高等数学同济第六版上册课件CH6-3定积分在物理学上的应用

合集下载

同济第六版高数上册第六章课件

同济第六版高数上册第六章课件
10ቤተ መጻሕፍቲ ባይዱ
O
xdx x l x
3 2
棒对质点的引力的铅直分力为
F y 2 k m a
l 2
dx
y M dF a x
d Fa y
(a x ) l x 2 k m a 2 2 2 a a x
2
0
3 2 2
dF
l 2
2k m l 1 a 4a 2 l 2
解: 建立坐标系如图. 细棒上小段
y M dF a x
d Fy
[ x , x d x ]对质点的引力大小为 m d x dF k 2 a x2
故铅直分力元素为
l 2
dF
2 d Fy dF cos a m dx dx k 2 2 k m a 2 2 2 a x a x (a x 2 )
dW F ( x )dx
W dW F ( x )dx
a a
1
F(x)
O
b
b
a
x x+dx b


x
例1. 在一个带 +q 电荷所产生的电场作用下, 一个单
位正电荷沿直线从距离点电荷 a 处移动到 b 处 (a < b) , 求电场力所作的功 . 解: 当单位正电荷距离原点 r 时,由库仑定律电场力为
证明存在唯一一点 (a , b), 使S1 3 S 2
t
18
例64 求由r cos 及r 1 cos 所围图形的公共 思考 部分的面积 .
19
0
O
xdx x l x
2
利用对称性
故棒对质点的引力大小为 F 2k m l a

同济六版高等数学第一章第七节课件

同济六版高等数学第一章第七节课件

无穷大量的定义
如果当x趋于某值时,函数f(x)趋于无穷大,则称f(x) 为无穷大量。
无穷小量与无穷大量的关 系
两者之间存在密切的联系,无穷小量是无穷 大量的极限状态,而无穷大量则是无穷小量 的极限状态。
03
导数的概念与性质
导数的定义与几何意义
导数的定义
导数描述了函数在某一点处的切线斜 率,即函数在该点的变化率。
分部积分法
通过将两个函数的乘积进行不定积分, 将其中一个函数作为u,另一个函数
作为v',然后进行不定积分。
换元积分法
通过引入新的变量替换原函数中的自 变量,将不定积分转化为容易计算的
形式。
积分的应用
求面积
不定积分可以用来计算平面曲线下方的面积。
求长度
不定积分可以用来计算曲线在某个区间上的 长度。
物理应用
于这个值时的极限为A。
极限的性质
包括唯一性、有界性、局部 保号性等。这些性质对于理
解和应用极限非常重要。
极限的计算
包括直接代入法、因式分解 法、等价无穷小替换法等, 这些方法可以帮助我们计算 函数的极限。
无穷小量与无穷大量
无穷小量的定义
如果当x趋于某值时,函数f(x)趋于0,则称f(x) 为无穷小量。
同济六版高等数学第 一章第七节课件
目录
CONTENTS
• 引言 • 函数与极限 • 导数的概念与性质 • 导数的应用 • 不定积分 • 定积分 • 总结与回顾
01
引言
本章概述
01
本章主要介绍极限的概念、性质及其在数学分析中的基础地位。
02
通过本章学习,学生将了解极限在研究函数、导数、积分等数
学概念中的作用。

高等数学(同济第六版)课件 第六章 6.3定积分物理应用

高等数学(同济第六版)课件  第六章 6.3定积分物理应用
第三节 定积分在物理学上的应用
一、变力沿直线所作的功
F a x
F
x+dx b
常力 F 沿直线对物体所作的功为:W=F · S 若力是变力: F F ( x )
dW F ( x )dx
W F ( x )dx
a
b
例1 一个带 +q 电量的点电荷放在 r 轴上坐标原点处, 产生一个电场. 若将一个单位正电荷从r 轴上r = a 处 沿 r 轴移动到 r = b处,求场力 F 所作的功. 解 取r为积分变量,
20 x 20 x dW2 (10 0.05)dx (10 )dx 4 80
x
功元素
1 20 x dW [ x (10 )]dx 10 80
20

W
0
1 20 x [ x (10 )]dx 10 80
=217.5(千克米) =2131.5(焦耳)
l l 解 取y为积分变量 y [ , ], 2 2 取任一小区间[ y , y+dy ] 小段的质量为 dy ,
小段与质点的距离为 r a y ,
2 2
m dx 引力 dF k 2 , 2 a y amdy dFx k 2 , 2 (a y )
3 2
l y 2 y dy
解 建立坐标系如图
面积元素 2(a x )dx ,
dP ( x 2a ) 2(a x )dx
2a
o
a
2a
7 3 P 2( x 2a )(a x )dx a . 0 3
a
x
三、 引力
质量分别为m1, m2相距为 r 的两个质点间的引力 大小:F k m1m2 , 其中k为引力系数, r2 引力的方向沿着两质点的连线方向. 例6 有一长度为l、线密度为 的均匀细棒, 在其中垂线上距棒 a 单位处有一质量为 m 的 质点M, 计算该棒对质点 M 的引力.

《高等数学》电子课件(同济第六版)01第一章第1节函数

《高等数学》电子课件(同济第六版)01第一章第1节函数
复合函数的实际应用
复合函数在数学、物理、工程等领域有广 泛的应用。
反函数
反函数的定义
反函数是原函数关于y=x对称的函数。
反函数的性质
反函数具有原函数的性质,如连续性、可导性等。
反函数的求导法则
反函数的求导法则与原函数有关,可以通过交换x和y的导数来实现。
反函数的应用
反函数在数学、物理、工程等领域有广泛的应用,如解方程、优化问题等。
函数单调性的定义
如果对于函数的定义域内的任意两个数$x_1$和$x_2$,当$x_1 < x_2$时,都 有$f(x_1) leq f(x_2)$(或$f(x_1) geq f(x_2)$),则称函数在该区间内单调递 增(或单调递减)。
单调性的判定方法
通过比较函数在不同区间内的增减性,可以判断函数的单调性。此外,导数也 是判断函数单调性的重要工具,如果函数在某区间内的导数大于0,则函数在该 区间内单调递增;如果导数小于0,则函数单调递减。
04
函数的图像与性质
函数的图像
函数图像的概念
函数图像是表示函数值的点在平面上 的集合。通过函数图像,我们可以直 观地了解函数的形态和变化趋势。
函数图像的绘制方法
绘制函数图像通常需要确定函数的定 义域和值域,然后根据函数的解析式 ,在坐标系上标出对应的点,最后用 光滑的曲线将它们连接起来。
函数的单调性
答案与解析
$|x|$ 是偶函数。
$x^3$ 是奇函数。
判断下列函数是否为奇函 数或偶函数
01
03 02
答案与解析
$frac{1}{x}$ 是奇函数。
解析:奇函数的定义是对于定义域内的任意 $x$,都有 $f(-x) = -f(x)$;偶函数的定义是对 于定义域内的任意 $x$,都有 $f(-x) = f(x)$。 根据这些定义,可以判断出 $x^3$、$|x|$ 和 $frac{1}{x}$ 的奇偶性。

