥x轴于N,则△BNM∽△BOC,∴MNBM =OCBC=23,即MN=23BM,则当P,M,N共线时,PM+23BM取得最小值,且PM+23BM=PN=52,此时M52,1.(3)如图所示.由抛物线的解析式,易求得顶点E的坐标为53,83,则直线AE的解析式为y=455x+43,设移动抛物线后,点Aʹ的坐标为 m,455m+43,点Eʹ的坐标为 m+253,455m+4,则AʹEʹ2=AE2=849,AʹB2= m−52+455m+432,EʹB2= m+253−52+455m+42,1)当AʹEʹ=AʹB,AʹEʹ∥BF1,AʹEʹ=BF1时,四边形AʹEʹF1B是菱形,此时m1=53,m2=−23563,Aʹ153,83,Aʹ2 −23563,−863.2)当AʹEʹ=EʹB,AʹEʹ∥BF2,AʹEʹ=BF2时,四边形AʹEʹBF2是菱形,此时m3=−53,m4=−65563,Aʹ3 −53,0,Aʹ4 −65563,−17663.3)当AʹB=EʹB,AʹF3∥BEʹ,AʹF3=BEʹ时,四边形AʹBEʹF3是菱形,此时m5=−22563,Aʹ5 −22563,−463.。

{3套试卷汇总}2017-2018宁波市江北某名校初中中考一模数学试题

{3套试卷汇总}2017-2018宁波市江北某名校初中中考一模数学试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.平面直角坐标系内一点()2, 3P -关于原点对称点的坐标是( )A .()3,2-B .()2,3C .()2,3--D .()2,3-【答案】D【解析】根据“平面直角坐标系中任意一点P (x ,y ),关于原点的对称点是(-x ,-y ),即关于原点的对称点,横纵坐标都变成相反数”解答.【详解】解:根据关于原点对称的点的坐标的特点,∴点A (-2,3)关于原点对称的点的坐标是(2,-3), 故选D .【点睛】本题主要考查点关于原点对称的特征,解决本题的关键是要熟练掌握点关于原点对称的特征. 2.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE ,且D 点落在对角线D′处.若AB=3,AD=4,则ED 的长为A .32B .3C .1D .43【答案】A【解析】首先利用勾股定理计算出AC 的长,再根据折叠可得△DEC ≌△D′EC ,设ED=x ,则D′E=x ,AD′=AC ﹣CD′=2,AE=4﹣x ,再根据勾股定理可得方程22+x 2=(4﹣x )2,再解方程即可【详解】∵AB=3,AD=4,∴DC=3∴根据勾股定理得AC=5根据折叠可得:△DEC ≌△D′EC ,∴D′C=DC=3,DE=D′E设ED=x ,则D′E=x ,AD′=AC ﹣CD′=2,AE=4﹣x ,在Rt △AED′中:(AD′)2+(ED′)2=AE 2,即22+x 2=(4﹣x )2,解得:x=32故选A.3.如图,半径为3的⊙A 经过原点O 和点C (0,2),B 是y 轴左侧⊙A 优弧上一点,则tan ∠OBC 为( )A.13B.22C.24D.223【答案】C【解析】试题分析:连结CD,可得CD为直径,在Rt△OCD中,CD=6,OC=2,根据勾股定理求得OD=4所以tan∠CDO=,由圆周角定理得,∠OBC=∠CDO,则tan∠OBC=,故答案选C.考点:圆周角定理;锐角三角函数的定义.4.如图,△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AD=2,BC=5,则△ABC的周长为()A.16 B.14 C.12 D.10【答案】B【解析】根据切线长定理进行求解即可.【详解】∵△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,∴AF=AD=2,BD=BE,CE=CF,∵BE+CE=BC=5,∴BD+CF=BC=5,∴△ABC的周长=2+2+5+5=14,故选B.【点睛】本题考查了三角形的内切圆以及切线长定理,熟练掌握切线长定理是解题的关键.5.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正确的结论有()A.1个B.2个C.3个D.4个【答案】C【解析】根据图像可得:a<0,b<0,c=0,即abc=0,则①正确;当x=1时,y<0,即a+b+c<0,则②错误;根据对称轴可得:-=-,则b=3a,根据a<0,b<0可得:a>b;则③正确;根据函数与x轴有两个交点可得:-4ac>0,则④正确.故选C.【点睛】本题考查二次函数的性质.能通过图象分析a,b,c的正负,以及通过一些特殊点的位置得出a,b,c之间的关系是解题关键.6.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为13,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A.(3,2)B.(3,1)C.(2,2)D.(4,2)【答案】A【解析】∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为13,∴ADBG =13,∵BG=6,∴AD=BC=2,∵AD∥BG,∴△OAD∽△OBG,∴OAOB =13,∴2OA OA +=13, 解得:OA=1,∴OB=3,∴C 点坐标为:(3,2),故选A .7.如图,矩形 ABCD 的边 AB=1,BE 平分∠ABC ,交 AD 于点 E ,若点 E 是 AD 的中点,以点 B 为圆心,BE 长为半径画弧,交 BC 于点 F ,则图中阴影部分的面积是( )A .2-4πB .324π-C .2-8πD .324π- 【答案】B【解析】利用矩形的性质以及结合角平分线的性质分别求出AE ,BE 的长以及∠EBF 的度数,进而利用图中阴影部分的面积=S ABCD 矩形-S ABE -S EBF 扇形,求出答案.【详解】∵矩形ABCD 的边AB=1,BE 平分∠ABC ,∴∠ABE=∠EBF=45°,AD ∥BC ,∴∠AEB=∠CBE=45°,∴AB=AE=1,BE=2 ,∵点E 是AD 的中点,∴AE=ED=1,∴图中阴影部分的面积=S ABCD 矩形 −S ABE −S EBF 扇形 =1×2−12×1×1−245(2)3=-24π⨯π 故选B.【点睛】此题考查矩形的性质,扇形面积的计算,解题关键在于掌握运算公式8.如图,将△ABC 沿BC 边上的中线AD 平移到△A'B'C'的位置,已知△ABC 的面积为9,阴影部分三角形的面积为1.若AA'=1,则A'D 等于( )A.2 B.3 C .23D.32【答案】A【解析】分析:由S△ABC=9、S△A′EF=1且AD为BC边的中线知S△A′DE=12S△A′EF=2,S△ABD=12S△ABC=92,根据△DA′E∽△DAB知2A DEABDSA DAD S''=(),据此求解可得.详解:如图,∵S△ABC =9、S△A′EF=1,且AD为BC边的中线,∴S△A′DE=12S△A′EF=2,S△ABD=12S△ABC=92,∵将△ABC沿BC边上的中线AD平移得到△A'B'C',∴A′E∥AB,∴△DA′E∽△DAB,则2A DEABDSA DAD S''=(),即22912A DA D'='+(),解得A′D=2或A′D=-25(舍),故选A.点睛:本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.9.为了锻炼学生身体素质,训练定向越野技能,某校在一公园内举行定向越野挑战赛.路线图如图1所示,点E为矩形ABCD边AD的中点,在矩形ABCD的四个顶点处都有定位仪,可监测运动员的越野进程,其中一位运动员P从点B出发,沿着B﹣E﹣D的路线匀速行进,到达点D.设运动员P的运动时间为t,到监测点的距离为y.现有y与t的函数关系的图象大致如图2所示,则这一信息的来源是()A.监测点A B.监测点B C.监测点C D.监测点D【答案】C【解析】试题解析:A、由监测点A监测P时,函数值y随t的增大先减少再增大.故选项A错误;B、由监测点B监测P时,函数值y随t的增大而增大,故选项B错误;C、由监测点C监测P时,函数值y随t的增大先减小再增大,然后再减小,选项C正确;D、由监测点D监测P时,函数值y随t的增大而减小,选项D错误.故选C.10.如图,AB是⊙O的直径,点E为BC的中点,AB=4,∠BED=120°,则图中阴影部分的面积之和为()A.1 B.3C.3D.23【答案】C【解析】连接AE,OD,OE.∵AB是直径,∴∠AEB=90°.又∵∠BED=120°,∴∠AED=30°.∴∠AOD=2∠AED=60°.∵OA=OD.∴△AOD是等边三角形.∴∠A=60°.又∵点E为BC的中点,∠AED=90°,∴AB=AC.∴△ABC是等边三角形,∴△EDC是等边三角形,且边长是△ABC边长的一半23.∴∠BOE=∠EOD=60°,∴BE 和弦BE 围成的部分的面积=DE 和弦DE 围成的部分的面积.∴阴影部分的面积=EDC 1S =23=32∆⋅⋅.故选C . 二、填空题(本题包括8个小题)11.二次函数y=(a-1)x 2-x+a 2-1 的图象经过原点,则a 的值为______.【答案】-1【解析】将(2,2)代入y=(a-1)x 2-x+a 2-1 即可得出a 的值.【详解】解:∵二次函数y=(a-1)x 2-x+a 2-1 的图象经过原点,∴a 2-1=2,∴a=±1,∵a-1≠2,∴a≠1,∴a 的值为-1.故答案为-1.【点睛】本题考查了二次函数图象上点的坐标特征,图象过原点,可得出x=2时,y=2.12.可燃冰是一种新型能源,它的密度很小,31cm 可燃冰的质量仅为0.00092kg .数字0.00092用科学记数法表示是__________.【答案】9.2×10﹣1.【解析】根据科学记数法的正确表示为()10110n a a ⨯≤<,由题意可得0.00092用科学记数法表示是9.2×10﹣1.【详解】根据科学记数法的正确表示形式可得:0.00092用科学记数法表示是9.2×10﹣1.故答案为: 9.2×10﹣1. 【点睛】本题主要考查科学记数法的正确表现形式,解决本题的关键是要熟练掌握科学记数法的正确表现形式. 13.如图,已知正六边形ABCDEF 的外接圆半径为2cm ,则正六边形的边心距是__________cm .3【解析】连接OA ,作OM ⊥AB 于点M ,∵正六边形ABCDEF的外接圆半径为2cm∴正六边形的半径为2 cm,即OA=2cm在正六边形ABCDEF中,∠AOM=30°,∴正六边形的边心距是OM= cos30°×OA=323⨯=(cm)故答案为3.14.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B-C-D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是( )A.B.C.D.【答案】C【解析】分出情况当P点在BC上运动,与P点在CD上运动,得到关系,选出图象即可【详解】由题意可知,P从B开始出发,沿B—C—D向终点D匀速运动,则当0<x≤2,s=1 2 x当2<x≤3,s=1所以刚开始的时候为正比例函数s=12x图像,后面为水平直线,故选C【点睛】本题主要考查实际问题与函数图像,关键在于读懂题意,弄清楚P的运动状态15.在平面直角坐标系中,点A(2,3)绕原点O逆时针旋转90°的对应点的坐标为_____.【答案】(﹣3,2)【解析】作出图形,然后写出点A′的坐标即可.【详解】解答:如图,点A′的坐标为(-3,2).故答案为(-3,2).【点睛】本题考查的知识点是坐标与图象变化-旋转,解题关键是注意利用数形结合的思想求解.16.如图,一束光线从点A(3,3)出发,经过y轴上点C反射后经过点B(1,0),则光线从点A到点B经过的路径长为_____.【答案】2【解析】延长AC交x轴于B′.根据光的反射原理,点B、B′关于y轴对称,CB=CB′.路径长就是AB′的长度.结合A点坐标,运用勾股定理求解.【详解】解:如图所示,延长AC交x轴于B′.则点B、B′关于y轴对称,CB=CB′.作AD⊥x轴于D点.则AD=3,DB′=3+1=1.由勾股定理AB′=2∴AC+CB = AC+CB′= AB′=2.即光线从点A到点B经过的路径长为2.考点:解直角三角形的应用点评:本题考查了直角三角形的有关知识,同时渗透光学中反射原理,构造直角三角形是解决本题关键17.分解因式:x2-9=_ ▲.【答案】(x+3)(x-3)【解析】x2-9=(x+3)(x-3),故答案为(x+3)(x-3).18.请写出一个比2大且比4小的无理数:________.【答案】π(5或7)【解析】利用完全平方数和算术平方根对无理数的大小进行估算,然后找出无理数即可<<,所以x的取值在4~16之间都可,故可填5【详解】设无理数为x,4x16【点睛】本题考查估算无理数的大小,能够判断出中间数的取值范围是解题关键三、解答题(本题包括8个小题)19.在如图的正方形网格中,每一个小正方形的边长为1;格点三角形ABC(顶点是网格线交点的三角形)的顶点A、C的坐标分别是(-4,6)、(-1,4);请在图中的网格平面内建立平面直角坐标系;请画出△ABC 关于x轴对称的△A1B1C1;请在y轴上求作一点P,使△PB1C的周长最小,并直接写出点P的坐标.【答案】(1)(2)见解析;(3)P(0,2).【解析】分析:(1)根据A,C两点的坐标即可建立平面直角坐标系.(2)分别作各点关于x轴的对称点,依次连接即可.(3)作点C关于y轴的对称点C′,连接B1C′交y轴于点P,即为所求.详解:(1)(2)如图所示:(3)作点C关于y轴的对称点C′,连接B1C′交y轴于点P,则点P即为所求.设直线B1C′的解析式为y=kx+b(k≠0),∵B1(﹣2,-2),C′(1,4),∴224k bk b-+=-⎧⎨+=⎩,解得:22kb=⎧⎨=⎩,∴直线AB2的解析式为:y=2x+2,∴当x=0时,y=2,∴P(0,2).点睛:本题主要考查轴对称图形的绘制和轴对称的应用.20.已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处,如图1,已知折痕与边BC交于点O,连接AP、OP、OA.若△OCP与△PDA的面积比为1:4,求边CD的长.如图2,在(Ⅰ)的条件下,擦去折痕AO、线段OP,连接BP.动点M在线段AP上(点M与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E.试问当动点M、N在移动的过程中,线段EF的长度是否发生变化?若变化,说明变化规律.若不变,求出线段EF的长度.【答案】(1)10;(2)25.【解析】(1)先证出∠C=∠D=90°,再根据∠1+∠3=90°,∠1+∠2=90°,得出∠2=∠3,即可证出△OCP∽△PDA;根据△OCP与△PDA的面积比为1:4,得出CP=12AD=4,设OP=x,则CO=8﹣x,由勾股定理得x2=(8﹣x)2+42,求出x,最后根据AB=2OP即可求出边AB的长;(2)作MQ∥AN,交PB于点Q,求出MP=MQ,BN=QM,得出MP=MQ,根据ME⊥PQ,得出EQ=12 PQ,根据∠QMF=∠BNF,证出△MFQ≌△NFB,得出QF=12QB,再求出EF=12PB,由(1)中的结论求出PB=228445+=,最后代入EF=12PB即可得出线段EF的长度不变【详解】(1)如图1,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴∠1+∠3=90°,∵由折叠可得∠APO=∠B=90°,∴∠1+∠2=90°,∴∠2=∠3,又∵∠D=∠C,∴△OCP∽△PDA;∵△OCP与△PDA的面积比为1:4,∴,∴ CP=12AD=4设OP=x,则CO=8﹣x,在Rt△PCO中,∠C=90°,由勾股定理得x2=(8﹣x)2+42,解得:x=5,∴AB=AP=2OP=10,∴边CD的长为10;(2)作MQ∥AN,交PB于点Q,如图2,∵AP=AB,MQ∥AN,∴∠APB=∠ABP=∠MQP.∴MP=MQ,∵BN=PM,∴BN=QM.∵MP=MQ,ME⊥PQ,∴EQ=PQ.∵MQ∥AN,∴∠QMF=∠BNF,∴△MFQ≌△NFB.∴QF=FB,∴EF=EQ+QF=12(PQ+QB)=12PB,由(1)中的结论可得:PC=4,BC=8,∠C=90°,∴228445+=∴EF=125∴在(1)的条件下,当点M、N在移动过程中,线段EF的长度不变,它的长度为5【点睛】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、勾股定理、等腰三角形的性质,关键是做出辅助线,找出全等和相似的三角形21.如图,平面直角坐标系中,直线AB:13y x b=-+交y轴于点A(0,1),交x轴于点B.直线x=1交AB于点D,交x轴于点E,P是直线x=1上一动点,且在点D的上方,设P(1,n).求直线AB的解析式和点B的坐标;求△ABP的面积(用含n的代数式表示);当S△ABP=2时,以PB为边在第一象限作等腰直角三角形BPC,求出点C的坐标.【答案】(1) AB的解析式是y=-13x+1.点B(3,0).(2)32n-1;(3) (3,4)或(5,2)或(3,2).【解析】试题分析:(1)把A的坐标代入直线AB的解析式,即可求得b的值,然后在解析式中,令y=0,求得x的值,即可求得B的坐标;(2)过点A作AM⊥PD,垂足为M,求得AM的长,即可求得△BPD和△PAB的面积,二者的和即可求得;(3)当S△ABP=2时,32n-1=2,解得n=2,则∠OBP=45°,然后分A、B、P分别是直角顶点求解.试题解析:(1)∵y=-13x+b经过A(0,1),∴b=1,∴直线AB的解析式是y=-13x+1.当y=0时,0=-13x+1,解得x=3,∴点B(3,0).(2)过点A作AM⊥PD,垂足为M,则有AM=1,∵x=1时,y=-13x+1=23,P在点D的上方,∴PD=n-23,S△APD=12PD•AM=12×1×(n-23)=12n-13由点B(3,0),可知点B到直线x=1的距离为2,即△BDP的边PD上的高长为2,∴S△BPD=12PD×2=n-23,∴S△PAB=S△APD+S△BPD=12n-13+n-23=32n-1;(3)当S△ABP=2时,32n-1=2,解得n=2,∴点P(1,2).∵E(1,0),∴PE=BE=2,∴∠EPB=∠EBP=45°.第1种情况,如图1,∠CPB=90°,BP=PC,过点C作CN⊥直线x=1于点N.∵∠CPB=90°,∠EPB=45°,∴∠NPC=∠EPB=45°.又∵∠CNP=∠PEB=90°,BP=PC,∴△CNP≌△BEP,∴PN=NC=EB=PE=2,∴NE=NP+PE=2+2=4,∴C(3,4).第2种情况,如图2∠PBC=90°,BP=BC,过点C作CF⊥x轴于点F.∵∠PBC=90°,∠EBP=45°,∴∠CBF=∠PBE=45°.又∵∠CFB=∠PEB=90°,BC=BP,∴△CBF≌△PBE.∴BF=CF=PE=EB=2,∴OF=OB+BF=3+2=5,∴C(5,2).第3种情况,如图3,∠PCB=90°,CP=EB ,∴∠CPB=∠EBP=45°,在△PCB 和△PEB 中,{CP EBCPB EBP BP BP=∠=∠=∴△PCB ≌△PEB (SAS ),∴PC=CB=PE=EB=2,∴C (3,2).∴以PB 为边在第一象限作等腰直角三角形BPC ,点C 的坐标是(3,4)或(5,2)或(3,2). 考点:一次函数综合题.22.已知抛物线2y x bx c =++过点(0,0),(1,3),求抛物线的解析式,并求出抛物线的顶点坐标.【答案】y=2x +2x ;(-1,-1).【解析】试题分析:首先将两点代入解析式列出关于b 和c 的二元一次方程组,然后求出b 和c 的值,然后将抛物线配方成顶点式,求出顶点坐标.试题解析:将点(0,0)和(1,3)代入解析式得:0{13c b c =++=解得:2{0b c == ∴抛物线的解析式为y=2x +2x ∴y=2x +2x=2(1)x +-1 ∴顶点坐标为(-1,-1).考点:待定系数法求函数解析式.23.如图,已知A ,B 两点在数轴上,点A 表示的数为-10,OB=3OA ,点M 以每秒3个单位长度的速度从点A 向右运动.点N 以每秒2个单位长度的速度从点O 向右运动(点M 、点N 同时出发)数轴上点B 对应的数是______.经过几秒,点M 、点N 分别到原点O 的距离相等?【答案】(1)1;(2)经过2秒或2秒,点M 、点N 分别到原点O 的距离相等【解析】试题分析:(1)根据OB=3OA ,结合点B 的位置即可得出点B 对应的数;(2)设经过x 秒,点M 、点N 分别到原点O 的距离相等,找出点M 、N 对应的数,再分点M 、点N 在点O 两侧和点M 、点N 重合两种情况考虑,根据M 、N 的关系列出关于x 的一元一次方程,解之即可得出结论.试题解析:(1)∵OB=3OA=1,∴B对应的数是1.(2)设经过x秒,点M、点N分别到原点O的距离相等,此时点M对应的数为3x-2,点N对应的数为2x.①点M、点N在点O两侧,则2-3x=2x,解得x=2;②点M、点N重合,则,3x-2=2x,解得x=2.所以经过2秒或2秒,点M、点N分别到原点O的距离相等.24.解方程:112 22xx x-=---【答案】无解【解析】解:去分母:方程两边同时乘以x-2,得1-x=-1-2(x-2)1-x="-1-2x+4X="2检验:当x=2时,x-2=0,所以x=2不是原方程的解.∴原方程无解.【详解】请在此输入详解!25.如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直于x轴,垂足为点B,反比例函数y=kx(x>0)的图象经过AO的中点C,交AB于点D,且AD=1.设点A的坐标为(4,4)则点C的坐标为;若点D的坐标为(4,n).①求反比例函数y=kx的表达式;②求经过C,D两点的直线所对应的函数解析式;在(2)的条件下,设点E是线段CD上的动点(不与点C,D重合),过点E且平行y轴的直线l与反比例函数的图象交于点F,求△OEF面积的最大值.【答案】 (1)C(2,2);(2)①反比例函数解析式为y =4x ;②直线CD 的解析式为y =﹣12x+1;(1)m =1时,S △OEF 最大,最大值为14. 【解析】(1)利用中点坐标公式即可得出结论;(2)①先确定出点A 坐标,进而得出点C 坐标,将点C ,D 坐标代入反比例函数中即可得出结论; ②由n=1,求出点C ,D 坐标,利用待定系数法即可得出结论;(1)设出点E 坐标,进而表示出点F 坐标,即可建立面积与m 的函数关系式即可得出结论.【详解】(1)∵点C 是OA 的中点,A(4,4),O(0,0),∴C 4040,22++⎛⎫ ⎪⎝⎭, ∴C(2,2);故答案为(2,2);(2)①∵AD =1,D(4,n),∴A(4,n+1),∵点C 是OA 的中点,∴C(2,32n +), ∵点C ,D(4,n)在双曲线k y x =上, ∴3224n k k n+⎧=⨯⎪⎨⎪=⎩,∴14n k =⎧⎨=⎩, ∴反比例函数解析式为4y x=; ②由①知,n =1,∴C(2,2),D(4,1),设直线CD 的解析式为y =ax+b , ∴2241a b a b +=⎧⎨+=⎩, ∴123a b ⎧=-⎪⎨⎪=⎩,∴直线CD 的解析式为y =﹣12x+1; (1)如图,由(2)知,直线CD 的解析式为y =﹣12x+1,设点E(m,﹣12m+1),由(2)知,C(2,2),D(4,1),∴2<m<4,∵EF∥y轴交双曲线4yx=于F,∴F(m,4m),∴EF=﹣12m+1﹣4m,∴S△OEF=12(﹣12m+1﹣4m)×m=12(﹣12m2+1m﹣4)=﹣14(m﹣1)2+14,∵2<m<4,∴m=1时,S△OEF最大,最大值为14【点睛】此题是反比例函数综合题,主要考查了待定系数法,线段的中点坐标公式,解本题的关键是建立S△OEF与m的函数关系式.26.如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b4a-﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.a=,b=,点B的坐标为;当点P移动4秒时,请指出点P的位置,并求出点P的坐标;在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.【答案】(1)4,6,(4,6);(2)点P 在线段CB 上,点P 的坐标是(2,6);(3)点P 移动的时间是2.5秒或5.5秒.【解析】试题分析:(1460.a b --=可以求得,a b 的值,根据长方形的性质,可以求得点B 的坐标;(2)根据题意点P 从原点出发,以每秒2个单位长度的速度沿着O C B A O ----的线路移动,可以得到当点P 移动4秒时,点P 的位置和点P 的坐标;(3)由题意可以得到符合要求的有两种情况,分别求出两种情况下点P 移动的时间即可. 试题解析:(1)∵a 、b 460.a b --=∴a−4=0,b−6=0,解得a=4,b=6,∴点B 的坐标是(4,6),故答案是:4,6,(4,6);(2)∵点P 从原点出发,以每秒2个单位长度的速度沿着O−C−B−A−O 的线路移动,∴2×4=8,∵OA=4,OC=6,∴当点P 移动4秒时,在线段CB 上,离点C 的距离是:8−6=2,即当点P 移动4秒时,此时点P 在线段CB 上,离点C 的距离是2个单位长度,点P 的坐标是(2,6);(3)由题意可得,在移动过程中,当点P 到x 轴的距离为5个单位长度时,存在两种情况,第一种情况,当点P 在OC 上时,点P 移动的时间是:5÷2=2.5秒,第二种情况,当点P 在BA 上时,点P 移动的时间是:(6+4+1)÷2=5.5秒,故在移动过程中,当点P 到x 轴的距离为5个单位长度时,点P 移动的时间是2.5秒或5.5秒.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图所示,数轴上两点A,B分别表示实数a,b,则下列四个数中最大的一个数是()A.a B.b C.1aD.1b【答案】D【解析】∵负数小于正数,在(0,1)上的实数的倒数比实数本身大.∴1a <a<b<1b,故选D.2.如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是()A.3cm B.6cm C.2.5cm D.5cm【答案】D【解析】分析:根据垂径定理得出OE的长,进而利用勾股定理得出BC的长,再利用相似三角形的判定和性质解答即可.详解:连接OB,∵AC是⊙O的直径,弦BD⊥AO于E,BD=1cm,AE=2cm.在Rt△OEB中,OE2+BE2=OB2,即OE2+42=(OE+2)2解得:OE=3,∴OB=3+2=5,∴EC=5+3=1.在Rt△EBC中,22224845BE EC+=+=∵OF ⊥BC ,∴∠OFC=∠CEB=90°.∵∠C=∠C ,∴△OFC ∽△BEC , ∴OF OC BE BC =,即445OF =, 解得:OF=5.故选D .点睛:本题考查了垂径定理,关键是根据垂径定理得出OE 的长.3.有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的( )A .方差B .中位数C .众数D .平均数【答案】A【解析】试题分析:方差是用来衡量一组数据波动大小的量,体现数据的稳定性,集中程度;方差越大,即波动越大,数据越不稳定;反之,方差越小,数据越稳定.故教练要分析射击运动员成绩的波动程度,只需要知道训练成绩的方差即可.故选A.考点:1、计算器-平均数,2、中位数,3、众数,4、方差4.已知二次函数y =ax 2+bx+c (a≠0)的图象如图所示,则下列结论: ① abc <0;② 2a +b =0; ③ b 2-4ac <0;④ 9a+3b+c >0; ⑤ c+8a <0.正确的结论有( ).A .1个B .2个C .3个D .4个【答案】C 【解析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】解:抛物线开口向下,得:a <0;抛物线的对称轴为x=-2b a=1,则b=-2a ,2a+b=0,b=-2a ,故b >0;抛物线交y 轴于正半轴,得:c >0.∴abc <0, ①正确;2a+b=0,②正确;由图知:抛物线与x 轴有两个不同的交点,则△=b 2-4ac >0,故③错误;由对称性可知,抛物线与x 轴的正半轴的交点横坐标是x=3,所以当x=3时,y= 9a+3b+c=0,故④错误;观察图象得当x=-2时,y<0,即4a-2b+c<0∵b=-2a,∴4a+4a+c<0即8a+c<0,故⑤正确.正确的结论有①②⑤,故选:C【点睛】主要考查图象与二次函数系数之间的关系,会利用对称轴的表达式求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.5.如图,已知△ABC中,∠C=90°,AC=BC=2,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B的长为()A.2-2B.32C.3-1D.1【答案】C【解析】延长BC′交AB′于D,根据等边三角形的性质可得BD⊥AB′,利用勾股定理列式求出AB,然后根据等边三角形的性质和等腰直角三角形的性质求出BD、C′D,然后根据BC′=BD-C′D计算即可得解.【详解】解:延长BC′交AB′于D,连接BB',如图,在Rt△AC′B′中,2AC′=2,∵BC′垂直平分AB′,∴C′D=12AB=1,∵BD为等边三角形△ABB′的高,∴BD=3AB′=3,∴BC′=BD-C′D=3-1.故本题选择C.【点睛】熟练掌握勾股定理以及由旋转60°得到△A BB′是等边三角形是解本题的关键.6.计算6m3÷(-3m2)的结果是()A.-3m B.-2m C.2m D.3m【答案】B【解析】根据单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式计算,然后选取答案即可.【详解】6m3÷(﹣3m2)=[6÷(﹣3)](m3÷m2)=﹣2m.故选B.7.已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是()A.B.C.D.【答案】D【解析】此题运用圆锥的性质,同时此题为数学知识的应用,由题意蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短,就用到两点间线段最短定理.【详解】解:蜗牛绕圆锥侧面爬行的最短路线应该是一条线段,因此选项A和B错误,又因为蜗牛从p点出发,绕圆锥侧面爬行后,又回到起始点P处,那么如果将选项C、D的圆锥侧面展开图还原成圆锥后,位于母线OM上的点P应该能够与母线OM′上的点(P′)重合,而选项C还原后两个点不能够重合.故选D.点评:本题考核立意相对较新,考核了学生的空间想象能力.8.五个新篮球的质量(单位:克)分别是+5、﹣3.5、+0.7、﹣2.5、﹣0.6,正数表示超过标准质量的克数,负数表示不足标准质量的克数.仅从轻重的角度看,最接近标准的篮球的质量是()A.﹣2.5 B.﹣0.6 C.+0.7 D.+5【答案】B【解析】求它们的绝对值,比较大小,绝对值小的最接近标准的篮球的质量.【详解】解:|+5|=5,|-3.5|=3.5,|+0.7|=0.7,|-2.5|=2.5,|-0.6|=0.6,∵5>3.5>2.5>0.7>0.6,∴最接近标准的篮球的质量是-0.6,故选B.【点睛】本题考查了正数和负数,掌握正数和负数的定义以及意义是解题的关键.9.若关于x的一元二次方程x2-2x-k=0没有实数根,则k的取值范围是()A.k>-1 B.k≥-1 C.k<-1 D.k≤-1【答案】C【解析】试题分析:由题意可得根的判别式,即可得到关于k的不等式,解出即可.由题意得,解得故选C.考点:一元二次方程的根的判别式点评:解答本题的关键是熟练掌握一元二次方程,当时,方程有两个不相等实数根;当时,方程的两个相等的实数根;当时,方程没有实数根.10.如图,下列各数中,数轴上点A表示的可能是()A.4的算术平方根B.4的立方根C.8的算术平方根D.8的立方根【答案】C【解析】解:由题意可知4的算术平方根是2,43434<2, 8的算术平方根是222<22,8的立方根是2,故根据数轴可知,故选C二、填空题(本题包括8个小题)11.如图,平行四边形ABCD中,AB=AC=4,AB⊥AC,O是对角线的交点,若⊙O过A、C两点,则图中阴影部分的面积之和为_____.【答案】1.【解析】∵∠AOB=∠COD,∴S阴影=S△AOB.∵四边形ABCD是平行四边形,∴OA=12AC=12×1=2.∵AB⊥AC,∴S阴影=S△AOB=12OA•AB=12×2×1=1.【点睛】本题考查了扇形面积的计算.12.一艘轮船在小岛A的北偏东60°方向距小岛80海里的B处,沿正西方向航行3小时后到达小岛的北偏西45°的C处,则该船行驶的速度为____________海里/时.【答案】404033【解析】设该船行驶的速度为x海里/时,由已知可得BC=3x,AQ⊥BC,∠BAQ=60°,∠CAQ=45°,AB =80海里,在直角三角形ABQ中求出AQ、BQ,再在直角三角形AQC中求出CQ,得出BC=40+403=3x,解方程即可.【详解】如图所示:该船行驶的速度为x海里/时,3小时后到达小岛的北偏西45°的C处,由题意得:AB=80海里,BC=3x海里,在直角三角形ABQ中,∠BAQ=60°,∴∠B=90°−60°=30°,∴AQ=12AB=40,BQ3=3在直角三角形AQC中,∠CAQ=45°,∴CQ=AQ=40,∴BC =40+403=3x , 解得:x =404033+. 即该船行驶的速度为404033+海里/时; 故答案为:404033+. 【点睛】 本题考查的是解直角三角形,熟练掌握方向角是解题的关键.13.一元二次方程()21210k x x ---=有两个不相等的实数根,则k 的取值范围是________. 【答案】2k <且1k ≠【解析】根据一元二次方程的根与判别式△的关系,结合一元二次方程的定义解答即可.【详解】由题意可得,1−k≠0,△=4+4(1−k)>0,∴k <2且k≠1.故答案为k <2且k≠1.【点睛】本题主要考查了一元二次方程的根的判别式的应用,解题中要注意不要漏掉对二次项系数1-k≠0的考虑. 14.如图,将正方形OABC 放在平面直角坐标系中,O 是原点,A 的坐标为(1,3),则点C 的坐标为_____.【答案】(﹣3,1)【解析】如图作AF ⊥x 轴于F ,CE ⊥x 轴于E .∵四边形ABCD 是正方形,∴OA=OC ,∠AOC=90°,∵∠COE+∠AOF=90°,∠AOF+∠OAF=90°,在△COE 和△OAF 中,90CEO AFO COE OAF OC OA ⎧∠=∠=⎪∠=∠⎨⎪=⎩,∴△COE ≌△OAF ,∴CE=OF ,OE=AF ,∵A (1,3),∴CE=OF=1,OE=AF=3,∴点C 坐标(﹣3,1),故答案为(3-,1).点睛:本题考查正方形的性质、全等三角形的判定和性质等知识,坐标与图形的性质,解题的关键是学会添加常用的辅助线,构造全等三角形解决问题,属于中考常考题型.注意:距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.15.如图,四边形ABCD 内接于⊙O ,AB 是⊙O 的直径,过点C 作⊙O 的切线交AB 的延长线于点P ,若∠P =40°,则∠ADC =____°.【答案】115°【解析】根据过C 点的切线与AB 的延长线交于P 点,∠P=40°,可以求得∠OCP 和∠OBC 的度数,又根据圆内接四边形对角互补,可以求得∠D 的度数,本题得以解决.【详解】解:连接OC ,如右图所示,由题意可得,∠OCP=90°,∠P=40°,∴∠COB=50°,∵OC=OB ,∴∠OCB=∠OBC=65°,∵四边形ABCD 是圆内接四边形,∴∠D=115°,故答案为:115°.【点睛】本题考查切线的性质、圆内接四边形,解题的关键是明确题意,找出所求问题需要的条件.16.用一个半径为10cm半圆纸片围成一个圆锥的侧面(接缝忽略不计),则该圆锥的高为.【答案】5【解析】试题分析:根据图形可知圆锥的侧面展开图的弧长为2π×10÷2=10π(cm),因此圆锥的底面半径为10π÷2π=5(cm),因此圆锥的高为:=5(cm).考点:圆锥的计算17.若不等式组130x abx->⎧⎨+≥⎩的解集是﹣1<x≤1,则a=_____,b=_____.【答案】-2 -3【解析】先求出每个不等式的解集, 再求出不等式组的解集, 即可得出关于a、b的方程, 求出即可.【详解】解:由题意得:1?30? x abx->⎧⎨+≥⎩①②解不等式① 得: x>1+a ,解不等式②得:x≤3 b -不等式组的解集为: 1+a<x≤3 b -不等式组的解集是﹣1<x≤1,∴..1+a=-1,3b-=1,解得:a=-2,b=-3故答案为: -2, -3.【点睛】本题主要考查解含参数的不等式组.18.如图,⊙O的半径为2,AB为⊙O的直径,P为AB延长线上一点,过点P作⊙O的切线,切点为C.若3BC的长为______.。

