2014年中考数学函数测试题
2014年黑龙江省哈尔滨市中考数学试卷(含答案和解析)
2014年黑龙江省哈尔滨市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2014•哈尔滨)哈市某天的最高气温为28℃,最低气温为21℃,则这一天的最高气温与最低气温的差为()A.5℃B.6℃C.7℃D.8℃2.(3分)(2014•哈尔滨)用科学记数法表示927 000正确的是()A.9.27×106B.9.27×105C.9.27×104D.927×1033.(3分)(2014•哈尔滨)下列计算正确的是()A.3a﹣2a=1 B.a2+a5=a7C.a2•a4=a6D.(ab)3=ab34.(3分)(2014•哈尔滨)下列图形中,不是中心对称图形的是()A.B.C.D.5.(3分)(2014•哈尔滨)在反比例函数的图象的每一条曲线上,y都随x的增大而减小,则k的取值范围是()A.k>1 B.k>0 C.k≥1 D.k<16.(3分)(2014•哈尔滨)如图的几何体是由一些小正方形组合而成的,则这个几何体的俯视图是()A.B.C.D.7.(3分)(2014•哈尔滨)如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD,∠C=40°.则∠ABD的度数是()A.30°B.25°C.20°D.15°8.(3分)(2014•哈尔滨)将抛物线y=﹣2x2+1向右平移1个单位,再向上平移2个单位后所得到的抛物线为()A.y=﹣2(x+1)2﹣1 B.y﹣2(x+1)2+3 C.y=﹣2(x﹣1)2+1 D.y=﹣2(x﹣1)2+39.(3分)(2014•哈尔滨)如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为()A.6B.4C.3D.310.(3分)(2014•哈尔滨)早晨,小刚沿着通往学校唯一的一条路(直路)上学,途中发现忘带饭盒,停下往家里打电话,妈妈接到电话后带上饭盒马上赶往学校,同时小刚返回,两人相遇后,小刚立即赶往学校,妈妈回家,15分钟妈妈到家,再经过3分钟小刚到达学校,小刚始终以100米/分的速度步行,小刚和妈妈的距离y(单位:米)与小刚打完电话后的步行时间t(单位:分)之间的函数关系如图,下列四种说法:①打电话时,小刚和妈妈的距离为1250米;②打完电话后,经过23分钟小刚到达学校;③小刚和妈妈相遇后,妈妈回家的速度为150米/分;④小刚家与学校的距离为2550米.其中正确的个数是()A.1个B.2个C.3个D.4个二、填空题(共10小题,每小题3分,共计30分)11.(3分)(2014•哈尔滨)计算:=_________.12.(3分)(2014•哈尔滨)在函数y=中,自变量x的取值范围是_________.13.(3分)(2014•哈尔滨)把多项式3m2﹣6mn+3n2分解因式的结果是_________.14.(3分)(2014•哈尔滨)不等式组的解集是_________.15.(3分)(2014•哈尔滨)若x=﹣1是关于x的一元二次方程x2+3x+m+1=0的一个解,则m的值为_________.16.(3分)(2014•哈尔滨)在一个不透明的口袋中,有四个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸取一个小球记下标号后放回,再随机地摸取一个小球记下标号,则两次摸取的小球标号都是1的概率为_________.17.(3分)(2014•哈尔滨)如图,在矩形ABCD中,AB=4,BC=6,若点P在AD边上,连接BP、PC,△BPC是以PB为腰的等腰三角形,则PB的长为_________.18.(3分)(2014•哈尔滨)一个底面直径为10cm,母线长为15cm的圆锥,它的侧面展开图圆心角是_________度.19.(3分)(2014•哈尔滨)如图,在正方形ABCD中,AC为对角线,点E在AB边上,EF⊥AC于点F,连接EC,AF=3,△EFC的周长为12,则EC的长为_________.20.(3分)(2014•哈尔滨)如图,在△ABC中,4AB=5AC,AD为△ABC的角平分线,点E在BC的延长线上,EF⊥AD于点F,点G在AF上,FG=FD,连接EG交AC于点H.若点H是AC的中点,则的值为_________.三、解答题(共8小题,其中21-24题各6分,25-26题各8分,27-28题各10分,共计10分)21.(6分)(2014•哈尔滨)先化简,再求代数式﹣的值,其中x=2cos45°+2,y=2.22.(6分)(2014•哈尔滨)如图,方格纸中每个小正方形的边长均为1,四边形ABCD的四个顶点都在小正方形的顶点上,点E在BC边上,且点E在小正方形的顶点上,连接AE.(1)在图中画出△AEF,使△AEF与△AEB关于直线AE对称,点F与点B是对称点;(2)请直接写出△AEF与四边形ABCD重叠部分的面积.23.(6分)(2014•哈尔滨)君畅中学计划购买一些文具送给学生,为此学校决定围绕“在笔袋、圆规、直尺、钢笔四种文具中,你最需要的文具是什么?(必选且只选一种)”的问题,在全校满园内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据以上信息回答下列问题:(1)在这次调查中,最需要圆规的学生有多少名?并补全条形统计图;(2)如果全校有970名学生,请你估计全校学生中最需要钢笔的学生有多少名?24.(6分)(2014•哈尔滨)如图,AB、CD为两个建筑物,建筑物AB的高度为60米,从建筑物AB的顶点A点测得建筑物CD的顶点C点的俯角∠EAC为30°,测得建筑物CD的底部D点的俯角∠EAD为45°.(1)求两建筑物底部之间水平距离BD的长度;(2)求建筑物CD的高度(结果保留根号).25.(8分)(2014•哈尔滨)如图,⊙O是△ABC的外接圆,弦BD交AC于点E,连接CD,且AE=DE,BC=CE.(1)求∠ACB的度数;(2)过点O作OF⊥AC于点F,延长FO交BE于点G,DE=3,EG=2,求AB的长.26.(8分)(2014•哈尔滨)荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?27.(10分)(2014•哈尔滨)如图,在平面直角坐标中,点O为坐标原点,直线y=﹣x+4与x轴交于点A,过点A 的抛物线y=ax2+bx与直线y=﹣x+4交于另一点B,且点B的横坐标为1.(1)求a,b的值;(2)点P是线段AB上一动点(点P不与点A、B重合),过点P作PM∥OB交第一象限内的抛物线于点M,过点M作MC⊥x轴于点C,交AB于点N,过点P作PF⊥MC于点F,设PF的长为t,MN的长为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,当S△ACN=S△PMN时,连接ON,点Q在线段BP上,过点Q作QR∥MN交ON于点R,连接MQ、BR,当∠MQR﹣∠BRN=45°时,求点R的坐标.28.(10分)(2014•哈尔滨)如图,在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,∠ADB=∠CAD+∠ABD,∠BAD=3∠CBD.(1)求证:△ABC为等腰三角形;(2)M是线段BD上一点,BM:AB=3:4,点F在BA的延长线上,连接FM,∠BFM的平分线FN交BD于点N,交AD于点G,点H为BF中点,连接MH,当GN=GD时,探究线段CD、FM、MH之间的数量关系,并证明你的结论.2014年黑龙江省哈尔滨市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2014•哈尔滨)哈市某天的最高气温为28℃,最低气温为21℃,则这一天的最高气温与最低气温的差为()A.5℃B.6℃C.7℃D.8℃考点:有理数的减法.分析:根据有理数的减法,减去一个数等于加上这个数的相反数,可得答案.解答:解:28﹣21=28+(﹣21)=7,故选:C.点评:本题考查了有理数的减法,减去一个数等于加上这个数的相反数.2.(3分)(2014•哈尔滨)用科学记数法表示927 000正确的是()A.9.27×106B.9.27×105C.9.27×104D.927×103考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于927 000有6位,所以可以确定n=6﹣1=5.解答:解:927 000=9.27×105.故选B.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.(3分)(2014•哈尔滨)下列计算正确的是()A.3a﹣2a=1 B.a2+a5=a7C.a2•a4=a6D.(ab)3=ab3考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.分析:根据合并同类项,可判断A、B,根据同底数幂的乘法,可判断C,根据积的乘方,可判断D.解答:解:A、系数相加字母部分不变,故A错误;B、不是同底数幂的乘法,指数不能相加,故B错误;C、底数不变指数相加,故C正确;D、积的乘方等于每个因式分别乘方,再把所得的幂相乘;故D错误;故选:C.点评:本题考查了积的乘方,积的乘方等于每个因式分别乘方,再把所得的幂相乘.4.(3分)(2014•哈尔滨)下列图形中,不是中心对称图形的是()A.B.C.D.考点:中心对称图形.分析:根据中心对称图形的概念求解.B、不是中心对称图形,故本选项正确;C、是中心对称图形,故本选项错误;D、是中心对称图形,故本选项错误;故选B.点评:本题考查了中心对称的知识,中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.(3分)(2014•哈尔滨)在反比例函数的图象的每一条曲线上,y都随x的增大而减小,则k的取值范围是()A.k>1 B.k>0 C.k≥1 D.k<1考点:反比例函数的性质.分析:根据反比例函数的性质,当反比例函数的系数大于0时,在每一支曲线上,y都随x的增大而减小,可得k ﹣1>0,解可得k的取值范围.解答:解:根据题意,在反比例函数图象的每一支曲线上,y都随x的增大而减小,即可得k﹣1>0,解得k>1.故选A.点评:本题考查了反比例函数的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y 随x的增大而增大.6.(3分)(2014•哈尔滨)如图的几何体是由一些小正方形组合而成的,则这个几何体的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.解答:解:从几何体的上面看共有3列小正方形,右边有2个,左边有2个,中间上面有1个,故选:D.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.7.(3分)(2014•哈尔滨)如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD,∠C=40°.则∠ABD的度数是()A.30°B.25°C.20°D.15°考点:切线的性质.分析:根据切线的性质求出∠OAC,求出∠AOC,根据等腰三角形性质求出∠B=∠BDO,根据三角形外角性质求出即可.解答:解:∵AC是⊙O的切线,∴∠OAC=90°,∵∠C=40°,∴∠AOC=50°,∵OB=OD,∴∠ABD=∠BDO,∵∠ABD+∠BDO=∠AOC,∴∠ABD=25°,故选B.点评:本题考查了切线的性质,三角形外角性质,三角形内角和定理,等腰三角形性质的应用,解此题的关键是求出∠AOC的度数,题目比较好,难度适中.8.(3分)(2014•哈尔滨)将抛物线y=﹣2x2+1向右平移1个单位,再向上平移2个单位后所得到的抛物线为()A.y=﹣2(x+1)2﹣1 B.y﹣2(x+1)2+3 C.y=﹣2(x﹣1)2+1 D.y=﹣2(x﹣1)2+3考点:二次函数图象与几何变换.分析:根据图象右移减,上移加,可得答案.解答:解;将抛物线y=﹣2x2+1向右平移1个单位,再向上平移2个单位后所得到的抛物线为y=﹣2(x﹣1)2+3,故选:D.点评:本题考查了二次函数图象与几何变换,函数图象平移的规律是:左加右减,上加下减.9.(3分)(2014•哈尔滨)如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为()A.6B.4C.3D.3考点:旋转的性质.分析:利用直角三角形的性质得出AB=4,再利用旋转的性质以及三角形外角的性质得出AB′=2,进而得出答案.解答:解:∵在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,∴∠CAB=30°,故AB=4,∵△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,∴AB=A′B′=4,AC=A′C,∴∠CAA′=∠A′=30°,∴AB′=B′C=2,∴AA′=2+4=6.故选:A.点评:此题主要考查了旋转的性质以及直角三角形的性质等知识,得出AB′=B′C=2是解题关键.10.(3分)(2014•哈尔滨)早晨,小刚沿着通往学校唯一的一条路(直路)上学,途中发现忘带饭盒,停下往家里打电话,妈妈接到电话后带上饭盒马上赶往学校,同时小刚返回,两人相遇后,小刚立即赶往学校,妈妈回家,15分钟妈妈到家,再经过3分钟小刚到达学校,小刚始终以100米/分的速度步行,小刚和妈妈的距离y(单位:米)与小刚打完电话后的步行时间t(单位:分)之间的函数关系如图,下列四种说法:①打电话时,小刚和妈妈的距离为1250米;②打完电话后,经过23分钟小刚到达学校;③小刚和妈妈相遇后,妈妈回家的速度为150米/分;④小刚家与学校的距离为2550米.其中正确的个数是()A.1个B.2个C.3个D.4个考点:一次函数的应用.分析:根据函数的图象和已知条件分别分析探讨其正确性,进一步判定得出答案即可.解答:解:①由图可知打电话时,小刚和妈妈的距离为1250米是正确的;②因为打完电话后5分钟两人相遇后,小刚立即赶往学校,妈妈回家,15分钟妈妈到家,再经过3分钟小刚到达学校,经过5+15+3=23分钟小刚到达学校,所以是正确的;③打完电话后5分钟两人相遇后,妈妈的速度是1250÷5﹣100=150米/分,走的路程为150×5=750米,回家的速度是750÷15=50米/分,所以回家的速度为150米/分是错误的;④小刚家与学校的距离为750+(15+3)×100=2550米,所以是正确的.正确的答案有①②④.故选:C.点评:此题考查了函数的图象的实际意义,结合题意正确理解函数图象,利用基本行程问题解决问题.二、填空题(共10小题,每小题3分,共计30分)11.(3分)(2014•哈尔滨)计算:=.考点:二次根式的加减法.分析:先化简=2,再合并同类二次根式即可.解答:解:=2﹣=.故应填:.点评:本题主要考查了二次根式的加减,属于基础题型.12.(3分)(2014•哈尔滨)在函数y=中,自变量x的取值范围是x≠﹣2.分析:根据分母不等于0列式计算即可得解.解答:解:由题意得,2x+4≠0,解得x≠﹣2.故答案为:x≠﹣2.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.(3分)(2014•哈尔滨)把多项式3m2﹣6mn+3n2分解因式的结果是3(m﹣n)2.考点:提公因式法与公式法的综合运用.分析:首先提取公因式3,再利用完全平方公式进行二次分解.解答:解:3m2﹣6mn+3n2=3(m2﹣2mn+n2)=3(m﹣n)2.故答案为:3(m﹣n)2.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.(3分)(2014•哈尔滨)不等式组的解集是﹣1<x≤1.考点:解一元一次不等式组.分析:分别求出各不等式的解集,再求出其公共解集即可.解答:解:,由①得,x≤1,由②得,x>﹣1,故此不等式组的解集为:﹣1<x≤1.故答案为:﹣1<x≤1.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.15.(3分)(2014•哈尔滨)若x=﹣1是关于x的一元二次方程x2+3x+m+1=0的一个解,则m的值为1.考点:一元二次方程的解.专题:计算题.分析:根据x=﹣1是已知方程的解,将x=﹣1代入方程即可求出m的值.解答:解:将x=﹣1代入方程得:1﹣3+m+1=0,解得:m=1.故答案为:1点评:此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.16.(3分)(2014•哈尔滨)在一个不透明的口袋中,有四个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸取一个小球记下标号后放回,再随机地摸取一个小球记下标号,则两次摸取的小球标号都是1的概率为.考点:列表法与树状图法.专题:计算题.解答:解:列表如下:1 2 3 41 (1,1)(2,1)(3,1)(4,1)2 (1,2)(2,2)(3,2)(4,2)3 (1,3)(2,3)(3,3)(4,3)4 (1,4)(2,4)(3,4)(4,4)所有等可能的情况有16种,其中两次摸取的小球标号都是1的情况有1种,则P=.故答案为:点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.17.(3分)(2014•哈尔滨)如图,在矩形ABCD中,AB=4,BC=6,若点P在AD边上,连接BP、PC,△BPC是以PB为腰的等腰三角形,则PB的长为5或6.考点:矩形的性质;等腰三角形的判定;勾股定理.专题:分类讨论.分析:需要分类讨论:PB=PC和PB=BC两种情况.解答:解:如图,在矩形ABCD中,AB=CD=4,BC=AD=6.如图1,当PB=PC时,点P是BC的中垂线与AD的交点,则AP=DP=AD=3.在Rt△ABP中,由勾股定理得PB===5;如图2,当BP=BC=6时,△BPC也是以PB为腰的等腰三角形.综上所述,PB的长度是5或6.点评:本题考查了矩形的性质、等腰三角形的判定和勾股定理.解题时,要分类讨论,以防漏解.18.(3分)(2014•哈尔滨)一个底面直径为10cm,母线长为15cm的圆锥,它的侧面展开图圆心角是120度.考点:圆锥的计算.分析:利用底面周长=展开图的弧长可得.解答:解:∵底面直径为10cm,∴底面周长为10π,根据题意得10π=,解得n=120.故答案为120.点评:考查了圆锥的计算,解答本题的关键是有确定底面周长=展开图的弧长这个等量关系,然后由扇形的弧长公式和圆的周长公式求值.19.(3分)(2014•哈尔滨)如图,在正方形ABCD中,AC为对角线,点E在AB边上,EF⊥AC于点F,连接EC,AF=3,△EFC的周长为12,则EC的长为5.考点:正方形的性质;勾股定理;等腰直角三角形.分析:由四边形ABCD是正方形,AC为对角线,得出∠AFE=45°,又因为EF⊥AC,得到∠AFE=90°得出EF=AF=3,由△EFC的周长为12,得出线段FC=12﹣3﹣EC=9﹣EC,在RT△EFC中,运用勾股定理EC2=EF2+FC2,求出EC=5.解答:解:∵四边形ABCD是正方形,AC为对角线,∴∠AFE=45°,又∵EF⊥AC,∴∠AFE=90°,∠AEF=45°,∴EF=AF=3,∵△EFC的周长为12,∴FC=12﹣3﹣EC=9﹣EC,在RT△EFC中,EC2=EF2+FC2,∴EC2=9+(9﹣EC)2,解得EC=5.故答案为:5.点评:本题主要考查了正方形的性质及等腰直角三角形,解题的关键是找出线段的关系.运用勾股定理列出方程.20.(3分)(2014•哈尔滨)如图,在△ABC中,4AB=5AC,AD为△ABC的角平分线,点E在BC的延长线上,EF⊥AD于点F,点G在AF上,FG=FD,连接EG交AC于点H.若点H是AC的中点,则的值为.考点:相似三角形的判定与性质;全等三角形的判定与性质;角平分线的性质;等腰三角形的判定与性质;平行四边形的判定与性质.分析:解题关键是作出辅助线,如解答图所示:第1步:利用角平分线的性质,得到BD=CD;第2步:延长AC,构造一对全等三角形△ABD≌△AMD;第3步:过点M作MN∥AD,构造平行四边形DMNG.由MD=BD=KD=CD,得到等腰△DMK;然后利用角之间关系证明DM∥GN,从而推出四边形DMNG为平行四边形;第4步:由MN∥AD,列出比例式,求出的值.解答:解:已知AD为角平分线,则点D到AB、AC的距离相等,设为h.∵====,∴BD=CD.如右图,延长AC,在AC的延长线上截取AM=AB,则有AC=4CM.连接DM.在△ABD与△AMD中,∴△ABD≌△AMD(SAS),∴MD=BD=CD.过点M作MN∥AD,交EG于点N,交DE于点K.∵MN∥AD,∴==,∴CK=CD,∴KD=CD.∴MD=KD,即△DMK为等腰三角形,∴∠DMK=∠DKM.由题意,易知△EDG为等腰三角形,且∠1=∠2;∵MN∥AD,∴∠3=∠4=∠1=∠2,又∵∠DKM=∠3(对顶角)∴∠DMK=∠4,∴DM∥GN,∴四边形DMNG为平行四边形,∴MN=DG=2FD.∵点H为AC中点,AC=4CM,∴=.∵MN∥AD,∴=,即,∴=.故答案为:.点评:本题是几何综合题,难度较大,正确作出辅助线是解题关键.在解题过程中,需要综合利用各种几何知识,例如相似、全等、平行四边形、等腰三角形、角平分线性质等,对考生能力要求较高.三、解答题(共8小题,其中21-24题各6分,25-26题各8分,27-28题各10分,共计10分)21.(6分)(2014•哈尔滨)先化简,再求代数式﹣的值,其中x=2cos45°+2,y=2.考点:分式的化简求值;特殊角的三角函数值.专题:计算题.分析:原式利用同分母分式的减法法则计算,约分得到最简结果,将x与y的值代入计算即可求出值.解答:解:原式===,当x=2×+2=+2,y=2时,原式==.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.22.(6分)(2014•哈尔滨)如图,方格纸中每个小正方形的边长均为1,四边形ABCD的四个顶点都在小正方形的顶点上,点E在BC边上,且点E在小正方形的顶点上,连接AE.(1)在图中画出△AEF,使△AEF与△AEB关于直线AE对称,点F与点B是对称点;(2)请直接写出△AEF与四边形ABCD重叠部分的面积.考点:作图-轴对称变换.专题:作图题.分析:(1)根据AE为网格正方形的对角线,作出点B关于AE的对称点F,然后连接AF、EF即可;(2)根据图象,重叠部分为两个直角三角形的面积的差,列式计算即可得解.解答:解:(1)△AEF如图所示;(2)重叠部分的面积=×4×4﹣×2×2=8﹣2=6.点评:本题考查了利用轴对称变换作图,熟练掌握网格结构并观察出AE为网格正方形的对角线是解题的关键.23.(6分)(2014•哈尔滨)君畅中学计划购买一些文具送给学生,为此学校决定围绕“在笔袋、圆规、直尺、钢笔四种文具中,你最需要的文具是什么?(必选且只选一种)”的问题,在全校满园内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据以上信息回答下列问题:(1)在这次调查中,最需要圆规的学生有多少名?并补全条形统计图;(2)如果全校有970名学生,请你估计全校学生中最需要钢笔的学生有多少名?考点:条形统计图;用样本估计总体;扇形统计图.专题:计算题.分析:(1)由最需要直尺的学生数除以占的百分比求出总人数,确定出最需要圆规的学生数,补全条形统计图即可;(2)求出最需要钢笔的学生占的百分比,乘以970即可得到结果.解答:解:(1)根据题意得:18÷30%=60(名),60﹣(21+18+6)=15(名),则本次调查中,最需要圆规的学生有15名,补全条形统计图,如图所示:(2)根据题意得:970×=97(名),则估计全校学生中最需要钢笔的学生有97名.点评:此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.24.(6分)(2014•哈尔滨)如图,AB、CD为两个建筑物,建筑物AB的高度为60米,从建筑物AB的顶点A点测得建筑物CD的顶点C点的俯角∠EAC为30°,测得建筑物CD的底部D点的俯角∠EAD为45°.(1)求两建筑物底部之间水平距离BD的长度;(2)求建筑物CD的高度(结果保留根号).考点:解直角三角形的应用-仰角俯角问题.分析:(1)根据题意得:BD∥AE,从而得到∠BAD=∠ADB=45°,利用BD=AB=60,求得两建筑物底部之间水平距离BD的长度为60米;(2)延长AE、DC交于点F,根据题意得四边形ABDF为正方形,根据AF=BD=DF=60,在Rt△AFC中利用∠FAC=30°求得CF,然后即可求得CD的长.解答:解:(1)根据题意得:BD∥AE,∴∠ADB=∠EAD=45°,∵∠ABD=90°,∴∠BAD=∠ADB=45°,∴BD=AB=60,∴两建筑物底部之间水平距离BD的长度为60米;(2)延长AE、DC交于点F,根据题意得四边形ABDF为正方形,∴AF=BD=DF=60,在Rt△AFC中,∠FAC=30°,∴CF=AF•tan∠FAC=60×=20,又∵FD=60,∴CD=60﹣20,∴建筑物CD的高度为(60﹣20)米.点评:考查解直角三角形的应用;得到以AF为公共边的2个直角三角形是解决本题的突破点.25.(8分)(2014•哈尔滨)如图,⊙O是△ABC的外接圆,弦BD交AC于点E,连接CD,且AE=DE,BC=CE.(1)求∠ACB的度数;(2)过点O作OF⊥AC于点F,延长FO交BE于点G,DE=3,EG=2,求AB的长.考点:三角形的外接圆与外心;全等三角形的判定与性质;等边三角形的判定与性质;勾股定理.分析:(1)首先得出△AEB≌△DEC,进而得出△EBC为等边三角形,即可得出答案;(2)由已知得出EF,BC的长,进而得出CM,BM的长,再求出AM的长,再由勾股定理求出AB的长.解答:(1)证明:在△AEB和△DEC中,∴△AEB≌△DEC(ASA),∴EB=EC,又∵BC=CE,∴BE=CE=BC,∴△EBC为等边三角形,∴∠ACB=60°;(2)解:∵OF⊥AC,∴AF=CF,∵△EBC为等边三角形,∴∠GEF=60°,∴∠EGF=30°,∵EG=2,∴EF=1,又∵AE=ED=3,∴CF=AF=4,∴AC=8,EC=5,∴BC=5,作BM⊥AC于点M,∵∠BCM=60°,∴∠MBC=30°,∴CM=,BM==,∴AM=AC﹣CM=,∴AB==7.点评:此题主要考查了全等三角形的判定与性质以及等边三角形的性质和勾股定理以及锐角三角函数关系等知识,得出CM,BM的长是解题关键.26.(8分)(2014•哈尔滨)荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?考点:分式方程的应用;一元一次不等式的应用.分析:(1)设购买该品牌一个手电筒需要x元,则购买一个台灯需要(x+20)元.则根据等量关系:购买台灯的个数是购买手电筒个数的一半,列出方程;(2)设公司购买台灯的个数为a各,则还需要购买手电筒的个数是(2a+8)个,则根据“该公司购买台灯和手电筒的总费用不超过670元”列出不等式.解答:解:(1)设购买该品牌一个手电筒需要x元,则购买一个台灯需要(x+20)元.根据题意得=×解得x=5经检验,x=5是原方程的解.所以x+20=25.答:购买一个台灯需要25元,购买一个手电筒需要5元;(2)设公司购买台灯的个数为a,则还需要购买手电筒的个数是(2a+8)由题意得25a+5(2a+8)≤670解得a≤21所以荣庆公司最多可购买21个该品牌的台灯.点评:本题考查了一元一次不等式和分式方程的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量(不等量)关系.27.(10分)(2014•哈尔滨)如图,在平面直角坐标中,点O为坐标原点,直线y=﹣x+4与x轴交于点A,过点A 的抛物线y=ax2+bx与直线y=﹣x+4交于另一点B,且点B的横坐标为1.(1)求a,b的值;(2)点P是线段AB上一动点(点P不与点A、B重合),过点P作PM∥OB交第一象限内的抛物线于点M,过点M作MC⊥x轴于点C,交AB于点N,过点P作PF⊥MC于点F,设PF的长为t,MN的长为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,当S△ACN=S△PMN时,连接ON,点Q在线段BP上,过点Q作QR∥MN交ON于点R,连接MQ、BR,当∠MQR﹣∠BRN=45°时,求点R的坐标.。
2014年中考数学压轴题精选(二次函数)(16题)-附详细解答和评分标准.doc
1、(08广东茂名25题)(本题满分10分)如图,在平面直角坐标系中,抛物线y =-32x 2+b x +c 经过A (0,-4)、B (x 1,0)、 C (x 2,0)三点,且x 2-x 1=5.(1)求b 、c 的值;(4分)(2)在抛物线上求一点D ,使得四边形BDCE 是以BC 为对角线的菱形;(3分)(3)在抛物线上是否存在一点P ,使得四边形B P O H 是以OB 为对角线的菱形?若存在,求出点P 的坐标,并判断这个菱形是否为正方形?若不存在,请说明理由.(3分)解:(08广东茂名25题解析)解:(1)解法一: ∵抛物线y =-32x 2+b x +c 经过点A (0,-4), ∴c =-4 ……1分又由题意可知,x 1、x 2是方程-32x 2+b x +c =0的两个根, ∴x 1+x 2=23b , x 1x 2=-23c =6 ·························································· 2分 由已知得(x 2-x 1)2=25 又(x 2-x 1)2=(x 2+x 1)2-4x1x 2=49b 2-24 ∴49b 2-24=25 解得b =±314···························································································· 3分当b =314时,抛物线与x 轴的交点在x 轴的正半轴上,不合题意,舍去.∴b =-314. ··························································································· 4分 解法二:∵x 1、x 2是方程-32x 2+b x +c=0的两个根, 即方程2x 2-3b x +12=0的两个根.∴x =4969b 32-±b , ································································· 2分(第25题图)x∴x 2-x 1=2969b 2-=5,解得 b =±314 ·················································································· 3分 (以下与解法一相同.)(2)∵四边形BDCE 是以BC 为对角线的菱形,根据菱形的性质,点D 必在抛物线的对称轴上, ···················································································· 5分又∵y =-32x 2-314x -4=-32(x +27)2+625····························· 6分 ∴抛物线的顶点(-27,625)即为所求的点D . ································· 7分(3)∵四边形BPOH 是以OB 为对角线的菱形,点B 的坐标为(-6,0),根据菱形的性质,点P 必是直线x =-3与抛物线y =-32x 2-314x -4的交点, ···················································· 8分∴当x =-3时,y =-32×(-3)2-314×(-3)-4=4,∴在抛物线上存在一点P (-3,4),使得四边形BPOH 为菱形. ··············· 9分 四边形BPOH 不能成为正方形,因为如果四边形BPOH 为正方形,点P 的坐标只能是(-3,3),但这一点不在抛物线上. ············································· 10分 2、(08广东肇庆25题)(本小题满分10分)已知点A (a ,1y )、B (2a ,y 2)、C (3a ,y 3)都在抛物线x x y 1252+=上. (1)求抛物线与x 轴的交点坐标; (2)当a =1时,求△ABC 的面积;(3)是否存在含有1y 、y 2、y 3,且与a 无关的等式?如果存在,试给出一个,并加以证明;如果不存在,说明理由.(08广东肇庆25题解析)(本小题满分10分)解:(1)由5x x 122+=0, ··································································· (1分)得01=x ,5122-=x . ······································································· (2分) ∴抛物线与x 轴的交点坐标为(0,0)、(512-,0). ································· (3分)(2)当a =1时,得A (1,17)、B (2,44)、C (3,81), ·························· (4分) 分别过点A 、B 、C 作x 轴的垂线,垂足分别为D 、E 、F ,则有ABC S ∆=S ADFC 梯形 -ADEB S 梯形 -BEFC S 梯形 ············································· (5分)=22)8117(⨯+-21)4417(⨯+-21)8144(⨯+ ······························· (6分)=5(个单位面积) ······························································ (7分)(3)如:)(3123y y y -=. ······························································· (8分)事实上,)3(12)3(523a a y ⨯+⨯= =45a 2+36a .3(12y y -)=3[5×(2a )2+12×2a -(5a 2+12a )] =45a 2+36a . ··········· (9分) ∴)(3123y y y -=. ········································································ (10分) 3、(08辽宁沈阳26题)(本题14分)26.如图所示,在平面直角坐标系中,矩形ABOC 的边BO 在x 轴的负半轴上,边OC 在y 轴的正半轴上,且1AB =,OB =,矩形ABOC 绕点O 按顺时针方向旋转60后得到矩形EFOD .点A 的对应点为点E ,点B的对应点为点F ,点C 的对应点为点D ,抛物线2y ax bx c =++过点A E D ,,.(1)判断点E 是否在y 轴上,并说明理由; (2)求抛物线的函数表达式;(3)在x 轴的上方是否存在点P ,点Q ,使以点O B P Q ,,,为顶点的平行四边形的面积是矩形ABOC 面积的2倍,且点P 在抛物线上,若存在,请求出点P ,点Q 的坐标;若不存在,请说明理由.(08辽宁沈阳26题解析)解:(1)点E 在y 轴上 ············································ 1分 理由如下:连接AO ,如图所示,在Rt ABO △中,1AB =,BO =,2AO ∴=1sin 2AOB ∴∠=,30AOB ∴∠= 由题意可知:60AOE ∠=306090BOE AOB AOE ∴∠=∠+∠=+=点B 在x 轴上,∴点E 在y 轴上. ······························································· 3分 (2)过点D 作DM x ⊥轴于点M1OD =,30DOM ∠=x第26题图∴在Rt DOM △中,12DM =,2OM =点D 在第一象限,∴点D 的坐标为12⎫⎪⎪⎝⎭, ············································································· 5分 由(1)知2EO AO ==,点E 在y 轴的正半轴上∴点E 的坐标为(02),∴点A的坐标为( ··············································································· 6分抛物线2y ax bx c =++经过点E ,2c ∴=由题意,将(A ,12D ⎫⎪⎪⎝⎭,代入22y ax bx =++中得321312422a a ⎧-+=⎪⎨++=⎪⎩解得89a b ⎧=-⎪⎪⎨⎪=⎪⎩∴所求抛物线表达式为:2829y x x =-+ ················································ 9分(3)存在符合条件的点P ,点Q . ······························································ 10分 理由如下:矩形ABOC 的面积3AB BO ==∴以O B P Q ,,,为顶点的平行四边形面积为由题意可知OB 为此平行四边形一边, 又3OB =OB ∴边上的高为2 ···················································································· 11分 依题意设点P 的坐标为(2)m ,点P在抛物线2829y x x =-+上28229m ∴--+=解得,10m =,28m =-1(02)P ∴,,228P ⎛⎫- ⎪ ⎪⎝⎭以O B P Q ,,,为顶点的四边形是平行四边形,PQ OB ∴∥,PQ OB == ∴当点1P 的坐标为(02),时,点Q的坐标分别为1(2)Q,2Q ; 当点2P的坐标为2⎛⎫⎪ ⎪⎝⎭时,点Q的坐标分别为32Q ⎛⎫ ⎪ ⎪⎝⎭,42Q ⎫⎪⎪⎝⎭. ········································ 14分4、(08辽宁12市26题)(本题14分)26.