06定积分应用(同济教材)39页20180926

06定积分应用(同济教材)39页20180926
2 b Vx 2 y dx 2 0 a 4 2 ab 3
a 2 2

a
0
(a x )dx
2 2
x y 例: 计算由椭圆 2 2 1 围成的图形 a b
2
2
绕 y 轴旋转一周所成的旋转体(称为旋
转椭球体)的体积。
2 a Vy 2 x dy 2 0 b 4 2 a b 3
dV y dx f ( x)dx
2 2
y=f(x)
x dx
a
x
b 2 b 2
b
Vx y dx f ( x)dx
a a
求由曲线 x=(y) ,(假设曲线 (y) 与 y 轴不相交)与直线 y=c,y=d (c<d) 及 y 轴所围成的平面图形绕 y 轴旋转一 周而成的旋转体的体积。
U dU (x ) 注意:这样表示的前提条件是: 否则可能造成失误,这里,称 dU 为量U的元 素。
3、对元素关系式 dU f ( x )dx 在 [a,b] 上作定积分,即得所求量 U 的积分 表达式 b
U ∫ f ( x ) dx . a
上述这种解决问题的方法称为元素 法,也称微元法。
y
y=f(x)
dA
o
a
b a
x x+dx b
x
A f ( x)dx
y
a
x x+dx b
o
y=f(x)
x
dA
A f ( x)dx
a
b
求由曲线 x=(y), x=(y) ((y)≤(y))及 直线 y=c,y=d (c<d) 围成的平面图形的 dA 面积 A。 y

高等数学第六章第二节定积分在几何学上的应用课件.ppt

高等数学第六章第二节定积分在几何学上的应用课件.ppt

解:
cos x 0,
2
x
2
s
2
2
2 2 0
1 y2 dx 1 ( cos x)2 dx
2 2
2 cos x dx
0
2
2
2
2
sin
x 2
2
0
4
的弧长.
例11. 计算摆线
一拱
的弧长 .
y
解: ds
(dd
x t
)2
(
d d
y t
)
2
d
t
o
a2 (1 cos t)2 a2 sin2 t d t
1 y2 dx
因此所求弧长
s b 1 y2 dx a
b
a
1 f 2(x) dx
y
y f (x)
ds
o a xxdxb x
(2) 曲线弧由参数方程给出:
弧长元素(弧微分) :
ds (dx)2 (dy)2
2 (t) 2 (t) dt
因此所求弧长
s
2 (t) 2 (t) d t
(3) 曲线弧由极坐标方程给出:
y b
o x ax
则 V 2 a y2 dx 0
(利用对称性)
2
b2 a2
a
(a
2
x2
)
dx
0
2
b2 a2
a2 x
1 3
x3
a 0
4 ab2
3
方法2 利用椭圆参数方程
则 V 20a y2 dx 2 ab2 sin3t d t
2 ab2 2 1
3
4 ab2
3
特别当b
=
a

《高数定积分》课件

《高数定积分》课件

05
广义积分及其收敛性判别法
广义积分的概念及分类
广义积分的定义
广义积分是相对于正常积分而言的一种特殊积分,其积分区间可能包含无穷大或者无界 函数。
广义积分的分类
根据被积函数和积分区间的不同,广义积分可分为无穷限广分的收敛性判别法
比较判别法
通过比较被积函数与已知收敛或发散的函数,来判断广义积分的收敛性。
换元法求解定积分
01
换元法的基本思想
通过变量代换简化定积分的计算 。
02
常见的换元方法
03
换元法的注意事项
三角函数代换、倒代换、根式代 换等。
代换后需调整积分上下限,并验 证代换的可行性。
分部积分法求解定积分
分部积分法的基本思想
将复杂函数拆分为简单函数 进行积分。
常见的分部积分公式
幂函数与三角函数、幂函数 与指数函数、幂函数与对数 函数等。
06
定积分在经济学等领域的应用
由边际函数求原经济函数
边际函数与定积分的关系
边际函数描述的是经济量变化的瞬时速率,而定积分则可用于求取原经济函数,即总量 函数。
求原经济函数的步骤
首先确定边际函数的表达式,然后根据定积分的定义,对边际函数进行积分,得到原经 济函数的表达式。
示例
已知某产品的边际收益函数为MR(q),通过对其进行定积分,可以得到总收益函数 TR(q)。
曲线的长度、图形的面积等。
THANKS
感谢观看
原函数与不定积分概念
原函数定义
原函数是指一个函数的导数等于给定函数的函数。根据微积分基本定理,不定积分就是求原函数的过 程。
不定积分性质
不定积分具有线性性质、常数倍性质和积分区间可加性。这些性质在求解复杂函数的定积分时非常有 用。

合肥工业大学-高等数学-上-6-3-定积分在物理学中的应用资料

合肥工业大学-高等数学-上-6-3-定积分在物理学中的应用资料

的两质点之间的引力为 F
k
m1m2 r2
,其中 k
为引力系数,且引力的方
向沿着两质点的连线方向.
如果考虑的不是两个质点之间的引力,而是一根细棒对一个 质点的引力,或者是一根细棒对另一根细棒的引力,就不能直接 运用上述公式,此时的问题相对复杂一些,现举例说明用定积分 的微元法计算一根细棒对一个质点的引力.
解 如图建立坐标系,并取 x 为积分变量.
⑴⑵ x 的的变变化化范范围围[[0a,,aa]],,类在似[a我, a们] 上得任到取压小力区的间微[元x, x为 dx] ,对应
于[x, x dx] 上窄条所dF受的2b压力g近x 似a2于 x2 dx ,
(a x) 2 y dx g 2ba g(a x) a2 x2dx,
解 设第 n 次击打后,桩被打进地下 xn 米,第 n 次击打时,
汽锤所作功为Wn (n 1, 2,3) .由题设,当桩被打进地下的深度
为 x 时,土层对桩的阻力的大小为 kx ,所以
W1
x1 0
kxdx
k 2
x12