2017-2018学年重庆市江北区九年级上期末模拟数学试卷及解析答案

2017-2018学年重庆市江北区九年级上期末模拟数学试卷及解析答案

2017-2018学年重庆市江北区九年级(上)期末模拟数学试卷一、选择题(共10题;共30分)1.下列图形中,既是轴对称图形又是中心对称图形的是()A. B.C.D.2.如图,四边形ABCD内接于半圆O,已知∠ADC=140°,则∠AOC的大小是()A.40°B.60°C.70°D.80°3.如果反比例函数的图象经过点(-1,-2),则k的值是()A.2B.-2C.-3D. 34.如图,已知:如图,在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线y=(x>0)经过D点,交BC的延长线于E点,且OB•AC=160,有下列四个结论:①双曲线的解析式为y=(x>0);②E点的坐标是(5,8);③sin∠COA=;④AC+OB=12.其中正确的结论有()A.1个B.2个C.3个D.4个5.某县大力推进义务教育均衡发展,加强学校标准化建设,计划用三年时间对全县学校的设施和设备进行全面改造,2014年县政府已投资5亿元人民币,若每年投资的增长率相同,预计2016年投资7.2亿元人民币,那么每年投资的增长率为()A.20%B.40%C.-220%D.30%6.随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越越多地进入普通家庭,抽样调查显示,截止2015年底某市汽车拥有量为16.9万辆.己知2013年底该市汽车拥有量为10万辆,设2013年底至2015年底该市汽车拥有量的平均增长率为x,根据题意列方程得()A.10(1+x)2=16.9B.10(1+2x)=16.9C.10(1﹣x)2=16.9D.10(1﹣2x)=16.97.二次根式有意义,则x的取值范围是()A.x≤﹣7 B.x≥﹣7 C.x<﹣7 D.x>﹣78.如图,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BAO=30°,则∠OCB的度数为()A.30°B.60°C.50°D.40°9.已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象过点(﹣1,1)B.当a=﹣2时,函数图象与x轴没有交点C.若a>0,则当x≥1时,y随x的增大而减小D.若a<0,则当x≤1时,y随x的增大而增大10.以点O为圆心,以5cm为半径作⊙O,若线段OP的长为8cm,那么OP的中点A与⊙O 的位置关系是()A.A点在⊙O外B.A点在⊙O上 C.A点在⊙O内 D.不能确定二、填空题(共8题;共24分)11.如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠DCF=________.12.如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D,连接BD、BE、CE,若∠CBD=32°,则∠BEC的度数为________.13.计算:=________.14.在△ABC中,BA=BC,∠BAC=α,M是AC的中点,P是线段BM上的动点,将线段PA 绕点P顺时针旋转2α得到线段PQ.(1)若α=60°,且点P与点M重合(如图1),线段CQ的延长线交射线BM于点D,此时∠CDB的度数为________(2)在图2中,点P不与点B、M重合,线段CQ的延长线交射线BM于点D,则∠CDB 的度数为(用含α的代数式表示)________.(3)对于适当大小的α,当点P在线段BM上运动到某一位置(不与点B、M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ=DQ,则α的取值范围是________15.如图,直线l与半径为4的⊙O相切于点A,P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l,垂足为B,连接PA.设PA=x,PB=y,则(x﹣y)的最大值是________.16.如图所示,以边长为2的等边△ABO的顶点O为坐标原点,点B在x轴上,则经过点A 的反比例函数的表达式为________17.已知⊙O半径为3cm,点P到圆心O的距离为3cm,则点P与⊙O的位置关系是________.18.如图,△ABC中,∠C是直角,AB=12cm,∠ABC=60°,将△ABC以点B为中心顺时针旋转,使点C旋转到AB的延长线上的点D处,则AC边扫过的图形(阴影部分)的面积是________.三、解答题(共6题;共36分)19.解方程:x2﹣x﹣12=0.20.某批乒乓球的质量检验结果如下:(1)画出这批乒乓球“优等品”频率的折线统计图;(2)这批乒乓球“优等品”的概率的估计值是多少?(3)从这批乒乓球中选择5个黄球、13个黑球、22个红球,它们除颜色外都相同,将它们放入一个不透明的袋中.①求从袋中摸出一个球是黄球的概率;②现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后使从袋中摸出一个是黄球的概率不小于,问至少取出了多少个黑球?21.在Rt△ABC中,∠C=90°,BC=3,AC=4,以C点为圆心、BC长为半径画圆,请你判断点A与⊙C的位置关系.22.如图,在⊙O中,AB为弦,C、D在AB上,且AC=BD,请问图中有几个等腰三角形?把它们分别写出,并说明理由.23.D、E是圆O的半径OA、OB上的点,CD⊥OA、CE⊥OB,CD=CE,则弧CA与弧CB的关系是?24.如图,2×2网格(每个小正方形的边长为1)中,有A,O,B,C,D,E,F,H,G九个格点.抛物线l的解析式为y=x2+bx+c.(1)若l经过点O(0,0)和B(1,0),则b=,c= ;它还经过的另一格点的坐标为.(2)若l经过点H(﹣1,1)和G(0,1),求它的解析式及顶点坐标;通过计算说明点D (1,2)是否在l上.(3)若l经过这九个格点中的三个,直接写出所有满足这样的抛物线的条数.四、综合题(共10分)25.如图,在平面直角坐标系中,直角△ABC的三个顶点分别是A(﹣3,1),B(0,3),C (0,1)(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1;(2)分别连结AB1、BA1后,求四边形AB1A1B的面积.2017-2018学年重庆市江北区九年级(上)期末模拟数学试卷参考与答案与试题解析一、选择题1.【答案】D【考点】中心对称及中心对称图形【解析】【解答】解:A、是轴对称图形,但不是中心对称图形,故A错误;B、是中心对称图形,不是轴对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、既是轴对称图形,也是中心对称图形,故D正确.故选:D.【分析】依据轴对称图形的定义和中心对称图形的定义回答即可.2.【答案】D【考点】圆周角定理,圆内接四边形的性质【解析】【解答】解:∵四边形ABCD是圆内接四边形,∴∠ADC+∠B=180°,又∠ADC=140°,∴∠B=40°,∴∠AOC=2∠B=80°,故选:D.【分析】根据圆内接四边形的性质求出∠B的度数,根据圆周角定理得到答案.3.【答案】D【考点】待定系数法求反比例函数解析式【解析】【分析】根据反比例函数图象上点的坐标特征,将(-1,-2)代入已知反比例函数的解析式,列出关于系数k的方程,通过解方程即可求得k的值.【解答】根据题意,得-2=,即2=k-1,解得,k=3.故选D.【点评】此题考查的是用待定系数法求反比例函数的解析式,是中学阶段的重点.解答此题时,借用了“反比例函数图象上点的坐标特征”这一知识点.4.【答案】B【考点】反比例函数的应用【解析】【解答】解:过点C作CF⊥x轴于点F,∵OB•AC=160,A点的坐标为(10,0),∴OA•CF=OB•AC=×160=80,菱形OABC的边长为10,∴CF==8,在Rt△OCF中,∵OC=10,CF=8,∴OF==6,∴C(6,8),∵点D时线段AC的中点,∴D点坐标为,即(8,4),∵双曲线y=(x>0)经过D点,∴4=,即k=32,∴双曲线的解析式为:y=(x>0),故①错误;∵CF=8,∴直线CB的解析式为y=8,∴,解得x=4,y=8,∴E点坐标为(4,8),故②错误;∵CF=8,OC=10,∴sin∠COA= ,故③正确;∵A(10,0),C(6,8),∴AC= ,∵OB•AC=160,∴OB= ,∴AC+OB=4+8=12,故④正确.故选:B.【分析】过点C作CF⊥x轴于点F,由OB•AC=160可求出菱形的面积,由A点的坐标为(10,0)可求出CF的长,由勾股定理可求出OF的长,故可得出C点坐标,对角线OB、AC相交于D点可求出D点坐标,用待定系数法可求出双曲线y=(x>0)的解析式,由反比例函数的解析式与直线BC的解析式联立即可求出E点坐标;由sin∠COA=可求出∠COA的正弦值;根据A、C两点的坐标可求出AC的长,由OB•AC=160即可求出OB的长.5.【答案】A【考点】一元二次方程的应用【解析】【解答】设每年投资的增长率为x ,根据题意,得:5(1+x)2=7.2,解得:x1=0.2=20%,x2=-2.2(舍去),故每年投资的增长率为为20%.故选:A.【分析】先设每年投资的增长率为x ,再根据2014年县政府已投资5亿元人民币,若每年投资的增长率相同,预计2016年投资7.2亿元人民币,列方程求解.此题主要考查了一元二次方程的实际应用,解题的关键是掌握增长率问题中的一般公式为a(1+x)n,其中n 为共增长了几年,a为第一年的原始数据,x是增长率.6.【答案】A【考点】一元二次方程的应用【解析】【解答】解:设2013年底至2015年底该市汽车拥有量的平均增长率为x,根据题意,可列方程:10(1+x)2=16.9,故选:A.【分析】根据题意可得:2013年底该市汽车拥有量×(1+增长率)2=2015年底某市汽车拥有量,根据等量关系列出方程即可.此题主要考查了由实际问题抽象出一元二次方程,关键是掌握平均变化率的方法,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.7.【答案】B【考点】二次根式有意义的条件【解析】【解答】解:由题意,得x+7≥0,解得x≥﹣7,【分析】根据被开房数是非负数,可得答案.8.【答案】B【考点】切线的性质,切线的判定与性质【解析】【解答】解:∵AB是⊙O的切线,B为切点,∴∠OBA=90°,∵∠BAO=30°,∴∠O=60°,∵OB=OC,∴△OBC是等边三角形,∴∠OCB=60°,故选:B.【分析】根据切线性质得出∠OBA=90°,求出∠O=60°,证出△OBC是等边三角形,即可得出结果.9.【答案】D【考点】二次函数的性质【解析】【解答】解:A、∵当a=1,x=﹣1时,y=1+2﹣1=2,∴函数图象不经过点(﹣1,1),故错误;B、当a=﹣2时,∵△=42﹣4×(﹣2)×(﹣1)=8>0,∴函数图象与x轴有两个交点,故错误;C、∵抛物线的对称轴为直线x=﹣=1,∴若a>0,则当x≥1时,y随x的增大而增大,故错误;D、∵抛物线的对称轴为直线x=﹣=1,∴若a<0,则当x≤1时,y随x的增大而增大,故正确;【分析】把a=1,x=﹣1代入y=ax2﹣2ax﹣1,于是得到函数图象不经过点(﹣1,1),根据△=8>0,得到函数图象与x轴有两个交点,根据抛物线的对称轴为直线x=﹣=1判断二次函数的增减性.10.【答案】C【考点】点与圆的位置关系【解析】【解答】解:∵OP=8cm,A是线段OP的中点,∴OA=4cm,小于圆的半径5cm,∴点A在圆内.故选C.【分析】知道OP的长,点A是OP的中点,得到OA的长与半径的关系,求出点A与圆的位置关系.二、填空题11.【答案】20°【考点】圆周角定理【解析】【解答】解:∵⊙O的直径CD过弦EF的中点G,∴弧ED=弧DF(垂径定理),∴∠DCF=∠EOD(等弧所对的圆周角是圆心角的一半),∴∠DCF=20°.【分析】欲求∠DCF,又已知一圆心角,可利用圆周角与圆心角的关系求解.12.【答案】122°【考点】圆周角定理,三角形的内切圆与内心【解析】【解答】解:在⊙O中,∵∠CBD=32°,∵∠CAD=32°,∵点E是△ABC的内心,∴∠BAC=64°,∴∠EBC+∠ECB=(180°﹣64°)÷2=58°,∴∠BEC=180°﹣58°=122°.故答案为:122°.【分析】根据圆周角定理可求∠CAD=32°,再根据三角形内心的定义可求∠BAC,再根据三角形内角和定理和三角形内心的定义可求∠EBC+∠ECB,再根据三角形内角和定理可求∠BEC 的度数.13.【答案】12【考点】二次根式的乘除法【解析】【解答】解:=3 ×÷=3=12.故答案为:12.【分析】直接利用二次根式乘除运算法则化简求出答案.14.【答案】30°;90°﹣α;45°<α<60°【考点】圆周角定理,生活中的旋转现象【解析】【解答】解:(1)如图1,∵BA=BC,∠BAC=60°,∴AB=BC=AC,∠ABC=60°,∵M为AC的中点,∴MB⊥AC,∠CBM=30°,AM=MC.∵PQ由PA旋转而成,∴AP=PQ=QM=MC.∵∠AMQ=2α=120°,∴∠MCQ=60°,∠QMD=30°,∴∠MQC=60°.∴∠CDB=30°.故答案为:30°;(2)如图2,连接PC,∵由(1)得BM垂直平分AC,∴AP=PC,∠ADB=∠CDB,∠PAD=∠PCD,又∵PQ=PA,∴PQ=PC=PA,∴Q,C,A在以P为圆心,PA为半径的圆上,∴∠ACQ=∠APQ=α,∴∠BAC=∠ACD,∴DC∥BA,∴∠CDB=∠ABD=90°﹣α.故答案为:90°﹣α;(3)∵∠CDB=90°﹣α,且PQ=QD,∴∠PAD=∠PCQ=∠PQC=2∠CDB=180°﹣2α,∵点P不与点B,M重合,∴∠BAD>∠PAD>∠MAD,∴2α>180°﹣2α>α,∴45°<α<60°.故答案为:45°<α<60°.【分析】(1)由条件可得出AB=BC=AC,再利用旋转可得出QM=MC,证得CB=CD=BA,再由三角形外角的性质即可得出结论;(2)由(1)可得BM为AC的垂直平分线,结合条件可以得出Q,C,A在以P为圆心,PA为半径的圆上,由圆周角定理可得∠ACQ=∠APQ=α,可得出∠CDB和α的关系;(3)借助(2)的结论和PQ=QD,可得出∠PAD=∠PCQ=∠PQC=2∠CDB=180°﹣2α,结合∠BAD>∠PAD>∠MAD,代入可得出α的范围.15.【答案】2【考点】切线的性质【解析】【解答】解:如图,作直径AC,连接CP,∴∠CPA=90°,∵AB是切线,∴CA⊥AB,∵PB⊥l,∴AC∥PB,∴∠CAP=∠APB,∴△APC∽△PBA,∴,∵PA=x,PB=y,半径为4,∴,∴y= x2,∴x﹣y=x﹣x2=﹣x2+x=﹣(x﹣4)2+2,当x=4时,x﹣y有最大值是2,故答案为:2.【分析】作直径AC,连接CP,得出△APC∽△PBA,利用,得出y= x2,所以x﹣y=x﹣x2=﹣x2+x=﹣(x﹣4)2+2,当x=4时,x﹣y有最大值是2.16.【答案】y=-【考点】反比例函数系数k的几何意义【解析】【解答】解:过A作AM⊥BO于点M,∵△ABO为等边三角形,∴AB=BO=AO=2,∵AM⊥BO,∴OM=BO=1,∴AM=则点A的坐标为(﹣1,)则这个反比例函数的解析式为y=-.故答案为:y=-.【分析】过A作AM⊥BO于点M,根据等边三角形的性质和B点坐标求出A点坐标,然后用待定系数法求出解析式.17.【答案】点P在⊙O上【考点】点与圆的位置关系【解析】【解答】解:PO=r=3,点P在⊙O上,故答案为:点P在⊙O上.【分析】根据d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.18.【答案】36πcm2【考点】扇形面积的计算,旋转的性质【解析】【解答】解:∵∠C是直角,∠ABC=60°,∴∠BAC=90°﹣60°=30°,∴BC= AB= ×12=6cm,∵△ABC以点B为中心顺时针旋转得到△BDE,∴S△BDE=S△ABC,∠ABE=∠CBD=180°﹣60°=120°,∴阴影部分的面积=S扇形ABE+S△BDE﹣S扇形BCD﹣S△ABC=S扇形ABE﹣S扇形BCD= ﹣=48π﹣12π=36πcm2.故答案为:36πcm2.【分析】根据直角三角形两锐角互余求出∠BAC=30°,再根据直角三角形30°角所对的直角边等于斜边的一半可得BC= AB,然后求出阴影部分的面积=S扇形ABE﹣S扇形BCD,列计算即可得解.三、解答题19.【答案】解:分解因式得:(x+3)(x﹣4)=0,可得x+3=0或x﹣4=0,解得:x1=﹣3,x2=4.【考点】解一元二次方程-因式分解法【解析】【分析】方程左边利用十字相乘法分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程求解.20.【答案】解:(1)如图;(2)这批乒乓球“优等品”概率的估计值是0.946;(3)①∵袋中一共有球5+13+22=40个,其中有5个黄球,∴从袋中摸出一个球是黄球的概率为:②设从袋中取出了x个黑球,由题意得≥,解得x≥8,故至少取出了9个黑球.【考点】利用频率估计概率【解析】【分析】(1)根据统计表中的数据,先描出各点,然后折线连结即可;(2)根据频率估计概率,频率都在0.946左右波动,所以可以估计这批乒乓球“优等品”概率的估计值是0.946;(3)①用黄球的个数除以球的总个数即可;②设从袋中取出了x个黑球,根据搅拌均匀后使从袋中摸出一个是黄球的概率不小于,列出不等式,解不等式即可.21.【答案】解:如图所示:∵∠C=90°,BC=3,AC=4,以点C为圆心、BC长为半径画圆,∴AC>BC,则点A在⊙C外.【考点】点与圆的位置关系【解析】【分析】直接利用点与圆的位置关系进而得出答案.22.【答案】解:等腰三角形有:△OAB、△OCD.证明:∵OA=OB(同圆半径相等),∴△OAB是等腰三角形,∴∠A=∠B,又∵AC=BD,OA=OB,∴△OAC≌△OBD,∴OC=OD,∴△OCD是等腰三角形.【考点】圆的认识【解析】【分析】图中等腰三角形有两个,圆中半径处处相等,所以△OAB是等腰三角形,根据所给的已知条件,易证△OAC≌△OBD,根据全等三角形的性质,OC=OD,所以△OCD 也是等腰三角形.23.【答案】解:连CO∵DC⊥AD,CE⊥OBCD=EC∠1=∠2【考点】圆心角、弧、弦的关系【解析】【解答】连CO∵DC⊥AD,CE⊥OBCD=EC∠1=∠2【分析】此题考查了圆心角弦弧的关系,作好辅助线,利用好相关条件.24.【答案】解:(1)根据题意得:,解得:,故函数的解析式是:y=x2﹣x,点中H(﹣1,1)满足函数解析式,则另一个格点的坐标是(﹣1,1).故答案是:-,0,(﹣1,1);(2)根据题意得:,解得:,则函数的解析式是:y=x2+x+1,y=x2+x+1=(x+)2+,则顶点坐标为(﹣,),点D(1,2)在抛物线l上;(3)因为题目中的a=0.5,在这个条件下,抛物线的开口方向和开口大小是确定的.应该是4条,分别过HOB三点,AOC三点,HGD三点,还有FGC三点,综上所述,满足这样的抛物线有4条.【考点】二次函数的应用【解析】【分析】(1)把两个点代入解析式即可得到关于b、c的方程组,从而求得b和c 的值,然后把格点坐标代入解析式即可判断;(2)与(1)的解法相同;(3)二次函数的二次项系数不变,则抛物线的形状和开口方向不变,则移动抛物线的顶点到图中的一个点,同时,经过另外两个的抛物线就是符合要求的图形.四、综合题25.【答案】(1)解:如图,△A1B1C1为所作,(2)解:四边形AB1A1B的面积= ×6×4=12【考点】作图-旋转变换【解析】【分析】(1)利用网格特点,延长AC到A1使A1C=AC,延长BC到B1使B1C=BC,C点的对应点C1与C点重合,则△A1B1C1满足条件;(2)四边形AB1A1B的对角线互相垂直平分,则四边形AB1A1B为菱形,然后利用菱形的面积公式计算即可.本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.。

