二级齿轮减速器说明书
二级圆柱齿轮减速器设计计算说明书

二级圆柱齿轮减速器设计计算说明书二级圆柱齿轮减速器设计计算说明书
1、引言
本文档旨在提供二级圆柱齿轮减速器的设计计算说明。
该说明书将包含设计所需的详细计算步骤和相关参数。
2、设计要求
本节将列出二级圆柱齿轮减速器的设计要求,包括输入输出转速、承载能力、传动比等。
3、齿轮选型
3.1 输入齿轮选型
在本节中,将介绍输入齿轮的选型方法,包括齿数的选择、模数的计算等。
3.2 输出齿轮选型
本节将阐述输出齿轮的选型方法,包括齿数的选择、模数的计算等。
4、齿轮参数计算
4.1 输入齿轮参数计算
本节将详细说明输入齿轮的各项参数计算方法,包括齿轮直径、齿轮宽度等。
4.2 输出齿轮参数计算
在本节中,将介绍输出齿轮的各项参数计算方法,包括齿轮直径、齿轮宽度等。
5、轴的设计
本节将涵盖轴的设计及其相关参数计算,包括轴承选型、轴材
料选择等。
6、系统效率计算
本节将包含二级圆柱齿轮减速器的系统效率计算方法及公式。
7、结论
在本节中,将总结二级圆柱齿轮减速器的设计计算结果,并对
整个设计过程进行评价。
8、附件
本文档附带以下附件:齿轮选型表、计算结果表格等。
9、法律名词及注释
9.1 法律名词1:根据法规定,指。
9.2 法律名词2:据x法规定,x指。
10、全文结束。
二级齿轮减速器课程设计计算说明书

机械设计课程设计设计说明书学院:机械工程学院班级:机电班学号:201520160218设计者:马兆叶指导教师:刘鸣2018年01月一、设计任务书 (1)(一)设计任务 (1)(二)设计题目 (1)二、传动总体方案设计 (1)(一)定传动方案 (1)(二)确定电机 (3)(三)分配传动比 (3)(四)计算各轴的转速、功率和转矩 (4)三、V带传动设计计算 (5)四、齿轮传动设计 (7)(一)高速级齿轮设计 (7)(二)低速级齿轮设计 (13)五、轴的传动设计 (19)(一)对轴I进行设计 (19)(二)对轴II进行设计 (22)(三)对轴III进行设计 (25)(四)轴Ⅲ的安全系数法校核 (28)六、轴承的选择与设计 (30)(一)轴I上滚动轴承的设计 (30)(二)轴II上滚动轴承的设计 (32)(三)轴III上滚动轴承的设计 (33)七、键联接的设计 (35)八、联轴器的计算与设计 (35)九、减速器润滑方式,润滑油牌号及密封方式的选择 (36)十、设计总结 (37)十一、参考文献 (38)一、设计任务书(一)设计任务详细的设计计算说明书:一份完整的减速器装配图:一张(A0图纸)零件图:两张(A3图纸)(二)设计题目铸工车间一造型用砂型运输带,系由电动机驱动传动装置带动,该减速器传动装置由一个两级齿轮减速器和其他传动件组成,运输带每日两班制工作,工作7年。
设计此传动装置。
运输带主动鼓轮轴输入端转矩Tw=750N/m主动鼓轮直径 D =400mm运输带速度v=0.66m/sw减速器设计寿命7年二、传动总体方案设计(一)定传动方案1.初选电机由《机械设计课程设计》教材可知初选电机同步转速为1500r/min2.计算总传动比a.计算工作机输入转速:由公式100060⨯=ww w n d v π可得min /014.6340060100066.0601000n r D v w w =⨯⨯⨯=⨯⨯=ππb.计算总传动比984.3936.0141500n n i =='='w 电 3.定传动方案及各部分初始传动比 齿轮传动装置传动比 10.004i ='齿轮 链传动装置传动比 2.143i ='链 带传动装置传动比 1.865i ='带 4.传动装置 (1)结构分析按照传动比分配以及传动特征分析可知,此传动系统采用三相异步交流电机,电动机输出轴与小带轮直接连接,将动力和运动由大带轮传递到二级展开式斜齿圆柱齿轮减速器,然后通过联轴器及闭式链传动将动力和运动传至砂型运输带。
二级圆柱齿轮减速器设计计算说明书

二级圆柱齿轮减速器设计计算说明书一、设计任务设计一用于带式运输机的二级圆柱齿轮减速器。
