异步电机矢量控制系统的建模与仿真
异步电动机矢量控制系统的设计与仿真.doc
异步电动机矢量控制系统的设计与仿真.异步电动机矢量控制系统的设计与仿真在矢量控制技术出现之前,现代交流调速系统采用了恒压频比控制策略。
这种控制策略的缺点是,当电机低速旋转或在加减速、负载加减等动态条件下,系统性能显著降低,导致交流调速系统在低速、启动时转矩的动态响应和整个系统的稳定性方面不如DC调速系统,无法满足人们对高精度的要求。
后来,交流异步电动机控制开始从标量控制向矢量控制迈进。
以下是矢量控制理论的简要介绍。
矢量控制发展的基础和核心理论支撑是电机的一些概念,如坐标转换原理、机电能量转换理论等。
这种控制的基本思想和方法是将异步电机模拟成DC电机来控制。
只要建立等效于三相交流绕组组的两相绕组,就可以建立等效于异步电机的DC电机模型,并增加相应的比例积分调节环节,从而可以按照DC 电机的控制策略来控制异步电机。
因此,矢量控制可以实现对电机电磁转矩的动态实时控制,从而优化和提高调速性能。
根据这一思想,我在本项目中成功地进行了MATLAB仿真。
关键词:交流电机;矢量控制调速系统;矢量控制系统的设计与仿真交流调速系统的仿真采用常V/f比控制方法,通常称为标量控制。
采用这种方法的系统在电机低速运行时或在加速、减速、增加负载、减少负载等情况下会出现重大缺陷。
采用矢量控制的交流电机可以达到与恒流电机相同的控制性能,从此交流异步电机控制从标量控制向矢量控制迈进了一大步。
以下是矢量控制理论的简要介绍。
矢量控制发展的基础和核心理论支撑是电机的一些概念,如坐标转换原理、机电能量转换理论等。
这种控制的基本思想和方法是将异步电机模拟成DC电机来控制。
只要建立等效于三相交流绕组组的两相绕组,就可以建立等效于异步电机的DC电机模型,并增加相应的比例积分调节环节,从而可以按照DC电机的控制策略来控制异步电机。
因此,矢量控制可以实现对电机电磁转矩的动态实时控制,从而优化和提高调速性能。
根据这一思想,我在本项目中成功地进行了MATLAB仿真。
基于MatlabSimulink的异步电机矢量控制系统仿真
基于MatlabSimulink的异步电机矢量控制系统仿真一、本文概述随着电力电子技术和控制理论的不断发展,异步电机矢量控制系统已成为现代电机控制领域的重要分支。
该系统通过精确控制异步电机的磁通和转矩,实现了对电机的高效、稳定和动态性能的优化。
Matlab/Simulink作为一种强大的仿真工具,为异步电机矢量控制系统的研究和设计提供了便捷的平台。
本文旨在探讨基于Matlab/Simulink的异步电机矢量控制系统仿真方法。
文章将简要介绍异步电机矢量控制的基本原理和关键技术,包括空间矢量脉宽调制(SVPWM)技术、转子磁链观测技术以及矢量控制策略等。
详细阐述如何利用Matlab/Simulink搭建异步电机矢量控制系统的仿真模型,包括电机模型、控制器模型以及系统仿真模型的构建过程。
文章还将探讨仿真模型的参数设置、仿真过程以及仿真结果的分析方法。
通过本文的研究,读者可以深入了解异步电机矢量控制系统的基本原理和仿真方法,掌握基于Matlab/Simulink的仿真技术,为异步电机矢量控制系统的实际设计和应用提供有益的参考和借鉴。
本文的研究也有助于推动异步电机矢量控制技术的发展和应用领域的拓展。
二、异步电机基本原理异步电机,又称感应电机,是一种广泛应用于工业领域的电动机。
其基本原理基于电磁感应和电磁力作用。
异步电机主要包括定子(静止部分)和转子(旋转部分)。
定子通常由铁芯和三相绕组构成,而转子则可能由实心铁芯、鼠笼型或绕线型结构组成。
当异步电机通电时,定子绕组中的三相电流会产生旋转磁场。
这个旋转磁场与转子中的导体相互作用,根据法拉第电磁感应定律,会在转子导体中产生感应电动势和感应电流。
这些感应电流在旋转磁场的作用下,受到电磁力的作用,从而使转子产生旋转力矩,驱动转子旋转。
异步电机的旋转速度与定子旋转磁场的旋转速度并不完全同步,这也是其被称为“异步”电机的原因。
异步电机的旋转速度通常略低于旋转磁场的同步速度,这是由于转子导体的电感和电阻导致的电磁延迟效应。
异步电机矢量控制Matlab仿真实验
目录1. 矢量控制基本原理: (1)2.电机模型推导: (2)3。
仿真模型框图 (5)3。
1 坐标系下异步电机的仿真模型 (5)3。
2各元件的参数图 (6)3.3三相异步电机的仿真模型 (8)3。
4各模块的原理图 (9)3.5仿真的初始数据 (10)4 矢量控制系统设计 (11)4.1 矢量控制系统的电流闭环控制方式思想 (11)4。
2 MATLAB系统仿真系统设计 (11)4.3 PI调节器设计 (13)5.仿真结果 (15)6.个人总结 (17)7。
参考文献 (18)异步电机矢量控制Matlab仿真实验1. 矢量控制基本原理:矢量控制系统的基本思路是以产生相同的旋转磁动势为准则,将异步电动机在静止三相坐标系上的定子交流电流通过坐标变换等效成同步旋转坐标系上的直流电流,并分别加以控制,从而实现磁通和转矩的解耦控制,以达到直流电机的控制效果。
所谓矢量控制,就是通过矢量变换和按转子磁链定向,得到等效直流电动机模型,在按转子磁链定向坐标系中,用直流电动机的方法控制电磁转矩与磁链,然后将转子磁链定向坐标系中的控制量经变换得到三相坐标系的对应量,以实施控制。
其中等效的直流电动机模型如图1-1所示,在三相坐标系上的定子交流电流,,A B C i i i ,通过3/2变换可以等效成两相静止正交坐标系上的交流s i α和s i β再通过与转子磁链同步的旋转变换,可以等效成同步旋转正交坐标系上的直流电流sm i 和st i 。
m 绕组相当于直流电动机的励磁绕组,sm i 相当于励磁电流,t 绕组相当于电枢绕组,st i 相当于与转矩成正比的电枢电流。
其中矢量控制系统原理结构图如图1—2所示。
图1—1 异步电动机矢量变换及等效直流电动机模型图1—2矢量控制系统原理结构图通过转子磁链定向,将定子电流分量分解为励磁分量sm i 和转矩分量st i ,转子磁链r ψ仅由定子电流分量sm i 产生,而电磁转矩e T 正比与转子磁链和定子电流转矩分量的乘积,实现了定子电流的两个分量的解耦。
异步电动机矢量控制系统的仿真
异步电动机矢量控制系统仿真1.异步电机矢量控制系统的原理及其仿真1.1 异步电动机矢量控制原理异步电机矢量变换控制系统和直接转矩控制系统都是目前已经获得应用的高性能异步电机调速系统,对比直接转矩控制系统,矢量变换系统有可以连续控制,调速范围宽的优点,因此矢量变换控制系统为现代交流调速的重要方向之一。
本文采用的是转子磁场间接定向电流控制型交流异步电机矢量控制系统[1],如图1所示。
图1矢量变换控制系统仿真原理图如果把转子磁链方向按空间旋转坐标系的M轴方向定向,则可得到按转子磁场方式定向下的三相鼠笼式异步电动机的矢量控制方程。
(1)(2)(3)(4)(5)上列各式中,是转子励磁电流参考值;是转差角频率给定值;是定子电流的励磁分量;是定子电流的转矩分量;是定子频率输入角频率;是转子速度;是转子磁场定向角度;是转子时间常数;和分别是电机互感和转子自感。