中考全真数学模拟试卷及答案

中考全真数学模拟试卷及答案

2017年中考全真数学模拟试卷一一、选择题本大题共10小题,每小题3分,共30分;1.“互联网+”已全面进入人们的日常生活,据有关部门统计,目前全国4G用户数达到亿,其中亿用科学记数法表示为A.×104B.×106C.×108D.×1082.如图,圆柱体中挖去一个小圆柱,那么这个几何体的主视图和俯视图分别为A.B.C.D.3.四个互不相等的整数的积是9,那么这四个整数的和等于A.27 B.9 C.0 D.以上答案都不对4.计算:﹣a23A.a6B.﹣a6C.a5D.﹣a55.如图,将一块直角三角板的直角顶点放在直尺的一边上.如果∠1=50°,那么∠2的度数是A.30°B.40°C.50°D.60°6.平面直角坐标系内的点A﹣1,2与点B﹣1,﹣2关于A.y轴对称B.x轴对称C.原点对称D.直线y=x对称7.化简2933mm m---的结果是A.3m+B.3m-C.33mmD.33mm8.如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则矩形MNPQ的面积是A.10 B.16 C.20 D.369.二次函数y=ax2+bx+ca≠0的图象如图所示,则下列说法:①abc<0;②2a+b=0;③9a+3b+c>0;④当﹣1<x<3时,y<0;⑤当x<0时,y随x的增大而减小,其中正确的个数为A.1 B.2 C.3 D.410.如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为A.cm B.cm C.cm D. 4cm二、填空题本大题共9小题,每小题4分,共36分11.如果互为,a b相反数,,x y互为倒数,则()+-的值是20142015a b xy__________;12.如图,若AB=AC,BD=CD,∠B=20°,∠BDC=120°,则∠A等于__________度.13.已知点A2,y1、Bm,y2是反比例函数y=的图象上的两点,且y1<y2.写出满足条件的m的一个值,m可以是.14.如图,已知矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于E,AD=8,AB=4,则DE的长为.15.下面的频数分布折线图分别表示我国A市与B市在2014年4月份的日平均气温的情况,记该月A市和B市日平均气温是8℃的天数分别为a 天和b天,则a+b= .16.对于X、Y定义一种新运算“”:XY=aX+bY,其中a、b为常数,等式右边是通常的加法和乘法的运算.已知:35=15,47=28,那么23= .17.如图,P A.PB分别切⊙O于A.B,点C、M是⊙O上的点,∠AMB=60°,过点C作的切线交P A.PB于E、F,△PEF的外心在PE上.已知PA=3,则AE 的长为.18.观察分析下列数据:0,﹣,,﹣3,2,﹣,3,…,根据数据排列的规律得到第16个数据应是结果需化简.19.如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为.三、解答题本大题共9小题,共84分20. 9分1计算:﹣12009×﹣﹣2+﹣π0+|1﹣sin60°|;2解方程组..21. 9分先化简,再求值:,其中x=222. 9分星期天,身高为1.6米的小红、小涛来到一个公园,用他们所学的知识测算一座塔的高度.如图,小红站在A处测得她看塔顶C的仰角α为45°,小涛站在B处测得塔顶C的仰角β为30°,他们又测出A.B 两点的距离为41.5米,假设他们的眼睛离头顶都是10厘米,求塔高结果保留根号.23. 9分一个盒子中装有两个红球和三个白球,这些球除颜色外都相同,从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,求两次都摸到白球的概率.24. 9分如图,在直角坐标系中,矩形O ABC的顶点O与坐标原点重合,顶点A,C分别在坐标轴上, 顶点B的坐标4,2,过点D0,3和E6,0的直线分别于AB,BC交于点M,N.1求直线D E的解析式和点M的坐标;若反比例函数y=x>0的图象经过点M,求该反比函数的解析式,并通过计算判断点N是否在该函数的图象上.25. 9分我们规定:线段外一点和这条线段两个端点连线所构成的角叫做这个点对这条线段的视角.如图1,对于线段AB及线段AB外一点C,我们称∠ACB为点C对线段AB的视角.如图2,在平面直角坐标系xoy中,已知点D0,4,E0,1.1⊙P为过D,E两点的圆,F为⊙P上异于点D,E的一点.①如果DE为⊙P的直径,那么点F对线段DE的视角∠DFE为度;②如果⊙P的半径为,那么点F对线段DE的视角∠DFE为度;2点G为x轴正半轴上的一个动点,当点G对线段DE的视角∠DGE最大时,求点G的坐标.26. 10分某纪念币从2013年11月11日起开始上市,通过市场调查得知该纪念币每1枚的市场价y单位:元与上市时间x单位:天的数据如下:41036上市时间x天市场价y元9051901根据上表数据,在某一特定时期内,可从下列函数中选取一个恰当的函数描述纪念币的市场价y与上市时间x的变化关系:①y=ax+ba≠0;②y=ax﹣h2+k a≠0;③y=a≠0.你可选择的函数的序号是.2利用你选取的函数,求该纪念币上市多少天时市场价最低,最低价格是多少27. 10分阅读下面材料:小明遇到这样一个问题:如图1,在等边三角形ABC内有一点P,且PA=3,PB=4,PC=5,求∠APB度数.小明发现,利用旋转和全等的知识构造△AP′C,连接PP′,得到两个特殊的三角形,从而将问题解决如图2.请回答:图1中∠APB的度数等于,图2中∠PP′C的度数等于.参考小明思考问题的方法,解决问题:如图3,在平面直角坐标系xOy中,点A坐标为﹣,1,连接AO.如果点B是x轴上的一动点,以AB为边作等边三角形AB C.当Cx,y在第一象限内时,求y与x之间的函数表达式.28. 10分如图,抛物线y=ax2+bx﹣5a≠0经过点A4,﹣5,与x轴的负半轴交于点B,与y轴交于点C,且OC=5OB,抛物线的顶点为点D.1求这条抛物线的表达式;2联结AB、BC、CD、DA,求四边形ABCD的面积;3如果点E在y轴的正半轴上,且∠BEO=∠ABC,求点E的坐标.答案解析一、选择题1. 分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:将亿用科学记数法表示为:×108.故选:C.2.分析:直接利用组合体结合主视图以及俯视图的观察角度得出答案.解:由几何体所示,可得主视图和俯视图分别为:和.故选:B.3.分析:根据题意可得出这四个数的值,继而可以确定这四个数的和解:由题意得:这四个数小于等于9,且互不相等.再由乘积为9可得,四个数中必有3和-3,∴四个数为:1,-1,3,-3,和为0.故选C.4.分析:根据积的乘方计算即可.解:﹣a23=﹣a6,故选B.5.分析:由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.解:如图,,∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°﹣50°=40°.故选B.6.分析:根据关于x轴对称点的坐标特点:纵坐标互为相反数,横坐标不变可得答案.解:平面直角坐标系内的点A﹣1,2与点B﹣1,﹣2关于x轴对称.故选:B.7.解:2299(m3)(m3)3 3333m mmm m m m-+--===+----,故选A8.分析:易得当R在PN上运动时,面积不断在增大,当到达点P时,面积开始不变,到达Q后面积不断减小,得到PN和QP的长度,相乘即可得所求的面积.解:∵x=4时,及R从N到达点P时,面积开始不变,∴PN=4,同理可得QP=5,∴矩形的面积为4×5=20.故选C.9.分析:①由抛物线的开口方向向下,与y轴交点在负半轴,对称轴在y 轴右侧,确定出a,b及c的正负,即可对于abc的正负作出判断;②函数图象的对称轴为:x=﹣=1,所以b=﹣2a,即2a+b=0;③根据抛物线与x轴的交点即可求得抛物线的对称轴,然后把x=3代入方程即可求得相应的y的符号;④由图象得到函数值小于0时,x的范围即可作出判断;⑤由图象得到当x<0时,y随x的变化而变化的趋势.解:根据图示知,抛物线开口方向向上,抛物线与y轴交与负半轴,对称轴在y轴右侧,则a>0,c<0,b<0,所以abc>0.故①错误;根据图象得对称轴x=1,即﹣=1,所以b=﹣2a,即2a+b=0,故②正确;当x=3时,y=0,即9a+3b+c=0.故③错误;根据图示知,当﹣1<x<3时,y<,故④正确;根据图示知,当x<0时,y随x的增大而减小,故⑤正确;故选C.10.解:连接OD,OC,作DE⊥AB于E,OF⊥AC于F,∵∠CAD=∠BAD角平分线的性质,∴=,∴∠DOB=∠OAC=2∠BAD,∴△AOF≌△OED,∴OE=AF=AC=3cm,在Rt△DOE中,DE==4cm,在Rt△ADE中,AD==4cm.故选A.二、填空题11.分析:根据互个数的和可得a+b=0,互为倒数的两个数的积等于1可得;解:依题意a+b=0;xy=1,2014a+b-2015xy=0-2015×1=-2015.12.分析:根据SSS证△BAD≌△CAD,根据全等得出∠BAD=∠CAD,∠B=∠C=20°,根据三角形的外角性质得出∠BDF=∠B+∠BAD,∠CDF=∠C+∠CAD,求出∠BDC=∠B+∠C+∠BAC,代入求出即可.解:过D作射线AF,在△BAD和△CAD中,,∴△BAD≌△CADSSS,∴∠BAD=∠CAD,∠B=∠C=20°,∵∠BDF=∠B+∠BAD,∠CDF=∠C+∠CAD,∴∠BDF+∠CDF=∠B+∠BAD+∠C+∠CAD,∴∠BDC=∠B+∠C+∠BAC,∵∠C=∠B=20°,∠BDC=120°,∴∠BAC=80°.故答案为:80.13.分析:由于y=在一、三象限,根据题意判定A.B在第一象限,根据反比例函数的性质即可求解.解:由于y=在一、三象限,y随x的增大而减小,若满足y1<y2,点A2,y1在第一象限,Bm,y2在第一象限,若满足y1<y2,则m满足的条件是0<m <2;故答案为1.14.分析:设DE=x,则AE=8﹣x.先根据折叠的性质和平行线的性质,得∠EBD=∠CBD=∠EDB,则BE=DE=x,然后在直角三角形ABE中根据勾股定理即可求解.解:设DE=x,则AE=8﹣x.根据折叠的性质,得∠EBD=∠CB D.∵AD∥BC,∴∠CBD=∠ADB,∴∠EBD=∠EDB,∴BE=DE=x.在直角三角形ABE中,根据勾股定理,得x2=8﹣x2+16,解得x=5.故答案为:5.15.分析:根据折线图即可求得a、b的值,从而求得代数式的值.解答解:根据图表可得:a=10,b=2,则a+b=10+2=12.故答案为:12.16.分析:本题是一种新定义运算题目.首先要根据运算的新规律,得出3a+5b=15①4a+7b=28②,①②﹣①即可得出答案.解:∵XY=aX+bY,35=15,47=28,∴3a+5b=15 ①4a+7b=28 ②,②﹣①=a+2b=13 ③,①﹣③=2a+3b=2,而23=2a+3b=2.17.分析:由切线长定理知:PA=PB,CE=CF,由△PEF的外心在PE上,知该三角形是直角三角形,由∠M=60°,可计算出∠P的度数,利用特殊角间关系,表示出AE、PE、PF、FB,利用EF=AE+BF可得方程,求出AE的长.解:连接O A.O B.∵∠AMB=60°,∴∠AOB=120°∵P A.PB分别切⊙O于A.B,∴PA=PB=3,∠OAP=∠OBP=90°,在四边形PAOB中,∠P=360°﹣∠PAO﹣∠AOB﹣∠OBP=60°∵△PEF的外心在PE上,∴△PEF是直角三角形,且∠PFE=90°.在Rt△PEF中,∵∠P=60°,∴PE=2PF,EF=PF.设AE的长为x,则PE=3﹣AE=3﹣x,则PF=3﹣x,EF=3﹣x,BF=3﹣PF=3+x∵EF是⊙O的切线,∴EA=EC,FC=F B.∵EF=EC+FC=AE+BF∴3﹣x=x+3+x,∴x=2﹣3.18.分析:通过观察可知,规律是根号外的符号以及根号下的被开方数依次是:﹣11+1×0,﹣12+1,﹣13+1…﹣1n+1,可以得到第16个的答案.解:由题意知道:题目中的数据可以整理为:,﹣12+1,…﹣1n+1,∴第16个答案为:.故答案为:.19.分析:根据翻折的性质,可得B′E的长,根据勾股定理,可得CE的长,根据等腰三角形的判定,可得答案.解:i当B′D=B′C时,过B′点作GH∥AD,则∠B′GE=90°,当B′C=B′D时,AG=DH=DC=8,由AE=3,AB=16,得BE=13.由翻折的性质,得B′E=BE=13.∴EG=AG﹣AE=8﹣3=5,∴B′G===12,∴B′H=GH﹣B′G=16﹣12=4,∴DB′===4ii当DB′=CD时,则DB′=16易知点F在BC上且不与点C、B重合.iii当CB′=CD时,∵EB=EB′,CB=CB′,∴点E、C在BB′的垂直平分线上,∴EC垂直平分BB′,由折叠可知点F与点C重合,不符合题意,舍去.综上所述,DB′的长为16或4.故答案为:16或4.三、解答题20.分析:1根据乘方的法则,绝对值的性质,三角函数的特殊值计算.2根据二元一次方程的代入法和加减消元法求解.解:1原式=﹣1×4+1+|1﹣|4分=﹣4+1+1﹣=﹣2﹣=﹣. 6分2由①×2+②得:7x=14,x=2,2分把x=2代入①得:y=﹣2. 4分∴原方程的解为. 6分21.分析:先算括号里面的,再算除法,最后把x的值代入进行计算即可.解:原式=+÷﹣=÷=÷==,当x=2时,原式==.22.分析:利用锐角三角函数关系得出PM的长,再利用=tan30°,求出x 的值即可.解:设塔底面中心为O,塔高xm,MN∥AB与塔中轴线相交于点P,得到△CPM、△CPN是直角三角形,则=tan45°,∵tan45°=1,∴x﹣=PM=CP,在Rt△CPN中, =tan30°,即=,解得:x=.答:塔高为m.23.分析:首先根据题意列出表格,然后由表格即可求得所有等可能的结果与两次都摸到白球的情况,再利用概率公式即可求得答案.解:列表得:第二次第一次红球1 红球2 白球1 白球2 白球3红球1 红1,红1 红1,红2 红1,白1 红1,白2 红1,白3红球2 红2,红1 红2,红2 红2,白1 红2,白2 红2,白3白球1 白1,红1 白1,红2 白1,白1 白1,白2 白1,白3白球2 白2,红1 白2,红2 白2,白1 白2,白2 白2,白3白球3 白3,红1 白3,红1 白3,白1 白3,白2 白3,白3∵共有25种等可能的结果,两次都摸到白球的有9种情况,∴两次都摸到红球的概率为:.24.分析:1设直线DE的解析式为y=kx+b,将D0,3,E6,0代入,利用待定系数法求出直线DE的解析式;由矩形的性质可得M点与B点纵坐标相等,将y=2 代入直线DE的解析式,求出x的值,即可得到M的坐标;将点M代入y=,利用待定系数法求出反比函数的解析式,再由直线D E 的解析式求出N点坐标, 进而即可判断点N是否在该函数的图象上.解:1设直线D E的解析式为y=kx+b,∵D0,3,E6,0,∴,解得,∴直线DE的解析式为y=﹣x+3;当y=2 时,﹣x+3=2,解得x=2,∴M的坐标为;∵反比例函数y=x>0的图象经过点M,∴m=2×2=4,∴该反比函数的解析式是y=;∵直线DE的解析式为y=﹣x+3,∴当x=4 时,y=﹣×4+3=1,∴N点坐标为4,1,∵4×1=4,∴点N在函数y=的图象上.25. 分析:1①利用直径所对的圆周角是直角直接写出答案即可;②作PM⊥y轴于点M,构造直角三角形,根据弦长和半径的长利用垂径定理及解直角三角形的知识求得圆心角的度数,从而求得视角的度数即可;2根据题意得到⊙P与x轴相切,G为切点时,∠DGE最大;首先根据点P 在线段ED的垂直平分线上,得到PG=,然后过点P作PH⊥DE于点H,得到EH=DE=,从而连接PE,在Rt△PEH中,PE=PG=,EH=,求得点G的坐标即可.解:1①如图1,当DE为⊙P的直径时,视角为90°;②如图2,作PM⊥y轴于点M,∵DE=3,∴ME=,∵PD=PE=,∴∠MPE=60°,∴∠F=60°,当点F位于劣弧DE上时,∠F为120°,∴∠DFE为60°或120°,故答案为:90°;60°或120°.2如图3,当⊙P与x轴相切,G为切点时,∠DGE最大,由题意知,点P在线段ED的垂直平分线上,∴PG=,过点P作PH⊥DE于点H,∴EH=DE=,∵PG⊥x轴,∴四边形PHOG为矩形.连接PE,在Rt△PEH中,PE=PG=,EH=,∴PH=2.所以点G2,0.26.分析:1根据市场价y单位:元与上市时间x单位:天的数据,逐一判断出可选择的函数的序号是哪个即可.2根据二次函数最值的求法,求出该纪念币上市多少天时市场价最低,最低价格是多少即可.解答:解:1①设纪念币的市场价y与上市时间x的变化关系是y=ax+b 时,则,解得.∴y=﹣+116,∵﹣×36+116=﹣118≠90,∴纪念币的市场价y与上市时间x的变化关系不是y=﹣+116;②设纪念币的市场价y与上市时间x的变化关系是y=ax﹣h2+k a≠0时,则解得∴y=x﹣202+26,∴纪念币的市场价y与上市时间x的变化关系是y=x﹣202+26.③4×90=360,10×51=510,36×90=3240,∵360≠510≠3240,∴纪念币的市场价y与上市时间x的变化关系不是y=a≠0.∴选择的函数的序号是②.2∵y=x﹣202+26,∴当x=20时,y有最小值26,∴该纪念币上市20天时市场价最低,最低价格为26元.答:该纪念币上市20天时市场价最低,最低价格为26元.27.分析:阅读材料:把△APB绕点A逆时针旋转60°得到△ACP′,根据旋转的性质可得P′A=PA,P′C=PB,∠PAP′=60°,然后求出△APP′是等边三角形,根据等边三角形的性质求出PP′=PA=3,∠AP′P=60°,再利用勾股定理逆定理求出∠PP′C=90°,然后求出∠AP′C,即为∠APB的度数;再利用全等三角形的判定和性质以及等边三角形的性质得出DF=CF,进而得出函数解析式即可.解答:解:阅读材料:把△APB绕点A逆时针旋转60°得到△ACP′,由旋转的性质,P′A=PA=3,P′D=PB=4,∠PAP′=60°,∴△APP′是等边三角形,∴PP′=PA=3,∠AP′P=60°,∵PP′2+P′C2=32+42=25,PC2=52=25,∴PP′2+P′C2=PC2,∴∠PP′C=90°,∴∠AP′C=∠AP′P+∠PP′C=60°+90°=150°;故∠APB=∠AP′C=150°;故答案为:150°;90°;如图3,在y轴上截取OD=2,作CF⊥y轴于F,AE⊥x轴于E,连接AD和CD,∵点A的坐标为﹣,1,∴tan∠AOE=,∴AO=OD=2,∠AOE=30°,∴∠AOD=60°.∴△AOD是等边三角形,又∵△ABC是等边三角形,∴AB=AC,∠CAB=∠OAD=60°,∴∠CAD=∠OAB,∴△ADC≌△AO B.∴∠ADC=∠AOB=150°,又∵∠ADF=120°,∴∠CDF=30°.∴DF=CF.∵Cx,y且点C在第一象限内,∴y﹣2=x,∴y=x+2x>0.28.分析:1先得出C点坐标,再由OC=5BO,得出B点坐标,将A.B两点坐标代入解析式求出a,b;2分别算出△ABC和△ACD的面积,相加即得四边形ABCD的面积;3由∠BEO=∠ABC可知,tan∠BEO=tan∠ABC,过C作AB边上的高CH,利用等面积法求出CH,从而算出tan∠ABC,而BO是已知的,从而利用tan∠BEO=tan∠ABC可求出EO长度,也就求出了E点坐标.解:1∵抛物线y=ax2+bx﹣5与y轴交于点C,∴C0,﹣5,∴OC=5.∵OC=5OB,∴OB=1,又点B在x轴的负半轴上,∴B﹣1,0.∵抛物线经过点A4,﹣5和点B﹣1,0,∴,解得,∴这条抛物线的表达式为y=x2﹣4x﹣5.2由y=x2﹣4x﹣5,得顶点D的坐标为2,﹣9.连接AC,∵点A的坐标是4,﹣5,点C的坐标是0,﹣5,又S△ABC=×4×5=10,S△ACD=×4×4=8,∴S四边形ABCD=S△ABC+S△ACD=18.3过点C作CH⊥AB,垂足为点H.∵S△ABC=×AB×CH=10,AB=5,∴CH=2,在RT△BCH中,∠BHC=90°,BC=,BH==3,∴tan∠CBH==.∵在RT△BOE中,∠BOE=90°,tan∠BEO=,∵∠BEO=∠ABC,∴,得EO=,∴点E的坐标为0,.。

浙江省宁波市江北区中考数学4月模拟试卷(含解析)

浙江省宁波市江北区中考数学4月模拟试卷(含解析)

