(九年级数学)第25章概率初步2练习_2
第25章概率初步(复习)练习复习题
学校 班级 考号 姓名__________________________◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆装◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆订◆◆◆◆◆◆◆◆◆◆◆◆◆线◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆高大坪中学2015-2016学年度第一学期九年级期末数学复习题第25章概率初步(复习)一、知识回顾 1.基本概念(1)必然事件是指一定能发生的事件,或者说发生的可能性是100%; (2)不可能事件是指一定不能发生的事件;(3)随机事件是指在一定条件下,可能发生也可能不发生的事件; (4)随机事件的可能性一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同. (5)概率一般地,在大量重复试验中,如果事件A 发生的频率mn会稳定在某个常数P 附近,•那么这个常数P 就叫做事件A 的概率,记为P (A )=P . (6)可能性与概率的关系事件发生的可能性越大,它的概率越接近于1,反之事件发生的可能性越小,则它的概率越接近0.(图6-30) (7)古典概率一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性相等,•事件A 包含其中的m 种结果,那么事件A 发生的概率为P (A )=m n. (8)几何图形的概率 概率的大小与面积的大小有关,•事件发生的概率等于此事件所有可能结果所组成图形的面积除以所有可能结果组成图形的面积.2.概率的理论计算方法有:①树状图法;②列表法.3.通过大量重复实验得到的频率估计事件发生概率的值4.利用概率的知识解决一些实际问题,如利用概率判断游戏的公平性等 三 典型例题例1、下列事件中,是必然事件的是( )A.购买一张彩票中奖一百万B.打开电视机,任选一个频道,正在播新闻C.在地球上,上抛出去的篮球会下落D.掷两枚质地均匀的骰子,点数之和一定大于6 例2.在一场足球比赛前,甲教练预言说:“根据我掌握的情况,这场比赛我们队有 60%的机会获胜”意思最接近的是( )A.这场比赛他这个队应该会赢B.若两个队打100场比赛,他这个队会赢60场C.若这两个队打10场比赛,这个队一定会赢6场比赛.D.若这两个队打100场比赛,他这个队可能会赢60场左右.例3一个袋中装有6个黑球3个白球,这些球除颜色外,大小、形状、质地完全相同,在看不到球的情况下,随机的从这个袋子中摸出一个球,摸到白球的概率是( )例6.小江玩投掷飞镖的游戏,他设计了一个如图所示的靶子,点E 、F 分别是矩形ABCD 的两边AD .BD 上的点,EF∥AB,点M 、N 是EF 上任意两点,则投掷一次,飞镖落在阴影部分的概率是( ) A .B .C .D .例8.一个密封不透明的盒子里有若干个白球, 在不允许将球倒出来的情况下, 为估计白球的个数, 小刚向其中放入8个黑球, 摇匀后从中随机摸出一个球记下颜色, 再把它放回盒中, 不断重复, 共摸球400次, 其中88次摸到黑球. 估计盒中大约有白球( ) A 、28个 B 、30个 C 、36个 D 、42个 例4.用树状图法求下列事件的概率:(1)连续掷两次硬币,两次朝上的面都相同的概率是多少? (2)连续掷三次,至少出现两次正面朝上的概率是多少例5.在一个口袋中有4个完全相同的小球,把它们分别标号l 、2、3、4.小明先随机地摸出一个小球,小强再随机地摸出一个小球.记小明摸出球的标号为x ,小强摸出的球标号为y.小明和小强在此基础上共同协商一个游戏规则:当x>y 时小明获胜,否则小强获胜.①若小明摸出的球不放回,求小明获胜的概率.②若小明摸出的球放回后小强再随机摸球,问他们制定的游戏规则公平吗?请说明理由.例7.为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼______________条.例9. 一个不透明的袋子中装有三个完全相同的小球,分别标有数字3,4,5.从袋子中随机取出一个小球,用小球上的数字作为十位上的数字,然后放回;再取出一个小球,用小球上的数字作为个位上的数字,这样组成一个两位数.试问:按这种方法能组成哪些两位数?十位上的数字与个位上的数字之和为9的两位数的概率是多少?用列表法或画树状图法加以说明.例10.小明和小亮是一对双胞胎,他们的爸爸买了两套不同品牌的运动服送给他们,小明和小亮都想先挑选.于是小明设计了如下游戏来决定谁先挑选.游戏规则是:在一个不透明的袋子里装有除数字以外其它均相同的4个小球,上面分别标有数字1、2、3、4.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为奇数,则小明先挑选;否则小亮先挑选. (1)用树状图或列表法求出小明先挑选的概率; (2)你认为这个游戏公平吗?请说明理由.1112....9323A B CD学校 班级 考号 姓名__________________________◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆装◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆订◆◆◆◆◆◆◆◆◆◆◆◆◆线◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆高大坪中学2015-2016学年度第一学期九年级期末数学复习题第25章概率初步(复习检测)一、选择题(每小题3分,共30分) 1.下列事件中,是必然事件的为 ( )A.抛掷一枚质地均匀的硬币,落地后正面朝上B.江汉平原7月份某一天的最低气温是-2℃C.