W2
x2 x1
kxdx
k 2
(
x22
x12
a
所故以所压受力的元压素力为为dF 2b g(a x) a2 x2 dx , 故所受压力为
FF
aa 0a
22bb aa
gg(xa
a ax2 )
xa22dx
x2
d23xa2bag2b( g牛(顿牛)顿.).
例 6.3.4 某闸门的形状与大小如图所示,其中直线l 为对称轴,闸门的
上部为矩形 ABCD,下部由二次抛物线与线段 AB(长度为米)围成.当
1
闸门下部承受的水压力为

同济高等数学第六版上册第一章ppt.

同济高等数学第六版上册第一章ppt.

第一章二、收敛数列的性质三、极限存在准则一、数列极限的定义第二节数列的极限∞第一章一、自变量趋于有限值时函数的极限第三节,)(x f y =对0)1(x x →+→0)2(x x -→0)3(x x ∞→x )4(+∞→x )5(-∞→x )6(自变量变化过程的六种形式:二、自变量趋于无穷大时函数的极限本节内容:函数的极限x 0定理2 .若在0x 的某去心邻域内0)(≥x f )0)((≤x f , 且,)(lim 0A x f x x =→则.0≥A )0(≤A 证:用反证法.则由定理1,0x 的某去心邻域,使在该邻域内,0)(<x f 与已知所以假设不真, .0≥A (同样可证0)(≤x f 的情形)思考:若定理2 中的条件改为,0)(>x f 是否必有?0>A 不能!lim 2=→x x 存在如假设A < 0, 条件矛盾,故时,当0)(≥x fyX-xX直线y= A为曲线的水平渐近线.第一章二、无穷大三、无穷小与无穷大的关系一、无穷小第四节无穷小与无穷大第一章二、极限的四则运算法则三、复合函数的极限运算法则一、无穷小运算法则第五节极限运算法则二、极限的四则运算法则,)(lim ,)(lim B x g A x f ==则有=±)]()(lim[x g x f )(lim )(lim x g x f ±证: 因,)(lim ,)(lim B x g A x f ==则有βα+=+=B x g A x f )(,)((其中βα,为无穷小)于是)()()()(βα+±+=±B A x g x f )()(βα±+±=B A 由定理1 可知βα±也是无穷小,再利用极限与无穷小BA ±=的关系定理, 知定理结论成立.定理3 .若推论:若,)(lim ,)(lim B x g A x f ==且),()(x g x f ≥则.B A ≥( P46 定理5 ))()()(x g x f x -=ϕ利用保号性定理证明.说明:定理3 可推广到有限个函数相加、减的情形.提示:令定理4. 若,)(lim ,)(lim B x g A x f ==则有=)]()(lim[x g x f )(lim )(lim x g x f 提示:利用极限与无穷小关系定理及本节定理2 证明.说明:定理4 可推广到有限个函数相乘的情形.推论1 .)(lim )](lim[x f C x f C =( C 为常数)推论2 .nnx f x f ])(lim [)](lim[=( n 为正整数)例2.设n 次多项式,)(10nn n x a x a a x P +++= 试证).()(lim 00x P x P n n x x =→证:=→)(lim 0x P n x x 0a x a x x 0lim 1→+++ nx x n xa 0lim →)(0x P n =BA =。

高等数学讲义课件 第3节 定积分在物理上的应用

高等数学讲义课件   第3节 定积分在物理上的应用

kq
1 r
b a
k
q
(
1 a
1 b
)
说明:
kq a
例2. 一蓄满水的圆柱形水桶高为 5 m, 底圆半径为3m,
试问要把桶中的水全部吸出需作多少功 ?
解: 建立坐标系如图. 在任一小区间
o
[x , x dx] 上的一薄层水的重力为
g 32 dx (KN)
这薄层水吸出桶外所作的功(功元素)为
b
W a F (x) dx
例1. 在一个带 +q 电荷所产生的电场作用下, 一个单
位正电荷沿直线从距离点电荷 a 处移动到 b 处 (a < b) , 求电场力所作的功 .
解: 当单位正电荷距离原点 r 时,由库仑定律电场力为
q 1 1
则功的元素为
dW
kq r2
d
r
o
a
r r dr b r
所求功为
5m
xdx
dW 9 g x dx
故所求功为
W
5
0
9 g x d x 9
g x2
2
5 0
112.5 g ( KJ )
3m
x
设水的密
度为
第三节 定积分在物理学上的应用
一、 变力沿直线所作的功 *二、 液体的侧压力 *三、 引力问题
一、 变力沿直线所作的功
设物体在连续变力 F(x) 作用下沿 x 轴从 x=a 移动到 力的方向与运动方向平行, 求变力所做的功 .
在其上所作的功元
素为
dW F(x) dx
a x x dx b x
因此变力F(x) 在区间 上所作的功为

同济大学数学系《高等数学》(上册)讲义与视频课程-定积分的应用【圣才出品】

同济大学数学系《高等数学》(上册)讲义与视频课程-定积分的应用【圣才出品】
一、填空题
十万种考研考证电子书、题库视频学习平台
1.设封闭曲线 L 的极坐标方程为 r
cos3 (
) ,则 L 所围平面图形的面积
6
6
是______.[数二 2013 研]
【答案】 12
【解析】考虑图形关于极轴的对称性,其面积为
2.由曲线 y= 4 和直线 y=x 及 y=4x 在第一象限中围成的平面图形的面积为_____.[数 x
2015 研]
解:由旋转体的体积公式,得
V1
2 f 2 (x)dx
0
2 ( Asin x)2dx A2
0
2
1
cos
2 x dx
2
A2
0
2
4
11 / 14
圣才电子书 十万种考研考证电子书、题库视频学习平台