运输机工作经常满载,空载启动,工作有轻微振动,两班制工作。
运输带工作速度误差不超过 5%。
减速器使用寿命 8 年(每年 300 天)。
二、原始数据1、运输带工作拉力 F =______ N2、运输带工作速度 v =______ m/s3、卷筒直径 D =______ mm三、传动方案的拟定1、传动方案选用展开式二级圆柱齿轮减速器,其结构简单,效率高,适用在载荷平稳的场合。
2、电机选择选择 Y 系列三相异步电动机,其具有高效、节能、噪声低、振动小、运行可靠等优点。
四、运动学和动力学计算1、计算总传动比总传动比 i = n 电/ n 筒,其中 n 电为电动机满载转速,n 筒为卷筒轴工作转速。
2、分配各级传动比根据经验,取高速级传动比 i1 ,低速级传动比 i2 ,应满足 i = i1 ×i2 。
3、计算各轴转速高速轴转速 n1 = n 电/ i1 ,中间轴转速 n2 = n1 / i2 ,低速轴转速 n3 = n2 。
4、计算各轴功率高速轴功率 P1 =Pd × η1 ,中间轴功率 P2 =P1 × η2 ,低速轴功率 P3 =P2 × η3 ,其中 Pd 为电动机输出功率,η1 、η2 、η3 分别为各级传动的效率。
5、计算各轴转矩高速轴转矩 T1 = 9550 × P1 / n1 ,中间轴转矩 T2 = 9550 × P2 /n2 ,低速轴转矩 T3 = 9550 × P3 / n3 。
五、齿轮设计计算1、高速级齿轮设计(1)选择齿轮材料及精度等级小齿轮选用______材料,大齿轮选用______材料,精度等级选______。
(2)按齿面接触疲劳强度设计确定公式内各计算数值,计算小齿轮分度圆直径 d1 。
(3)确定齿轮齿数取小齿轮齿数 z1 ,大齿轮齿数 z2 = i1 × z1 。
二级减速器课程设计说明书

二级减速器课程设计说明书一、设计任务设计一个用于特定工作条件的二级减速器,给定的输入功率、转速和输出转速要求,以及工作环境和使用寿命等限制条件。
二、传动方案的拟定经过对各种传动形式的比较和分析,最终选择了展开式二级圆柱齿轮减速器。
这种方案结构简单,尺寸紧凑,能够满足设计要求。
三、电动机的选择1、计算工作机所需功率根据给定的工作条件和任务要求,计算出工作机所需的功率。
2、确定电动机的类型和型号综合考虑功率、转速、工作环境等因素,选择合适的电动机类型和型号。
四、传动比的计算1、总传动比的计算根据电动机的转速和工作机的转速要求,计算出总传动比。
2、各级传动比的分配合理分配各级传动比,以保证减速器的结构紧凑和传动性能良好。
五、齿轮的设计计算1、高速级齿轮的设计计算根据传动比、功率、转速等参数,进行高速级齿轮的模数、齿数、齿宽等参数的设计计算。
2、低速级齿轮的设计计算同理,完成低速级齿轮的相关设计计算。
六、轴的设计计算1、高速轴的设计计算考虑扭矩、弯矩等因素,确定高速轴的直径、长度、轴肩尺寸等。
2、中间轴的设计计算进行中间轴的结构设计和强度校核。
3、低速轴的设计计算完成低速轴的设计计算,确保其能够承受工作中的载荷。
七、滚动轴承的选择与计算根据轴的受力情况和转速,选择合适的滚动轴承,并进行寿命计算。
八、键的选择与校核对连接齿轮和轴的键进行选择和强度校核,以确保连接的可靠性。
九、箱体结构的设计考虑减速器的安装、润滑、密封等要求,设计合理的箱体结构。
包括箱体的壁厚、加强筋、油标、放油螺塞等的设计。
十、润滑与密封1、润滑方式的选择根据齿轮和轴承的转速、载荷等因素,选择合适的润滑方式。
2、密封方式的选择为防止润滑油泄漏和外界灰尘进入,选择合适的密封方式。
十一、设计总结通过本次二级减速器的课程设计,对机械传动系统的设计过程有了更深入的理解和掌握。
在设计过程中,充分考虑了各种因素对减速器性能的影响,通过计算和校核确保了设计的合理性和可靠性。
二级减速器(斜齿轮)说明书