通常加热到100℃时,水沸腾D.打开电视,正在播放节目《男生女生向前冲》2.一枚质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字,抛掷这枚骰子一次,则向上的面的数字大于4的概率是 ( )A.B.C.D.3.如图,在一块菱形菜地ABCD 中,对角线AC 与BD 相交于点O,若在菱形菜地内均匀地撒上种子,则种子落在阴影部分的概率是 ( ) A.1B.C.D.4.如图,在平面直角坐标系中,点A 1,A 2在x 轴上,点B 1,B 2在y 轴上,其坐标分别为A 1(1,0),A 2(2,0),B 1(0,1),B 2(0,2),分别以A 1,A 2,B 1,B 2其中的任意两点与点O 为顶点作三角形,所作三角形是等腰三角形的概率是 ( )A.B.C.D.5.在元旦联欢会上,班长准备了若干张相同的卡片,上面写的是联欢会上同学们要回答的问题,联欢会开始后,班长问小明:你能设计一个方案,估计联欢会共准备了多少张卡片吗?小明将20张空白卡片(与写有问题的卡片相同)和全部写有问题的卡片洗匀,从中抽取10张,发现2张空白卡片,马上正确估计出写有问题的卡片数目,小明估计的数目是 ( ) A.60张B.80张C.90张D.100张6.欢欢与贝贝统计学校门前的车辆日流量,欢欢统计的结果是每10辆通过学校门前的车中有一辆小轿车;贝贝统计的结果是学校门前每天通过的小轿车有60辆,请你估计学校门前每天通过的车辆数为 ( ) A.10B.60C.70D.6007.从n 张互不相同的普通扑克牌中任意抽取一张,抽到黑桃K 的概率为,则n = ( ) A.54B.52C.10D.58.在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球不放回,再随机地摸出一个小球,则两次摸出的小球的标号的和为奇数的概率是 ( )A.B.C.D.9.在一个不透明的盒子里有3个分别标有数字5,6,7的小球,它们除数字外其他均相同.充分摇匀后,先摸出1个球不放回,再摸出1个球,那么这两个球上的数字之和为奇数的概率为 ( )A.B.C.D.10.如图是两个可以自由转动的转盘,各转盘被等分成三个扇形,并分别标上1,2,3和6,7,8这6个数字,如果同时转动两个转盘各一次(指针落在等分线上重转),转盘停止后,则指针指向的数字和为偶数的概率是 ( ) A.B.C.D.二、填空题(每小题3分,共24分)11.端午节前,妈妈去超市买了大小、质量及包装均相同的粽子8个,其中火腿粽子5个,豆沙粽子3个,若小明从中任取1个,是火腿粽子的概率是 .12.一副扑克牌52张(不含大小王),分为黑桃、红心、方块及梅花4种花色,每种花色各有13张,分别标有字母A,K,Q,J 和数字10,9,8,7,6,5,4,3,2.从这副牌中任意抽出一张,则这张牌是标有字母的牌的概率是 .13.小芳同学有两根长度为4cm,10cm 的木棒,她想钉一个三角形相框,桌上有五根木棒供她选择(如图所示),从中任选一根,能钉成三角形相框的概率是 .14.在一个不透明的袋子中有10个除颜色外均相同的小球,通过多次摸球试验后,发现摸到白球的频率约为40%,估计袋中白球有 个.15.在平面直角坐标系中,作△OAB,其中三个顶点分别是O(0,0),B(1,1),A(x,y)(-2≤x ≤2,-2≤y ≤2,x,y 均为整数),则所作△OAB 为直角三角形的概率是 .16.为了估计湖里有多少条鱼,有如下方案:从湖里捕上100条鱼做上标记,然后放回湖里,经过一段时间,第二次再捕上200条鱼,若其中有标记的鱼有32条,那么估计湖里大约有 条鱼.17.一张圆桌旁边有四个座位,A 先坐在如图所示的座位上,B,C,D 三人随机坐到其他三个座位上,则A 与B 不相邻而坐的概率为 .18.抛掷一枚质地均匀的硬币,如果每掷一次出现正面与反面的可能性相同,那么连掷三次硬币,出现“一次正面,两次反面”的概率为 .三、解答题(共46分)19.(6分)一次联欢会上,12个男生(相互挨着)和10个女生围坐成一个圆圈,采用击鼓传花的方式决定谁演节目,若男生接传一次需用0.9 s,女生接传一次需用1 s,则每击鼓传花一次,男生演节目的可能性与女生演节目的可能性哪个大?为什么?20.(7分)如图,有四张背面相同的纸牌A,B,C,D,其正面分别是红桃,方块,黑桃,梅花,其中红桃,方块为红色,黑桃,梅花为黑色,小明将这4张纸牌背面朝上洗匀后,摸出一张,将剩余3张洗匀后再摸出一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A,B,C,D表示).(2)求摸出的两张纸牌同为红色的概率.21.(7分)有A,B两个不透明的布袋,A袋中有两个完全相同的小球,分别标有数字0和-2;B袋中有三个完全相同的小球,分别标有数字-2,0和1.小明从A袋中随机取出一个小球,记录标有的数字为x,再从B袋中随机取出一个小球,记录标有的数字为y,这样确定了点Q的坐标(x,y).(1)写出点Q所有可能的坐标.(2)求点Q在x轴上的概率.(3)在平面直角坐标系xOy中,☉O的半径是2,求过点Q能作☉O切线的概率.22.(8分)用如图所示的三等分的圆盘转两次做“配紫色(红色+蓝色)”游戏,配出紫色的概率用分式P=计算,请问:m和n分别是多少?m和n的意义分别是什么?23.(9分)小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)试验,她们共做了60次试验,试验的结果如下:(1)计算“3点朝上”的频率和“5点朝上”的频率.(2)小颖说:“根据试验,一次试验中出现5点朝上的概率最大.”小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次.”小颖和小红的说法正确吗?为什么? 24.(9分)周日,我和爸爸、妈妈在家都想使用电脑上网,可是家里只有一台电脑,怎么办?为了公平起见我设计了下面的两种游戏规则,确定谁使用电脑上网.