V2
2 0
2 xf
( x)dx
2
A
2 0
xd
三 2012 研] 【答案】4ln2 【解析】由题意,所述的平面图形如图 6-2-1 所示,所求面积为
8 / 14
圣才电子书 十万种考研考证电子
1.设 D 是由曲线 y
1
x
2
(0
x
1)

x y
cos3 sin3
t t
A,则
a.当 f(x)≥0 时 b.当 f(x)<0 时
b
A= a
f
xdx
A=
b a
f
x dx
b a
f
xdx
②设由曲线 y=f(x)、y=g(x)及直线 x=a,x=b(a<b)与 x 轴所围成的曲边梯
形的面积是 A,则
b

《高等数学》(同济六版)教学课件★第6章.定积分的应用

《高等数学》(同济六版)教学课件★第6章.定积分的应用
2) U 对区间 [a , b] 具有可加性 , 即可通过 “大化小, 常代变, 近似和, 取极限”
表示为
定积分定义
目录 上页 下页 返回 结束
二 、如何应用定积分解决问题 ?
第一步 利用“化整为零 , 以常代变” 求出局部量
近的似值
微分表达式
dU f (x) dx
第二步 利用“ 积零为整 , 无限累加 ” 求出整体量的
精确值
积分表达式
b
U a f (x) dx
这种分析方法称为元素法 (或微元分析法 )
元素的几何形状常取为: 条, 带, 段, 环, 扇, 片, 壳 等
第二节 目录 上页 下页 返回 结束
第二节
第六章
定积分在几何学上的应用
一、 平面图形的面积
二、 平面曲线的弧长 三、已知平行截面面积函数的
立体体积
目录 上页 下页 返回 结束
例8. 求双纽线
所围图形面积 .
解: 利用对称性 , 则所求面积为
y
1 a2 cos2 d
2
π 4
π
a2 4 cos 2 d (2 ) 0
O
ax
a2sin 2 a2
π 4
思考: 用定积分表示该双纽线与圆 r a 2 sin
所围公共部分的面积 .
答案:
π
A 2 6 a2 sin2 d 0
y Mi1
A M0 O
定理: 任意光滑曲线弧都是可求长的.
(证明略)
Mi
B Mn x
目录 上页 下页 返回 结束
(1) 曲线弧由直角坐标方程给出:
弧长元素(弧微分) :
ds (dx)2 (dy)2
1 y2 dx
因此所求弧长

数学:《定积分的简单应用-在物理中的应用》

数学:《定积分的简单应用-在物理中的应用》

本节
目的 与要
顶与水面平行,压力又如何?
本节 的水的压力。
复习
2m
指导
6.一个横放着的半径为R的圆形由桶,桶内盛有半
桶油,设油的密度为ρ,计算桶的一个端面上所受的
主 页 后退 目录 退 出
压力。
定积分在物理中的应用
7.一块高为a,底为b的等腰三角形薄板,垂直
本节 地沉没在水中,顶在下,底与水面相齐,试计
知识
引入 算薄板每面所受的压力。如果把它倒放,使它的
5
x
定积分在物理中的应用
本节 知识 引入
本节 目的 与要 求
本节 重点 与难 点
本节 复习 指导
主 页 后退 目录 退 出
这一薄层水的重力为 9.832dx
功元素为 d w 8.2 8 x d,x
o
x xdx
5
x
5
w08.82xdx
88.2
x2 2
5
0
346(2千焦).
定积分在物理中的应用
II. 液体的静压力
二、均方根
本节
知识 引入
通常交流电器上标明的功率就是平均
本节 功率.交流电器上标明的电流值都是一种特
目的
与要 求
定的平均值,习惯上称为有效值.
本节
周期性非恒定电流 i (如正弦交流电)
重点
与难 点
的有效值规定如下:当i(t)在它的一个周
本节 复习
期T内在负载电阻R上消耗的平均功率,
指导 等于取固定值I 的恒定电流在R上消耗的功
知识
引入 上 所 受 的 压 力 .
本节
目的 与要 求
解 在端面建立坐标系如图
本节 重点

(完整版)同济第六版《高等数学》教案WORD版-第06章定积分的应用

(完整版)同济第六版《高等数学》教案WORD版-第06章定积分的应用

第六章定积分的应用教学目的1、理解元素法的基本思想;2、掌握用定积分表达和计算一些几何量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积)。