2017年浙江省宁波市江北区中考数学模拟试卷(4月份)一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求)1.﹣2的绝对值是()A.﹣2 B.2 C.D.﹣2.下列运算正确的是()A.a+a2=a3B.(3a)2=6a2C.a6÷a2=a3D.a•a3=a43.宁波奥林匹克体育中心坐落于江北区,一期“三馆一圆”总投资35亿元,其中35亿元用科学记数法表示为()A.0.35×1010元B.3.5×108元C.3.5×109元D.35×108元4.如图是由4个大小相同的正方体搭成的几何体,其俯视图是()A.B.C.D.5.若二次根式有意义,则x的取值范围是()A.x>4 B.x≥4 C.x≤4 D.x≠46.一个不透明的布袋里装有6个黑球和3个白球,它们除颜色外其余都相同,从中任意摸出一个球,是白球的概率为()A.B.C.D.7.有一副七巧板如图所示,其中三个阴影部分的面积分别为S1,S2,S3,则S1:S2:S3=()A.1:2:3 B.1::2 C.1::4 D.1:2:48.如图是某市2016年四月每日的最低气温(℃)的统计图,则在四月份每日的最低气温这组数据中,中位数和众数分别是()A.14℃,14℃B.15℃,15℃C.14℃,15℃D.15℃,14℃9.已知圆形纸片⊙O的直径为2,将其沿着两条互相垂直的直径折叠,得到四层的扇形,将最上的一层“撑”开来,“鼓”成一个无底的圆锥,则这个圆锥的高是()A.B.C.D.110.如图,一场篮球赛中,篮球运动员跳起投篮,已知球出手时离地面高2.2m,与篮圈中心的水平距离为8m,当球出手后水平距离为4m时达到最大高度4m,篮圈运行的轨迹为抛物线的一部分,篮圈中心距离地面3m,运动员发现未投中,若假设出手的角度和力度都不变,要使此球恰好通过篮圈中心,运动员应该跳得()A.比开始高0.8m B.比开始高0.4m C.比开始低0.8m D.比开始低0.4m11.如图,在矩形ABCD内放入六个小正方形后形成一个中心对称图形,其中顶点E、F分别在边BC、AD上,则长AD与宽AB的比值为()A.6:5 B.13:10 C.8:7 D.4:312.如图,曲线AB是顶点为B,与y轴交于点A的抛物线y=﹣x2+4x+2的一部分,曲线BC 是双曲线y=的一部分,由点C开始不断重复“A﹣B﹣C”的过程,形成一组波浪线,点P 与Q均在该波浪线上,过点P、Q分别作x轴的垂线,垂足为M、N,连结PQ,则四边形PMNQ 的面积为()A.72 B.36 C.16 D.9二、填空题(每题4分,共24分)13.实数4的算术平方根是.14.分解因式:x2y﹣y= .15.在Rt△ABC中,∠C=90°,若sinA=,则cosB= .16.若(a﹣2)2﹣1=0,则5+8a﹣2a2的值为.17.有一玻璃密封器皿如图①,测得其底面直径为20cm,高20cm,现内装蓝色溶液若干.如图②放置时,测得液面高10cm;如图③放置时,测得液面高16cm;则该玻璃密封器皿总容量为cm3(结果保留π)18.如图,已知反比例函数y=﹣的图象与直线y=kx(k<0)相交于点A、B,以AB为底作等腰三角形,使∠ACB=120°,且点C的位置随着k的不同取值而发生变化,但点C始终在某一函数图象上,则这个图象所对应的函数解析式为.三、解答题(本题有8小题,共78分)19.计算:(﹣1)2017﹣+(﹣2017)0+tan45°.20.解方程:.21.某校以“我最想去的社会实践地”为课题,开展了一次调查,从全校同学中随机抽取了部分同学进行调查,每位同学从“荪湖花海”、“保国寺”、“慈城古镇”、“绿色学校”中选取一项最想去的社会实践地,并将调查结果绘制成如下的统计图(部分信息未给出).请根据统计图中信息,解答下列问题:(1)该调查的样本容量为,a= %,b= %,“荪湖花海”所对应扇形的圆心角度数为度.(2)补全条形统计图;(3)若该校共有1600名学生,请估计全校最想去“绿色学校”的学生共有多少名?22.如图,已知图①中抛物线y=ax2+bx+c经过点D(﹣1,0)、C(0,﹣1)、E(1,0).(1)求图①中抛物线的函数表达式;(2)将图①中抛物线向上平移一个单位,再绕原点O顺时针旋转180°后得到图②中抛物线,则图②中抛物线的函数表达式为;(3)图②中抛物线与直线y=﹣x﹣相交于A、B两点(点A在点B的左侧),如图③,求点A、B的坐标,并直接写出当一次函数的值大于二次函数的值时,x的取值范围.23.如图①,AE是⊙O的直径,点C是⊙O上的点,连结AC并延长AC至点D,使CD=CA,连结ED交⊙O于点B.(1)求证:点C是劣弧的中点;(2)如图②,连结EC,若AE=2AC=4,求阴影部分的面积.24.图中的网格称之为三角形网格,它的每一个小三角形都是边长为1的正三角形,画出格点△ABC(即△ABC三个顶点都在小正三角形的顶点处),如图所示,请按照下列要求,画出相应的图形,并计算.(1)请在①中画出一个与△ABC面积相等,且不全等的格点三角形,并写出相应的面积;(2)请在图②和图③中分别画出一个与△ABC相似,且互补全等的格点三角形,并写出相应的相似比k(△ABC与△A′B′C′之比)25.A、B两城由笔直的铁路连接,动车甲从A向B匀速前行,同时动车乙从B向A匀速前行,到达目的地时停止,其中动车乙速度较快,设甲乙两车相距y(km),甲行驶的时间为t (h),y关于t的函数图象如图所示.(1)填空:动车甲的速度为(km/h),动车乙的速度为(km/h);(2)求图中点P的坐标,并解释该点坐标所表示的实际意义;(3)两车何时相距1200km?26.定义:一个矩形的两邻边之比为,则称该矩形为“特比矩形”.(1)如图①,在“特比矩形”ABCD中, =,求∠AOD的度数;(2)如图②,特比矩形CDEF的边CD在半圆O的直径AB上,顶点E、F在半圆上,已知直径AB=,求矩形CDEF的面积;(3)在平面直角坐标系xOy中,⊙O的半径为,点Q的坐标为(q,2),如果在⊙O 上存在一点P,过点P作x轴的垂线与过点Q作y轴的垂线交于点M,过点P作y轴的垂线与过点Q作x轴的垂线交于点N,以点P、Q、M、N为顶点的矩形是“特比矩形”,请直接写出q的取值范围.27.如图①,在△ABC中,∠ACB=90°,AC=BC=,D、E是AB边上的两个动点,满足∠DCE=45°.(1)如图②,把△ADC绕着点C顺时针旋转90°,得到△BKC,连结EK.①求证:△DCE≌△KCE.②求证:DE2=AD2+BE2.③思考与探究:当点D从点A向AB的中点运动的过程中,请尝试写出DE长度的变化趋势;并直接写出DE长度的最大值或最小值(标明最大值或最小值).(2)如图③,若△CDE的外接圆⊙O分别交AC,BC于点F、G,求证:CF:CG=BE:AD.2017年浙江省宁波市江北区中考数学模拟试卷(4月份)参考答案与试题解析一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求)1.﹣2的绝对值是()A.﹣2 B.2 C.D.﹣【考点】15:绝对值.【分析】根据绝对值的定义,可直接得出﹣2的绝对值.【解答】解:|﹣2|=2,故选:B.2.下列运算正确的是()A.a+a2=a3B.(3a)2=6a2C.a6÷a2=a3D.a•a3=a4【考点】48:同底数幂的除法;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据合并同类项、积的乘方、同底数幂的除法、同底数幂的乘法法则进行计算.【解答】解:A、a与a2是相加,不是相乘,所以指数不能相加,故选本项错误;B、应为(3a)2=9a2,故本选项错误;C、应为a6÷a2=a6﹣2=a4,故本选项错误;D、a•a3=a1+3=a4,正确.故选D.3.宁波奥林匹克体育中心坐落于江北区,一期“三馆一圆”总投资35亿元,其中35亿元用科学记数法表示为()A.0.35×1010元B.3.5×108元C.3.5×109元D.35×108元【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:数据35亿=3500000000用科学记数法可表示:3.5×109,故选:C.4.如图是由4个大小相同的正方体搭成的几何体,其俯视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】找到从上面看所得到的图形即可.【解答】解:从上面看可得到一行正方形的个数为3,故选:C.5.若二次根式有意义,则x的取值范围是()A.x>4 B.x≥4 C.x≤4 D.x≠4【考点】72:二次根式有意义的条件.【分析】根据二次根式有意义的条件列出不等式,解不等式即可.【解答】解:由题意得,x﹣4≥0,解得,x≥4,故选:B.6.一个不透明的布袋里装有6个黑球和3个白球,它们除颜色外其余都相同,从中任意摸出一个球,是白球的概率为()A.B.C.D.【考点】X4:概率公式.【分析】直接根据概率公式即可得出结论.【解答】解:∵个不透明的布袋里装有6个黑球和3个白球,∴中任意摸出一个球,是白球的概率==.故选B.7.有一副七巧板如图所示,其中三个阴影部分的面积分别为S1,S2,S3,则S1:S2:S3=()A.1:2:3 B.1::2 C.1::4 D.1:2:4【考点】IM:七巧板.【分析】根据七巧板的特征,观察图形即可得到S1:S2:S3的比.【解答】解:由图形可知:S1:S2:S3=1:2:4.故选:D.8.如图是某市2016年四月每日的最低气温(℃)的统计图,则在四月份每日的最低气温这组数据中,中位数和众数分别是()A.14℃,14℃B.15℃,15℃C.14℃,15℃D.15℃,14℃【考点】W5:众数;VC:条形统计图;W4:中位数.【分析】中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可,本题是最中间的两个数;对于众数可由条形统计图中出现频数最大或条形最高的数据写出.【解答】解:由条形统计图中出现频数最大条形最高的数据是在第三组,14℃,故众数是14℃;因图中是按从小到大的顺序排列的,最中间的环数是14℃、14℃,故中位数是14℃.故选:A.9.已知圆形纸片⊙O的直径为2,将其沿着两条互相垂直的直径折叠,得到四层的扇形,将最上的一层“撑”开来,“鼓”成一个无底的圆锥,则这个圆锥的高是()A.B.C.D.1【考点】MP:圆锥的计算;PB:翻折变换(折叠问题).【分析】先求得圆锥的底面半径,然后利用底面半径、高及母线构成直角三角形求解即可.【解答】解:由题意知该无敌圆锥是由半圆O围成的,其半径为1,折叠后扇形的弧长为π,设圆锥的底面半径为r,则2πr=π,解得:r=,∴圆锥的高为=,故选C.10.如图,一场篮球赛中,篮球运动员跳起投篮,已知球出手时离地面高 2.2m,与篮圈中心的水平距离为8m,当球出手后水平距离为4m时达到最大高度4m,篮圈运行的轨迹为抛物线的一部分,篮圈中心距离地面3m,运动员发现未投中,若假设出手的角度和力度都不变,要使此球恰好通过篮圈中心,运动员应该跳得()A.比开始高0.8m B.比开始高0.4m C.比开始低0.8m D.比开始低0.4m【考点】HE:二次函数的应用.【分析】根据二次函数的图象具有对称性即可解答本题.【解答】解:由题意可得,运动员出手的位置距地面的高度应该与篮圈中心距地面的高度一样,∴运动员出手的位置距地面的高度为3m,∵3﹣2.2=0.8,∴要使此球恰好通过篮圈中心,运动员应该跳得比开始高0.8m,故选A.11.如图,在矩形ABCD内放入六个小正方形后形成一个中心对称图形,其中顶点E、F分别在边BC、AD上,则长AD与宽AB的比值为()A.6:5 B.13:10 C.8:7 D.4:3【考点】R5:中心对称图形.【分析】连结EF,作IJ⊥LJ于J,根据中心对称图形的定义和相似三角形的性质可得两直角边的比是2:1,进一步得到长AD与宽AB的比.【解答】解:连结EF,作IJ⊥LJ于J,∵在矩形ABCD内放入六个小正方形后形成一个中心对称图形,∴△HGF∽△FHE,△HGF≌△FML≌△LJI,∴HG:GF=FH:HE=1:2,∴长AD与宽AB的比为(1+2+1+2):(2+2+1)=6:5.故选:A.12.如图,曲线AB是顶点为B,与y轴交于点A的抛物线y=﹣x2+4x+2的一部分,曲线BC 是双曲线y=的一部分,由点C开始不断重复“A﹣B﹣C”的过程,形成一组波浪线,点P 与Q均在该波浪线上,过点P、Q分别作x轴的垂线,垂足为M、N,连结PQ,则四边形PMNQ 的面积为()A.72 B.36 C.16 D.9【考点】G5:反比例函数系数k的几何意义;H3:二次函数的性质;LI:直角梯形.【分析】A,C之间的距离为6,点Q与点P的水平距离为8,抛物线的顶点B的坐标为(2,6),进而得到A,B之间的水平距离为6,且k=12,根据四边形P'M'N'Q'的面积为=36,即可得到四边形PMNQ的面积为36.【解答】解:如图所示,A,C之间的距离为6,2017÷6=336…1,故点P离x轴的距离与点P'离x轴的距离相同,在y=﹣x2+4x+2中,当x=1时,y=5,即点P'离x轴的距离为5,∴P'M'=5,2025﹣2017=8,故点Q与点P的水平距离为8,即M'N'=MN=8,点Q离x轴的距离与点Q'离x轴的距离相同,由题可得,抛物线的顶点B的坐标为(2,6),故A,B之间的水平距离为6,且k=12,∵点D与点Q'的水平距离为1+8﹣6﹣2=1,点C与点Q'的水平距离为1+2=3,∴在y=中,当x=3时,y=4,即点Q'离x轴的距离为4,∴Q'N'=4,∵四边形P'M'N'Q'的面积为=36,∴四边形PMNQ的面积为36,故选:B.二、填空题(每题4分,共24分)13.实数4的算术平方根是 2 .【考点】22:算术平方根.【分析】依据算术平方根根的定义求解即可.【解答】解:∵22=4,∴4的算术平方根是2.故答案为:2.14.分解因式:x2y﹣y= y(x+1)(x﹣1).【考点】55:提公因式法与公式法的综合运用.【分析】观察原式x2y﹣y,找到公因式y后,提出公因式后发现x2﹣1符合平方差公式,利用平方差公式继续分解可得.【解答】解:x2y﹣y,=y(x2﹣1),=y(x+1)(x﹣1),故答案为:y(x+1)(x﹣1).15.在Rt△ABC中,∠C=90°,若sinA=,则cosB= .【考点】T4:互余两角三角函数的关系.【分析】根据一个角的余弦等于它余角的正弦,可得答案.【解答】解:由∠C=90°,若sinA=,得cosB=sinA=,故答案为:.16.若(a﹣2)2﹣1=0,则5+8a﹣2a2的值为11 .【考点】4C:完全平方公式;33:代数式求值.【分析】根据(a﹣2)2﹣1=0,可得(a﹣2)2=1,再将5+8a﹣2a2变形为﹣2(a﹣2)2+13,整体代入即可求解.【解答】解:∵(a﹣2)2﹣1=0,∴(a﹣2)2=1,∴5+8a﹣2a2=﹣2(a﹣2)2+13,=﹣2+13=11.故答案为:11.17.有一玻璃密封器皿如图①,测得其底面直径为20cm,高20cm,现内装蓝色溶液若干.如图②放置时,测得液面高10cm;如图③放置时,测得液面高16cm;则该玻璃密封器皿总容量为1400πcm3(结果保留π)【考点】8A:一元一次方程的应用.【分析】根据圆柱体的体积公式和图②和图③中的溶液体积相等,可以列出相应的方程,从而可以解答本题.【解答】解:设该玻璃密封器皿总容量为Vcm3,π×102×10=V﹣π×102×(20﹣16),解得,V=1400π,故答案为:1400π.18.如图,已知反比例函数y=﹣的图象与直线y=kx(k<0)相交于点A、B,以AB为底作等腰三角形,使∠ACB=120°,且点C的位置随着k的不同取值而发生变化,但点C始终在某一函数图象上,则这个图象所对应的函数解析式为y=.【考点】G8:反比例函数与一次函数的交点问题;KH:等腰三角形的性质.【分析】连接CO,过点A作AD⊥x轴于点D,过点C作CE⊥x轴于点E,证明△AOD∽△OCE,根据相似三角形的性质求出△AOD和△OCE面积比,根据反比例函数图象上点的特征求出S△,得到S△EOC,根据反比例函数比例系数k的几何意义求解.AOD【解答】解:连接CO,过点A作AD⊥x轴于点D,过点C作CE⊥x轴于点E,∵反比例函数y=﹣的图象与直线y=kx(k<0)相交于点A、B,以AB为底作等腰三角形,使∠ACB=120°,∴CO⊥AB,∠CAB=30°,则∠AOD+∠COE=90°,∵∠DAO+∠AOD=90°,∴∠DAO=∠COE,又∵∠ADO=∠CEO=90°,∴△AOD∽△OCE,∴===tan60°=,∴=()2=3,∵点A是双曲线y=﹣在第二象限分支上的一个动点,∴S△AOD=×|xy|=,∴S△OCE=,即×OE×CE=,∴OE×CE=,∴这个图象所对应的函数解析式为y=.故答案为:y=.三、解答题(本题有8小题,共78分)19.计算:(﹣1)2017﹣+(﹣2017)0+tan45°.【考点】2C:实数的运算;6E:零指数幂;T5:特殊角的三角函数值.【分析】原式利用乘方的意义,立方根定义,零指数幂法则,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=﹣1﹣2+1+1=﹣3+2=﹣1.20.解方程:.【考点】B3:解分式方程.【分析】观察可得2﹣x=﹣(x﹣2),所以可确定方程最简公分母为:(x﹣2),然后去分母将分式方程化成整式方程求解.注意检验.【解答】解:方程两边同乘以(x﹣2),得:x﹣3+(x﹣2)=﹣3,解得x=1,检验:x=1时,x﹣2≠0,∴x=1是原分式方程的解.21.某校以“我最想去的社会实践地”为课题,开展了一次调查,从全校同学中随机抽取了部分同学进行调查,每位同学从“荪湖花海”、“保国寺”、“慈城古镇”、“绿色学校”中选取一项最想去的社会实践地,并将调查结果绘制成如下的统计图(部分信息未给出).请根据统计图中信息,解答下列问题:(1)该调查的样本容量为200 ,a= 12 %,b= 36 %,“荪湖花海”所对应扇形的圆心角度数为108 度.(2)补全条形统计图;(3)若该校共有1600名学生,请估计全校最想去“绿色学校”的学生共有多少名?【考点】VC:条形统计图;V3:总体、个体、样本、样本容量;V5:用样本估计总体;VB:扇形统计图.【分析】(1)根据“慈城古镇”的人数及其百分比可得样本容量,用对应选项的人数除以总人数可得百分比,用“荪湖花海”对应百分比乘以360°可得圆心角度数;(2)用“荪湖花海”的百分比乘以样本容量求得其人数,即可补全图形;(3)用样本中“绿色学校”百分比乘以总人数可得答案.【解答】解:(1)样本容量为44÷22%=200,则a=×100%=12%,b=×100%=36%,“荪湖花海”所对应扇形的圆心角度数为360°×30%=108°,故答案为:200,12,36,108;(2)“荪湖花海”的人数为200×30%=60(人),补全条形图如下:(3)∵1600×36%=576(元),∴估计全校最想去“绿色学校”的学生共有576名.22.如图,已知图①中抛物线y=ax2+bx+c经过点D(﹣1,0)、C(0,﹣1)、E(1,0).(1)求图①中抛物线的函数表达式;(2)将图①中抛物线向上平移一个单位,再绕原点O顺时针旋转180°后得到图②中抛物线,则图②中抛物线的函数表达式为y=﹣x2;(3)图②中抛物线与直线y=﹣x﹣相交于A、B两点(点A在点B的左侧),如图③,求点A、B的坐标,并直接写出当一次函数的值大于二次函数的值时,x的取值范围.【考点】HC:二次函数与不等式(组);H6:二次函数图象与几何变换.【分析】(1)根据待定系数法,可得函数解析式;(2)根据平移规律:上移加,可得y=x2;根据旋转180°,可得答案.(3)根据解方程组,可得A,B点的坐标,根据一次函数图象在二次函数图象的上方,可得答案.【解答】解:(1)将D,C,E的坐标代入函数解析式,得,解得,图①中抛物线的函数表达式y=x2﹣1;(2)将图①中抛物线向上平移一个单位,得y=x2;再绕原点O顺时针旋转180°后得到图②中抛物线,得y=﹣x2,故答案为:y=﹣x2;(3)联立,得,解得,,即A(﹣,﹣)B(1,﹣1),由一次函数图象在二次函数图象的上方,得x<﹣或x>1.当一次函数的值大于二次函数的值时,x的取值范围是x<﹣或x>1.23.如图①,AE是⊙O的直径,点C是⊙O上的点,连结AC并延长AC至点D,使CD=CA,连结ED交⊙O于点B.(1)求证:点C是劣弧的中点;(2)如图②,连结EC,若AE=2AC=4,求阴影部分的面积.【考点】M5:圆周角定理;MO:扇形面积的计算.【分析】(1)连接CE,由AE是⊙O的直径,得到CE⊥AD,根据等腰三角形的性质得到∠AEC=∠DEC,于是得到结论;(2)连接BC,OB,OC,由已知条件得到△AED是等边三角形,得到∠A=60°,推出AE∥BC,∠BOC=60°,于是得到结论.【解答】解:(1)连接CE,∵AE是⊙O的直径,∴CE⊥AD,∵AC=CD,∴AE=ED,∴∠AEC=∠DEC,∴;∴点C是劣弧的中点;(2)连接BC,OB,OC,∵AE=2AC=4,∴∠AEC=30°,AE=AD,∴∠AED=60°,∴△AED是等边三角形,∴∠A=60°,∵=,∴==,∴AE∥BC,∠BOC=60°,∴S△OBC=S△EBC,∴S阴影=S扇形==π.24.图中的网格称之为三角形网格,它的每一个小三角形都是边长为1的正三角形,画出格点△ABC(即△ABC三个顶点都在小正三角形的顶点处),如图所示,请按照下列要求,画出相应的图形,并计算.(1)请在①中画出一个与△ABC面积相等,且不全等的格点三角形,并写出相应的面积;(2)请在图②和图③中分别画出一个与△ABC相似,且互补全等的格点三角形,并写出相应的相似比k(△ABC与△A′B′C′之比)【考点】SB:作图—相似变换;KK:等边三角形的性质.【分析】(1)作出一个与原三角形底边公共、高相等的三角形即可;(2)将原三角形的三边分别扩大2倍、倍即可得.【解答】解:(1)如图①所示,该三角形的面积为×1×=,(2)如图②所示,△ABC∽△A′B′C′,相似比为1:2,如图③所示,△ABC∽△A′B′C′,相似比为1:,25.A、B两城由笔直的铁路连接,动车甲从A向B匀速前行,同时动车乙从B向A匀速前行,到达目的地时停止,其中动车乙速度较快,设甲乙两车相距y(km),甲行驶的时间为t (h),y关于t的函数图象如图所示.(1)填空:动车甲的速度为(km/h),动车乙的速度为320 (km/h);(2)求图中点P的坐标,并解释该点坐标所表示的实际意义;(3)两车何时相距1200km?【考点】FH:一次函数的应用.【分析】(1)根据图中信息即可得到两车的速度;(2)根据题意和图形即可得到点P的坐标以及点P表示的实际意义;(3)根据题意,利用分类讨论的数学思想可以解答本题.【解答】解:(1)动车甲的速度==km/h,动车乙的速度,==320km/h;(2)由题意可得,点P的横坐标为:1600÷320=5,纵坐标为: =,即点P的坐标为(5,),该点坐标表示的实际意义是此时动车乙到达目的地,动车甲鱼动车乙的距离为km;(3)由题意可得,当相遇前相遇1200km,此时的时间为: =0.75h,当相遇后相遇1200km,由(2)知,当动车乙到达目的地时两车相距,故此时的时间为: h,即两车在0.75h和h相距1200km.26.定义:一个矩形的两邻边之比为,则称该矩形为“特比矩形”.(1)如图①,在“特比矩形”ABCD中, =,求∠AOD的度数;(2)如图②,特比矩形CDEF的边CD在半圆O的直径AB上,顶点E、F在半圆上,已知直径AB=,求矩形CDEF的面积;(3)在平面直角坐标系xOy中,⊙O的半径为,点Q的坐标为(q,2),如果在⊙O 上存在一点P,过点P作x轴的垂线与过点Q作y轴的垂线交于点M,过点P作y轴的垂线与过点Q作x轴的垂线交于点N,以点P、Q、M、N为顶点的矩形是“特比矩形”,请直接写出q的取值范围.【考点】MR:圆的综合题.【分析】(1)由tan∠ACB==,推出∠ACB=60°,由OC=OB,推出△OBC是等边三角形即可解决问题.(2)如图②中,连接OE,设DE=a,则CD=a,由Rt△FOC≌Rt△EDO,推出OC=OD=a,在Rt△OED中,OE=,根据OE2=DE2+OD2,列出方程即可解决问题.(3)取两个特殊点,求出点Q的坐标,再根据对称性即可解决问题.【解答】解:(1)如图①中,∵四边形ABCD是矩形,∴∠ABC=90°,OA=OC=OD=OB,∴tan∠ACB==,∴∠ACB=60°,∵OC=OB,∴△OBC是等边三角形,∴∠AOD=∠BOC=60°.(2)如图②中,连接OE,设DE=a,则CD=a,∵CF=DE,OE=OF,∠FCO=∠EDO=90°,∴Rt△FOC≌Rt△EDO,∴OC=OD=a,在Rt△OED中,OE=,∵OE2=DE2+OD2,∴=a2+a2,∴a=1(负根已经舍弃),∴DE=1,CD=,∴矩形CDEF的面积=1×=.(3)如图③中,①当点P在x轴正半轴上,易知PM=2,∵四边形PMQN是“特比矩形”,∴MQ=PM=6,此时Q(+6,2),当点P′在y轴的正半轴上时,P′M′=,∵四边形PMQN是“特比矩形”,∴P′M′=M′Q′,∴M′Q′=1,∴Q′(1,2),根据对称性、观察图象可知:点Q的横坐标q的取值范围为1≤≤+6或﹣﹣6≤q≤﹣1.27.如图①,在△ABC中,∠ACB=90°,AC=BC=,D、E是AB边上的两个动点,满足∠DCE=45°.(1)如图②,把△ADC绕着点C顺时针旋转90°,得到△BKC,连结EK.①求证:△DCE≌△KCE.②求证:DE2=AD2+BE2.③思考与探究:当点D从点A向AB的中点运动的过程中,请尝试写出DE长度的变化趋势当D从A到D时,DE越来越小,再继续运动到中点时,越来越大;;并直接写出DE长度的最大值或最小值DE最大值=1,DE最小值=2﹣2 (标明最大值或最小值).(2)如图③,若△CDE的外接圆⊙O分别交AC,BC于点F、G,求证:CF:CG=BE:AD.【考点】MR:圆的综合题.【分析】(1)①由旋转得:CD=CK,∠ACD=∠BCK,证明∠KCE=∠DCE=45°,根据SAS证明:△DCE≌△KCE;②先求∠KBE=45°+45°=90°,在Rt△KBE中,利用勾股定理可得结论;③如图2,本题可以看作是周长一定,即直角△EBK的周长为2,斜边DE的变化趋势,发现根据直角三角形斜边中线等于斜边的一半可知:DE的大小取决于直角△EBK斜边中线的大小,当直角△EBK是等腰直角三角形(设两直角边分别为a、b时,斜边为,因为a2+b2≥2ab,当a=b时,有最小值)时,中线最短,由此计算DE的最小值,当D 与A重合或D与AB的中点重合时,DE最大,最大值是1;(2)如图3,同①作辅助线,证明△FCG∽△EBK,列比例式得,由①得:△ACD≌△BCK,AD=BK,所以CF:CG=BE:AD.【解答】证明:(1)①如图1,由旋转得:△ACD≌△BCK,∴CD=CK,∠ACD=∠BCK,∵∠DCE=45°,∠ACB=90°,∴∠ACD+∠BCE=90°﹣45°=45°,∴∠BCK+∠BCE=45°,即∠KCE=45°,∴∠KCE=∠DCE,∵CE=CE,∴△DCE≌△KCE(SAS);②如图1,∵△ABC是等腰直角三角形,∴∠A=∠ABC=45°,∴DE=EK,∠KBC=∠A=45°,KB=AD,∴∠KBE=45°+45°=90°,在Rt△KBE中,KE2=BE2+KB2,∴DE2=AD2+BE2;③∵∠ACB=90°,AC=BC=,∴AB==2,设AD=x,DE=y,则BE=2﹣x﹣y,当点D从点A向AB的中点运动的过程中,0≤y≤1,0≤x≤1,AD=BE时,DE最小,如图2,BE=BK=x,则x=2﹣x﹣y,y=2﹣2x,∵KE2=BE2+KB2,∴y2=x2+x2,(2﹣2x)2=2x2,x2﹣4x+2=0,解得:x1=2+(不符合题意,舍去),x2=2﹣,∴y=2﹣2(2﹣)=2﹣2,即DE的最小值是:2﹣2,当D与A重合或D与AB的中点重合时,DE最大,最大值是1;∴DE长度的变化趋势是:当D从A到D时,DE越来越小,再继续运动到中点时,越来越大;故答案为:当D从A到D时,DE越来越小,再继续运动到中点时,越来越大;DE最大值=1,;(2)如图3,把△ADC绕着点C顺时针旋转90°,得到△BKC,连结EK,EG,∵D、C、E、G四点共圆,∴∠EGB=∠CDE,∵∠DCE=∠EBC=45°,在△CDE和△GEB中,∴∠CED=∠GEB,由①得:△CDE≌△CKE,∴∠CEK=∠GEB,∴∠CEK﹣∠GEK=∠GEB﹣∠GEK,即∠CEG=∠KEB,∵∠CEG=∠CFG,∴∠CFG=∠KEB,∵∠ACB=∠EBK=90°,∴△FCG∽△EBK,∴,由①得:△ACD≌△BCK,∴AD=BK,∴CF:CG=BE:AD.。

中考模拟考试 数学试卷 附答案解析

中考模拟考试 数学试卷 附答案解析
C.线段EF的长不变D.线段EF的长不能确定
二、空题(本大题共8个小题,每小题3分,满分24分)
11.点P(a,a-3)在第四象限,则a的取值范围是_____.
12.已知函数y=(m﹣1)x+m2﹣1 正比例函数,则m=_____.
13.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为()
一、选择题.(本大题共10个小题,每小题3分,满分30分)
1.有一直角三角形 两边长分别为3和4,则第三边长是()
A.5B.5或 C. D.
2.在平面直角坐标系中,点P(-20,a)与点Q(b,13)关于原点对称,则a+b的值为()
A.33B.-33C.-7D.7
3. 在平面直角坐标系中,将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是()
根据平行四边形的判定方法逐项判断即可.
【详解】解:A、AB∥CD,AD=BC,如等腰梯形,不能判断是平行四边形,故本选项错误;
B、∠B=∠C,∠A=∠D,不能判断是平行四边形,如等腰梯形,故本选项错误;
C、AB=CD,CB=AD,两组对边分别相等,可判断是平行四边形,正确;
D、AB=AD,CD=BC,两组邻边分别相等,不能判断是平行四边形;
考点:点的平移.
4.函数 中自变量x的取值范围是()
A. B. C. D.
【答案】B
【解析】
【分析】
根据二次根式中的被开方数非负数的性质进行计算,即可得到答案.
【详解】由二次根式中的被开方数非负数的性质可得 ,则 ,故选择B.
【点睛】本题考查函数自变量的取值范围,解题的关键是知道二次根式中的被开方数非负数.
∴线段EF的长不改变.

2017年重庆市江北区中考数学一模试卷(有答案)

2017年重庆市江北区中考数学一模试卷(有答案)