(1)任意投掷两枚质地均匀的硬币,若两枚正面都朝上,则爸爸使用电脑;若两枚反面都朝上,则妈妈使用电脑;若一枚正面朝上一枚反面朝上,则我使用电脑.(2)任意投掷两枚骰子,若点数之和被3整除,则爸爸使用电脑;若点数之和被3除余数为1,则妈妈使用电脑;若点数之和被3除余数为2,则我使用电脑.请你来评判,这两种游戏规则哪种公平,并说明理由!25.(10分)如图,已知一次函数y=kx+b(k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=mx (m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为点D,若OA=OB=OD=1.(1)求点A、B、D的坐标;(2)求一次函数和反比例函数的解析式.26.(12分)制作一种产品,需先将材料加热达到60℃后,再进行操作.设该材料温度为y(℃),从加热开始计算的时间为x(分钟).据了解,该材料加热时,温度y与时间x成一次函数关系;停止加热进行操作时,温度y 与时间x成反比例关系(如图).已知该材料在操作加工前的温度为15℃,加热5分钟后温度达到60℃.根据工艺要求,当材料的温度低于15℃时,须停止操作.(1)分别求出将材料加热和停止加热进行操作时,y与x的函数解析式;(2)求从开始加热到停止操作,共经历了多长时间?。
九年级数学上册第25章概率初步章节同步检测含解析新版新人教版
第25章一、单选题(共36分)1.(本题3分)一个密闭不透明的盒子里有若干个白球,在不允许将球倒出的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球200次,其中16次摸到黑球,估计盒中大约有白球的个数为( )A.30个B.92个C.84个D.76个2.(本题3分)小明在一天晚上帮妈妈洗三个只有颜色不同的有盖茶杯,这时突然停电了,小明只好将茶杯和杯盖随机搭配在一起,那么三个茶杯颜色全部搭配正确的概率是( )A.13B.16C.19D.1273.(本题3分)在单词“APPLE”中随机选择一个字母,选择到的字母是“P”的概率是( )A.14B.15C.25D.354.(本题3分)如图,一个可以自由转动的转盘,被分成了白色和红色两个区域,任意转动转盘一次, 当转盘停止转动时(若指针停在边界处,则重新转动转盘),指针落在红色区域内的概率是()A.16B.15C.13D.125.(本题3分)做重复试验:抛掷一枚啤酒瓶盖1000次.经过统计得“凸面向上”的次数为420次,则可以由此估计抛掷这枚啤酒瓶盖出现“凸面向上”的概率约为()A.0.22 B.0.42 C.0.50 D.0.586.(本题3分)某存折的密码是一个六位数字(每位可以是0),由于小王忘记了密码的首位数字,则他能一次说对密码的概率是( )A.15B.16C.19D.1107.(本题3分)盒中装有4只白球5只黑球,从中任取一只球,取出的球是白球的概率是()A.520B.59C.420D.498.(本题3分)如图,衣橱中挂着3套不同颜色的服装,同一套服装的上衣与裤子的颜色相同.若从衣橱里各任取一件上衣和一条裤子,它们取自同一套的概率是()A.127B.19C.16D.139.(本题3分)从长为10cm,7cm,5cm,3cm的四条线段中任选三条,能构成三角形的概率是()A.12B.13C.14D.3410.(本题3分)以下事件为必然事件的是()A.掷一枚质地均匀的骰子,向上一面的点数小于6 B.多边形的内角和是360C.二次函数的图象不过原点D.半径为2的圆的周长是4π11.(本题3分)下列事件:①在一次数学测试中,小明考了满分;②经过有交通信号灯的路口,遇到红灯;③抛掷两枚正方体骰子,朝上的点数和大于1;④度量任一三角形,其外角和都是180°.其中必然事件是( )A.①B.②C.③D.④12.(本题3分)在一个袋中有4个黑球和若干个白球,每个球除染色外其余相同,摇匀后随机摸出一个球并记下颜色后放回,摇匀后再摸一个球,记下颜色后再放回……,依次不断重复上述摸球过程,当摸了100次后,发现其中有20次摸到的是黑球,请你根据所学知识估计袋中白球的数量约为()A.12 B.16 C.20 D.30二、填空题(共18分)13.(本题3分)一个不透明的袋子中有2个白球和3个黑球,这些球除颜色外完全相同.从袋子中随机摸出1个球,这个球是白球的概率是_____.14.(本题3分)一个不透明的盒子中装有4张卡片,这4张卡片的正面分别画有等腰三角形,线段,圆和三角形,这些卡片除图形外都相同,将卡片搅匀.从盒子中任意抽取一张,卡片上的图形是轴对称图形的概率是_____.15.(本题3分)将分别标有“柠”“檬”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其它差别,每次摸球前先搅拌均匀.随机摸出一球不放回;再随机摸出一球,两次摸出的球上的汉字能组成“柠檬”的概率是_____.16.(本题3分)四张大小、质地都相同的卡片上分别标有数字1,2,3,4,现将标有数字的一面朝下放在桌子上,从中随机抽取两张卡片,那么两张卡片上的数字的乘积为偶数的概率是________.17.(本题3分)一个暗箱里放有a个白球和3个红球,白球的概率是34,球的总个数是_______.18.(本题3分)如图,△ABC中,D、E、F分别是各边的中点,随机地向△ABC中内掷一粒米,则米粒落到阴影区域内的概率是_____.三、解答题(共66分)19.(本题8分)某高级酒店为了吸引顾客,设立了一个可以自由转动的转盘,如图所示,并规定:顾客消费100元以上(不包括100元),就能获得一次转动转盘的机会,如果转盘停止后,指针正好对准九折、八折、七折、五折区域顾客就可以获得此项待遇(转盘等分成16份)(1)甲顾客消费80元,是否可获得转动转盘的机会?(2)乙顾客消费150元,获得打折待遇的概率是多少?他获得九折,八折,七折,五折待遇的概率分别是多少?20.