图4所示控制系统中给定转速与实际电机转速相比较,误差信号送入转速调节器,经转速调节器作用产生给定转矩信号,电机的激磁电流给定信号根据电机实际转速由弱磁控制单元产生,再利用式(1)产生定子电流激磁分量给定信号,定子电流转矩分量给定信号则根据式(2)所示的电机电磁转矩表达式生成。
、和转子时间常数Lr一起产生转差频率信号,与ωr相加生成转子磁场频率给定信号,对积分则得到转子磁场空间角度给定信号。
和经坐标旋转和2/3相变换产生定子三相电流给定信号、和,与定子三相电流实测信号、和相比较,由滞环控制器产生逆变器所需的三相PWM信号。
1.2 异步电机转差型矢量控制系统建模在MATLAB/SIMULINK环境下利用电气系统模块库中的元件搭建交流异步电机转差型矢量控制系统[2],电流控制变频模型如图2所示。
图2 电流控制变频模型图整个仿真图由电气系统模块库中的元件搭建组成,元件的直观连接与实际的主电路相像似,其中主要包括:速度给定环节,PI速度调节器、坐标变换模块、磁场定向模块、滞环电流调节器、IGBT逆变器元件、异步电动机元件以及测量和显示模块。
基于MATLAB的异步电动机直接矢量控制系统的建模和仿真资料
基于MATLAB的异步电动机直接矢量控制系统的建模和仿真***(江南大学物联网工程学院,江苏无锡214036)摘要:本文从异步电动机的数学模型着手介绍一种基于matlab/simulink的异步电动机仿真模型,使用时只需要输入不同的电机参数即可。
在此基础上设计一个典型的直接矢量控制系统,然后利用Simulink仿真软件对该控制系统运行情况进行仿真研究。
关键字:MA TLAB/SIMULINK;异步电机;矢量控制;仿真Modeling and Simulation of induction motor vector controlsystem Based on vector controlLuxiao(School of Communication and Control, Jiangnan University, Wuxi, Jiangsu 214036,China) Abstract:A simulation model of asynchronous motor is established based on MATLAB/SIMULATION according to its dynamic math-ematic model,the model can be conveniently used by inputting proper motor parameters,which is used in a typical direct vector system designed in this paper. Then the running situation of the vector control system is simulated and studied by using MATLAB/SIMULINK.Key words:MA TLAB/SIMULINK; asynchronous motor; vector control; simulation引言:异步电动机的动态数学模型是一个高阶,非线性,强耦合的多变量系统,虽然通过坐标变换可以使之降阶并化简,但并没有改变其非线性多变量的本质。
异步电动机矢量控制系统Matlab仿真研究_毕业设计论文
毕业设计论文基于Matlab的异步电动机矢量控制系统的仿真研究1 引言交流调速技术在工业领域的各个方面应用很广,对于提高电力传动系统的性能有着重要的意义,由于电力传动系统的复杂性和被控对象的特殊性,使得对它的建模与仿真一直是研究的热点。
对其仿真研究不能像控制系统那样可用各环节简化传递函数来表示,这样会有很多重要环节被忽略,完全体现不了交流调速系统的整体结构和各个环节点上的信号状态。
对电气传动系统的建模仿真力求达到与实际系统相一致,matlab提供的simulink中的电力系统工具箱(pow erlib)能很好地满足这一要求。
以往对电气传动系统的仿真研究主要集中在电机的建模和仿真[4][5],最近,许多对复杂电力传动系统的建模仿真方法已提出,主要有运用仿真工具箱对电力传动系统建模仿真[7]和将电力传动系统的功能单元模块化的仿真建模[3]。
这些方法都是在matlab/simulink环境下,结合电力系统工具箱对复杂电力传动系统建模仿真,但是没有分析powerlib运行原理。
状态空间分析方法对于电力传动系统的建模仿真是一种方便有效的方法,它被成功地应用到powerlib中,能够完成复杂电力传动系统的建模仿真,并且能够方便的进行波形分析和控制参数的调节。
本文基于文献[6][8],用状态空间方法分析powerlib中各主要元件的建模原理,给出了powerlib模块的仿真原理和使用方法,并且基于异步电动机矢量控制系统实例描述了复杂电力传动系统建模仿真的过程,分析了仿真中的实际问题,通过改进仿真方法,提高了仿真效率。
2 电力传动系统的建模和状态空间描述电力传动系统的建模包括以下几个主要部分:电力逆变器、电力半导体开关、电动机以及控制系统。
对于一个含有非线性元素的电路(例如电力电子电路)不能直接用状态空间描述,然而可以把电力电子电路分成非线性和线性两部分,线性部分用状态空间描述,非线性部分用非线性模型描述。
这样整个系统可以看作一个前向通道是线性部分,反馈通道是非线性部分的反馈系统,如图1所示。
异步电机矢量控制系统的仿真建模与实现
Z U Y a WA G L I hn—a , I i— n HO u n , N i,QU Z ogci L nl g J o
( . h teeti E gn eigIsi t , o tw s Ja tn nvri , h n d 10 1 C ia 1 P ool rc nier ntue S uh et ioo gU ies y C e g u60 3 , hn ; c n t t 2 E i a u , o twet ioo gUnvri , me 64 0 , hn ) . me C mp s S u h s atn i est E i 12 0 C ia J y
控制 ( 矢量控 制 ) 的方 法 ;建 立 了一 种在 转 子 坐 标 系下 异 步 电机 的 矢量 控 制 系统仿 真模 型 ; 即 仿真 结果 表 明 ,基 于矢量控 制 的方 法 能 够 实现 对 异 步 电机 的 解耦 ,即通 过 控 制励 磁 电流 分 量和 转矩 电流 分 量的 大小直接 控 制异 步 电机 磁 场 和 转 矩 ,使 交流 异 步 电机 获 得 和 直 流 电机 相媲 关的
21 0 2年第6 期
文 章 编 号 :0 9— 5 2 2 1 ) 6 15— 6 10 2 5 (0 2 0 —0 9 0 中 图 分 类 号 :P 9 T 31 文 献 标 识码 : A
异 步 电机 矢 量 控 制 系统 的仿 真 建模 与 实现
周 源 ,王 黎 ,邱 忠才 ,李 金 龙
( .西南交 通大 学光 电工程研究所 ,成都 6 0 3 ;2 1 10 1 .西南 交通 大学 峨嵋校区 ,峨 嵋 64 0 ) 120
摘
要 :异 步 电机 矢量控 制是在 交流 电机 的 双 轴理 论 、机 电能 量转 换 和 坐标 变换 理论 的基 础 上
异步电机磁场定向矢量控制调速系统建模与仿真.