目录1 设计任务书 (1)1.1 设计题目 (1)1.2 设计任务 (1)1.3 具体作业 (1)1.4 数据表 (2)2 选择电动机 (3)2.1 电动机类型的选择 (3)2.2 确定传动装置的效率 (3)2.3 选择电动机容量 (3)2.4 确定传动装置的总传动比和分配传动比 (4)2.4.1 总传动比的计算 (4)2.4.2 分配传动装置传动比 (4)3 计算传动装置的参数 (5)3.1 电动机输出参数 (5)3.2 高速轴的参数 (5)3.3 中间轴的参数 (5)3.4 低速轴的参数 (5)3.5 工作机的参数 (6)3.6 各轴的数据汇总 (6)4 普通V带设计计算 (7)4.1 已知条件和设计内容 (7)4.2 设计计算步骤 (7)4.2.1 确定计算功率 (7)4.2.2 选择V带的带型 (7)4.2.3 确定带轮的基准直径并验算带速 (7)L (7)4.2.4 从确定V带的中心距a和基准长度d (8)4.2.5 验算小带轮的包角14.2.6 计算带的根数z (8)F (9)4.2.7 计算作用在带轮轴上的压力Q5 减速器齿轮设计 (10)5.1 选择齿轮的材料及确定许用应力 (10)5.2 按齿轮弯曲强度设计计算 (10)5.2.1 计算第一对齿轮(高速轴与中间轴) (10)5.2.2 计算第二对齿轮(中间轴与低速轴) (11)6 轴的设计 (14)6.1 高速轴尺寸设计计算 (14)6.1.1 轴的材料选择并按扭转强度概略计算轴的最小直径 (14)6.1.2 轴的尺寸设计 (14)6.2 中间轴尺寸的设计计算 (15)6.2.1 轴的材料选择并按扭转强度概略计算轴的最小直径 (15)6.2.2 轴的尺寸设计 (16)6.3 低速轴尺寸设计计算 (17)6.3.1 轴的材料选择并按扭转强度概略计算轴的最小直径 (17)6.3.2 轴的尺寸设计 (17)7 轴的校核计算 (19)7.1 高速轴的校核 (19)7.1.1 轴受力计算 (19)7.2 中间轴的校核 (21)7.2.1 轴受力计算 (22)7.2.2 计算危险截面处轴的最小直径 (25)7.3 低速轴的校核 (25)7.3.1 轴受力计算 (25)7.3.2 计算危险截面处轴的最小直径 (26)8 滚动轴承寿命校核 (28)8.1 高速轴上的轴承寿命校核 (28)8.1.1 计算当量动载荷 (28)8.1.2 计算轴承承受的额定动载荷 (28)8.2 中间轴上的轴承寿命校核 (29)8.2.1 计算当量动载荷 (29)8.2.2 计算轴承承受的额定动载荷 (29)8.3 低速轴上的轴承寿命校核 (29)8.3.1 计算当量动载荷 (29)8.3.2 计算轴承承受的额定动载荷 (30)9 键联接设计计算 (31)9.1 高速轴上键的校核 (31)9.2 中间轴上键的校核 (31)9.3 低速轴上键的校核 (31)10 联轴器的校核 (32)11 润滑及密封类型选择 (33)11.1 润滑方式 (33)11.2 密封类型的选择 (33)11.3 轴承箱体内,外侧的密封 (33)12 减速器箱体主要结构尺寸 (34)13 结论与展望 (36)参考文献 (37)1 设计任务书1.1设计题目示。
(完整版)二级减速器课程设计说明书

1 设计任务书1。
1设计数据及要求表1-1设计数据1.2传动装置简图图1—1 传动方案简图1.3设计需完成的工作量(1) 减速器装配图1张(A1)(2) 零件工作图1张(减速器箱盖、减速器箱座—A2);2张(输出轴-A3;输出轴齿轮-A3) (3) 设计说明书1份(A4纸)2 传动方案的分析一个好的传动方案,除了首先应满足机器的功能要求外,还应当工作可靠、结构简单、尺寸紧凑、传动效率高、成本低廉以及使用维护方便。
要完全满足这些要求是困难的。
在拟定传动方案和对多种方案进行比较时,应根据机器的具体情况综合考虑,选择能保证主要要求的较合理的传动方案。
现以《课程设计》P3的图2-1所示带式输送机的四种传动方案为例进行分析。
方案a 制造成本低,但宽度尺寸大,带的寿命短,而且不宜在恶劣环境中工作。