(本题8分)车辆经过某市收费站时,可以在4个收费通道A、B、C、D中,可随机选择其中的一个通过.(1)车辆甲经过此收费站时,选择A通道通过的概率是;(2)若甲、乙两辆车同时经过此收费站,请用列表法或树状图法确定甲乙两车选择不同通道通过的概率.21.(本题8分)小明,小亮都想去观看电影,但是只有一张电影票,他们决定采取抽卡片的办法确定谁去,规定如下:将正面分别标有数字1,2,3的三张卡片(除数字外其余都同)洗匀后背面朝上放置在桌面上,随机抽出一张记下数字后放回,重新洗匀后背面朝上放置在桌面上,再随机抽出一张记下数字,如果两个数字的积为奇数,则小明去;如果两个数字的积为偶数,则小亮去.(1)请用列表或树状图的方法表示抽出的两张卡片上的数字积的所有可能出现的结果;(2)你认为这个规则公平吗?请说明理由.22.(本题8分)有两组牌,每组牌都是4张,牌面数字分别是1,2,3,4,从每组牌中任取一张,求抽取的两张牌的数字之和等于5的概率,并画出树状图.23.(本题8分)为评估九年级学生的体育成绩情况,某校九年级500名学生全部参加了“中考体育模拟考试”,随机抽取了部分学生的测试成绩作为样本,并绘制出如下两幅不完整的统计表和频数分布直方图:(1)求此次抽查了多少名学生的成绩;(2)通过计算将频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,请估计本次测试九年级学生中成绩优秀的人数.24.(本题8分)某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的宜兴﹣我最喜爱的宜兴小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图.请根据所给信息解答以下问题(1)请补全条形统计图;(2)若全校有1000名同学,请估计全校同学中最喜爱“笋干”的同学有多少人?(3)在一个不透明的口袋中有4个元全相同的小球,把它们分别标号为四种小吃的序号A,B,C,D,随机地把四个小球分成两组,每组两个球,请用列表或画树状图的方法,求出A,B两球分在同一组的概率.25.(本题9分)一只不透明的袋子中装有a个白球,b个黄球和10个红球,这些球除颜色外都相同,将球摇匀,从中任意摸出一个球,摸到红球的概率是40%.(1)当a=8时,求摸到白球的概率;(2)若摸到黄球的概率是摸到白球的两倍,求a,b的值.26.(本题9分)某中学为开拓学生视野,开展“课外读书周”活动,活动后期随机调查了九年级部分学生一周的课外阅读时间,并将结果绘制成两幅不完整的统计图,请你根据统计图(图1)的信息回答下列问题:(1)本次调查的学生总数为________人,被调查学生的课外阅读时间的中位数是________小时,众数是_________小时;(2)请你补全条形统计图,在扇形统计图中,课外阅读时间为5小时的扇形的圆心角度数是_________;(3)若全校九年级共有学生700人,估计九年级一周课外阅读时间为6小时的学生有多少人?(4)若学校选取A、B、C、D四人参加阅读比赛,两人一组分为两组,求A与C是一组的概率,(列表或树状图)参考答案1.B【解析】【分析】可根据“黑球数量÷黑白球总数=黑球所占比例”来列等量关系式可求出白球的个数,其中“黑白球总数=黑球个数+白球个数”,“黑球所占比例=随机摸到的黑球次数÷总共摸球的次数”.【详解】解:设盒子里有白球x 个, 根据=黑球个数摸到黑球的次数黑白球总数摸球总次数得: 816x+8200= 解得:x=92.经检验得x=92是方程的解.故选B.【点睛】本题主要考查利用频率估计概率的知识,利用频率估计概率有以下条件及方法:(1)当事件的试验结果不是有限个或结果发生的可能性不相等时,要用频率来估计概率;(2)当试验次数足够大时,试验频率稳定于理论概率.2.B【解析】【分析】根据题意, 分析可得三个只有颜色不同的有盖茶杯,将茶杯和杯盖随机搭配在一起, 共3⨯2⨯1=6种情况,结合概率的计算公式可得答案.【详解】解: 根据题意, 三个只有颜色不同的有盖茶杯, 将茶杯和杯盖随机搭配在一起, 共3⨯2⨯1=6种情况,而三个茶杯颜色全部搭配正确的只是其中一种;故三个茶杯颜色全部搭配正确的概率为16.故选B.【点睛】本题主要考查概率的计算,用到的知识点为: 概率=所求情况数与总情况数之比.3.C【解析】【分析】由单词“APPLE” 中有2个p, 直接利用概率公式求解即可求得答案.【详解】解:单词“ APPLE” 中有2个p,∴从单词“ APPLE” 中随机抽取一个字母为p的概率为:25故选:C.【点睛】本题主要考查概率的定义.4.C【解析】【分析】认真审题, 仔细观察和分析题干中的已知条件和所给的图形.根据概率的应用, 据此计算后选择求解.【详解】解:转盘被等分成红、白二个扇形,且红色区域的圆心角为120o , 指针落在红色区域的概率是P=120360o o =13故选C.【点睛】解决这个问题的关键之处在于认真审题, 仔细观察和分析题干中的已知条件和所给的图形.根据概率的定义和公式的运用, 据此计算后求解.5.B【解析】【分析】在试验次数不多的情况下,“凸面向上”出现的频率约等于概率.【详解】∵抛掷同一枚啤酒瓶盖1000次.经过统计得“凸面向上”的次数约为420次, ∴抛掷这枚啤酒瓶盖出现“凸面向上”的概率约为4201000=0.42, 故选B .【点睛】本题考察概率的相关知识.在试验次数不多的情况下,“凸面向上”出现的频率约等于概率.6.D【解析】【分析】如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n ,由一共有10种等可能的结果,小王能一次打开该旅行箱的只有1种情况,直接利用概率公式求解即可求【详解】解:∵一共有10种等可能的结果,小王能一次打开该旅行箱的只有1种情况,∴他能一次说对密码的概率是1 10,故选D.