3、掌握用定积分表达和计算一些物理量(变力做功、引力、压力和函数的平均值等)。

教学重点:1、计算平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积。

2、计算变力所做的功、引力、压力和函数的平均值等。

教学难点:1、截面面积为已知的立体体积。

2、引力。

§6. 1 定积分的元素法回忆曲边梯形的面积:设y=f (x)≥0 (x∈[a,b]).如果说积分,⎰=b adx xfA)(是以[a,b]为底的曲边梯形的面积,则积分上限函数⎰=x adt tfxA)()(就是以[a,x]为底的曲边梯形的面积.而微分dA(x)=f (x)dx表示点x处以dx为宽的小曲边梯形面积的近似值∆A≈f (x)dx, f (x)dx称为曲边梯形的面积元素.以[a,b]为底的曲边梯形的面积A就是以面积元素f(x)dx为被积表达式,以[a,b]为积分区间的定积分:⎰=b adx xfA)(.一般情况下,为求某一量U,先将此量分布在某一区间[a,b]上,分布在[a,x]上的量用函数U(x)表示,再求这一量的元素dU(x),设dU(x)=u(x)dx,然后以u(x)dx为被积表达式,以[a,b]为积分区间求定积分即得⎰=b adx xfU)(.用这一方法求一量的值的方法称为微元法(或元素法).§6. 2 定积分在几何上的应用一、平面图形的面积1.直角坐标情形设平面图形由上下两条曲线y =f 上(x )与y =f 下(x )及左右两条直线x =a 与x =b 所围成, 则面积元素为[f 上(x )- f 下(x )]dx , 于是平面图形的面积为dx x f x f S b a ⎰-=)]()([下上.类似地, 由左右两条曲线x =ϕ左(y )与x =ϕ右(y )及上下两条直线y =d 与y =c 所围成设平面图形的面积为⎰-=dc dy y y S )]()([左右ϕϕ.例1 计算抛物线y 2=x 、y =x 2所围成的图形的面积.解 (1)画图.(2)确定在x 轴上的投影区间: [0, 1].(3)确定上下曲线: 2)( ,)(x x f x x f ==下上.(4)计算积分31]3132[)(10323102=-=-=⎰x x dx x x S . 例2 计算抛物线y 2=2x 与直线y =x -4所围成的图形的面积.解 (1)画图.(2)确定在y 轴上的投影区间: [-2, 4].(3)确定左右曲线: 4)( ,21)(2+==y y y y 右左ϕϕ. (4)计算积分⎰--+=422)214(dy y y S 18]61421[4232=-+=-y y y . 例3 求椭圆12222=+by a x所围成的图形的面积. 解 设整个椭圆的面积是椭圆在第一象限部分的四倍, 椭圆在第一象限部分在x 轴上的投影区间为[0, a ]. 因为面积元素为ydx , 所以⎰=aydx S 04. 椭圆的参数方程为:x =a cos t , y =b sin t ,于是 ⎰=a ydx S 04⎰=02)cos (sin 4πt a td b⎰-=022sin 4πtdt ab ⎰-=20)2cos 1(2πdt t ab ππab ab =⋅=22.2.极坐标情形曲边扇形及曲边扇形的面积元素:由曲线ρ=ϕ(θ)及射线θ =α, θ =β围成的图形称为曲边扇形. 曲边扇形的面积元素为θθϕd dS 2)]([21=. 曲边扇形的面积为⎰=βαθθϕd S 2)]([21. 例4. 计算阿基米德螺线ρ=a θ (a >0)上相应于θ从0变到2π 的一段弧与极轴所围成的图形的面积.解: ⎰=πθθ202)(21d a S 32203234]31[21πθπa a ==. 例5. 计算心形线ρ=a (1+cos θ ) (a >0) 所围成的图形的面积.解: ⎰+=πθθ02]cos 1([212d a S ⎰++=πθθθ02)2cos 21cos 221(d a πθθθπ20223]2sin 41sin 223[a a =++=.二、体 积1.旋转体的体积旋转体就是由一个平面图形绕这平面内一条直线旋转一周而成的立体. 这直线叫做旋转轴. 常见的旋转体: 圆柱、圆锥、圆台、球体.旋转体都可以看作是由连续曲线y =f (x )、直线x =a 、a =b 及x 轴所围成的曲边梯形绕x 轴旋转一周而成的立体.设过区间[a , b ]内点x 且垂直于x 轴的平面左侧的旋转体的体积为V (x ), 当平面左右平移dx 后, 体积的增量近似为∆V =π[f (x )]2dx , 于是体积元素为dV = π[f (x )]2dx ,旋转体的体积为dx x f V ba 2)]([π⎰=.例1 连接坐标原点O 及点P (h , r )的直线、直线x =h 及x 轴围成一个直角三角形. 将它绕x 轴旋转构成一个底半径为r 、高为h 的圆锥体. 计算这圆锥体的体积.解: 直角三角形斜边的直线方程为x hr y =. 所求圆锥体的体积为dx x h r V h 20)(π⎰=h x h r 0322]31[π=231hr π=. 例2. 计算由椭圆12222=+by a x所成的图形绕x 轴旋转而成的旋转体(旋转椭球体)的体积. 解: 这个旋转椭球体也可以看作是由半个椭圆 22x a ab y -= 及x 轴围成的图形绕x 轴旋转而成的立体. 体积元素为dV = π y 2dx ,于是所求旋转椭球体的体积为⎰--=aa dx x a ab V )(2222πa a x x a ab --=]31[3222π234ab π=. 例3 计算由摆线x =a (t -sin t ), y =a (1-cos t )的一拱, 直线y =0所围成的图形分别绕x 轴、y 轴旋转而成的旋转体的体积.解 所给图形绕x 轴旋转而成的旋转体的体积为 ⎰=a x dx y V ππ202⎰-⋅-=ππ2022)cos 1()cos 1(dt t a t a⎰-+-=ππ20323)cos cos 3cos 31(dt t t t a=5π 2a 3.所给图形绕y 轴旋转而成的旋转体的体积是两个旋转体体积的差. 设曲线左半边为x =x 1(y )、右半边为x =x 2(y ). 则⎰⎰-=a a y dy y x dy y x V 20212022)()(ππ ⎰⎰⋅--⋅-=πππππ022222sin )sin (sin )sin (tdt a t t a tdt a t t a⎰--=ππ2023sin )sin (tdt t t a =6π 3a 3 .2.平行截面面积为已知的立体的体积设立体在x 轴的投影区间为[a , b ], 过点x 且垂直于x 轴的平面与立体相截, 截面面积为A (x ), 则体积元素为A (x )dx , 立体的体积为dx x A V b a )(⎰=.例4 一平面经过半径为R 的圆柱体的底圆中心, 并与底面交成角α. 计算这平面截圆柱所得立体的体积.解: 取这平面与圆柱体的底面的交线为x 轴, 底面上过圆中心、且垂直于x 轴的直线为y 轴. 那么底圆的方程为x 2 +y 2=R 2. 立体中过点x 且垂直于x 轴的截面是一个直角三角形. 两个直角边分别为22x R -及αtan 22x R -. 因而截面积为αtan )(21)(22x R x A -=. 于是所求的立体体积为 dx x R V R R αtan )(2122-=⎰-ααtan 32]31[tan 21332R x x R R R =-=-. 例5. 求以半径为R 的圆为底、平行且等于底圆直径的线段为顶、高为h 的正劈锥体的体积.解: 取底圆所在的平面为x O y 平面, 圆心为原点, 并使x 轴与正劈锥的顶平行. 底圆的方程为x 2 +y 2=R 2. 过x 轴上的点x (-R <x <R )作垂直于x 轴的平面, 截正劈锥体得等腰三角形. 这截面的面积为22)(x R h y h x A -=⋅=.于是所求正劈锥体的体积为⎰--=R R dx x R h V 22h R d h R 2202221cos 2πθθπ==⎰ . 三、平面曲线的弧长设A , B 是曲线弧上的两个端点. 在弧AB 上任取分点A =M 0, M 1, M 2, ⋅ ⋅ ⋅ , M i -1, M i , ⋅ ⋅ ⋅, M n -1, M n =B , 并依次连接相邻的分点得一内接折线. 