如图16,在平面直角坐标系中,直线y =与x 轴交于点A ,与y 轴交于点C ,抛物线2(0)3y ax x c a =-+≠经过A B C ,,三点. (1)求过A B C ,,三点抛物线的解析式并求出顶点F 的坐标; (2)在抛物线上是否存在点P ,使ABP △为直角三角形,若存在,直接写出P 点坐标;若不存在,请说明理由; (3)试探究在直线AC 上是否存在一点M ,使得MBF △的周长最小,若存在,求出M 点的坐标;若不存在,请说明理由.(08辽宁12市26题解析)解:(1)直线y =与x 轴交于点A ,与y 轴交于点C .(10)A ∴-,,(0C , ············································································· 1分点A C ,都在抛物线上,03a c c⎧=++⎪∴⎨⎪=⎩3a c ⎧=⎪∴⎨⎪=⎩ ∴抛物线的解析式为2y x x =-················································· 3分x∴顶点13F ⎛- ⎝⎭, ·················································································· 4分 (2)存在 ································································································ 5分1(0P ······························································································ 7分2(2P ····························································································· 9分 (3)存在 ······························································································ 10分 理由: 解法一:延长BC 到点B ',使B C BC '=,连接B F '交直线AC 于点M ,则点M 就是所求的点. ········································································· 11分 过点B '作B H AB '⊥于点H .B点在抛物线2y x x =(30)B ∴, 在Rt BOC △中,tan OBC ∠=,30OBC ∴∠=,BC =在Rt BB H '△中,12B H BB ''==6BH H '==,3OH ∴=,(3B '∴--, ········································ 12分设直线B F '的解析式为y kx b =+3k b k b ⎧-=-+⎪∴⎨=+⎪⎩解得2k b ⎧=⎪⎪⎨⎪=-⎪⎩62y x ∴=- ·················································································· 13分62y y x ⎧=⎪∴⎨=-⎪⎩解得377x y ⎧=⎪⎪⎨⎪=-⎪⎩37M ⎛∴ ⎝⎭ ∴在直线AC 上存在点M ,使得MBF △的周长最小,此时37M ⎛- ⎝⎭,. ·· 14分x5、(08青海西宁28题)如图14,已知半径为1的1O 与x 轴交于A B ,两点,OM 为1O 的切线,切点为M ,圆心1O 的坐标为(20),,二次函数2y x bx c =-++的图象经过A B ,两点.(1)求二次函数的解析式;(2)求切线OM 的函数解析式;(3)线段OM 上是否存在一点P ,使得以P O A ,,为顶点的三角形与1OO M △相似.若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.(08青海西宁28题解析)解:(1)圆心1O 的坐标为(20),,1O 半径为1,(10)A ∴,,(30)B ,……1分二次函数2y x bx c =-++的图象经过点A B ,,∴可得方程组10930b c b c -++=⎧⎨-++=⎩····································································· 2分解得:43b c =⎧⎨=-⎩∴二次函数解析式为243y x x =-+- ······································· 3分(2)过点M 作MF x ⊥轴,垂足为F . ······················································ 4分OM 是1O 的切线,M 为切点,1O M OM ∴⊥(圆的切线垂直于经过切点的半径). 在1Rt OO M △中,1111sin 2O M O OM OO ∠== 1O OM ∠为锐角,130O OM ∴∠= ························ 5分1cos3022OM OO ∴==⨯=, 在Rt MOF △中,3cos3032OF OM ===.1sin 3032MF OM ===. ∴点M 坐标为322⎛ ⎝⎭, ············································································· 6分图14设切线OM 的函数解析式为(0)y kx k =≠,由题意可知3322k =,33k ∴= ····· 7分 ∴切线OM 的函数解析式为33y x =··························································· 8分 (3)存在. ····························································································· 9分 ①过点A 作1AP x ⊥轴,与OM 交于点1P .可得11Rt Rt APO MO O △∽△(两角对应相等两三角形相似)113tan tan 30P A OA AOP =∠==,1313P ⎛⎫∴ ⎪ ⎪⎝⎭, ····································· 10分 ②过点A 作2AP OM ⊥,垂足为2P ,过2P 点作2P H OA ⊥,垂足为H . 可得21Rt Rt AP O O MO △∽△(两角对应相等两三角开相似) 在2Rt OP A △中,1OA =,23cos30OP OA ∴==, 在2Rt OP H △中,22333cos 224OH OP AOP =∠=⨯=, 222313sin 224P H OP AOP =∠=⨯=,23344P ⎛⎫∴ ⎪ ⎪⎝⎭, ································· 11分∴符合条件的P 点坐标有31⎛⎫ ⎪ ⎪⎝⎭,,334⎛⎫⎪ ⎪⎝⎭, ·············································· 12分6、(08山东济宁26题)(12分)ABC △中,90C ∠=,60A ∠=,2AC =cm .长为1cm 的线段MN 在ABC △的边AB 上沿AB 方向以1cm/s 的速度向点B 运动(运动前点M 与点A 重合).过M N ,分别作AB 的垂线交直角边于P Q ,两点,线段MN 运动的时间为t s .(1)若AMP △的面积为y ,写出y 与t 的函数关系式(写出自变量t 的取值范围);(2)线段MN 运动过程中,四边形MNQP 有可能成为矩形吗?若有可能,求出此时t 的值;若不可能,说明理由;(3)t 为何值时,以C P Q ,,为顶点的三角形与ABC △相似?(08山东济宁26题解析)解:(1)当点P 在AC 上时,AM t =,tg 603PM AM t ∴==.2133(01)22y tt t t ∴==≤≤. ······························································ 2分 当点P 在BC 上时,3tan 30(4)3PM BM t ==-.213(4)(13)2y t t t =-=+≤≤. ··········································· 4分(2)2AC =,4AB ∴=.413BN AB AM MN t t ∴=--=--=-.3tan 30(3)3QN BN t ∴==-. ······························································ 6分 由条件知,若四边形MNQP 为矩形,需PM QN =)3t =-, 34t ∴=. ∴当34t =s 时,四边形MNQP 为矩形.························································ 8分(3)由(2)知,当34t =s 时,四边形MNQP 为矩形,此时PQ AB ∥,PQC ABC ∴△∽△.··············································································· 9分 除此之外,当30CPQ B ∠=∠=时,QPC ABC △∽△,此时3tan 30CQ CP ==. 1cos602AM AP ==,22AP AM t ∴==.22CP t ∴=-. ························ 10分3cos302BN BQ ==,)3BQt ∴==-.又2BC =)33CQ t ∴=-=. ·································· 11分 322t ∴=-,12t =.∴当12t =s 或34s 时,以C P Q ,,为顶点的三角形与ABC △相似. ··············· 12分7、(08四川巴中30题)(12分)30.已知:如图14,抛物线2334y x =-+与x 轴交于点A ,点B ,与直线34y x b =-+相交于点B ,点C ,直线34y x b =-+与y 轴交于点E .(1)写出直线BC 的解析式. (2)求ABC △的面积.(3)若点M 在线段AB 上以每秒1个单位长度的速度从A 向B 运动(不与A B ,重合),同时,点N 在射线BC 上以每秒2个单位长度的速度从B 向C 运动.设运动时间为t 秒,请写出MNB △的面积S 与t 的函数关系式,并求出点M 运动多少时间时,MNB △的面积最大,最大面积是多少?(08四川巴中30题解析)解:(1)在2334y x =-+中,令0y = 23304x ∴-+=12x ∴=,22x =-(20)A ∴-,,(20)B , ········································· 1分 又点B 在34y x b =-+上 302b ∴=-+32b =BC ∴的解析式为3342y x =-+ ··································································· 2分 (2)由23343342y x y x ⎧=-+⎪⎪⎨⎪=-+⎪⎩,得11194x y =-⎧⎪⎨=⎪⎩2220x y =⎧⎨=⎩ ············································· 4分 914C ⎛⎫∴- ⎪⎝⎭,,(20)B ,xyAB CEM D P NO。
2014年全国中考数学试题分类汇编12_反比例函数(含解析)
反比例函数一、选择题1. (2014•福建泉州)在同一平面直角坐标系中,函数y=mx+m与y =(m≠0)的图象可能是()2. (2014•广西贺州)已知二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的图象如图所示,则一次函数y=cx+与反比例函数y=在同一坐标系内的大致图象是()A.B.C.D.3.(2014年天津市)已知反比例函数y =,当1<x<2时,y的取值范围是()A.0<y<5 B.1<y<2 C.5<y<10 D.y>104.(2014•新疆)若点A(1,y1)和点B(2,y2)在反比例函数y=图象上,则y 1与y2的大小关系是:y1y2(填“>”、“<”或“=”).5.(2014•温州)如图,矩形ABCD的顶点A在第一象限,AB∥x轴,AD∥y轴,且对角线的交点与原点O重合.在边AB从小于AD到大于AD的变化过程中,若矩形ABCD的周长始终保持不变,则经过动点A的反比例函数y=(k≠0)中k的值的变化情况是()6.(2014•四川自贡)关于x 的函数y =k (x +1)和y =(k ≠0)在同一坐标系中的图象大致是( ). . . D . 关于x 的函数y =k (x +1)和y =(k ≠0)在同一坐标系中的图象大致是( ) . . . D .7.(2014·云南昆明)左下图是反比例函数)0(≠=k k x y 为常数,的图像,则一次函数k kx y -=的图像大致是( )8. (2014•湘潭)如图,A 、B 两点在双曲线y =上,分别经过A 、B 两点向轴作垂线段,已知S 阴影=1,则S 1+S 2=()9. (2014•益阳)正比例函数y =6x 的图象与反比例函数y=的图象的交点位于( )DC B A10. (2014•株洲)已知反比例函数y=的图象经过点(2,3),那么下列四个点中,也在这个函数图象上的是()11. (2014•扬州)若反比例函数y=(k≠0)的图象经过点P(﹣2,3),则该函数的图象的点是()二.填空题1.(2014•武汉)如图,若双曲线y=与边长为5的等边△AOB的边OA,AB分别相交于C,D两点,且OC=3BD,则实数k的值为.2.(2014•邵阳)若反比例函数的图象经过点(﹣1,2),则k的值是.3.(2014•孝感)如图,Rt△AOB的一条直角边OB在x轴上,双曲线y=经过斜边OA的中点C,与另一直角边交于点D.若S△OCD=9,则S△OBD的值为.4.(2014•浙江湖州)如图,已知在Rt△OAC中,O为坐标原点,直角顶点C在x轴的正半轴上,反比例函数y=(k≠0)在第一象限的图象经过OA的中点B,交AC于点D,连接OD.若△OCD∽△ACO,则直线OA的解析式为.5.(2014年江苏南京,第11题,2分)已知反比例函数y=的图象经过点A(﹣2,3),则当x=﹣3时,y=.6.(2014•滨州)如图,菱形OABC的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是6和4,反比例函数的图象经过点C,则k的值为.7.(2014•菏泽)如图,Rt△ABO中,∠AOB=90°,点A在第一象限、点B在第四象限,且AO:BO=1:,若点A(x0,y0)的坐标x0,y0满足y0=,则点B(x,y)的坐标x,y所满足的关系式为.8.(2014•济宁)如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=的图象上,OA=1,OC=6,则正方形ADEF的边长为.三.解答题1.(2014年四川资阳)如图,一次函数y=kx+b(k≠0)的图象过点P(﹣,0),且与反比例函数y=(m≠0)的图象相交于点A(﹣2,1)和点B.(1)求一次函数和反比例函数的解析式;(2)求点B的坐标,并根据图象回答:当x在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?2.(2014年云南省)将油箱注满k升油后,轿车科行驶的总路程S(单位:千米)与平均耗油量a(单位:升/千米)之间是反比例函数关系S=(k是常数,k≠0).已知某轿车油箱注满油后,以平均耗油量为每千米耗油0.1升的速度行驶,可行驶700千米.(1)求该轿车可行驶的总路程S与平均耗油量a之间的函数解析式(关系式);(2)当平均耗油量为0.08升/千米时,该轿车可以行驶多少千米?3.(2014•舟山)实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可近似地用二次函数y=﹣200x2+400x刻画;1.5小时后(包括1.5小时)y与x可近似地用反比例函数y=(k>0)刻画(如图所示).(1)根据上述数学模型计算:①喝酒后几时血液中的酒精含量达到最大值?最大值为多少?②当x=5时,y=45,求k的值.(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.4.(2014•襄阳)如图,一次函数y1=﹣x+2的图象与反比例函数y2=的图象相交于A,B两点,与x轴相交于点C.已知tan∠BOC=,点B的坐标为(m,n).(1)求反比例函数的解析式;(2)请直接写出当x<m时,y2的取值范围.5.(2014•四川自贡)如图,一次函数y=kx+b与反比例函数的图象交于A(m,6),B(3,n)两点.(1)求一次函数的解析式;(2)根据图象直接写出的x的取值范围;(3)求△AOB的面积.6.(2014•浙江湖州)如图,已知在平面直角坐标系xOy中,O是坐标原点,点A(2,5)在反比例函数y=的图象上,过点A的直线y=x+b交x轴于点B.(1)求k和b的值;(2)求△OAB的面积.7.(2014•德州)如图,双曲线y=(x>0)经过△OAB的顶点A和OB的中点C,AB∥x轴,点A的坐标为(2,3).(1)确定k的值;(2)若点D(3,m)在双曲线上,求直线AD的解析式;(3)计算△OAB的面积.8.(2014•菏泽)如图,在平面直角坐标系xOy中,已知一次函数y=kx+b的图象经过点A(1,0),与反比例函数y=(x>0)的图象相交于点B(2,1).①求m的值和一次函数的解析式;②结合图象直接写出:当x>0时,不等式kx+b>的解集.9.(2014年山东泰安)如图①,△OAB中,A(0,2),B(4,0),将△AOB向右平移m 个单位,得到△O′A′B′.(1)当m=4时,如图②.若反比例函数y=的图象经过点A′,一次函数y=ax+b的图象经过A′、B′两点.求反比例函数及一次函数的表达式;(2)若反比例函数y=的图象经过点A′及A′B′的中点M,求m的值.。
2014年全国中考数学试题汇编《一次函数》(06)
全国中考数学试题汇编《一次函数》(06)解答题151.(2007•宜宾)已知:如图,在平面直角坐标系xoy中,一次函数y=x+3的图象与x轴和y轴交于A、B两点,将△AOB绕点O顺时针旋转90°后得到△A′OB′.(1)求直线A′B′的解析式;(2)若直线A′B′与直线AB相交于点C,求S△A´BC:S△ABO的值.152.(2007•咸宁)如图,在平面直角坐标系xoy中,已知矩形ABCD的边AB、AD分别在x轴、y轴上,点A与坐标原点重合,且AB=2,AD=1.操作:将矩形ABCD折叠,使点A落在边DC上.探究:(1)我们发现折痕所在的直线与矩形的两边一定相交,那么相交的情形有几种请你画出每种情形的图形;(只要用矩形草稿纸动手折一折你会有发现的!)(2)当折痕所在的直线与矩形的边OD相交于点E,与边OB相交于点F时,设直线的解析式为y=kx+b.①求b与k的函数关系式;②求折痕EF的长(用含k的代数式表示),并写出k的取值范围.153.(2007•厦门)已知点P(m,n)(m>0)在直线y=x+b(0<b<3)上,点A、B在x轴上(点A在点B的左边),线段AB的长度为b,设△PAB的面积为S,且S=b2+b.(1)若b=,求S的值;(2)若S=4,求n的值;(3)若直线y=x+b(0<b<3)与y轴交于点C,△PAB是等腰三角形,当CA∥PB时,求b的值.154.(2007•乌鲁木齐)如图1,在平面直角坐标系中,O为坐标原点,点A的坐标为(0,6),点B坐标为,BC∥y轴且与x轴交于点C,直线OB与直线AC相交于点P.(1)求点P的坐标;(2)若以点O为圆心,OP的长为半径作⊙O(如图2),求证:直线AC与⊙O相切于点P;(3)过点B作BD∥x轴与y轴相交于点D,以点O为圆心,r为半径作⊙O,使点D在⊙O内,点C在⊙O外;以点B为圆心,R为半径作⊙B,若⊙O与⊙B相切,试分别求出r,R的取值范围.155.(2007•天门)如图,直线y=﹣x+1与x轴交于点A,与y轴交于点B,以AB为边在第一象限内作正△ABC.(1)求点C的坐标;(2)把△ABO沿直线AC翻折,点B落在点D处,点D是否在经过点C的反比例函数的图象上?说明理由;(3)连接CD,判断四边形ABCD是什么四边形?说明理由.156.(2007•台州)如图,四边形OABC是一张放在平面直角坐标系中的矩形纸片,点A在x轴上,点C在y轴上,将边BC折叠,使点B落在边OA的点D处.已知折叠CE=5,且tan∠EDA=.(1)判断△OCD与△ADE是否相似?请说明理由;(2)求直线CE与x轴交点P的坐标;(3)是否存在过点D的直线l,使直线l、直线CE与x轴所围成的三角形和直线l、直线CE与y轴所围成的三角形相似?如果存在,请直接写出其解析式并画出相应的直线;如果不存在,请说明理由.157.(2007•随州)如图,直角梯形ABCD的腰BC所在直线的解析式为y=﹣x﹣6,点A与坐标原点O重合,点D的坐标为(0,﹣4),将直角梯形ABCD绕点O顺时针旋转180°,得到直角梯形OEFG(如图1).(1)直接写出E,F两点的坐标及直角梯形OEFG的腰EF所在直线的解析式;(2)将图1中的直角梯形ABCD先沿x轴向右平移到点A与点E重合的位置,再让直角顶点A紧贴着EF,向上平移直角梯形ABCD(即梯形ABCD向上移动时,总保持着AB∥FG),当点A与点F重合时,梯形ABCD停止移动.观察得知:在梯形ABCD移动过程中,其腰BC始终经过坐标原点O.(如图2)①设点A的坐标为(a,b),梯形ABCD与梯形OEFG重合部分的面积为S,试求a与何值时,S的值恰好等于梯形OEFG面积的;②当点A在EF上滑动时,设AD与x轴的交点为M,试问:在y轴上是否存在点P,使得△PAM是底角为30°的等腰三角形?如果存在,请求出所有符合条件的点P的坐标;如果不存在,请说明理由.(利用图3进行探索)158.(2007•绍兴)设关于x的一次函数y=a1x+b1与y=a2x+b2,则称函数y=m(a1x+b1)+n(a2x+b2)(其中m+n=1)为此两个函数的生成函数.(1)当x=1时,求函数y=x+1与y=2x的生成函数的值;(2)若函数y=a1x+b1与y=a2x+b2的图象的交点为P,判断点P是否在此两个函数的生成函数的图象上,并说明理由.159.(2007•邵阳)如图,直线y=﹣x+2与x轴,y轴分别相交于点A,B.将△AOB绕点O按顺时针方向旋转α角(0°<α<360°),可得△COD.(1)求点A,B的坐标;(2)当点D落在直线AB上时,直线CD与OA相交于点E,△COD和△AOB的重叠部分为△ODE(图①).求证:△ODE∽△ABO;(3)除了(2)中的情况外,是否还存在△COD和△AOB的重叠部分与△AOB相似,若存在,请指出旋转角α的度数;若不存在,请说明理由;(4)当α=30°时(图②),CD与OA,AB分别相交于点P,M,OD与AB相交于点N,试求△COD与△AOB的重叠部分(即四边形OPMN)的面积.160.(2007•韶关)如图,在平面直角坐标系中,四边形OABC是矩形,OA=4,AB=2,直线与坐标轴交于D、E.设M是AB的中点,P是线段DE上的动点.(1)求M、D两点的坐标;(2)当P在什么位置时,PA=PB求出此时P点的坐标;(3)过P作PH⊥BC,垂足为H,当以PM为直径的⊙F与BC相切于点N时,求梯形PMBH的面积.161.(2007•衢州)如图,点B1(1,y1),B2(2,y2),B3(3,y3)…,B n(n,y n)(n是正整数)依次为一次函数y=x+的图象上的点,点A1(x1,0),A2(x2,0),A3(x3,0),…,A n(x n,0)(n是正整数)依次是x轴正半轴上的点,已知x1=a(0<a<1),△A1B1A2,△A2B2A3,△A3B3A4…△A n B n A n+1分别是以B1,B2,B3,…,B n为顶点的等腰三角形.(1)写出B2,B n两点的坐标;(2)求x2,x3(用含a的代数式表示);分析图形中各等腰三角形底边长度之间的关系,写出你认为成立的两个结论;(3)当a(0<a<1)变化时,在上述所有的等腰三角形中,是否存在直角三角形?若存在,求出相应的a的值;若不存在,请说明理由.162.(2007•庆阳)已知一次函数y=kx+b的图象与x轴相交于点A(﹣2,0),与函数的图象相交于点M(m,3),N两点.(1)求一次函数y=kx+b的解析式;(2)求点N的坐标.163.(2007•牡丹江)如图,在平面直角坐标系中,已知点A(﹣3,6),点B,点C分别在x轴的负半轴和正半轴上,OB,OC的长分别是方程x2﹣4x+3=0的两根(OB<OC).(1)求B,C两点的坐标;(2)在坐标平面内是否存在点Q和点P(点P在直线AC上),使以O、P、C、Q为顶点的四边形是正方形?若存在,请直接写出Q点的坐标;若不存在,请说明理由;(3)若平面内有M(1,﹣2),D为线段OC上一点,且满足∠DMC=∠BAC,∠MCD=45°,求直线AD的解析式.164.(2007•梅州)如图,直角梯形ABCD中,AB∥CD,∠A=90°,AB=6,AD=4,DC=3,动点P从点A出发,沿A→D→C→B方向移动,动点Q从点A出发,在AB边上移动.设点P移动的路程为x,点Q移动的路程为y,线段PQ平分梯形ABCD的周长.(1)求y与x的函数关系式,并求出x,y的取值范围;(2)当PQ∥AC时,求x,y的值;(3)当P不在BC边上时,线段PQ能否平分梯形ABCD的面积?若能,求出此时x的值;若不能,说明理由.165.(2007•泸州)已知直线(n是不为零的自然数).当n=1时,直线l1:y=﹣2x+1与x轴和y轴分别交于点A1和B1,设△A1OB1(其中O是平面直角坐标系的原点)的面积为S1;当n=2时,直线与x轴和y轴分别交于点A2和B2,设△A2OB2的面积为S2,…,依此类推,直线l n与x轴和y轴分别交于点A n和B n,设△A n OB n的面积为S n.(1)求设△A1OB1的面积S1;(2)求S1+S2+S3+…+S6的值.166.(2007•嘉兴)如图,已知A(8,0),B(0,6),两个动点P、Q同时在△OAB的边上按逆时针方向(→O→A→B→O→)运动,开始时点P在点B位置,点Q在点O位置,点P的运动速度为每秒2个单位,点Q的运动速度为每秒1个单位.(1)在前3秒内,求△OPQ的最大面积;(2)在前10秒内,求P、Q两点之间的最小距离,并求此时点P、Q的坐标;(3)在前15秒内,探究PQ平行于△OAB一边的情况,并求平行时点P、Q的坐标.167.(2007•佳木斯)如图,在平面直角坐标系中,已知点A(﹣3,6),点B,点C分别在x轴的负半轴和正半轴上,OB,OC的长分别是方程x2﹣4x+3=0的两根(OB<OC).(1)求点B,点C的坐标;(2)若平面内有M(1,﹣2),D为线段OC上一点,且满足∠DMC=∠BAC,求直线MD的解析式;(3)在坐标平面内是否存在点Q和点P(点P在直线AC上),使以O,P,C,Q为顶点的四边形是正方形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.168.(2007•济宁)(1)已知矩形A的长、宽分别是2和1,那么是否存在另一个矩形B,它的周长和面积分别是矩形A的周长和面积的2倍对上述问题,小明同学从“图形”的角度,利用函数图象给予了解决.小明论证的过程开始是这样的:如果用x、y分别表示矩形的长和宽,那么矩形B满足x+y=6,xy=4.请你按照小明的论证思路完成后面的论证过程;(2)已知矩形A的长和宽分别是2和1,那么是否存在一个矩形C,它的周长和面积分别是矩形A的周长和面积的一半?小明认为这个问题是肯定的,你同意小明的观点吗?为什么?169.(2007•济宁)如图,A,B分别为x轴和y轴正半轴上的点,OA,OB的长分别是方程x2﹣14x+48=0的两根(OA>OB),直线BC平分∠ABO交x轴于C点,P为BC上一动点,P点以每秒1个单位的速度从B点开始沿BC 方向移动.(1)设△APB和△OPB的面积分别为S1,S2,求S1:S2的值;(2)求直线BC的解析式;(3)设PA﹣PO=m,P点的移动时间为t.①当0<t≤4时,试求出m的取值范围;②当t>4时,你认为m的取值范围如何?(只要求写出结论)170.(2007•济南)已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A(﹣3,0),C(1,0),tan∠BAC=.(1)求过点A,B的直线的函数表达式;(2)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(3)在(2)的条件下,如P,Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,问是否存在这样的m,使得△APQ与△ADB相似?如存在,请求出m的值;如不存在,请说明理由.171.(2007•黑龙江)如图,点A为x轴负半轴上一点,点B为x轴正半轴上一点,OA,OB(OA<OB)的长分别是关于x的一元二次方程x2﹣4mx+m2+2=0的两根,C(0,3),且S△ABC=6(1)求∠ABC的度数;(2)过点C作CD⊥AC交x轴于点D,求点D的坐标;(3)在第(2)问的条件下,y轴上是否存在点P,使∠PBA=∠CAB?若存在,请直接写出直线PD的解析式;若不存在,请说明理由.172.(2007•哈尔滨)如图,梯形ABCD在平面直角坐标系中,上底AD平行于x轴,下底BC交y轴于点E,点C(4,﹣2),点D(1,2),BC=9,sin∠ABC=.(1)求直线AB的解析式;(2)若点H的坐标为(﹣1,﹣1),动点G从B出发,以1个单位/秒的速度沿着BC边向C点运动(点G可以与点B或点C重合),求△HGE的面积S(S≠0)随动点G的运动时间t′秒变化的函数关系式(写出自变量t′的取值范围);(3)在(2)的条件下,当秒时,点G停止运动,此时直线GH与y轴交于点N.另一动点P开始从B出发,以1个单位/秒的速度沿着梯形的各边运动一周,即由B到A,然后由A到D,再由D到C,最后由C回到B (点P可以与梯形的各顶点重合).设动点P的运动时间为t秒,点M为直线HE上任意一点(点M不与点H重合),在点P的整个运动过程中,求出所有能使∠PHM与∠HNE相等的t的值.173.(2007•桂林)在实施漓江补水工程中,某水库需要将一段护坡土坝进行改造.在施工质量相同的情况下,甲、乙两施工队给出的报价分别是:甲施工队先收启动资金1000元,以后每填土1立方米收费20元,乙施工队不收启动资金,但每填土1立方米收费25元.(1)设整个工程需要填土为X立方米,选择甲施工队所收的费用为Y甲元,选择乙施工队所收的费用为Y乙元.请分别写出Y甲、Y乙、关于X的函数关系式;(2)如图,土坝的横截面为梯形,现将背水坡坝底加宽2米,即BE=2米,已知原背水坡长AB=4,土坝与地面的倾角∠ABC=60度,要改造100米长的护坡土坝,选择哪家施工队所需费用较少?(3)如果整个工程所需土方的总量X立方米的取值范围是100≤X≤800,应选择哪家施工队所需费用较少?174.(2007•广州)一次函数y=kx+k过点(1,4),且分别与x轴、y轴交于A、B点,点P(a,0)在x轴正半轴上运动,点Q(0,b)在y轴正半轴上运动,且PQ⊥AB.(1)求k的值,并在直角坐标系中画出一次函数的图象;(2)求a、b满足的等量关系式;(3)若△APQ是等腰三角形,求△APQ的面积.175.(2007•朝阳区)已知:如图,点A、B分别在x轴、y轴上,以OA为直径的⊙P交AB于点C,E为直径OA上一动点(与点O、A不重合).EF⊥AB于点F,交y轴于点G.设点E的横坐标为x,△BGF的面积为y.(1)求直线AB的解析式;(2)求y与x之间的函数关系式,并写出自变量x的取值范围.176.(2007•长春)如图,在平面直角坐标系中,直线y=﹣x+b(b>0)分别交x轴,y轴于A,B两点,以OA,OB为边作矩形OACB,D为BC的中点.以M(4,0),N(8,0)为斜边端点作等腰直角三角形PMN,点P在第一象限,设矩形OACB与△PMN重叠部分的面积为S.(1)求点P的坐标.(2)当b值由小到大变化时,求S与b的函数关系式.(3)若在直线y=﹣x+b(b>0)上存在点Q,使∠OQM等于90°,请直接写出b的取值范围.(4)在b值的变化过程中,若△PCD为等腰三角形,请直接写出所有符合条件的b值.177.(2007•新疆)(1)在同一平面直角坐标系中作出反比例函数与一次函数y2=2x﹣2的图象,并根据图象求出交点坐标.(2)观察图象,当x取任何值时,y1>y2?178.(2010•呼和浩特)如图,在直角坐标平面内,函数(x>0,m是常数)的图象经过A(1,4),B(a,b),其中a>1.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,连接AD,DC,CB.(1)若△ABD的面积为4,求点B的坐标;(2)求证:DC∥AB;(3)当AD=BC时,求直线AB的函数解析式.179.(2007•乐山)从甲、乙两题中选做一题即可.如果两题都做,只以甲题计分.题甲:如图,反比例函数的图象与一次函数y=mx+b的图象交于A(1,3),B(n,﹣1)两点.(1)求反比例函数与一次函数的解析式;(2)根据图象回答:当x取何值时,反比例函数的值大于一次函数的值.题乙:如图,在矩形ABCD中,AB=4,AD=10.直角尺的直角顶点P在AD上滑动时(点P与A,D不重合),一直角边经过点C,另一直角边AB交于点E.我们知道,结论“Rt△AEP∽Rt△DPC”成立.(1)当∠CPD=30°时,求AE的长;(2)是否存在这样的点P,使△DPC的周长等于△AEP周长的2倍?若存在,求出DP的长;若不存在,请说明理由.我选做的是_________.180.(2007•随州)某商业集团新建一小车停车场,经测算,此停车场每天需固定支出的费用(设施维修费、车辆管理人员工资等)为800元.为制定合理的收费标准,该集团对一段时间每天小车停放辆次与每辆次小车的收费情况进行了调查,发现每辆次小车的停车费不超过5元时,每天来此处停放的小车可达1440辆次;若停车费超过5元,则每超过1元,每天来此处停放的小车就减少120辆次.为便于结算,规定每辆次小车的停车费x(元)只取整数,用y(元)表示此停车场的日净收入,且要求日净收入不低于2512元.(日净收入=每天共收取的停车费﹣每天的固定支出)(1)当x≤5时,写出y与x之间的关系式,并说明每辆小车的停车费最少不低于多少元;(2)当x>5时,写出y与x之间的函数关系式(不必写出x的取值范围);(3)该集团要求此停车场既要吸引客户,使每天小车停放的辆次较多,又要有较大的日净收入.按此要求,每辆次小车的停车费应定为多少元?此时日净收入是多少?2007年全国中考数学试题汇编《一次函数》(06)参考答案与试题解析解答题151.(2007•宜宾)已知:如图,在平面直角坐标系xoy中,一次函数y=x+3的图象与x轴和y轴交于A、B两点,将△AOB绕点O顺时针旋转90°后得到△A′OB′.(1)求直线A′B′的解析式;(2)若直线A′B′与直线AB相交于点C,求S△A´BC:S△ABO的值.x+3,则,解得+4,)×=×=6∴.152.(2007•咸宁)如图,在平面直角坐标系xoy中,已知矩形ABCD的边AB、AD分别在x轴、y轴上,点A与坐标原点重合,且AB=2,AD=1.操作:将矩形ABCD折叠,使点A落在边DC上.探究:(1)我们发现折痕所在的直线与矩形的两边一定相交,那么相交的情形有几种请你画出每种情形的图形;(只要用矩形草稿纸动手折一折你会有发现的!)(2)当折痕所在的直线与矩形的边OD相交于点E,与边OB相交于点F时,设直线的解析式为y=kx+b.①求b与k的函数关系式;②求折痕EF的长(用含k的代数式表示),并写出k的取值范围.﹣,﹣(﹣,∴,b=EF==b﹣﹣<153.(2007•厦门)已知点P(m,n)(m>0)在直线y=x+b(0<b<3)上,点A、B在x轴上(点A在点B的左边),线段AB的长度为b,设△PAB的面积为S,且S=b2+b.