【点睛】本题主要考查概率的求法,解决本题的关键是要熟练掌握简单的概率求解方法.7.D【解析】【分析】如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn,根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目,二者的比值就是其发生的概率.【详解】解:根据题意可得:一袋中装有4个白球,4个黑球,共9个,任意摸出1个,摸到白球的概率是49故选D.【点睛】本题主要考查概率的求法,解决本题的关键是要熟练掌握概率公式概率P(A)=mn..8.D【解析】【分析】列出事件的出现次数的树状图,用概率公式求解即可.解:为方便起见, 我们将3件上装和3件裤子从1 至 3 编号. 根据题意, 所有可能的结果如下图所示, 且各种结果发生的可能性相同.所有可能的结果总数为n=3⨯3=9,它们取自同一套的可能的结果总数为m=3 .所以P=31 93 =,故选D.【点睛】本题复习简单事件的概率计算,事件的出现次数可以用画树状图法求出,也可以用列表法求出,注意要不重不漏.9.A【解析】【分析】列举出所有情况,用能组成三角形的情况数除以总情况数即为所求的概率.【详解】共有10、7、5;10、7、3;10、5、3;7、3、5;共4种情况,其中10、7、3;10、5、3这两种情况不能组成三角形,所以P(任取三条,能构成三角形)=21 42 =,故选A.【点睛】本题考查了三角形三边关系,简单的概率计算,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 10.D【解析】【分析】必然事件是指一定会发生的事件,概率为1,根据该性质判断即可.【详解】掷一枚质地均匀的骰子,每一面朝上的概率为16,而小于6的情况有5种,因此概率为56,不是必然事件,所以A 选项错误; 多边形内角和公式为()2180n -︒,不是一个定值,而是随着多边形的边数n 的变化而变化,所以B 选项错误; 二次函数解析式的一般形式为2y ax bx c =++()0a ≠,而当c=0时,二次函数图象经过原点,因此不是必然事件,所以C 选项错误;圆周长公式为2C r π=,当r=2时,圆的周长为4π,所以D 选项正确.故选D .【点睛】本题考查了必然事件的概念,关键是根据不同选项所包含的知识点的概念进行判断对错;必然事件发生的概率为1,随机事件发生的概率为0<P<1,不可能事件发生的概率为0.11.C【解析】【分析】必然事件的发生率为100%,所以一定发生的为必然事件.【详解】解:1,2,4为可能事件,3为一定事件,两个骰子投的数一定大于或等于2,故选C.【点睛】本题考查了必然事件的定义,熟悉掌握概念是解决本题的关键.12.B【解析】【分析】一共摸了100次,其中有20次摸到黑球,由此可估计口袋中黑球和白球个数之比为1:4;即可计算出白球数.【详解】∵共摸了100次,其中20次摸到黑球,∴有80次摸到白球,∴摸到黑球与摸到白球的次数之比为1:4,∴口袋中黑球和白球个数之比为1:4,14164÷=(个).故选B.【点睛】本题考查了利用频率估计概率.大量反复试验下频率稳定值即概率.同时也考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.13.25,【解析】【分析】等可能事件中每件事发生的概率是相等的,为1n,本题n=5,,一共有两个白球,因此为25.【详解】∵一个不透明的袋子中装有2个白球和3个黑球,共有5个球,∴从袋子中随机摸出一个球,摸出的球是白球的概率是:25.故答案为25.【点睛】本题考查了等可能事件的概率公式,等可能时间每件事发生的概率都是1n,其中n是样本总量,本题是统计与概率部分的简单题型.14.3 4【解析】【分析】等腰三角形、线段、圆是轴对称图形,等可能概型中取到每种图形的概率都是14,所以结果是34.【详解】∵等腰三角形、线段、圆是轴对称图形,三角形不是轴对称图形,∴从盒子中任意抽取一张,卡片上的图形是轴对称图形的概率是34;故答案为:34.【点睛】本题考查了轴对称图形的判断,和简单概率的计算,要注意等腰三角形是轴对称图形,三角形不一定是轴对称图形,正确判断图形是否为轴对称图形是本题的关键.15.1 6【解析】【分析】列表得出所有等可能的情况数,找出能组成“柠檬”的情况数,即可求出所求的概率.【详解】列表得:∵12种可能的结果中,能组成“柠檬”有2种可能,共2种,∴两次摸出的球上的汉字能组成“柠檬”的概率是212=16,故答案为:16.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.16.5 6【解析】【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果, 然后根据概率公式求出该事件的概率即可.【详解】解: 由树状图可知共有4 3=12种可能, 两张卡片上的数字的乘积为偶数的有10种, 所以两张卡片上的数字的乘积为偶数的概率是1012=56.【点睛】画树状图法可以不重复不遗漏的列出所有可能的结果, 适合于两步完成的事件. 用到的知识点为: 概率=所求情况数与总情况数之比.17.12;【解析】【分析】让白球的个数除以球的总数为34,可求得白球的个数,即可求得球的总个数.【详解】解答:P(白球)=aa+3=34,解得:a=9,故总的球数为9+3=12.故本题答案为:12.【点睛】本题考查的是随机事件概率的求法,如果一个事件有n种可能, 而且这些事件的可能性相同, 其中事件A出现m种结果, 那么事件A的概率P(A)=mn.18.1 4【解析】【分析】利用阴影部分与三角形的面积比即可.【详解】设三角形面积为1.∵△ABC中,D、E、F分别是各边的中点,∴DE∥BC,DE=BF,∴四边形BFED是平行四边形,∴△DEF≌△FBD,同理△DEF≌△CFE,△DEF≌△EDA,∴阴影部分的面积=△ABC的面积的14,即米粒落到阴影区域内的概率是11414 .故答案为14.【点睛】本题考查了几何概型的概率求法,利用面积求概率是解题的关键.19.