当分点的数目无限增加且每个小段M i -1M i 都缩向一点时, 如果此折线的长∑=-ni i i M M 11||的极限存在, 则称此极限为曲线弧AB 的弧长, 并称此曲线弧AB 是可求长的.定理 光滑曲线弧是可求长的.1.直角坐标情形设曲线弧由直角坐标方程y =f (x ) (a ≤x ≤b )给出, 其中f (x )在区间[a , b ]上具有一阶连续导数. 现在来计算这曲线弧的长度.取横坐标x 为积分变量, 它的变化区间为[a , b ]. 曲线y =f (x )上相应于[a , b ]上任一小区间[x , x +dx ]的一段弧的长度, 可以用该曲线在点(x , f (x ))处的切线上相应的一小段的长度来近似代替. 而切线上这相应的小段的长度为dx y dy dx 2221)()('+=+,从而得弧长元素(即弧微分)dx y ds 21'+=. 以dx y 21'+为被积表达式, 在闭区间[a , b ]上作定积分, 便得所求的弧长为⎰'+=ba dx y s 21. 在曲率一节中, 我们已经知道弧微分的表达式为dx y ds 21'+=, 这也就是弧长元素. 因此 例1. 计算曲线2332x y =上相应于x 从a 到b 的一段弧的长度. 解: 21x y =', 从而弧长元素dx x dx y ds +='+=112.因此, 所求弧长为b a b a x dx x s ])1(32[123+=+=⎰])1()1[(322323a b +-+=. 例2. 计算悬链线cx c y ch =上介于x =-b 与x =b 之间一段弧的长度. 解: cx y sh =', 从而弧长元素为 dx cx dx c x ds ch sh 12=+=. 因此, 所求弧长为⎰⎰==-b b b dx c x dx c x s 0ch 2ch cb c dx c x c b sh 2]sh [20==. 2.参数方程情形设曲线弧由参数方程x =ϕ(t )、y =ψ(t ) (α≤t ≤β )给出, 其中ϕ(t )、ψ(t )在[α, β]上具有连续导数.因为)()(t t dx dy ϕψ''=, dx =ϕ'(t )d t , 所以弧长元素为 dt t t dt t t t ds )()()()()(12222ψϕϕϕψ'+'='''+=. 所求弧长为⎰'+'=βαψϕdt t t s )()(22. 例3. 计算摆线x =a (θ-sin θ), y =a (1-cos θ)的一拱(0 ≤θ ≤2π )的长度.解: 弧长元素为θθθd a a ds 2222sin )cos 1(+-=θθd a )cos 1(2-=θθd a 2sin2=.所求弧长为⎰=πθθ202sin 2d a s πθ20]2cos 2[2-=a =8a . 3.极坐标情形设曲线弧由极坐标方程ρ=ρ(θ) (α ≤ θ ≤ β )给出, 其中r (θ)在[α, β]上具有连续导数. 由直角坐标与极坐标的关系可得x =ρ(θ)cos θ , y =ρ(θ)sin θ(α ≤θ ≤ β ).于是得弧长元素为θθθd y x ds )()(22'+'=θθρθρd )()(22'+=.从而所求弧长为⎰'+=βαθθρθρd s )()(22.例14. 求阿基米德螺线ρ=a θ (a >0)相应于θ 从0到2π 一段的弧长.解: 弧长元素为θθθθd a d a a ds 22221+=+=.于是所求弧长为⎰+=πθθ2021d a s )]412ln(412[222ππππ++++=a .§6. 3 功 水压力和引力一、变力沿直线所作的功例1 把一个带+q 电量的点电荷放在r 轴上坐标原点O 处, 它产生一个电场. 这个电场对周围的电荷有作用力. 由物理学知道, 如果有一个单位正电荷放在这个电场中距离原点O 为r 的地方, 那么电场对它的作用力的大小为2r q k F = (k 是常数). 当这个单位正电荷在电场中从r =a 处沿r 轴移动到r =b (a <b )处时, 计算电场力F 对它所作的功. 例1' 电量为+q 的点电荷位于r 轴的坐标原点O 处它所产生的电场力使r 轴上的一个单位正电荷从r =a 处移动到r =b (a <b )处求电场力对单位正电荷所作的功.提示: 由物理学知道, 在电量为+q 的点电荷所产生的电场中, 距离点电荷r 处的单位正电荷所受到的电场力的大小为2r q k F = (k 是常数). 解: 在r 轴上, 当单位正电荷从r 移动到r +dr 时, 电场力对它所作的功近似为dr r q k2, 即功元素为dr r q kdW 2=. 于是所求的功为dr rkq W b a 2⎰=b a r kq ]1[-=)11(b a kq -=. 例2. 在底面积为S 的圆柱形容器中盛有一定量的气体. 在等温条件下, 由于气体的膨胀, 把容器中的一个活塞(面积为S )从点a 处推移到点b 处. 计算在移动过程中, 气体压力所作的功. 解: 取坐标系如图, 活塞的位置可以用坐标x 来表示. 由物理学知道, 一定量的气体在等温条件下, 压强p 与体积V 的乘积是常数k , 即pV =k 或Vk p =. 解: 在点x 处, 因为V =xS , 所以作在活塞上的力为xk S xS k S p F =⋅=⋅=. 当活塞从x 移动到x +dx 时, 变力所作的功近似为dx xk , 即功元素为dx xk dW =. 于是所求的功为dx x k W b a ⎰=b a x k ][ln =ab k ln =.例3. 一圆柱形的贮水桶高为5m , 底圆半径为3m , 桶内盛满了水. 试问要把桶内的水全部吸出需作多少功?解: 作x 轴如图. 取深度x 为积分变量. 它的变化区间为[0, 5], 相应于[0, 5]上任小区间[x , x +dx ]的一薄层水的高度为dx . 水的比重为9.8kN/m 3, 因此如x 的单位为m , 这薄层水的重力为9.8π⋅32dx . 这薄层水吸出桶外需作的功近似地为dW =88.2π⋅x ⋅dx ,此即功元素. 于是所求的功为⎰=502.88xdx W π502]2[2.88x π=2252.88⋅=π(kj). 二、水压力从物理学知道, 在水深为h 处的压强为p =γh , 这里 γ 是水的比重. 如果有一面积为A 的平板水平地放置在水深为h 处, 那么, 平板一侧所受的水压力为P =p ⋅A .如果这个平板铅直放置在水中, 那么, 由于水深不同的点处压强p 不相等, 所以平板所受水的压力就不能用上述方法计算.例4. 一个横放着的圆柱形水桶, 桶内盛有半桶水. 设桶的底半径为R , 水的比重为 γ , 计算桶的一个端面上所受的压力.解: 桶的一个端面是圆片, 与水接触的是下半圆. 取坐标系如图.在水深x 处于圆片上取一窄条, 其宽为dx , 得压力元素为dx x R x dP 222-=γ.所求压力为⎰-=R dx x R x P 022 2γ)()(2221220x R d x RR ---=⎰γR x R 02322])(32[--=γ332R r =. 三、引力从物理学知道, 质量分别为m 1、m 2, 相距为r 的两质点间的引力的大小为221r m m G F =, 其中G 为引力系数, 引力的方向沿着两质点连线方向.如果要计算一根细棒对一个质点的引力, 那么, 由于细棒上各点与该质点的距离是变化的, 且各点对该质点的引力的方向也是变化的, 就不能用上述公式来计算.例5. 设有一长度为l 、线密度为ρ的均匀细直棒, 在其中垂线上距棒a 单位处有一质量为m 的质点M . 试计算该棒对质点M 的引力.例5'. 求长度为l 、线密度为ρ的均匀细直棒对其中垂线上距棒a 单位处质量为m 的质点M 的引力.解: 取坐标系如图, 使棒位于y 轴上, 质点M 位于x 轴上, 棒的中点为原点O . 由对称性知,引力在垂直方向上的分量为零, 所以只需求引力在水平方向的分量. 取y 为积分变量, 它的变化区间为]2 ,2[l l -. 在]2,2[l l -上y 点取长为dy 的一小段, 其质量为ρdy , 与M 相距22y a r +=. 于是在水平方向上, 引力元素为2222y a a y a dy m G dF x +-⋅+=ρ2/322)(y a dy am G +-=ρ. 引力在水平方向的分量为⎰-+-=222/322)(l l x y a dy am G F ρ22412la a l Gm +⋅-=ρ.。