图 12 电流比较脉冲产生器输出的6相脉冲用来控制全桥逆变器。 (4)全控桥逆变电路 异步电机通常都采用三相交流电源供电,经过整流、逆变后变成可控PWM电源。在本 仿真系统中,如果完全采用该供电体制,势必增加整个仿真系统的复杂程度,延长仿真运行 时间。因此,为了简化仿真模型,我们采用了对直流电源直接进行 IGBT 全控桥逆变的供电 策略。从仿真效果看,采取这样的措施并不影响系统的实际运行。 (5)异步电动机与反馈回路
能指标(稳定性、快速性和准确性),并尽可能使仿真模型简化,而采用电流和转速负反馈
控制方式。整个系统主要分成6部分:速度控制器、矢量控制器、电流比较脉冲产生器、全
桥逆变电路、异步电动机和反馈回路。其中,
(1)通过给定磁链(在矢量控制环节内给出)作为磁链电流值指令值。
(2)在矢量控制环节内的磁链计算器根据定子电流的监测值计算磁链的大小和方向。
图 14
图 15
由仿真曲线可知电机的转速ω 是随着运行时间的增加逐渐由0增加到最大值然后回落
到稳定转速。而转矩则在瞬时内达到峰值,并在转速增加的时间内一直在峰值附近震荡,直
到转速快达到峰值才随着运行时间推移逐渐回落到负载转矩附近震荡,这些特性都与电机的 实际情况相同,由此可见用 SIMULINK 建造的模型可以正确的反映实际的模型。
图3 各模块的功能及实现: (1)速度控制器 从单纯的系统响应时间角度考虑,采用比例控制是一个不错的选择,但对于实际系统而 言比例控制往往容易造成比较大的误差,而且往往随着比例系数的增加,系统的稳定性会越 来越差。因此,综合考虑系统响应时间、误差以及动态稳定性等方面的因素,我们在这里采
用PI控制器。该环节输入为参考转速与反馈转速之差(ω ∗ − ω ),则输出参考转矩
异步电机SVPWM矢量控制仿真分析
异步电机SVPWM矢量控制仿真分析一、本文概述Overview of this article随着电力电子技术和控制理论的发展,异步电机(也称为感应电机)的矢量控制已成为实现高性能电机驱动的重要手段。
空间矢量脉宽调制(SVPWM)技术,作为一种先进的调制策略,在电机驱动系统中得到了广泛应用。
本文旨在探讨异步电机基于SVPWM的矢量控制方法,并通过仿真分析验证其控制效果。
With the development of power electronics technology and control theory, vector control of asynchronous motors (also known as induction motors) has become an important means to achieve high-performance motor drive. Space Vector Pulse Width Modulation (SVPWM) technology, as an advanced modulation strategy, has been widely used in motor drive systems. This article aims to explore the vector control method of asynchronous motors based on SVPWM, and verify its control effect through simulation analysis.文章首先介绍了异步电机矢量控制的基本原理,包括坐标变换、磁场定向控制等关键技术。
然后,详细阐述了SVPWM的基本原理和实现方法,包括空间矢量的合成、占空比的计算以及调制波形的生成等。
接下来,通过仿真模型的建立,对异步电机SVPWM矢量控制系统进行了仿真分析,包括启动过程、稳态运行、动态响应等多个方面。
异步电机矢量控制系统的建模与仿真
安
徽
冶
金
13
异步电机矢量控制系统的建模与仿真
江 辉
1
陈
飞
2
( 1 马鞍山钢铁股份有限公司
摘 要
2 安徽工业大学)
介绍了异步电机空间矢量坐标交换 及其对 应的数 学模型 , 应用 SIM U L IN K 构建了 异步电 机的矢 量 异步电机 矢量控制 SIM L IN K 仿真
2011 年第 1 期
的运行, 均是通过矢量坐标变换来实现的, 因此将这 种控制系统称为矢量变换控制系统。
2. 4 按转子磁链定向的异步电机矢量控制系统的 方程式 L md L rd
2 矢量控制系统的描述及数学模型
2. 1
UA UB UC Ua Ub Uc =
异步电机的在三相静止坐标系下的数学模型 电压方程为 :
M T 坐标系( 同步旋转坐标系 ) 。 i MT = A 2 i = A 2 A 1 iabc 直流电机的模型可以用 MT 坐标系来等效, T 绕组上的电流等效电枢绕组电流分量 , M 绕组上的 电流等励磁电流分量。这样将直流标量作为电朵的 控 制量 , 然后又将其变换成交流量去控制交流电机
1 矢量控制的描述
0 前言
随着电力电子技术和自动化技术的不断发展 , 促进了交流异步电机取代直流电机成为工业传动的 主体 , 而矢量控制理论是实现这一转变的关键技术 之一 , 由于交流异步电机是一高阶的、 非线性、 强耦 合的多变量系统。在矢量控制的理论下通过坐标变 换, 可以消除瞬变过程中的周期性时变系统和降低 方程阶数, 从而简化数学模型。可以通过对磁链的 控制改善电机静态和动态性能 , 目前矢量控制已成 为国际上变频领域应用最广泛的控制技术之一。 笔者采用异步电机基于两相静止坐标系下的数 学模型, 结合坐标变换, 利用 M AT L AB 软件中的动 态仿真工具 SIM UL INK, 建立了异步电机带转矩内 环的转速、 磁链闭环的矢量控制系统的仿真模型, 并 给出了仿真结果。
异步电机矢量控制系统的建模与仿真
( 2 3 2 1 ; 2 !1 2 "3 ) 9 * *3 O ; * O = % ; ># B ! ! ! ! ! ! (1) 8 ! " ? — 11 —
研究与设计"!"#$
!""# , $% ($)
################################################################################################
0! 引! 言
交流异步电机是一个高阶、 非线性、 强耦合的 多变量系统, 其调速系统控制的关键在于解耦。 基于转子磁场定向的矢量控制理论正是因这一要 求而引入到异步电机控制中的。其控制思想是: 在转子磁场定向的基础上, 经过一系列的坐标变 换, 实现将三相异步电机像直流电机那样对磁场 和转矩的解耦控制, 使异步电机的动、 静态性能大 大提高。目前, 异步电机矢量控制技术已被广泛 应用于高性能异步电机调速系统中。 对于电机矢量控制系统的研究, 传统的解析 方法是无能为力的; 由试验来分析研究, 不但周期 长、 投资大, 而且不宜分析系统的各种性能。因 此, 采用计算机仿真是对异步电机控制系统进行 研究的不可缺少的重要手段。 本文使用 "#$%#& ’ ()*+,)-. 建立了异步电 机的仿真模型, 构建了模块化的异步电机矢量控 制系统仿真模型, 并给出了仿真结果。
异步电机SVPWM矢量控制的Matlab仿真