(1)若b=,求S的值;(2)若S=4,求n的值;(3)若直线y=x+b(0<b<3)与y轴交于点C,△PAB是等腰三角形,当CA∥PB时,求b的值.b=b b=4b=b b=②,三式联立便可求出b时,S=××=+1=;时,+=4b=+②,联立三式,得:式得,(舍去)==3=不符合b②,不符合154.(2007•乌鲁木齐)如图1,在平面直角坐标系中,O为坐标原点,点A的坐标为(0,6),点B坐标为,BC∥y轴且与x轴交于点C,直线OB与直线AC相交于点P.(1)求点P的坐标;(2)若以点O为圆心,OP的长为半径作⊙O(如图2),求证:直线AC与⊙O相切于点P;(3)过点B作BD∥x轴与y轴相交于点D,以点O为圆心,r为半径作⊙O,使点D在⊙O内,点C在⊙O外;以点B为圆心,R为半径作⊙B,若⊙O与⊙B相切,试分别求出r,R的取值范围.,可得,所以直线y=,,所以直线﹣.∴y=∴,x+6,的坐标为)证明:∵,又∵2应满足2或155.(2007•天门)如图,直线y=﹣x+1与x轴交于点A,与y轴交于点B,以AB为边在第一象限内作正△ABC.(1)求点C的坐标;(2)把△ABO沿直线AC翻折,点B落在点D处,点D是否在经过点C的反比例函数的图象上?说明理由;(3)连接CD,判断四边形ABCD是什么四边形?说明理由.﹣(BAO==的坐标为(y=坐标为(156.(2007•台州)如图,四边形OABC是一张放在平面直角坐标系中的矩形纸片,点A在x轴上,点C在y轴上,将边BC折叠,使点B落在边OA的点D处.已知折叠CE=5,且tan∠EDA=.(1)判断△OCD与△ADE是否相似?请说明理由;(2)求直线CE与x轴交点P的坐标;(3)是否存在过点D的直线l,使直线l、直线CE与x轴所围成的三角形和直线l、直线CE与y轴所围成的三角形相似?如果存在,请直接写出其解析式并画出相应的直线;如果不存在,请说明理由.EDA=∴5∴x+8157.(2007•随州)如图,直角梯形ABCD的腰BC所在直线的解析式为y=﹣x﹣6,点A与坐标原点O重合,点D的坐标为(0,﹣4),将直角梯形ABCD绕点O顺时针旋转180°,得到直角梯形OEFG(如图1).(1)直接写出E,F两点的坐标及直角梯形OEFG的腰EF所在直线的解析式;(2)将图1中的直角梯形ABCD先沿x轴向右平移到点A与点E重合的位置,再让直角顶点A紧贴着EF,向上平移直角梯形ABCD(即梯形ABCD向上移动时,总保持着AB∥FG),当点A与点F重合时,梯形ABCD停止移动.观察得知:在梯形ABCD移动过程中,其腰BC始终经过坐标原点O.(如图2)①设点A的坐标为(a,b),梯形ABCD与梯形OEFG重合部分的面积为S,试求a与何值时,S的值恰好等于梯形OEFG面积的;②当点A在EF上滑动时,设AD与x轴的交点为M,试问:在y轴上是否存在点P,使得△PAM是底角为30°的等腰三角形?如果存在,请求出所有符合条件的点P的坐标;如果不存在,请说明理由.(利用图3进行探索))的面积为(,a+6由题意得的值为的面积的轴的负半轴上,可求;重合,即,所以坐标为)x+6.的面积为4,﹣a+6由题意得的值为,则的面积的x+6﹣x+6PQ=AP=AMOP=OQ+QP=AM=(﹣x+6)PMO=x∴(﹣x+6=x=仍为;∴∴,∴∴的坐标为重合,∴,即,坐标为158.(2007•绍兴)设关于x的一次函数y=a1x+b1与y=a2x+b2,则称函数y=m(a1x+b1)+n(a2x+b2)(其中m+n=1)为此两个函数的生成函数.(1)当x=1时,求函数y=x+1与y=2x的生成函数的值;(2)若函数y=a1x+b1与y=a2x+b2的图象的交点为P,判断点P是否在此两个函数的生成函数的图象上,并说明理由.159.(2007•邵阳)如图,直线y=﹣x+2与x轴,y轴分别相交于点A,B.将△AOB绕点O按顺时针方向旋转α角(0°<α<360°),可得△COD.(1)求点A,B的坐标;(2)当点D落在直线AB上时,直线CD与OA相交于点E,△COD和△AOB的重叠部分为△ODE(图①).求证:△ODE∽△ABO;(3)除了(2)中的情况外,是否还存在△COD和△AOB的重叠部分与△AOB相似,若存在,请指出旋转角α的度数;若不存在,请说明理由;(4)当α=30°时(图②),CD与OA,AB分别相交于点P,M,OD与AB相交于点N,试求△COD与△AOB的重叠部分(即四边形OPMN)的面积.﹣OA=2ON=﹣MN=2x=2,,ON=,MN=2×﹣﹣2160.(2007•韶关)如图,在平面直角坐标系中,四边形OABC是矩形,OA=4,AB=2,直线与坐标轴交于D、E.设M是AB的中点,P是线段DE上的动点.(1)求M、D两点的坐标;(2)当P在什么位置时,PA=PB求出此时P点的坐标;(3)过P作PH⊥BC,垂足为H,当以PM为直径的⊙F与BC相切于点N时,求梯形PMBH的面积.与坐标轴交于x+x+HN=NB=x+,所以∴(x+的坐标为上,,HN=NB=,,∴∴x=6+﹣161.(2007•衢州)如图,点B1(1,y1),B2(2,y2),B3(3,y3)…,B n(n,y n)(n是正整数)依次为一次函数y=x+的图象上的点,点A1(x1,0),A2(x2,0),A3(x3,0),…,A n(x n,0)(n是正整数)依次是x轴正半轴上的点,已知x1=a(0<a<1),△A1B1A2,△A2B2A3,△A3B3A4…△A n B n A n+1分别是以B1,B2,B3,…,B n 为顶点的等腰三角形.(1)写出B2,B n两点的坐标;(2)求x2,x3(用含a的代数式表示);分析图形中各等腰三角形底边长度之间的关系,写出你认为成立的两个结论;(3)当a(0<a<1)变化时,在上述所有的等腰三角形中,是否存在直角三角形?若存在,求出相应的a的值;若不存在,请说明理由.y=x+(()(,化简得:∴a=或2a=2,得:∴a=或或162.(2007•庆阳)已知一次函数y=kx+b的图象与x轴相交于点A(﹣2,0),与函数的图象相交于点M(m,3),N两点.(1)求一次函数y=kx+b的解析式;(2)求点N的坐标.)在函数代入)得所以解得)由;163.(2007•牡丹江)如图,在平面直角坐标系中,已知点A(﹣3,6),点B,点C分别在x轴的负半轴和正半轴上,OB,OC的长分别是方程x2﹣4x+3=0的两根(OB<OC).(1)求B,C两点的坐标;(2)在坐标平面内是否存在点Q和点P(点P在直线AC上),使以O、P、C、Q为顶点的四边形是正方形?若存在,请直接写出Q点的坐标;若不存在,请说明理由;(3)若平面内有M(1,﹣2),D为线段OC上一点,且满足∠DMC=∠BAC,∠MCD=45°,求直线AD的解析式.,得到;∴,∴∴∴,则∴x+.164.(2007•梅州)如图,直角梯形ABCD中,AB∥CD,∠A=90°,AB=6,AD=4,DC=3,动点P从点A出发,沿A→D→C→B方向移动,动点Q从点A出发,在AB边上移动.设点P移动的路程为x,点Q移动的路程为y,线段PQ平分梯形ABCD的周长.(1)求y与x的函数关系式,并求出x,y的取值范围;(2)当PQ∥AC时,求x,y的值;(3)当P不在BC边上时,线段PQ能否平分梯形ABCD的面积?若能,求出此时x的值;若不能,说明理由.,有,所以解方程组的面积,则有,解得(舍去)的面积,则有此方程组无解.165.(2007•泸州)已知直线(n是不为零的自然数).当n=1时,直线l1:y=﹣2x+1与x轴和y轴分别交于点A1和B1,设△A1OB1(其中O是平面直角坐标系的原点)的面积为S1;当n=2时,直线与x轴和y轴分别交于点A2和B2,设△A2OB2的面积为S2,…,依此类推,直线l n与x轴和y轴分别交于点A n和B n,设△A n OB n的面积为S n.(1)求设△A1OB1的面积S1;(2)求S1+S2+S3+…+S6的值.(x+,分别令,,,整理即可求出答案.(;﹣(),(),x+(,,∵()﹣﹣)(=﹣166.(2007•嘉兴)如图,已知A(8,0),B(0,6),两个动点P、Q同时在△OAB的边上按逆时针方向(→O→A→B→O→)运动,开始时点P在点B位置,点Q在点O位置,点P的运动速度为每秒2个单位,点Q的运动速度为每秒1个单位.(1)在前3秒内,求△OPQ的最大面积;(2)在前10秒内,求P、Q两点之间的最小距离,并求此时点P、Q的坐标;(3)在前15秒内,探究PQ平行于△OAB一边的情况,并求平行时点P、Q的坐标.A=OP t=.,则,∴,t=),=,∴,t=(,(,则,∴=,t=),)A=t=.=,∴=t=.),=,∴=t=.(,(,则,∴=,t=),)167.(2007•佳木斯)如图,在平面直角坐标系中,已知点A(﹣3,6),点B,点C分别在x轴的负半轴和正半轴上,OB,OC的长分别是方程x2﹣4x+3=0的两根(OB<OC).(1)求点B,点C的坐标;(2)若平面内有M(1,﹣2),D为线段OC上一点,且满足∠DMC=∠BAC,求直线MD的解析式;(3)在坐标平面内是否存在点Q和点P(点P在直线AC上),使以O,P,C,Q为顶点的四边形是正方形?若存在,请直接写出Q点的坐标;若不存在,请说明理由..∴,同理∴∴∴,则∴)或168.(2007•济宁)(1)已知矩形A的长、宽分别是2和1,那么是否存在另一个矩形B,它的周长和面积分别是矩形A的周长和面积的2倍对上述问题,小明同学从“图形”的角度,利用函数图象给予了解决.小明论证的过程开始是这样的:如果用x、y分别表示矩形的长和宽,那么矩形B满足x+y=6,xy=4.请你按照小明的论证思路完成后面的论证过程;(2)已知矩形A的长和宽分别是2和1,那么是否存在一个矩形C,它的周长和面积分别是矩形A的周长和面积的一半?小明认为这个问题是肯定的,你同意小明的观点吗?为什么?联立方程组可知,有解,所x+y=x+y=y=y=,x+y=169.(2007•济宁)如图,A,B分别为x轴和y轴正半轴上的点,OA,OB的长分别是方程x2﹣14x+48=0的两根(OA>OB),直线BC平分∠ABO交x轴于C点,P为BC上一动点,P点以每秒1个单位的速度从B点开始沿BC 方向移动.(1)设△APB和△OPB的面积分别为S1,S2,求S1:S2的值;(2)求直线BC的解析式;(3)设PA﹣PO=m,P点的移动时间为t.①当0<t≤4时,试求出m的取值范围;②当t>4时,你认为m的取值范围如何?(只要求写出结论)t=4OQ=4,∵,∴,t=4,则,BC=4,∴OQ=4=OAt=4时,即∵,时,170.(2007•济南)已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A(﹣3,0),C(1,0),tan∠BAC=.(1)求过点A,B的直线的函数表达式;(2)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(3)在(2)的条件下,如P,Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,问是否存在这样的m,使得△APQ与△ADB相似?如存在,请求出m的值;如不存在,请说明理由.,,即直线表达式为ABC=÷OD=OC+CD=,所以,,解得,则解得×得,的函数表达式为ABC=,÷OD=OC+CD=,∴,,则,,.171.(2007•黑龙江)如图,点A为x轴负半轴上一点,点B为x轴正半轴上一点,OA,OB(OA<OB)的长分别是关于x的一元二次方程x2﹣4mx+m2+2=0的两根,C(0,3),且S△ABC=6(1)求∠ABC的度数;(2)过点C作CD⊥AC交x轴于点D,求点D的坐标;(3)在第(2)问的条件下,y轴上是否存在点P,使∠PBA=∠CAB?若存在,请直接写出直线PD的解析式;若不存在,请说明理由.,求出∴∴172.(2007•哈尔滨)如图,梯形ABCD在平面直角坐标系中,上底AD平行于x轴,下底BC交y轴于点E,点C(4,﹣2),点D(1,2),BC=9,sin∠ABC=.(1)求直线AB的解析式;(2)若点H的坐标为(﹣1,﹣1),动点G从B出发,以1个单位/秒的速度沿着BC边向C点运动(点G可以与点B或点C重合),求△HGE的面积S(S≠0)随动点G的运动时间t′秒变化的函数关系式(写出自变量t′的取值范围);(3)在(2)的条件下,当秒时,点G停止运动,此时直线GH与y轴交于点N.另一动点P开始从B出发,以1个单位/秒的速度沿着梯形的各边运动一周,即由B到A,然后由A到D,再由D到C,最后由C回到B (点P可以与梯形的各顶点重合).设动点P的运动时间为t秒,点M为直线HE上任意一点(点M不与点H重合),在点P的整个运动过程中,求出所有能使∠PHM与∠HNE相等的t的值.××,然,利用ABC=,∴∵,∴,y=××﹣(﹣ABC=,可得BR=R=,H=,.=∴解得.∴=t=t=173.(2007•桂林)在实施漓江补水工程中,某水库需要将一段护坡土坝进行改造.在施工质量相同的情况下,甲、乙两施工队给出的报价分别是:甲施工队先收启动资金1000元,以后每填土1立方米收费20元,乙施工队不收启动资金,但每填土1立方米收费25元.(1)设整个工程需要填土为X立方米,选择甲施工队所收的费用为Y甲元,选择乙施工队所收的费用为Y乙元.请分别写出Y甲、Y乙、关于X的函数关系式;(2)如图,土坝的横截面为梯形,现将背水坡坝底加宽2米,即BE=2米,已知原背水坡长AB=4,土坝与地面的倾角∠ABC=60度,要改造100米长的护坡土坝,选择哪家施工队所需费用较少?(3)如果整个工程所需土方的总量X立方米的取值范围是100≤X≤800,应选择哪家施工队所需费用较少?。
2014年中考全国考题二次函数的图象和性质汇编
2014年中考全国数学试题二次函数的图象和性质专题一、选择题1. (2012重庆市4分)已知二次函数)0(2≠++=a c bx ax y 的图象如图所示对称轴为21-=x 。
下列结论中,正确的是【 】 A .0abc > B .0a b += C .20b c >+ D .42a c b +<2. (2012浙江衢州3分)已知二次函数y=﹣x 2﹣7x+,若自变量x 分别取x 1,x 2,x 3,且0<x 1<x 2<x 3,则对应的函数值y 1,y 2,y 3的大小关系正确的是【 】A .y 1>y 2>y 3B .y 1<y 2<y 3C .y 2>y 3>y 1D .y 2<y 3<y 13. (2012浙江义乌3分)如图,已知抛物线y 1=﹣2x 2+2,直线y 2=2x+2,当x 任取一值时,x 对应的函数值分别为y 1、y 2.若y 1≠y 2,取y 1、y 2中的较小值记为M ;若y 1=y 2,记M=y 1=y 2.例如:当x=1时,y 1=0,y 2=4,y 1<y 2,此时M=0.下列判断:①当x >0时,y 1>y 2; ②当x <0时,x 值越大,M 值越小;③使得M 大于2的x 值不存在; ④使得M=1的x 值是或.其中正确的是【 】A .①②B .①④C .②③D .③④4. (2012江苏常州2分)已知二次函数()()2y=a x 2+c a 0>-,当自变量x 分别取2,3,0时,对应的值分别为123y y y ,,,则123y y y ,,的大小关系正确的是【 】A. 321y y y <<B. 123y y y <<C. 213y y y <<D. 312y y y <<5. (2012江苏镇江3分)关于x 的二次函数()()y=x+1x m -,其图象的对称轴在y 轴的右侧,则实数m 的取值范围是【 】A. m<1-B. 1<m<0-C. 0<m<1D. m>15. (2012湖北天门、仙桃、潜江、江汉油田3分)已知二次函数y=ax 2+bx+c 的图象如图所示,它与x 轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b ﹣2a=0;②abc <0;③a ﹣2b+4c <0;④8a+c >0.其中正确的有【 】A .3个B .2个C .1个D .0个6. (2012湖北宜昌3分)已知抛物线y=ax 2﹣2x+1与x 轴没有交点,那么该抛物线的顶点所在的象限是【 】A .第四象限B .第三象限C .第二象限D .第一象限7. (2012湖南郴州3分)抛物线2y x 12=-+()的顶点坐标是【 】 A .(-1,2) B .(-1,-2) C .(1,-2) D .(1,2)8. (2012湖南衡阳3分)如图为二次函数y=ax 2+bx+c (a≠0)的图象,则下列说法:①a >0 ②2a+b=0 ③a+b+c >0 ④当﹣1<x <3时,y >0其中正确的个数为【 】A .1B .2C .3D .49. (2012湖南株洲3分)如图,已知抛物线与x 轴的一个交点A (1,0),对称轴是x=﹣1,则该抛物线与x 轴的另一交点坐标是【 】A .(﹣3,0)B .(﹣2,0)C .x=﹣3D .x=﹣210. (2012四川乐山3分)二次函数y=ax 2+bx+1(a≠0)的图象的顶点在第一象限,且过点(﹣1,0).设t=a+b+1,则t 值的变化范围是【 】A .0<t <1B .0<t <2C .1<t <2D .﹣1<t <111. (2012四川广元3分) 若二次函数22y ax bx a 2=++-(a ,b 为常数)的图象如图,则a 的值为【 】A. 1B. 2C. 2-D. -212. (2012四川德阳3分)设二次函数2y x bx c =++,当x 1≤时,总有y 0≥,当1x 3≤≤时,总有y 0≤,那么c 的取值范围是【 】A.c 3=B.c 3≥C.1c 3≤≤D.c 3≤13. (2012四川巴中3分) 对于二次函数y 2(x 1)(x 3)=+-,下列说法正确的是【 】A. 图象的开口向下B. 当x>1时,y 随x 的增大而减小C. 当x<1时,y 随x 的增大而减小D. 图象的对称轴是直线x=-114. (2012辽宁鞍山3分)如图,二次函数y=ax 2+bx+c (a≠0)的图象与x 轴交于A 、B 两点,与y 轴交于点C ,点B 坐标(﹣1,0),下面的四个结论:①OA=3;②a+b+c <0;③ac >0;④b 2﹣4ac >0.其中正确的结论是【 】A .①④B .①③C .②④D .①②15. (2012山东滨州3分)抛物线234y x x =--+ 与坐标轴的交点个数是【 】 A .3 B .2 C .1 D .016. (2012山东济南3分)如图,二次函数的图象经过(-2,-1),(1,1)两点,则下列关于此二次函数的说法正确的是【 】A .y 的最大值小于0B .当x=0时,y 的值大于1C .当x=-1时,y 的值大于1D .当x=-3时,y 的值小于017. (2012山东日照4分)二次函数y=ax 2+bx +c(a≠0)的图象如图所示,给出下列结论:① b 2-4ac>0;② 2a +b<0;③ 4a -2b +c=0;④ a ︰b ︰c= -1︰2︰3.其中正确的是【 】(A) ①② (B) ②③ (C) ③④ (D)①④18. (2012山东泰安3分)二次函数2y ax bx =+的图象如图,若一元二次方程20ax bx m ++=有实数根,则m 的最大值为【 】 A .3- B .3 C .6- D .919. (2012山东泰安3分)设A 1(2)y -,,B 2(1)y ,,C 3(2)y ,是抛物线2(1)y x a =-++上的三点,则1y ,2y ,3y 的大小关系为【 】A .213y y y >>B .312y y y >>C .321y y y >>D .312y y y >>20. (2012山东威海3分)已知二次函数()2y=ax +bx+c a 0≠的图象如图所示,下列结论错误的是【 】A.abc >0B.3a >2bC.m (am +b )≤a -bD.4a -2b +c <021. (2012山东烟台3分)已知二次函数y=2(x ﹣3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x=﹣3;③其图象顶点坐标为(3,﹣1);④当x <3时,y 随x 的增大而减小.则其中说法正确的有【 】A .1个B .2个C .3个D .4个22. (2012山东枣庄3分)抛物线2y ax bx 3=+-经过点(2,4),则代数式8a 4b 1++的值为【 】A .3B .9C .15D .15-23. (2012河北省3分)如图,抛物线y 1=a (x +2)2-3与y 2=12(x -3)2+1交于点A (1,3),过点A 作x 轴的平行线,分别交两条抛物线于点B ,C .则以下结论:①无论x 取何值,y 2的值总是正数;②a=1;③当x=0时,y 2-y 1=4;④2AB=3AC ;其中正确结论是【 】A .①②B .②③C .③④D .①④24. (2012甘肃白银3分)二次函数2y ax bx c =++的图象如图所示,则函数值y 0<时x 的取值范围是【 】A .x 1<-B .x >3C .-1<x <3D .x 1<-或x >325. (2012甘肃兰州4分)抛物线y =-2x 2+1的对称轴是【 】A .直线1x=2 B .直线1x=2- C .y 轴 D .直线x =2 26. (2012甘肃兰州4分)已知二次函数y =a(x +1)2-b(a≠0)有最小值,则a ,b 的大小关系为【 】A .a >bB .a <bC .a =bD .不能确定27. (2012青海西宁3分)如图,二次函数y =ax 2+bx +c 的图象过点(-1,1)、(2,-1).下列关于这个二次函数的叙述正确的是【 】A .当x =0时,y 的值大于1B .当x =3时,y 的值小于0C .当x =1时,y 的值大于1D .y 的最大值小于028. (2012黑龙江黑河、齐齐哈尔、大兴安岭、鸡西3分)已知二次函数y=ax 2+bx+c(a≠O)的图象如图所示,现有下列结论:①abc>0 ②b 2-4ac<0 ⑤c<4b ④a +b>0,则其中正确结论的个数是【 】 A .1个 B .2个 C .3个 D .4个29. (2012黑龙江牡丹江3分)抛物线2y ax bx c =++与x 轴的交点坐标是(-l ,0)和(3,0),则这条抛物线的对称轴是【 】.A .直线x=-1 8.直线x=0 C .直线x=1 D .直线x= 3二、填空题1. (2012广东深圳3分)二次函数622+-=x x y 的最小值是 .2. (2012江苏苏州3分)已知点A (x 1,y 1)、B (x 2,y 2)在二次函数y=(x -1)2+1的图象上,若x 1>x 2>1,则y 1 y 2.3. (2012江苏无锡2分)若抛物线y=ax 2+bx+c 的顶点是A (2,1),且经过点B (1,0),则抛物线的函数关系式为 .4. (2012湖北咸宁3分)对于二次函数2y x 2mx 3=--,有下列说法:①它的图象与x 轴有两个公共点;②如果当x ≤1时y 随x 的增大而减小,则m 1=;③如果将它的图象向左平移3个单位后过原点,则m 1=-;④如果当x 4=时的函数值与x 2008=时的函数值相等,则当x 2012=时的函数值为3-.其中正确的说法是 .(把你认为正确说法的序号都填上)5. (2012湖北孝感3分)二次函数y =ax 2+bx +c(a≠0)的图象的对称轴是直线x =1,其图象的一部分如图所示.下列说法正确的是 (填正确结论的序号).①abc <0;②a -b +c <0;③3a +c <0;④当-1<x <3时,y >0.6. (2012辽宁营口3分)二次函数n x x y +-=62的部分图像如图所示,若关于x 的一元二次方程062=+-n x x 的一个解为11=x ,则另一个解2x = .7. (2012山东枣庄4分)二次函数2y x 2x 3=--的图象如图所示.当y <0时,自变量x 的取值范围是 .8. (2012新疆区5分)当x= 时,二次函数y=x 2+2x ﹣2有最小值.9. (2012吉林长春3分)如图,在平面直角坐标系中,点A 是抛物线()2y=a x 3+k -与y 轴的交点,点B 是这条抛物线上的另一点,且AB ∥x 轴,则以AB 为边的等边三角形ABC 的周长为 .10. (2012黑龙江牡丹江3分)若抛物线2y ax bx c =++经过点(-1,10),则a b c -+= .11. (2012黑龙江大庆3分)已知二次函数y=-x 2-2x +3的图象上有两点A(-7,1y ),B(-8,2y ),则1y 2y .(用>、<、=填空).三、解答题1. (2012北京市7分)已知二次函数23y (t 1)x 2(t 2)x 2=++++在x 0=和x 2=时的函数值相等。
【详解版】2014年全国120份中考试卷分类汇编:反比例函数
反比例函数一、选择题1.(2014•湖南怀化,第8题,3分)已知一次函数y=kx+b的图象如图,那么正比例函数y=kx和反比例函数y=在同一坐标系中的图象大致是().2. (2014•山东聊城,第10题,3分)如图,一次函数y1=k1x+b的图象和反比例函数y2=的图象交于A(1,2),B(﹣2,﹣1)两点,若y1<y2,则x的取值范围是()3.(3分)(2014•杭州)函数的自变量x满足≤x≤2时,函数值y满足≤y≤1,则这个函数可以是()y=可得y=y=可得y=,故此选项错误;4.(4分)(2014•黔东南州)如图,正比例函数y=x与反比例函数y=的图象相交于A、B两点,BC⊥x轴于点C,则△ABC的面积为()A.1B.2C.D.考点:反比例函数系数k的几何意义.专题:计算题.分析:由于正比例函数y=x与反比例函数y=的图象相交于A、B两点,则点A与点B关于原点对称,所以S△AOC=S△BOC,根据反比例函数比例系数k的几何意义得到S△BOC=,所以△ABC的面积为1.解答:解:∵正比例函数y=x与反比例函数y=的图象相交于A、B两点,∴点A与点B关于原点对称,∴S△AOC=S△BOC,∵BC⊥x轴,∴△ABC的面积=2S△BOC=2××|1|=1.故选A.点评:本题考查了反比例函数比例系数k的几何意义:在反比例函数y=的图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.5. (2014年湖北咸宁8.(3分))如图,双曲线y=与直线y=kx+b交于点M、N,并且点M的坐标为(1,3),点N的纵坐标为﹣1.根据图象信息可得关于x的方程=kx+b的解为()A.﹣3,1 B.﹣3,3 C.﹣1,1 D.﹣1,3考点:反比例函数与一次函数的交点问题.专题:压轴题.分析:首先把M点代入y=中,求出反比例函数解析式,再利用反比例函数解析式求出N 点坐标,求关于x的方程=kx+b的解就是看一次函数与反比例函数图象交点横坐标就是x的值.解答:解:∵M(1,3)在反比例函数图象上,∴m=1×3=3,∴反比例函数解析式为:y=,∵N也在反比例函数图象上,点N的纵坐标为﹣1.∴x=﹣3,∴N(﹣3,﹣1),∴关于x的方程=kx+b的解为:﹣3,1.故选:A.点评:此题主要考查了反比例函数与一次函数交点问题,关键掌握好利用图象求方程的解时,就是看两函数图象的交点横坐标.6. (2014•江苏盐城,第8题3分)如图,反比例函数y=(x<0)的图象经过点A(﹣1,1),过点A作AB⊥y轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B′在此反比例函数的图象上,则t的值是()的值为7. (2014•山东潍坊,第11题3分)已知一次函数y 1=kx +b (k <O )与反比例函数y 2=xm(m ≠O )的图象相交于A 、B 两点,其横坐标分别是-1和3,当y 1>y 2时,实数x 的取值范围是( ) A .x <-l 或O <x <3 B .一1<x <O 或O <x <3 C .一1<x <O 或x >3 D .O <x <3 考点:反比例函数与一次函数的交点问题. 分析:画出函数图象,取反比例函数图象位于一次函数图象下方时对应的x 的取值范围即可. 解答:一次函数y 1=kx +b 与反比例函数y 2=xm的图象相交于A 、B 两点,且A ,B 两点的横坐标分别为-1,3,故满足y 2<y 1的x 的取值范围是x <-1或0<x <3. 故选A . 点评:本题主要考查了反比例函数与一次函数的交点问题的知识点,熟练掌握反比例的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.8.(2014•四川泸州,第8题,3分)已知抛物线y =x 2﹣2x +m +1与x 轴有两个不同的交点,则函数y =的大致图象是( )C D9.(2014•四川凉山州,第11题,4分)函数y=mx+n与y=,其中m≠0,n≠0,那么它图象经过第二、四象限.图象经过第二、四象限.图象经过第二、四象限.图象经过第一、三象限.A ,B 两点,与双曲线ky x=交于E ,F 两点. 若AB =2EF ,则k 的值是【 】A .1-B .1C .12 D .34考点:1.反比例函数与一次函数交点问题;2.曲线上点的坐标与方程的关系;3.相似三角形的判定和性质;4.轴对称的性质.11.(2014•甘肃兰州,第9题4分)若反比例函数的图象位于第二、四象限,则k反比例函数解:∵反比例函数的图象位于第二、四象限,本题考查了反比例函数的性质.对于反比例函数12. (2014•黑龙江绥化,第16题3分)如图,过点O作直线与双曲线y=(k≠0)交于A、B 两点,过点B作BC⊥x轴于点C,作BD⊥y轴于点D.在x轴上分别取点E、F,使点A、E、F在同一条直线上,且AE=AF.设图中矩形ODBC的面积为S1,△EOF的面积为S2,则S1、S2的数量关系是()13. (2014•河北第14题3分)定义新运算:a⊕b=例如:4⊕5=,4⊕(﹣5)=.则函数y=2⊕x(x≠0)的图象大致是()B C=14、(2014•随州,第8题3分)关于反比例函数y=的图象,下列说法正确的是()15、(2014•宁夏,第5题3分)已知两点P1(x1,y1)、P2(x2,y2)在函数y=的图象上,当x1>x2>0时,下列结论正确的是()=,,=,=16.(2014•四川广安,第8题3分)如图,一次函数y1=k1x+b(k1、b为常数,且k1≠0)的图象与反比例函数y2=(k2为常数,且k2≠0)的图象都经过点A(2,3).则当x>2时,y1与y2的大小关系为()17.(2014•重庆A,第12题4分)如图,反比例函数y=﹣在第二象限的图象上有两点A、B,它们的横坐标分别为﹣1,﹣3,直线AB与x轴交于点C,则△AOC的面积为()A.8 B.10 C.12 D.24考点:反比例函数系数k的几何意义.分析:根据已知点横坐标得出其纵坐标,进而求出直线AB的解析式,求出直线AB与x 轴横坐标交点,即可得出△AOC的面积.解答:解:∵反比例函数y=﹣在第二象限的图象上有两点A、B,它们的横坐标分别为﹣1,﹣3,∴x=﹣1,y=6;x=﹣3,y=2,∴A(﹣1,6),B(﹣3,2),设直线AB的解析式为:y=kx+b,则,解得:,解得:y=2x+8,∴y=0时,x=﹣4,∴CO=4,∴△AOC的面积为:×6×4=12.故选:C.点评:此题主要考查了反比例函数系数k的几何意义以及待定系数法求一次函数解析式,得出直线AB的解析式是解题关键.18.(4分)(2014•贵州黔西南州, 第9题4分)已知如图,一次函数y=ax+b和反比例函数y=的图象相交于A、B两点,不等式ax+b>的解集为()第1题图A.x<﹣3 B.﹣3<x<0或x>1 C.x<﹣3或x>1 D.﹣3<x<1考点:反比例函数与一次函数的交点问题.专题:数形结合.分析:观察函数图象得到当﹣3<x<0或x>1时,一次函数图象都在反比例函数图象上方,即有ax+b>.解答:解:不等式ax+b>的解集为﹣3<x<0或x>1.故选B.点评:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了观察函数图象的能力.19. (2014•黑龙江牡丹江, 第9题3分)在同一直角坐标系中,函数y=kx+1与y=﹣(k≠0)的图象大致是()A .B.C .D .考点:反比例函数的图象;一次函数的图象专题:数形结合.分析:先根据一次函数图象与系数的关系得到k的范围,然后根据k的范围判断反比例函数图象的位置.解答:解:A、对于y=kx+1经过第一、三象限,则k>0,所以反比例函数图象应该分布在第二、四象限,所以A选项错误;B、一次函数y=kx+1与y轴的交点在x轴上方,所以B选项错误;C、对于y=kx+1经过第二、四象限,则k<0,所以反比例函数图象应该分布在第一、三象限,所以C选项错误;D、对于y=kx+1经过第二、四象限,则k<0,所以反比例函数图象应该分布在第一、三象限,所以D选项正确.故选D.点评:本题考查了反比例函数图象:反比例函数y=(k≠0)为双曲线,当k>0时,图象分布在第一、三象限;当k<0时,图象分布在第二、四象限.也考查了一次函数图象.20.(2014•青岛,第8题3分)函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()B C21. (2014•乐山,第8题3分)反比例函数y=与一次函数y=kx﹣k+2在同一直角坐标系中的图象可能是()B C22. (2014•乐山,第10题3分)如图,点P(﹣1,1)在双曲线上,过点P的直线l1与坐标轴分别交于A、B两点,且tan∠BAO=1.点M是该双曲线在第四象限上的一点,过点M 的直线l2与双曲线只有一个公共点,并与坐标轴分别交于点C、点D.则四边形ABCD的面积最小值为()=(﹣,x()﹣)﹣)2≥0,∴当且仅当﹣23.(2014年广西南宁,第12题3分)已知点A在双曲线y=﹣上,点B在直线y=x﹣4上,且A,B两点关于y轴对称.设点A的坐标为(m,n),则+的值是()A.﹣10 B.﹣8 C.6D. 4考点:反比例函数图象上点的坐标特征;一次函数图象上点的坐标特征;关于x轴、y轴对称的点的坐标..分析:先根据A、B两点关于y轴对称用m、n表示出点B的坐标,再根据点A在双曲线y=﹣上,点B在直线y=x﹣4上得出mn与m+n的值,代入代数式进行计算即可.解答:解:∵点A的坐标为(m,n),A、B两点关于y轴对称,∴B(﹣m,n),∵点A在双曲线y=﹣上,点B在直线y=x﹣4上,∴n=﹣,﹣m﹣4=n,即mn=﹣2,m+n=﹣4,∴原式===﹣10.故选A.点评:本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.24.(2014年广西钦州,第11题3分)如图,正比例函数y=x与反比例函数y=的图象交于A (2,2)、B(﹣2,﹣2)两点,当y=x的函数值大于y=的函数值时,x的取值范围是()A.x>2 B.x<﹣2 C.﹣2<x<0或0<x <2 D.﹣2<x<0或x>2考点:反比例函数与一次函数的交点问题.\专题:数形结合.分析:观察函数图象得到当﹣2<x<0或x>2时,正比例函数图象都在反比例函数图象上方,即有y=x的函数值大于y=的函数值.解答:解:当﹣2<x<0或x>2时,y=x的函数值大于y=的函数值.故选D.点评:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式以及观察函数图象的能力.25.(2014年贵州安顺,第7题3分)如果点A(﹣2,y1),B(﹣1,y2),C(2,y3)都在反比例函数的图象上,那么y1,y2,y3的大小关系是()A.y1<y3<y2B.y2<y1<y3C.y1<y2<y3 D.y3<y2<y1考点:反比例函数图象上点的坐标特征..分析:分别把x=﹣2,x=﹣1,x=2代入解析式求出y1、y2、y3根据k>0判断即可.解答:解:分别把x=﹣2,x=﹣1,x=2代入解析式得:y1=﹣,y2=﹣k,y3=,∵k>0,∴y2<y1<y3.故选B .点评: 本题主要考查对反比例函数图象上点的坐标特征的理解和掌握,能根据k >0确定y 1、y 2、y 3的大小是解此题的关键.26. (2014•海南,第14题3分)已知k 1>0>k 2,则函数y =k 1x 和y =的图象在同一平面直角坐标系中大致是( )BC=27.(2014·云南昆明,第8题3分)左下图是反比例函数)0(≠=k k xy 为常数,的图像,则一次函数k kx y -=的图像大致是( ) C BA28. (2014•湘潭,第8题,3分)如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()(第1题图)29. (2014•益阳,第6题,4分)正比例函数y=6x的图象与反比例函数y=的图象的交点位于()根据反比例函数与一次函数的交点问题解方程组得或30. (2014•株洲,第4题,3分)已知反比例函数y=的图象经过点(2,3),那么下列四个点中,也在这个函数图象上的是()31. (2014•扬州,第3题,3分)若反比例函数y=(k≠0)的图象经过点P(﹣2,3),则该函数的图象的点是()32. (2014•广西贺州,第10题3分)已知二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的图象如图所示,则一次函数y=cx+与反比例函数y=在同一坐标系内的大致图象是()A.B.C.D.考点:二次函数的图象;一次函数的图象;反比例函数的图象.分析:先根据二次函数的图象得到a>0,b<0,c<0,再根据一次函数图象与系数的关系和反比例函数图象与系数的关系判断它们的位置.解答:解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x=﹣>0,∴b<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴一次函数y=cx+的图象过第二、三、四象限,反比例函数y=分布在第二、四象限.故选B.点评:本题考查了二次函数的图象:二次函数y=ax2+bx+c(a、b、c为常数,a≠0)的图象为抛物线,当a>0,抛物线开口向上;当a<0,抛物线开口向下.