方案b 结构紧凑,环境适应性好,但传动效率低,不适于连续长期工作,且制造成本高.方案c 工作可靠、传动效率高、维护方便、环境适应性好,但宽度较大。
方案d 具有方案c 的优点,而且尺寸较小,但制造成本较高。
上诉四种方案各有特点,应当根据带式输送机具体工作条件和要求选定。
若该设备是在一般环境中连续工作,对结构尺寸也无特别要求,则方案c a 、均为可选方案。
对于方案c 若将电动机布置在减速器另一侧,其宽度尺寸得以缩小。
故选c 方案,并将其电动机布置在减速器另一侧。
3 电动机的选择3.1电动机类型和结构型式工业上一般用三相交流电动机,无特殊要求一般选用三相交流异步电动机.最常用的电动机是Y 系列笼型三相异步交流电动机。
其效率高、工作可靠、结构简单、维护方便、价格低,适用于不易燃、不易爆,无腐蚀性气体和无特殊要求的场合.此处根据用途选用Y 系列三相异步电动机3.2选择电动机容量3.2.1工作机所需功率w P 卷筒3轴所需功率:1000Fv P W ==100082.01920⨯=574.1 kw 卷筒轴转速:min /13.5914.326582.0100060100060r D v n w =⨯⨯⨯=⨯=π3。
二级减速器课程设计说明书

二级减速器课程设计说明书一、引言二级减速器是一种用于降低机械设备速度和提高输出转矩的重要装置。
本课程设计说明书旨在介绍二级减速器的设计原理、结构和工作原理,并提供详细的步骤和指导,帮助学生完成二级减速器的课程设计。
二、设计背景在工程设计中,常常需要将高速运动的电机转速降低,同时增加输出扭矩以满足特定的工作需求。
二级减速器作为一种常用的传动装置,可以有效地实现这一目标。
由于二级减速器的设计和制造需要综合考虑多个因素,包括负载要求、轴承和齿轮的选择等,因此,本课程设计旨在增强学生对二级减速器设计的理解和应用。
三、设计目标本课程设计的目标是设计一台满足以下要求的二级减速器:1. 输入转速:500 rpm2. 输出转速:50 rpm3. 额定输出扭矩:1000 Nm4. 功率损失小于5%5. 整机尺寸紧凑,便于安装和维护四、设计过程1. 步骤一:确定输入和输出参数在设计二级减速器之前,首先需要明确输入和输出的转速和扭矩要求。
根据设计目标,确定输入转速为500 rpm,输出转速为50 rpm,额定输出扭矩为1000 Nm。
2. 步骤二:选择传动比根据输入和输出参数,计算所需的传动比。
传动比可以通过输出转速除以输入转速来计算。
在本案例中,传动比为50/500=0.1。
3. 步骤三:选择齿轮参数根据传动比,选择合适的齿轮组合。
需要考虑齿轮的模数、齿数、齿轮材料等因素。
同时,还需进行齿轮强度和齿面接触疲劳寿命的校核,确保设计的齿轮组合符合强度和寿命要求。
4. 步骤四:结构设计根据齿轮的选择,进行减速器结构的设计。
需要确定减速器的轴承类型、轴承尺寸、轴承布局等。
同时,还需进行结构强度校核,确保减速器在工作状态下能够承受额定扭矩和载荷。
5. 步骤五:优化设计对设计结果进行优化,考虑减速器整机的尺寸、重量和功率损失。
优化设计可以通过修改齿轮组合、调整传动比等方式来实现。
最终的设计结果应满足课程设计的要求,并在实际应用中具有较好的性能和可靠性。
机械设计二级圆柱齿轮减速器

机械设计减速器设计说明书系别:专业:学生姓名:学号:指导教师:职称:目录第一部分设计任务书 (1)一、初始数据 (1)二. 设计步骤 (1)第二部分传动装置总体设计方案 (2)一、传动方案特点 (2)二、计算传动装置总效率 (2)第三部分电动机的选择 (2)3.1 电动机的选择 (2)3.2 确定传动装置的总传动比和分配传动比 (3)第四部分计算传动装置的运动和动力参数 (4)(1)各轴转速: (4)(2)各轴输入功率: (5)(3)各轴输入转矩: (5)第五部分 V带的设计 (6)5.1 V带的设计与计算 (6)5.2 带轮结构设计 (8)第六部分齿轮的设计 (10)6.1 高速级齿轮的设计计算 (10)6.2 低速级齿轮的设计计算 (18)第七部分传动轴和传动轴承及联轴器的设计 (26)7.1 输入轴的设计 (26)7.2 中间轴的设计 (31)7.3 输出轴的设计 (37)第八部分键联接的选择及校核计算 (43)8.1 输入轴键选择与校核 (43)8.2 中间轴键选择与校核 (44)8.3 输出轴键选择与校核 (44)第九部分轴承的选择及校核计算 (45)9.1 输入轴的轴承计算与校核 (45)9.2 中间轴的轴承计算与校核 (46)9.3 输出轴的轴承计算与校核 (46)第十部分联轴器的选择 (47)第十一部分减速器的润滑和密封 (47)11.1 减速器的润滑 (47)11.2 减速器的密封 (48)第十二部分减速器附件及箱体主要结构尺寸 (49)12.1 减速器附件的设计与选取 (49)12.2 减速器箱体主要结构尺寸 (54)设计小结 (55)参考文献 (55)第一部分设计任务书一、初始数据设计二级展开式斜齿圆柱齿轮减速器,初始数据T = 650Nm,V = 0.85m/s,D = 350mm,设计年限(寿命): 5年,每天工作班制(8小时/班):2班制,每年工作天数:300天,三相交流电源,电压380/220V。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机械设计课程设计计算说明书设计题目:带式输送机班级:05机械1班学号:200530500214设计者:丁肖支指导老师:罗海玉目录1.题目及总体分析 (3)2.各主要部件选择 (4)3.电动机选择 (4)4.分配传动比 (5)5.传动系统的运动和动力参数计算 (6)6.设计高速级齿轮 (7)7.设计低速级齿轮 (12)8.链传动的设计 (16)9.减速器轴及轴承装置、键的设计 (18)1轴(输入轴)及其轴承装置、键的设计 (18)2轴(中间轴)及其轴承装置、键的设计 (24)3轴(输出轴)及其轴承装置、键的设计 (29)10.润滑与密封 (34)11.箱体结构尺寸 (35)12.设计总结 (36)13.参考文献 (36)一.题目及总体分析题目:设计一个带式输送机的减速器给定条件:由电动机驱动,输送带的牵引力7000F N =,运输带速度0.5/v m s =,运输机滚筒直径为290D mm =。
单向运转,载荷平稳,室内工作,有粉尘。
工作寿命为八年,每年300个工作日,每天工作16小时,具有加工精度7级(齿轮)。
减速器类型选择:选用展开式两级圆柱齿轮减速器。
特点及应用:结构简单,但齿轮相对于轴承的位置不对称,因此要求轴有较大的刚度。
高速级齿轮布置在远离转矩输入端,这样,轴在转矩作用下产生的扭转变形和轴在弯矩作用下产生的弯曲变形可部分地互相抵消,以减缓沿齿宽载荷分布不均匀的现象。
高速级一般做成斜齿,低速级可做成直齿。
整体布置如下:图示:5为电动机,4为联轴器,3为减速器,2为链传动,1为输送机滚筒,6为低速级齿轮传动,7为高速级齿轮传动,。
辅助件有:观察孔盖,油标和油尺,放油螺塞,通气孔,吊环螺钉,吊耳和吊钩,定位销,启盖螺钉,轴承套,密封圈等.。
二.各主要部件选择三.电动机的选择四.分配传动比五.传动系统的运动和动力参数计算目的过程分析结论传动系统的运动和动力参数计算设:从电动机到输送机滚筒轴分别为1轴、2轴、3轴、4轴;对应于各轴的转速分别为、、、;对应各轴的输入功率分别为、、、;对应名轴的输入转矩分别为、、、;相邻两轴间的传动比分别为、、;相邻两轴间的传动效率分别为、、。
轴号电动机两级圆柱减速器工作机1轴2轴3轴4轴转速n(r/min)n0=1440 n1=1440 n2=342.86 n3=97.96 n4=32.65功率P(kw) P=5.5 P1=4.244 P2=4.034 P3=3.834 P4=3.607 转矩T(N·m)T1=28.146 T2=112.390 T3=373.869 T4=1055.326 两轴联接联轴器齿轮齿轮链轮传动比i i01=1 i12=4.2 i23=3.5 i34=3传动效率ηη01=0.99 η12=0.97 η23=0.97 η34=0.96六.设计高速级齿轮1.选精度等级、材料及齿数,齿型1)确定齿轮类型.两齿轮均为标准圆柱斜齿轮2)材料选择.小齿轮材料为40Cr(调质),硬度为280HBS,大齿轮材料为45钢(调质),硬度为240HBS ,二者材料硬度差为40HBS 。