异步电机SVPWM矢量控制的Matlab仿真①李瑾②(南昌工程学院电气工程学院 江西南昌330099)摘 要 SVPWM(SpaceVectorPulseWidthModulation)技术应用于交流异步电动机调速系统中不但改善了脉宽调制PWM(PulseWidthModulation)技术存在的直流电压利用率偏低的缺点而且具有电机转矩脉动小、动态响应快、噪声低等优点。
本文以两相静止的αβ坐标系中异步电机的数学模型为基础,运用Mat lab/Simulink软件对采用转子磁场定向矢量控制策略的SVPWM控制系统进行了仿真,仿真结果说明文中建立的三相异步电机仿真模型和所用的SVPWM控制算法是正确和有效的。
关键词 空间矢量 脉宽调制 转子磁场定向 Matlab中图法分类号 TM343 文献标识码 ADoi:10 3969/j issn 1001-1269 2023 01 002MatlabSimulationofAsynchronousMotorSVPWMVectorControlLiJin(SchoolofElectricalEngineering,NanchangInstituteofTechnology,Nanchang330099)ABSTRACT SVPWMtechnologyappliedinACasynchronousmotorspeedregulationsystemcannotonlyimprovetheshortcomingoflowDCvoltageutilizationinthepulse widthmodulationtechnology,buthavelittlemotortorqueripple,fastdynamicresponseandlownoiseadvantages.ThispapersimulatedSVPWMcontrolsystemwithrotormagneticfielddirectionalvectorcontrolstrategybyMatlab/Simulink,thesimulationresultsprovethatthesimulationmodelofthree phaseasynchronousmotorandSVPWMalgorithmsusedinthispaperarecorrectandeffective.KEYWORDS Spacevector Pulsewidthmodulation Rotorfluxorientation Matlab1 前言空间电压矢量脉冲宽度调制(SVPWM)控制策略是通过逆变器电压空间矢量的切换来得到接近圆形的旋转磁场,它具有比SPWM(SinusoidalPulseWidthModulation)控制更好的性能如提高电压型逆变器的电压利用率,减小电机的转矩脉动并改善其动态特性等,其主要原因在于SVPWM虽然不输出三相对称的PWM波,但它在静态甚至暂态时都能产生准圆形旋转磁场,即它比SPWM更为直接地控制了交流电机的旋转磁场而不是象SPWM控制那样把控制重点放在波形的改进上[1]。
基于Matlab交流异步电机矢量控制系统的仿真建模
内容摘要
希望本次演示的内容能为广大读者提供有益的参考和启示,也期待着未来研 究的新成果和新方向。
谢谢观看
未来研究方向
未来研究方向
交流异步电机矢量控制技术已经在许多领域得到了广泛应用,但仍然存在许 多有待研究和改进的地方。例如,如何进一步提高控制系统的响应速度和稳态精 度,如何解决矢量控制中的参数摄动和非线性问题,以及如何实现更为复杂的多 电机协调控制等问题,都是今后需要深入研究的方向。随着、物联网等新技术的 不断发展,也为交流异步电机矢量控制系统的研究与应用提供了新的机遇与挑战。
参考内容
交流电机矢量控制系统建模与仿 真
交流电机矢量控制系统建模与仿真
随着电力电子技术和控制理论的不断发展,交流电机矢量控制系统在工业应 用中越来越受到。本次演示将介绍基于MatlabSimulink的交流电机矢量控制系统 建模与仿真的方法和步骤。
一、交流电机矢量控制系统建模
一、交流电机矢量控制系统建模
基于Matlab交流异步电机矢量 控制系统的仿真建模
01 引言
03 仿真建模
目录
02 原理分析 04 实验验证
05 结论
07 参考内容
目录
06 未来研究断发展,交流异步电机矢量控制技术在许 多领域得到了广泛应用。这种控制技术通过将交流电机的定子电流分解为直轴和 交轴两个分量,分别进行控制,从而实现类似直流电机的控制效果。Matlab作为 一种强大的仿真和计算工具,为交流异步电机矢量控制系统的研究和设计提供了 便捷的平台。本次演示将介绍如何使用Matlab对交流异步电机矢量控制系统进行 仿真建模,并通过实验验证其有效性。
三、结论与展望
三、结论与展望
本次演示介绍了基于MatlabSimulink的交流电机矢量控制系统建模与仿真的 方法和步骤。首先,了解了交流电机的基本结构和工作原理;其次,建立了电压、 电流、转矩和位置等变量的模型,并借助MatlabSimulink搭建了系统模型;最后, 进行了系统仿真和数据分析。通过对比实测数据和仿真结果,验证了模型的准确 性,并得出了系统性能的结论。
交流异步电动机矢量控制系统的建模与仿真
交流异步电动机矢量控制系统的建模与仿真林海翔(江苏联合职业技术学院扬州分院,江苏扬州225003)摘要:交流异步电动机作为重要的调速传动设备,具有结构简单、造价低、可靠性高、便于维护等诸多优点,但相对于直流电动机,其调速性能还有待提高。
现介绍了交流异步电动机矢量控制的数学模型,阐述了系统仿真模型的建立过程,最后运用SIMULINK软对型矢量控制调速系统了仿真,根据仿真结可知,交流异步电动机釆用矢量控制系统后,其动态和静态性能均有了较大提高。
关键词:交流异步电动机;矢量控制系统;SIMULINK仿真1交流调速技术自20世70年,电力电子技术、控制电机学的交流调速系统调速性、能性等了较大后现了具有性的高性能调速技术,如矢量控制技术、直控制技术等。
1.1矢量控制技术德国西门子公司的Felix Blaschke博士首先提出了磁场定矢量控制矢量控制(VC模直流电动机的控制,用后交流电动机三相电流的量量量,然后对调,交流电动机直流电动机较的性速性电动机矢量控制要有矢量控制矢量控制过模直流电动机的控制控制交流电动机大大提高了调速系统的动性1.2直接转矩控制技术20世纪80年学用直控制(DTC)技术了提出了用矢量:构建电动机的模型模型控制电动机现对电动机的直控制可过子电因参数化带的影其结果精确可靠,所异步电动机直控制技术计算容易、结构简单、动态性能较但该调速系统低速运还存些问题需要决死区效应、脉动等。
矢量控制直控制技术都现了高性能的电动机调速控制,这调速都能较的、动性,普遍适用于各高性能调速领域。
但因为这控制不同 的特点也不同用领域各有侧重用砰-砰控制的直控制技术的快,参数鲁棒性还可较高的瞬景非常相比之下,矢量控制技术连续控制、低速控制、调速范围等优势明显些对系统动性能要求不高而更加看重器、容量用的用合,例水泵的能传动、风机的能传动等一般的工业机械传动合,矢量控制技术了广泛用。
因此,作为重要的交流调速技术,矢量控制技术值步做深入研究。
异步电动机矢量控制系统设计及仿真.