2017年重庆市江北区中考数学一模试卷一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.3的相反数是()A.3 B.﹣3 C.D.﹣2.在下列四个图形中,是中心对称图形的是()A.B.C.D.3.计算6x6÷3x2的结果是()A.2x3B.3x4C.2x4D.3x34.下列调查中,最适宜采用抽样调查方式的是()A.对全班同学体能测试达标情况的调查B.对嘉陵江水域水流污染情况的调查C.对乘坐飞机的旅客是否携带了违禁物品的检查D.对奥运会参赛者是否服用了兴奋剂的检查5.如图,直线a直线b被直线c所截,且a∥b,若∠1=40°,则∠2的度数是()A.30° B.60° C.120°D.140°6.若△ABC∽△A′B′C′,且△ABC与△A′B′C′的相似比为1:2,则△ABC与△A′B′C′的面积比是()A.1:1 B.1:2 C.1:3 D.1:47.分式有意义,则x的取值范围是()A.x≠2 B.x≠﹣2 C.x=2 D.x=﹣28.已知a2+2a﹣3=0,则代数式2a2+4a﹣3的值是()A.﹣3 B.0 C.3 D.69.如图,正方形ABCD的边长为2,连接BD,先以D为圆心,DA为半径作弧AC,再以D为圆心,DB为半径作弧BE,且D、C、E三点共线,则图中两个阴影部分的面积之和是()A.π B. +1 C.πD.π+110.下列图形是由同样大小的棋子按照一定规律排列而成的,其中,图1中有5个棋子,图2中有10个棋子,图3中有16个棋子,…,则图7中有()个棋子.A.35 B.40 C.45 D.5011.如图是某水库大坝的横截面示意图,已知AD∥BC,且AD、BC之间的距离为15米,背水坡CD的坡度i=1:0.6,为提高大坝的防洪能力,需对大坝进行加固,加固后大坝顶端AE比原来的顶端AD加宽了2米,背水坡EF的坡度i=3:4,则大坝底端增加的长度CF是()米.A.7 B.11 C.13 D.2012.在﹣3、﹣2、﹣1、0、1、2这六个数中,随机取出一个数,记为m,若数m使关于x的分式方程﹣1=的解是正实数或零,且使得的二次函数y=﹣x2+(2m﹣1)x+1的图象,在x>1时,y随x的增大而减小,则满足条件的所有m之和是()A.﹣2 B.﹣1 C.0 D.2二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.据报道,西部地区最大的客运枢纽系统﹣﹣重庆西站,一期工程已经完成90%,预计在年内建成投入使用.届时,预计每年客流量可达42000000人次,将数42000000用科学记数法表示为.14.计算:(π﹣3)0﹣|﹣2|+(﹣)﹣2= .15.如图,AB是⊙O的直径,点C和点D是⊙O上两点,连接AC、CD、BD,若CA=CD,∠ACD=80°,则∠CAB= °.16.从﹣1,﹣2,,四个数中,任取一个数记为k,再从余下的三个数中,任取一个数记为b.则一次函数y=kx+b 的图象不经过第四象限的概率是.17.甲、乙两人在1800米长的直线道路上跑步,甲、乙两人同起点、同方向出发,并分别以不同的速度匀速前进.已知,甲出发30秒后,乙出发,乙到终点后立即返回,并以原来的速度前进,最后与甲相遇,此时跑步结束.如图,y(米)表示甲、乙两人之间的距离,t(秒)表示甲出发的时间,图中折线及数据表示整个跑步过程中y与t函数关系.那么,乙到终点后秒与甲相遇.18.如图,正方形ABCD中,F为BC边上的中点,连接AF交对角线BD于G,在BD上截BE=BA,连接AE,将△ADE 沿AD翻折得△ADE′,连接E′C交BD于H,若BG=2,则四边形AGHE′的面积是.三、解答题:(本大题个小题,每小题分,共分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上.19.如图,在△ABC和△AEF中,AC∥EF,AB=FE,AC=AF,求证:∠B=∠E.20.为了了解某校初三学生体能水平,体育老师从刚结束的“女生800米,男生1000米”体能测试成绩中随机抽取了一部分同学的成绩,按照“优秀、良好、合格、不合格”进行了统计,并绘制了下列不完整的统计图,请根据(1)体育老师总共选取了多少人的成绩?扇形统计图中“优秀”部分的圆心角度数是多少?(2)把条形统计图补充完整;(3)已知某校初三在校生有2500人,从统计情况分析,请你估算此次体能测试中达到“优秀”水平的大约有多少人?四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上.21.计算:(1)(2a﹣b)2﹣2b(b﹣2a)(2)(x﹣)÷﹣.22.如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函双y=(m≠0)的阳象交于点c(n,3),与x轴、y轴分别交于点A、B,过点C作CM⊥x轴,垂足为M,若tan∠CAM=,OA=2.(1)求反比例函数和一次函数的解析式;(2)点D是反比例函数图象在第三象限部分上的一点,且到x轴的距离是3,连接AD、BD,求△ABD的面积.23.我市“尚品”房地产开发公司预计今年10月份将竣工一商品房小区,其中包括高层住宅区和别墅区一共60万平方米,且高层住宅区的面积不少于别墅区面积的3倍.(1)别墅区最多多少万平方米?(2)今年一月初,“尚品”公司开始出售该小区,其中高层住宅区的销售单价为8000元/平方米,别墅区的销售单价为12000元/平方米,并售出高层住宅区6万平方米,别墅区4万平方米,二月时,受最新政策“去库存,满足刚需”以及银行房贷利率打折的影响,该小区高层住宅区的销售单价比一月增加了a%,销售面积比一月增加了2a%;别墅区的销售单价比一月份减少了10%,销售面积比一月增加了a%,于是二月份该小区高层住宅区的销售总额比别墅区的销售总额多10080万元,求a的值.中点,连接DF.(1)如图1,若B、C、D共线,且AC=CD=2,求BF的长度;(2)如图2,若A、C、F、E共线,连接CD,求证:DC=DF.五、解答题:(本大题2个小题,25题10分,26题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上.25.一个四位数,记千位上和百位上的数字之和为x,十位上和个位上的数字之和为y,如果x=y,那么称这个四位数为“和平数”.例如:1423,x=1+4,y=2+3,因为x=y,所以1423是“和平数”.(1)直接写出:最小的“和平数”是,最大的“和平数”是;(2)求个位上的数字是千位上的数字的两倍且百位上的数字与十位上的数字之和是12的倍数的所有“和平数”;(3)将一个“和平数”的个位上与十位上的数字交换位置,同时,将百位上与千位上的数字交换位置,称交换前后的这两个“和平数”为一组“相关和平数”.例如:1423与4132为一组“相关和平数”求证:任意的一组“相关和平数”之和是1111的倍数.26.如图1,抛物线y=﹣x2+x+2的图象与x轴交于点A、B,与y轴交于点C,连接BC,过点A作AD∥BC交抛物线的对称轴于点D.(1)求点D的坐标;(2)如图2,点P是抛物线在第一象限内的一点,作PQ⊥BC于Q,当PQ的长度最大时,在线段BC上找一点M(不与点B、点C重合),使PM+BM的值最小,求点M的坐标及PM+BM的最小值;(3)抛物线的顶点为点E,平移抛物线,使抛物线的顶点E在直线AE上移动,点A,E平移后的对应点分别为点A′、E′.在平面内有一动点F,当以点A′、E′、B、F为顶点的四边形为菱形时,求出点A′的坐标.2017年重庆市江北区中考数学一模试卷参考答案与试题解析一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.3的相反数是()A.3 B.﹣3 C.D.﹣【考点】14:相反数.【分析】根据相反数的意义,3的相反数即是在3的前面加负号.【解答】解:根据相反数的概念及意义可知:3的相反数是﹣3.故选:B.2.在下列四个图形中,是中心对称图形的是()A.B.C.D.【考点】R5:中心对称图形.【分析】根据轴对称图形与中心对称图形的概念结合各图形的特点求解.【解答】解:A、是轴对称图形,不是中心对称图形,不符合题意;B、是轴对称图形,不是中心对称图形,不符合题意;C、不是轴对称图形,也不是中心对称图形,不符合题意;D、是轴对称图形,是中心对称图形,符合题意.故选:D.3.计算6x6÷3x2的结果是()A.2x3B.3x4C.2x4D.3x3【考点】4H:整式的除法.【分析】根据整式的除法即可求出答案.【解答】解:原式=2x4,故选(C)4.下列调查中,最适宜采用抽样调查方式的是()A.对全班同学体能测试达标情况的调查B.对嘉陵江水域水流污染情况的调查C.对乘坐飞机的旅客是否携带了违禁物品的检查D.对奥运会参赛者是否服用了兴奋剂的检查【考点】V2:全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:A、对全班同学体能测试达标情况的调查适合采用全面调查,不合题意;B、对嘉陵江水域水流污染情况的调查适合采用抽样调查,符合题意;C、对乘坐飞机的旅客是否携带了违禁物品的检查适合采用全面调查,不合题意;D、对奥运会参赛者是否服用了兴奋剂的检查适合全面调查,不合题意,故选:B.5.如图,直线a直线b被直线c所截,且a∥b,若∠1=40°,则∠2的度数是()A.30° B.60° C.120°D.140°【考点】JA:平行线的性质.【分析】两直线平行,同位角相等,据此可得∠3,再根据∠3和∠2的是邻补角,直接解答.【解答】解:∵a∥b,∠1=40°,∴∠3=∠1=40°,∴∠2=180°﹣∠3=180°﹣40°=140°.故选:D.6.若△ABC∽△A′B′C′,且△ABC与△A′B′C′的相似比为1:2,则△ABC与△A′B′C′的面积比是()A.1:1 B.1:2 C.1:3 D.1:4【考点】S7:相似三角形的性质.【分析】由△ABC∽△A′B′C′,且相似比为1:2,根据相似三角形的面积比等于相似比的平方,即可求得答案.【解答】解:∵△ABC∽△A′B′C′,且相似比为1:2,∴△ABC与△A′B′C′面积比是:1:4.故选:D.7.分式有意义,则x的取值范围是()A.x≠2 B.x≠﹣2 C.x=2 D.x=﹣2【考点】62:分式有意义的条件.【分析】根据分式有意义的条件:分母不等于0,即可求解.【解答】解:根据题意得:x﹣2≠0,解得:x≠2.故选A.8.已知a2+2a﹣3=0,则代数式2a2+4a﹣3的值是()A.﹣3 B.0 C.3 D.6【考点】33:代数式求值.【分析】将a2+2a=3代入2a2+4a﹣3即可求出答案.【解答】解:当a2+2a=3时原式=2(a2+2a)﹣3=6﹣3=3故选(C)9.如图,正方形ABCD的边长为2,连接BD,先以D为圆心,DA为半径作弧AC,再以D为圆心,DB为半径作弧BE,且D、C、E三点共线,则图中两个阴影部分的面积之和是()A.π B. +1 C.πD.π+1【考点】MO:扇形面积的计算;LE:正方形的性质.【分析】根据扇形的面积公式可得出阴影部分的面积等于扇形BDE的面积﹣扇形ACD的面积的一半﹣【解答】解:∵AB=2,∴BD=2,S阴影=S扇形BDE﹣S扇形ACD=﹣×=π﹣π=π,故选A.10.下列图形是由同样大小的棋子按照一定规律排列而成的,其中,图1中有5个棋子,图2中有10个棋子,图3中有16个棋子,…,则图7中有()个棋子.A.35 B.40 C.45 D.50【考点】38:规律型:图形的变化类.【分析】根据题意得出第n个图形中棋子数为1+2+3+…+n+1+2n,据此可得.【解答】解:∵图1中棋子有5=1+2+1×2个,图2中棋子有10=1+2+3+2×2个,图3中棋子有16=1+2+3+4+3×2个,…∴图7中棋子有1+2+3+4+5+6+7+8+7×2=50个,故选:D.11.如图是某水库大坝的横截面示意图,已知AD∥BC,且AD、BC之间的距离为15米,背水坡CD的坡度i=1:0.6,为提高大坝的防洪能力,需对大坝进行加固,加固后大坝顶端AE比原来的顶端AD加宽了2米,背水坡EF的坡度i=3:4,则大坝底端增加的长度CF是()米.A.7 B.11 C.13 D.20【考点】T9:解直角三角形的应用﹣坡度坡角问题.【分析】过D作DG⊥BC于G,EH⊥BC于H,解直角三角形即可得到结论.【解答】解:过D作DG⊥BC于G,EH⊥BC于H,∴GH=DE=2,∵DG=EH=15,背水坡CD的坡度i=1:0.6,背水坡EF的坡度i=3:4,∴CG=9,HF=20,∴CF=GH+HF﹣CG=13米,故选C.12.在﹣3、﹣2、﹣1、0、1、2这六个数中,随机取出一个数,记为m,若数m使关于x的分式方程﹣1=的解是正实数或零,且使得的二次函数y=﹣x2+(2m﹣1)x+1的图象,在x>1时,y随x的增大而减小,则满足条件的所有m之和是()A.﹣2 B.﹣1 C.0 D.2【考点】H3:二次函数的性质;B2:分式方程的解.【分析】通过解分式方程找出分式方程的解为x=1+且x≠,由其为正实数或零即可得出m的值,再根据二次函数的性质可找出关于m的一元一次不等式,解之即可得出m的取值范围,从而可确定m的值,将其相加即可得出结论.【解答】解:分式方程﹣1=的解为x=1+且x≠,∵x=1+为正实数或零且x≠,∴m=﹣2、0、1、2.∵二次函数y=﹣x2+(2m﹣1)x+1的图象,在x>1时,y随x的增大而减小,∴≤1,解得:m≤,∴m=﹣2、0、1,∴﹣2+0+1=﹣1.故选B.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.据报道,西部地区最大的客运枢纽系统﹣﹣重庆西站,一期工程已经完成90%,预计在年内建成投入使用.届时,预计每年客流量可达42000000人次,将数42000000用科学记数法表示为 4.2×107.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将数42000000用科学记数法表示为4.2×107,故答案为:4.2×107.14.计算:(π﹣3)0﹣|﹣2|+(﹣)﹣2= 3 .【考点】6F:负整数指数幂;6E:零指数幂.【分析】根据负整数指数幂以及零指数幂的意义即可求出答案.【解答】解:原式=1﹣2+(﹣2)2=3故答案为:315.如图,AB是⊙O的直径,点C和点D是⊙O上两点,连接AC、CD、BD,若CA=CD,∠ACD=80°,则∠CAB= 40 °.【考点】M5:圆周角定理.【分析】根据等腰三角形的性质先求出∠CDA,根据∠CDA=∠CBA,再根据直径的性质得∠ACB=90°,由此即可解决问题.【解答】解:∵∠ACD=80°,CA=CD,∴∠CAD=∠CDA==50°,∴∠ABC=∠ADC=50°,∵AB是直径,∴∠ACB=90°,∴∠CAB=90°﹣∠B=40°.故答案为:40.16.从﹣1,﹣2,,四个数中,任取一个数记为k,再从余下的三个数中,任取一个数记为b.则一次函数y=kx+b的图象不经过第四象限的概率是.【考点】X6:列表法与树状图法;F7:一次函数图象与系数的关系.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与一次函数y=kx+b的图象经过第四象限的情况,再利用概率公式即可求得答案.【解答】解:画树状图如下:∵一次函数y=kx+b的图象不经过第四象限,∴k>0、b>0,则一次函数y=kx+b的图象不经过第四象限的概率为=,故答案为:.17.甲、乙两人在1800米长的直线道路上跑步,甲、乙两人同起点、同方向出发,并分别以不同的速度匀速前进.已知,甲出发30秒后,乙出发,乙到终点后立即返回,并以原来的速度前进,最后与甲相遇,此时跑步结束.如图,y(米)表示甲、乙两人之间的距离,t(秒)表示甲出发的时间,图中折线及数据表示整个跑步过程中y与t函数关系.那么,乙到终点后秒与甲相遇.【考点】FH:一次函数的应用.【分析】根据速度=路程÷时间可求出甲的速度,由乙的速度=甲的速度+二者速度差可求出乙的速度,利用时间=路程÷速度可求出乙到达终点的时间,结合路程=速度×时间可求出此时甲离终点的距离,再根据相遇所需时间=甲离终点的距离÷甲、乙速度和,即可得出结论.【解答】解:甲的速度为90÷30=3(米/秒),乙的速度为3+90÷=4(米/秒).乙到达终点时,甲出发的时间为1800÷4+30=480(秒),此时甲离终点的距离为1800﹣3×480=360(米),乙返回后与甲相遇的时间为360÷(3+4)=(秒).故答案为:.18.如图,正方形ABCD中,F为BC边上的中点,连接AF交对角线BD于G,在BD上截BE=BA,连接AE,将△ADE沿AD翻折得△ADE′,连接E′C交BD于H,若BG=2,则四边形AGHE′的面积是﹣.【考点】PB:翻折变换(折叠问题);KQ:勾股定理;LE:正方形的性质;S9:相似三角形的判定与性质.【分析】先连接EE',过G作BC的垂线,交BC于M,交AD于N,则MN⊥AD,运用勾股定理,等腰直角三角形的性质以及相似三角形的性质,求得△DE'H的面积,△ADG的面积以及△ADE'的面积,再根据四边形AGHE′的面积=△ADG的面积+△ADE'的面积﹣△DE'H的面积,进行计算即可.【解答】解:如图所示,连接EE',过G作BC的垂线,交BC于M,交AD于N,则MN⊥AD,由BF∥AD可得,△BGF∽△DGA,∴=∵BG=2,F是BC的中点,∴DG=4,BD=6,∴等腰Rt△ABD中,AB=3,∴BE=BA=3,∴DE=6﹣3,由折叠可得,AD⊥EE',∠EDE'=90°,∴等腰Rt△DEE'中,EE'=DE=6﹣6,△DEE'的面积=DE2=(6﹣3)2=27﹣18,由EE'∥CD,可得△EE'H∽△DCE,∴=,即==2﹣,∴△DE'H的面积=△DEE'的面积×=(27﹣18)×=,∵Rt△BGM中,GM=,∴GN=3﹣=2,∴△ADG的面积=AD×GN=×3×2=6,又∵△ADE'的面积=AD×=×3×(3﹣3)=9﹣,∴四边形AGHE′的面积=△ADG的面积+△ADE'的面积﹣△DE'H的面积=6+(9﹣)﹣=﹣.故答案为:﹣.三、解答题:(本大题个小题,每小题分,共分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上.19.如图,在△ABC和△AEF中,AC∥EF,AB=FE,AC=AF,求证:∠B=∠E.【考点】KD:全等三角形的判定与性质.【分析】根据两直线平行,内错角相等可得∠EFA=∠C,再利用“边角边”证明△ABC和△FEA全等,然后根据全等三角形对应角相等证明即可.【解答】证明:∵AC∥EF,∴∠EFA=∠C,在△ABC和△FEA中,,∴△ABC≌△FEA(SAS),∴∠B=∠E.20.为了了解某校初三学生体能水平,体育老师从刚结束的“女生800米,男生1000米”体能测试成绩中随机抽取了一部分同学的成绩,按照“优秀、良好、合格、不合格”进行了统计,并绘制了下列不完整的统计图,请根据图中信息解答下列问题:(1)体育老师总共选取了多少人的成绩?扇形统计图中“优秀”部分的圆心角度数是多少?(2)把条形统计图补充完整;(3)已知某校初三在校生有2500人,从统计情况分析,请你估算此次体能测试中达到“优秀”水平的大约有多少人?【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)根据题意列式计算即可;(2)求出中等的人数,最后补全统计图即可;(3)用总人数乘以达到“优秀”水平的学生所占的百分比,列式计算即可得解.【解答】解:(1)80÷40%=200人,360°×=108°,∴体育老师总共选取了200人的成绩;扇形统计图中“优秀”部分的圆心角度数是108°,(2)中等的人数是:200﹣60﹣80﹣20=40人,补充条形统计图如图所示,(3)2500×=750人,答:此次体能测试中达到“优秀”水平的大约有750人.四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上.21.计算:(1)(2a﹣b)2﹣2b(b﹣2a)(2)(x﹣)÷﹣.【考点】6C:分式的混合运算;4A:单项式乘多项式;4C:完全平方公式.【分析】(1)原式利用完全平方公式,以及单项式乘以多项式法则计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,计算即可得到结果.【解答】解:(1)原式=4a2﹣4ab+b2﹣2b2+4ab=4a2﹣b2;(2)原式=•﹣=﹣=﹣.22.如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函双y=(m≠0)的阳象交于点c(n,3),与x轴、y轴分别交于点A、B,过点C作CM⊥x轴,垂足为M,若tan∠CAM=,OA=2.(1)求反比例函数和一次函数的解析式;(2)点D是反比例函数图象在第三象限部分上的一点,且到x轴的距离是3,连接AD、BD,求△ABD的面积.【考点】G8:反比例函数与一次函数的交点问题;T7:解直角三角形.【分析】(1)利用三角函数求得AM的长,则C的坐标即可求得,利用待定系数法求得反比例函数解析式,然后利用待定系数法求得一次函数的解析式;(2)首先求得D的坐标,然后利用三角形的面积公式求解.【解答】解:(1)∵在直角△ACM中,tan∠CAM==,CM=3,∴AM=4,∴OM=AM﹣OA=4﹣2=2.∴n=2,则C的坐标是(2,3).把(2,3)代入y=得m=6.则反比例函数的解析式是y=;根据题意得,解得,则一次函数的解析式是y=x+;(2)在y=中令y=﹣3,则x=﹣2.则D的坐标是(﹣2,﹣3).AD=3,则S△ABD=×3×2=3.23.我市“尚品”房地产开发公司预计今年10月份将竣工一商品房小区,其中包括高层住宅区和别墅区一共60万平方米,且高层住宅区的面积不少于别墅区面积的3倍.(1)别墅区最多多少万平方米?(2)今年一月初,“尚品”公司开始出售该小区,其中高层住宅区的销售单价为8000元/平方米,别墅区的销售单价为12000元/平方米,并售出高层住宅区6万平方米,别墅区4万平方米,二月时,受最新政策“去库存,满足刚需”以及银行房贷利率打折的影响,该小区高层住宅区的销售单价比一月增加了a%,销售面积比一月增加了2a%;别墅区的销售单价比一月份减少了10%,销售面积比一月增加了a%,于是二月份该小区高层住宅区的销售总额比别墅区的销售总额多10080万元,求a的值.【考点】AD:一元二次方程的应用;C9:一元一次不等式的应用.【分析】(1)设别墅区有x万平方米,则高层住宅区有(60﹣x)万平方米,根据高层住宅区的面积不少于别墅区面积的3倍,即可得出关于x的一元一次不等式,解之即可得出结论;(2)根据二月份该小区高层住宅区的销售总额比别墅区的销售总额多10080万元,即可得出关于a的一元二次方程,解之取其正值即可得出结论.【解答】解:(1)设别墅区有x万平方米,则高层住宅区有(60﹣x)万平方米,根据题意得:60﹣x≥3x,解得:x≤15.答:别墅区最多15万平方米.(2)根据题意得:8000(1+a%)×6(1+2a%)﹣12000(1﹣10%)×4(1+a%)=10080,解得:a1=5,a2=﹣110(舍去).答:a的值为5.24.如图,△ABC和△BDE都是等腰直角三角形,其中∠ACB=∠BDE=90°,AC=BC,BD=ED,连接AE,点F是AE的中点,连接DF.(1)如图1,若B、C、D共线,且AC=CD=2,求BF的长度;(2)如图2,若A、C、F、E共线,连接CD,求证:DC=DF.【考点】KD:全等三角形的判定与性质;KW:等腰直角三角形.【分析】(1)证明△ABE是直角三角形,求出AB、BE,理由勾股定理求出AE,再利用直角三角形斜边中线的性质即可解决问题.(2)作AM∥DE交DF的延长线于M,交BD于N,连接CM.只要证明△CDM,△CDF都是等腰直角三角形即可解决问题;【解答】解:(1)∵△ABC和△BDE都是等腰直角三角形,∴AC=BC=CD=2,BD=DE=4,BE=4,AB=2,∠ABC=∠DBE=45°,∴∠ABE=90°,∴AE===2,∵AF=EF,∴BF=AE=.(2)作AM∥DE交DF的延长线于M,交BD于N,连接CM.∵AM∥DE,∴∠MAE=∠DEF,在△AFM和△EFD中,,∴△AFM≌△EFD,∴AM=DE=BD,∵∠BCE=∠B DE=90°,∠COB=∠DOE,∴∠CBD=∠DEF=∠MAF.在△ACM和△BCD中,,∴△ACM≌△BCD,∴∠ACM=∠BCD,CM=CD,∴∠ACB=∠MC D=90°∴△CDM是等腰直角三角形,易知△BOC∽△EOD,∴=,∴=,∴△BOE∽△COD,∴∠DCO=∠OBE=45°,∴∠FCD=∠FCM=45°,∵CM=CD,∴FM=DF,CF⊥DM,∴△CDF是等腰直角三角形,∴CD=DF.五、解答题:(本大题2个小题,25题10分,26题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上.25.一个四位数,记千位上和百位上的数字之和为x,十位上和个位上的数字之和为y,如果x=y,那么称这个四位数为“和平数”.例如:1423,x=1+4,y=2+3,因为x=y,所以1423是“和平数”.(1)直接写出:最小的“和平数”是1001 ,最大的“和平数”是9999 ;(2)求个位上的数字是千位上的数字的两倍且百位上的数字与十位上的数字之和是12的倍数的所有“和平数”;(3)将一个“和平数”的个位上与十位上的数字交换位置,同时,将百位上与千位上的数字交换位置,称交换前后的这两个“和平数”为一组“相关和平数”.例如:1423与4132为一组“相关和平数”求证:任意的一组“相关和平数”之和是1111的倍数.【考点】59:因式分解的应用.【分析】(1)根据题意即可得到结论;(2)设这个“和平数”为,于是得到d=2a,a+b=c+d,b+c=12k,求得2c+a=12k,即a=2、4,6,8,d=4、8、12(舍去)、16(舍去),①、当a=2,d=4时,2(c+1)=12k,得到c=5则b=7,②、当a=4,d=8时,得到c=4则b=8,于是得到结论;(3)设任意的两个“相关和平数”为,(a,b,c,d分别取0,1,2,…,9且a≠0,b≠0),于是得到+=1100(a+b)+11(c+d)=1111(a+b),即可得到结论.【解答】解:(1)由题意得,最小的“和平数”1001,最大的“和平数”9999,故答案为:1001,9999;(2)设这个“和平数”为,则d=2a,a+b=c+d,b+c=12k,∴2c+a=12k,即a=2、4,6,8,d=4、8、12(舍去)、16(舍去),①、当a=2,d=4时,2(c+1)=12k,可知c+1=6k且a+b=c+d,∴c=5则b=7,②、当a=4,d=8时,2(c+2)=12k,可知c+2=6k且a+b=c+d,∴c=4则b=8,综上所述,这个数为2754和4848.(3)设任意的两个“相关和平数”为,(a,b,c,d分别取0,1,2,…,9且a≠0,b≠0),则+=1100(a+b)+11(c+d)=1111(a+b),即两个“相关和平数”之和是1111的倍数.26.如图1,抛物线y=﹣x2+x+2的图象与x轴交于点A、B,与y轴交于点C,连接BC,过点A作AD∥BC交抛物线的对称轴于点D.(1)求点D的坐标;(2)如图2,点P是抛物线在第一象限内的一点,作PQ⊥BC于Q,当PQ的长度最大时,在线段BC上找一点M(不与点B、点C重合),使PM+BM的值最小,求点M的坐标及PM+BM的最小值;(3)抛物线的顶点为点E,平移抛物线,使抛物线的顶点E在直线AE上移动,点A,E平移后的对应点分别为点A′、E′.在平面内有一动点F,当以点A′、E′、B、F为顶点的四边形为菱形时,求出点A′的坐标.【考点】HF:二次函数综合题.【分析】(1)当y=0时,﹣ x2+x+2=0,解方程可得A(﹣,0),B(,0),当x=0时,y=2,即C(0,2),根据待定系数法可求直线BC的解析式为y=x+2,根据平行两直线间的关系可得直线AD的解析式为y=﹣x﹣,根据抛物线的对称轴为x=﹣=,可得当x=时,y=﹣x﹣=﹣,即D点坐标为(,﹣);(2)如图1,作PF∥y轴交BC于F,则△PQF∽△BOC,根据相似三角形的性质可得PQ=PF,设P(t,﹣ t2+t+2),F(t, t+2)可得PF=﹣t2+t,当t=时,PF取最大值,PQ取最大值,此时P(,),作MN⊥x轴于N,则△BMN∽△BOC,根据相似三角形的性质可得MN=BM,则当P,M,N共线时,PM+BM=PN=,M(,1)(3)如图2所示,分三种情况:1)当A′E′=A′B,A′E′∥BF1,A′E′=BF1时四边形A′E′F1B是菱形;2)当A′E′=E′B,A′E′∥BF2,A′E′=BF2时四边形A′E′F2B是菱形;3)当A′B=E′B,A′F3∥BE′,A′F3=BE′时四边形A′F3E′B是菱形;进行讨论即可求解.【解答】解:(1)当y=0时,﹣ x2+x+2=0,解得x1=,x2=﹣,即A(﹣,0),B(,0),当x=0时,y=2,即C(0,2),直线BC的解析式为y=﹣x+2,直线AD的解析式为y=﹣x﹣,抛物线的对称轴为x=﹣=,当x=时,y=﹣x﹣=﹣,即D点坐标为(,﹣);(2)如图1,作PF∥y轴交BC于F,则△PQF∽△BOC,∴==即PQ=PF设P(t,﹣ t2+t+2),F(t, t+2)∴PF=﹣t2+t当t=时,PF取最大值,PQ取最大值,此时P(,)作MN⊥x轴于N,则△BMN∽△BOC,∴==即MN=BM,则当P,M,N共线时,PM+BM=PN=,M(,1);(3)如图2所示,1)当A′E′=A′B,A′E′∥BF1,A′E′=BF1时四边形A′E′F1B是菱形,此时A1′(,),A2′(﹣,﹣);2)当A′E′=E′B,A′E′∥BF2,A′E′=BF2时四边形A′E′F2B是菱形,此时A3′(﹣,0),A4′(﹣,﹣);3)当A′B=E′B,A′F3∥BE′,A′F3=BE′时四边形A′F3E′B是菱形,此时A5′(﹣,﹣).。

2017年中考题数学试卷(含答案)

2017年中考题数学试卷(含答案)

保密 ★ 启用前2017年中考题数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个是符合题目要求的,把正确答案的标号填在答题卡内相应的位置上)1、计算2(1)⨯-的结果是( )A 、12- B 、2- C 、1 D 、22、若∠α的余角是30°,则cos α的值是( )A 、12 B 、 32 C 、22 D 、 333、下列运算正确的是( ) A 、21a a -= B 、22a a a +=C 、2a a a ⋅=D 、22()a a -=-4、下列图形是轴对称图形,又是中心对称图形的有( )A 、4个B 、3个C 、2个D 、1个5、如图,在平行四边形ABCD 中,∠B=80°,AE平分∠BAD 交BC 于点E ,CF ∥AE 交AE 于点F ,则∠1=( ) A 、40° B 、50° C 、60° D 、80°6、已知二次函数2y ax =的图象开口向上,则直线1y ax =-经过的象限是( ) A 、第一、二、三象限 B 、第二、三、四象限 C 、第一、二、四象限 D 、第一、三、四象限7、如图,你能看出这个倒立的水杯的俯视图是( )8、如图,是我市5月份某一周的最高气温统计图,则这组数据(最高气温)的众数与中位数分别是( ) A 、28℃,29℃ B 、28℃,29.5℃ C 、28℃,30℃ D 、29℃,29℃9、已知拋物线2123y x =-+,当15x ≤≤时,y 的最大值是( )A 、2B 、23C 、 53D 、 7310、小英家的圆形镜子被打碎了,她拿了如图(网格中的每个小正方形边长为1)的一块碎片到玻璃店,配制成形状、大ABCD小与原来一致的镜面,则这个镜面的半径是( ) A 、2 B 、5C 、22D 、3 11、如图,是反比例函数1k y x=和2ky x =(12k k <)在第一象限的图象,直线AB ∥x 轴,并分别交两条曲线于A 、B 两点,若2AOB S ∆=,则21k k -的值是( ) A 、1 B 、2 C 、4 D 、812、一个容器装有1升水,按照如下要求把水倒出:第1次倒出12升水,第2次倒出的水量是12升的13,第3次倒出的水量是13升的14,第4次倒出的水量是14升的15,…按照这种倒水的方法,倒了10次后容器内剩余的水量是( )A 、1011升B 、19升C 、110升D 、111升二、填空题(本大题共6小题,每小题3分,共18分.把答案填在答题卡中的横线上)13、2011-的相反数是__________14、近似数0.618有__________个有效数字. 15、分解因式:39a a -= __________16、如图,是某校三个年级学生人数分布扇形统计图,则九年级学生人数所占扇形的圆心角的度数为__________17、如图,等边△ABC 绕点B 逆时针旋转30°时,点C 转到C ′的位置,且BC ′与AC 交于点D ,则'C DCD的值为__________18、如图,AB 是半圆O 的直径,以0A 为直径的半圆O ′与弦AC 交于点D ,O ′E ∥AC ,并交OC 于点E .则下列四个结论: ①点D 为AC 的中点;②'12O OE AOC S S ∆∆=;③2A C A D = ;④四边形O'DEO 是菱形.其中正确的结论是 __________.(把所有正确的结论的序号都填上) 三、解答题(本大题共8小题,满分共66分,解答过程写在答题卡上,解答应写出文字说明,证明过程或演算步骤).19、计算:101()(5)342π-----+.20、假日,小强在广场放风筝.如图,小强为了计算风筝离地面的高度,他测得风筝的仰角为60°,已知风筝线BC 的长为10米,小强的身高AB 为1.55米,请你帮小强画出测量示意图,并计算出风筝离地16题图17题图18题图面的高度.(结果精确到1米,参考数据 2≈1.41,3≈1.73 )21、如图,△OAB 的底边经过⊙O 上的点C ,且OA=OB ,CA=CB ,⊙O 与OA 、OB 分别交于D 、E 两点. (1)求证:AB 是⊙O 的切线;(2)若D 为OA 的中点,阴影部分的面积为33π-,求⊙O 的半径r .22、一个不透明的纸盒中装有大小相同的黑、白两种颜色的围棋,其中白色棋子3个(分别用白A 、白B 、白C 表示),若从中任意摸出一个棋子,是白色棋子的概率为34.(1)求纸盒中黑色棋子的个数;(2)第一次任意摸出一个棋子(不放回),第二次再摸出一个棋子,请用树状图或列表的方法,求两次摸到相同颜色棋子的概率.23、上个月某超市购进了两批相同品种的水果,第一批用了2000元,第二批用了5500元,第二批购进水果的重量是第一批的2.5倍,且进价比第一批每千克多1元.(1)求两批水果共购进了多少千克?(2)在这两批水果总重量正常损耗10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润率不低于26%,那么售价至少定为每千克多少元? (利润率=100% 利润进价)24、如图,点G 是正方形ABCD 对角线CA 的延长线上任意一点,以线段AG 为边作一个正方形AEFG ,线段EB 和GD 相交于点H . (1)求证:EB=GD ;(2)判断EB 与GD 的位置关系,并说明理由; (3)若AB=2,AG=2,求EB 的长.25、已知抛物线223 (0)=--<与x轴交于A、B两点(点A在点B的y ax ax a a左侧),与y轴交于点C,点D为抛物线的顶点.(1)求A、B的坐标;(2)过点D作DH丄y轴于点H,若DH=HC,求a的值和直线CD的解析式;(3)在第(2)小题的条件下,直线CD与x轴交于点E,过线段OB的中点N 作NF丄x轴,并交直线CD于点F,则直线NF上是否存在点M,使得点M到直线CD的距离等于点M到原点O的距离?若存在,求出点M的坐标;若不存在,请说明理由.中考数学试题答案一、选择题1 2 3 4 5 6 7 8 9 10 11 12 题号B AC C BD B A C B C D 答案二、填空题-18. ①13. 2011 14. 3 15. (3)(3)a a a+-16. 144°17. 23③④三、解答题19. 解:原式=2-1-3+2,=0.故答案为:0.20. 解:∵一元二次方程x2-4x+1=0的两个实数根是x1、x2,∴x1+x2=4,x1•x2=1,∴(x1+x2)2÷()=42÷=42÷4=4.21. 解:在Rt△CEB中,sin60°= ,∴CE=BC•sin60°=10×≈8.65m,∴CD=CE+ED=8.65+1.55=10.2≈10m,答:风筝离地面的高度为10m.22. (1)证明:连OC,如图,∵OA=OB,CA=CB,∴OC⊥AB,∴AB是⊙O的切线;(2)解:∵D为OA的中点,OD=OC=r,∴OA=2OC=2r,∴∠A=30°,∠AOC=60°,AC= r,∴∠AOB=120°,AB=2 r,∴S阴影部分=S△OAB-S扇形ODE= •OC•AB- = - ,∴•r•2 r- r2= - ,∴r=1,即⊙O的半径r为1.23. 解:(1)3÷-3=1.答:黑色棋子有1个;(2)共12种情况,有6种情况两次摸到相同颜色棋子,所以概率为.24. 解:(1)设第一批购进水果x千克,则第二批购进水果2.5千克,依据题意得:,解得x=200,经检验x=200是原方程的解,∴x+2.5x=700,答:这两批水果功够进700千克;(2)设售价为每千克a元,则:,630a≥7500×1.26,∴,∴a≥15,答:售价至少为每千克15元.25. (1)证明:在△GAD和△EAB中,∠GAD=90°+∠EAD,∠EAB=90°+∠EAD,∴∠GAD=∠EAB,又∵AG=AE,AB=AD,∴△GAD≌△EAB,∴EB=GD;(2)EB⊥GD,理由如下:连接BD,由(1)得:∠ADG=∠ABE,则在△BDH中,∠DHB=180°-(∠HDB+∠HBD)=180°-90°=90°,∴EB⊥GD;(3)设BD与AC交于点O,第11 页共13 页∵AB=AD=2在Rt△ABD中,DB= ,∴EB=GD= .26. 解:(1)由y=0得,ax2-2ax-3a=0,∵a≠0,∴x2-2x-3=0,解得x1=-1,x2=3,∴点A的坐标(-1,0),点B的坐标(3,0);(2)由y=ax2-2ax-3a,令x=0,得y=-3a,∴C(0,-3a),又∵y=ax2-2ax-3a=a(x-1)2-4a,得D(1,-4a),∴DH=1,CH=-4a-(-3a)=-a,∴-a=1,∴a=-1,∴C(0,3),D(1,4),设直线CD的解析式为y=kx+b,把C、D两点的坐标代入得,,解得,∴直线CD的解析式为y=x+3;(3)存在.由(2)得,E(-3,0),N(- ,0)∴F(,),EN= ,作MQ⊥CD于Q,第12 页共13 页设存在满足条件的点M(,m),则FM= -m,EF== ,MQ=OM=由题意得:Rt△FQM∽Rt△FNE,∴= ,整理得4m2+36m-63=0,∴m2+9m= ,m2+9m+=+(m+ )2=m+ =±∴m1= ,m2=- ,∴点M的坐标为M1(,),M2(,- ).第13 页共13 页。

重庆市江北区2017年中考数学模拟试卷(含答案)

重庆市江北区2017年中考数学模拟试卷(含答案)