(1)不能;(2)516;18;116;116;116【解析】【分析】(1)根据题意,“顾客消费100元以上(不包括100元),就能获得一次转动转盘的机会”, 甲顾客消费80元,不满足获得转动转盘的条件;(2)根据概率的计算方法,可得出答案.【详解】(1)根据题意,“顾客消费100元以上(不包括100元),就能获得一次转动转盘的机会”, 甲顾客消费80元,不满足获得转动转盘的条件.故答案为:不能获得转动转盘的机会.(2)乙顾客消费150元,能获得一次转动转盘的机会.由于转盘被均分成16份,每份被转到的机会均等,其中打折的占5份,故获得打折待遇的概率为P=5 16;九折占2份,故获得九折待遇的概率为P=21= 168;八折占1份,故获得八折待遇的概率为P=1 16;七折占1份,故获得七折待遇的概率为P=1 16;五折占1份,故获得五折待遇的概率为P=1 16.故答案为:他获得打折待遇的概率为516;他获得九折,八折,七折,五折待遇的概率分别是18;116;116;116.【点睛】本题主要考查概率,掌握概率的计算方法是解答本题的关键.20.(1)14;(2)34,图见解析【解析】【分析】(1)根据概率公式即可得到结论;(2)画出树状图即可得到结论.【详解】(1)共有4种可能,所以选择A通道通过的概率是14.故答案为:14,(2)两辆车为甲,乙,如图,两辆车经过此收费站时,会有16种可能的结果,其中选择不同通道通过的有12种结果,∴选择不同通道通过的概率=1216=34.故答案为(1)14;(2)34,图见解析【点睛】本题考查了概率公式中的等可能概型,和利用树状图解决实际问题,正确画出树状图是本题的关键.21.(1)见详解;(2)游戏不公平,理由见详解;【解析】【分析】(1)根据题意直接列表或画树状图即可;(2)先分别求出两纸牌上的数字之积的所有情况,再求出其中偶数和奇数的个数,即可求出小明获胜的概率和小亮获胜的概率,最后得出游戏是否公平.【详解】(1)画树状图如图:(2)由(1)知一共有9种等可能情形,其中出现积为奇数的情况有4种,出现积为偶数的情况有5种,则P(数字之积为奇数)49=,P(数字之积为偶数)59=P(数字之积为奇数) P(数字之积为偶数),所以游戏不公平.【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.22.1 4【解析】【分析】画出树状图,列举出所有情况,看抽取的两张牌的数字之和等于5的情况占所有情况的多少可得答案. 【详解】解:如图,共有16种等可能的情况,和为5的情况有4种,∴P(和为5)= .【点睛】本题主要考查用列表法或画树状图求等可能事件的概率,其中如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.23.(1)50;(2)详见解析;(3)220.【解析】【分析】(1)利用1组的人数除以1组的频率可求此次抽查了多少名学生的成绩;(2)根据总数乘以3组的频率可求a,用50减去其它各组的频数即可求得b的值,再用1减去其它各组的频率即可求得c的值,即可把频数分布直方图补充完整;(3)先得到成绩优秀的频率,再乘以500即可求解.【详解】解:(1)4÷0.08=50(名).答:此次抽查了50名学生的成绩;(2)a=50×0.32=16(名),b=50﹣4﹣8﹣16﹣10=12(名),c=1﹣0.08﹣0.16﹣0.32﹣0.2=0.24,如图所示:(3)500×(0.24+0.2)=500×0.44=220(名).答:本次测试九年级学生中成绩优秀的人数是220名.【点睛】本题主要考查数据的收集、处理以及统计图表。
九年级数学上册第二十五章概率初步专项训练题(带答案)
九年级数学上册第二十五章概率初步专项训练题单选题1、王师傅对某批零件的质量进行了随机抽查,并将抽查结果绘制成如下表格,请你根据表格估计,若从该批零件中任取一个,为合格零件的概率为( )答案:A分析:用“实验频率”的稳定值估计“概率”,从而得到合格零件的概率;解:∵随着实验次数的增多,合格零件的频率逐渐靠近常数0.9,∴从该批零件中任取一个,为合格零件的概率为0.9.故选:A .小提示:本题考查利用频率估计概率,掌握“大量反复试验下频率稳定值即概率”是解本题的关键.2、,甲,乙两辆汽车即将经过该丁字路口,它们各自可能向左转或向右转,且两种情况的可能性相等,则它们经过丁字路口时,都向右转的概率为( )A .14B .13C .12D .23 答案:A分析:通过画树状图法或列表法找出所有等可能的结果数,再找出符合题意(都向右转)的结果数,利用概率公式计算即可.:由题意,画树状图如下:可知共有4种等可能的结果,符合条件的只有1种,故两辆汽车都向右转的概率为14, 故选:A .小提示:本题考查简单概率的计算,熟练掌握概率公式,能够通过列表或画树状图法找出所有等可能的结果数是解题的关键.3、如图,点D 在△ABC 的边AC 上,连接BD ,点P 的位置如图所示,在图中随机选择一个三角形,则点P 在选择的三角形内部的概率是( )A .12B .13C .23D .1 答案:C分析:先找到图中一共有3个三角形,再找到符合要求的三角形有2个,即可求出概率.解:∵图干图形中,三角形有△ABD 、△ABC 、△BCD ,则点P 在△ABD 、△ABC 内部∴P (点P 在选择的三角形内部的概率)=23故选:C .小提示:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.4、关于频率和概率的关系,下列说法正确的是( )A.当实验次数很大时,概率稳定在频率附近B.实验得到的频率与概率不可能相等C.当实验次数很大时,频率稳定在概率附近D.频率等于概率答案:C分析:大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果.