3)运输机为一般工作机器,速度不高,故选用7级精度4)选小齿轮齿数Z1=24,大齿轮齿数Z2=i1·Z1=4.2×24=100.8,取Z 2=101。
5)选取螺旋角。
初选螺旋角14=β 2.按齿面接触强度设计按式(10-21)试算,即321)][(12H E H d t t t Z Z u u T k d σεα+⋅Φ≥1)确定公式内的各计算数值 (1)试选6.1=t K(2)由图10-30,选取区域系数433.2=H Z (3)由图10-26查得78.01=αε 20.87αε= 12 1.65αααεεε=+= (4)计算小齿轮传递的转矩55411195.510/95.510 4.244/1440 2.814610T P n =⨯=⨯⨯=⨯ N mm ⋅(5)由表10-7选取齿宽系数1=Φd(6)由表10-6查得材料的弹性影响系数2/18.189MPa Z E =(7)由图10-21d按齿面硬度查得小齿轮的接触疲劳强度极限MPa H 6001lim =σ,大齿轮的接触疲劳强度极限lim2550H MPa σ=(8)由式10-13计算应力循环次数91606014401(163008) 3.3210h N njL ==⨯⨯⨯⨯⨯=⨯ 992 3.3210/4.20.79010N =⨯=⨯(9)由图10-19查得接触疲劳强度寿命系数90.01=HN K 95.02=HN K (10)计算接触疲劳强度许用应力取失效概率为1%,安全系数为S=1,由式10-12得 MPa MPa S K H HN H 5406009.0][1lim 11=⨯==σσMPa MPa SK H HN H 5.52255095.0][2lim 22=⨯==σσMPa MPa H H H 25.5312/)5.522540(2/])[]([][21=+=+=σσσ2)计算(1)试算小齿轮分度圆直径t d 1,由计算公式得137.10t d mm ==(2)计算圆周速度 1137.1014402.8/601000601000t d n v m s ππ⨯⨯===⨯⨯(3)计算齿宽b及模数nt m1137.1037.10d t b d mm =Φ=⨯=11cos 37.10cos14 1.5024t nt d m mm Z β⨯===2.25 2.25 1.503.375/37.10/3.37510.99nt h m mm b h ==⨯===(4)计算纵向重合度βε903.114tan 241318.0tan 318.01=⨯⨯⨯=Φ=βεβZ d (5)计算载荷系数K 已知使用系数1=A K根据s m v /2.1=,7级精度,由图10-8查得动载荷系数 1.11V K = 由表10-4查得2232231.120.18(10.6)0.23101.120.18(10.61)10.231037.10 1.417H d d K bβ--=++ΦΦ+⨯=++⨯⨯+⨯⨯=由图10-13查得 1.34F K β=假定100/A tK F N mm b<,由表10-3查得4.1==ααF H K K 故载荷系数1 1.11 1.4 1.42 2.21A V H H K K K K K αβ==⨯⨯⨯= (6)按实际的载荷系数校正所算得的分度圆直径,由式10-10a得1141.32d d mm ===(7)计算模数n m 11cos 41.32cos141.6724n d m mm Z β⨯=== 3.