对称轴为直线x=﹣;与y轴的交点坐标为(0,c).也考查了一次函数图象和反比例函数的图象.33.(2014年天津市,第9 题3分)已知反比例函数y=,当1<x<2时,y的取值范围是()A.0<y<5 B.1<y<2 C.5<y<10 D.y>10考点:反比例函数的性质.分析:将x=1和x=2分别代入反比例函数即可确定函数值的取值范围.解答:解:∵反比例函数y=中当x=1时y=10,当x=2时,y=5,∴当1<x<2时,y的取值范围是5<y<10,故选C.点评:本题考查了反比例函数的性质:(1)反比例函数y=(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.34.(2014•新疆,第11题5分)若点A(1,y1)和点B(2,y2)在反比例函数y=图象上,则y1与y2的大小关系是:y1y2(填“>”、“<”或“=”).35.(2014•温州,第10题4分)如图,矩形ABCD的顶点A在第一象限,AB∥x轴,AD∥y 轴,且对角线的交点与原点O重合.在边AB从小于AD到大于AD的变化过程中,若矩形ABCD的周长始终保持不变,则经过动点A的反比例函数y=(k≠0)中k的值的变化情况是()36.(2014•四川自贡,第9题4分)关于x的函数y=k(x+1)和y=(k≠0)在同一坐标系中的图象大致是()...D37 关于x的函数y=k(x+1)和y=(k≠0)在同一坐标系中的图象大致是()...D38. (2014•福建泉州,第7题3分)在同一平面直角坐标系中,函数y=mx+m与y=(m≠0)的图象可能是()B C D二、填空题1. (2014•上海,第14题4分)已知反比例函数y=kx(k 是常数,k≠0),在其图象所在的每一个象限内,y 的值随着x 的值的增大而增大,那么这个反比例函数的解析式是 (只上,则k 的值为 ﹣8 . ,解得3. (2014山东济南,第21题,3分)如图,OAC ∆和BAD ∆都是等腰直角三角形,90=∠=∠ADB ACO ,反比例函数xky =在第一象限的图象经过点B ,若1222=-AB OA ,则k 的值为________.【解析】设点B 的坐标为),(00y x B ,则DB OC AD AC y DB OC x -=-=+=00,,于是62121222200=-=-=-⋅+=⋅=AB OA DB OC DB OC DB OC y x k )()(,所以应填6.4. (2014•山东聊城,第17题,3分)如图,在x 轴的正半轴上依次间隔相等的距离取点A 1,A 2,A 3,A 4,…,A n 分别过这些点做x 轴的垂线与反比例函数y=的图象相交于点P 1,P 2,P 3,P 4,…P n 作P 2B 1⊥A 1P 1,P 3B 2⊥A 2P 2,P 4B 3⊥A 3P 3,…,P n B n ﹣1⊥A n ﹣1P n ﹣1,垂足分别为B 1,B 2,B 3,B 4,…,B n ﹣1,连接P 1P 2,P 2P 3,P 3P 4,…,P n ﹣1P n ,得到一组Rt △P 1B 1P 2,Rt △P 2B 2P 3,Rt △P 3B 3P 4,…,Rt △P n ﹣1B n ﹣1P n ,则Rt △P n ﹣1B n ﹣1P n 的面积为. .(﹣)﹣)(﹣)﹣])(﹣﹣)﹣)[﹣](﹣).故答案为.交于E,F两点,若E是AB的中点,S△BEF=2,则k的值为8.,代入解析式得到纵坐标:,=6.(2014•山东淄博,第16题4分)关于x的反比例函数y=的图象如图,A、P为该图象上的点,且关于原点成中心对称.△PAB中,PB∥y轴,AB∥x轴,PB与AB相交于点B.若△PAB的面积大于12,则关于x的方程(a﹣1)x2﹣x+=0的根的情况是没有实数根.考点:根的判别式;反比例函数的性质.分析:由比例函数y=的图象位于一、三象限得出a+4>0,A、P为该图象上的点,且关于原点成中心对称,得出2xy>12,进一步得出a+4>6,由此确定a的取值范围,进一步利用根的判别式判定方程根的情况即可.解答:解:∵反比例函数y=的图象位于一、三象限,∴a+4>0,a>﹣4,∵A、P关于原点成中心对称,PB∥y轴,AB∥x轴,△PAB的面积大于12,∴2xy>12,即a+4>6,a>2∴a>2.∴△=(﹣1)2﹣4(a﹣1)×=2﹣a<0,∴关于x的方程(a﹣1)x2﹣x+=0没有实数根.故答案为:没有实数根.点评:此题综合考查了反比例函数的图形与性质,一元二次方程根的判别式,注意正确判定a的取值范围是解决问题的关键.7.(2014•山东临沂,第18题3分)(3分)(2014•临沂)如图,反比例函数y=的图象经过直角三角形OAB的顶点A,D为斜边OA的中点,则过点D的反比例函数的解析式为y=.8.(2014•四川泸州,第16题,3分)图,矩形AOBC的顶点坐标分别为A(0,3),O(0,0),B(4,0),C(4,3),动点F在边BC上(不与B、C重合),过点F的反比例函数的图象与边AC交于点E,直线EF分别与y轴和x轴相交于点D和G.给出下列命题:①若k=4,则△OEF的面积为;②若,则点C关于直线EF的对称点在x轴上;③满足题设的k的取值范围是0<k≤12;④若DE•EG=,则k=1.其中正确的命题的序号是②④(写出所有正确命题的序号).≠)如答图所示,若,求出,,),﹣.,连接====,解得,解得,9 .(2014•年山东东营,第17题4分)如图,函数y=和y=﹣的图象分别是l1和l2.设点P在l1上,PC⊥x轴,垂足为C,交l2于点A,PD⊥y轴,垂足为D,交l2于点B,则三角形PAB 的面积为8.考点:反比例函数系数k的几何意义.分析:设P的坐标是(a,),推出A的坐标和B的坐标,求出∠APB=90°,求出PA、PB 的值,根据三角形的面积公式求出即可.解答:解:∵点P在y=上,∴|x p|×|y p|=|k|=1,∴设P的坐标是(a,)(a为正数),∵PA⊥x轴,∴A的横坐标是a,∵A在y=﹣上,∴A的坐标是(a,﹣),∵PB⊥y轴,∴B的纵坐标是,∵B在y=﹣上,∴代入得:=﹣,解得:x=﹣3a,∴B的坐标是(﹣3a,),∴PA=|﹣(﹣)|=,PB=|a﹣(﹣3a)|=4a,∵PA⊥x轴,PB⊥y轴,x轴⊥y轴,∴PA⊥PB,∴△PAB的面积是:PA×PB=××4a=8.故答案为:8.点评:本题考查了反比例函数和三角形面积公式的应用,关键是能根据P点的坐标得出A、B的坐标,本题具有一定的代表性,是一道比较好的题目.10.(2014•黔南州,第16题5分)如图,正比例函数y1=k1x与反比例函数y2=的图象交于A、B两点,根据图象可直接写出当y1>y2时,x的取值范围是﹣1<x<0或x>1.考点:反比例函数与一次函数的交点问题专题:计算题.分析:先根据正比例函数图象和反比例函数图象的性质得到点A与点B关于原点对称,则B点坐标为(﹣1,﹣2),然后观察函数图象,当﹣1<x<0或x>1时,正比例函数图象都在反比例函数图象上方,即有y1>y2.解答:解:∵正比例函数y=k1x与反比例函数y2=的图象交于A、B两点,1∴点A与点B关于原点对称,∴B点坐标为(﹣1,﹣2),当﹣1<x<0或x>1时,y1>y2.故答案为:﹣1<x<0或x>1.点评:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式以及观察函数图象的能力.11. (2014•湖南衡阳,第18题3分)若点P1(﹣1,m),P2(﹣2,n)在反比例函数y=(k >0)的图象上,则m=<n(填“>”“<”或“=”号).考点:反比例函数图象上点的坐标特征.专题:计算题.分析:根据反比例函数图象上点的坐标特征得到﹣1•m=k,﹣2•n=k,解得m=﹣k,n=﹣,然后利用k>0比较m、n的大小.解答:解:∵P1(﹣1,m),P2(﹣2,n)在反比例函数y=(k>0)的图象上,∴﹣1•m=k,﹣2•n=k,∴m=﹣k,n=﹣,而k>0,∴m<n.故答案为:<.点评:本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.12. (2014•湖南永州,第13题3分)已知点A(1,y1),B(﹣2,y2)在反比例函数y=(k>0)的图象上,则y1 >y2(填“>”“<”或“=”)13. (2014衡阳,第18题3分)若点()11P m -,和点()22P n -,都在反比例函数()0y k x=>的图象上,则m ______n (填“>”、“<” 或“=”号) 【考点】反比例函数图像的性质【解析】∵k >0时,图像在一三象限,在每一象限,y 随x 增大而减小; 又∵0>-1>-2 ∴m <n 【答案】<【点评】反比例函数图像的性质应用是基础题,就考查一个知识点,k >0,反比例函数y 随x 的增大而减小,牢记性质,注意数形结合. 14、(2014•无锡,第14题2分)已知双曲线y =经过点(﹣2,1),则k 的值等于 ﹣1 .,求出经过点(﹣,15、(2014•宁夏,第24题8分)在平面直角坐标系中,已知反比例函数y =的图象经过点A (1,).(1)试确定此反比例函数的解析式;(2)点O 是坐标原点,将线段OA 绕O 点顺时针旋转30°得到线段OB ,判断点B 是否在此反比例函数的图象上,并说明理由.BD ,=1×==,点坐标为(时,=)在反比例函数16.(2014•陕西,第16题3分)已知P1(x1,y1),P2(x2,y2)是同一个反比例函数图象上的两点,若x2=x1+2,且=+,则这个反比例函数的表达式为y=.考点:反比例函数图象上点的坐标特征.分析:设这个反比例函数的表达式为y=,将P1(x1,y1),P2(x2,y2)代入得x1•y1=x2•y2=k,所以=,=,由=+,得(x2﹣x1)=,将x2=x1+2代入,求出k=4,得出这个反比例函数的表达式为y=.解答:解:设这个反比例函数的表达式为y=,∵P1(x1,y1),P2(x2,y2)是同一个反比例函数图象上的两点,∴x1•y1=x2•y2=k,∴=,=,∵=+,∴=+,∴(x2﹣x1)=,∵x2=x1+2,∴×2=,∴k=4,∴这个反比例函数的表达式为y=.故答案为y=.点评:本题考查了反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.同时考查了式子的变形.17.(2014•浙江绍兴,第15题5分)如图,边长为n的正方形OABC的边OA,OC在坐标轴上,点A1,A2…A n﹣1为OA的n等分点,点B1,B2…B n﹣1为CB的n等分点,连结A1B1,A2B2,…A n﹣1B n﹣1,分别交曲线y=(x>0)于点C1,C2,…,C n﹣1.若C15B15=16C15A15,则n的值为17.(n为正整数),)=15×=18.(2014•四川成都,第25题4分)如图,在平面直角坐标系xOy中,直线y=x与双曲线y=相交于A,B两点,C是第一象限内双曲线上一点,连接CA并延长交y轴于点P,连接BP,B C.若△PBC的面积是20,则点C的坐标为(,).解方程组或)代入得,解得)代入得,解得=点坐标为(,故答案为(,19.(2014•湖北荆门,第17题3分)如图,已知点A是双曲线y=在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为边作等边△ABC,点C在第四象限.随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=(k<0)上运动,则k的值是﹣6.第2题图考点:反比例函数图象上点的坐标特征;等边三角形的性质;相似三角形的判定与性质;特殊角的三角函数值.专题:动点型.分析:连接OC,易证AO⊥OC,OC=O A.由∠AOC=90°想到构造K型相似,过点A 作AE⊥y轴,垂足为E,过点C作CF⊥y轴,垂足为F,可证△AEO∽△OF C.从而得到OF=AE,FC=EO..设点A坐标为(a,b)则ab=2,可得FC•OF=6.设点C坐标为(x,y),从而有FC•OF=﹣xy=﹣6,即k=xy=﹣6.解答:解:∵双曲线y=关于原点对称,∴点A与点B关于原点对称.∴OA=O B.连接OC,如图所示.∵△ABC是等边三角形,OA=OB,∴OC⊥A B.∠BAC=60°.∴tan∠OAC==.∴OC=O A.过点A作AE⊥y轴,垂足为E,过点C作CF⊥y轴,垂足为F,∵AE⊥OE,CF⊥OF,OC⊥OA,∴∠AEO=∠FOC,∠AOE=90°﹣∠FOC=∠OCF.∴△AEO∽△OF C.∴==.∵OC=OA,∴OF=AE,FC=EO.设点A坐标为(a,b),∵点A在第一象限,∴AE=a,OE=B.∴OF=AE=a,FC=EO=B.∵点A在双曲线y=上,∴ab=2.∴FC•OF=b•a=3ab=6设点C坐标为(x,y),∵点C在第四象限,∴FC=x,OF=﹣y.∴FC•OF=x•(﹣y)=﹣xy=6.∴xy=﹣6.∵点C在双曲线y=上,∴k=xy=﹣6.故答案为:﹣6.点评:本题考查了等边三角形的性质、反比例函数的性质、相似三角形的判定与性质、点与坐标之间的关系、特殊角的三角函数值等知识,有一定的难度.由∠AOC=90°联想到构造K型相似是解答本题的关键.20.(2014•莱芜,第16题4分)已知一次函数y=ax+b与反比例函数的图象相交于A(4,2)、B(﹣2,m)两点,则一次函数的表达式为y=x﹣2.得得,21. (2014•山西,第13题3分)如图,已知一次函数y=kx﹣4的图象与x轴、y轴分别交于A、B两点,与反比例函数y=在第一象限内的图象交于点C,且A为BC的中点,则k= 4.考点:反比例函数与一次函数的交点问题.专题:计算题.分析:先确定B点坐标,根据A为BC的中点,则点C和点B关于点A中心对称,所以C点的纵坐标为4,再利用反比例函数图象上点的坐标特征可确定C点坐标,然后把C 点坐标代入y=kx﹣4即可得到k的值.解答:解:把y=0代入y=kx﹣4得y=﹣4,则B点坐标为(0,﹣4),∵A为BC的中点,∴C点的纵坐标为4,把y=4代入y=得x=2,∴C点坐标为(2,4),把C(2,4)代入y=kx﹣4得2k﹣4=4,解得k=4.故答案为4.点评:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.22.(2014•丽水,第16题4分)如图,点E,F在函数y=(x>0)的图象上,直线EF 分别与x轴、y轴交于点A,B,且BE:BF=1:m.过点E作EP⊥y轴于P,已知△OEP的面积为1,则k值是2,△OEF的面积是(用含m的式子表示),)==,+.23.(2014•武汉,第15题3分)如图,若双曲线y=与边长为5的等边△AOB的边OA,AB分别相交于C,D两点,且OC=3BD,则实数k的值为.,xx==xx x故答案为:24.(2014•邵阳,第13题3分)若反比例函数的图象经过点(﹣1,2),则k的值是﹣2 .25.(2014•孝感,第17题3分)如图,Rt△AOB的一条直角边OB在x轴上,双曲线y=经过斜边OA的中点C,与另一直角边交于点D.若S△OCD=9,则S△OBD的值为6.=26.(2014•浙江湖州,第15题4分)如图,已知在Rt△OAC中,O 为坐标原点,直角顶点C在x轴的正半轴上,反比例函数y=(k≠0)在第一象限的图象经过OA的中点B,交AC于点D,连接OD.若△OCD∽△ACO,则直线OA的解析式为.分析:设OC=a,根据点D在反比例函数图象上表示出CD,再根据相似三角形对应边成比例列式求出AC,然后根据中点的定义表示出。
2010-2014海南中考数学函数大题(含答案)
2010-2014海南中考数学函数大题24.(14分)(2014•海南)如图,对称轴为直线x=2的抛物线经过A(﹣1,0),C(0,5)两点,与x轴另一交点为B.已知M(0,1),E(a,0),F(a+1,0),点P是第一象限内的抛物线上的动点.(1)求此抛物线的解析式;(2)当a=1时,求四边形MEFP的面积的最大值,并求此时点P的坐标;(3)若△PCM是以点P为顶点的等腰三角形,求a为何值时,四边形PMEF周长最小?请说明理由.,解得,∴()•ON﹣PN•MN﹣OM•OE()﹣x•(﹣)﹣x+=)x=的面积有最大值为,此时点坐标为(,x=2±.,解得:m=﹣﹣a+1=a=时,四边形24.(14分)(2013•海南)如图10,二次函数的图象与x轴相交于点A(﹣3,0)、B(﹣1,0),与y轴相交于点C(0,3),点P是该图象上的动点;一次函数y=kx﹣4k(k≠0)的图象过点P交x轴于点Q.(1)求该二次函数的解析式;(2)当点P的坐标为(﹣4,m)时,求证:∠OPC=∠AQC;(3)点M,N分别在线段AQ、CQ上,点M以每秒3个单位长度的速度从点A向点Q运动,同时,点N以每秒1个单位长度的速度从点C向点Q运动,当点M,N中有一点到达Q点时,两点同时停止运动,设运动时间为t秒.连接AN,当△AMN的面积最大时,①求t的值;②直线PQ能否垂直平分线段MN?若能,请求出此时点P的坐标;若不能,请说明你的理由.图10(1)解:设抛物线的解析式为:y=a(x+3)(x+1),∵抛物线经过点C(0,3),∴3=a×3×1,解得a=1.∴抛物线的解析式为:y=(x+3)(x+1)=x2+4x+3.(2)证明:在抛物线解析式y=x2+4x+3中,当x=﹣4时,y=3,∴P(﹣4,3).∵P(﹣4,3),C(0,3),∴PC=4,PC∥x轴.∵一次函数y=kx﹣4k(k≠0)的图象交x轴于点Q,当y=0时,x=4,∴Q(4,0),OQ=4.∴PC=OQ,又∵PC∥x轴,∴四边形POQC是平行四边形,∴∠OPC=∠AQC.(3)解:①在Rt△COQ中,OC=3,OQ=4,由勾股定理得:CQ=5.如答图1所示,过点N作ND⊥x轴于点D,则ND∥OC,∴△QND∽△QCO,∴,即,解得:ND=3﹣t.设S=S△AMN,则:S=AM•ND=•3t•(3﹣t)=﹣(x﹣)2+.又∵AQ=7,∴点M到达终点的时间为t=,∴S=﹣(x﹣)2+(0<t≤).∵﹣<0,<,且x<时,y随x的增大而增大,∴当t=时,△AMN的面积最大.②假设直线PQ能够垂直平分线段MN,则有QM=QN,且PQ⊥MN,PQ平分∠AQC.由QM=QN,得:7﹣3t=5﹣t,解得t=1.此时点M与点O重合,如答图2所示:设PQ与OC交于点E,由(2)可知,四边形POQC是平行四边形,∴OE=CE.∵点E到CQ的距离小于CE,∴点E到CQ的距离小于OE,而OE⊥x轴,∴PQ不是∠AQC的平分线,这与假设矛盾.∴直线PQ不能垂直平分线段MN.24.(14分)(2012•海南)如图,顶点为P(4,﹣4)的二次函数图象经过原点(0,0),点A在该图象上,OA交其对称轴l于点M,点M、N关于点P对称,连接AN、ON,(1)求该二次函数的关系式;(2)若点A在对称轴l右侧的二次函数图象上运动时,请解答下面问题:①证明:∠ANM=∠ONM;②△ANO能否为直角三角形?如果能,请求出所有符合条件的点A的坐标;如果不能,请说明理由.,∴二次函数解析式为(4=m y=mmHD=中,tan∠ONM=,在tan∠ANM===m(m (m=,即=24.(14分)(2011•海南)如图,已知抛物线y=﹣x2+bx+9﹣b2(b为常数)经过坐标原点O,且与x轴交于另一点E.其顶点M在第一象限.(1)求该抛物线所对应的函数关系式;(2)设点A是该抛物线上位于x轴上方,且在其对称轴左侧的一个动点;过点A作x轴的平行线交该抛物线于另一点D,再作AB⊥x轴于点B.DE⊥x轴于点C.①当线段AB、BC的长都是整数个单位长度时,求矩形ABCD的周长;②求矩形ABCD的周长的最大值,并写出此时点A的坐标;③当矩形ABCD的周长取得最大值时,它的面积是否也同时取得最大值?请判断井说明理由.解:(1)由题意代入原点到二次函数式则9﹣b 2=0,解得b=±3, 由题意抛物线的对称轴大于0,,所以b=3,所以解析式为y=﹣x 2+3x ;(2)①y= -x²+3x = -(x- 3/2)² + 9/4 M(0,9/4)AB 为整数,∴AB=1,或2 当AB=1 时,BC 不是整数 故AB=2,易求得BC=2 ∴周长为 6②设B(m,0) A(m,-m²+3m)则C(3-m,0)周长=(-m²+3m+3-2m)*2 = -2m²+2m+6= -2(m-1/2)² +13/2 m=1/2时,最大值 13/2 此时A(1/2,5/4)③面积=(-m²+3m)(3-2m) m=1/2时,面积= 5/2而当m=3/5时,面积= 324/125 > 5/2 所以周长最大时面积不是最大24.(14分)(2010•海南)如图11,在平面直角坐标系中,直线3+-=x y 与x 轴、y 轴分别交于点B 、C ;抛物线c bx x y ++-=2经过B 、C 两点,并与x 轴交于另一点A . (1)求该抛物线所对应的函数关系式;(2)设)(y x P ,是(1)所得抛物线上的一个动点,过点P 作直线x l ⊥轴于点M ,交直线BC 于点N .① 若点P 在第一象限内.试问:线段PN 的长度是否存在最大值 ?若存在,求出它的最大值及此时x 的值;若不存在,请说明理由; ② 求以BC 为底边的等腰△BPC 的面积24.(1)由于直线3+-=x y 经过B 、C 两点, 令y =0得x =3;令x =0,得y =3 ∴B (3,0),C (0,3) ……1分∵点B 、C 在抛物线c bx x y ++-=2上,于是得93b+c=0c=3-+⎧⎨⎩……2分 解得b=2,c=3 ……3分∴所求函数关系式为322++-=x x y ……4分 (2)①∵点P (x ,y )在抛物线322++-=x x y 上, 且PN ⊥x 轴,∴设点P 的坐标为(x , 322++-x x ) ……5分同理可设点N 的坐标为(x ,3+-x ) ……6分又点P 在第一象限, ∴PN=PM-NM=(322++-x x )-=x x 32+=49)23(2+--x……7分∴当23=x 时,线段PN 的长度的最大②由题意知,点P 在线段BC 的垂直平分线上,又由①知,OB =OC∴BC 的中垂线同时也是∠BOC 的平分线,∴设点P 的坐标为),(a a 又点P 在 抛 物 线 322++-=x x y 上,于是有322++-=a a a ∴032=--a a ……9分解得2131,213121-=+=a a ……10分∴点P 的坐标为:()2131,2131++ 或 ()2131,2131-- …11分若点P 的坐标为 ()2131,2131++ ,此时点P 在第一象限,在Rt △OMP 和Rt △BOC 中,12MP OM +==,OB=OC=3 BO C BO CP S ∆∆-=四边形S S BPCBOPBOC =2S S ∆∆-11=2BO PM-BO CO 22⨯⋅⋅⋅19=2322⨯⨯若点P 的坐标为, 此时点P 在第三象限,则BO C CO P BO P BPC S S S S ∆∆∆∆++=11323322=⨯+⨯⨯ 11932222=⨯⨯⨯+ 392+==……13分……12分()2131,2131--。
2014年全国中考数学试题汇编《一次函数》(04)
全国中考数学试题汇编《一次函数》(04)解答题91.(2007•乌兰察布)元旦联欢会前某班布置教室,同学们利用彩纸条粘成﹣环套﹣环的彩纸链,小颖测量了部分与x的函数关系,并求出函数关系式;(2)教室天花板对角线长10m,现需沿天花板对角线各拉一根彩纸链,则每根彩纸链至少要用多少个纸环?92.(2007•温州)为调动销售人员的积极性,A、B两公司采取如下工资支付方式:A公司每月2000元基本工资,另加销售额的2%作为奖金;B公司每月1600元基本工资,另加销售额的4%作为奖金.已知A、B公司两位销售(2)小李1~6月份的销售额y1与月份x的函数关系式是y1=1200x+10400,小张1~6月份的销售额y2也是月份x 的一次函数,请求出y2与x的函数关系式;(3)如果7~12月份两人的销售额也分别满足(2)中两个一次函数的关系,问几月份起小张的工资高于小李的工资.93.(2007•泰州)通过市场调查,一段时间内某地区某一种农副产品的需求数量y(千克)与市场价格x(元/千克)又假设该地区这种农副产品在这段时间内的生产数量z(千克)与市场价格x(元/千克)成正比例关系:z=400x(0<x<30).现不计其它因素影响,如果需求数量y等于生产数量z,那么此时市场处于平衡状态.(1)请通过描点画图探究y与x之间的函数关系,并求出函数关系式;(2)根据以上市场调查,请你分析:当市场处于平衡状态时,该地区这种农副产品的市场价格与这段时间内农民的总销售收入各是多少?(3)如果该地区农民对这种农副产品进行精加工,此时生产数量z与市场价格x的函数关系发生改变,而需求数量y与市场价格x的函数关系未发生变化,那么当市场处于平衡状态时,该地区农民的总销售收入比未精加工市场平衡时增加了17600元.请问这时该农副产品的市场价格为多少元?94.(2007•泰安)市园林处为了对一段公路进行绿化,计划购买A,B两种风景树共900棵.A,B两种树的相关y元.(1)求y与x之间的函数关系式;(2)若购树的总费用不超过82 000元,则购A种树不少于多少棵?(3)若希望这批树的成活率不低于94%,且使购树的总费用最低,应选购A,B两种树各多少棵?此时最低费用为多少?95.(2007•太原)今年的全国助残日这天,某单位的青年志愿者到距单位6千米的福利院参加“爱心捐助活动”.一部分人步行,另一部分人骑自行车,他们沿相同的路线前往.如图,l1、l2分别表示步行和骑自行车的人前往目的地所走的路程y(千米)随时间x(分钟)变化的函数图象.(1)分别求l1、l2的函数表达式;(2)求骑车的人用多长时间追上步行的人.96.(2007•双柏县)某电信公司开设了甲、乙两种市内移动通信业务.甲种使用者每月需缴15元月租费,然后每通话1分钟,再付话费0.3元;乙种使用者不缴月租费,每通话1分钟,付话费0.6元.若一个月内通话时间为x 分钟,甲、乙两种的费用分别为y1和y2元.(1)试分别写出y1、y2与x之间的函数关系式;(2)在同一坐标系中画出y1、y2的图象;(3)根据一个月通话时间,你认为选用哪种通信业务更优惠?97.(2007•十堰)一旅游团来到十堰境内某旅游景点,看到售票处旁边的公告栏如图所示,请根据公告栏内容回答下列问题:(1)若旅游团人数为9人,门票费用是多少?若旅游团人数为30人,门票费用又是多少?(2)设旅游团人数为x人,写出该旅游团门票费用y(元)与人数x的函数关系式.(直接填写在下面的横线上).98.(2007•沈阳)化工商店销售某种新型化工原料,其市场指导价是每千克160元(化工商店的售价还可以在市场指导价的基础上进行浮动),这种原料的进货价是市场指导价的75%.(1)为了扩大销售量,化工商店决定适当调整价格,调整后的价格按八折销售,仍可获得实际售价的20%的利润.求化工商店调整价格后的标价是多少元?打折后的实际售价是多少元?(2)化工商店为了解这种原料的月销售量y(千克)与实际售价x(元/千克)之间的关系,每个月调整一次实际售y(千克)为纵坐标描出各点,观察这些点的发展趋势,猜想y与x之间可能存在怎样的函数关系;②请你用所学过的函数知识确定一个满足这些数据的y与x之间的函数表达式,并验证你在①中的猜想;③若化工商店某月按同一实际售价共卖出这种原料450千克,请你求出化工商店这个月销售这种原料的利润是多少元?99.(2007•邵阳)为了增强农民抵御大病风险的能力,政府积极推行农村医疗保险制度.我市某县根据本地的实际情况,制定了纳入医疗保险的农民住院医疗费用的报销规定:享受医保的农民可在定点医院住院治疗,由患者先垫x元(x>100),按规定报销的医疗费用为y元,试写出y与x的函数关系式;(2)若该农民在这次住院治疗中的医疗费用为1000元,则他在这次住院治疗中报销的医疗费用和自付的医疗费用各为多少元.100.(2007•三明)为了鼓励节能降耗,某市规定如下用电收费标准:每户每月的用电量不超过120度时,电价为a 元/度;超过120度时,不超过部分仍为a元/度,超过部分为b元/度.已知某用户五月份用电115度,交电费69元,六月份用电140度,交电费94元.(1)求a,b的值;(2)设该用户每月用电量为x(度),应付电费为y(元);①分别求出0≤x≤120和x>120时,y与x之间的函数关系式;②若该用户计划七月份所付电费不超过83元,问该用户七月份最多可用电多少度?101.(2007•泉州)李明从泉州乘汽车沿高速公路前往A地,已知该汽车的平均速度是100千米/小时,它行驶t小时后距泉州的路程为s1千米.(1)请用含t的代数式表示s1;(2)设另有王红同时从A地乘汽车沿同一条高速公路回泉州,已知这辆汽车距泉州的路程s2(千米)与行驶时间t(时)之间的函数关系式为s2=kt+b(k、t为常数,k≠0),若李红从A地回到泉州用了9小时,且当t=2时,s2=560,k与b的值;②试问在两辆汽车相遇之前,当行驶时间t的取值在什么范围内,两车的距离小于288千米?102.(2007•黔南州)某商厦试销一种成本为50元/件的商品,规定试销时的销售单价不低于成本,又不高于80元/件,试销中销售量y(件)与销售单价x(元/件)的关系可近似的看作一次函数(如图).(1)求y与x的关系式;(2)设商厦获得的毛利润(毛利润=销售额﹣成本)为s(元),则销售单价定为多少时,该商厦获利最大,最大利润是多少?此时的销售量是多少件?103.(2007•宁夏)某家庭装修房屋,由甲,乙两个装修公司合作完成.先由甲装修公司单独装修3天,剩下的工作由甲,乙两个装修公路合作完成.工程进度满足如图所示的函数关系,该家庭共支付工资8 000元.(1)完成此房屋装修共需多少天?(2)若按完成工作量的多少支付工资,甲装修公司应得多少元?104.(2007•南通)周华早起锻炼,往返于家与体育场之间,离家的距离y(米)与时间x(分)的关系如图所示.回答下列问题:(1)填空:周华从体育场返回行走的行走速度时_________米/分;(2)刘明与周华同时出发,按相同的路线前往体育场,刘明离周华家的距离y(米)与时间x(分)的关系式为y=kx+400,当周华回到家时,刘明刚好到达体育场.①直接在图中画出刘明离周华家的距离y(米)与时间x(分)的函数图象;②填空:周华与刘明在途中共相遇_________次;③求周华出发后经过多少分钟与刘明最后一次相遇.105.(2007•南京)某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过20m3时,按2元/m3计费;月用水量超过20m3时,其中的20m3仍按2元/m3收费,超过部分按2.6元/m3计费.设每户家庭用水量为xm3时,应交水费y元.(1)分别求出0≤x≤20和x>20时y与x的函数表达式;106.(2007•南充)某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机的进货161 800元.(1)请你帮助商店算一算有多少种进货方案?(不考虑除进价之外的其它费用)(2)哪种进货方案待商店销售购进的电视机与洗衣机完毕后获得利润最多?并求出最多利润.(利润=售价﹣进价)107.(2007•牡丹江)已知:甲、乙两车分别从相距300千米的A,B两地同时出发相向而行,其中甲到B地后立即返回,下图是它们离各自出发地的距离y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车离出发地的距离y(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量的取值范围;(2)当它们行驶到与各自出发地的距离相等时,用了小时,求乙车离出发地的距离y(千米)与行驶时间x(小时)之间的函数关系式,写出自变量的取值范围;(3)在(2)的条件下,求它们在行驶的过程中相遇的时间.108.(2007•梅州)在市区内,我市乘坐出租车的价格y(元)与路程x(km)的函数关系图象如图所示.(1)请你根据图象写出两条信息;(2)小明从学校出发乘坐出租车回家用了13元,求学校离小明家的路程.109.(2007•眉山)某县响应“建设环保节约型社会”的号召,决定资助部分村镇修建一批沼气池,使农民用到经济、环保的沼气能源.幸福村共有264户村民,政府补助村里34万元,不足部分由村民集资.修建A型、B型沼气池x个,修建两种型号沼气池共需费用y万元.(1)求y与x之间的函数关系式;(2)不超过政府批给修建沼气池用地面积,又要使该村每户村民用上沼气的修建方案有几种;(3)若平均每户村民集资700元,能否满足所需费用最少的修建方案.110.(2007•泸州)某市出租车计费标准如下:行驶路程不超过3千米时,收费8元;行驶路程超过3千米的部分,按每千米1.60元计费.(1)求出租车收费y(元)与行驶路程x(千米)之间的函数关系式;(2)若某人一次乘出租车时,付出了车费14.40元,求他这次乘坐了多少千米的路?111.(2007•娄底)某信息网络公司,宽带网上网费用收取方式有三种:方式一,每月80元包干;方式二,每月上网时间x(小时)与上网费用y(元)的函数关系如图中折线段所示;方式三,以0小时为起点,每小时收费1.6元,月收费不超过120元,如果你家每月上网60小时,应选择哪种方式上网费用最少?112.(2007•陇南)如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:(1)求整齐摆放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式;(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?113.(2007•聊城)某市为了进一步改善居民的生活环境,园林处决定增加公园A和公园B的绿化面积.已知公园A,B分别有如图1,图2所示的阴影部分需铺设草坪,在甲、乙两地分别有同种草皮1608m2和1200m2出售,且(注:运费单价指将每平方米草皮运送1千米所需的人民币)(1)分别求出公园A,B需铺设草坪的面积;(结果精确到1m2)(2)请设计出总运费最省的草皮运送方案,并说明理由.114.(2007•连云港)某地区一种商品的需求量y1(万件)、供应量y2(万件)与价格x(元/件)分别近似满足下列函数关系式:y1=﹣x+60,y2=2x﹣36.需求量为0时,即停止供应.当y1=y2时,该商品的价格称为稳定价格,需求量称为稳定需求量.(1)求该商品的稳定价格与稳定需求量;(2)价格在什么范围,该商品的需求量低于供应量;(3)当需求量高于供应量时,政府常通过对供应方提供价格补贴来提高供货价格,以提高供应量.现若要使稳定需求量增加4万件,政府应对每件商品提供多少元补贴,才能使供应量等于需求量?115.(2007•莱芜)在济青高速公路南线的施工过程中,某工程队承包了一段长18千米的道路修建工程,为加快修建速度,工程负责人将工程队分为甲乙两组,从路的两端同时开工,两个组修建道路的长度与施工天数的关系如图所示.求:(1)开工多少天时,两个组修建道路的长度相同?(2)此工程队完成任务共需要多少天?116.(2007•昆明)某工厂有甲、乙两个相等的长方体的水池,甲池的水均匀地流入乙池;如图,是甲、乙两个水池水的深度y(米)与水流时间x(小时)的函数关系的图象.(1)分别求两个水池水的深度y(米)与水流时间x(小时)的函数关系式,并指出自变量x的取值范围;(2)水流动几小时,两个水池的水的深度相同?117.(2007•荆州)某县在实施“村村通”工程中,决定在A、B两村之间修筑一条公路,甲、乙两个工程队分别从A、B两村同时相向开始修筑.施工期间,乙队因另有任务提前离开,余下的任务由甲队单独完成,直到道路修通.下图是甲、乙两个工程队所修道路的长度y(米)与修筑时间x(天)之间的函数图象,请根据图象所提供的信息,求该公路的总长度.118.(2007•金昌)暑假期间,王红随爸爸妈妈到一个著名森林风景区旅游,导游提醒大家上山要多带一件衣服,并介绍山区气温会随着海拔高度的增加而下降,沿途王红利用随身带的登山表(具有测定当前位置的海拔高度和气(2)观察(1)中所画出的图象,猜想y与x之间函数关系,求出所猜想的函数关系表达式;(3)如果王红到达山顶时,只告诉你山顶的气温为20.2℃,请计算此风景区山顶海拔高度大约是多少米?119.(2007•江苏)为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的.该市自来水收费价格见价目表.若某户居民1月份用水8m3,则应收水费:2×6+4×(8﹣6)=20元.(1)若该户居民2月份用水12.5m3,则应收水费_________元;(2)若该户居民3、4月份共用水15m3(4月份用水量超过3月份),共交水费44元,则该户居民3,4月份各用水多少立方米?120.(2007•仙桃)工业园区某消毒液工厂,今年四月份以前,每天的产量与销售量均为500箱.进入四月份后,每天的产量保持不变,市场需求量不断增加.如图是四月前后一段时期库存量y(箱)与生产时间t(月份)之间的函数图象.(1)四月份的平均日销售量为多少箱?(2)该厂什么时候开始出现供不应求的现象,此时日销售量为多少箱?(3)为满足市场需求,该厂打算在投资不超过135万元的情况下,购买5台新设备,使扩大生产规模后的日产量A、B两种型号的设备可供选择,其价格与两种设备的日产量如下表:2007年全国中考数学试题汇编《一次函数》(04)参考答案与试题解析解答题91.(2007•乌兰察布)元旦联欢会前某班布置教室,同学们利用彩纸条粘成﹣环套﹣环的彩纸链,小颖测量了部分与x的函数关系,并求出函数关系式;(2)教室天花板对角线长10m,现需沿天花板对角线各拉一根彩纸链,则每根彩纸链至少要用多少个纸环?92.(2007•温州)为调动销售人员的积极性,A、B两公司采取如下工资支付方式:A公司每月2000元基本工资,另加销售额的2%作为奖金;B公司每月1600元基本工资,另加销售额的4%作为奖金.