同济高数:6-3

同济高数:6-3
第三节 定积分在物理学上 的应用
1. 变力沿直线所做的功
2. 水压力
3. 引力
4. 小结、作业
1/7
一、变力沿直线所作的功
若物体在作直线运动的过程中受到一个 常力 F 作用,其方向与物体运动方向一致, 那么,在物体移动了距离 s 时,常力 F 对物 体所作的功为 W=Fs.
考虑力的大小是变化的情形.
采用“元素法”——以不变代变.
2/7
例 1 把一个带 +q 电量的点电荷放在 r 轴上坐标 原点处,它产生一个电场.电场对周围的电荷有 作用力.如果一个单位正电荷放在这个电场中距 离原点为 r 的地方,那么电场对它的作用力的大 2 小为 F = kq/r (k 是常数) .当这个单位正电荷在 电场中从 r = a 处沿 r 轴移动到 r = b 处时,计算电 q 1 b r a 场力 F 对它所作的功. o r 解 取 r 为积分变量. dW ( kq / r 2 )dr, r [a, b].
W (kq / r ) dr kq1 / a 1 / b .
b 2 a
3/7
例 2 一圆柱形贮水桶高为 5 米,底半径为 3 米, 桶内盛满了水.问要把桶内的水全部吸出,需作 多少功? 解 建立坐标系如图.取 x 为积分变量,
dW ( x ) x dF( x ) x x dx x 9.8dV ( x ) 2 x 9.8 3 dx x x [0,5] 88.2 x dx, 5 W 88.2 x dx 3462 (千焦).
2km l am dy , Fx k 2 2 3/ 2 2 2 1/ 2 l / 2 (a y ) a ( 4a l ) 由对称性知,引力在铅直方向分力为 F y 0.

大学高等数学:第四章第六讲定积分在物理学上的应用

大学高等数学:第四章第六讲定积分在物理学上的应用

大学高等数学:第四章第六讲定积分在物理学上的应用上节课我们学习了定积分在几何学上的应用,从而总结5大常考题型,其中曲率计算以及极坐标尤为重要。

这节课我们学习定积分的物理应用定积分在物理应用主要是计算功和力,其中力主要为压力和引力,掌握好微元法(前两节已经讲过)是解决定积分物理应用的关键.一.变力做功从物理学知道,如果物体在做直线运动的过程中有一个不变的力F 作用在这物体上,且这力的方向与物体运动的方向一致,那么,在物体移动了距离s时,力F对物体所作的功为W=F*s1.设一物体沿x轴运动,在运动过程中始终有力F作用于物体上,力F的方向或与Ox轴方向一致(此时F取正值)或与Ox轴方向相反(此时F取负值)物体在x处的力为F(x),则物体从a移到b时变力F(x)做的功为2.设有一容器(如图5.21),其顶部所在平面与Ox轴(铅直向下)相较于原点,液体表面与Ox轴相截于x=a,底部与Ox轴相截于x=b 处,垂直于Ox轴的平面截容器所得的截面面积为x的连续函数S(x),则将容器中的液体全部抽出所做的功为其中ρ为液体密度,g为重力加速度。