中文摘要异步电动机矢量控制系统设计及仿真摘要现代交流调速系统在矢量控制技术出现以前多用恒压频比的控制策略,采用这个控制策略的不足之处是在电动机低速转动或者在加减速、加减负载等动态情况下,系统性能显著降低,致使交流调速系统在低速、启动时转矩的动态响应以及整个系统的稳定度方面比直流调速系统逊色,这样就不能满足人们的高精度需求。
后来,交流异步电动机控制开始大踏步从标量控制向矢量控制迈进了。
下面就来简要介绍下矢量控制理论。
矢量控制发展起来的基础和核心理论支撑是坐标转换原理,机电能量转换理论等一些电机学的概念。
这一控制的根本思想方法其实就是将异步电动机模仿成直流电动机来控制。
只要建立出与三相交流绕组等效的两相绕组,即可建立与异步电动机等效的直流电机模型,再加上相应的比例积分调节环节,于是就可按对直流电机的控制策略对异步电动机进行控制。
因而使用矢量控制可以实现对电机电磁转矩的动态实时控制,使得调速性能得以优化提高。
这次毕设中我根据这个思路成功地进行了MATLAB仿真。
关键词:交流电动机;矢量控制调速系统;仿真ABSTRACTThe Design and Simulation of Vector Control Systemof Asynchronous MotorAbstractBefore the technique of vector control system was invented, alternating current speed control system used constant V/f ratio control method witch is normally known as scalar control. Systems which take this method show vital defect when the motor running at low speed or under circumstances like acceleration, deceleration, adding load, reducing load. Alternating current motor witch use vector control can achieve the same control performance as constant current motor, even better.Vector control developed from the foundation of the theory of motor integration, mechanical-electric energy transition, coordinates transition. Its main idea is simulating constant current motor to control alternating current motor. Once the equivalent among three-phase alternating current wingding, two-phase alternating current wind and rotating constant current winding is established, the mode of alternating current motor that simulating constant current motor can be created as well. Therefore, asynchronous motor can be controlled in ways according to synchronous motor. So that vector control can achieve dynamic control of electrical torque of asynchronous motor and reach a high level of speed control performance. I have successfully made a MATLAB simulation of the system.Key Words: Asynchronous Motor; Vector Control; Simulation目录摘要 (I)Abstract (II)第 1章绪论 (1)1.1交、直流调速系统 (1)1.2交流调速系统概述 (2)第2章异步电动机之矢量控制理论 (5)2.1异步电动机之数学模型 (5)2.1.1关于异步电动机数学模型之性质 (5)2.1.2数学模型构建 (5)2.2异步电动机的坐标变换 (8)2.3异步地电动机根据矢量控制法则设计的调速系统 (10)第3章矢量控制系统的仿真 (14)3.1 MATLAB仿真工具介绍 (14)3.2 电动机的具体仿真设计 (15)3.2.1总体仿真结构图 (15)3.2.2仿真系统各子模块设计及参数设置 (16)3.3仿真结果分析 (24)3.3.1空载运行结果分析 (24)3.3.2电机带额定负载运行 (26)3.3.3电机动态运行性能 (28)第4章总结与展望 (32)谢辞 (33)参考文献 (34)附录A外文文献原文 (35)附录B外文文献译文 (43)华东交通大学毕业设计(论文)第1章绪论1.1 交、直流调速系统一般来说,电力传动控制系统由电动机和控制装置组成。
电机分析论文-基于MATLAB交流异步电机矢量控制系统建模与仿真
基于MATLA交流异步电机矢量控制系统建模与仿真李书圣,电气1302班,130301208 摘要:在分析异步电机的数学模型及矢量控制原理的基础上控制系统仿真模型。
仿真结果表明该系统转速动态响应快、验证了交流电机矢量控制的可行性、有效性。
关键词:交流异步电机,矢量控制,MATLAB 1、引言本文研究交流异步电机矢量控制调速系统的建模与仿真。
利用MATLAB^的电气系统模块构建异步电机矢量控制仿真模型,并对其动、静态性能进行仿真试验。
仿真试验结果验证了矢量控制方法的有效性、可行性。
2、参数由于交流异步电机在A-B-C坐标系下的数学模型比较复杂,需要通过两次坐标变换来简化交流异步电机的数学模型。
一次是三相静止坐标系和两相静止坐标系之间的变换(简称3s/2s变换),另一次是两相静止和两相同步旋转坐标系之间变换(简称2s/2r 变换)。
通过这两次变换,就可以得到在任意旋转坐标系d-q坐标系下交流异步电机的数学模型。
在d-q坐标系下的数学模型如下:⑴电压方程:⑵磁链方程:sd L s 0 L m 0 I sdsq 0 L s 0 L m i 'sqrd L m 0 L r 0 'rdrq 0 L m 0 L r 'rq(2.2 )⑶转矩方程:T e2 n3 p L m (i sq i rd'sd'rq)(2.3 )⑷运动方程:T e T m J r p/n p F r / n p(2.4)三相静止坐标系和两相静止坐标系,利用MATLAB t立异步电机矢量稳态静差小、抗负载扰动能力强U sd R s JP 丄s L m PU sq丄s R s L s P 1 —U rd L m P s L m R r L r PU rq s L m L m P s L r R rA-B-C与两相同步旋转坐标系d-q之间正变换3s/2r变换,反变换2r/3s 分别为 :'sd 2 cos cos( 2 /3) cos( 2 /3)'a' 'sq 3 s'n sin( 2 /3) s' n( 2 /3) lb'c(2.5 )i acos s'n 'sd'b 'cos( 2 /3) sin( 2 /3) 'sq L m P 'sqs L r 'rd(2.6 )J P当把转子旋转坐标系d-q坐标系磁链定向在同步旋转坐标系M-T坐标系的M轴时(此时d-q与M-T两坐标系重合,即d=mq=t),应有:rd rm rt(2.7 )由此可得交流异步电机矢量解耦控制的控制方程:r L m i sd / (1「P)(2.8)L r L1 r L m , L s T e3 ..~ n p L m i sq2r/L r(2.9)i sd (1 T r p) r / L m(2.10)L m i sq /(T r r)(2.11)(n p r s)dt(2.12)L1s L m ,T r L r /R r(2.13)式(2.1)~式(2.13 )中:R s、R r ――定子电阻、转子电阻;L1s、L1 r、L m、L s、L r 定子侧电感、转子侧电感、定转子互感、定子绕组电感、转子绕组电感;1、s、r ――定子频率的同步转速、转差转速、转子转速;――转子磁链角;u、i、—电压、电流、磁链;下标s、r ――表示定子、转子;下标d、q ――表示d轴、q轴;n p——极对数;T r ――转子时间常数;J ――机组转动惯量;T e、T m ------ 电磁转矩、负载转矩;F ---- 阻转矩摩擦系数;p——微分算子,p d/dt ;由式(2.8 )和式(2.9 )可以看出,转子磁链r只由定子电流励磁分量i sd决定,当转子磁链r达到稳态并保持不变时,电磁转矩T e 只有定子电流转矩分量i sq决定,此时磁链r与电磁转矩T e分别由i sd、i sq独立控制,实现了磁链和转矩的解耦。