已知A、B公司两位销售(1)请问小李与小张3月份的工资各是多少?(2)小李1~6月份的销售额y1与月份x的函数关系式是y1=1200x+10400,小张1~6月份的销售额y2也是月份x 的一次函数,请求出y2与x的函数关系式;(3)如果7~12月份两人的销售额也分别满足(2)中两个一次函数的关系,问几月份起小张的工资高于小李的工资.解得93.(2007•泰州)通过市场调查,一段时间内某地区某一种农副产品的需求数量y(千克)与市场价格x(元/千克)又假设该地区这种农副产品在这段时间内的生产数量z(千克)与市场价格x(元/千克)成正比例关系:z=400x(0<x<30).现不计其它因素影响,如果需求数量y等于生产数量z,那么此时市场处于平衡状态.(1)请通过描点画图探究y与x之间的函数关系,并求出函数关系式;(2)根据以上市场调查,请你分析:当市场处于平衡状态时,该地区这种农副产品的市场价格与这段时间内农民的总销售收入各是多少?(3)如果该地区农民对这种农副产品进行精加工,此时生产数量z与市场价格x的函数关系发生改变,而需求数量y与市场价格x的函数关系未发生变化,那么当市场处于平衡状态时,该地区农民的总销售收入比未精加工市场平衡时增加了17600元.请问这时该农副产品的市场价格为多少元?94.(2007•泰安)市园林处为了对一段公路进行绿化,计划购买A,B两种风景树共900棵.A,B两种树的相关若购买A种树x棵,购树所需的总费用为y元.(1)求y与x之间的函数关系式;(2)若购树的总费用不超过82 000元,则购A种树不少于多少棵?(3)若希望这批树的成活率不低于94%,且使购树的总费用最低,应选购A,B两种树各多少棵?此时最低费用为多少?95.(2007•太原)今年的全国助残日这天,某单位的青年志愿者到距单位6千米的福利院参加“爱心捐助活动”.一部分人步行,另一部分人骑自行车,他们沿相同的路线前往.如图,l1、l2分别表示步行和骑自行车的人前往目的地所走的路程y(千米)随时间x(分钟)变化的函数图象.(1)分别求l1、l2的函数表达式;(2)求骑车的人用多长时间追上步行的人.∴x=x96.(2007•双柏县)某电信公司开设了甲、乙两种市内移动通信业务.甲种使用者每月需缴15元月租费,然后每通话1分钟,再付话费0.3元;乙种使用者不缴月租费,每通话1分钟,付话费0.6元.若一个月内通话时间为x 分钟,甲、乙两种的费用分别为y1和y2元.(2)在同一坐标系中画出y1、y2的图象;(3)根据一个月通话时间,你认为选用哪种通信业务更优惠?97.(2007•十堰)一旅游团来到十堰境内某旅游景点,看到售票处旁边的公告栏如图所示,请根据公告栏内容回答下列问题:(1)若旅游团人数为9人,门票费用是多少?若旅游团人数为30人,门票费用又是多少?(2)设旅游团人数为x人,写出该旅游团门票费用y(元)与人数x的函数关系式.(直接填写在下面的横线上).98.(2007•沈阳)化工商店销售某种新型化工原料,其市场指导价是每千克160元(化工商店的售价还可以在市场指导价的基础上进行浮动),这种原料的进货价是市场指导价的75%.(1)为了扩大销售量,化工商店决定适当调整价格,调整后的价格按八折销售,仍可获得实际售价的20%的利润.求化工商店调整价格后的标价是多少元?打折后的实际售价是多少元?(2)化工商店为了解这种原料的月销售量y(千克)与实际售价x(元/千克)之间的关系,每个月调整一次实际售①请你在所给的平面直角坐标系中,以实际售价x(元/千克)为横坐标,月销售量y(千克)为纵坐标描出各点,观察这些点的发展趋势,猜想y与x之间可能存在怎样的函数关系;②请你用所学过的函数知识确定一个满足这些数据的y与x之间的函数表达式,并验证你在①中的猜想;③若化工商店某月按同一实际售价共卖出这种原料450千克,请你求出化工商店这个月销售这种原料的利润是多少元?)代入表达式,得解得99.(2007•邵阳)为了增强农民抵御大病风险的能力,政府积极推行农村医疗保险制度.我市某县根据本地的实际情况,制定了纳入医疗保险的农民住院医疗费用的报销规定:享受医保的农民可在定点医院住院治疗,由患者先垫x元(x>100),按规定报销的医疗费用为y元,试写出y与x的函数关系式;(2)若该农民在这次住院治疗中的医疗费用为1000元,则他在这次住院治疗中报销的医疗费用和自付的医疗费用各为多少元.100.(2007•三明)为了鼓励节能降耗,某市规定如下用电收费标准:每户每月的用电量不超过120度时,电价为a 元/度;超过120度时,不超过部分仍为a元/度,超过部分为b元/度.已知某用户五月份用电115度,交电费69元,六月份用电140度,交电费94元.(1)求a,b的值;(2)设该用户每月用电量为x(度),应付电费为y(元);①分别求出0≤x≤120和x>120时,y与x之间的函数关系式;②若该用户计划七月份所付电费不超过83元,问该用户七月份最多可用电多少度?)根据题意,得,解这个方程组,得101.(2007•泉州)李明从泉州乘汽车沿高速公路前往A地,已知该汽车的平均速度是100千米/小时,它行驶t小时后距泉州的路程为s1千米.(1)请用含t的代数式表示s1;(2)设另有王红同时从A地乘汽车沿同一条高速公路回泉州,已知这辆汽车距泉州的路程s2(千米)与行驶时间t(时)之间的函数关系式为s2=kt+b(k、t为常数,k≠0),若李红从A地回到泉州用了9小时,且当t=2时,s2=560,k与b的值;②试问在两辆汽车相遇之前,当行驶时间t的取值在什么范围内,两车的距离小于288千米?∴(即王红所乘汽车的平均速度为102.(2007•黔南州)某商厦试销一种成本为50元/件的商品,规定试销时的销售单价不低于成本,又不高于80元/件,试销中销售量y(件)与销售单价x(元/件)的关系可近似的看作一次函数(如图).(1)求y与x的关系式;(2)设商厦获得的毛利润(毛利润=销售额﹣成本)为s(元),则销售单价定为多少时,该商厦获利最大,最大利润是多少?此时的销售量是多少件?,;=75103.(2007•宁夏)某家庭装修房屋,由甲,乙两个装修公司合作完成.先由甲装修公司单独装修3天,剩下的工作由甲,乙两个装修公路合作完成.工程进度满足如图所示的函数关系,该家庭共支付工资8 000元.(1)完成此房屋装修共需多少天?(2)若按完成工作量的多少支付工资,甲装修公司应得多少元?,剩余的工程还是合作,那么需要的天数=那么其工作量为),)在图象上.代入得x.当x=1,乙工作的效率:﹣=甲,乙合作的天数:(+)由正比例函数图象可知:甲的工作效率是×.甲得到的工资是:104.(2007•南通)周华早起锻炼,往返于家与体育场之间,离家的距离y(米)与时间x(分)的关系如图所示.回答下列问题:(1)填空:周华从体育场返回行走的行走速度时160米/分;(2)刘明与周华同时出发,按相同的路线前往体育场,刘明离周华家的距离y(米)与时间x(分)的关系式为y=kx+400,当周华回到家时,刘明刚好到达体育场.①直接在图中画出刘明离周华家的距离y(米)与时间x(分)的函数图象;②填空:周华与刘明在途中共相遇2次;③求周华出发后经过多少分钟与刘明最后一次相遇.根据图象有解得(分钟与刘明最后一次相遇.105.(2007•南京)某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过20m3时,按2元/m3计费;月用水量超过20m3时,其中的20m3仍按2元/m3收费,超过部分按2.6元/m3计费.设每户家庭用水量为xm3时,应交水费y元.(1)分别求出0≤x≤20和x>20时y与x的函数表达式;106.(2007•南充)某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机的进货161 800元.(1)请你帮助商店算一算有多少种进货方案?(不考虑除进价之外的其它费用)(2)哪种进货方案待商店销售购进的电视机与洗衣机完毕后获得利润最多?并求出最多利润.(利润=售价﹣进价)根据题意得≤107.(2007•牡丹江)已知:甲、乙两车分别从相距300千米的A,B两地同时出发相向而行,其中甲到B地后立即返回,下图是它们离各自出发地的距离y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车离出发地的距离y(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量的取值范围;(2)当它们行驶到与各自出发地的距离相等时,用了小时,求乙车离出发地的距离y(千米)与行驶时间x(小时)之间的函数关系式,写出自变量的取值范围;(3)在(2)的条件下,求它们在行驶的过程中相遇的时间.小于,代入一次函数关系式,计算出乙车在用了≤,之间的函数关系式)当×乙车过点≤,解得≤小时,第二次相遇时间为第。
2014 2014年中招考试数学试卷及答案
2014年数学试卷及答案一、选择题(每小题3分,共24分)1.下列各数中,最小的数是()(A). 0 (B).13(C).-13(D).-32. 据统计,2013年河南省旅游业总收入达到3875.5亿元.若将3875.5亿用科学计数法表示为3.8755×10n,则n等于()(A) 10 (B) 11 (C).12 (D).133.如图,直线AB、CD相交于O,射线OM平分∠AOC,O N⊥OM,若∠AOM =350,则∠CON的度数为()(A) .350(B). 450(C) .550(D). 6504.下列各式计算正确的是()(A)a +2a =3a2(B)(-a3)2=a6(C)a3·a2=a6(D)(a+b)2=a2 + b25.下列说法中,正确的是()(A)“打开电视,正在播放河南新闻节目”是必然事件(B)某种彩票中奖概率为10%是指买十张一定有一张中奖(c)神州飞船发射前钻要对冬部件进行抽样检查(D)了解某种节能灯的使用寿命适合抽样调查6:将两个长方体如图放皿,到所构成的几何体的左视田可能是()7.如图, ABCD 的对角线AC 与BD 相交于点O,AB ⊥AC.若AB =4,AC =6,则BD 的长是( ) (A)8 (B) 9 (C)10 (D )118.如图,在Rt △ABC 中,∠C=900,AC=1cm ,BC=2cm ,点P 从A 出发,以1cm/s 的速沿折线AC CB BA 运动,最终回到A 点。
设点P 的运动时间为x (s ),线段AP 的长度为y (cm ),则能反映y 与x 之间函数关系的图像大致是 ( )二、填空题(每小题3分,共21分) 9.计算:2-= . 10.不等式组3x 6042x 0+≥⎧⎨-⎩>的所有整数解的和是.11.在△ABC 中,按以下步骤作图:①分别以B 、C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M 、N ;②作直线MN 交AB 于点D ,连接CD. 若CD=AC ,∠B=250,则∠ACB 的度数为 .12.已知抛物线y=ax 2+bx+c(a ≠0)与x 轴交于A 、B 两点.若点A 的坐标为(-2,0),抛物线的对称轴为直线x=2.则线段AB 的长为 .13.一个不进明的袋子中装有仅颇色不同的2个红球和2个白球,两个人依次从袋子中随机摸出一个小球不放回,到第一个人摸到红球且第二个人摸到白球的概率是 .14.如图,在菱形ABCD 中,AB =1,∠DAB=600,把菱形ABCD 绕点A 顺时针旋转300得到菱形AB'C'D',其中点C 的运动能路径为/CC,则图中阴影部分的面积为 .15.如图,矩形ABCD 中,AD=5,AB=7.点E 为DC 上一个动点,把△ADE 沿AE 折叠,当点D 的对应点D /落在∠ABC 的角平分线上时,DE 的长为 .三、解答题(本大题共8个,满分75分) 16.(8分)先化简,再求值:222x 1x 12x x x ⎛⎫-+÷+ ⎪-⎝⎭,其中117.(9分)如图,CD 是⊙O 的直径,且CD=2cm ,点P 为CD 的延长线上一点,过点P 作⊙O 的切线PA 、PB ,切点分别为点A 、B.(1)连接AC,若∠APO =300,试证明△ACP 是等腰三角形; (2)填空:①当DP= cm 时,四边形AOBD 是菱形; ②当DP= cm 时,四边形AOBP 是正方形.18.(9分)某兴趣小组为了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.请根据以上信息解答下列问题:(1)课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为 ; (2)请补全条形统计图;(3)该校共有1200名男生,请估什全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;(4)小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×27300=108”,请你判断这种说法是否正确,并说明理由.19.(9分)在中俄“海上联合—2014”反潜演习中,我军舰A测得潜艇C的俯角为300.位于军舰A正上方1000米的反潜直升机B侧得潜艇C的俯角为680.试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数。
2014年全国中考数学试题分类汇编11 函数与一次函数(含解析)
函数与一次函数一、选择题1. (2014•安徽省,第9题4分)如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB和BC上移动,记P A=x,点D到直线P A的距离为y,则y关于x 的函数图象大致是()A.B.C.D.考点:动点问题的函数图象.菁优网分析:①点P在AB上时,点D到AP的距离为AD的长度,②点P在BC上时,根据同角的余角相等求出∠APB=∠P AD,再利用相似三角形的列出比例式整理得到y与x的关系式,从而得解.解答:解:①点P在AB上时,0≤x≤3,点D到AP的距离为AD的长度,是定值4;②点P在BC上时,3<x≤5,∵∠APB+∠BAP=90°,∠P AD+∠BAP=90°,∴∠APB=∠P AD,又∵∠B=∠DEA=90°,∴△ABP∽△DEA,∴=,即=,∴y=,纵观各选项,只有B选项图形符合.故选B.点评:本题考查了动点问题函数图象,主要利用了相似三角形的判定与性质,难点在于根据点P的位置分两种情况讨论.2. (2014•福建泉州,第7题3分)在同一平面直角坐标系中,函数y=mx+m与y =(m≠0)的图象可能是()B C D.=的图象可知3. (2014•广西贺州,第10题3分)已知二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的图象如图所示,则一次函数y=cx +与反比例函数y =在同一坐标系内的大致图象是()A.B.C.D.考点:二次函数的图象;一次函数的图象;反比例函数的图象.分析:先根据二次函数的图象得到a>0,b<0,c<0,再根据一次函数图象与系数的关系和反比例函数图象与系数的关系判断它们的位置.解答:解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x=﹣>0,∴b<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴一次函数y=cx +的图象过第二、三、四象限,反比例函数y =分布在第二、四象限.故选B.点评:本题考查了二次函数的图象:二次函数y=ax2+bx+c(a、b、c为常数,a≠0)的图象为抛物线,当a>0,抛物线开口向上;当a<0,抛物线开口向下.对称轴为直线x=﹣;与y轴的交点坐标为(0,c).也考查了一次函数图象和反比例函数的图象.4. (2014•广西贺州,第14题3分)已知P1(1,y1),P2(2,y2)是正比例函数y=x的图象上的两点,则y1<y2(填“>”或“<”或“=”).考点:一次函数图象上点的坐标特征.分析:直接把P1(1,y1),P2(2,y2)代入正比例函数y=x,求出y1,y2)的值,再比较出其大小即可.解答:解:∵P1(1,y1),P2(2,y2)是正比例函数y=x的图象上的两点,∴y1=,y2=×2=,∵<,∴y1<y2.故答案为:<.点评:本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.5. (2014•广西玉林市、防城港市,第12题3分)如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()B C D.×1×=,高为(×=﹣,6.(2014年四川资阳,第5题3分)一次函数y=﹣2x+1的图象不经过下列哪个象限()A.第一象限B.第二象限C.第三象限D.第四象限考点:一次函数图象与系数的关系.菁优网分析:先根据一次函数的解析式判断出k、b的符号,再根据一次函数的性质进行解答即可.解答:解:∵解析式y=﹣2x+1中,k=﹣2<0,b=1>0,∴图象过一、二、四象限,∴图象不经过第三象限.故选C.点评:本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0时,函数图象经过二、四象限,当b>0时,函数图象与y轴相交于正半轴.7.(2014•温州,第7题4分)一次函数y=2x+4的图象与y轴交点的坐标是()8.(2014年广东汕尾,第8题4分)汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,继续以100千米/时的速度匀速行驶,则汽车行驶的路程s(千米)与行驶的时间t(时)的函数关系的大致图象是()A.B.C.D.分析:汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,所以前1小时路程随时间增大而增大,后来以100千米/时的速度匀速行驶,路程增加变快.据此即可选择.解:由题意知,前1小时路程随时间增大而增大,1小时后路程增加变快.故选:C.点评:本题主要考查了函数的图象.本题的关键是分析汽车行驶的过程.9.(2014年广东汕尾,第10题4分)已知直线y=kx+b,若k+b=﹣5,kb=6,那么该直线不经过()A.第一象限B.第二象限C.第三象限D.第四象限分析:首先根据k+b=﹣5、kb=6得到k、b的符号,再根据图象与系数的关系确定直线经过的象限,进而求解即可.解:∵k+b=﹣5,kb=6,∴k<0,b<0,∴直线y=kx+b经过二、三、四象限,即不经过第一象限.故选A.点评:本题考查了一次函数图象与系数的关系,解题的关键是根据k、b之间的关系确定其符号.10.(2014•毕节地区,第14题3分)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为()≤,,.11.(2014•邵阳,第10题3分)已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是()12.(2014•四川自贡,第9题4分)关于x的函数y=k(x+1)和y=(k≠0)在同一坐标系中的图象大致是()...D.13.(2014•德州,第8题3分)图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是()1.5÷=14.(2014•济宁,第4题3分)函数y=中的自变量x的取值范围是()二.填空题1.(2014年四川资阳,第13题3分)函数y=1+中自变量x的取值范围是.考点:函数自变量的取值范围.菁优网分析:根据被开方数大于等于0列式计算即可得解.解答:解:由题意得,x+3≥0,解得x≥﹣3.故答案为:x≥﹣3.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.2.(2014年云南省,第11题3分)写出一个图象经过一,三象限的正比例函数y=kx(k≠0)的解析式(关系式).考点:正比例函数的性质.专题:开放型.分析:根据正比例函数y=kx的图象经过一,三象限,可得k>0,写一个符合条件的数即可.解答:解:∵正比例函数y=kx的图象经过一,三象限,∴k>0,取k=2可得函数关系式y=2x.故答案为:y=2x.点评:此题主要考查了正比例函数的性质,关键是掌握正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.3.(2014•舟山,第15题4分)过点(﹣1,7)的一条直线与x轴,y轴分别相交于点A,B,且与直线平行.则在线段AB上,横、纵坐标都是整数的点的坐标是(1,4),(3,1).依据与直线)的一条直线与直线=,+=<4.(2014•武汉,第14题3分)一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑的路程y(米)与时间t(秒)之间的函数关系如图,则这次越野跑的全程为2200 米.,5.(2014•武汉,第18题6分)已知直线y=2x﹣b经过点(1,﹣1),求关于x的不等式2x ﹣b≥0的解集.≥.6.(2014•孝感,第13题3分)函数的自变量x的取值范围为x≠1.7.(2014•孝感,第11题3分)如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m>nx+4n>0的整数解为()8.(2014•四川自贡,第15题4分)一次函数y=kx+b,当1≤x≤4时,3≤y≤6,则的值是2或﹣7.,解得,,解得,9.(2014·浙江金华,第13题4分)小明从家跑步到学校,接着马上步行回家. 如图是小明离家的路程y(米)与时间t(分)的函数图象,则小明回家的速度是每分钟步行▲ 米.【答案】80.【解析】10. (2014•益阳,第12题,4分)小明放学后步行回家,他离家的路程s(米)与步行时间t(分钟)的函数图象如图所示,则他步行回家的平均速度是80米/分钟.(第1题图)11. (2014•株洲,第15题,3分)直线y=k1x+b1(k1>0)与y=k2x+b2(k2<0)相交于点(﹣2,0),且两直线与y轴围城的三角形面积为4,那么b1﹣b2等于4.=412. (2014•泰州,第10题,3分)将一次函数y=3x﹣1的图象沿y轴向上平移3个单位后,得到的图象对应的函数关系式为y=3x+2.三.解答题1. (2014•安徽省,第20题10分)2013年某企业按餐厨垃圾处理费25元/吨、建筑垃圾处理费16元/吨的收费标准,共支付餐厨和建筑垃圾处理费5200元.从2014年元月起,收费标准上调为:餐厨垃圾处理费100元/吨,建筑垃圾处理费30元/吨.若该企业2014年处理的这两种垃圾数量与2013年相比没有变化,就要多支付垃圾处理费8800元.(1)该企业2013年处理的餐厨垃圾和建筑垃圾各多少吨?(2)该企业计划2014年将上述两种垃圾处理总量减少到240吨,且建筑垃圾处理量不超过餐厨垃圾处理量的3倍,则2014年该企业最少需要支付这两种垃圾处理费共多少元?考点:一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.菁优网分析:(1)设该企业2013年处理的餐厨垃圾x吨,建筑垃圾y吨,根据等量关系式:餐厨垃圾处理费25元/吨×餐厨垃圾吨数+建筑垃圾处理费16元/吨×建筑垃圾吨数=总费用,列方程.(2)设该企业2014年处理的餐厨垃圾x吨,建筑垃圾y吨,需要支付这两种垃圾处理费共a元,先求出x的范围,由于a的值随x的增大而增大,所以当x=60时,a值最小,代入求解.解答:解:(1)设该企业2013年处理的餐厨垃圾x吨,建筑垃圾y吨,根据题意,得,解得.答:该企业2013年处理的餐厨垃圾80吨,建筑垃圾200吨;(2)设该企业2014年处理的餐厨垃圾x吨,建筑垃圾y吨,需要支付这两种垃圾处理费共a元,根据题意得,,解得x≥60.a=100x+30y=100x+30(240﹣x)=70x+7200,由于a的值随x的增大而增大,所以当x=60时,a值最小,最小值=70×60+7200=11400(元).答:2014年该企业最少需要支付这两种垃圾处理费共11400元.点评:本题主要考查了二元一次方程组及一元一次不等式的应用,找准等量关系正确的列出方程是解决本题的关键;2. (2014•福建泉州,第24题9分)某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两车同时分别从A,B出发,沿轨道到达C处,在AC上,甲的速度是乙的速度的1.5倍,设t(分)后甲、乙两遥控车与B处的距离分别为d1,d2,则d1,d2与t的函数关系如图,试根据图象解决下列问题:(1)填空:乙的速度v2=40米/分;(2)写出d1与t的函数关系式;(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探求什么时间两遥控车的信号不会产生相互干扰?;时,两遥控车的信号不会产生相互干扰;1≤或t时,两遥控车的信号不会产生相互干扰.3. (2014•广东,第23题9分)如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b 与反比例函数y=(m≠0,m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.考点:反比例函数与一次函数的交点问题.分析:(1)根据一次函数图象在上方的部分是不等式的解,观察图象,可得答案;(2)根据待定系数法,可得函数解析式;(3)根据三角形面积相等,可得答案.解答:解:(1)由图象得一次函数图象在上的部分,﹣4<x<﹣1,当﹣4<x<﹣1时,一次函数大于反比例函数的值;(2)设一次函数的解析式为y=kx+b,y=kx+b的图象过点(﹣4,),(﹣1,2),则,解得一次函数的解析式为y=x+,反比例函数y=图象过点(﹣1,2),m=﹣1×2=﹣2;(3)连接PC、PD,如图,设P(x,x+)由△PCA和△PDB面积相等得(x+4)=|﹣1|×(2﹣x﹣),x=﹣,y=x+=,∴P点坐标是(﹣,).点评:本题考查了反比例函数与一次函数的交点问题,利用了函数与不等式的关系,待定系数法求解析式.4. (2014•珠海,第16题7分)为庆祝商都正式营业,商都推出了两种购物方案.方案一:非会员购物所有商品价格可获九五折优惠,方案二:如交纳300元会费成为该商都会员,则所有商品价格可获九折优惠.(1)以x(元)表示商品价格,y(元)表示支出金额,分别写出两种购物方案中y关于x 的函数解析式;(2)若某人计划在商都购买价格为5880元的电视机一台,请分析选择哪种方案更省钱?5. (2014•珠海,第19题7分)如图,在平面直角坐标系中,边长为2的正方形ABCD关于y轴对称,边在AD在x轴上,点B在第四象限,直线BD与反比例函数y=的图象交于点B、E.(1)求反比例函数及直线BD的解析式;(2)求点E的坐标.的图象过点﹣,解得.,解得6.(2014年四川资阳,第20题8分)如图,一次函数y=kx+b(k≠0)的图象过点P(﹣,0),且与反比例函数y=(m≠0)的图象相交于点A(﹣2,1)和点B.(1)求一次函数和反比例函数的解析式;(2)求点B的坐标,并根据图象回答:当x在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?考点:反比例函数与一次函数的交点问题.菁优网分析:(1)根据待定系数法,可得函数解析式;(2)根据二元一次方程组,可得函数图象的交点,根据一次函数图象位于反比例函数图象的下方,可得答案.解答:解:(1)一次函数y=kx+b(k≠0)的图象过点P(﹣,0)和A(﹣2,1),∴,解得,∴一次函数的解析式为y=﹣2x﹣3,反比例函数y=(m≠0)的图象过点A(﹣2,1),∴,解得m=﹣2,∴反比例函数的解析式为y=﹣;(2),解得,或,∴B(,﹣4)由图象可知,当﹣2<x<0或x>时,一次函数的函数值小于反比例函数的函数值.点评:本题考查了反比例函数与一次函数的交点问题,待定系数法是求函数解析式的关键.7.(2014年天津市,第23题10分)“黄金1号”玉米种子的价格为5元/kg,如果一次购买2kg 以上的种子,超过2kg部分的种子的价格打8折.(Ⅰ)根据题意,填写下表:购买种子的数量/kg 1.5 2 3.5 4 …付款金额/元7.5 1016 18…(Ⅱ)设购买种子数量为xkg,付款金额为y元,求y关于x的函数解析式;(Ⅲ)若小张一次购买该种子花费了30元,求他购买种子的数量.考点:一次函数的应用;一元一次方程的应用.菁优网分析:(1)根据单价乘以数量,可得答案;(2)根据单价乘以数量,可得价格,可得相应的函数解析式;(3)根据函数值,可得相应的自变量的值.解答:解:(Ⅰ)10,8;(Ⅱ)根据题意得,当0≤x≤2时,种子的价格为5元/千克,∴y=5x,当x>2时,其中有2千克的种子按5元/千克计价,超过部分按4元/千克计价,∴y=5×2+4(x﹣2)=4x+2,y关于x的函数解析式为y=;(Ⅲ)∵30>2,∴一次性购买种子超过2千克,∴4x+2=30.解得x=7,答:他购买种子的数量是7千克.点评:本题考查了一次函数的应用,分类讨论是解题关键.8.(2014年天津市,第25题10分)在平面直角坐标系中,O为原点,直线l:x=1,点A(2,0),点E,点F,点M都在直线l上,且点E和点F关于点M对称,直线EA与直线OF交于点P.(Ⅰ)若点M的坐标为(1,﹣1),①当点F的坐标为(1,1)时,如图,求点P的坐标;②当点F为直线l上的动点时,记点P(x,y),求y关于x的函数解析式.(Ⅱ)若点M(1,m),点F(1,t),其中t≠0,过点P作PQ⊥l于点Q,当OQ=PQ时,试用含t的式子表示m.考点:一次函数综合题.菁优网分析:(Ⅰ)①利用待定系数法求得直线OF与EA的直线方程,然后联立方程组,求得该方程组的解即为点P的坐标;②由已知可设点F的坐标是(1,t).求得直线OF、EA的解析式分别是y=tx、直线EA的解析式为:y=(2+t)x﹣2(2+t).则tx=(2+t)x﹣2(2+t),整理后即可得到y关于x的函数关系式y=x2﹣2x;(Ⅱ)同(Ⅰ),易求P(2﹣,2t﹣).则由PQ⊥l于点Q,得点Q(1,2t﹣),则OQ2=1+t2(2﹣)2,PQ2=(1﹣)2,所以1+t2(2﹣)2=(1﹣)2,化简得到:t(t﹣2m)(t2﹣2mt﹣1)=0,通过解该方程可以求得m与t的关系式.解答:解:(Ⅰ)①∵点O(0,0),F(1,1),∴直线OF的解析式为y=x.设直线EA的解析式为:y=kx+b(k≠0)、∵点E和点F关于点M(1,﹣1)对称,∴E(1,﹣3).又A(2,0),点E在直线EA上,∴,解得,∴直线EA的解析式为:y=3x﹣6.∵点P是直线OF与直线EA的交点,则,解得,∴点P的坐标是(3,3).②由已知可设点F的坐标是(1,t).∴直线OF的解析式为y=tx.设直线EA的解析式为y=cx+dy(c、d是常数,且c≠0).由点E和点F关于点M(1,﹣1)对称,得点E(1,﹣2﹣t).又点A、E在直线EA上,∴,解得,∴直线EA的解析式为:y=(2+t)x﹣2(2+t).∵点P为直线OF与直线EA的交点,∴tx=(2+t)x﹣2(2+t),即t=x﹣2.则有y=tx=(x﹣2)x=x2﹣2x;(Ⅱ)由(Ⅰ)可得,直线OF的解析式为y=tx.直线EA的解析式为y=(t﹣2m)x﹣2(t﹣2m).∵点P为直线OF与直线EA的交点,∴tx=(t﹣2m)x﹣2(t﹣2m),化简,得x=2﹣.有y=tx=2t﹣.∴点P的坐标为(2﹣,2t﹣).∵PQ⊥l于点Q,得点Q(1,2t﹣),∴OQ2=1+t2(2﹣)2,PQ2=(1﹣)2,∵OQ=PQ,∴1+t2(2﹣)2=(1﹣)2,化简,得t(t﹣2m)(t2﹣2mt﹣1)=0.又t≠0,∴t﹣2m=0或t2﹣2mt﹣1=0,解得m=或m=.则m=或m=即为所求.点评:本题考查了一次函数的综合题型.涉及到了待定系数法求一次函数解析式,一次函数与直线的交点问题.此题难度不大,掌握好两直线间的交点的求法和待定系数法求一次函数解析式就能解答本题.9.(2014•新疆,第22题11分)如图1所示,在A,B两地之间有汽车站C站,客车由A 地驶往C站,货车由B地驶往A地.两车同时出发,匀速行驶.图2是客车、货车离C站飞路程y1,y2(千米)与行驶时间x(小时)之间的函数关系图象.(1)填空:A,B两地相距420千米;(2)求两小时后,货车离C站的路程y2与行驶时间x之间的函数关系式;(3)客、货两车何时相遇?,解得,=答:客、货两车经过小时相遇.10.(2014•新疆,第23题12分)如图,直线y=﹣x+8与x轴交于A点,与y轴交于B点,动点P从A点出发,以每秒2个单位的速度沿AO方向向点O匀速运动,同时动点Q从B 点出发,以每秒1个单位的速度沿BA方向向点A匀速运动,当一个点停止运动,另一个点也随之停止运动,连接PQ,设运动时间为t(s)(0<t≤3).(1)写出A,B两点的坐标;(2)设△AQP的面积为S,试求出S与t之间的函数关系式;并求出当t为何值时,△AQP 的面积最大?(3)当t为何值时,以点A,P,Q为顶点的三角形与△ABO相似,并直接写出此时点Q的坐标.,则﹣x==×=××((<(+20=;=,,,=,,的值为2×=,2×)×,的坐标为()=标为(,11.(2014年云南省,第23题9分)已知如图平面直角坐标系中,点O是坐标原点,矩形ABCD是顶点坐标分别为A(3,0)、B(3,4)、C(0,4).点D在y轴上,且点D的坐标为(0,﹣5),点P是直线AC上的一动点.(1)当点P运动到线段AC的中点时,求直线DP的解析式(关系式);(2)当点P沿直线AC移动时,过点D、P的直线与x轴交于点M.问在x轴的正半轴上是否存在使△DOM与△ABC相似的点M?若存在,请求出点M的坐标;若不存在,请说明理由;(3)当点P沿直线AC移动时,以点P为圆心、R(R>0)为半径长画圆.得到的圆称为动圆P.若设动圆P的半径长为,过点D作动圆P的两条切线与动圆P分别相切于点E、F.请探求在动圆P中是否存在面积最小的四边形DEPF?若存在,请求出最小面积S的值;若不存在,请说明理由.考点:圆的综合题;待定系数法求一次函数解析式;垂线段最短;勾股定理;切线长定理;相似三角形的判定与性质.专题:综合题;存在型;分类讨论.分析:(1)只需先求出AC中点P的坐标,然后用待定系数法即可求出直线DP的解析式.(2)由于△DOM与△ABC相似,对应关系不确定,可分两种情况进行讨论,利用三角形相似求出OM的长,即可求出点M的坐标.(3)易证S△PED=S△PFD.从而有S四边形DEPF=2S△PED=DE.由∠DEP=90°得DE2=DP2﹣PE2=DP2﹣.根据“点到直线之间,垂线段最短”可得:当DP⊥AC时,DP最短,此时DE也最短,对应的四边形DEPF的面积最小.借助于三角形相似,即可求出DP⊥AC时DP的值,就可求出四边形DEPF面积的最小值.解答:解:(1)过点P作PH∥OA,交OC于点H,如图1所示.∵PH∥OA,∴△CHP∽△COA.∴==.∵点P是AC中点,∴CP=CA.∴HP=OA,CH=CO.∵A(3,0)、C(0,4),∴OA=3,OC=4.∴HP=,CH=2.∴OH=2.∵PH∥OA,∠COA=90°,∴∠CHP=∠COA=90°.∴点P的坐标为(,2).设直线DP的解析式为y=kx+b,∵D(0,﹣5),P(,2)在直线DP上,∴∴∴直线DP的解析式为y=x﹣5.(2)①若△DOM∽△ABC,图2(1)所示,∵△DOM∽△ABC,∴=.∵点B坐标为(3,4),点D的坐标为(0.﹣5),∴BC=3,AB=4,OD=5.∴=.∴OM=.∵点M在x轴的正半轴上,∴点M的坐标为(,0)②若△DOM∽△CBA,如图2(2)所示,∵△DOM∽△CBA,∴=.∵BC=3,AB=4,OD=5,∴OM=.∵点M在x轴的正半轴上,∴点M的坐标为(,0).综上所述:若△DOM与△CBA相似,则点M的坐标为(,0)或(,0).(3)∵OA=3,OC=4,∠AOC=90°,∴AC=5.∴PE=PF=AC=.∵DE、DF都与⊙P相切,∴DE=DF,∠DEP=∠DFP=90°.∴S△PED=S△PFD.∴S四边形DEPF=2S△PED=2×PE•DE=PE•DE=DE.∵∠DEP=90°,∴DE2=DP2﹣PE2.=DP2﹣.根据“点到直线之间,垂线段最短”可得:当DP⊥AC时,DP最短,此时DE取到最小值,四边形DEPF的面积最小.∵DP⊥AC,∴∠DPC=90°.∴∠AOC=∠DPC.∵∠OCA=∠PCD,∠AOC=∠DPC,∴△AOC∽△DPC.∵AO=3,AC=5,DC=4﹣(﹣5)=9,∴=.∴DP=.∴DE2=DP2﹣=()2﹣=.∴DE=,∴S四边形DEPF=DE=.∴四边形DEPF面积的最小值为.点评:本题考查了相似三角形的判定与性质、用待定系数法求直线的解析式、切线长定理、勾股定理、垂线段最短等知识,考查了分类讨论的思想.将求DE的最小值转化为求DP的最小值是解决第3小题的关键.另外,要注意“△DOM与△ABC相似”与“△DOM∽△ABC“之间的区别.12.(2014年广东汕尾,第18题7分)已知反比例函数y=的图象经过点M(2,1)(1)求该函数的表达式;(2)当2<x<4时,求y的取值范围(直接写出结果).分析:(1)利用待定系数法把(2,1)代入反比例函数y=中可得k的值,进而得到解析式;(2)根据y=可得x=,再根据条件2<x<4可得2<<4,再解不等式即可.解:(1)∵反比例函数y=的图象经过点M(2,1),∴k=2×1=2,∴该函数的表达式为y=;(2)∵y=,∴x=,∵2<x<4,∴2<<4,解得:<y<1.点评:此题主要考查了待定系数法求反比例函数解析式,以及反比例函数的性质,关键是正确确定函数解析式.13.(2014•四川自贡,第22题12分)如图,一次函数y=kx+b与反比例函数的图象交于A(m,6),B(3,n)两点.(1)求一次函数的解析式;(2)根据图象直接写出的x的取值范围;(3)求△AOB的面积.)