解:A、概率是定值,故本选项错误,不符合题意;B、可以相同,如“抛硬币实验”,可得到正面向上的频率为0.5,与概率相同,故本选项错误,不符合题意;C、当实验次数很大时,概率稳定在频率附近,正确,故本选项符合题意;D、频率只能估计概率,故本选项错误,不符合题意;故选:C.小提示:此题考查利用频率估计概率,大量反复试验下频率稳定值即概率.5、小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表:)A.20B.300C.500D.800答案:C分析:随着实验次数的增加,正面向上的频率逐渐稳定到某个常数附近,据此求解即可.观察表格发现:随着实验次数的增加,正面朝上的频率逐渐稳定到0.5附近,所以抛掷硬币的次数为1000,则“正面朝上”的频数最接近1000×0.5=500次,故选C.小提示:本题考查利用频率估计概率的知识,解题的关键是了解在大量重复试验中,可以用频率估计概率.6、如图,在5×6的长方形网格飞镖游戏板中,每块小正方形除颜色外都相同,小正方形的顶点称为格点,扇形OAB的圆心及弧的两端均为格点.假设飞镖击中每一块小正方形是等可能的(击中扇形的边界或没有击中游戏板,则重投1次),任意投掷飞镖1次,飞镖击中扇形OAB(阴影部分)的概率是()A .π12B .π24C .√10π60D .√5π60 答案:A分析:根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.解:由图可知,总面积为:5×6=30,OB =√32+12=√10,∴阴影部分面积为:90·π×10360=5π2,∴飞镖击中扇形OAB (阴影部分)的概率是5π230=π12,故选:A .小提示:本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件;然后计算阴影区域的面积在总面积中占的比例,这个比例即事件发生的概率.7、小明在一次用频率估计概率的实验中,统计了某一结果出现的频率,并绘制了如图所示的统计图,则符合这一结果的实验可能是( )A .掷一枚质地均匀的硬币,正面朝上的概率B.从一副去掉大小王的扑克牌中任意抽取一张,抽到黑桃的概率C.从一个装有2个白球和1个红球的不透明袋子中任意摸出一球(小球除颜色外,完全相同),摸到红球的概率D.任意买一张电影票,座位号是2的倍数的概率答案:C分析:根据统计图可知,实验结果频率在33%左右,因此事件的概率也为33%,符合此概率的即为正确答案.=50%,故A选项错误,不符合题意;A、掷一枚硬币,正面朝上的概率为12B、从一副去掉大小王的扑克牌中任意抽取一张,抽到黑桃的概率为1=25%,故B选项错误,不符合题意;4≈33%,故C选项正C、从一个装有2个白球和1个红球的不透明袋子中任意摸出一球,摸到红球的概率为13确,符合题意;D、任意买一张电影票,座位号是2的倍数的概率在是50%,故D选项错误,不符合题意;故选C.小提示:本题考查了利用频率估计概率的知识,分别求得每个选项的概率是解题的关键.8、有一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同.小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是()A.6B.16C.18D.24答案:B分析:先由频率之和为1计算出白球的频率,再由数据总数×频率=频数计算白球的个数.解:∵摸到红色球、黑色球的频率稳定在15%和45%,∴摸到白球的频率为1-15%-45%=40%,故口袋中白色球的个数可能是40×40%=16个.故选B.小提示:本题考查了利用频率求频数的知识,具体数目应等于总数乘部分所占总体的比值.9、抛掷一枚质地均匀的硬币,“反面朝上”的概率为0.5,那么抛掷一枚质地均匀的硬币100次,下列理解正确的是()A.可能有50次反面朝上B.每两次必有1次反面朝上C.必有50次反面朝上D.不可能有100次反面朝上答案:A分析:概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现,据此逐项判断即可.解:抛掷一枚质地均匀的硬币,“反面朝上”的概率为0.5,那么抛掷一枚质地均匀的硬币100次,可能有50次反面朝上,故选:A.小提示:本题主要考查了概率的意义和应用,要熟练掌握,解答此题的关键是要明确:概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.10、如图①所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为5m,宽为4m的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计实验结果),他将若干次有效实验的结果绘制成了②所示的折线统计图,由此他估计不规则图案的面积大约为()A.6m2B.7m2C.8m2D.9m2答案:B分析:本题分两部分求解,首先假设不规则图案面积为x,根据几何概率知识求解不规则图案占长方形的面积大小;继而根据折线图用频率估计概率,综合以上列方程求解.假设不规则图案面积为x,由已知得:长方形面积为20,根据几何概率公式小球落在不规则图案的概率为:x,20当事件A实验次数足够多,即样本足够大时,其频率可作为事件A发生的概率估计值,故由折线图可知,小球落在不规则图案的概率大约为0.35,=0.35,解得x=7.综上有:x20故选:B.小提示:本题考查几何概率以及用频率估计概率,并在此基础上进行了题目创新,解题关键在于清晰理解题意,能从复杂的题目背景当中找到考点化繁为简,创新题目对基础知识要求极高.填空题11、一个不透明的袋子装有除颜色外其余均相同的2个红球和m个黄球,随机从袋中摸出个球记录下颜色,再放回袋中摇匀大量重复试验后,发现摸出红球的频率稳定在0.2附近,则m的值为_________.答案:8分析:首先根据题意可取确定摸出红球的概率为0.2,然后根据概率公式建立方程求解即可.