2017年重庆市江北区中考数学模拟试卷一、选择题(本大题共12小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方格涂黑.1.(4分)在0,﹣π,,﹣3.14这四个实数数中,最小的实数是()A.B.﹣3.14 C.﹣πD.02.(4分)下面数学符号,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.(4分)下列计算正确的是()A.a+a=a2B.a2•a3=a6 C.(﹣a3)2=﹣a6D.a7÷a5=a24.(4分)下列说法正确的是()A.调查某食品添加剂是否超标宜用普查B.甲、乙两组的平均成绩相同,方差分别是S2甲=3.6,S2乙=3.0,则两组成绩一样稳定C.调查奥运会参赛的10名运动员兴奋剂的使用情况适宜全面调查D.调查一批炮弹的杀伤半径不适宜用抽样调查5.(4分)若△ABC∽△DEF,且对应中线比为2:3,则△ABC与△DEF的面积比为()A.3:2 B.2:3 C.4:9 D.9:166.(4分)函数y=中,自变量x的取值范围()A.x>4 B.x<4 C.x≥4 D.x≤47.(4分)若m=﹣2,n=3,那么m2﹣mn+3m的值为()A.﹣4 B.4 C.﹣14 D.﹣88.(4分)估计的运算结果在哪两个连续自然数之间()A.3和4 B.4和5 C.5和6 D.6和79.(4分)如图,在等腰直角三角形△ABC中,∠BAC=90°,分别以点B、点C为圆心BA、CA为半径画弧交斜边BC于点E、点D,连接AD、AE,若BC=4,则图中阴影部分的面积为()A.2B.4C.4D.810.(4分)下图都是由同样大小的圆点按一定规律组成,其中第一个图形(图1)共有4个圆点,第二个图形(图2)共有9个圆点,第三个图形(图3)共有17个圆点,…,则第八个图形共有圆点的个数为()A.79 B.92 C.102 D.12811.(4分)如图,某配电房AB坐落在一坡度为i=3:4的斜坡BC上,斜坡BC=3米,小明站在距斜坡底部C点9.6米的点D处,测得该配电房顶端A的仰角为30°,已知小明眼部与地面的距离为1.6米,则该配电房的高度约为()(结果精确到0.1米,参考数据)A.6.6 B.6.7 C.6.8 D.6.912.(4分)若不等式2x<4的解都能使关于x的一次不等式(a﹣1)x<a+6成立,且使关于x的分式方程=3+有整数解,那么符合条件的所有整数a 值之和是()A.19 B.20 C.12 D.24二、填空题(本大题6小题,每小题题4分,共24分)请将每小题的答案直接填写在答题卡中对应的横线上.13.(4分)重庆市区的地铁和轻轨全国闻名,世界有名.修建地铁每千米约耗资15230 0000元人民币,数据15230 0000用科学记数法可表示为.14.(4分)计算:﹣|﹣2|﹣16÷(﹣)﹣2+×(3﹣)0=.15.(4分)如图所示,PM切⊙O于点A,PO交⊙O于点B,点E为圆上一点,若BE∥AO,∠EAO=30°,则∠APO的度数是度.16.(4分)现有6个质地、大小完全相同的小球上分别标有数字﹣2、﹣1、0.5、1、2、3,先将标有数字﹣2,0.5,2的小球放在第一个不透明的盒子里,再将其余小球放在第二个不透明的盒子里,先从第一个盒子里随机取出一个小球,把小球上的数字记为m,再从第二个盒子里随机取出一个小球,将小球上的数字分别记为n.则使关于x的二次函数y=mnx2+(m+n)x+3的对称轴在y轴右边的概率为.17.(4分)甲、乙两辆汽车从A地出发前往相距250千米的B地,乙车先出发匀速行驶,一段时间后,甲车出发匀速追赶,途中因油料不足,甲到服务区加油花了6分钟,为了尽快追上乙车,甲车提高速度仍保持匀速行驶,追上乙车后继续保持这一速度直到B地,如图是甲、乙两车之间的距离s(km2),乙车出发时间t(h)之间的函数关系图象,则甲车比乙车早到分钟.18.(4分)如图,正方形ABCD的边长为4,E是BC边的中点,连接DE,取DE的中点F,连接CF,将△DFC沿DE翻折,点C的对应点是点G,连接BG.则S =.四边形BFDG三、解答题(本大题2小题,每小题8分,共16分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.19.(8分)如图,四边形ABCD中,∠A=∠C=90°,DE平分∠ADC交AB边于点E,BF平分∠ABC交DC边于点F.求证:DE∥BF.20.(8分)在中考来临之际,同学们都进入紧张的复习,为了了解同学们晚上的睡眠情况,某校数学兴趣小组对该校初三年级1200名学生中的部分同学进行了调查统计,并制成如下两幅不完整的统计图:(其中A代表睡眠时间8小时左右,B代表睡眠时间6小时左右,C代表睡眠时间4小时左右,D代表睡眠时间5小时左右,E代表睡眠时间7小时左右),其中扇形统计图中“E”的圆心角为90°,请你结合统计图所给信息解答下列问题:(1)本次抽取的同学们的睡眠时间的中位数是小时左右,该校初三年级学生的平均睡眠时间约为小时.(2)请将条形统计图补充完整;(3)如果睡眠时间不足7小时左右,则称为睡眠严重不足,试估计全校1200名初三学生中有多少人睡眠严重不足?四、解答题(本大题5小题,每小题10分,共50分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.21.(10分)计算:(1)(x﹣3)(﹣3﹣x)﹣(x﹣2)2;(2).22.(10分)如图,二次函数y=ax2+bx﹣3的图象与x轴交于B、C两点(点B在点C的左侧),一次函数y=mx+n的图象经过点B和二次函数图象上另一点A,点A的坐标(4,3),.(1)求二次函数和一次函数的解析式;(2)若点P在第四象限内的抛物线上,求△ABP面积S的最大值并求出此时点P的坐标;(3)若点M在直线AB上,且与点A的距离是到x轴距离的倍,求点M的坐标.23.(10分)某超市今年年初从东南亚购进一种新品水果“舒红”投放市场,随着消费者的接受认同,销售价格不断攀高.(1)据统计,今年3月1日与年初相比,价格至少上涨了60%.若消费者在3月1日购买3千克“舒红”至少需要120元,那么今年年初这种新品水果“舒红”的最低价格是每千克多少元?(2)为了更好的占领市场,该超市从3月2日起试销同类型新品水果“舒红1号”,为了尽快打开销路,“舒红1号”的定价比(1)中3月1日“舒红”的最低销售价还低a%(a>0),而“舒红”仍以3月1日的最低销售价进行销售,这样当天“舒红”和“舒红1号”的总销量比3月1日“舒红”的销售量多a%,且“舒红”的销量占总销量的,两种新品水果的销售总金额比3月1日“舒红”的最低销售金额增加%,求a的值.24.(10分)如图,已知,等腰直角△ABC、等腰直角△DBF有共同的顶点B,其中∠ACB=∠DBF=90°,CA=CB,2DB=2BF=AB.(1)如图1,点F落在线段BC上,连接AD交BC于点M,且AB=2时,求MB的长.(2)如图2,点E为CB的中点,连接AE,当D点在线段AE上时,连接CF交AE于G,求证:2GE=CG.25.(10分)任意一个正整数都可以进行这样的分解:n=p×q(p、q是正整数,且p≤q),正整数的所有这种分解中,如果p、q两因数之差的绝对值最小,我们就称p×q是正整数的最佳分解.并规定:F(n)=.例如24可以分解成1×24,2×12,3×8或4×6,因为24﹣1>12﹣2>8﹣3>6﹣4,所以4×6是24的最佳分解,所以F(24)=.(1)求F(18)的值;(2)如果一个两位正整数,t=10x+y(1≤x≤y≤9,x、y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差记为m,交换其个位上的数与十位上的数得到的新数加上原来的两位正整数所得的和记为n,若mn为4752,那么我们称这个数为“最美数”,求所有“最美数”;(3)在(2)所得“最美数”中,求F(t)的最大值.五、解答题.(本大题共1小题,每小题12分,共12分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.26.(12分)如图1,抛物线y=﹣x2﹣2x+6与x轴交于点A和点B(点A在B 的右边),与y轴交于点C,抛物线的顶点是E,对称轴与直线BC交于点D.(1)若直线AH∥BC交抛物线的对称轴于点H,求点H的坐标;(2)点P为直线BC上方抛物线上一动点,当△PDC的面积最大时,在x轴上找一点M,在y轴找一点N,使得四边形PENM的周长最小,求出周长的最小值.(3)如图2,在(2)的条件下,当△PDC的面积最大时连接PO,将△AOC绕点O旋转,记旋转过程中点C、A的对应点分别为C′、A′,连接P C′.在此平面内是否存在点C′,使得△POC′是以PO为腰的等腰三角形,若存在,求出所有符合条件的点C′的坐标,若不存在,则请说明理由.2017年重庆市江北区中考数学模拟试卷参考答案与试题解析一、选择题(本大题共12小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方格涂黑.1.(4分)在0,﹣π,,﹣3.14这四个实数数中,最小的实数是()A.B.﹣3.14 C.﹣πD.0【解答】解:根据实数比较大小的方法,可得﹣π<﹣3.14<0<,∴在0,﹣π,,﹣3.14这四个实数数中,最小的实数是﹣π.故选:C.2.(4分)下面数学符号,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、既是轴对称图形,又是中心对称图形,故本选项正确;C、是轴对称图形,不是中心对称图形,故本选项错误;D、不是轴对称图形,是中心对称图形,故本选项错误.故选B.3.(4分)下列计算正确的是()A.a+a=a2B.a2•a3=a6 C.(﹣a3)2=﹣a6D.a7÷a5=a2【解答】解:A、a+a=2a,故本选项错误;B、a2•a3=a5,故本选项错误;C、(﹣a3)2=a6,故本选项错误;D、a7÷a5=a7﹣5=a2,故本选项正确.故选D.4.(4分)下列说法正确的是()A.调查某食品添加剂是否超标宜用普查B.甲、乙两组的平均成绩相同,方差分别是S2甲=3.6,S2乙=3.0,则两组成绩一样稳定C.调查奥运会参赛的10名运动员兴奋剂的使用情况适宜全面调查D.调查一批炮弹的杀伤半径不适宜用抽样调查【解答】解:A、调查某食品添加剂是否超标具有破坏性,不宜用普查,此选项错误;B、甲、乙两组的平均成绩相同,方差分别是S2甲=3.6,S2乙=3.0,由于S2甲>S2乙,则乙组成绩稳定,此选项错误;C、调查奥运会参赛的10名运动员兴奋剂的使用情况适宜全面调查,此选项正确;D、调查一批炮弹的杀伤半径,具有破坏性,需采用抽样调查,此选项错误;故选:C.5.(4分)若△ABC∽△DEF,且对应中线比为2:3,则△ABC与△DEF的面积比为()A.3:2 B.2:3 C.4:9 D.9:16【解答】解:∵△ABC∽△DEF,对应中线比为2:3,∴△ABC与△DEF的相似比为2:3,∴△ABC与△DEF的面积比为4:9,故选:C.6.(4分)函数y=中,自变量x的取值范围()A.x>4 B.x<4 C.x≥4 D.x≤4【解答】解:4﹣x≥0,解得x≤4,故选D.7.(4分)若m=﹣2,n=3,那么m2﹣mn+3m的值为()A.﹣4 B.4 C.﹣14 D.﹣8【解答】解:把m=﹣2,n=3代入m2﹣mn+3m=4+6﹣6=4,故选B8.(4分)估计的运算结果在哪两个连续自然数之间()A.3和4 B.4和5 C.5和6 D.6和7【解答】解:=3×+2﹣2×=3+2﹣=3+≈4.4;则运算结果在4和5两个连续自然数之间;故选B.9.(4分)如图,在等腰直角三角形△ABC中,∠BAC=90°,分别以点B、点C为圆心BA、CA为半径画弧交斜边BC于点E、点D,连接AD、AE,若BC=4,则图中阴影部分的面积为()A.2B.4C.4D.8【解答】解:作AH⊥BC于H,∵∠BAC=90°,AB=AC,∴AH=AB=2,∠B=∠C=45°,AB=AC=4,由题意得,BE=BA=4,∴图中阴影部分的面积=2×(﹣×4×2)=4π﹣8,故选:C.10.(4分)下图都是由同样大小的圆点按一定规律组成,其中第一个图形(图1)共有4个圆点,第二个图形(图2)共有9个圆点,第三个图形(图3)共有17个圆点,…,则第八个图形共有圆点的个数为()A.79 B.92 C.102 D.128【解答】解:观察图形发现:第一个图形有1+2+1=4个黑点;第二个图形有1+2+4+2=9个黑点;第三个图形有1+3+5+5+3=17个黑点;第四个图形有1+3+5+7+7+5=26个黑点;…当n=8时,有1+3+5+7+9+11+13+15+15+13=92个黑点,故选B11.(4分)如图,某配电房AB坐落在一坡度为i=3:4的斜坡BC上,斜坡BC=3米,小明站在距斜坡底部C点9.6米的点D处,测得该配电房顶端A的仰角为30°,已知小明眼部与地面的距离为1.6米,则该配电房的高度约为()(结果精确到0.1米,参考数据)A.6.6 B.6.7 C.6.8 D.6.9【解答】解•:如图,DG=1.6m,CD=9.6m,在Rt△BCE中,∵斜坡BC的坡度为i=3:4,∴=,设BE=3x,CE=4x,则BC=5x,∴5x=3,解得x=0.6,∴BE=1.8,CE=2.4,∴GF=CD+CE=9.6+2.4=12,在Rt△AGF中,∵tan∠AGF==tan30°,∴AF=12tan30°=12×=4≈6.92,∴AB=AF+EF﹣BE=6.92+1.6﹣1.8≈6.7.答:该配电房的高度约为6.7m.故选B.12.(4分)若不等式2x<4的解都能使关于x的一次不等式(a﹣1)x<a+6成立,且使关于x的分式方程=3+有整数解,那么符合条件的所有整数a 值之和是()A.19 B.20 C.12 D.24【解答】解:不等式2x<4,解得:x<2,∵不等式2x<4的解都能使关于x的一次不等式(a﹣1)x<a+6成立∴不等式(a﹣1)x<a+6解集为x<,即≥2,整理得:﹣2≥0,即≤0,解得:1<a≤8,分式方程去分母得:a x=3x﹣24+5x,即(a﹣8)x=﹣24,当a=2,x=4;a=4,x=6;a=6,x=12;a=5,x=8;a=7,x=24则符合条件所有整数a值之和为2+4+6+5+7=24,故选D.二、填空题(本大题6小题,每小题题4分,共24分)请将每小题的答案直接填写在答题卡中对应的横线上.13.(4分)重庆市区的地铁和轻轨全国闻名,世界有名.修建地铁每千米约耗资15230 0000元人民币,数据15230 0000用科学记数法可表示为 1.523×108.【解答】解:数据15230 0000用科学记数法可表示为1.523×108,故答案为:1.523×108.14.(4分)计算:﹣|﹣2|﹣16÷(﹣)﹣2+×(3﹣)0=﹣3.【解答】解:﹣|﹣2|﹣16÷(﹣)﹣2+×(3﹣)0=﹣2﹣4+3×1=﹣3.故答案为:﹣3.15.(4分)如图所示,PM切⊙O于点A,PO交⊙O于点B,点E为圆上一点,若BE∥AO,∠EAO=30°,则∠APO的度数是30度.【解答】解:∵BE∥AO,∴∠E=∠EAO=30°,∴∠AOB=2∠E=60°,∵PM切⊙O于点A,∴OA⊥PM,∴∠OAP=90°,∴∠P=90°﹣60°=30°.故答案为30.16.(4分)现有6个质地、大小完全相同的小球上分别标有数字﹣2、﹣1、0.5、1、2、3,先将标有数字﹣2,0.5,2的小球放在第一个不透明的盒子里,再将其余小球放在第二个不透明的盒子里,先从第一个盒子里随机取出一个小球,把小球上的数字记为m,再从第二个盒子里随机取出一个小球,将小球上的数字分别记为n.则使关于x的二次函数y=mnx2+(m+n)x+3的对称轴在y轴右边的概率为.【解答】解:如图m=﹣2时,n=﹣1,解析式为y=2x2﹣3x+3,对称轴为直线x=,在y轴右侧;m=﹣2时,n=1,解析式为y=﹣2x2﹣x+3,对称轴为直线x=﹣,在y轴左侧;m=﹣2时,n=3,解析式为y=﹣6x2+x+3,对称轴为直线x=,在y轴右侧;m=0.5时,n=﹣1,解析式为y=﹣x2﹣x+3,对称轴为直线x=﹣,在y轴左侧;m=0.5时,n=1,解析式为y=0.5x2+1.5x+3,对称轴为直线x=﹣1.5,在y轴左侧;m=0.5时,n=3,解析式为y=1.5x2+3.5x+3,对称轴为直线x=﹣,在y轴左侧;m=2时,n=﹣1,解析式为y=﹣2x2+x+3,对称轴为直线x=,在y轴右侧;m=2时,n=1,解析式为y=2x2+3x+3,对称轴为直线x=﹣,在y轴左侧;m=2时,n=3,解析式为y=6x2+5x+3,对称轴为直线x=﹣,在y轴左侧;故关于x的二次函数y=mnx2+(m+n)x+3的对称轴在y轴右边的概率为.故答案为:.17.(4分)甲、乙两辆汽车从A地出发前往相距250千米的B地,乙车先出发匀速行驶,一段时间后,甲车出发匀速追赶,途中因油料不足,甲到服务区加油花了6分钟,为了尽快追上乙车,甲车提高速度仍保持匀速行驶,追上乙车后继续保持这一速度直到B地,如图是甲、乙两车之间的距离s(km2),乙车出发时间t(h)之间的函数关系图象,则甲车比乙车早到11.5分钟.【解答】解:由题意可得,乙车的速度为:40÷0.5=80km/h,甲车开始时的速度为:(2×80﹣10)÷(2﹣0.5)=100km/h,甲车后来的速度为:=120km/h,∴乙车动A地到B地用的时间为:250÷80=h,甲车从A地到B地的时间为:=2h,∴==11.5分钟,故答案为:11.5.18.(4分)如图,正方形ABCD的边长为4,E是BC边的中点,连接DE,取DE 的中点F,连接CF,将△DFC沿DE翻折,点C的对应点是点G,连接BG.则S =8.四边形BF DG【解答】解:如图,连接GE ,CG ,交DE 于H , ∵正方形ABCD 的边长为4,E 是BC 边的中点,∴Rt △CDE 中, DE==2,∵F 是DE 的中点,∴DF=,由题可得,DE 垂直平分CG ,∴DE ×CH=CE ×CD ,∴CH===,∴GH=,∴S 四边形BFDG =DF ×GH=×=8.故答案为:8.三、解答题(本大题2小题,每小题8分,共16分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.19.(8分)如图,四边形ABCD 中,∠A=∠C=90°,DE 平分∠ADC 交AB 边于点E ,BF 平分∠ABC 交DC 边于点F . 求证:DE ∥BF .【解答】证明:∵四边形ABCD中,∠A=∠C=90°,∴∠ADC+∠ABC=180°,∵DE平分∠ADC交AB边于点E,BF平分∠ABC交DC边于点F,∴∠ADE=∠EDC,∠ABF=∠CBF,∴∠ADE+∠FBC=90°,∵∠AED+∠ADE=90°,∠ADE=∠EDC,∴∠AED=∠ABF,∴DE∥BF.20.(8分)在中考来临之际,同学们都进入紧张的复习,为了了解同学们晚上的睡眠情况,某校数学兴趣小组对该校初三年级1200名学生中的部分同学进行了调查统计,并制成如下两幅不完整的统计图:(其中A代表睡眠时间8小时左右,B代表睡眠时间6小时左右,C代表睡眠时间4小时左右,D代表睡眠时间5小时左右,E代表睡眠时间7小时左右),其中扇形统计图中“E”的圆心角为90°,请你结合统计图所给信息解答下列问题:(1)本次抽取的同学们的睡眠时间的中位数是6小时左右,该校初三年级学生的平均睡眠时间约为 6.3小时.(2)请将条形统计图补充完整;(3)如果睡眠时间不足7小时左右,则称为睡眠严重不足,试估计全校1200名初三学生中有多少人睡眠严重不足?【解答】解:(1)由题意可得,本次调查的学生为:6÷30%=20(人),E的人数为:20×=5(人),∴A的人数为:20﹣6﹣2﹣3﹣5=4(人),∴A有4人,E有5人,B有6人,D有3人,C有2人,∴本次抽取的同学们的睡眠时间的中位数是6小时左右,该校初三年级学生的平均睡眠时间约为:=6.3(小时),故答案为:6,6.3;(2)由(1)可知,A有4人,E有5人,补全的条形统计图如下图所示,(3)由题意可得,全校1200名初三学生中有:1200×=660(人),答:全校1200名初三学生中有660人睡眠严重不足.四、解答题(本大题5小题,每小题10分,共50分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.21.(10分)计算:(1)(x﹣3)(﹣3﹣x)﹣(x﹣2)2;(2).【解答】解:(1)(x﹣3)(﹣3﹣x)﹣(x﹣2)2=9﹣x2﹣(x2﹣4x+4)=﹣x2+2x+7(2)=÷﹣=×﹣=﹣﹣=﹣.22.(10分)如图,二次函数y=ax2+bx﹣3的图象与x轴交于B、C两点(点B 在点C的左侧),一次函数y=mx+n的图象经过点B和二次函数图象上另一点A,点A的坐标(4,3),.(1)求二次函数和一次函数的解析式;(2)若点P在第四象限内的抛物线上,求△ABP面积S的最大值并求出此时点P的坐标;(3)若点M在直线AB上,且与点A的距离是到x轴距离的倍,求点M的坐标.【解答】解:(1)过点A(4,3)作AD⊥x轴于点D,则D(4,0),∠ADB=90°.在Rt△ADB中,∵tan∠ABD===,∴BD=6,B点坐标为(﹣2,0).将B(﹣2,0),A(4,3)代入y=ax2+bx﹣3,得,解得:,∴二次函数的解析式为y=x2﹣x﹣3;将B(﹣2,0),A(4,3)代入y=mx+n,得,解得,∴一次函数解析式为y=x+1;(2)设点P的坐标为(t,t2﹣t﹣3),过点P作PH垂直于x轴交AB于H点,则H(t,t+1),∴PH=(t+1)﹣(t2﹣t﹣3)=﹣t2+t+4,=S△AHP+S△BHP=PH•DM+PH•BM=PH•BD=(﹣t2+t+4)•6=﹣∴S△ABPt2+3t+12=﹣(t﹣1)2+,=;∴当t=1即P点坐标为(1,﹣3)时,△ABP的面积S最大,此时S△ABP(3)设点M的坐标为(p,p+1),由题意,得=×|p+1|,化简整理,得p2﹣12p+20=0,解得p=2或10,当p=2时, p +1=×2+1=2;当p=10时, p +1=×10+1=6.故所求点M 的坐标为(2,2)或(10,6).23.(10分)某超市今年年初从东南亚购进一种新品水果“舒红”投放市场,随着消费者的接受认同,销售价格不断攀高.(1)据统计,今年3月1日与年初相比,价格至少上涨了60%.若消费者在3月1日购买3千克“舒红”至少需要120元,那么今年年初这种新品水果“舒红”的最低价格是每千克多少元?(2)为了更好的占领市场,该超市从3月2日起试销同类型新品水果“舒红1号”,为了尽快打开销路,“舒红1号”的定价比(1)中3月1日“舒红”的最低销售价还低a%(a >0),而“舒红”仍以3月1日的最低销售价进行销售,这样当天“舒红”和“舒红1号”的总销量比3月1日“舒红”的销售量多a%,且“舒红”的销量占总销量的,两种新品水果的销售总金额比3月1日“舒红”的最低销售金额增加%,求a 的值.【解答】解:(1)设今年年初新品水果为每千克x 元;根据题意得:3×(1+60%)x ≥120,解得:x≥25.答:今年年初新品水果的最低价格为每千克25元;(2)设新品水果日两种猪肉总销量为1;根据题意得:25(1﹣a%)×(1+a%)+25×(1+a%)=25(1+a%),令a%=y,原方程化为:25(1﹣y)×(1+y)+25×(1+y)=25(1+y),整理得:5y2﹣y=0,解得:y=0.2,或y=0(舍去),则a%=0.2,∴a=20;答:a的值为20.24.(10分)如图,已知,等腰直角△ABC、等腰直角△DBF有共同的顶点B,其中∠ACB=∠DBF=90°,CA=CB,2DB=2BF=AB.(1)如图1,点F落在线段BC上,连接AD交BC于点M,且AB=2时,求MB的长.(2)如图2,点E为CB的中点,连接AE,当D点在线段AE上时,连接CF交AE于G,求证:2GE=CG.【解答】(1)解:如图1中,∵△ABC,△DBF都是等腰直角三角形,∴AC=BC,BF=BD,∠ACB=∠DBF=90°,∠ABC=∠BFD=45°,∴DF∥AB,∵AB=2,∴AC=BC=2,∵2DB=2BF=AB,∴BD=BF=,DF=BD=2,∴==,∴=,∴BM=2﹣2.(2)证明:如图2中,延长AE到M,使得EM=AE,连接CM,BM.∵EC=EB,EA=EM,∴四边形ACMB是平行四边形,∴AC∥BM,CM∥AB,∴∠BCM=∠ABC=45°,∠CBM=∠ACB=90°,∴△CBM是等腰直角三角形,∴BC=BM,∵∠DBF=∠CBE,∴∠DBM=∠CBF,∵BD=BF,BM=BC,∴△DBM≌△FBC,∴∠BDM=∠CFB,是BD交CF于O,∵∠DOG=∠FOB,∴∠DGO=∠OBF=90°,∴∠CGB=∠DGO=90°,∵∠CEG=∠AEC,∴△CEG∽△AEC,∴=,∴==2,∴CG=2EG.25.(10分)任意一个正整数都可以进行这样的分解:n=p×q(p、q是正整数,且p≤q),正整数的所有这种分解中,如果p、q两因数之差的绝对值最小,我们就称p×q是正整数的最佳分解.并规定:F(n)=.例如24可以分解成1×24,2×12,3×8或4×6,因为24﹣1>12﹣2>8﹣3>6﹣4,所以4×6是24的最佳分解,所以F(24)=.(1)求F(18)的值;(2)如果一个两位正整数,t=10x+y(1≤x≤y≤9,x、y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差记为m,交换其个位上的数与十位上的数得到的新数加上原来的两位正整数所得的和记为n,若mn为4752,那么我们称这个数为“最美数”,求所有“最美数”;(3)在(2)所得“最美数”中,求F(t)的最大值.【解答】解:(1)∵18=1×18=2×9=3×6,∴3×6是18最佳分解,…(2分)∴F(18)==;…(3分)(2)m=(10y+x)﹣(10x+y)=9(y﹣x),…(4分)n=(10y+x)+(10x+y)=11(x+y),…(5分)∴mn=9(y﹣x)×11(x+y)=99(y﹣x)(x+y),∴99(y﹣x)(x+y)=4752,即(y﹣x)(x+y)=48,…(6分)∵1≤x≤y≤9,x、y为自然数,∴y﹣x<x+y,∴或或或或,解得:(不合题意),(不合题意),(不合题意),,,∴最美数为48和17.…(8分)(3)∵48=1×48=2×24=3×16=4×12=6×8,∴F(48)==,∵17=1×17,∴F(17)=,∴F(t)的最大值为.…(10分)五、解答题.(本大题共1小题,每小题12分,共12分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.26.(12分)如图1,抛物线y=﹣x2﹣2x+6与x轴交于点A和点B(点A在B 的右边),与y轴交于点C,抛物线的顶点是E,对称轴与直线BC交于点D.(1)若直线AH∥BC交抛物线的对称轴于点H,求点H的坐标;(2)点P为直线BC上方抛物线上一动点,当△PDC的面积最大时,在x轴上找一点M,在y轴找一点N,使得四边形PENM的周长最小,求出周长的最小值.(3)如图2,在(2)的条件下,当△PDC的面积最大时连接PO,将△AOC绕点O旋转,记旋转过程中点C、A的对应点分别为C′、A′,连接P C′.在此平面内是否存在点C′,使得△POC′是以PO为腰的等腰三角形,若存在,求出所有符合条件的点C′的坐标,若不存在,则请说明理由.【解答】解:(1)如图1中,对于抛物线y=﹣x2﹣2x+6,令y=0,得到﹣x2﹣2x+6=0,解得x=﹣6或2,∴A(2,0),B(﹣6,0),令x=0,得到y=6,∴C(0,6),∵y=﹣(x+2)2+8,∴抛物线的顶点E坐标为(﹣2,8),∴直线BC的解析式为y=x+6,∵AH∥BC,∴直线AH的解析式为y=x﹣2,∴点H坐标(﹣2,﹣4).(2)如图2中,连接PB,作PK∥y轴交BC于K,设P(m,﹣m2﹣2m+6),则K(m,m+6),PK=﹣m2﹣3m,易知BD:CD=2:1,∴CD=BC,=S△PBC=••(﹣m2﹣3m)•6=﹣(m+3)2+,∴S△PDC∴m=﹣3时,△PDC的面积的最大值为,此时P(﹣3,),如图3中,作P关于x轴的对称点P′,点E关于y轴的对称点E′,连接P′E′交x 轴于M,交y轴于N,此时四边形PMNE的周长最小.易知P′(﹣3,﹣),E′(2,8)此时四边形PMNE的周长的最小值=P′E′+PE=+.(3)设C′(x,y),由题意OC′=6,OP=PC′则有,解得:或,∴C′(﹣6,0)或(,).。