代入得,时,14.(2014·云南昆明,第21题8分)某校运动会需购买A、B两种奖品.若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元. (1)求A、B两种奖品单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍.设购买A种奖品m件,购买费用为W元,写出W(元)与m (件)之间的函数关系式,求出自变量m的取值范围,并确定最少费用W的值.15.(2014•浙江湖州,第20题分)如图,已知在平面直角坐标系xOy中,O是坐标原点,点A(2,5)在反比例函数y=的图象上,过点A的直线y=x+b交x轴于点B.(1)求k和b的值;(2)求△OAB的面积.分析:(1)根据待定系数法,可得答案;(2)根据三角形的面积公式,可得答案.解:(1)把A(2,5)分别代入y=和y=x+b,得,解得k=10b=3;(2)作AC⊥x轴与点C,,由(1)得直线AB的解析式为y=x+3,∴点B的坐标为(﹣3,0),OB=3,点A的坐标是(2,5),∴AC=5,∴=5=.点评:本题考查了反比例函数与一次函数的交点问题,利用了待定系数法,三角形的面积公式.16.(2014•浙江湖州,第22题分)已知某市2013年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系如图.(1)当x≥50时,求y关于x的函数关系式;(2)若某企业2013年10月份的水费为620元,求该企业2013年10月份的用水量;(3)为贯彻省委“五水共治”发展战略,鼓励企业节约用水,该市自2014年1月开始对月用水量超过80吨的企业加收污水处理费,规定:若企业月用水量x超过80吨,则除按2013年收费标准收取水费外,超过80吨部分每吨另加收元,若某企业2014年3月份的水费和污水处理费共600元,求这个企业该月的用水量.分析:(1)设y关于x的函数关系式y=kx+b,代入(50,200)、(60,260)两点求得解析式即可;(2)把y=620代入(1)求得答案即可;(3)利用水费+污水处理费=600元,列出方程解决问题,解答:解:(1)设y关于x的函数关系式y=kx+b,∵直线y=kx+b经过点(50,200),(60,260)∴解得∴y关于x的函数关系式是y=6x﹣100;(2)由图可知,当y=620时,x>50∴6x﹣100=620,解得x=120.答:该企业2013年10月份的用水量为120吨.(3)由题意得6x﹣100+(x﹣80)=600,化简得x2+40x﹣14000=0解得:x1=100,x2=﹣140(不合题意,舍去).答:这个企业2014年3月份的用水量是100吨.点评:此题考查一次函数的运用,一元二次方程和一元一次方程的运用,注意理解题意,结合图象,根据实际选择合理的方法解答.17. (2014•湘潭,第24题)已知两直线L1:y=k1x+b1,L2:y=k2x+b2,若L1⊥L2,则有k1•k2=﹣1.(1)应用:已知y=2x+1与y=kx﹣1垂直,求k;(2)直线经过A(2,3),且与y=x+3垂直,求解析式.18. (2014•株洲,第24题,10分)已知抛物线y=x2﹣(k+2)x+和直线y=(k+1)x+(k+1)2.(1)求证:无论k取何实数值,抛物线总与x轴有两个不同的交点;(2)抛物线于x轴交于点A、B,直线与x轴交于点C,设A、B、C三点的横坐标分别是x1、x2、x3,求x1•x2•x3的最大值;(3)如果抛物线与x轴的交点A、B在原点的右边,直线与x轴的交点C在原点的左边,又抛物线、直线分别交y轴于点D、E,直线AD交直线CE于点G(如图),且CA•GE=CG•AB,求抛物线的解析式.(第2题图)1×=,,1×=,•=),;,得:)﹣19. (2014年江苏南京,第25题)从甲地到乙地,先是一段平路,然后是一段上坡路,小明骑车从甲地出发,到达乙地后立即原路返回甲地,途中休息了一段时间,假设小明骑车在平路、上坡、下坡时分别保持匀速前进.已知小明骑车上坡的速度比在平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km.设小明出发x h后,到达离甲地y km 的地方,图中的折线OABCDE表示y与x之间的函数关系.(1)小明骑车在平路上的速度为km/h;他途中休息了h;(2)求线段AB、BC所表示的y与x之间的函数关系式;(3)如果小明两次经过途中某一地点的时间间隔为0.15h,那么该地点离甲地多远?(第3题图)考点:一次函数的解析式的运用,一元一次方程的运用分析:(1)由速度=路程÷时间就可以求出小明在平路上的速度,就可以求出返回的时间,进而得出途中休息的时间;(2)先由函数图象求出小明到达乙地的时间就可以求出B的坐标和C的坐标就可以由待定系数法求出解析式;(3)小明两次经过途中某一地点的时间间隔为0.15h,由题意可以得出这个地点只能在破路上.设小明第一次经过该地点的时间为t,则第二次经过该地点的时间为(t+0.15)h,根据距离甲地的距离相等建立方程求出其解即可.解答:(1)小明骑车在平路上的速度为:4.5÷0.3=15,∴小明骑车在上坡路的速度为:15﹣5=10,小明骑车在上坡路的速度为:15+5=20.∴小明返回的时间为:(6.5﹣4.5)÷2+0.3=0.4小时,∴小明骑车到达乙地的时间为:0.3+2÷10=0.5.∴小明途中休息的时间为:1﹣0.5﹣0.4=0.1小时.故答案为:15,0.1(2)小明骑车到达乙地的时间为0.5小时,∴B(0.5,6.5).小明下坡行驶的时间为:2÷20=0.1,∴C(0.6,4.5).设直线AB的解析式为y=k1x+b1,由题意,得,解得:,∴y=10x+1.5(0.3≤x≤0.5);设直线BC的解析式为y=k2+b2,由题意,得,解得:,∴y=﹣20x+16.5(0.5<x≤0.6)。
2014年山东省济南市中考数学试题及参考答案(word解析版)
2014年山东省济南市中考数学试题及参考答案一、选择题(本大题共15小题,每小题3分,共45分) 1.4的算术平方根是( ) A .2 B .﹣2 C .±2 D .16 2.如图,点O 在直线AB 上,若∠1=40°,则∠2的度数是( )A .50°B .60°C .140°D .150° 3.下列运算中,结果是a 5的是( ) A .a 2•a 3 B .a 10÷a 2 C .(a 2)3 D .(﹣a )54.我国成功发射了嫦娥三号卫星,是世界上第三个实现月面软着陆和月面巡视探测的国家,嫦娥三号探测器的发射总质量约为3700千克,3700用科学记数法表示为( ) A .3.7×102 B .3.7×103 C .37×102 D .0.37×104 5.下列图案中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .6.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列关于这个几何体的说法正确的是( )A .主视图的面积为5B .左视图的面积为3C .俯视图的面积为3D .三种视图的面积都是47.化简211m m m m--÷的结果是( ) A .m B .1m C .m ﹣1 D .11m -8.下列命题中,真命题是( )A .两对角线相等的四边形是矩形B .两对角线互相平分的四边形是平行四边形C .两对角线互相垂直的四边形是菱形D .两对角线相等的四边形是等腰梯形 9.若一次函数y=(m ﹣3)x+5的函数值y 随x 的增大而增大,则( ) A .m >0 B .m <0 C .m >3 D .m <310.如图,在▱ABCD 中,延长AB 到点E ,使BE=AB ,连接DE 交BC 于点F ,则下列结论不一定成立的是( )A .∠E=∠CDFB .EF=DFC .AD=2BFD .BE=2CF11.学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率是( )A .23 B .12 C .13D .1412.如图,直线2y x =+与x 轴、y 轴分别交于A 、B 两点,把△AOB 沿直线AB 翻折后得到△AO′B ,则点O′的坐标是( )A .3)B .C .(2,)D .(,4)13.如图,⊙O 的半径为1,△ABC 是⊙O 的内接等边三角形,点D 、E 在圆上,四边形BCDE 为矩形,这个矩形的面积是( )A .2B C .32D 14.现定义一种变换:对于一个由有限个数组成的序列S 0,将其中的每个数换成该数在S 0中出现的次数,可得到一个新序列S 1,例如序列S 0:(4,2,3,4,2),通过变换可生成新序列S 1:(2,2,1,2,2),若S 0可以为任意序列,则下面的序列可作为S 1的是( ) A .(1,2,1,2,2) B .(2,2,2,3,3) C .(1,1,2,2,3) D .(1,2,1,1,2)15.二次函数y=x 2+bx 的图象如图,对称轴为直线x=1,若关于x 的一元二次方程x 2+bx ﹣t=0(t 为实数)在﹣1<x <4的范围内有解,则t 的取值范围是( )A .t≥﹣1B .﹣1≤t <3C .﹣1≤t <8D .3<t <8 二、填空题(本大题共6小题,每小题3分,共18分) 16.|﹣7﹣3|= .17.分解因式:x 2+2x+1= .18.在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有3个红球且摸到红球的概率为15,那么口袋中球的总个数为.19.若代数式12x-和321x+的值相等,则x=.20.如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于.21.如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数kyx=在第一象限的图象经过点B.若OA2﹣AB2=12,则k的值为.三、解答题(本大题共7小题,共57分)22.(7分)(1)化简:(a+3)(a﹣3)+a(4﹣a);(2)解不等式组:31442xx x-⎧⎨-+⎩<≥.23.(7分)(1)如图1,四边形ABCD是矩形,点E是边AD的中点,求证:EB=EC.(2)如图2,AB与⊙O相切于点C,∠A=∠B,⊙O的半径为6,AB=16,求OA的长.24.(8分)2014年世界杯足球赛在巴西举行,小李在网上预定了小组赛和淘汰赛两个阶段的球票共10张,总价为5800元,其中小组赛球票每张550元,淘汰赛球票每张700元,问小李预定了小组赛和淘汰赛的球票各多少张?25.(8分)在济南开展“美丽泉城,创卫我同行”活动中,某校倡议七年级学生利用双休日在各自社区参加义务劳动,为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据m= ,x= ,y= .(2)被调查同学劳动时间的中位数是 时; (3)请将频数分布直方图补充完整; (4)求所有被调查同学的平均劳动时间.26.(9分)如图1,反比例函数ky x(x >0)的图象经过点A (,1),射线AB 与反比例函数图象交于另一点B (1,a ),射线AC 与y 轴交于点C ,∠BAC=75°,AD ⊥y 轴,垂足为D . (1)求k 的值;(2)求tan ∠DAC 的值及直线AC 的解析式; (3)如图2,M 是线段AC 上方反比例函数图象上一动点,过M 作直线l ⊥x 轴,与AC 相交于点N ,连接CM ,求△CMN 面积的最大值.27.(9分)如图1,有一组平行线l 1∥l 2∥l 3∥l 4,正方形ABCD 的四个顶点分别在l 1,l 2,l 3,l 4上,EG 过点D 且垂直l 1于点E ,分别交l 2,l 4于点F ,G ,EF=DG=1,DF=2. (1)AE= ,正方形ABCD 的边长= ;(2)如图2,将∠AEG 绕点A 顺时针旋转得到∠AE′D′,旋转角为α(0°<α<90°),点D′在直线l 3上,以AD′为边在E′D′左侧作菱形AB′C′D′,使B′,C′分别在直线l 2,l 4上. ①写出∠B′AD′与α的数量关系并给出证明; ②若α=30°,求菱形AB′C′D′的边长.28.(9分)如图1,抛物线y=﹣x2平移后过点A(8,0)和原点,顶点为B,对称轴与x轴相交于点C,与原抛物线相交于点D.(1)求平移后抛物线的解析式并直接写出阴影部分的面积S阴影;(2)如图2,直线AB与y轴相交于点P,点M为线段OA上一动点,∠PMN为直角,边MN与AP相交于点N,设OM=t,试探究:①t为何值时△MAN为等腰三角形;②t为何值时线段PN的长度最小,最小长度是多少.参考答案与解析一、选择题(本大题共15小题,每小题3分,共45分)1.4的算术平方根是()A.2 B.﹣2 C.±2 D.16【知识考点】算术平方根.【思路分析】根据乘方运算,可得一个数的算术平方根.【解答过程】解:∵22=4,,故选:A.【总结归纳】本题考查了算术平方根,乘方运算是解题关键.2.如图,点O在直线AB上,若∠1=40°,则∠2的度数是()A.50°B.60°C.140°D.150°。
2014年泸州市中考数学试卷及答案(解析版)
2014年四川省泸州市中考数学试题参考答案与试题解析一、选择题(本大题共12小题,每题3分,共36分. 只有一项是符合题目要求的.)1.5的倒数为(A)A.B.5C.D.﹣52.计算x2•x3的结果为(B)A.2x2B.x5C.2x3D.x63.如图的几何图形的俯视图为(C )A.B.C.D.4.某校八年级(2)班5名女同学的体重(单位:kg)分别为35,36,40,42,42,则这组数据的中位数是(C)A.38 B.39 C.40 D.425.如图,等边△ABC中,点D、E分别为边AB、AC的中点,则∠DEC的度数为(C)A.30°B.60°C.120°D.150°6.已知实数x、y 满足+|y+3|=0,则x+y的值为(A)A.﹣2 B.2C.4D.﹣47.一个圆锥的底面半径是6cm,其侧面展开图为半圆,则圆锥的母线长为(B)A.9cm B.12cm C.15cm D.18cm8.已知抛物线y=x2﹣2x+m+1与x轴有两个不同的交点,则函数y=的大致图象是(A)A.B.C.D.9.“五一节"期间,王老师一家自驾游去了离家170千米的某地,下面是他们家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象,当他们离目的地还有20千米时,汽车一共行驶的时间是(C)10.如图,⊙O1,⊙O2的圆心O1,O2都在直线l上,且半径分别为2cm,3cm,O1O2=8cm.若⊙O1以1cm/s的速度沿直线l向右匀速运动(⊙O2保持静止),则在7s时刻⊙O1与⊙O2的位置关系是(D)A.外切B.相交C.内含D.内切11.如图,在直角梯形ABCD中,DC∥AB,∠DAB=90°,AC⊥BC,AC=BC,∠ABC的平分线分别交AD、AC于点E,F,则的值是(C)A.B.C.D.解答:解:作FG⊥AB于点G,∵∠DAB=90°,∴AE∥FG,∴=,∵AC⊥BC,∴∠ACB=90°,又∵BE是∠ABC的平分线,∴FG=FC,在RT△BGF和RT△BCF中,∴RT△BGF≌RT△BCF(HL),∴CB=GB,∵AC=BC,∴∠CBA=45°,∴AB=BC,∴====+1.故选:C.12.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()A.4B.C.D.解答:解:作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,如图,∵⊙P的圆心坐标是(3,a),∴OC=3,PC=a,把x=3代入y=x得y=3,∴D点坐标为(3,3),∴CD=3,∴△OCD为等腰直角三角形,∴△PED也为等腰直角三角形,∵PE⊥AB,∴AE=BE=AB=×4=2,在Rt△PBE中,PB=3,∴PE=,∴PD=PE=,∴a=3+.故选B.二、填空题(本大题共4小题,每小题3分,共12分. 请将最后答案直接填在题中横线上.)13.分解因式:3a2+6a+3=3(a+1)2.14.使函数y=+有意义的自变量x的取值范围是x>﹣2,且x≠1.15.一个平行四边形的一条边长为3,两条对角线的长分别为4和,则它的面积为4.16.如图,矩形AOBC的顶点坐标分别为A(0,3),O(0,0),B(4,0),C(4,3),动点F在边BC上(不与B、C重合),过点F的反比例函数的图象与边AC交于点E,直线EF分别与y轴和x轴相交于点D和G.给出下列命题:①若k=4,则△OEF的面积为;②若,则点C关于直线EF的对称点在x轴上;③满足题设的k的取值范围是0<k≤12;④若DE•EG=,则k=1.其中正确的命题的序号是②④(写出所有正确命题的序号).解答:解:命题①错误.理由如下:∵k=4,∴E(,3),F(4,1),∴CE=4﹣=,CF=3﹣1=2.∴S△OEF=S矩形AOBC﹣S△AOE﹣S△BOF﹣S△CEF=S矩形AOBC﹣OA•AE﹣OB•BF﹣CE•CF=4×3﹣×3×﹣×4×1﹣××2=12﹣2﹣2﹣=,∴S△OEF≠,故命题①错误;命题②正确.理由如下:∵k=,∴E(,3),F(4,),∴CE=4﹣=,CF=3﹣=.如答图,过点E作EM⊥x轴于点M,则EM=3,OM=;在线段BM上取一点N,使得EN=CE=,连接NF.在Rt△EMN中,由勾股定理得:MN===,∴BN=OB﹣OM﹣MN=4﹣﹣=.在Rt△BFN中,由勾股定理得:NF===.∴NF=CF,又∵EN=CE,∴直线EF为线段CN的垂直平分线,即点N与点C关于直线EF对称, 故命题②正确;命题③错误.理由如下:由题意,点F与点C(4,3)不重合,所以k≠4×3=12,故命题③错误;命题④正确.理由如下:为简化计算,不妨设k=12m,则E(4m,3),F(4,3m).设直线EF的解析式为y=ax+b,则有,解得,∴y=x+3m+3.令x=0,得y=3m+3,∴D(0,3m+3);令y=0,得x=4m+4,∴G(4m+4,0).如答图,过点E作EM⊥x轴于点M,则OM=AE=4m,EM=3.在Rt△ADE中,AD=AD=OD﹣OA=3m,AE=4m,由勾股定理得:DE=5m;在Rt△MEG中,MG=OG﹣OM=(4m+4)﹣4m=4,EM=3,由勾股定理得:EG=5.∴DE•EG=5m×5=25m=,解得m=,∴k=12m=1,故命题④正确.综上所述,正确的命题是:②④,故答案为:②④.三、(本大题共3小题,每题6分,共18分)17.计算:﹣4sin60°+(π+2)0+()﹣2.解答:解:原式=2﹣4×+1+4=5.18.计算:(﹣)÷.解答:解:原式=(﹣)•=(﹣)•(﹣)=﹣•=﹣.19.如图,正方形ABCD中,E、F分别为BC、CD上的点,且AE⊥BF,垂足为点G.求证:AE=BF.解答:证明:∵正方形ABCD,∴∠ABC=∠C,AB=BC.∵AE⊥BF,∴∠AGB=90°∠ABG+∠CBF=90°,∵∠ABG+∠FNC=90°,∴∠BAG=∠CBF.在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴AE=BF.四、(本大题共2小题,每小题7分,共14分)20.某中学积极组织学生开展课外阅读活动,为了解本校学生每周课外阅读的时间量t(单位:小时),采用随机抽样的方法抽取部分学生进行了问卷调查,调查结果按0≤t<2,2≤t<3,3≤t<4,t≥4分为四个等级,并分别用A、B、C、D表示,根据调查结果统计数据绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:(1)求出x的值,并将不完整的条形统计图补充完整;(2)若该校共有学生2500人,试估计每周课外阅读时间量满足2≤t<4的人数;(3)若本次调查活动中,九年级(1)班的两个学习小组分别有3人和2人每周阅读时间量都在4小时以上,现从这5人中任选2人参加学校组织的知识抢答赛,求选出的2人来自不同小组的概率.解答:解:(1)∵x%+15%+10%+45%=1,∴x=30;∵调查的总人数=90÷45%=200(人),∴B等级人数=200×30%=60(人);C等级人数=200×10%=20(人),如图:(2)2500×(10%+30%)=1000(人),所以估计每周课外阅读时间量满足2≤t<4的人数为1000人;(3)3人学习组的3个人用甲表示,2人学习组的2个人用乙表示,画树状图为:,共有20种等可能的结果数,其中选出的2人来自不同小组占12种,所以选出的2人来自不同小组的概率==.21.某工厂现有甲种原料280千克,乙种原料290千克,计划用这两种原料生产A、B两种产品共50件.已知生产一件A产品需要甲种原料9千克,乙种原料3千克,可获利700元;生产一件B产品需要甲种原料4千克,乙种原料10千克,可获利1200元.设生产A、B两种产品总利润为y元,其中A种产品生产件数是x.(1)写出y与x之间的函数关系式;(2)如何安排A、B两种产品的生产件数,使总利润y有最大值,并求出y的最大值.解答:解:(1)y=700x+1200(50﹣x),即y=﹣500x+60000;(2)由题意得,解得16≤x≤30y=﹣500x+60000,y随x的增大而减小,当x=16时,y最大=58000,生产B种产品34件,A种产品16件,总利润y有最大值,y最大=58000元.五、(本大题共2小题,每小题8分,共16分)22.海中两个灯塔A、B,其中B位于A的正东方向上,渔船跟踪鱼群由西向东航行,在点C处测得灯塔A在西北方向上,灯塔B在北偏东30°方向上,渔船不改变航向继续向东航行30海里到达点D,这是测得灯塔A在北偏西60°方向上,求灯塔A、B间的距离.(计算结果用根号表示,不取近似值)解答:解:如图所示:由题意可得出:∠FCA=∠ACN=45°,∠NCB=30°,∠ADE=60°,过点A作AF⊥FD,垂足为F,则∠FAD=60°,∠FAC=∠FCA=45°,∠ADF=30°,∴AF=FC=AN=NC,设AF=FC=x,∴tan30°===,解得:x=15(+1),∵tan30°=,∴=,解得:BN=15+5,∴AB=AN+BN=15(+1)+15+5=30+20,答:灯塔A、B间的距离为(30+20)海里.23.已知x1,x2是关于x的一元二次方程x2﹣2(m+1)x+m2+5=0的两实数根.(1)若(x1﹣1)(x2﹣1)=28,求m的值;(2)已知等腰△ABC的一边长为7,若x1,x2恰好是△ABC另外两边的边长,求这个三角形的周长.解答:解:(1)∵x1,x2是关于x的一元二次方程x2﹣2(m+1)x+m2+5=0的两实数根,∴x1+x2=2(m+1),x1•x2=m2+5,∴(x1﹣1)(x2﹣1)=x1•x2﹣(x1+x2)+1=m2+5﹣2(m+1)+1=28,解得:m=﹣4或m=6;当m=﹣4时原方程无解,∴m=6;(2)当7为底边时,此时方程x2﹣2(m+1)x+m2+5=0有两个相等的实数根,∴△=4(m+1)2﹣4(m2+5)=0,解得:m=2,∴方程变为x2﹣6x+9=0,解得:x1=x2=3,∵3+3<7,∴不能构成三角形;当7为腰时,设x1=7,代入方程得:49﹣14(m+1)+m2+5=0,解得:m=10或4,当m=10时方程变为x2﹣22x+105=0,解得:x=7或15∵7+7<15,不能组成三角形;当m=4时方程变为x2﹣10x+21=0,解得:x=3或7,此时三角形的周长为7+7+3=17.六、(本大题共2小题,每小题12分,共24分)24.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE•CA.(1)求证:BC=CD;(2)分别延长AB,DC交于点P,过点A作AF⊥CD交CD的延长线于点F,若PB=OB,CD=,求DF的长.解答:(1)证明:∵DC2=CE•CA,∴=,∴△CDE∽△CAD,∴∠CDB=∠DBC,∵四边形ABCD内接于⊙O,∴BC=CD;(2)解:如图,连接OC,∵BC=CD,∴∠DAC=∠CAB,又∵AO=CO,∴∠CAB=∠ACO,∴∠DAC=∠ACO,∴AD∥OC,∴=,∵PB=OB,CD=,∴=,∴PC=4又∵PC•PD=PB•PA,∴PA=4也就是半径OB=4,在RT△ACB中,AC===2,∵AB是直径,∴∠ADB=∠ACB=90°,∴∠FDA+∠BDC=90°,∠CBA+∠CAB=90°∵∠BDC=∠CAB,∴∠FDA=∠CBA又∵∠AFD=∠ACB=90°,∴△AFD∽△ACB,∴在Rt△AFP中,设FD=x,则AF=,∴在RT△APF中有,,求得DF=.25.如图,已知一次函数y1=x+b的图象l与二次函数y2=﹣x2+mx+b的图象C′都经过点B(0,1)和点C,且图象C′过点A(2﹣,0).(1)求二次函数的最大值;(2)设使y2>y1成立的x取值的所有整数和为s,若s是关于x的方程=0的根,求a的值;(3)若点F、G在图象C′上,长度为的线段DE在线段BC上移动,EF与DG始终平行于y轴,当四边形DEFG的面积最大时,在x轴上求点P,使PD+PE最小,求出点P的坐标.解答:解:(1)∵二次函数y2=﹣x2+mx+b经过点B(0,1)与A(2﹣,0),∴,解得∴l:y1=x+1;C′:y2=﹣x2+4x+1.y2=﹣x2+4x+1=﹣(x﹣2)2+5,∴y max=5;(2)联立y1与y2得:x+1=﹣x2+4x+1,解得x=0或x=,当x=时,y1=×+1=,∴C(,).使y2>y1成立的x的取值范围为0<x<,∴s=1+2+3=6.代入方程得解得a=;(3)∵点D、E在直线l:y1=x+1上,∴设D(p,p+1),E(q,q+1),其中q>p>0.如答图1,过点E作EH⊥DG于点H,则EH=q﹣p,DH=(q﹣p).在Rt△DEH中,由勾股定理得:DE2+DH2=DE2,即(q﹣p)2+[(q﹣p)]2=()2,解得q﹣p=2,即q=p+2.∴EH=2,E(p+2,p+2).当x=p时,y2=﹣p2+4p+1,∴G(p,﹣p2+4p+1),∴DG=(﹣p2+4p+1)﹣(p+1)=﹣p2+p;当x=p+2时,y2=﹣(p+2)2+4(p+2)+1=﹣p2+5,∴F(p+2,﹣p2+5)∴EF=(﹣p2+5)﹣(p+2)=﹣p2﹣p+3.S四边形DEFG=(DG+EF)•EH=[(﹣p2+p)+(﹣p2﹣p+3)]×2=﹣2p2+3p+3∴当p=时,四边形DEFG的面积取得最大值,∴D(,)、E(,).如答图2所示,过点D关于x轴的对称点D′,则D′(,﹣);连接D′E,交x轴于点P,PD+PE=PD′+PE=D′E,由两点之间线段最短可知,此时PD+PE最小.设直线D′E的解析式为:y=kx+b,则有,解得∴直线D′E的解析式为:y=x﹣.令y=0,得x=,∴P(,0).。
2014年黑龙江省哈尔滨市中考数学试卷(含答案)
2014年黑龙江省哈尔滨市中考数学试卷(含答案)DB、不是中心对称图形,故本选项正确;C、是中心对称图形,故本选项错误;D、是中心对称图形,故本选项错误;故选B.点评:本题考查了中心对称的知识,中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.(3分)(2014年黑龙江哈尔滨)在反比例函数的图象的每一条曲线上,y都随x的增大而减小,则k的取值范围是()A.k>1 B.k>0 C.k≥1 D.k<1考点:反比例函数的性质.分析:根据反比例函数的性质,当反比例函数的系数大于0时,在每一支曲线上,y都随x的增大而减小,可得k﹣1>0,解可得k的取值范围.解答:解:根据题意,在反比例函数图象的每一支曲线上,y都随x的增大而减小,即可得k﹣1>0,解得k>1.故选A.点评:本题考查了反比例函数的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.6.(3分)(2014年黑龙江哈尔滨)如图的几何体是由一些小正方形组合而成的,则这个几何体的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.解答:解:从几何体的上面看共有3列小正方形,右边有2个,左边有2个,中间上面有1个,故选:D.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.7.(3分)(2014年黑龙江哈尔滨)如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O 于点D,连接BD,∠C=40°.则∠ABD的度数是()A.30°B.25° C.20°D.15°考点:切线的性质.分析:根据切线的性质求出∠OAC,求出∠AOC,根据等腰三角形性质求出∠B=∠BDO,根据三角形外角性质求出即可.解答:解:∵AC是⊙O的切线,∴∠OAC=90°,∵∠C=40°,∴∠AOC=50°,∵OB=OD,∴∠ABD=∠BDO,∵∠ABD+∠BDO=∠AOC,∴∠ABD=25°,故选B.点评:本题考查了切线的性质,三角形外角性质,三角形内角和定理,等腰三角形性质的应用,解此题的关键是求出∠AOC的度数,题目比较好,难度适中.8.(3分)(2014年黑龙江哈尔滨)将抛物线y=﹣2x2+1向右平移1个单位,再向上平移2个单位后所得到的抛物线为()A.y=﹣2(x+1)2﹣1 B.y﹣2(x+1)2+3 C.y=﹣2(x﹣1)2+1 D.y=﹣2(x﹣1)2+3考点:二次函数图象与几何变换.分析:根据图象右移减,上移加,可得答案.解答:解;将抛物线y=﹣2x2+1向右平移1个单位,再向上平移2个单位后所得到的抛物线为y=﹣2(x﹣1)2+3,故选:D.点评:本题考查了二次函数图象与几何变换,函数图象平移的规律是:左加右减,上加下减.9.(3分)(2014年黑龙江哈尔滨)如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B 是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为()A. 6 B.4C.3 D. 3考点:旋转的性质.分析:利用直角三角形的性质得出AB=4,再利用旋转的性质以及三角形外角的性质得出AB′=2,进而得出答案.解答:解:∵在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,∴∠CAB=30°,故AB=4,∵△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,∴AB=A′B′=4,AC=A′C,∴∠CAA′=∠A′=30°,∴∠ACB′=∠B′AC=30°,∴AB′=B′C=2,∴AA′=2+4=6.故选:A.点评:此题主要考查了旋转的性质以及直角三角形的性质等知识,得出AB′=B′C=2是解题关键.10.(3分)(2014年黑龙江哈尔滨)早晨,小刚沿着通往学校唯一的一条路(直路)上学,途中发现忘带饭盒,停下往家里打电话,妈妈接到电话后带上饭盒马上赶往学校,同时小刚返回,两人相遇后,小刚立即赶往学校,妈妈回家,15分钟妈妈到家,再经过3分钟小刚到达学校,小刚始终以100米/分的速度步行,小刚和妈妈的距离y(单位:米)与小刚打完电话后的步行时间t(单位:分)之间的函数关系如图,下列四种说法:①打电话时,小刚和妈妈的距离为1250米;②打完电话后,经过23分钟小刚到达学校;③小刚和妈妈相遇后,妈妈回家的速度为150米/分;④小刚家与学校的距离为2550米.其中正确的个数是()A.1个B.2个C.3个D.4个考点:一次函数的应用.分析:根据函数的图象和已知条件分别分析探讨其正确性,进一步判定得出答案即可.解答:解:①由图可知打电话时,小刚和妈妈的距离为1250米是正确的;②因为打完电话后5分钟两人相遇后,小刚立即赶往学校,妈妈回家,15分钟妈妈到家,再经过3分钟小刚到达学校,经过5+15+3=23分钟小刚到达学校,所以是正确的;③打完电话后5分钟两人相遇后,妈妈的速度是1250÷5﹣100=150米/分,走的路程为150×5=750米,回家的速度是750÷15=50米/分,所以回家的速度为150米/分是错误的;④小刚家与学校的距离为750+(15+3)×100=2550米,所以是正确的.正确的答案有①②④.故选:C.点评:此题考查了函数的图象的实际意义,结合题意正确理解函数图象,利用基本行程问题解决问题.二、填空题(共10小题,每小题3分,共计30分)11.(3分)(2014年黑龙江哈尔滨)计算:=.考点:二次根式的加减法.分析:先化简=2,再合并同类二次根式即可.解答:解:=2﹣=.故应填:.点评:本题主要考查了二次根式的加减,属于基础题型.12.(3分)(2014年黑龙江哈尔滨)在函数y=中,自变量x的取值范围是x≠﹣2.考点:函数自变量的取值范围.分析:根据分母不等于0列式计算即可得解.解答:解:由题意得,2x+4≠0,解得x≠﹣2.故答案为:x≠﹣2.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.(3分)(2014年黑龙江哈尔滨)把多项式3m2﹣6mn+3n2分解因式的结果是3(m﹣n)2.考点:提公因式法与公式法的综合运用.分析:首先提取公因式3,再利用完全平方公式进行二次分解.解答:解:3m2﹣6mn+3n2=3(m2﹣2mn+n2)=3(m﹣n)2.故答案为:3(m﹣n)2.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.(3分)(2014年黑龙江哈尔滨)不等式组的解集是﹣1<x≤1.考点:解一元一次不等式组.分析:分别求出各不等式的解集,再求出其公共解集即可.解答:解:,由①得,x≤1,由②得,x>﹣1,故此不等式组的解集为:﹣1<x≤1.故答案为:﹣1<x≤1.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.15.(3分)(2014年黑龙江哈尔滨)若x=﹣1是关于x的一元二次方程x2+3x+m+1=0的一个解,则m的值为1.考点:一元二次方程的解.专题:计算题.分析:根据x=﹣1是已知方程的解,将x=﹣1代入方程即可求出m的值.解答:解:将x=﹣1代入方程得:1﹣3+m+1=0,解得:m=1.故答案为:1点评:此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.16.(3分)(2014年黑龙江哈尔滨)在一个不透明的口袋中,有四个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸取一个小球记下标号后放回,再随机地摸取一个小球记下标号,则两次摸取的小球标号都是1的概率为.考点:列表法与树状图法.专题:计算题.分析:列表得出所有等可能的情况数,找出两次摸取的小球标号都是1的情况数,即可求出所求的概率.解答:解:列表如下:1 2 3 41 (1,1)(2,1)(3,1)(4,1)2 (1,2)(2,2)(3,2)(4,2)3 (1,3)(2,3)(3,3)(4,3)4 (1,4)(2,4)(3,4)(4,4)所有等可能的情况有16种,其中两次摸取的小球标号都是1的情况有1种,则P=.故答案为:点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.17.(3分)(2014年黑龙江哈尔滨)如图,在矩形ABCD中,AB=4,BC=6,若点P在AD边上,连接BP、PC,△BPC是以PB为腰的等腰三角形,则PB的长为5或6.考点:矩形的性质;等腰三角形的判定;勾股定理.专题:分类讨论.分析:需要分类讨论:PB=PC和PB=BC两种情况.解答:解:如图,在矩形ABCD中,AB=CD=4,BC=AD=6.如图1,当PB=PC时,点P是BC的中垂线与AD的交点,则AP=DP=AD=3.在Rt△ABP中,由勾股定理得PB===5;如图2,当BP=BC=6时,△BPC也是以PB为腰的等腰三角形.综上所述,PB的长度是5或6.点评:本题考查了矩形的性质、等腰三角形的判定和勾股定理.解题时,要分类讨论,以防漏解.18.(3分)(2014年黑龙江哈尔滨)一个底面直径为10cm,母线长为15cm的圆锥,它的侧面展开图圆心角是120度.考点:圆锥的计算.分析:利用底面周长=展开图的弧长可得.解答:解:∵底面直径为10cm,∴底面周长为10π,根据题意得10π=,解得n=120.故答案为120.点评:考查了圆锥的计算,解答本题的关键是有确定底面周长=展开图的弧长这个等量关系,然后由扇形的弧长公式和圆的周长公式求值.19.(3分)(2014年黑龙江哈尔滨)如图,在正方形ABCD中,AC为对角线,点E在AB边上,EF⊥AC于点F,连接EC,AF=3,△EFC的周长为12,则EC的长为5.考点:正方形的性质;勾股定理;等腰直角三角形.分析:由四边形ABCD是正方形,AC为对角线,得出∠AFE=45°,又因为EF⊥AC,得到∠AFE=90°得出EF=AF=3,由△EFC的周长为12,得出线段FC=12﹣3﹣EC=9﹣EC,在RT△EFC中,运用勾股定理EC2=EF2+FC2,求出EC=5.解答:解:∵四边形ABCD是正方形,AC为对角线,∴∠AFE=45°,又∵EF⊥AC,∴∠AFE=90°,∠AEF=45°,∴EF=AF=3,∵△EFC的周长为12,∴FC=12﹣3﹣EC=9﹣EC,在RT△EFC中,EC2=EF2+FC2,∴EC2=9+(9﹣EC)2,解得EC=5.故答案为:5.点评:本题主要考查了正方形的性质及等腰直角三角形,解题的关键是找出线段的关系.运用勾股定理列出方程.20.(3分)(2014年黑龙江哈尔滨)如图,在△ABC 中,4AB=5AC,AD为△ABC的角平分线,点E在BC的延长线上,EF⊥AD于点F,点G在AF上,FG=FD,连接EG交AC于点H.若点H是AC的中点,则的值为.