电拖课程课设——异步电动机矢量控制系统建模与仿真
目录1 异步电动机矢量控制原理......................................... 错误!未定义书签。
2 异步电机的坐标变换.................................................. 错误!未定义书签。
三相-两相变换 ......................................................... 错误!未定义书签。
静止两相-旋转正交变换 ....................................... 错误!未定义书签。
3 异步电动机按转子磁链定向的矢量控制系统..... 错误!未定义书签。
按转子磁链定向矢量控制的基本思想.............. 错误!未定义书签。
以-is-r 为状态变量在mt坐标系中的状态方程... 错误!未定义书签。
以-is-r 为状态变量的mt坐标系上的异步电动机动态结构图........................................................................................ 错误!未定义书签。
转速闭环后的矢量控制原理框图....................... 错误!未定义书签。
*转速闭环后的矢量控制系统结构图 .................. 错误!未定义书签。
4 异步电动机矢量控制系统仿真................................ 错误!未定义书签。
仿真模型的参数计算 ............................................. 错误!未定义书签。
矢量控制系统的仿真模型 .................................... 错误!未定义书签。
PI调节器设计.......................................................... 错误!未定义书签。
异步电机矢量控制系统的设计及仿真研究
-
G^(
s)
R( ]
s)
+
1 - C( s) G^( s)
1 + C( s) [G( s)
-
G^(
s)
D( ]
s)
( 7)
由式( 7) 可知,当模型与对象匹配,即 G^( s) = G( s) 时,若
选择 C( s) = G^ - 1 ( s) 且此时系统可实现,则式( 7) 变为 Y( s)
= R( s) ,即系统的输出始终等于输入,不受任何干扰。此外,
+ +
1 1
·2λλss
++11·s
( 11)
由式( 5) 可得基于内模控制的速度调节器为:
F( s)
=
(
Tc s
+ 1) ( 2λs Kλ2 s
+ 1)
( 12)
显然这也是一种 PID 调节器,但是它只有一个可调参数 λ。
图 5 矢量控制变频调速系统近似动态结构图
5 仿真试验结果
为验证本方案的有效性,搭建矢量控制系统如图 7 所 示,速度调节器采用内模控制方法。
收稿日期: 2011 - 03 - 13
前已经有许多较为成熟的方法,如定子磁场定向矢量控制、 气隙磁场定向矢量控制、转子磁场定向矢量控制、电压定向 矢量控制等,而且应用于工业领域中,获得了很好的控制效 果[1]。在矢量控制系统中,异步电机的速度调节器一般都采 用常规的比例积分即 PI 调节器。这种调节器具有结构简 单,可靠性较高,抗扰性强,稳态精度高等优点。由于采用了 饱和非线性控制,起动过程结束进入转速调节阶段后,必须 要使转速调节器退出饱和状态。按照 PI 调节器的特性,只 有使转速超调,才能使 ASR 退出饱和,这就是说采用 PI 调节 器的双闭环调速系统的转速动态响应必然有超调[2]。为解 决这一问题,文献[3]提出采用 I - P 控制器取代 PI 调节器
三相异步电动机矢量控制调速系统的建模与仿真
文章编号:1008-3499(2001)02-0023-04三相异步电动机矢量控制调速系统的建模与仿真李家荣,邓智泉(南京航空航天大学自动化学院,江苏南京210016)摘要:简述了Matlab/Simulink软件的核心内容及已获实际应用的异步电机矢量变换控制系统的数学模型,介绍了用Matlab/Simulink为该系统建立完整仿真模型的过程,最后给出仿真结果O 关键词:异步电动机;矢量控制;调速系统;仿真;模型中图分类号:TM343.22文献标识码:A0引言异步电动机矢量变换控制系统和直接转距控制系统都是目前已获得应用的高性能异步电机调速系统,对比直接转矩控制系统,矢量变换控制系统有可连续控制~调速范围宽等优点,因此矢量变换控制系统仍为现代交流调速的重要方向之一O本文一则介绍一种实用化的异步电机矢量变换控制系统,二则通过用Matlab语言为该系统建立仿真模型的过程,使读者能熟悉Matlab软件的应用并掌握之OI Matlab/Simulink环境及特点Matlab是集命令翻译~科学计算于一身的一套交互式软件系统O它除了传统的交互式编程之外,还提供了丰富可靠的矩阵运算~图形绘制~数据处理~图像处理~方便的WindOWs编程等便利工具O Simulink是MAT~W0RKS软件公司为Matlab开发的系统模型图形输入和仿真工具O Simulink提供了丰富的模型库供构造完整的系统使用O其模型库包括:源环节~汇环节~离散时间环节~线性环节~非线性环节~连接环节~其他环节OMatlab/Simulink是开放的编程环境,它允许用户开发自己所需的模型,通过成组封装扩充现有的模型库O要建立自己的模型,方法主要如下:(1)利用现有模型组合成新模型O(2)使用Matlab/Simulink模型调用MAT-LAB函数,适于构造成y=f(I)型的函数O(3)通过S-functiOn模型构造,适于解决I/=AI-Bu型微~差分方程O总的来说,方法(1)和(2)具有局限性,适合构造较为简单的模型O方法(3)是M/S最具特色的编程方式,它在构造多输入,多输出,非线性,强耦合的复杂多变量系统时具有表述方式接近数学表述,编程简洁,计算速度快的优点O下面本文针对矢量变换控制系统各环节的不同特点综合运用上述三种编程方式建立完整的系统模型进行仿真O2异步电机矢量变换控制系统的建模与仿真2.1感应电机的状态空间模型本节将描述异步电机的数学模型,并用M/S的S-functiOn构造出其模型O在静止O,B坐标系统中,将异步电机方程写为状态方程组I/=AI-Bu形式,其中I为状态变量,u为输入变量,A~B为系数矩阵O在异步电机状态方程中,转子磁链和定子电流为状态变量,定子电压为输入变量Oddtarbrz aszTL1bs=-R rL r-c rR r L mL rc r-R rL rR r L mL rL m R rhL rL m c rh-R s L r2-R r L m2hL r-L m c rhL m R rhL r0-R s L2r-R r L2mhLTL1r-第10卷第2期2001年6月淮海工学院学报JOurnal Of~uaihai institute Of TechnOlOgyVOl.10NO.2!