∥3套精选试卷∥宁波市江北某名校初中2017-2018中考质量监控数学试题

∥3套精选试卷∥宁波市江北某名校初中2017-2018中考质量监控数学试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为点E,DE=1,则BC=()A.3B.2 C.3 D.3+2【答案】C【解析】试题分析:根据角平分线的性质可得CD=DE=1,根据Rt△ADE可得AD=2DE=2,根据题意可得△ADB 为等腰三角形,则DE为AB的中垂线,则BD=AD=2,则BC=CD+BD=1+2=1.考点:角平分线的性质和中垂线的性质.2.如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).下列结论:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤当x>﹣1时,y>0,其中正确结论的个数是A.5个B.4个C.3个D.2个【答案】B【解析】解:∵二次函数y=ax3+bx+c(a≠3)过点(3,3)和(﹣3,3),∴c=3,a﹣b+c=3.①∵抛物线的对称轴在y轴右侧,∴bx=-,x>3.2a∴a与b异号.∴ab<3,正确.②∵抛物线与x轴有两个不同的交点,∴b3﹣4ac>3.∵c=3,∴b3﹣4a>3,即b3>4a.正确.④∵抛物线开口向下,∴a<3.∵ab<3,∴b>3.∵a ﹣b+c=3,c=3,∴a=b ﹣3.∴b ﹣3<3,即b <3.∴3<b <3,正确. ③∵a ﹣b+c=3,∴a+c=b . ∴a+b+c=3b >3. ∵b <3,c=3,a <3,∴a+b+c=a+b+3<a+3+3=a+3<3+3=3. ∴3<a+b+c <3,正确.⑤抛物线y=ax 3+bx+c 与x 轴的一个交点为(﹣3,3),设另一个交点为(x 3,3),则x 3>3, 由图可知,当﹣3<x <x 3时,y >3;当x >x 3时,y <3. ∴当x >﹣3时,y >3的结论错误.综上所述,正确的结论有①②③④.故选B .3.函数228y x x m =--+的图象上有两点()11,A x y ,()22,B x y ,若122x x <<-,则( ) A .12y y < B .12y y >C .12 y y =D .1y 、2y 的大小不确定【答案】A【解析】根据x 1、x 1与对称轴的大小关系,判断y 1、y 1的大小关系. 【详解】解:∵y=-1x 1-8x+m ,∴此函数的对称轴为:x=-b 2a =-()-82-2⨯=-1,∵x 1<x 1<-1,两点都在对称轴左侧,a <0, ∴对称轴左侧y 随x 的增大而增大, ∴y 1<y 1. 故选A . 【点睛】此题主要考查了函数的对称轴求法和函数的单调性,利用二次函数的增减性解题时,利用对称轴得出是解题关键.4.把不等式组2010x x -⎧⎨+<⎩的解集表示在数轴上,正确的是( )A .B .C .D .【答案】B【解析】首先解出各个不等式的解集,然后求出这些解集的公共部分即可. 【详解】解:由x ﹣2≥0,得x≥2, 由x+1<0,得x <﹣1,所以不等式组无解,故选B.【点睛】解不等式组时要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了.5.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,若AD=3,BE=1,则DE=()A.1 B.2 C.3 D.4【答案】B【解析】根据余角的性质,可得∠DCA与∠CBE的关系,根据AAS可得△ACD与△CBE的关系,根据全等三角形的性质,可得AD与CE的关系,根据线段的和差,可得答案.【详解】∴∠ADC=∠BEC=90°.∵∠BCE+∠CBE=90°,∠BCE+∠CAD=90°,∠DCA=∠CBE,在△ACD和△CBE中,ACD CBEADC CEB AC BC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACD≌△CBE(AAS),∴CE=AD=3,CD=BE=1,DE=CE−CD=3−1=2,故答案选:B.【点睛】本题考查了全等三角形的判定与性质,解题的关键是熟练的掌握全等三角形的判定与性质.6.如图,△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AD=2,BC=5,则△ABC的周长为()A.16 B.14 C.12 D.10【答案】B【解析】根据切线长定理进行求解即可.【详解】∵△ABC 的内切圆⊙O 与AB ,BC ,CA 分别相切于点D ,E ,F , ∴AF =AD =2,BD =BE ,CE =CF , ∵BE+CE =BC =5, ∴BD+CF =BC =5,∴△ABC 的周长=2+2+5+5=14, 故选B . 【点睛】本题考查了三角形的内切圆以及切线长定理,熟练掌握切线长定理是解题的关键. 7.有理数a 、b 在数轴上的位置如图所示,则下列结论中正确的是( )A .a+b >0B .ab >0C .a ﹣b <oD .a÷b >0【答案】C【解析】利用数轴先判断出a 、b 的正负情况以及它们绝对值的大小,然后再进行比较即可. 【详解】解:由a 、b 在数轴上的位置可知:a <1,b >1,且|a|>|b|, ∴a+b <1,ab <1,a ﹣b <1,a÷b <1. 故选:C .8.如图1,在矩形ABCD 中,动点E 从A 出发,沿A→B→C 方向运动,当点E 到达点C 时停止运动,过点E 作EF ⊥AE 交CD 于点F ,设点E 运动路程为x ,CF =y ,如图2所表示的是y 与x 的函数关系的大致图象,给出下列结论:①a =3;②当CF =14时,点E 的运动路程为114或72或92,则下列判断正确的是( )A .①②都对B .①②都错C .①对②错D .①错②对【答案】A【解析】由已知,AB=a ,AB+BC=5,当E 在BC 上时,如图,可得△ABE ∽△ECF ,继而根据相似三角形的性质可得y=﹣2155a x x a a ++-,根据二次函数的性质可得﹣215551·5223a a a a a +++⎛⎫+-= ⎪⎝⎭,由此可得a=3,继而可得y=﹣218533x x +-,把y=14代入解方程可求得x 1=72,x 2=92,由此可求得当E 在AB 上时,y=14时,x=114,据此即可作出判断.【详解】解:由已知,AB=a ,AB+BC=5, 当E 在BC 上时,如图,∵E 作EF ⊥AE , ∴△ABE ∽△ECF , ∴AB CEBE FC=, ∴5a xx a y-=-, ∴y=﹣2155a x x a a++-, ∴当x=522b a a +-=时,﹣215551·5223a a a a a +++⎛⎫+-= ⎪⎝⎭, 解得a 1=3,a 2=253(舍去), ∴y=﹣218533x x +-, 当y=14时,14=﹣218533x x +-,解得x 1=72,x 2=92, 当E 在AB 上时,y=14时, x=3﹣14=114, 故①②正确, 故选A . 【点睛】本题考查了二次函数的应用,相似三角形的判定与性质,综合性较强,弄清题意,正确画出符合条件的图形,熟练运用二次函数的性质以及相似三角形的判定与性质是解题的关键.9.如图,A 、B 、C 是小正方形的顶点,且每个小正方形的边长为1,则tan ∠BAC 的值为( )A.12B.1 C.33D.3【答案】B【解析】连接BC,由网格求出AB,BC,AC的长,利用勾股定理的逆定理得到△ABC为等腰直角三角形,即可求出所求.【详解】如图,连接BC,由网格可得AB=BC=5,AC=10,即AB2+BC2=AC2,∴△ABC为等腰直角三角形,∴∠BAC=45°,则tan∠BAC=1,故选B.【点睛】本题考查了锐角三角函数的定义,解直角三角形,以及勾股定理,熟练掌握勾股定理是解本题的关键.10.如图,点A是反比例函数y=kx的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为3,则k的值是()A.3 B.﹣3 C.6 D.﹣6【答案】D【解析】试题分析:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△CAB=3,而S△OAB=|k|,∴|k|=3,∵k<0,∴k=﹣1.故选D.考点:反比例函数系数k的几何意义.二、填空题(本题包括8个小题)11.一个布袋里装有10个只有颜色不同的球,这10个球中有m 个红球,从布袋中摸出一个球,记下颜色后放回,搅匀,再摸出一个球,通过大量重复试验后发现,摸到红球的频率稳定在0.3左右,则m 的值约为__________. 【答案】3【解析】在同样条件下,大量重复实验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出等式解答. 【详解】解:根据题意得,10m=0.3,解得m =3. 故答案为:3. 【点睛】本题考查随机事件概率的意义,关键是要知道在同样条件下,大量重复实验时,随机事件发生的频率逐渐稳定在概率附近.12.如图,一下水管道横截面为圆形,直径为100cm ,下雨前水面宽为60cm ,一场大雨过后,水面宽为80cm ,则水位上升______cm .【答案】10或1【解析】分水位在圆心下以及圆心上两种情况,画出符合题意的图形进行求解即可得. 【详解】如图,作半径OD AB ⊥于C ,连接OB ,由垂径定理得:BC =12AB=12×60=30cm , 在Rt OBC 中,22OC 503040cm =-=, 当水位上升到圆心以下时 水面宽80cm 时, 则22OC'504030cm =-=, 水面上升的高度为:403010cm -=;当水位上升到圆心以上时,水面上升的高度为:403070cm +=, 综上可得,水面上升的高度为30cm 或1cm , 故答案为:10或1.【点睛】本题考查了垂径定理的应用,掌握垂径定理、灵活运用分类讨论的思想是解题的关键.13.如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知折痕AE=5cm,且tan∠EFC =,那么矩形ABCD的周长_____________cm.【答案】36.【解析】试题分析:∵△AFE和△ADE关于AE对称,∴∠AFE=∠D=90°,AF=AD,EF=DE.∵tan∠EFC ==,∴可设EC=3x,CF=4x,那么EF=5x,∴DE=EF=5x.∴DC=DE+CE=3x+5x=8x.∴AB=DC =8x.∵∠EFC+∠AFB=90°, ∠BAF+∠AFB=90°,∴∠EFC=∠BAF.∴tan∠BAF=tan∠EFC=,∴=.∴AB=8x,∴BF=6x.∴BC=BF+CF=10x.∴AD=10x.在Rt△ADE中,由勾股定理,得AD2+DE2=AE2.∴(10x)2+(5x)2=(5)2.解得x=1.∴AB=8x=8,AD=10x=10.∴矩形ABCD的周长=8×2+10×2=36.考点:折叠的性质;矩形的性质;锐角三角函数;勾股定理.14.某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为_________元.【答案】28【解析】设这种电子产品的标价为x元,由题意得:0.9x−21=21×20%,解得:x=28,所以这种电子产品的标价为28元.故答案为28.15.如图,在平面直角坐标系中,点P的坐标为(0,4),直线y=34x-3与x轴、y轴分别交于点A、B,点M是直线AB上的一个动点,则PM的最小值为________.【答案】28 5【解析】认真审题,根据垂线段最短得出PM⊥AB时线段PM最短,分别求出PB、OB、OA、AB的长度,利用△PBM∽△ABO,即可求出本题的答案【详解】解:如图,过点P作PM⊥AB,则:∠PMB=90°,当PM⊥AB时,PM最短,因为直线y=34x﹣3与x轴、y轴分别交于点A,B,可得点A的坐标为(4,0),点B的坐标为(0,﹣3),在Rt△AOB中,AO=4,BO=3,AB=22345+=,∵∠BMP=∠AOB=90°,∠B=∠B,PB=OP+OB=7,∴△PBM∽△ABO,∴PB PMAB AO=,即:754PM =,所以可得:PM=285.16.如图,在Rt△ABC中,∠C=90°,AC=6,∠A=60°,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是_________.【答案】3-2.【解析】延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.运用勾股定理求解.【详解】解:如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.∵AC=6,CF=1,∴AF=AC-CF=4,∵∠A=60°,∠AMF=90°,∴∠AFM=30°,∴AM=1AF=1,2∴223,AF FM∵FP=FC=1,∴3,∴点P到边AB距离的最小值是3.故答案为3-1.【点睛】本题考查了翻折变换,涉及到的知识点有直角三角形两锐角互余、勾股定理等,解题的关键是确定出点P 的位置.17.已知二次函数y=ax2+bx+c(a≠0)中,函数值y与自变量x的部分对应值如下表:x …-5 -4 -3 -2 -1 …y … 3 -2 -5 -6 -5 …则关于x的一元二次方程ax2+bx+c=-2的根是______.【答案】x1=-4,x1=2【解析】解:∵x=﹣3,x=﹣1的函数值都是﹣5,相等,∴二次函数的对称轴为直线x=﹣1.∵x=﹣4时,y=﹣1,∴x=2时,y=﹣1,∴方程ax1+bx+c=3的解是x1=﹣4,x1=2.故答案为x1=﹣4,x1=2.点睛:本题考查了二次函数的性质,主要利用了二次函数的对称性,读懂图表信息,求出对称轴解析式是解题的关键.18.若两个相似三角形的面积比为1∶4,则这两个相似三角形的周长比是__________.【答案】1:2【解析】试题分析:∵两个相似三角形的面积比为1:4,∴这两个相似三角形的相似比为1:1,∴这两个相似三角形的周长比是1:1,故答案为1:1.考点:相似三角形的性质.三、解答题(本题包括8个小题)19.如图有A、B两个大小均匀的转盘,其中A转盘被分成3等份,B转盘被分成4等份,并在每一份内标上数字.小明和小红同时各转动其中一个转盘,转盘停止后(当指针指在边界线时视为无效,重转),若将A转盘指针指向的数字记作一次函数表达式中的k,将B转盘指针指向的数字记作一次函数表达式中的b.请用列表或画树状图的方法写出所有的可能;求一次函数y=kx+b的图象经过一、二、四象限的概率.【答案】(1)答案见解析;(2)13.【解析】(1)k可能的取值为-1、-2、-3,b可能的取值为-1、-2、3、4,所以将所有等可能出现的情况用列表方式表示出来即可.(2)判断出一次函数y=kx+b经过一、二、四象限时k、b的正负,在列表中找出满足条件的情况,利用概率的基本概念即可求出一次函数y=kx+b经过一、二、四象限的概率.【详解】解:(1)列表如下:所有等可能的情况有12种;(2)一次函数y=kx+b的图象经过一、二、四象限时,k<0,b>0,情况有4种,则P=412=13.20.已知:二次函数图象的顶点坐标是(3,5),且抛物线经过点A(1,3).求此抛物线的表达式;如果点A 关于该抛物线对称轴的对称点是B点,且抛物线与y轴的交点是C点,求△ABC的面积.【答案】(1)y=-12(x-3)2+5(2)5【解析】(1)设顶点式y=a(x-3)2+5,然后把A点坐标代入求出a即可得到抛物线的解析式;(2)利用抛物线的对称性得到B(5,3),再确定出C点坐标,然后根据三角形面积公式求解.【详解】(1)设此抛物线的表达式为y=a(x-3)2+5,将点A(1,3)的坐标代入上式,得3=a(1-3)2+5,解得12a =-, ∴此抛物线的表达式为21(3) 5.2y x =--+ (2)∵A(1,3),抛物线的对称轴为直线x =3,∴B(5,3).令x =0,211(3)522y x =--+=,则1(0)2C ,, ∴△ABC 的面积11(51)3 5.22⎛⎫=⨯-⨯-= ⎪⎝⎭ 【点睛】考查待定系数法求二次函数解析式,二次函数的性质,二次函数图象上点的坐标特征,掌握待定系数法求二次函数的解析式是解题的关键. 21.春节期间,收发微信红包已经成为各类人群进行交流联系、增强感情的一部分,小王在年春节共收到红包元,年春节共收到红包元,求小王在这两年春节收到红包的年平均增长率.【答案】小王在这两年春节收到的年平均增长率是【解析】增长后的量=增长前的量×(1+增长率),2018年收到微信红包金额400(1+x )元,在2018年的基础上再增长x ,就是2019年收到微信红包金额400(1+x )(1+x )元,由此可列出方程400(1+x )2=484,求解即可.【详解】解:设小王在这两年春节收到的红包的年平均增长率是.依题意得:解得(舍去).答:小王在这两年春节收到的年平均增长率是【点睛】本题考查了一元二次方程的应用.对于增长率问题,增长前的量×(1+年平均增长率)年数=增长后的量. 22.如图,小明的家在某住宅楼AB 的最顶层(AB ⊥BC ),他家的后面有一建筑物CD (CD ∥AB ),他很想知道这座建筑物的高度,于是在自家阳台的A 处测得建筑物CD 的底部C 的俯角是43°,顶部D 的仰角是25°,他又测得两建筑物之间的距离BC 是28米,请你帮助小明求出建筑物CD 的高度(精确到1米).【答案】39米【解析】过点A 作AE ⊥CD ,垂足为点E , 在Rt △ADE 中,利用三角函数求出 DE 的长,在Rt △ACE 中,求出 C E 的长即可得.【详解】解:过点A 作AE ⊥CD ,垂足为点E ,由题意得,AE= BC=28,∠EAD =25°,∠EAC =43°,在Rt △ADE 中,∵tan DE EAD AE ∠=,∴tan25280.472813.2DE =︒⨯=⨯≈, 在Rt △ACE 中,∵tan CE EAC AE ∠=,∴tan43280.932826CE =︒⨯=⨯≈, ∴13.22639DC DE CE =+=+≈(米),答:建筑物CD 的高度约为39米.23.“不出城郭而获山水之怡,身居闹市而有林泉之致”,合肥市某区不断推进“园林城市”建设,今春种植了四类花苗,园林部门从种植的这批花苗中随机抽取了2000株,将四类花苗的种植株数绘制成扇形统计图,将四类花苗的成活株数绘制成条形统图.经统计这批2000株的花苗总成活率为90%,其中玉兰和月季的成活率较高,根据图表中的信息解答下列问题:扇形统计图中玉兰所对的圆心角为 ,并补全条形统计图;该区今年共种植月季8000株,成活了约 株;园林部门决定明年从这四类花苗中选两类种植,请用列表法或画树状图求恰好选到成活率较高的两类花苗的概率.【答案】 (1)72°,见解析;(2)7280;(3).【解析】(1)根据题意列式计算,补全条形统计图即可;(2)根据题意列式计算即可;(3)画树状图得出所有等可能的情况数,找出选到成活率较高的两类树苗的情况数,即可求出所求的概率.【详解】(1)扇形统计图中玉兰所对的圆心角为360°×(1-40%-15%-25%)=72°月季的株数为2000×90%-380-422-270=728(株),补全条形统计图如图所示:(2)月季的成活率为所以月季成活株数为8000×91%=7280(株).故答案为:7280.(3)由题意知,成活率较高的两类花苗是玉兰和月季,玉兰、月季、桂花、腊梅分别用A、B、C、D表示,画树状图如下:所有等可能的情况有12种,其中恰好选到成活率较高的两类花苗有2种.∴P(恰好选到成活率较高的两类花苗)【点睛】此题主要考查了条形统计图以及扇形统计图的应用,根据统计图得出正确信息是解题关键.24.甲乙两名同学做摸球游戏,他们把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中.求从袋中随机摸出一球,标号是1的概率;从袋中随机摸出一球后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜;试分析这个游戏是否公平?请说明理由.【答案】(1)13;(2)这个游戏不公平,理由见解析.【解析】(1)由把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲胜,乙胜的情况,即可求得求概率,比较大小,即可知这个游戏是否公平.【详解】解:(1)由于三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中,故从袋中随机摸出一球,标号是1的概率为:13;(2)这个游戏不公平.画树状图得:∵共有9种等可能的结果,两次摸出的球的标号之和为偶数的有5种情况,两次摸出的球的标号之和为奇数的有4种情况,∴P (甲胜)=59,P (乙胜)=49. ∴P (甲胜)≠P (乙胜), 故这个游戏不公平.【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.25.如图,BD 是菱形ABCD 的对角线,75CBD ∠=︒,(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹)在(1)条件下,连接BF ,求DBF ∠的度数.【答案】(1)答案见解析;(2)45°.【解析】(1)分别以A 、B 为圆心,大于12AB 长为半径画弧,过两弧的交点作直线即可; (2)根据∠DBF =∠ABD ﹣∠ABF 计算即可;【详解】(1)如图所示,直线EF 即为所求;(2)∵四边形ABCD 是菱形,∴∠ABD =∠DBC 12=∠ABC =75°,DC ∥AB ,∠A =∠C , ∴∠ABC =150°,∠ABC+∠C =180°,∴∠C =∠A =30°.∵EF 垂直平分线段AB ,∴AF =FB ,∴∠A =∠FBA =30°,∴∠DBF =∠ABD ﹣∠FBE =45°.【点睛】本题考查了线段的垂直平分线作法和性质,菱形的性质等知识,解题的关键是灵活运用所学知识解决问题.26.如图,某同学在测量建筑物AB 的高度时,在地面的C 处测得点A 的仰角为30°,向前走60米到达D 处,在D 处测得点A 的仰角为45°,求建筑物AB 的高度.【答案】(3【解析】解:设建筑物AB 的高度为x 米在Rt △ABD 中,∠ADB=45°∴AB=DB=x∴BC=DB+CD= x+60在Rt △ABC 中,∠ACB=30°,∴tan ∠ACB=AB CB∴tan 3060x x ︒=+ ∴360x x =+ ∴x=30+30∴建筑物AB 的高度为(30+30)米中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列各式:①a 0=1 ②a 2·a 3=a 5 ③ 2–2= –14④–(3-5)+(–2)4÷8×(–1)=0⑤x 2+x 2=2x 2,其中正确的是 ( ) A .①②③B .①③⑤C .②③④D .②④⑤ 【答案】D 【解析】根据实数的运算法则即可一一判断求解.【详解】①有理数的0次幂,当a=0时,a 0=0;②为同底数幂相乘,底数不变,指数相加,正确;③中2–2= 14,原式错误;④为有理数的混合运算,正确;⑤为合并同类项,正确. 故选D.2.如图,在Rt △ABC 中,∠ACB=90°,AC=BC=1,将绕点A 逆时针旋转30°后得到Rt △ADE ,点B 经过的路径为弧BD ,则图中阴影部分的面积是( )A .6πB .3πC .2π-12D .12【答案】A【解析】先根据勾股定理得到2,再根据扇形的面积公式计算出S 扇形ABD ,由旋转的性质得到Rt △ADE ≌Rt △ACB ,于是S 阴影部分=S △ADE +S 扇形ABD -S △ABC =S 扇形ABD .【详解】∵∠ACB=90°,AC=BC=1,∴2,∴S 扇形ABD =2302=3606ππ⨯,又∵Rt △ABC 绕A 点逆时针旋转30°后得到Rt △ADE ,∴Rt △ADE ≌Rt △ACB ,∴S 阴影部分=S △ADE +S 扇形ABD −S △ABC =S 扇形ABD =6π, 故选A.【点睛】本题考查扇形面积计算,熟记扇形面积公式,采用作差法计算面积是解题的关键.3.用配方法解方程2230x x +-=时,可将方程变形为( )A .2(1)2x +=B .2(1)2x -=C .2(1)4x -=D .2(1)4x +=【答案】D【解析】配方法一般步骤:将常数项移到等号右侧,左右两边同时加一次项系数一半的平方,配方即可.【详解】解:2230x x +-=223x x +=2214x x ++=()214x +=故选D.【点睛】本题考查了配方法解方程的步骤,属于简单题,熟悉步骤是解题关键.4.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为(2a ,b+1),则a 与b 的数量关系为A .a=bB .2a+b=﹣1C .2a ﹣b=1D .2a+b=1【答案】B 【解析】试题分析:根据作图方法可得点P 在第二象限角平分线上,则P 点横纵坐标的和为0,即2a+b+1=0,∴2a+b=﹣1.故选B .5.如图,AB 为⊙O 的直径,C ,D 为⊙O 上的两点,若AB =14,BC =1.则∠BDC 的度数是( )A .15°B .30°C .45°D .60°【答案】B【解析】只要证明△OCB 是等边三角形,可得∠CDB=12∠COB 即可解决问题. 【详解】如图,连接OC ,∵AB=14,BC=1,∴OB=OC=BC=1,∴△OCB 是等边三角形,∴∠COB=60°,∴∠CDB=12∠COB=30°, 故选B .【点睛】本题考查圆周角定理,等边三角形的判定等知识,解题的关键是学会利用数形结合的首先解决问题,属于中考常考题型.6.已知抛物线y =ax 2+bx+c (a <0)与x 轴交于点A (﹣1,0),与y 轴的交点在(0,2),(0,3)之间(包含端点),顶点坐标为(1,n ),则下列结论:①4a+2b <0; ②﹣1≤a≤23; ③对于任意实数m ,a+b≥am 2+bm 总成立;④关于x 的方程ax 2+bx+c =n ﹣1有两个不相等的实数根.其中结论正确的个数为( ) A .1个B .2个C .3个D .4个 【答案】C【解析】①由抛物线的顶点横坐标可得出b=-2a ,进而可得出4a+2b=0,结论①错误;②利用一次函数图象上点的坐标特征结合b=-2a 可得出a=-3c ,再结合抛物线与y 轴交点的位置即可得出-1≤a≤-23,结论②正确; ③由抛物线的顶点坐标及a <0,可得出n=a+b+c ,且n≥ax 2+bx+c ,进而可得出对于任意实数m ,a+b≥am 2+bm 总成立,结论③正确;④由抛物线的顶点坐标可得出抛物线y=ax 2+bx+c 与直线y=n 只有一个交点,将直线下移可得出抛物线y=ax 2+bx+c 与直线y=n-1有两个交点,进而可得出关于x 的方程ax 2+bx+c=n-1有两个不相等的实数根,结合④正确.【详解】:①∵抛物线y=ax 2+bx+c 的顶点坐标为(1,n ),∴-2b a=1, ∴b=-2a ,∴4a+2b=0,结论①错误;②∵抛物线y=ax 2+bx+c 与x 轴交于点A (-1,0),∴a-b+c=3a+c=0,∴a=-3c . 又∵抛物线y=ax 2+bx+c 与y 轴的交点在(0,2),(0,3)之间(包含端点),∴2≤c≤3,∴-1≤a≤-23,结论②正确; ③∵a <0,顶点坐标为(1,n ),∴n=a+b+c ,且n≥ax 2+bx+c ,∴对于任意实数m ,a+b≥am 2+bm 总成立,结论③正确;④∵抛物线y=ax 2+bx+c 的顶点坐标为(1,n ),∴抛物线y=ax 2+bx+c 与直线y=n 只有一个交点,又∵a <0,∴抛物线开口向下,∴抛物线y=ax 2+bx+c 与直线y=n-1有两个交点,∴关于x 的方程ax 2+bx+c=n-1有两个不相等的实数根,结合④正确.故选C .【点睛】本题考查了二次函数图象与系数的关系、抛物线与x 轴的交点以及二次函数的性质,观察函数图象,逐一分析四个结论的正误是解题的关键.7.为迎接中考体育加试,小刚和小亮分别统计了自己最近10次跳绳比赛,下列统计量中能用来比较两人成绩稳定程度的是 ( )A .平均数B .中位数C .众数D .方差【答案】D【解析】根据方差反映数据的波动情况即可解答.【详解】由于方差反映数据的波动情况,所以比较两人成绩稳定程度的数据是方差.【点睛】本题主要考查了统计的有关知识,主要包括平均数、中位数、众数、方差.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.8.如图所示,在平面直角坐标系中,抛物线y=-x2+23x的顶点为A点,且与x轴的正半轴交于点B,P点为该抛物线对称轴上一点,则OP+12AP的最小值为().A.3 B.23C.32214+D.3232+【答案】A【解析】连接AO,AB,PB,作PH⊥OA于H,BC⊥AO于C,解方程得到-x2+23x=0得到点B,再利用配方法得到点A,得到OA的长度,判断△AOB为等边三角形,然后利用∠OAP=30°得到PH= 12AP,利用抛物线的性质得到PO=PB,再根据两点之间线段最短求解.【详解】连接AO,AB,PB,作PH⊥OA于H,BC⊥AO于C,如图当y=0时-x2+23x=0,得x1=0,x2=23,所以B(23,0),由于y=-x2+23x=-(x-3)2+3,所以A(3,3),所以AB=AO=23,AO=AB=OB,所以三角形AOB为等边三角形,∠OAP=30°得到PH= 12AP,因为AP垂直平分OB,所以PO=PB,所以OP+12AP=PB+PH,所以当H,P,B共线时,PB+PH最短,而BC=32AB=3,所以最小值为3.故选A.【点睛】本题考查的是二次函数的综合运用,熟练掌握二次函数的性质和最短途径的解决方法是解题的关键. 9.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()C .76D .80【答案】C 【解析】试题解析:∵∠AEB=90°,AE=6,BE=8,∴AB=22226810AE BE +=+=∴S 阴影部分=S 正方形ABCD -S Rt △ABE =102-1682⨯⨯ =100-24=76.故选C.考点:勾股定理.10.已知一组数据1、2、3、x 、5,它们的平均数是3,则这一组数据的方差为( )A .1B .2C .3D .4 【答案】B【解析】先由平均数是3可得x 的值,再结合方差公式计算.【详解】∵数据1、2、3、x 、5的平均数是3,∴12355x ++++=3, 解得:x=4,则数据为1、2、3、4、5,∴方差为15×[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2, 故选B .【点睛】本题主要考查算术平均数和方差,解题的关键是熟练掌握平均数和方差的定义.二、填空题(本题包括8个小题)11.边长分别为a 和2a 的两个正方形按如图的样式摆放,则图中阴影部分的面积为_________.【答案】1a 1.【解析】结合图形,发现:阴影部分的面积=大正方形的面积的+小正方形的面积-直角三角形的面积.【详解】阴影部分的面积=大正方形的面积+小正方形的面积-直角三角形的面积=(1a )1+a 1-12×1a×3a =4a 1+a 1-3a 1故答案为:1a 1.【点睛】此题考查了整式的混合运算,关键是列出求阴影部分面积的式子.12.因式分解:2xy 4x -=.【答案】.【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式x 后继续应用平方差公式分解即可:()()()22xy 4x x y 4x y 2y 2-=-=+-. 13.如图,某数学兴趣小组将边长为4的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB 的面积为__________ .【答案】16【解析】设扇形的圆心角为n°,则根据扇形的弧长公式有:π·4=8180n ,解得360πn = 所以22360S ==16360360扇形π4πr π=n 14.分解因式:3m 2﹣6mn+3n 2=_____.【答案】3(m-n )2【解析】原式=2232)m mn n -+(=23()m n - 故填:23()m n -15.如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中数据计算,这个几何体的表面积为__________2cm .【答案】16【解析】分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其表面积.详解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为6cm,底面半径为2cm,故表面积=πrl+πr2=π×2×6+π×22=16π(cm2).故答案为:16π.点睛:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.16.如图,在△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B= ______【答案】【解析】如图,连接BB′,∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等边三角形,∴AB=BB′,在△ABC′和△B′BC′中,,∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延长BC′交AB′于D,∵∠C=90∘,AC=BC=, ∴AB==2,∴BD=2×=, C′D=×2=1,∴BC′=BD−C′D=−1. 故答案为:−1.点睛: 本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键,也是本题的难点. 17.已知a ,b ,c ,d 是成比例的线段,其中3cm a =,2cm b =,6cm c =,则d =_______cm .【答案】4【解析】如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.根据定义ad =cb ,将a ,b 及c 的值代入即可求得d .【详解】已知a ,b ,c ,d 是成比例线段,根据比例线段的定义得:ad =cb ,代入a =3,b =2,c =6,解得:d =4,则d =4cm .故答案为:4【点睛】本题主要考查比例线段的定义.要注意考虑问题要全面.18.如图,AB ∥CD ,BE 交CD 于点D ,CE ⊥BE 于点E ,若∠B=34°,则∠C 的大小为________度.【答案】56【解析】解:∵AB ∥CD,34B ∠=,∴34CDE B ∠=∠=,。