考点:相似三角形的判定与性质;全等三角形的判定与性质;角平分线的性质;等腰三角形的判定与性质;平行四边形的判定与性质.分析:解题关键是作出辅助线,如解答图所示:第1步:利用角平分线的性质,得到BD=CD;第2步:延长AC,构造一对全等三角形△ABD≌△AMD;第3步:过点M作MN∥AD,构造平行四边形DMNG.由MD=BD=KD=CD,得到等腰△DMK;然后利用角之间关系证明DM∥GN,从而推出四边形DMNG为平行四边形;第4步:由MN∥AD,列出比例式,求出的值.解答:解:已知AD为角平分线,则点D到AB、AC的距离相等,设为h.∵====,∴BD=CD.如右图,延长AC,在AC的延长线上截取AM=AB,则有AC=4CM.连接DM.在△ABD与△AMD中,∴△ABD≌△AMD(SAS),∴MD=BD=5m.过点M作MN∥AD,交EG于点N,交DE于点K.∵MN∥AD,∴==,∴CK=CD,∴KD=CD.∴MD=KD,即△DMK为等腰三角形,∴∠DMK=∠DKM.由题意,易知△EDG为等腰三角形,且∠1=∠2;∵MN∥AD,∴∠3=∠4=∠1=∠2,又∵∠DKM=∠3(对顶角)∴∠DMK=∠4,∴DM∥GN,∴四边形DMNG为平行四边形,∴MN=DG=2FD.∵点H为AC中点,AC=4CM,∴=.∵MN∥AD,∴=,即,∴=.点评:本题是几何综合题,难度较大,正确作出辅助线是解题关键.在解题过程中,需要综合利用各种几何知识,例如相似、全等、平行四边形、等腰三角形、角平分线性质等,对考生能力要求较高.三、解答题(共8小题,其中21-24题各6分,25-26题各8分,27-28题各10分,共计10分)21.(6分)(2014年黑龙江哈尔滨)先化简,再求代数式﹣的值,其中x=2cos45°+2,y=2.考点:分式的化简求值;特殊角的三角函数值.专题:计算题.分析:原式利用同分母分式的减法法则计算,约分得到最简结果,将x与y的值代入计算即可求出值.解答:解:原式===,当x=2×+2=+2,y=2时,原式==.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.22.(6分)(2014年黑龙江哈尔滨)如图,方格纸中每个小正方形的边长均为1,四边形ABCD的四个顶点都在小正方形的顶点上,点E在BC边上,且点E在小正方形的顶点上,连接AE.(1)在图中画出△AEF,使△AEF与△AEB关于直线AE对称,点F与点B是对称点;(2)请直接写出△AEF与四边形ABCD重叠部分的面积.考点:作图-轴对称变换.专题:作图题.分析:(1)根据AE为网格正方形的对角线,作出点B关于AE的对称点F,然后连接AF、EF即可;(2)根据图象,重叠部分为两个直角三角形的面积的差,列式计算即可得解.解答:解:(1)△AEF如图所示;(2)重叠部分的面积=×4×4﹣×2×2=8﹣2=6.点评:本题考查了利用轴对称变换作图,熟练掌握网格结构并观察出AE为网格正方形的对角线是解题的关键.23.(6分)(2014年黑龙江哈尔滨)君畅中学计划购买一些文具送给学生,为此学校决定围绕“在笔袋、圆规、直尺、钢笔四种文具中,你最需要的文具是什么?(必选且只选一种)”的问题,在全校满园内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据以上信息回答下列问题:(1)在这次调查中,最需要圆规的学生有多少名?并补全条形统计图;(2)如果全校有970名学生,请你估计全校学生中最需要钢笔的学生有多少名?考点:条形统计图;用样本估计总体;扇形统计图.专题:计算题.分析:(1)由最需要直尺的学生数除以占的百分比求出总人数,确定出最需要圆规的学生数,补全条形统计图即可;(2)求出最需要钢笔的学生占的百分比,乘以970即可得到结果.解答:解:(1)根据题意得:18÷30%=60(名),60﹣(21+18+6)=15(名),则本次调查中,最需要圆规的学生有15名,补全条形统计图,如图所示:(2)根据题意得:970×=97(名),则估计全校学生中最需要钢笔的学生有97名.点评:此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.24.(6分)(2014年黑龙江哈尔滨)如图,AB、CD为两个建筑物,建筑物AB的高度为60米,从建筑物AB的顶点A点测得建筑物CD的顶点C点的俯角∠EAC为30°,测得建筑物CD的底部D点的俯角∠EAD为45°.(1)求两建筑物底部之间水平距离BD的长度;(2)求建筑物CD的高度(结果保留根号).考点:解直角三角形的应用-仰角俯角问题.分析:(1)根据题意得:BD∥AE,从而得到∠BAD=∠ADB=45°,利用BD=AB=60,求得两建筑物底部之间水平距离BD的长度为60米;(2)延长AE、DC交于点F,根据题意得四边形ABDF为正方形,根据AF=BD=DF=60,在Rt△AFC中利用∠FAC=30°求得CF,然后即可求得CD的长.解答:解:(1)根据题意得:BD∥AE,∴∠ADB=∠EAD=45°,∵∠ABD=90°,∴∠BAD=∠ADB=45°,∴BD=AB=60,∴两建筑物底部之间水平距离BD的长度为60米;(2)延长AE、DC交于点F,根据题意得四边形ABDF为正方形,∴AF=BD=DF=60,在Rt△AFC中,∠FAC=30°,∴CF=AF•tan∠FAC=60×=20,又∵FD=60,∴CD=60﹣20,∴建筑物CD的高度为(60﹣20)米.点评:考查解直角三角形的应用;得到以AF为公共边的2个直角三角形是解决本题的突破点.25.(8分)(2014年黑龙江哈尔滨)如图,⊙O是△ABC的外接圆,弦BD交AC于点E,连接CD,且AE=DE,BC=CE.(1)求∠ACB的度数;(2)过点O作OF⊥AC于点F,延长FO交BE于点G,DE=3,EG=2,求AB的长.考点:三角形的外接圆与外心;全等三角形的判定与性质;等边三角形的判定与性质;勾股定理.分析:(1)首先得出△AEB≌△DEC,进而得出△EBC为等边三角形,即可得出答案;(2)由已知得出EF,BC的长,进而得出CM,BM的长,再求出AM的长,再由勾股定理求出AB的长.解答:(1)证明:在△AEB和△DEC中,∴△AEB≌△DEC(ASA),∴EB=EC,又∵BC=CE,∴BE=CE=BC,∴△EBC为等边三角形,∴∠ACB=60°;(2)解:∵OF⊥AC,∴AF=CF,∵△EBC为等边三角形,∴∠GEF=60°,∴∠EGF=30°,∵EG=2,∴EF=1,又∵AE=ED=3,∴CF=AF=4,∴AC=8,EC=5,∴BC=5,作BM⊥AC于点M,∵∠BCM=60°,∴∠MBC=30°,∴CM=,BM==,∴AM=AC﹣CM=,∴AB==7.点评:此题主要考查了全等三角形的判定与性质以及等边三角形的性质和勾股定理以及锐角三角函数关系等知识,得出CM,BM的长是解题关键.26.(8分)(2014年黑龙江哈尔滨)荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?考点:分式方程的应用;一元一次不等式的应用.分析:(1)设购买该品牌一个手电筒需要x元,则购买一个台灯需要(x+20)元.则根据等量关系:购买台灯的个数是购买手电筒个数的一半,列出方程;(2)设公司购买台灯的个数为a各,则还需要购买手电筒的个数是(2a+8)个,则根据“该公司购买台灯和手电筒的总费用不超过670元”列出不等式.解答:解:(1)设购买该品牌一个手电筒需要x 元,则购买一个台灯需要(x+20)元.根据题意得=×解得x=5经检验,x=5是原方程的解.所以x+20=25.答:购买一个台灯需要25元,购买一个手电筒需要5元;(2)设公司购买台灯的个数为a,则还需要购买手电筒的个数是(2a+8)由题意得25a+5(2a+8)≤670解得a≤21所以荣庆公司最多可购买21个该品牌的台灯.点评:本题考查了一元一次不等式和分式方程的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量(不等量)关系.27.(10分)(2014年黑龙江哈尔滨)如图,在平面直角坐标中,点O为坐标原点,直线y=﹣x+4与x轴交于点A,过点A的抛物线y=ax2+bx与直线y=﹣x+4交于另一点B,且点B的横坐标为1.(1)求a,b的值;(2)点P是线段AB上一动点(点P不与点A、B重合),过点P作PM∥OB交第一象限内的抛物线于点M,过点M作MC⊥x轴于点C,交AB于点N,过点P作PF⊥MC于点F,设PF 的长为t,MN的长为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,当S△ACN=S△PMN时,连接ON,点Q在线段BP上,过点Q作QR∥MN交ON于点R,连接MQ、BR,当∠MQR﹣∠BRN=45°时,求点R的坐标.考点:二次函数综合题.分析:(1)利用已知得出A,B点坐标,进而利用待定系数法得出a,b的值;(2)利用已知得出AD=BD则∠BAD=∠ABD=45°,进而得出tan∠BOD=tan∠MPF,故==3,MF=3PF=3t,即可得出d与t的函数关系;(3)首先利用S △ACN=S△PMN,则AC2=2t2,得出AC=2t,CN=2t,则M(4﹣2t,6t),求出t的值,进而得出△PMQ∽△NBR,求出R点坐标.解答:解:(1)∵y=﹣x+4与x轴交于点A,∴A(4,0),∵点B的横坐标为1,且直线y=﹣x+4经过点B,∴B(1,3),∵抛物线y=ax2+bx经过A(4,0),B(1,3),∴,解得:,∴a=﹣1,b=4;(2)如图,作BD⊥x轴于点D,延长MP交x 轴于点E,∵B(1,3),A(4,0),∴OD=1,BD=3,OA=4,∴AD=3,∴AD=BD,∵∠BDA=90°,∠BAD=∠ABD=45°,∵MC⊥x轴,∴∠ANC=∠BAD=45°,∴∠PNF=∠ANC=45°,∵PF⊥MC,∴∠FPN=∠PNF=45°,∴NF=PF=t,∵∠DFM=∠ECM=90°,∴PF∥EC,∴∠MPF=∠MEC,∵ME∥OB,∴∠MEC=∠BOD,∴∠MPF=∠BOD,∴tan∠BOD=tan∠MPF,∴==3,∴MF=3PF=3t,∵MN=MF+FN,∴d=3t+t=4t;(3)如备用图,由(2)知,PF=t,MN=4t,∴S △PMN=MN×PF=×4t×t=2t2,∵∠CAN=∠ANC,∴CN=AC,∴S △ACN=AC2,∵S△ACN=S△PMN,∴AC 2=2t2,∴AC=2t,∴CN=2t,∴MC=MN+CN=6t,∴OC=OA﹣AC=4﹣2t,∴M(4﹣2t,6t),由(1)知抛物线的解析式为:y=﹣x2+4x,将M(4﹣2t,6t)代入y=﹣x2+4x得:﹣(4﹣2t)2+4(4﹣2t)=6t,解得:t 1=0(舍),t2=,∴PF=NF=,AC=CN=1,OC=3,MF=,PN=,PM=,AN=,∵AB=3,∴BN=2,作NH⊥RQ于点H,∵QR∥MN,∴∠MNH=∠RHN=90°,∠RQN=∠QNM=45°,∴∠MNH=∠NCO,∴NH∥OC,∴∠HNR=∠NOC,∴tan∠HNR=tan∠NOC,∴==,设RH=n,则HN=3n,∴RN=n,QN=3n,∴PQ=QN﹣PN=3n﹣,∵ON==,OB==,∴OB=ON,∴∠OBN=∠BNO,∵PM∥OB,∴∠OBN=∠MPB,∴∠MPB=∠BNO,∵∠MQR﹣∠BRN=45°,∠MQR=∠MQP+∠RQN=∠MQP+45°,∴∠BRN=∠MQP,∴△PMQ∽△NBR,∴=,∴=,解得:n=,∴R的横坐标为:3﹣=,R的纵坐标为:1﹣=,∴R(,).点评:此题主要考查了待定系数法求二次函数解析式以及相似三角形的判定与性质和勾股定理等知识,得出△PMQ∽△NBR,进而得出n 的值是解题关键.28.(10分)(2014年黑龙江哈尔滨)如图,在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,∠ADB=∠CAD+∠ABD,∠BAD=3∠CBD.(1)求证:△ABC为等腰三角形;(2)M是线段BD上一点,BM:AB=3:4,点F在BA的延长线上,连接FM,∠BFM的平分线FN交BD于点N,交AD于点G,点H为BF中点,连接MH,当GN=GD时,探究线段CD、FM、MH之间的数量关系,并证明你的结论.考点:相似形综合题.分析:(1)根据等式的性质,可得∠APE=∠ADE,根据等腰三角形的性质,可得∠PAD=2β,根据直角三角形的性质,可得∠AEB+∠CBE=90°,根据等式的性质,可得∠ABC=∠ACB,根据等腰三角形的判定,可得答案;(2)根据相似三角形的判定与性质,可得∠ABE=∠ACD,根据等腰三角形的性质,可得∠GND=∠GDN,根据对顶角的性质,可得∠AGF的度数,根据三角形外角的性质,∠AFG 的度数,根据直角三角形的性质,可得BF与MH的关系,根据等腰三角形的性质,可得∠FRM=∠FMR,根据平行线的判定与性质,可得∠CBD=∠RMB,根据相似三角形的判定与性质,可得,根据线段的和差,可得BR=BF ﹣FR,根据等量代换,可得答案.解答:(1)证明:如图1,作∠BAP=∠DAE=β,AP交BD于P,设∠CBD=α,∠CAD=β,∵∠ADB=∠CAD+∠ABD,∠APE=∠BAP+∠ABD,∴∠APE=∠ADE,AP=AD.∵AC⊥BD∴∠PAE=∠DAE=β,∴∠PAD=2β,∠BAD=3β.∵∠BAD=3∠CBD,∴3β=3α,β=α.∵AC⊥BD,∴∠ACB=90°﹣∠CBE=90°﹣α=90°﹣β.∵∠ABC=180°﹣∠BAC﹣∠ACB=90°﹣β,∴∠ACB=∠ABC,∴△ABC为等腰三角形;(2)2MH=FM+CD.证明:如图2,由(1)知AP=AD,AB=AC,∠BAP=∠CAD=β,∴△ABP∽△ACD,∴∠ABE=∠ACD.∵AC⊥BD,∴∠GDN=90°﹣β,∵GN=GD,∴∠GND=∠GDN=90°﹣β,∴∠NGD=180°﹣∠GND﹣∠GDN=2β.∴∠AGF=∠NGD=2β.∴∠AFG=∠BAD﹣∠AGF=3β﹣2β=β.∵FN平分∠BFM,∴∠NFM=∠AFG=β,∴FM∥AE,∴∠FMN=90°.∵H为BF的中点,∴BF=2MH.在FB上截取FR=FM,连接RM,∴∠FRM=∠FMR=90°﹣β.∵∠ABC=90°﹣β,∴∠FRM=∠ABC,∴RM∥BC,∴∠CBD=∠RMB.∵∠CAD=∠CBD=β,∴∠RMB=∠CAD.∵∠RBM=∠ACD,∴△RMB∽△DAC,∴,∴BR=CD.∵BR=BF﹣FR,∴FB﹣FM=BR=CD,FB=FM+CD.∴2MH=FM+CD.点评:本题考查了相似形综合题,(1)利用了等腰三角形的性质,等腰三角形的判定,直角三角形的性质;(2)相似三角形的判定与性质,直角三角形的性质,三角形外角的性质,平行线的判定与性质,利用的知识点多,题目稍有难度,相似三角形的判定与性质是解题关键.。
2014年云南省中考数学试题与答案
2014 年云南省中考数学试卷一、选择题(本大题共8 小题,每小题只有一个正确选项,每小题 3 分,满分24 分)1.( 3 分)(2014年云南省) |﹣ |=()A .﹣B .C.﹣7D. 7考点:绝对值.菁优网版权所有分析:根据负数的绝对值是它的相反数,可得答案.解答:解: |﹣ |=,故选: B.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.( 3 分)(2014年云南省)下列运算正确的是()A .3x2+2 x3=5x6B .50=0C. 2﹣ 3=D.( x3)2=x6考点:幂的乘方与积的乘方;合并同类项;零指数幂;负整数指数幂.菁优网版权所有分析:根据合并同类项,可判断A,根据非 0 的 0 次幂,可判断B,根据负整指数幂,可判断 C,根据幂的乘方,可判断D.解答:解: A、系数相加字母部分不变,故 A 错误;B、非 0 的 0 次幂等于1,故 B 错误;C、2,故C错误;D、底数不变指数相乘,故 D 正确;故选: D.点评:本题考查了幂的乘方,幂的乘方底数不变指数相乘是解题关键.3.( 3 分)(2014年云南省)不等式组的解集是()A . x>B .﹣1≤x<C. x<D. x≥﹣ 1考点:解一元一次不等式组.菁优网版权所有分析:分别求出各不等式的解集,再求出其公共解集即可.解答:解:,由①得,x>,由②得,x≥﹣1,故此不等式组的解集为:x>.故选 A.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4.( 3 分)(2014年云南省)某几何体的三视图如图所示,则这个几何体是()A .圆柱B.正方体C.球D.圆锥考点:由三视图判断几何体.菁优网版权所有分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.解答:解:根据主视图和左视图为三角形判断出是锥体,根据俯视图是圆形可判断出这个几何体应该是圆锥,故选D.点评:主视图和左视图的大致轮廓为三角形的几何体为锥体,俯视图为圆就是圆锥.5.( 3 分)(2014年云南省)一元二次方程2﹣x﹣ 2=0 的解是()xA . x1=1,x2=2B . x1=1,x2 =﹣ 2C. x1 =﹣1, x2=﹣ 2D. x1=﹣ 1, x2=2考点:解一元二次方程-因式分解法.菁优网版权所有分析:直接利用十字相乘法分解因式,进而得出方程的根解答:解: x2﹣ x﹣ 2=0(x﹣ 2)( x+1) =0 ,解得: x1=﹣ 1,x2=2.故选: D.点评:此题主要考查了十字相乘法分解因式解方程,正确分解因式是解题关键.6.( 3 分)(2014年云南省)据统计,2013 年我国用义务教育经费支持了13940000名农民工随迁子女在城市里接受义务教育,这个数字用科学计数法可表示为()A . 1.394 ×107B . 13.94×107C. 1.394×106D. 13.94×105考点:科学记数法—表示较大的数.菁优网版权所有分析:科学记数法的表示形式为a×10n的形式,其中1≤|a< 10,n 为整数.确定n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值> 1 时, n是正数;当原数的绝对值< 1 时, n 是负数.解答:解: 13 940 000=1.394×107,故选:A.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a< 10,n 为整数,表示时关键要正确确定 a 的值以及n 的值.7.( 3 分)(2014年云南省)已知扇形的圆心角为 45°,半径长为12,则该扇形的弧长为()A .B . 2πC. 3πD. 12π考点:弧长的计算.菁优网版权所有分析:根据弧长公式 l=,代入相应数值进行计算即可.解答:解:根据弧长公式:l==3π,故选: C.点评:此题主要考查了弧长计算,关键是掌握弧长公式l=.8.( 3 分)(2014年云南省)学校为了丰富学生课余活动开展了一次“爱我云南,唱我云南”的歌咏比赛,共有18 名同学入围,他们的决赛成绩如下表:成绩(分)9.409.509.609.709.809.90人数235431则入围同学决赛成绩的中位数和众数分别是()A . 9.70, 9.60B . 9.60, 9.60C. 9.60, 9.70D. 9.65,9.60考点:分析:众数;中位数.菁优网版权所有根据中位数和众数的概念求解.解答:解:∵共有18 名同学,则中位数为第9 名和第 10 名同学成绩的平均分,即中位数为:=9.60 ,众数为:故选 B.9.60.点评:本题考查了中位数和众数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.二、填空题(本大题共 6 个小题,每小题 3 分,满分18 分)9.( 3 分)(2014年云南省)计算:﹣=.考点:二次根式的加减法.菁优网版权所有分析:运用二次根式的加减法运算的顺序,先将二次根式化成最简二次根式,再合并同类二次根式即可.解答:解:原式 =2﹣ = .故答案为:.点评:合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变.10.( 3 分)(2014年云南省)如图,直线a∥ b,直线 a,b 被直线 c 所截,∠ 1=37 °,则∠ 2= 143° .考点:平行线的性质.菁优网版权所有分析:根据对顶角相等可得∠3= ∠ 1,再根据两直线平行,同旁内角互补列式计算即可得解.解答:解:∠ 3= ∠1=37°(对顶角相等),∵a∥ b,∴∠ 2=180°﹣∠ 3=180°﹣ 37°=143°.故答案为: 143°.点评:本题考查了平行线的性质,对顶角相等的性质,熟记性质并准确识图是解题的关键.11.(3 分)(2014年云南省)写出一个图象经过一,三象限的正比例函数y=kx( k≠0)的解析式(关系式)y=2x .考点:正比例函数的性质.菁优网版权所有专题:开放型.分析:根据正比例函数y=kx 的图象经过一,三象限,可得k> 0,写一个符合条件的数即可.解答:解:∵正比例函数y=kx 的图象经过一,三象限,∴k> 0,取k=2 可得函数关系式y=2x.故答案为: y=2x.点评:此题主要考查了正比例函数的性质,关键是掌握正比例函数图象的性质:它是经过原点的一条直线.当k> 0 时,图象经过一、三象限,y 随 x 的增大而增大;当k<0 时,图象经过二、四象限,y 随 x 的增大而减小.12.( 3 分)( 2014?天津)抛物线y=x2﹣ 2x+3 的顶点坐标是(1,2).考点:二次函数的性质.菁优网版权所有专题:计算题.分析:已知抛物线的解析式是一般式,用配方法转化为顶点式,根据顶点式的坐标特点,直接写出顶点坐标.解答:解:∵ y=x2﹣ 2x+3=x2﹣2x+1﹣ 1+3=( x﹣ 1)2+2,∴抛物线y=x2﹣2x+3 的顶点坐标是(1, 2).点评:此题考查了二次函数的性质,二次函数2y=a( x﹣ h) +k 的顶点坐标为( h,k),对称轴为 x=h,此题还考查了配方法求顶点式.13.( 3 分)(2014年云南省)如图,在等腰△ ABC 中, AB=AC,∠ A=36 °,BD ⊥ AC 于点 D ,则∠ CBD = 18° .考点:等腰三角形的性质.菁优网版权所有分析:根据已知可求得两底角的度数,再根据三角形内角和定理不难求得∠DBC 的度数.解答:解:∵ AB=AC,∠ A=36°,∴∠ ABC=∠ ACB=72°.∵BD⊥AC 于点 D,∴∠ CBD =90°﹣ 72°=18°.故答案为: 18°.点评:本题主要考查等腰三角形的性质,解答本题的关键是会综合运用等腰三角形的性质和三角形的内角和定理进行答题,此题难度一般.14.( 3 分)(2014年云南省)观察规律并填空(1﹣)=?=;(1﹣)( 1﹣)=???==(1﹣)( 1﹣)( 1﹣)=?????=?=;(1﹣)( 1﹣)( 1﹣)( 1﹣)=???????=?=;⋯(1﹣)( 1﹣)( 1﹣)( 1﹣)⋯(1﹣) =.(用含 n 的代数式表示,n 是正整数,且 n≥2)考点:规律型:数字的变化类.菁优网版权所有分析:由前面算式可以看出:算式的左边利用平方差公式因式分解,中间的数字互为倒数,乘积为1,只剩下两端的( 1﹣)和( 1+)相乘得出结果.解答:解:( 1﹣)( 1﹣)( 1﹣)( 1﹣)⋯(1﹣)=??????⋯=.故答案为:.点评:此题考查算式的运算规律,找出数字之间的联系,得出运算规律,解决问题.三、解答题(本大题共9 个小题,满分60 分)15.( 5 分)(2014年云南省)化简求值:?(),其中x=.考点:分式的化简求值.菁优网版权所有专题:计算题.x 分析:原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,将的值代入计算即可求出值.解答:解:原式 =?=x+1,当 x=时,原式=.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.16.( 5 分)(2014年云南省)如图,在△ ABC 和△ ABD 中, AC 与 BD 相交于点E,AD =BC,∠DAB =∠ CBA,求证: AC =BD .考点:专题:分析:解答:全等三角形的判定与性质.菁优网版权所有证明题.根据“SAS”可证明△ ADB ≌△ BAC,由全等三角形的性质即可证明证明:在△ ADB 和△ BAC 中,AC=BD.,∴△ ADB ≌△ BAC( SAS),∴AC =BD.点评:本题考查了全等三角形的判定和性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.17.( 6 分)(2014年云南省)将油箱注满k 升油后,轿车科行驶的总路程S(单位:千米)与平均耗油量 a(单位:升 /千米)之间是反比例函数关系 S= ( k 是常数, k≠0).已知某轿车油箱注满油后,以平均耗油量为每千米耗油 0.1 升的速度行驶,可行驶 700 千米.(1)求该轿车可行驶的总路程S 与平均耗油量 a 之间的函数解析式(关系式);(2)当平均耗油量为 0.08 升 /千米时,该轿车可以行驶多少千米?考点:反比例函数的应用.菁优网版权所有分析:(1)将 a=0.1,s=700 代入到函数的关系S= 中即可求得 k 的值,从而确定解析式;(2)将 a=0.08 代入求得的函数的解析式即可求得s 的值.解答:解:( 1)由题意得: a=0.1, s=700,代入反比例函数关系S=中,解得: k=sa=70,所以函数关系式为:s=;(2)将 a=0.08 代入 s=得: s= ==875 千米,故该轿车可以行驶多875 米;点评:本题考查了反比例函数的应用,解题的关键是从实际问题中抽象出反比例函数模型.18.( 9 分)(2014年云南省)为了解本校九年级学生期末数学考试情况,销量在九年级随机抽取了一部分学生的期末数学成绩为样本,分为A、B( 89~ 80 分)、C( 79~ 60 分)、D(59~0 分)四个等级进行统计,并将统计结果绘制成如下统计图,请你根据统计图解答以下问题:(1)这次随机抽取的学生共有多少人?(2)请补全条形统计图;(3)这个学校九年级共有学生 1200 人,若分数为 80 分(含 80 分)以上为优秀,请估计这次九年级学生期末数学考试成绩为优秀的学生人数大约有多少?考点:条形统计图;用样本估计总体;扇形统计图.菁优网版权所有分析:(1)抽查人数可由 C 等所占的比例为 50%,根据总数 =某等人数÷比例来计算;(2)可由总数减去 A、 C、 D 的人数求得 B 等的人数,再补全条形统计图;(3)用样本估计总体.用总人数1200 乘以样本中测试成绩等级在80 分(含 80 分)以上的学生所占百分比即可.解答:解:( 1) 20÷50%=40 (人),答:这次随机抽取的学生共有40 人;(2) B 等级人数: 40﹣ 5﹣20﹣ 4=11(人)条形统计图如下:(3) 1200××100%=480(人),这次九年级学生期末数学考试成绩为优秀的学生人数大约有480 人.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.( 7 分)(2014年云南省)某市“艺术节”期间,小明、小亮都想去观看茶艺表演,但是只有一张茶艺表演门票,他们决定采用抽卡片的办法确定谁去.规则如下:将正面分别标有数字1、 2、 3、 4 的四张卡片(除数字外其余都相同)洗匀后,背面朝上放置在桌面上,随机抽出一张记下数字后放回;重新洗匀后背面朝上放置在桌面上,再随机抽出一张记下数字.如果两个数字之和为奇数,则小明去;如果两个数字之和为偶数,则小亮去.(1)请用列表或画树状图的方法表示抽出的两张卡片上的数字之和的所有可能出现的结果;(2)你认为这个规则公平吗?请说明理由.考点:游戏公平性;列表法与树状图法.菁优网版权所有分析:(1)用列表法将所有等可能的结果一一列举出来即可;(2)求得两人获胜的概率,若相等则公平,否则不公平.解答:解:( 1)根据题意列表得:123412345234563456745678(2)由列表得:共16 种情况,其中奇数有8 种,偶数有8 种,∴和为偶数和和为奇数的概率均为,∴这个游戏公平.点评:本题考查了游戏公平性及列表与列树形图的知识,难度不大,是经常出现的一个知识点.20.( 6 分)(2014年云南省)“母亲节”前夕,某商店根据市场调查,用3000 元购进第一批盒装花,上市后很快售完,接着又用5000 元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的 2 倍,且每盒花的进价比第一批的进价少 5 元.求第一批盒装花每盒的进价是多少元?考点:分析:是:解答:2×分式方程的应用.菁优网版权所有设第一批盒装花的进价是x 元 /盒,则第一批进的数量是:,第二批进的数量,再根据等量关系:第二批进的数量=第一批进的数量×2可得方程.解:设第一批盒装花的进价是x 元 /盒,则=,解得x=30经检验,x=30 是原方程的根.答:第一批盒装花每盒的进价是30 元.点评:本题考查了分式方程的应用.注意,分式方程需要验根,这是易错的地方.21.( 6 分)(2014年云南省)如图,小明在AB 的顶端 B 的仰角为 30°,再向旗杆方向前进M 处用高10 米到1 米( DM=1 米)的测角仪测得旗杆F 处,又测得旗杆顶端 B 的仰角为60°,请求出旗杆AB 的高度(取≈ 1.73,结果保留整数)考点:解直角三角形的应用-仰角俯角问题.菁优网版权所有分析:首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造三角关系,进而可求出答案.解答:解:∵∠ BDE=30°,∠ BCE=60°,∴∠ CBD =60°﹣∠ BDE =30°=∠ BDE ,∴BC =CD=10 米,在 Rt△ BCE 中, sin60°=,即=,∴BE =5,AB=BE+AE=5+1≈ 10米.答:旗杆 AB 的高度大约是10 米.点评:主要考查解直角三角形的应用,本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.22.( 7 分)(2014年云南省)如图,在平行四边形ABCD 中,∠ C=60 °, M、N 分别是 AD、BC 的中点, BC=2CD .(1)求证:四边形MNCD 是平行四边形;(2)求证: BD=MN .考点:平行四边形的判定与性质.菁优网版权所有专题:证明题.分析:(1)根据平行四边形的性质,可得AD 与 BC 的关系,根据 MD 与 NC 的关系,可得证明结论;(2)根据根据等边三角形的判定与性质,可得∠DNC 的度数,根据三角形外角的性质,可得∠ DBC 的度数,根据正切函数,可得答案.解答:证明:( 1)∵ ABCD 是平行四边形,∴AD =BC, AD ∥ BC,∵M 、 N 分别是 AD 、 BC 的中点,∴MD =NC, MD∥ NC,∴MNCD 是平行四边形;(2)如图:连接ND ,∵MNCD 是平行四边形,∴MN =DC.∵N 是 BC 的中点,∴BN =CN,∵BC =2CD ,∠ C=60°,∴△ NVD 是等边三角形.∴ND =NC,∠ DNC=60°.∵∠ DNC 是△ BND 的外角,∴∠ NBD +∠NDB =∠DNC ,∵DN =NC=NB,∴∠ DBN =∠BDN =∠ DNC=30°,∴∠ BDC =90°.∵tan,∴DB= DC= MN.点评:本题考查了平行四边形的判定与性质,利用了一组对边平行且相等的四边形是平行四边形,等边三角形的判定与性质,正切函数.23.( 9 分)(2014年云南省)已知如图平面直角坐标系中,点O 是坐标原点,矩形ABCD 是顶点坐标分别为A( 3,0)、B( 3,4)、C( 0,4).点 D 在y 轴上,且点 D 的坐标为(0,﹣5),点P 是直线AC上的一动点.(1)当点 P 运动到线段AC 的中点时,求直线DP 的解析式(关系式);(2)当点 P 沿直线 AC 移动时,过点 D、 P 的直线与 x 轴交于点 M.问在 x 轴的正半轴上是否存在使△ DOM 与△ ABC 相似的点 M?若存在,请求出点 M 的坐标;若不存在,请说明理由;(3)当点 P 沿直线 AC 移动时,以点P 为圆心、 R( R> 0)为半径长画圆.得到的圆称为动圆 P.若设动圆P 的半径长为,过点D作动圆F.请探求在动圆P 中是否存在面积最小的四边形P 的两条切线与动圆P 分别相切于点E、DEPF ?若存在,请求出最小面积S 的值;若不存在,请说明理由.考点:圆的综合题;待定系数法求一次函数解析式;垂线段最短;勾股定理;切线长定理;相似三角形的判定与性质.菁优网版权所有专题:综合题;存在型;分类讨论.分析:(1)只需先求出AC 中点 P 的坐标,然后用待定系数法即可求出直线DP 的解析式.(2)由于△ DOM 与△ ABC 相似,对应关系不确定,可分两种情况进行讨论,利用三角形相似求出 OM 的长,即可求出点 M 的坐标.(3)易证 S△PED =S△PFD.从而有 S 四边形DEPF =2S△PED =DE .由∠ DEP =90 °得 DE2=DP 2﹣ PE2=DP2﹣.根据“点到直线之间,垂线段最短”可得:当 DP⊥ AC 时,DP 最短,此时 DE 也最短,对应的四边形 DEPF 的面积最小.借助于三角形相似,即可求出 DP ⊥AC 时 DP 的值,就可求出四边形 DEPF 面积的最小值.解答:解:( 1)过点 P 作 PH ∥ OA,交 OC 于点 H,如图 1 所示.∵PH ∥ OA,∴△ CHP ∽△ COA .∴= = .∵点 P是AC中点,∴CP = CA.∴HP = OA,CH = CO.∵A( 3,0)、 C( 0, 4),∴OA=3, OC=4.∴HP =,CH=2.∴OH =2.∵PH ∥ OA,∠ COA=90°,∴∠ CHP =∠COA=90°.∴点 P 的坐标为(,2).设直线 DP 的解析式为y=kx+b,∵D ( 0,﹣ 5), P(,2)在直线DP 上,∴∴∴直线 DP 的解析式为y=x﹣5.(2)①若△ DOM ∽△ ABC,图 2( 1)所示,∵△ DOM ∽△ ABC,∴ = .∵点 B 坐标为( 3,4),点 D 的坐标为( 0.﹣ 5),∴BC =3, AB=4, OD=5.∴ =.∴OM =.∵点 M 在 x 轴的正半轴上,∴点 M 的坐标为(, 0)②若△ DOM ∽△ CBA,如图2( 2)所示,∵△ DOM ∽△ CBA,∴= .∵BC =3, AB=4, OD=5,∴ =.∴OM =.∵点 M 在 x 轴的正半轴上,∴点 M 的坐标为(, 0).综上所述:若△ DOM 与△ CBA 相似,则点 M 的坐标为(, 0)或(, 0).(3)∵OA=3,OC=4,∠AOC =90°,∴AC =5.∴PE =PF = AC= .∵DE 、 DF 都与⊙ P 相切,∴DE =DF ,∠ DEP =∠ DFP =90°.∴S△PED=S△PFD.∴S 四边形DEPF =2S△PED=2× PE?DE=PE?DE = DE.∵∠ DEP =90°,∴DE 2=DP 2﹣PE2. =DP2﹣.根据“点到直线之间,垂线段最短”可得:当DP⊥ AC 时, DP 最短,此时 DE 取到最小值,四边形DEPF 的面积最小.∵DP ⊥ AC,∴∠ DPC =90°.∴∠ AOC=∠DPC .∵∠ OCA=∠PCD ,∠ AOC =∠DPC ,∴△ AOC∽△ DPC .∴=.∵AO=3, AC=5,DC =4﹣(﹣ 5) =9,∴= .∴DP =.∴DE 2=DP 2﹣=() 2﹣=.∴DE =,∴S 四边形DEPF = DE=.∴四边形DEPF面积的最小值为.点评:本题考查了相似三角形的判定与性质、用待定系数法求直线的解析式、切线长定理、勾股定理、垂线段最短等知识,考查了分类讨论的思想.将求DE的最小值转化为求DP的最小值是解决第3 小题的关键.另外,要注意“△ DOM 与△ ABC 相似”与“△ DOM ∽△ ABC“之间的区别.。
2014年安徽省中考数学试卷附详细答案(原版+解析版)