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!June2001收稿日期:2001-03-09a b asbsL /IL /I ~as~[]bs,(1)其中,R s 7定子绕组电阻; 7微分算子;R 7转子绕组电阻;I =L s X L -L m X L m ;L s 7a 轴上定转子等效绕组自感;c 7转子角速度;L 7b 轴上定转子等效绕组自感;L m 7坐标系中定子与转子间同轴等效绕组间的互感,电机的电磁转矩方程为,T e =N L mL( a bs - b as ),(2)机械转速方程为,dcdt=(T e -T 1-Dc )/J ,(3)2.2仿真模型图1为用Marlab /Simulink 对矢量变换控制系统建立的仿真模型,限于篇幅,仅讨论几个主要环节模块的建立,图1矢量变换控制系统仿真模型Fig .1The simulation model of vector alternate control system2.2.1电流控制变频器为保证变频器输出正弦波形的电流,选择了电流控制的变频器,变频器是电压源型,电流控制变频的模型如图2所示,其中U %a ,U %b ,U %c 与U a ,U b ,U c 的关系为,U ab =V a -V b ,U bc =V b -V c ,U ca =V c -V a ,U a =(U ab -U ca )/3,U b =(U bc -U ab )/3,U c =(U ca -U bc )/3,图2电流控制变频的模型Fig .2The model of f reguency conversion by current control2.2.2电机模型所建立的电机模型如图3所示,42淮海工学院学报 2 1年6月图3电机模型Fig .3The mOtOr mOdel图中U a ,U b ,U c 为三相电源,T L 为负载转矩,z a ,z b ,z c 为电机三相定子电流,c r 为转子角速度O 在电机模块中,三相电压U a ,U b ,U c 经坐标变换,转换成O ,B 坐标下的两相电压U a1,U b1,与检测出的角速度c r 一起构成一个矢量,作为式(1)的已知量,通过S -function 计算出定子电流和转子磁链;根据(2)求出电磁转矩T e ,再通过转距模型,计算出转子角速度c r O2.2.3转子磁链观测模型众所周知,矢量变换就是通过坐标变换,将异步电机等效成直流电机,从而可获得与直流电机一样优良的异步电机调速特征O 通常,我们将定子电流z a ,z b ,z c 经过三相/二相和旋转坐标变换后,可等效成同步旋转坐标下的直流电流z m ~z t ,z m 相当于励磁电流,z t 相当于与转矩成正比的电枢电流,其中:z m =T 2p-1L m2,z t =c f T 2L m2,(4)T 2为转子电路时间常数; 2为转子磁链;c f 为转子滑差角速度O 转子磁链观测模型如图4所示O 利用式(4),可获得转子磁链 2和转子滑差角速度c f O c f 与实测的转子角速度c r 相加,可获得转子旋转磁场角速度c S ,再经积分,即可得转子磁链相位角O图4转子磁链观测模型Fig .4The mOdel Of view by rOtOr magnetic f ield2.3仿真结果建立了仿真模型后,准备了仿真所必需的数据后,就可以进行仿真了O所选用的异步电机的性能参数如下所示:定子电阻:R S =2.460;转子电阻:R r =2.310;定子电阻:L S =O.14~;转子电感:L r =O.14~;转动惯量:J =O.OO2276kg m 2;电机相对数:n p =2;负载转矩:T L =5N m O52第2期李家荣等:三相异步电动机矢量控制调速系统的建模与仿真选择的转速指定值为1440r /min 获得了转速 定子电流 电磁转矩等曲线0图5~图6~图7分别为他们在起动过程中的仿真曲线0通过仿真结果表明 本文所阐述的异步电动机矢量控制调速系统具有优良的静~动态特性图5转速仿真曲线Fig .5The simulated curVe by rotationalspeed图6定子电流仿真曲线Fig .6The simulated curVe by statorcurrent图7电磁转矩仿真曲线Fig .7The simulated curVe by electromagnetic turning sguare3结束语本文系统而简略地介绍了Matlab /Simulink 介绍了基于Matlab /Simulink 的异步电机矢量控制系统的建模与仿真 希望本文能帮助读者尽快掌握Matlab 软件在动态仿真中的应用0参考文献:[1]陈伯时 陈敏逊.交流调速系统[M ].北京:机械工业出版社 1998.[2]陈坚.交流电机数学模型及调速系统[M ].北京:国防工业出版社 1989.[B ]王成元.矢量控制交流伺服驱动电动机[M ].北京:机械工业出版社 1995.[4]张志涌.精通MATLAB [M ].北京:北京航空航天大学出版社 2000.作者简介:李家荣(1972-) 女 江苏盐城人 盐城工学院讲师 南京航空航天大学硕士在读 从事于电机控制研究0Modelling and Simulation of vector Control adj ustable -speedSystem of asynchronous MotorLI ]ia -rong DENG Zhi -guan(Dept .of Automatic Control Nanjing university of Aeronautics g Astronautics Nanjing 210016 China )abstract :Intro d uction is ma d e to the core contents of Matlab /Simulink soft W are an d the applie d maths mo d el of vector control a d justable -spee d system of asynchronous motor .Mean W hile a brief account is giv-en to the process in W hich simulation mo d el is establishe d for this system by Matlab /Simulink as W ell as the simulation results .K ey W ords :asynchronous motor ;vector control ;a d justable -spee d system ;simulation ;mo d el(本文责任编校:褚金红)62淮海工学院学报2001年6===================================================================月。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
异步电机矢量控制系统的建模与仿真朝泽云, 康 勇, 钟和清, 徐至新(华中科技大学电气与电子工程学院,湖北武汉 430074) 摘 要:介绍了基于转子磁场定向的异步电机矢量控制系统的组成及其控制原理,推导了异步电机在静止二相α2β坐标系下的数学模型。
采用MAT LAB/Si m ulink对控制系统进行了仿真建模与研究。
仿真结果表明了该模型的合理性和有效性,为实际电机控制系统的设计和调试奠定了理论基础。
关键词:异步电机;矢量控制;仿真模型中图分类号:T M301.2∶T M343 文献标识码:A 文章编号:167326540(2007)0320011204M odeli n g and S i m ul a ti on of A synchronous M otor Vector Con trol SystemCHAO Ze2yun, K AN G Yong, ZHON G He2qing, XU Zhi2xin(I nstitute of Electrical and Electr onic I nf or mati on Engineering,Huazhong Universityof Science&Technol ogy,W uhan430074,China) Abstract:The composing and contr ol theory of vect or contr ol syste m based on r ot or field orientati on was intr o2 duced.A mathe matics model of asynchr onous mot or in staticα2βcoordinate was derived.Vect or contr ol syste m was modeled and si m ulated with MAT LAB/Si m ulink s oft w are.The reas onability and validity had been testified by the si m2 ulati on results and the theoretic base f or designing and debugging actual mot ors was established.Key words:a synchronous m otor;vector con trol;si m ul a ti on m odel0 引 言交流异步电机是一个高阶、非线性、强耦合的多变量系统,其调速系统控制的关键在于解耦。