2017年重庆江北中考数学真题及答案B卷

2017年重庆江北中考数学真题及答案B卷

2017年重庆江北中考数学真题及答案B卷一、选择题(每小题4分,共48分)1.5的相反数是()A.﹣5 B.5 C.﹣ D.【答案】A.2.下列图形中是轴对称图形的是()A.B.C.D.【答案】D.3.计算a5÷a3结果正确的是()A.a B.a2C.a3D.a4【答案】B.4.下列调查中,最适合采用抽样调查的是()A.对某地区现有的16名百岁以上老人睡眠时间的调查B.对“神舟十一号”运载火箭发射前零部件质量情况的调查C.对某校九年级三班学生视力情况的调查D.对某市场上某一品牌电脑使用寿命的调查【答案】D.5.估计+1的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【答案】C.6.若x=﹣3,y=1,则代数式2x﹣3y+1的值为()A.﹣10 B.﹣8 C.4 D.10【答案】B.7.若分式有意义,则x的取值范围是()A.x>3 B.x<3 C.x≠3 D.x=3【答案】C.8.已知△ABC∽△DEF,且相似比为1:2,则△ABC与△DEF的面积比为()A.1:4 B.4:1 C.1:2 D.2:1【答案】A9.如图,在矩形ABCD中,AB=4,AD=2,分别以A、C为圆心,AD、CB为半径画弧,交AB 于点E,交CD于点F,则图中阴影部分的面积是()A.4﹣2πB.8﹣C.8﹣2πD.8﹣4π【答案】C.10.下列图象都是由相同大小的按一定规律组成的,其中第①个图形中一共有4颗,第②个图形中一共有11颗,第③个图形中一共有21颗,…,按此规律排列下去,第⑨个图形中的颗数为()A.116 B.144 C.145 D.150【答案】B.11.如图,已知点C与某建筑物底端B相距306米(点C与点B在同一水平面上),某同学从点C出发,沿同一剖面的斜坡CD行走195米至坡顶D处,斜坡CD的坡度(或坡比)i=1:2.4,在D处测得该建筑物顶端A的俯视角为20°,则建筑物AB的高度约为(精确到0.1米,参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364)()A.29.1米B.31.9米C.45.9米D.95.9米【答案】A.12.若数a使关于x的不等式组有且仅有四个整数解,且使关于y的分式方程+=2有非负数解,则所以满足条件的整数a的值之和是()A.3 B.1 C.0 D.﹣3【答案】A.二、填空题(每小题4分,共24分)13.据统计,2017年五一假日三天,重庆市共接待游客约为14300000人次,将数14300000用科学记数法表示为 1.43×107.14.计算:|﹣3|+(﹣4)0= 4 .15.如图,OA、OC是⊙O的半径,点B在⊙O上,连接AB、BC,若∠ABC=40°,则∠AOC= 80 度.16.某同学在体育训练中统计了自己五次“1分钟跳绳”成绩,并绘制了如图所示的折线统计图,这五次“1分钟跳绳”成绩的中位数是183 个.17.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示,当乙到达终点A时,甲还需18 分钟到达终点B.18.如图,正方形ABCD中,AD=4,点E是对角线AC上一点,连接DE,过点E作EF⊥ED,交AB于点F,连接DF,交AC于点G,将△EFG沿EF翻折,得到△EFM,连接DM,交EF于点N,若点F是AB的中点,则△EMN的周长是.三、答案题(每小题8分,共16分)19.如图,直线EF∥GH,点A在EF上,AC交GH于点B,若∠FAC=72°,∠ACD=58°,点D 在GH上,求∠BDC的度数.【答案】解:∵EF∥GH,∴∠ABD+∠FAC=180°,∴∠ABD=180°﹣72°=108°,∵∠ABD=∠ACD+∠BDC,∴∠BDC=∠ABD﹣∠ACD=108°﹣58°=50°.20.中央电视台的“中国诗词大赛”节目文化品位高,内容丰富,某校初二年级模拟开展“中国诗词大赛”比赛,对全年级同学成绩进行统计后分为“优秀”、“良好”、“一般”、“较差”四个等级,并根据成绩绘制成如下两幅不完整的统计图,请结合统计图中的信息,回答下列问题:(1)扇形统计图中“优秀”所对应的扇形的圆心角为72 度,并将条形统计图补充完整.(2)此次比赛有四名同学活动满分,分别是甲、乙、丙、丁,现从这四名同学中挑选两名同学参加学校举行的“中国诗词大赛”比赛,请用列表法或画树状图法,求出选中的两名同学恰好是甲、丁的概率.【答案】解:(1)360°(1﹣40%﹣25%﹣15%)=72°;故答案为:72;全年级总人数为45÷15%=300(人),“良好”的人数为300×40%=120(人),将条形统计图补充完整,如图所示:(2)画树状图,如图所示:共有12个可能的结果,选中的两名同学恰好是甲、丁的结果有2个,∴P(选中的两名同学恰好是甲、丁)==.四、简答题(每小题10分,共40分)21.计算:(1)(x+y)2﹣x(2y﹣x);(2)(a+2﹣)÷.【答案】解:(1)(x+y)2﹣x(2y﹣x)=x2+2xy+y2﹣2xy+x2=2x2+y2;(2)(a+2﹣)÷=()×==.22.如图,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数y=(k ≠0)的图象交于A、B两点,与x轴交于点C,过点A作AH⊥x轴于点H,点O是线段CH 的中点,AC=4,cos∠ACH=,点B的坐标为(4,n)(1)求该反比例函数和一次函数的解析式;(2)求△BCH的面积.【答案】解:(1)∵AH⊥x轴于点H,AC=4,cos∠ACH=,∴==,解得:HC=4,∵点O是线段CH的中点,∴HO=CO=2,∴AH==8,∴A(﹣2,8),∴反比例函数解析式为:y=﹣,∴B(4,﹣4),∴设一次函数解析式为:y=kx+b,则,解得:,∴一次函数解析式为:y=﹣2x+4;(2)由(1)得:△BCH的面积为:×4×4=8.23.某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同,该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m 的值.【答案】解:(1)设该果农今年收获樱桃x千克,根据题意得:400﹣x≤7x,解得:x≥50,答:该果农今年收获樱桃至少50千克;(2)由题意可得:100(1﹣m%)×30+200×(1+2m%)×20(1﹣m%)=100×30+200×20,令m%=y,原方程可化为:3000(1﹣y)+4000(1+2y)(1﹣y)=7000,整理可得:8y2﹣y=0解得:y1=0,y2=0.125∴m1=0(舍去),m2=12.5∴m2=12.5,答:m的值为12.5.24.如图,△ABC中,∠ACB=90°,AC=BC,点E是AC上一点,连接BE.(1)如图1,若AB=4,BE=5,求AE的长;(2)如图2,点D是线段BE延长线上一点,过点A作AF⊥BD于点F,连接CD、CF,当AF=DF 时,求证:DC=BC.【答案】解:(1)∵∠ACB=90°,AC=BC,∴AC=BC=AB=4,∵BE=5,∴CE==3,∴AE=4﹣3=1;(2)∵∠ACB=90°,AC=BC,∴∠CAB=45°,∵AF⊥BD,∴∠AFB=∠ACB=90°,∴A,F,C,B四点共圆,∴∠CFB=∠CAB=45°,∴∠DFC=∠AFC=135°,在△ACF与△DCF中,,∴△ACF≌△DCF,∴CD=AC,∵AC=BC,∴AC=BC.五、答案题(第25小题10分、第26小题12分,共22分)25.对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F计算:F;(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k=,当F(s)+F(t)=18时,求k的最大值.【答案】解:(1)F÷111=9;F÷111=14.(2)∵s,t都是“相异数”,s=100x+32,t=150+y,∴F(s)=÷111=x+5,F(t)=÷111=y+6.∵F(t)+F(s)=18,∴x+5+y+6=x+y+11=18,∴x+y=7.∵1≤x≤9,1≤y≤9,且x,y都是正整数,∴或或或或或.∵s是“相异数”,∴x≠2,x≠3.∵t是“相异数”,∴y≠1,y≠5.∴或或,∴或或,∴或或,∴k的最大值为.26.如图,在平面直角坐标系中,抛物线y=x2﹣x﹣与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,对称轴与x轴交于点D,点E(4,n)在抛物线上.(1)求直线AE的解析式;(2)点P为直线CE下方抛物线上的一点,连接PC,PE.当△PCE的面积最大时,连接CD,CB,点K是线段CB的中点,点M是CP上的一点,点N是CD上的一点,求KM+MN+NK的最小值;(3)点G是线段CE的中点,将抛物线y=x2﹣x﹣沿x轴正方向平移得到新抛物线y′,y′经过点D,y′的顶点为点F.在新抛物线y′的对称轴上,是否存在一点Q,使得△FGQ为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由.【答案】解:(1)∵y=x2﹣x﹣,∴y=(x+1)(x﹣3).∴A(﹣1,0),B(3,0).当x=4时,y=.∴E(4,).设直线AE的解析式为y=kx+b,将点A和点E的坐标代入得:,解得:k=,b=.∴直线AE的解析式为y=x+.(2)设直线CE的解析式为y=mx﹣,将点E的坐标代入得:4m﹣=,解得:m=.∴直线CE的解析式为y=x﹣.过点P作PF∥y轴,交CE与点F.设点P的坐标为(x, x2﹣x﹣),则点F(x, x﹣),则FP=(x﹣)﹣(x2﹣x﹣)=x2+x.∴△EPC的面积=×(x2+x)×4=﹣x2+x.∴当x=2时,△EPC的面积最大.∴P(2,﹣).如图2所示:作点K关于CD和CP的对称点G、H,连接G、H交CD和CP与N、M.∵K是CB的中点,∴k(,﹣).∵点H与点K关于CP对称,∴点H的坐标为(,﹣).∵点G与点K关于CD对称,∴点G(0,0).∴KM+MN+NK=MH+MN+GN.当点O、N、M、H在条直线上时,KM+MN+NK有最小值,最小值=GH.∴GH==3.∴KM+MN+NK的最小值为3.(3)如图3所示:∵y′经过点D,y′的顶点为点F,∴点F(3,﹣).∵点G为CE的中点,∴G(2,).∴FG==.∴当FG=FQ时,点Q(3,),Q′(3,).当GF=GQ时,点F与点Q″关于y=对称,∴点Q″(3,2).当QG=QF时,设点Q1的坐标为(3,a).由两点间的距离公式可知:a+=,解得:a=﹣.∴点Q1的坐标为(3,﹣).综上所述,点Q的坐标为(3,)或′(3,)或(3,2)或(3,﹣).。

2017年重庆江北中考数学真题及答案A卷

2017年重庆江北中考数学真题及答案A卷

2017年重庆江北中考数学真题及答案A卷一、选择题(每小题4分,共48分)1.在实数﹣3,2,0,﹣4中,最大的数是()A.﹣3 B.2 C.0 D.﹣4【答案】B.2.下列图形中是轴对称图形的是()A. B. C. D.【答案】C.3.计算x6÷x2正确的解果是()A.3 B.x3C.x4D.x8【答案】C.4.下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市初中学生每天阅读时间的调查B.对端午节期间市场上粽子质量情况的调查C.对某批次手机的防水功能的调查D.对某校九年级3班学生肺活量情况的调查【答案】D.5.估计+1的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间【答案】B.6.若x=﹣,y=4,则代数式3x+y﹣3的值为()A.﹣6 B.0 C.2 D.6【答案】B.7.要使分式有意义,x应满足的条件是()A.x>3 B.x=3 C.x<3 D.x≠3【答案】D.8.若△ABC~△DEF,相似比为3:2,则对应高的比为()A.3:2 B.3:5 C.9:4 D.4:9【答案】A.9.如图,矩形ABCD的边AB=1,BE平分∠ABC,交AD于点E,若点E是AD的中点,以点B 为圆心,BE为半径画弧,交BC于点F,则图中阴影部分的面积是()B. C. D.【答案】B.10.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑨个图形中菱形的个数为()A.73 B.81 C.91 D.109【答案】C.11.如图,小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:,坡长BC=10米,则此时AB的长约为()(参考数据:sin40°≈,cos40°≈,tan40°≈).A.米B.米C.米D.米【答案】A.12.若数a使关于x的分式方程+=4的解为正数,且使关于y的不等式组的解集为y<﹣2,则符合条件的所有整数a的和为()A.10 B.12 C.14 D.16【考点】B2:分式方程的解;CB:解一元一次不等式组.【分析】根据分式方程的解为正数即可得出a<6,根据不等式组的解集为y<﹣2,即可得出a≥﹣2,找出﹣2≤a<6中所有的整数,将其相加即可得出结论.【答案】B.二、填空题(每小题4分,共24分)13.“渝新欧”国际铁路联运大通道全长11000千米,成为服务“一带一路”的大动脉之一,将数11000用科学记数法表示为×104.14.计算:|﹣3|+(﹣1)2= 4 .15.如图,BC是⊙O的直径,点A在圆上,连接AO,AC,∠AOB=64°,则∠ACB= 32°.16.某班体育委员对本班学生一周锻炼时间(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是11 小时.17.A、B两地之间的路程为2380米,甲、乙两人分别从A、B两地出发,相向而行,已知甲先出发5分钟后,乙才出发,他们两人在A、B之间的C地相遇,相遇后,甲立即返回A 地,乙继续向A地前行.甲到达A地时停止行走,乙到达A地时也停止行走,在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示,则乙到达A地时,甲与A地相距的路程是180 米.18.如图,正方形ABCD中,AD=4,点E是对角线AC上一点,连接DE,过点E作EF⊥ED,交AB于点F,连接DF,交AC于点G,将△EFG沿EF翻折,得到△EFM,连接DM,交EF于点N,若点F是AB的中点,则△EMN的周长是.三、答案题(每小题8分,共16分)19.如图,AB∥CD,点E是CD上一点,∠AEC=42°,EF平分∠AED交AB于点F,求∠AFE 的度数.【答案】解:∵∠AEC=42°,∴∠AED=180°﹣∠AEC=138°,∵EF平分∠AED,∴∠DEF=∠AED=69°,又∵AB∥CD,∴∠AFE=∠DEF=69°.20.重庆某中学组织七、八、九年级学生参加“直辖20年,点赞新重庆”作文比赛,该校将收到的参赛作文进行分年级统计,绘制了如图1和如图2两幅不完整的统计图,根据图中提供的信息完成以下问题.(1)扇形统计图中九年级参赛作文篇数对应的圆心角是126 度,并补全条形统计图;(2)经过评审,全校有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从特等奖作文中任选两篇刊登在校刊上,请利用画树状图或列表的方法求出七年级特等奖作文被选登在校刊上的概率.【答案】解:(1)20÷20%=100,九年级参赛作文篇数对应的圆心角=360°×=126°;故答案为:126;100﹣20﹣35=45,补全条形统计图如图所示:(2)假设4篇荣获特等奖的作文分别为A、B、C、D,其中A代表七年级获奖的特等奖作文.画树状图法:共有12种可能的结果,七年级特等奖作文被选登在校刊上的结果有6种,∴P(七年级特等奖作文被选登在校刊上)==.21.计算:(1)x(x﹣2y)﹣(x+y)2(2)(+a﹣2)÷.【答案】解:(1)x(x﹣2y)﹣(x+y)2,=x2﹣2xy﹣x2﹣2xy﹣y2,=﹣4xy﹣y2;(2)(+a﹣2)÷.=[+],=,=.22.如图,在平面直角坐标系中,一次函数y=mx+n(m≠0)的图象与反比例函数y=(k≠0)的图象交于第一、三象限内的A、B两点,与y轴交于点C,过点B作BM⊥x轴,垂足为M,BM=OM,OB=2,点A的纵坐标为4.(1)求该反比例函数和一次函数的解析式;(2)连接MC,求四边形MBOC的面积.【答案】解:(1)由题意可得,BM=OM,OB=2,∴BM=OM=2,∴点B的坐标为(﹣2,﹣2),设反比例函数的解析式为y=,则﹣2=,得k=4,∴反比例函数的解析式为y=,∵点A的纵坐标是4,∴4=,得x=1,∴点A的坐标为(1,4),∵一次函数y=mx+n(m≠0)的图象过点A(1,4)、点B(﹣2,﹣2),∴,得,即一次函数的解析式为y=2x+2;(2)∵y=2x+2与y轴交与点C,∴点C的坐标为(0,2),∵点B(﹣2,﹣2),点M(﹣2,0),点O(0,0),∴OM=2,OC=2,MB=2,∴四边形MBOC的面积是: ==4.23.某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同,该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额比他去年樱桃和枇杷的市场销售总金额相同,求m 的值.【答案】解:(1)设该果农今年收获樱桃x千克,根据题意得:400﹣x≤7x,解得:x≥50,答:该果农今年收获樱桃至少50千克;(2)由题意可得:100(1﹣m%)×30+200×(1+2m%)×20(1﹣m%)=100×30+200×20,令m%=y,原方程可化为:3000(1﹣y)+4000(1+2y)(1﹣y)=7000,整理可得:8y2﹣y=0解得:y1=0,y2=∴m1=0(舍去),m2=∴m2=,答:m的值为.24.在△ABC中,∠ABM=45°,AM⊥BM,垂足为M,点C是BM延长线上一点,连接AC.(1)如图1,若AB=3,BC=5,求AC的长;(2)如图2,点D是线段AM上一点,MD=MC,点E是△ABC外一点,EC=AC,连接ED并延长交BC于点F,且点F是线段BC的中点,求证:∠BDF=∠CEF.【答案】解:(1)∵∠ABM=45°,AM⊥BM,∴AM=BM=ABcos45°=3×=3,则CM=BC﹣BM=5﹣2=2,∴AC===;(2)延长EF到点G,使得FG=EF,连接BG.由DM=MC,∠BMD=∠AMC,BM=AM,∴△BMD≌△AMC(SAS),∴AC=BD,又CE=AC,因此BD=CE,由BF=FC,∠BFG=∠EFC,FG=FE,∴△BFG≌△CFE,故BG=CE,∠G=∠E,所以BD=BG=CE,因此∠BDG=∠G=∠E.25.对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F计算:F;(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k=,当F(s)+F(t)=18时,求k的最大值.【答案】解:(1)F÷111=9;F÷111=14.(2)∵s,t都是“相异数”,s=100x+32,t=150+y,∴F(s)=÷111=x+5,F(t)=÷111=y+6.∵F(t)+F(s)=18,∴x+5+y+6=x+y+11=18,∴x+y=7.∵1≤x≤9,1≤y≤9,且x,y都是正整数,∴或或或或或.∵s是“相异数”,∴x≠2,x≠3.∵t是“相异数”,∴y≠1,y≠5.∴或或,∴或或,∴或或,∴k的最大值为.26.如图,在平面直角坐标系中,抛物线y=x2﹣x﹣与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,对称轴与x轴交于点D,点E(4,n)在抛物线上.2-1-c-n-j-y(1)求直线AE的解析式;(2)点P为直线CE下方抛物线上的一点,连接PC,PE.当△PCE的面积最大时,连接CD,CB,点K是线段CB的中点,点M是CP上的一点,点N是CD上的一点,求KM+MN+NK的最小值;(3)点G是线段CE的中点,将抛物线y=x2﹣x﹣沿x轴正方向平移得到新抛物线y′,y′经过点D,y′的顶点为点F.在新抛物线y′的对称轴上,是否存在一点Q,使得△FGQ为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由.【答案】解:(1)∵y=x2﹣x﹣,∴y=(x+1)(x﹣3).∴A(﹣1,0),B(3,0).当x=4时,y=.∴E(4,).设直线AE的解析式为y=kx+b,将点A和点E的坐标代入得:,解得:k=,b=.∴直线AE的解析式为y=x+.(2)设直线CE的解析式为y=mx﹣,将点E的坐标代入得:4m﹣=,解得:m=.∴直线CE的解析式为y=x﹣.过点P作PF∥y轴,交CE与点F.设点P的坐标为(x, x2﹣x﹣),则点F(x, x﹣),则FP=(x﹣)﹣(x2﹣x﹣)=x2+x.∴△EPC的面积=×(x2+x)×4=﹣x2+x.∴当x=2时,△EPC的面积最大.∴P(2,﹣).如图2所示:作点K关于CD和CP的对称点G、H,连接G、H交CD和CP与N、M.∵K是CB的中点,∴k(,﹣).∵点H与点K关于CP对称,∴点H的坐标为(,﹣).∵点G与点K关于CD对称,∴点G(0,0).∴KM+MN+NK=MH+MN+GN.当点O、N、M、H在条直线上时,KM+MN+NK有最小值,最小值=GH.∴GH==3.∴KM+MN+NK的最小值为3.(3)如图3所示:∵y′经过点D,y′的顶点为点F,∴点F(3,﹣).∵点G为CE的中点,∴G(2,).∴FG==.∴当FG=FQ时,点Q(3,),Q′(3,).当GF=GQ时,点F与点Q″关于y=对称,∴点Q″(3,2).当QG=QF时,设点Q1的坐标为(3,a).由两点间的距离公式可知:a+=,解得:a=﹣.∴点Q1的坐标为(3,﹣).综上所述,点Q的坐标为(3,)或′(3,)或(3,2)或(3,﹣).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江北区2016—2017学年度下期九年级中考模拟考试数 学 试 题(考试时间:120分钟,满分:150分)注意事项:1.选择题用2B 铅笔,解答题的答案用0.5毫米的黑色签字笔书写在答题卷上,不得在试卷上直接作答;2.答题前,请认真阅读答题卷上的注意事项,并按要求填写内容和答题; 3.作图(包括作辅助线),请一律用黑色签字笔完成; 4.考试结束,由监考人员将试题和答题卷一并收回.一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑. 1.3的相反数是( ). A .3B .3-C .31D . 31-2.在下列四个图形中,是中心对称图形的是( ).ABCD3.计算263÷6x x 的结果是( ).A .32xB .43xC .42xD .33x4.下列调查中,最适宜采用抽样调查....方式的是( ). A .对全班同学体能测试达标情况的调查B .对嘉陵江水域水流污染情况的调查C .对乘坐飞机的旅客是否携带了违禁物品的检查D .对奥运会参赛者是否服用了兴奋剂的检查5.如图,直线、a 直线b 被直线c 所截,且b a ∥,若°40=1∠, 则2∠的度数是( ). A .°30 B .°60 C .°120 D .°1406.若ABC △∽'''C B A △,且ABC △与'''C B A △的相似比为2:1,则ABC △与'''C B A △的面积比是( )A .1:1B .2:1C .3:1D .4:1 7.若分式21-x 有意义,则x 的取值范围是( ) A .0x B .2≠x C .2≥x D .2>x 8.已知0=32+2-a a ,则代数式34+22-a a 的值是( ) A .3- B .0 C .3 D .69.如图,正方形ABCD 的边长为2,连接BD ,先以D 为圆心,DA 为半径作弧AC ,再以D 为圆心,DB 为半径作弧BE ,且D 、C 、E 三点共线,则图中两个阴影部分的面积之和是( ) A .π21 B .1+21π C .π D .1+π10.下列图形是由同样大小的棋子按照一定规律排列而成的,其中,图1中有5个棋子,图2中有10个棋子,图3中有16个棋子,……,则图7中有( )个棋子.A .35B .40C . 45D .5011.如图是某水库大坝的横截面示意图,已知BC AD ∥,且AD 、BC 之间的距离为15米,背水坡CD 的坡度6.0:1=i ,为提高大坝的防洪能力,需对大坝进行加固,加固后大坝顶端AE 比原来的顶端AD 加宽了2米,背水坡EF 的坡度4:3=i ,则大坝底端增加的长度CF 是( )米.A .7B .11C .13D .2012.从3-,2-,1-,0,1,2这六个数中,随机抽取一个数,记为m .若数m 使关于x 的分式方程x mx 21=1121---的解是正实数或零;且使得的二次函数1+)12(+=2x m x y --的图象,在1>x 时,y 随x 的增大而减小,则满足条件的所有m 之和是( ) A .2-B .1-C .0D .2二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答.题卡..中对应的横线上. 13.据报道,西部地区最大的客运枢纽系统——重庆西站,一期工程已经完成90%,预计在年内建成投入使用.届时,预计每年客流量可达42000000人次,将数42000000用科学记数法表示为 .14.计算:2)21(|2|)3(--+---π= .15.如图,AB 是⊙O 的直径,点C 和点D 是⊙O 上两点,连接AC 、CD 、BD ,若CD CA =, °80=∠ACD ,则=∠CAB °.17. 甲、乙两人在1800米长的直线道路上跑步,甲、乙两人同起点、同方向出发,并分别以不同的速度匀速前进.已知,甲出发30秒后,乙出发,乙到终点后立即返回,并以原来的速度前进,最后与甲相遇,此时跑步结束. 如图,y (米)表示甲、乙两人之间的距离,t (秒)表示甲出发的时间,图中折线及数据表示整个跑步过程中y 与t 函数关系.那么,乙到终点后_______秒与甲相遇.18.如图,正方形ABCD 中,F 为BC 边上的中点,连接AF 交对角线BD 于G ,在BD上截BA BE =, 连接AE .将ADE △沿AD 翻折得'ADE △,连接C E '交BD 于H .若2=BG ,则四边形'AGHE 的面积是__________.三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上.19.如图,在ABC △和AEF △中,EF AC ∥,FE AB =,AF AC ,求证:E B ∠=∠.20.为了了解某校初三学生体能水平,体育老师从刚结束的“女生800米,男生1000米” 体能测试成绩中随机抽取了一部分同学的成绩,按照“优秀、良好、合格、不合格”进行了统计,并绘制了下列不完整的统计图,请根据图中信息解答下列问题: (1)体育老师总共选取了多少人的成绩?扇形统计图中“优秀”部分的圆心角度数是多少?(2)把条形统计图补充完整;(3)已知某校初三在校生有2500人,从统计情况分析,请你估算此次体能测试中达到“优秀”水平的大约有多少人?四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上. 21.计算:(1) )2(2)2(2a b b b a --- (2) 1+1+22÷)1(223x x x x x x x x x -----22.如图,在平面直角坐标系中,一次函数(0)y kx b k =+≠的图象与反比例函数(0)my m x=≠的图象交于点)3,(n C ,与x 轴、y 轴分别交于点A 、B ,过点C 作x CM ⊥轴,垂足为M .若43=∠tan CAM ,2=OA .(1)求反比例函数和一次函数的解析式;(2)点D 是反比例函数图象在第三象限部分上的一点,且到x 轴的距离是3,连接AD 、BD ,求ABD △的面积.23.我市“尚品”房地产开发公司预计今年10月份将竣工一商品房小区,其中包括高层住宅区和别墅区一共60万平方米,且高层住宅区的面积不少于别墅区面积的3倍. (1)别墅区最多多少万平方米?(2)今年一月初,“尚品”公司开始出售该小区,其中高层住宅区的销售单价为8000元/平方米,别墅区的销售单价为12000元/平方米,并售出高层住宅区6万平方米,别墅区4万平方米,二月时,受最新政策“去库存,满足刚需”以及银行房贷利率打折的影响,该小区高层住宅区的销售单价比一月增加了%a ,销售面积比一月增加了%2a ;别墅区的销售单价比一月份减少了%10,销售面积比一月增加了%a ,于是二月份该小区高层住宅区的销售总额比别墅区的销售总额多10080万元,求a 的值.24.如图,ABC △和BDE △都是等腰直角三角形,其中°90=∠=∠BDE ACB ,BC AC =,ED BD =,连接AE ,点F 是AE 的中点,连接DF .(1)如图1,若B 、C 、D 共线,且2==CD AC ,求BF 的长度; (2)如图2,若A 、C 、F 、E 共线,连接CD ,求证:DF DC 2=.五、解答题:(本大题2个小题,25题10分,26题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上.25.一个四位数,记千位上和百位上的数字之和为x ,十位上和个位上的数字之和为y ,如果y x =,那么称这个四位数为“和平数”.例如:1423,4+1=x ,3+2=y ,因为y x =,所以1423是“和平数”. (1)直接写出:最小的“和平数”是________,最大的“和平数”是________; (2)求个位上的数字是千位上的数字的两倍且百位上的数字与十位上的数字之和是12的倍数的所有“和平数”;(3)将一个“和平数”的个位上与十位上的数字交换位置,同时,将百位上与千位上的数字交换位置,称交换前后的这两个“和平数”为一组“相关和平数”。

例如:1423与4132为一组“相关和平数”求证:任意的一组“相关和平数”之和是1111的倍数.26.如图1,抛物线2+554+56=2x x y -的图象与x 轴交于点A 、B ,与y 轴交于 点C ,连接BC ,过点A 作BC AD ∥交抛物线的对称轴于点D . (1)求点D 的坐标;(2)如图2,点P 是抛物线在第一象限内的一点,作BC PQ ⊥于Q ,当PQ 的长度最大时,在线段BC 上找一点M (不与点B 、点C 重合),使BM PM 32+的值最小,求点M 的坐标及BM PM 32+的最小值;(3)抛物线的顶点为点E ,平移抛物线,使抛物线的顶点E 在直线AE 上移动,点A ,E 平移后的对应点分别为点'A 、'E .在平面内有一动点F ,当以点'A 、'E 、B 、F 为顶点的四边形为菱形时,求出点'A 的坐标.江北区2016—2017学年度下期九年级中考模拟考试数学评分标准一、选择题1——5 BDCBD 6——10 DBCAD 11——12 CB 二、填空题13、710×2.4 14、3 15、40 16、61 17、736018、1429760-三、解答题19.证明:AC EF ∥ '2∠=∠∴ C EFA且EF AB =,'4= AF AC'6∴)(≌△△SAS FEA ABC '8∠=∠∴ E B20.解:(1)总共选取了200人,“优秀”部分的圆心角为'4°108 (2)略 (3)'8750=20060×2500 21.(1)解:原式'22244+24+4= ab b ab b a --'2254= b a -(2)解:原式'2221+)2()1(×)2(= x xx x x x x x ----'31+1=x x x x -- '25+1= xx -22.解:(1)由题43==∠tan AM CM CAM 4=∴AM 且2=AO'12=∴ OM)32()0,2(∴,、-C A '26=∴ xy 设)0≠(+=k b kx y 0=+2∴b k -、3=+2b k解23=43=b k 、 '523+43=∴ x y(2)由题设)3,(-d D 代入xy 6= '7)32(∴ ,--D x AD ⊥∴轴'103=•21=∴ AO AD S ABD △23.解:(1)设洋房区有x 万平方米则'23≥60x x - 解'315≤ x所以洋房区最多15万平方米.'4(2)由题'710080=%+14×%10112000%)2+1(6•%)+1(8000 )()-(-a a a解110=5=21-、a a (舍去)'9 5=∴a .'1024.(1)'410= BF(2)作DE AM ∥交DF 的延长线与M ,交BD 与N ,连接CM先证EFD AFM ≌△△再证BCD ACM ≌△△最后证CDM △是等腰直角三角形'10 .25.解:(1)直接写出最小的“和平数”'39999,1001(对一个给2分,对二个给3分)(2)设这个“和平数”为abcd则k c b d c b a a d 12=++=+2=、、k a c 12=+2∴ 即8642=、、、a ,'5161284 (舍去)(舍去)、、、 d 01、当4=2=d a 、时 k c 12=)1+(2可知k c 6=1+且d c b a +=+5=∴c 则7=b02、当8=4=d a 、时k c 12=)2+(2可知k c 6=2+且d c b a +=+4=c 则8=b综上所述,这个数为'748482754 、.(3)设任意的两个“相关和平数”为abcd ,badc (d c b a ,,,分别取0,1,2,…,9且0≠a ,0≠b )则)(1111)(11)(1100b a d c b a +=+++=+即两个“相关和平数”之和是1111的倍数'10 26.解:(1)由题0=2+554+562x x - 解35-、=5=21x x 即'2)20(05)0( ,)、,(、,35-C B A 2+552=∴x y BC -'332552=∴ --x y AD 且抛物线对称轴为35=2=0a b x -'4)3435(∴ ,-D (2)如图,作y PF ∥轴交BC 于F ,则BOC PQF ∽△△ 35==∴BC OB PF PQ 即'535= PF PQ设)2+554+56(2t t t P ,-)2+552(t t F ,- t t 556+56=PF ∴2- 当25=t 时,PF 取最大值,PQ 取最大值, 此时'6)2525( ,P 作x MN ⊥轴于N ,则BOC BNM ∽△△ 32==∴BC OC BM MN 即BM MN 32=,则当N M P 、、共线时,25==32+PN BM PM 此时'8)125( ,M (3)如图所示,1)当B A E A '''=,1''BF E A ∥,1''=BF E A 时四边形B F E A 1''是菱形,此时)638,63523()38,35('2'1--、A A 2)当B E E A '''=,2''BF E A ∥,2''=BF E A 时,四边形B F E A 2''是菱形,此时)63176,63565()0,35('4'3--、-A A 3)当B E B A ''=,'3'BE F A ∥,'3'=BE F A 时,四边形B F E A 2''是菱形,此时''312)634,63522( --A。

相关文档
最新文档