2014年安徽省中考数学试卷本试卷共8大题,计23小题,满分150分,考试时间120分钟一、选择题(本大题共10小题,每小题4分,满分40分) 1.()32⨯-的结果是( )A.-5B.1C.-6D.62.=⋅42x x ( )A.x 5B.x 6C.x 8D.x 73.如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是( )第3题图AB DC4.下列四个多项式中,能因式分解的是( )A.12+aB. 962+-a aC.y x 52+D. y x 52-5.某棉纺厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x (单位:mm )的数据分布如右表,则棉花纤维长度的数据在8≤x <32这个范围的频率为( ) 棉花纤维长度x频数 0≤x <8 1 8≤x <16 2 16≤x <24 8 24≤x <32 6 32≤x <403A.0.8B.0.7C.0.4D.0.2 6.设n 为正整数,且n <65<1+n ,则n 的值为( ) A.5 B.6 C.7D.87.已知0322=--x x ,则x x 422-的值为( )A.-6B.6C.-2或6D. -2或308.如图,在Rt △ABC 中,AB =9,BC =6,∠B =90°.将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为( )A.35B. 25C.4D.5A第8题图DBCMN9.如图,矩形ABCD 中,AB =3,BC =4,动点P 从A 点出发,按A →B →C 的方向在AB 和BC 上移动,记PA =x ,点D 到直线PA 的距离为y ,则y 关于x 的图象大致是( )第9题图ABCDPOA y x543OBy x543O Cy x543ODy x54310.如图,正方形ABCD 的对角线BD 长为22,若直线l 满足:①点D 到直线l 的距离为3;②A 、C 两点到直线l 的距离相等.则符合题意的直线l 的条数为( )A.1B.2C.3D.4第10题图BCAD二、填空题(本大题共4小题,每小题5分,满分20分)11.据报载,2014年我国将发展固定宽带接入新用户25000000户,其中25000000用科学记数法表示为 .12.某厂今年一月份新产品的研发资金为a 元,以后每月新产品的研发资金与上月相比增长率都是x ,则该厂今年三月份新产品的研发资金y (元)关于x 的函数关系式为y = . 13.方程32124=--x x 的解是x = . 14.如图,在□ABCD 中,AD =2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF 、CF ,则下列结论中一定成立的是 .(把所有正确结论的序号填在横线上) ①∠DCF =21∠BCD ;②EF=CF ;③CEF BEC S S ∆∆=2;④∠DFE =3∠AEF . 第14题图E FA BDC三.(本大题共2题,每题8分,满分16分) 15.计算:()20133250+----π16.观察下列关于自然数的等式: 514322=⨯- ① 924522=⨯- ② 1334722=⨯- ③ … …根据上述规律解决下列问题:(1)完成第四个等式:⨯-492( )2=( )(2)写出你猜想的第n 个等式(用含n 的式子表示),并验证其正确性.四、(本大题共2小题,每小题8分,满分16分)17.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC (顶点是网格线的交点).(1)将△ABC 向上平移3个单位得到△A 1B 1C 1,请画出△A 1B 1C 1. (2)请画出一个格点△A 2B 2C 2 ,使△A 2B 2C 2∽△ABC ,且相似比不为1.第17题图ACB18.如图,在同一平面内,两条平行高速公路l 1与l 2间有一条“Z ”型道路连通,其中AB 段与高速公路l 1成30°角,长为20km ;BC 段与AB 、CD 段都垂直,长为10km ;CD 段长为30km.求两条高速公路间的距离(结果保留根号).第18题图l 2l 130°DBAC五、(本大题共2小题,每小题10分,满分20分)19.如图,在⊙O 中,半径OC 与弦AB 垂直,垂足为E .以OC 为直径的圆与弦AB 的一个交点为F ,D 是CF 延长线与⊙O 的交点.若OE=4,OF=6,求⊙O 的半径和CD 的长.第19题图E DFCOAB20.2013年某企业按餐厨垃圾处理费25元/吨、建筑垃圾处理费16元/吨的收费标准,共支付餐厨和建筑垃圾处理费5200元.从2014年元月起,收费标准上调为:餐厨垃圾处理费100元/吨、建筑垃圾处理费30元/吨,若该企业2014年处理的这两种垃圾的数量与2013年相比没有变化,就要多支付垃圾处理费8800元.(1)该企业2013年处理的餐厨垃圾和建筑垃圾各多少吨?(2)该企业计划2014年将上述两种垃圾处理总量减少到240吨,且建筑垃圾处理量不超过餐厨垃圾处理量的3倍,则2014年该企业最少需要支付这两种垃圾处理费共多少元?六、(本题满分12分)21.如图,管中放置着三根同样的绳子AA 1、BB 1、CC 1 .(1)小明从这三根绳子中随机选一根,恰好选中绳子AA 1的概率是多少? (2)小明先从左端A 、B 、C 三个绳头中随机选两个打一个结,再从右端A 1、B 1、C 1三个绳头中随机选两个打一个结,求这三根绳子能连结成一根长绳的概率.第21题图C 1B 1A 1CB A七、(本题满分12分)22.若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”.(1)请写出两个为“同簇二次函数”的函数;(2)已知关于x 的二次函数1242221++-=m mx x y 和522++=bx ax y ,其中1y 的图象经过点A (1,1),若21y y +与1y 为“同簇二次函数”,求函数2y 的表达式,并求出当0≤x ≤3时,2y 的最大值.八、(本题满分14分)23.如图1,正六边形ABCDEF 的边长为a ,P 是BC 边上一动点,过P 作PM ∥AB 交AF 于M ,作PN ∥CD 交DE 于N . (1)①∠MPN = °;②求证:PM +PN =3a ;(2)如图2,点O 是AD 的中点,连结OM 、ON . 求证:OM=ON ;(3)如图3,点O 是AD 的中点,OG 平分∠MON ,判断四边形OMGN 是否为特殊四边形?并说明理由.第23题图1NM D E F AC BP 第23题图2ONMD E FA CBP 第23题图3GONMDE FACBP2014年安徽省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)(2014年安徽省)(﹣2)×3的结果是()A.﹣5 B.1 C.﹣6 D. 6【考点】有理数的乘法.【分析】根据两数相乘同号得正,异号得负,再把绝对值相乘,可得答案.【解答】解:原式=﹣2×3=﹣6.故选:C.【点评】本题考查了有理数的乘法,先确定积的符号,再进行绝对值的运算.2.(4分)(2014年安徽省)x2•x3=()A.x5B.x6C.x8D. x9【考点】同底数幂的乘法.【分析】根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即a m•a n=a m+n计算即可.【解答】解:x2•x3=x2+3=x5.故选A.【点评】主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键.3.(4分)(2014年安徽省)如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是()A.B.C.D.【考点】简单几何体的三视图.【分析】俯视图是从物体上面看所得到的图形.【解答】解:从几何体的上面看俯视图是,故选:D.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.4.(4分)(2014年安徽省)下列四个多项式中,能因式分解的是()A.a2+1 B.a2﹣6a+9 C.x2+5y D. x2﹣5y【考点】因式分解的意义【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:A、C、D都不能把一个多项式转化成几个整式积的形式,故A、C、D不能因式分解;B、是完全平方公式的形式,故B能分解因式;故选:B.【点评】本题考查了因式分解的意义,把一个多项式转化成几个整式积的形式是解题关键.5.(4分)(2014年安徽省)某棉纺厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x(单位:mm)的数据分布如下表所示,则棉花纤维长度的数据在8≤x<32这个范围的频率为()棉花纤维长度x 频数0≤x<8 18≤x<16 216≤x<24 824≤x<32 632≤x<40 3A.0.8 B.0.7 C.0.4 D. 0.2【考点】频数(率)分布表.【分析】求得在8≤x<32这个范围的频数,根据频率的计算公式即可求解.【解答】解:在8≤x<32这个范围的频数是:2+8+6=16,则在8≤x<32这个范围的频率是:=0.8.故选A.【点评】本题考查了频数分布表,用到的知识点是:频率=频数÷总数.6.(4分)(2014年安徽省)设n为正整数,且n<<n+1,则n的值为()A.5 B.6 C.7 D. 8【考点】估算无理数的大小.【分析】首先得出<<,进而求出的取值范围,即可得出n的值.【解答】解:∵<<,∴8<<9,∵n<<n+1,∴n=8,故选;D.【点评】此题主要考查了估算无理数,得出<<是解题关键.7.(4分)(2014年安徽省)已知x2﹣2x﹣3=0,则2x2﹣4x的值为()A.﹣6 B.6 C.﹣2或6 D.﹣2或30【考点】代数式求值.菁优网版权所有【分析】方程两边同时乘以2,再化出2x2﹣4x求值.【解答】解:x2﹣2x﹣3=02×(x2﹣2x﹣3)=02×(x2﹣2x)﹣6=02x2﹣4x=6故选:B.【点评】本题考查代数式求值,解题的关键是化出要求的2x2﹣4x.8.(4分)(2014年安徽省)如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC 折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()A.B.C.4 D. 5【考点】翻折变换(折叠问题).菁优网版权所有【分析】设BN=x,则由折叠的性质可得DN=AN=9﹣x,根据中点的定义可得BD=3,在Rt△ABC中,根据勾股定理可得关于x的方程,解方程即可求解.【解答】解:设BN=x,由折叠的性质可得DN=AN=9﹣x,∵D是BC的中点,∴BD=3,在Rt△ABC中,x2++32=(9﹣x)2,解得x=4.故线段BN的长为4.故选:C.【点评】考查了翻折变换(折叠问题),涉及折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强,但是难度不大.9.(4分)(2014年安徽省)如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是()A. B.C.D.【考点】动点问题的函数图象.菁优网版权所有【分析】①点P在AB上时,点D到AP的距离为AD的长度,②点P在BC 上时,根据同角的余角相等求出∠APB=∠PAD,再利用相似三角形的列出比例式整理得到y与x的关系式,从而得解.【解答】解:①点P在AB上时,0≤x≤3,点D到AP的距离为AD的长度,是定值4;②点P在BC上时,3<x≤5,∵∠APB+∠BAP=90°,∠PAD+∠BAP=90°,∴∠APB=∠PAD,又∵∠B=∠DEA=90°,∴△ABP∽△DEA,∴=,即=,∴y=,纵观各选项,只有B选项图形符合.故选B.【点评】本题考查了动点问题函数图象,主要利用了相似三角形的判定与性质,难点在于根据点P的位置分两种情况讨论.10.(4分)(2014年安徽省)如图,正方形ABCD的对角线BD长为2,若直线l满足:①点D到直线l的距离为;②A、C两点到直线l的距离相等.则符合题意的直线l的条数为()A.1 B.2 C.3 D. 4【考点】正方形的性质.菁优网版权所有【分析】连接AC与BD相交于O,根据正方形的性质求出OD=,然后根据点到直线的距离和平行线间的距离相等解答.【解答】解:如图,连接AC与BD相交于O,∵正方形ABCD的对角线BD长为2,∴OD=,∴直线l∥AC并且到D的距离为,同理,在点D的另一侧还有一条直线满足条件,故共有2条直线l.故选B.【点评】本题考查了正方形的性质,主要利用了正方形的对角线互相垂直平分,点D到O的距离小于是本题的关键.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)(2014年安徽省)据报载,2014年我国将发展固定宽带接入新用户25000000户,其中25000000用科学记数法表示为 2.5×107.【考点】科学记数法—表示较大的数.菁优网版权所有【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将25000000用科学记数法表示为2.5×107户.故答案为:2.5×107.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(5分)(2014年安徽省)某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y=a(1+x)2.【考点】根据实际问题列二次函数关系式.菁优网版权所有【分析】由一月份新产品的研发资金为a元,根据题意可以得到2月份研发资金为a×(1+x),而三月份在2月份的基础上又增长了x,那么三月份的研发资金也可以用x表示出来,由此即可确定函数关系式.【解答】解:∵一月份新产品的研发资金为a元,2月份起,每月新产品的研发资金与上月相比增长率都是x,∴2月份研发资金为a×(1+x),∴三月份的研发资金为y=a×(1+x)×(1+x)=a(1+x)2.故填空答案:a(1+x)2.【点评】此题主要考查了根据实际问题二次函数列解析式,此题是平均增长率的问题,可以用公式a(1±x)2=b来解题.13.(5分)(2014年安徽省)方程=3的解是x=6.【考点】解分式方程.菁优网版权所有专题:计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:4x﹣12=3x﹣6,解得:x=6,经检验x=6是分式方程的解.故答案为:6.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.14.(5分)(2014年安徽省)如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是①②④.(把所有正确结论的序号都填在横线上)①∠DCF=∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.【考点】平行四边形的性质;全等三角形的判定与性质;直角三角形斜边上的中线.菁优网版权所有【分析】分别利用平行四边形的性质以及全等三角形的判定与性质得出△AEF≌△DMF(ASA),得出对应线段之间关系进而得出答案.【解答】解:①∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=∠BCD,故此选项正确;延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDE,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FM,故②正确;③∵EF=FM,∴S△EFC=S△CFM,∵MC>BE,∴S△BEC<2S△EFC故S△BEC=2S△CEF错误;④设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°﹣x,∴∠EFC=180°﹣2x,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,∵∠AEF=90°﹣x,∴∠DFE=3∠AEF,故此选项正确.故答案为:①②④.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,得出△AEF≌△DME是解题关键.三、(本大题共2小题,每小题8分,满分16分)15.(8分)(2014年安徽省)计算:﹣|﹣3|﹣(﹣π)0+2013.【考点】实数的运算;零指数幂.菁优网版权所有专题:计算题.【分析】原式第一项利用平方根定义化简,第二项利用绝对值的代数意义化简,第三项利用零指数幂法则计算,计算即可得到结果.【解答】解:原式=5﹣3﹣1+2013=2014.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.16.(8分)(2014年安徽省)观察下列关于自然数的等式:32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…根据上述规律解决下列问题:(1)完成第四个等式:92﹣4×42=17;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.【考点】规律型:数字的变化类;完全平方公式.菁优网版权所有【分析】由①②③三个等式可得,被减数是从3开始连续奇数的平方,减数是从1开始连续自然数的平方的4倍,计算的结果是被减数的底数的2倍减1,由此规律得出答案即可.【解答】解:(1)32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…所以第四个等式:92﹣4×42=17;(2)第n个等式为:(2n+1)2﹣4n2=2(2n+1)﹣1,左边=(2n+1)2﹣4n2=4n2+4n+1﹣4n2=4n+1,右边=2(2n+1)﹣1=4n+2﹣1=4n+1.左边=右边∴(2n+1)2﹣4n2=2(2n+1)﹣1.【点评】此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题.四、(本大题共2小题,每小题8分,满分16分)17.(8分)(2014年安徽省)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).(1)将△ABC向上平移3个单位得到△A1B1C1,请画出△A1B1C1;(2)请画一个格点△A2B2C2,使△A2B2C2∽△ABC,且相似比不为1.【考点】作图—相似变换;作图-平移变换.菁优网版权所有【分析】(1)利用平移的性质得出对应点位置,进而得出答案;(2)利用相似图形的性质,将各边扩大2倍,进而得出答案.【解答】解:(1)如图所示:△A1B1C1即为所求;(2)如图所示:△A2B2C2即为所求.【点评】此题主要考查了相似变换和平移变换,得出变换后图形对应点位置是解题关键.18.(8分)(2014年安徽省)如图,在同一平面内,两条平行高速公路l1和l2间有一条“Z”型道路连通,其中AB段与高速公路l1成30°角,长为20km;BC段与AB、CD段都垂直,长为10km,CD段长为30km,求两高速公路间的距离(结果保留根号).【考点】解直角三角形的应用.菁优网版权所有【分析】过B点作BE⊥l1,交l1于E,CD于F,l2于G.在Rt△ABE中,根据三角函数求得BE,在Rt△BCF中,根据三角函数求得BF,在Rt△DFG中,根据三角函数求得FG,再根据EG=BE+BF+FG即可求解.【解答】解:过B点作BE⊥l1,交l1于E,CD于F,l2于G.在Rt△ABE中,BE=AB•sin30°=20×=10km,在Rt△BCF中,BF=BC÷cos30°=10÷=km,CF=BF•sin30°=×=km,DF=CD﹣CF=(30﹣)km,在Rt△DFG中,FG=DF•sin30°=(30﹣)×=(15﹣)km,∴EG=BE+BF+FG=(25+5)km.故两高速公路间的距离为(25+5)km.【点评】此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键把实际问题转化为数学问题加以计算.五、(本大题共2小题,每小题10分,满分20分)19.(10分)(2014年安徽省)如图,在⊙O中,半径OC与弦AB垂直,垂足为E,以OC为直径的圆与弦AB的一个交点为F,D是CF延长线与⊙O的交点.若OE=4,OF=6,求⊙O的半径和CD的长.【考点】垂径定理;勾股定理;圆周角定理;相似三角形的判定与性质.菁优网版权所有专题:计算题.【分析】由OE⊥AB得到∠OEF=90°,再根据圆周角定理由OC为小圆的直径得到∠OFC=90°,则可证明Rt△OEF∽Rt△OFC,然后利用相似比可计算出⊙O的半径OC=9;接着在Rt△OCF中,根据勾股定理可计算出C=3,由于OF⊥CD,根据垂径定理得CF=DF,所以CD=2CF=6.【解答】解:∵OE⊥AB,∴∠OEF=90°,∵OC为小圆的直径,∴∠OFC=90°,而∠EOF=∠FOC,∴Rt△OEF∽Rt△OFC,∴OE:OF=OF:OC,即4:6=6:OC,∴⊙O的半径OC=9;在Rt△OCF中,OF=6,OC=9,∴CF==3,∵OF⊥CD,∴CF=DF,∴CD=2CF=6.【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理、圆周角定理和相似三角形的判定与性质.20.(10分)(2014年安徽省)2013年某企业按餐厨垃圾处理费25元/吨、建筑垃圾处理费16元/吨的收费标准,共支付餐厨和建筑垃圾处理费5200元.从2014年元月起,收费标准上调为:餐厨垃圾处理费100元/吨,建筑垃圾处理费30元/吨.若该企业2014年处理的这两种垃圾数量与2013年相比没有变化,就要多支付垃圾处理费8800元.(1)该企业2013年处理的餐厨垃圾和建筑垃圾各多少吨?(2)该企业计划2014年将上述两种垃圾处理总量减少到240吨,且建筑垃圾处理量不超过餐厨垃圾处理量的3倍,则2014年该企业最少需要支付这两种垃圾处理费共多少元?【考点】一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.菁优网版权所有【分析】(1)设该企业2013年处理的餐厨垃圾x吨,建筑垃圾y吨,根据等量关系式:餐厨垃圾处理费25元/吨×餐厨垃圾吨数+建筑垃圾处理费16元/吨×建筑垃圾吨数=总费用,列方程.(2)设该企业2014年处理的餐厨垃圾x吨,建筑垃圾y吨,需要支付这两种垃圾处理费共a元,先求出x的范围,由于a的值随x的增大而增大,所以当x=60时,a值最小,代入求解.【解答】解:(1)设该企业2013年处理的餐厨垃圾x吨,建筑垃圾y吨,根据题意,得,解得.答:该企业2013年处理的餐厨垃圾80吨,建筑垃圾200吨;(2)设该企业2014年处理的餐厨垃圾x吨,建筑垃圾y吨,需要支付这两种垃圾处理费共a元,根据题意得,,解得x≥60.a=100x+30y=100x+30(240﹣x)=70x+7200,由于a的值随x的增大而增大,所以当x=60时,a值最小,最小值=70×60+7200=11400(元).答:2014年该企业最少需要支付这两种垃圾处理费共11400元.【点评】本题主要考查了二元一次方程组及一元一次不等式的应用,找准等量关系正确的列出方程是解决本题的关键;六、(本题满分12分)21.(12分)(2014年安徽省)如图,管中放置着三根同样的绳子AA1、BB1、CC1;(1)小明从这三根绳子中随机选一根,恰好选中绳子AA1的概率是多少?(2)小明先从左端A、B、C三个绳头中随机选两个打一个结,再从右端A1、B1、C1三个绳头中随机选两个打一个结,求这三根绳子能连结成一根长绳的概率.【考点】列表法与树状图法.菁优网版权所有专题:计算题.【分析】(1)三根绳子选择一根,求出所求概率即可;(2)列表得出所有等可能的情况数,找出这三根绳子能连结成一根长绳的情况数,即可求出所求概率.【解答】解:(1)三种等可能的情况数,则恰好选中绳子AA1的概率是;(2)列表如下:A B CA1(A,A1)(B,A1)(C,A1)B1(A,B1)(B,B1)(C,B1)C1(A,C1)(B,C1)(C,C1)所有等可能的情况有9种,其中这三根绳子能连结成一根长绳的情况有6种,则P==.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.七、(本题满分12分)22.(12分)(2014年安徽省)若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”.(1)请写出两个为“同簇二次函数”的函数;(2)已知关于x的二次函数y1=2x2﹣4mx+2m2+1和y2=ax2+bx+5,其中y1的图象经过点A(1,1),若y1+y2与y1为“同簇二次函数”,求函数y2的表达式,并求出当0≤x≤3时,y2的最大值.【考点】二次函数的性质;二次函数的最值.菁优网版权所有专题:新定义.【分析】(1)只需任选一个点作为顶点,同号两数作为二次项的系数,用顶点式表示两个为“同簇二次函数”的函数表达式即可.(2)由y1的图象经过点A(1,1)可以求出m的值,然后根据y1+y2与y1为“同簇二次函数”就可以求出函数y2的表达式,然后将函数y2的表达式转化为顶点式,在利用二次函数的性质就可以解决问题.【解答】解:(1)设顶点为(h,k)的二次函数的关系式为y=a(x﹣h)2+k,当a=2,h=3,k=4时,二次函数的关系式为y=2(x﹣3)2+4.∵2>0,∴该二次函数图象的开口向上.当a=3,h=3,k=4时,二次函数的关系式为y=3(x﹣3)2+4.∵3>0,∴该二次函数图象的开口向上.∵两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4顶点相同,开口都向上,∴两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4是“同簇二次函数”.∴符合要求的两个“同簇二次函数”可以为:y=2(x﹣3)2+4与y=3(x﹣3)2+4.(2)∵y1的图象经过点A(1,1),∴2×12﹣4×m×1+2m2+1=1.整理得:m2﹣2m+1=0.解得:m1=m2=1.∴y1=2x2﹣4x+3=2(x﹣1)2+1.∴y1+y2=2x2﹣4x+3+ax2+bx+5=(a+2)x2+(b﹣4)x+8∵y1+y2与y1为“同簇二次函数”,∴y1+y2=(a+2)(x﹣1)2+1=(a+2)x2﹣2(a+2)x+(a+2)+1.其中a+2>0,即a>﹣2.∴.解得:.∴函数y2的表达式为:y2=5x2﹣10x+5.∴y2=5x2﹣10x+5=5(x﹣1)2.∴函数y2的图象的对称轴为x=1.∵5>0,∴函数y2的图象开口向上.①当0≤x≤1时,∵函数y2的图象开口向上,∴y2随x的增大而减小.∴当x=0时,y2取最大值,最大值为5(0﹣1)2=5.②当1<x≤3时,∵函数y2的图象开口向上,∴y2随x的增大而增大.∴当x=3时,y2取最大值,最大值为5(3﹣1)2=20.综上所述:当0≤x≤3时,y2的最大值为20.【点评】本题考查了求二次函数表达式以及二次函数一般式与顶点式之间相互转化,考查了二次函数的性质(开口方向、增减性),考查了分类讨论的思想,考查了阅读理解能力.而对新定义的正确理解和分类讨论是解决第二小题的关键.八、(本题满分14分)23.(14分)(2014年安徽省)如图1,正六边形ABCDEF的边长为a,P是BC 边上一动点,过P作PM∥AB交AF于M,作PN∥CD交DE于N.(1)①∠MPN=60°;②求证:PM+PN=3a;(2)如图2,点O是AD的中点,连接OM、ON,求证:OM=ON;(3)如图3,点O是AD的中点,OG平分∠MON,判断四边形OMGN是否为特殊四边形?并说明理由.【考点】四边形综合题.菁优网版权所有【分析】(1)①运用∠MPN=180°﹣∠BPM﹣∠NPC求解,②作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN于点K,利用MP+PN=MG+GH+HP+PL+LK+KN求解,(2)连接OE,由△OMA≌△ONE证明,(3)连接OE,由△OMA≌△ONE,再证出△GOE≌△NOD,由△ONG是等边三角形和△MOG是等边三角形求出四边形MONG是菱形.,【解答】解:(1)①∵四边形ABCDEF是正六边形,∴∠A=∠B=∠C=∠D=∠E=∠F=120°又∴PM∥AB,PN∥CD,∴∠BPM=60°,∠NPC=60°,∴∠MPN=180°﹣∠BPM﹣∠NPC=180°﹣60°﹣60°=60°,故答案为;60°.②如图1,作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN 于点K,MP+PN=MG+GH+HP+PL+LK+KN∵正六边形ABCDEF中,PM∥AB,作PN∥CD,∵∠AMG=∠BPH=∠CPL=∠DNK=60°,∴GM=AM,HL=BP,PL=PM,NK=ND,∵AM=BP,PC=DN,∴MG+HP+PL+KN=a,GH=LK=a,∴MP+PN=MG+GH+HP+PL+LK+KN=3a.(2)如图2,连接OE,∵四边形ABCDEF是正六边形,AB∥MP,PN∥DC,∴AM=BP=EN,又∵∠MAO=∠NOE=60°,OA=OE,在△ONE和△OMA中,∴△OMA≌△ONE(SAS)∴OM=ON.(3)如图3,连接OE,由(2)得,△OMA≌△ONE∴∠MOA=∠EON,∵EF∥AO,AF∥OE,∴四边形AOEF是平行四边形,∴∠AFE=∠AOE=120°,∴∠MON=120°,∴∠GON=60°,∵∠GON=60°﹣∠EON,∠DON=60°﹣∠EON,∴∠GOE=∠DON,∵OD=OE,∠ODN=∠OEG,在△GOE和∠DON中,∴△GOE≌△NOD(ASA),∴ON=OG,又∵∠GON=60°,∴△ONG是等边三角形,∴ON=NG,又∵OM=ON,∠MOG=60°,∴△MOG是等边三角形,∴MG=GO=MO,∴MO=ON=NG=MG,∴四边形MONG是菱形.【点评】本题主要考查了四边形的综合题,解题的关键是恰当的作出辅助线,根据三角形全等找出相等的线段.。
河南省2014年中考数学试题
拓展探究:
(3)如图3,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处.若点E恰好是四边形ABCM的边AB上的一个强相似点,试探究AB和BC的数量关系.
23.(11分)如图,已知直线y= x+1与x轴交于点A,与y轴交于点B,将△AOB绕点O顺时针旋转90°后得到△COD.
(1)点C的坐标是线段AD的长等于;
.
11.如图,正方形ABCD中,E为AB的中点,AF⊥DE于点O,则 等于
12.如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的 ,另一根露出水面的长度是它的 .两根铁棒长度之和为55 cm,此时木桶中水的深度是
cm.
13.已知 的值为。
14.如图,在Rt 中, , .将 绕直角顶点C按顺时针方向旋转,得 ,斜边 分别与BC、AB相交于点D、E,直角边 与AB交于点F.若 ,则 至少旋转30°度才能得到 ,此时 与 的重叠部分(即四边形CDEF)的面积为.
21.(10分)某校校园超市老板到批发中心选购甲、乙两种品牌的文具盒,乙品牌的进货单价是甲品牌进货单价的2倍,考虑各种因素,预计购进乙品牌文具盒的数量y(个)与甲品牌文具盒的数量x(个)之间的函数关系如图所示.当购进的甲、乙品牌的文具盒中,甲有120个时,购进甲、乙品牌文具盒共需7200元.
(1)根据图象,求y与x之间的函数关系式;
(2)求甲、乙两种品牌的文具盒进货单价;
2014年陕西省中考数学试题及答案
2014年陕西中考数学试卷第Ⅰ卷(选择题 共30分)一.选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.4的算术平方根是( )A .-2 B.2 C 。
21- D 。
21 2.下面是一个正方体被截去一个直三棱柱得到的几何体,则该几何体的左视图是( )3.若点A (—2,m )在正比例函数y=21-x 的图像上,则m 的值是( ) A .41 B. 41- C 。
1 D 。
—1 4.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是( )A .101 B. 91 C 。
61 D. 51 5。
把不等式组的解集表示在数轴上,正确的是( )6.某区10名学生参加市级汉字听写大赛,他们得分情况如下表:人数3 4 2 1 得分 80 85 90 95那么这10名学生所得分数的平均数和众数分别是( )A.80和82。
5 B 。
85。
5和85 C.85和85 D 。
85。
5和807.如图,AB ∥CD ,∠A=45°,∠C=28°,则∠AEC 的大小为( )A.17°B.62° C 。
63° D.73°8.若x=—2是关于x 的一元二次方程02522=+-a ax x 的一个根,则a 的值为 ( ) A 。
1或4 B 。
-1或-4 C. —1或4 D. 1或—49.如图,在菱形ABCD 中,AB=5,对角线AC=6,若过点A 作AE ⊥BC ,垂足为E ,则AE 的长为( )A .4 B. 512 C 。
524 D.5 10。
二次函数)0(2≠++=a c bx ax y 的图像如图所示,则下列结论中正确的是( )A .c >—1B 。
b >0C 。
2a+b ≠0 D. 92a +c >3b第Ⅱ卷(非选择题 共90分)二.填空题(共6小题,每小题3分,计18分)11。
计算:2)31(--=______.12。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数测试题
班级 姓名 学号 成绩
一、选择题:(本题共8小题,每小题4分,共32分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.
函数y = )
A )43
,21(- B ]43,21[- C ),43[]21,(+∞⋃-∞ D ),0()0,2
1(+∞⋃- 2.下列对应关系f 中,不是从集合A 到集合B 的映射的是( )
A A=}{是锐角x x ,B=(0,1),f :求正弦;
B A=R ,B=R ,f :取绝对值
C A=+
R ,B=R ,f :求平方; D A=R ,B=R ,f :取倒数
3二次函数245y x mx =-+的对称轴为2x =-,则当1x =时,y 的值为 ( ) A 7- B 1 C 17 D 25
4.已知⎩
⎨⎧<+≥-=)6()2()6(5
)(x x f x x x f ,则f(3)为( )
A 2
B 3
C 4
D 5
5.二次函数2
y ax bx c =++中,0a c ⋅<,则函数的零点个数是( ) A 0个 B 1个 C 2个 D 无法确定
6.如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上是减少的,那么实数a 的取值范围是( )
A 3-≤a
B 3-≥a
C 5≤a
D 5≥a 7.若132
log <a
,则a 的取值范围是( ) A )1,3
2( B ),32(+∞ C ),1()32,0(+∞ D ),32
()32,0(+∞
8.向高为H 的水瓶中注水,注满为止。
如果注水量V 与水深h 的函数关系式如图所示,那么水瓶的形状是( )
(A) (B) (C) (D
)
二、填空题:(本题共4小题,每小题4分,共16分,请把答案填写在答题纸上) 9.函数1-=
x e y 的定义域为 ;
10.若2log 2,log 3,m n a a m n a +=== ; 11.方程22+=x x
的实数解的个数是 个;
12.函数]1,1[)20(32-<<++=在a ax x y 上的最大值是 ,最小值是 .
高中数学函数测试题答卷
二、填空题(每小题4分,共16分)
9. 10.
11. 12. , 。
三、解答题:(解答应写出文字说明,证明过程或演算步骤.) 13对于二次函数2483y x x =-+-,(8分) (1)指出图像的开口方向、对称轴方程、顶点坐标; (3)求函数的最大值或最小值; (4)分析函数的单调性。
14.一台机器的价值是25万元,如果每年的折旧率是 4.5%(就是每年减少它的价值的4.5%),那么约经过几年,它的价值降为10万元 (结果保留两个有效数字;参考数据:lg9.550.9800,lg0.9550.0200,lg0.40.3979==-=-)?(8分)
15.求证:函数x
x x f 1
)(+=在(0,1)上是减函数。
(8分)
16.已知函数)10(11log )(≠>-+=a a x
x
x f a 且(8分) (1)求f(x)的定义域;
(2)判断f(x)的奇偶性并证明;
17(10分)(1)已知m x f x +-=
1
32
)(是奇函数,求常数m 的值; (2)画出函数|13|-=x y 的图象,并利用图象回答:k 为何值时,方程|13-x |=k 无解?有一解?
有两解?
18.(10分)某商品在近30天内每件的销售价格p (元)与时间t (天)的函数关系是
20,
025,,
100,
2530,.
t t t N p t t t N +<<∈⎧=⎨
-+≤≤∈⎩该商品的日销售量Q (件)与时间t (天)的函数关系是
40+-=t Q ),300(N t t ∈≤<,求这种商品的日销售金额的最大值,并指出日销售金额最大的一
天是30天中的第几天?
高中数学函数测试题参考答案
一、选择题: BDDA CACA 二、填空题:
9.),0(+∞ 10 12 11. 2 12.4-a ,2
34
a -
三、解答题: 13.解:(1)开口向下;对称轴为1x =;顶点坐标为(1,1); (2)函数的最大值为1;无最小值;
(3)函数在(,1)-∞上是增加的,在(1,)+∞上是减少的。
14.解:设经过x 年后,它的价值降为10万元,则有 答:约经过19年后,该机器的价值降为10万元。
15.证略
16.解:原函数的定义域是(-1,1) 17.解: (1)常数m =1
(2)当k <0时,直线y =k 与函数|13|-=x y 的图象无
交点,即方程无解;
当k =0或k ≥1时, 直线y =k 与函数
|13|-=x
y 的图象有唯一的交点,所以方程有一解; 当0<k <1时, 直线y =k 与函数|13|-=x
y 的图象有两个不同交点,所以方程有两解。
18.解:设日销售金额为y (元),则y =p ⋅Q .
2
220800,1404000,t t y t t ⎧-++⎪∴=⎨-+⎪⎩ 025,,2530,.
t t N t t N <<∈≤≤∈
2
2(10)900,(70)900,
t t ⎧--+⎪=⎨--⎪⎩ 025,,2530,.t t N t t N <<∈≤≤∈ 当N t t ∈<<,250,t =10时,900max =y (元); 当N t t ∈≤≤,3025,t=25时,1125max =y (元). 由1125>900,知y max =1125(元),且第25天,日销售额最大.
本卷由《100测评网》整理上传,专注于中小学生学业检测、练习与提升.。