如果物体在运动过程中所受到的力是变化的,就会遇到变力对物体做功的问题,下面通过具体的列子说明如何计算变力所做的功。

列1:有一电荷量为q1带正电的固定质点位于原点,在距离原点a处有一电荷量为q2带正电的活动只限,若固定质点将活动质点从距离a处排斥到b处,求排斥力所踪的功分析:取微元[x,x-dx]∈[a,b],则dW=kq1q2/x^2dx于是W=∫dW(上限b下限a)=kq1q2∫dx/x^2(上限b下限a)=kq1q2(1/a-1/b)列2:半径为R的球沉入水中,上顶点与水面相切,将球从水中取出要做多少功?(设球的比重为1)解:首先建立坐标系,取x轴垂直水平面并过球心,方向向上,原点为球心,见图5.22.任取[-R,R]中的小区间[x,x+dx]相应的球体中的薄片,其重量为π(R^2-x^2)dx,在水中时浮力与重量相等,当球从水中移出时,此薄片离水面的距离是R+x,故对它需做功dW=(R+x)π(R^2-x^2)dx。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例2 如果在 1中 例,将质点放 的在 铅细 直直 平棒 上,高 a, 问 为细直棒对质 怎点 样的 计引 算力 ?
解:建立坐标系(如图示)
积 分 变 量x[ l , l ], 22
取 子 区 间[x, x dx]
由对称性知水平分 Fx力 0
而铅直分力:
y a
dF
dx
l
o xl x
2
2

dFy
取x为 积 分 变x量 [0, ,l]
dx
dF
ox
l
l a x
对应微[x元 ,xdx][0,l]上的引力大小为
dFG mdx (为线密度) (l ax)2
故所求引力为
F
l 0
G (l
m
a x)2
dx
Gm 1 l
l ax 0
Gml GMm(力单位)
a(la) a(la)
(其 中 Ml, 负 号 表引 力坐 方标 向轴 为方 反向 )
G
m
M l
dx
( a2 x2 )2
cos
GaMm 3 dx
l(a2 x2 )2
故有
Fy
l GaMm 1
2 l
2
l
3 (a2 x2)2
dx
2GMm a l2 4a2
细 直 棒 对 质 点 大的 小引 为力 的
F
Fx2 Fy2
Fy
2GMm( 力 单 位 a l2 4a2
引力为
F
0 ,
2GMm
b
b
W a dWaF(x)dx
例3 从深井中吊水。吊重桶4千自克,缆绳每米重
2千克,用缆绳30从 米深的水井中吊水始,时初桶
内装有 40千克的水,并2 米 以 秒的速度匀速上升,
且桶内水0以 .2千克秒的速率从桶壁小孔,流问出
将桶吊至井口需作功多?少
x
解:建立坐标系(如图所示)
1求拉起缆绳所W作 1 的功
他们相互间的引力为
其中
FG
m1 m2 r2
G 为引力常数 r 为两质点间距离
F
r
例1 设有一l长 的为 均匀细直棒M ,,另 质有 量一 为 质 量m 为的 质 点 和 其 位线 于上 同, 一质 直点 到 细 近 端 的为 距a离 , 计 算 细 棒 对力 质。 点 的 引
解:建立坐标系(如图示)
在t 时刻桶中的水重为
P(400.2t)g(牛)
对应[t,时 td]段 , t 提水 d x距 vd离 2 tdt为
所作的d微 3 W m 功 3gd 为 (x4 00.2t)g2dt
故W 有 30 152(4 00.2t)gd 1 t 1g( 05焦)
所求 W 总 W 1 W 功 2 W 3 为 21 g ( 25焦 # )
a l2 4a2
#
四、内容小结
1.用定积分求实际量 U 的主要步骤: (1) 在局部用规则量替代不规则量,即找积分微元dU
一般积分微元的几何形状常取: 条、段、环、带、 片、壳 等.
(2) 然后用定积分来表示整体量 U , 并计算之.
2.定积分的物理应用: 变力作功 , 侧压力 , 引力, 转动惯量等.
第三节 定积分在物理学上的应用
一、变力沿直线作功 二、液体的侧压力 三、引力 四、内容小结
返回
一、变力沿直线作功
物理知识: 一个与物体位移方向一致的常力F,将 物体自数轴上a点移动到b点所作的功为 W=F·d
其中力F的单位是牛(N),d=b-a的单位是 米(m),则功W的单位是牛·米(N·m)即焦(J)。
解:建立坐标系(如图示)
水面 o
腰 A的 B 方y 程 4: 5 x50
50 y A
7 在x 处的实际水深为
x (x, y)
x cos30o 3 x 2
故所求闸门静压力为:
xdx
5B
水面
o
7
7
P 0 g
3 x 2(45x50)dx
2
7
x
30 o
4903g8.317106( 牛 )
x
三、引力
牛顿万有定律:空间两个质量分别为m1和m2的质点,
问题:如果F是变力,功将怎样计算?
〔 问设 题力 F 〕 (x)连 续 ,F 求 (x)作 在用 力下 使 物x体 a从 移 动x到 b时 所 作 W.的 功
F (x)
a x xdx
bx
利 用 积 分 微 元 区法 间 [x,x, d在 x]上小 视 变 力
为常力得微功
dWF(x)dx
故变力所作的功为:
二、液体的侧压力
物理知识:完全浸在液体中的水平薄片物体所 受到的液体静压力为
PpAgh A
其中 p :压强 :液 体 密 度 g :重 力 加 速 度 h :水 平 薄 片 到 液 面 的 距 离 A : 薄片的面积
液体表面
A
h
压强单位为帕斯卡(1帕斯卡=1牛顿/米2)
例1 一等腰梯形闸所 门示 () 如, 图梯形分 的别 上 为50米和 30米,高 20米 为,如果闸门水 顶面 部 4米高,出 求闸门一侧所压 受力 水。 的静
解:建立坐标系(如图示)
梯形的腰AB方程:
y 1 x 23 2
由 微 元 分 析 法 得 静 压 力:
-4 25 水面 o
A y
20
x (x, y)
ห้องสมุดไป่ตู้
16
P 0 gx 2 ydx
2g
16 1 x( x23 )dx
0
2
xdx
15 B
16 x
452 .627 g4.43 10 7( 牛#)
例2 一等腰梯形闸 平门 面与 倾 30o铅 角 斜直 置于水中 闸 门 顶 部 位 于 上水 下面 底处 宽, 1分 0米 0别和 1为 0米 , 高 为7米 , 求 此 闸 门 到一 的侧 水所 的受 静 压 力 。
对应子[区 x,x间 dx]的微功为
30米
xdx
dW1(30x)2gdx
x
(其 g9中 .8 牛 千) 克 o
故有 W 10 302g(3 0x)d x90g( 0 焦)
2求拉起吊桶所W作 2 的功
W 2m 2g h4g3 012 g ( 0 焦)
3求 提 水 所 作 W3的 功
据题意吊一桶水间需 T要 30时 1( 5 秒) 2
相关文档
最新文档