按齿根弯曲强度设计 由式10-17 32121][cos 2FS F d n Y Y Z Y KT m σεβαααβ⋅Φ≥ 1)确定计算参数(1)计算载荷系数1 1.11 1.4 1.34 2.08A V F F K K K K K αβ==⨯⨯⨯=(2)根据纵向重合度903.1=βε,从图10-28查得螺旋角影响系数 88.0=βY (3)计算当量齿数113322332426.27cos cos 14101110.56cos cos 14V V Z Z Z Z ββ======(4)查取齿形系数由表10-5查得592.21=Fa Y 2 2.172Fa Y = (5)查取应力校正系数由表10-5查得596.11=Sa Y 2 1.798Sa Y =(6)由图10-20c查得,小齿轮的弯曲疲劳强度极限MPa FE 5001=σ 大齿轮的弯曲疲劳强度极限MPa FE 3802=σ (7)由图10-18查得弯曲疲劳强度寿命系数 85.01=FN K 88.02=FN K(8)计算弯曲疲劳许用应力取弯曲疲劳安全系数S =1.4,由式10-12得 MPa S K FE FN F 57.3034.150085.0][111=⨯==σσMPa S K FE FN F 86.2384.138088.0][222=⨯==σσ(9)计算大小齿轮的][F SaFa Y Y σ111222 2.592 1.5960.01363[]303.572.172 1.7980.01635[]238.86Fa Sa F Fa Sa F Y Y Y Y σσ⨯==⨯==大齿轮的数据大2)设计计算1.186n m mm ≥= 对比计算结果,由齿面接触疲劳强度计算的法面模数n m 大于由齿根弯曲疲劳强度计算的法面模数,取n m =1.5mm ,已可满足弯曲强度。
但为了同时满足接触疲劳强度,须按接触疲劳强度算得的分度圆直径141.32d mm =来计算应有的齿数。
于是有11cos 41.32cos1426.71.5n d Z m β⨯=== 取127Z =,则211 4.227113.4114Z i Z ==⨯=≈ 4.几何尺寸计算 1)计算中心距12()(27114) 1.5108.992cos 2cos14n Z Z m a mm β++⨯===⨯将中心距圆整为109mm2)按圆整后的中心距修正螺旋角12()(27114) 1.5arccosarccos 14.0322109n Z Z m a β++⨯===⨯因β值改变不多,故参数αε、βK 、H Z 等不必修正。
3)计算大、小齿轮的分度圆直径1122227 1.541.75cos cos14.03114 1.5176.25cos cos14.03n Z m d mm Z m d mmββ⨯===⨯===4)计算大、小齿轮的齿根圆直径1122 2.541.75 2.5 1.5382.5176.25 2.5 1.5172.5f n f n d d m mm d d m mm=-=-⨯==-=-⨯=5)计算齿轮宽度1141.7541.75d b d mm =Φ=⨯=圆整后取245B mm =;150B mm = 5.验算1122281461348.341.75t T F N d ⨯=== 11348.332.3/100/41.75A t K F N mm N mm b ⨯==< 合适七.设计低速级齿轮1.选精度等级、材料及齿数,齿型1)确定齿轮类型.两齿轮均为标准圆柱直齿轮2)材料选择.小齿轮材料为40Cr(调质),硬度为280HBS,大齿轮材料为45钢(调质),硬度为240HBS ,二者材料硬度差为40HBS 。
3)运输机为一般工作机器,速度不高,故选用7级精度4)选小齿轮齿数Z1=24,大齿轮齿数Z2=i1·Z1=3.5×24=84。