基于转子磁场定向的矢量控制理论正是因这一要求而引入到异步电机控制中的。
其控制思想是:在转子磁场定向的基础上,经过一系列的坐标变换,实现将三相异步电机像直流电机那样对磁场和转矩的解耦控制,使异步电机的动、静态性能大大提高。
目前,异步电机矢量控制技术已被广泛应用于高性能异步电机调速系统中。
对于电机矢量控制系统的研究,传统的解析方法是无能为力的;由试验来分析研究,不但周期长、投资大,而且不宜分析系统的各种性能。
因此,采用计算机仿真是对异步电机控制系统进行研究的不可缺少的重要手段。
本文使用MAT LAB/Si m ulink建立了异步电机的仿真模型,构建了模块化的异步电机矢量控制系统仿真模型,并给出了仿真结果。
1 异步电机模型利用MAT LAB进行电机运行状态仿真,最为关键的是建立正确的电机仿真模型。
异步电机的数学建模方法一般是将三相电机转换成二相电机,因为建立在α2β静止坐标系下的异步电机状态方程与定、转子之间的夹角无关,可以方便地求出异步电机各状态变量。
考虑到笼型电机转子侧电压为零,根据文献[1]可以建立异步电机在α2β静止坐标系下的数学模型。
该模型状态方程为d iα1d t=L r(iα1r1-uα1)-L m[iα2r2+(iβ1L m+iβ2L r)ωr]Kd iβ1d t=L r(iβ1r1-uβ1)-L m[iβ2r2-(iα1L m+iα2L r)ωr]Kd iα2d t=-L m(iα1r1-uα1)+L r[iα2r2+(iβ1L m+iβ2L r)ωr]Kd iβ2d t=-L m(iβ1r1-uβ1)+L r[iβ2r2-(iα1L m+iα2L r)ωr]Kdωrd t=(iα2iβ1-iα1iβ2)L m n2p-n p T L-DωrJ (1)—11—K =L 2m -L r L s式中:L m ———定转子间互感;u α1,u β1———异步电机在α、β轴上定子电压分量;L s ,L r ———定、转子自感;r 1,r 2———定、转子电阻;n p ———极对数;D ———摩擦阻力矩系数;J ———转动惯量;T L ———负载转矩。
输出方程为i α1=i α1i β1=i β1i α2=i α2i β2=i β2ωr =ωrT e =n p L m (i β1i α2-i β2i α1)(2) 模型中以定、转子电流(i α1,i β1,i α2,i β2)和转子机械角速度ωr 作为状态变量,以定子端电压(u α1,u β1)和负载转矩T L 作为输入变量,以定、转子电流(i α1,i β1,i α2,i β2)、转子机械角速度ωr 和电磁转矩T e 为输出变量。
ωr 为转子角速度,所以电机的实际转速n =60ωr /(n p ・2π)(3) 根据式(1)和(2)即可利用MAT LAB 中的S函数编写异步电机仿真模型,如图1所示。
使用时只需在Si m ulink 中调用S 2functi on 模块,并将电机参数输入S 函数即可。
因此该电机仿真模型具有极强的通用性,且调用简单。
图1 异步电机坐标变换及仿真模块结构图2 异步电机矢量控制系统仿真模型2.1 矢量控制原理异步电机转子磁场定向控制的基本原理[223]是将d 2q 坐标系放在同步旋转磁场中,将静止坐标系中的交流量转化为旋转坐标系中的直流量,并取d 轴与转子磁场方向一致;此时转子磁通q 轴分量为零(Ψq 2=0,Ψd 2=Ψ2),则Ψ2=L m T 2p +1i d 1T e =n pL m L ri q 1Ψ2(4)式中:T 2———转子电路时间常数,T 2=L r /r 2;Ψ2———转子磁链;i d 1,i q 1———定子电流在d,q 轴上的分量。
显然,对电机转子磁通和转矩的控制,可以转化为对转子磁场定向坐标系下定子电流i d 1、i q 1的控制,如图2所示。
控制过程中,检测电机的三相定子电流,通过坐标变换得到转矩分量和磁通分量;利用两个调节器分别对两个电流分量进行调节,从而实现对电机磁场和转矩的控制。
图2 矢量控制原理框图2.2 坐标变换仿真中需要的坐标变换主要有2/3静止坐标变换、Park 旋转坐标变换和反Park 直角坐标2极坐标变换。
以上变换可以通过式(5)所示方程组实现。
2/3:C 2S-3S =23101/2-1/23/21/2-1/2-3/21/2Park :C 2S-2r =cos θ1sin θ1-sin θ1cos θ1Park -1:C 2r-2S =cos θ1-sin θ1sin θ1cos θ1(5) 根据式(5),可以调用Si m ulink 中的基本模块直接搭建模型(见图3),也可以编写S 函数调用S 2functi on 模块建模。
2.3 磁场定向模块在转子磁场定向矢量控制系统中,只有当转子磁场位置定向准确时,定子电流的励磁分量和—21—转矩分量才可以完全解耦,才能实现对异步电机的磁场和转矩的快速响应和完全解耦控制。
因此,磁场定向控制算法需要得到精确的转子旋转磁链位置角。
(a )3/2变换模块(b )Park变换模块(c )反Park 变换模块图3 坐标变换仿真模块 在间接转子磁场定向矢量控制中,可以通过电压模型法获得转子磁链观测模型。
其数学推导公式为Ψα2=L r L m [u α1-r 1i α1)d t -σL s i α1]Ψβ2=L r L m[u β1-r1i β1)d t -σL s i β1](6)可得转子旋转磁链位置角θ=arctanΨβ2Ψα2(7)对应的仿真模型如图4所示。
2.4 矢量控制系统仿真模型系统采用模块化设计,可以方便地将各个模块连接起来组成一个系统;改变控制策略时,只需将其中的功能子模块替换为相应的功能模块,而系统的其他模块无须作任何变动,大大缩短了建模时间,提高了系统仿真模型的通用性。
图4 电压模型法转子磁链观测器仿真模块利用上述各功能子模块搭建出转子磁场定向矢量控制系统的仿真模型,如图5所示。
转速给定与电机反馈转速相比较后,通过速度P I 调节器,输出定子电流转矩分量给定i 3q 1;定子电流励磁分量给定i 3d 1由磁链P I 调节器得到。
定子三相电流经过坐标变换后的i d 1与i q 1给定值相比较,再经过磁通分量P I 调节器和转矩分量P I 调节器后分别输出定子电压分量u d 1、u q 1。
图5 异步电机矢量控制系统仿真模型 仿真的重点是电机2负载的动态特性。
利用状态空间平均思想,逆变器可等效为比例环节。
为分析方便,取比例增益为1,因此在系统仿真时可以略去,则电机模型可直接以u α1、u β1作为输入。
这也充分体现了矢量控制思想。
3 仿真结果为了验证系统仿真模型的正确性,采用如下电机参数进行仿真试验分析:定转子互感L m 为255mH ,转子电感L r 为258mH ,定子电感L s 为258mH ,定子电阻R s 为5.3Ω,转子电阻R r 为5.3Ω,定子额定频率f N 为50Hz ,极对数n p 为2,—31—额定转速n N 为1410r/m in ,额定功率P N 为1.1k W ,定子额定电压u N 为220V (Y 连接)。
图6示出了异步电机矢量控制系统仿真波形,转子磁链给定值为0.9W b ,在t =0.5s 时转速给定值从100r/m in 跳变至1500r/m in 。
从仿真波形中可以看出,所建立的异步电机矢量控制仿真系统实现了磁场和转矩的快速响应及完全解耦控制,并具有良好的调速效果。
(a )转速波形(b )转矩波形(c )转子磁链波形(d )定子电流励磁分量波形(e )定子电流转矩分量波形图6 仿真结果4 结 语利用MAT LAB /Si m ulink 仿真环境,在分析交流异步电机数学模型的基础上,建立了α2β静止坐标系下的电机仿真模型。
在对转子磁场定向控制算法的理论分析基础上,搭建了子功能模块,并通过对这些子功能模块的有机整合,建立了异步电机矢量控制系统的仿真模型。