2.按齿面接触疲劳强度设计由设计计算公式10-9a进行试算,即 3211)][(132.2H E d t t Z u u T k d σ+⋅Φ≥ 1)确定公式各计算数值 (1) 试选载荷系数3.1=t K (2) 计算小齿轮传递的转矩55122495.510/95.510 4.034/342.8611.23910T P n N mm=⨯=⨯⨯=⨯⋅(3) 由表10-7选取齿宽系数1=d φ(4) 由表10-6查得材料的弹性影响系数2/18.198MPa Z E = (5) 由图10-21d按齿面硬度查得小齿轮的接触疲劳强度极限MPa H 6001lim =σ 大齿轮的接触疲劳强度极限lim2550H MPa σ=(6)由式10-13计算应力循环次数9116060342.861(2830015) 1.48110h N n jL ==⨯⨯⨯⨯⨯⨯=⨯ 992 1.48110/3.50.42310N =⨯=⨯(7)由图10-19查得接触疲劳强度寿命系数96.01=HN K 05.12=HN K(8)计算接触疲劳强度许用应力取失效概率为1%,安全系数为S=1,由式10-12得 MPa MPa S K H HN H 57660096.0][1lim 11=⨯==σσMPa MPa SK H HN H 5.57755005.1][2lim 22=⨯==σσ2)计算(1) 试算小齿轮分度圆直径t d 1,代入][H σ中的较小值163.39t d mm ≥=(2) 计算圆周速度v 1263.39342.86 1.14/601000601000t d n v m s ππ⨯⨯===⨯⨯ (3) 计算齿宽b1163.3963.39d t b d mm =Φ=⨯= (4) 计算齿宽与齿高之比b/h模数1163.39 2.64124t nt d m mm Z === 齿高2.25 2.25 2.641 5.94/63.39/5.9410.67nt h m mm b h ==⨯===(5) 计算载荷系数K根据 1.14/v m s =,7级精度,由图10-8查得动载荷系数07.1=V K 假设mm N b F K t A /100/<,由表10-3查得1H F K K αα==由表10-2查得使用系数1=A K由表10-4查得2232231.120.18(10.6)0.23101.120.18(10.61)10.231063.39 1.422H d d K bβ--=++ΦΦ+⨯=++⨯⨯+⨯⨯=由图10-23查得35.1=βF K故载荷系数1 1.071 1.422 1.522A V H H K K K K K αβ==⨯⨯⨯=(6)按实际的载荷系数校正所算得的分度圆直径,由式10-10a得1166.81d d mm ===(7)计算模数m11/66.81/24 2.78m d Z ===3.按齿根弯曲强度设计由式10-5得弯曲强度的设计公式为3211][2F S F d n Y Y Z KT m σαα⋅Φ≥ 1)确定公式内的计算数值(1) 由图10-20c查得小齿轮的弯曲疲劳强度极限MPa FE 5001=σ 大齿轮的弯曲疲劳强度极限MPa FE 3802=σ(2) 由图10-18查得弯曲疲劳寿命系数 85.01=FN K 88.02=FN K(3) 计算弯曲疲劳许用应力取失效概率为1%,安全系数为S=1.4,由式10-12得 1110.85500[]303.571.4FN FE F K MPa MPa S σσ⨯=== 2220.88380[]238.861.4FN FE F K MPa MPa S σσ⨯===(4) 计算载荷系数1 1.071 1.35 1.4445A V F F K K K K K αβ==⨯⨯⨯=(5)查取齿形系数由表10-5查得65.21=Fa Y 2 2.212Fa Y =(6)查取应力校正系数由表10-5查得58.11=Sa Y 2 1.774Sa Y = (7)计算大小齿轮的][F SaFa Y Y σ,并比较111222 2.65 1.580.01379[]303.572.212 1.7740.01643[]238.86Fa Sa F Fa Sa F Y Y Y Y σσ⨯==⨯==大齿轮的数据大2)设计计算2.11m mm ≥= 对比计算结果,由齿面接触疲劳强度计算的模数m大于由齿根弯曲疲劳强度计算的模数,可取有弯曲强度算得的模数2.11,并就近圆整为标准值m=2.2mm。