解:∵大量重复试验后,发现摸出红球的频率稳定在0.2附近,∴摸出红球的概率为0.2,=0.2,由题意,22+m解得:m=8,经检验,m=8是原方程的解,且符合题意,所以答案是:8.小提示:本题考查由频率估计概率,以及已知概率求数量;大量重复试验后,某种情况出现的频率稳定在某个值附近时,这个值即为该事件发生的概率,掌握概率公式是解题关键.12、从3、5、6、9四个数中随机取一个数,不放回,再随机取一个数,把第一个数作为十位数字,第二个数作为个位数字,组成一个两位数,则这个两位数是奇数的概率是______.答案:34分析:从4个数中取两个数组成两位数,把所有情况全部列出来,找出其中的奇数,用奇数的个数除以两位数的总个数就是这个两位数是奇数的概率.从3、5、6、9这四个数中取两个数组成两位数有下列情况:35、36、39、53、56、59、63、65、69、93、95、96,共12种结果,其中奇数有9种结果,∴P(这个两位数是奇数)= 912=34所以答案是:34小提示:本题考查了概率的计算,事件A发生的概率=事件A发生的所有可能结果数所有事件发生的可能结果数,掌握概率的计算方法是解题的关键.13、如图,正六边形内接于⊙O,小明向圆内投掷飞镖一次,则飞镖落在阴影部分的概率是__.答案:16分析:根据图形分析可得求图中阴影部分面积实为求扇形部分面积,而扇形面积是圆面积的16,可得结论.如图所示:连接OA,∵正六边形内接于⊙O,∴△OAB,△OBC都是等边三角形,∴∠AOB=∠OBC=60°,∴OC∥AB,∴S△ABC=S△OBC,∴S阴=S扇形OBC,则飞镖落在阴影部分的概率是16;故答案为16.小提示:此题主要考查了正多边形和圆、几何概率以及扇形面积求法,得出阴影部分面积=S扇形OBC是解题关键.14、一个木盒里装有除颜色不同以外其他完全相同的2枚黑色围棋子和3枚白色围棋子.现从木盒中随机取出1枚棋子,记下颜色后放回篮中搅拌均匀.再从木盒里取出一枚棋子,则前后两次取到都是白棋的概率是__________.答案:925分析:画树状图,共有25种等可能的结果,其中前后两次取到都是白棋的结果有9种,再由概率公式求解即可.解:画树状图如下:共有25种等可能的结果,其中前后两次取到都是白棋的结果有9种,∴前后两次取到都是白棋的概率是925所以答案是:925.小提示:本题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.15、投掷一枚正方体骰子,朝上的一面是合数的可能性大小是_____.答案:13分析:正方体骰子共6个数,其中4和6为合数,所以投掷一枚正方体骰子,朝上的一面是合数的可能性大小是26=1 3.解:正方体骰子共6个数,合数为4,6共2个,所以投掷一枚正方体骰子,朝上的一面是合数的可能性大小是26=1 3,所以答案是:13.小提示:本题考查判断事件发生的可能性大小,利用概率来求解是解题的关键.解答题16、“共和国勋章”获得者钟南山院士说:按照疫苗保护率达到70%计算,中国的新冠疫苗覆盖率需要达到近80%,才有可能形成群体免疫.本着自愿的原则,18至60周岁符合身体条件的中国公民均可免费接种新冠疫苗.居民甲、乙准备接种疫苗,其居住地及工作单位附近有两个大型医院和两个社区卫生服务中心均可免费接种疫苗,提供疫苗种类如下表:用A、B、C、D表示选取结果)(1)居民甲接种的是新冠病毒灭活疫苗的概率为;(2)请用列表或画树状图的方法求居民甲、乙接种的是相同种类疫苗的概率.答案:(1)12(2)居民甲、乙接种的是相同种类疫苗的概率为12分析:(1)利用概率公式直接计算即可;(2)先画出树状图求解所有的等可能的结果数,再得到符合条件的结果数,从而利用概率公式进行计算即可.(1)解:由概率的定义可得:居民甲接种的是新冠病毒灭活疫苗的概率是24=1 2.所以答案是:12.(2)画树状图如图:由上表可知:一共有16种等可能的结果,居民甲、乙接种的是相同种类疫苗的结果有8种, ∴居民甲、乙接种的是相同种类疫苗的概率为816=12 .小提示:本题考查的是随机事件的概率,利用列表法或画树状图求解概率,掌握列表的方法与画树状图的方法是解题的关键.17、某组织就2022年春节联欢晚会节目的喜爱程度,在万达广场进行了问卷调查,将问卷调查结果分为“非常喜欢”“比较喜欢”“感觉一般”“不太喜欢”四个等级,分别记作A ,B ,C ,D ,根据调查结果绘制出如图的“扇形统计图”和“条形统计图”,请结合图中所给信息解答下列问题:(1)这次被调查对象共有 人,被调查者“不太喜欢”有 人; (2)补全扇形统计图和条形统计图;(3)在“非常喜欢”调查结果里有5人为80后,分别为3男2女,在这5人中,该民间组织打算随机抽取2人进行采访,请你用列表法或列举法求出所选2人均为男生的概率. 答案:(1)50;5 (2)见解析 (3)310分析:(1)利用公式“该部分的人数÷部分所占的百分比=总人数”求解即可.(2)先算出B 所占的百分比,然后再算出C 的百分比及C 对应的人数即可作图.(3)利用列表法求出5人中3男2女,选2人接受采访均为男生的所有可能的情况,然后根据概率的计算方法求解即可.(1)∵15÷30%=50(人),∴50×10%=5(人)即:这次被调查对象共有 50人,被调查者“不太喜欢”有 5人;所以答案是:50;5(2)∵B占总数的百分比为20÷50×100%=40%,∴C占总数的百分比为:1﹣10%﹣30%﹣40%=20%,∴C的人数为:50×20%=10(人),所求扇形统计图和条形统计图如下图所示:(3)用列表法表示选2人接受采访的所有可能如下:故:P(所选2人均为男生)=20=10小提示:本题考查了列表法与树状图、条形统计图、扇形统计图等问题,解题的关键是要掌握整体与部分之间的数量关系及条形统计图与扇形统计图的作法.18、某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.抽奖规则如下:1 .抽奖方案有以下两种:方案A,从装有1个红球、2个白球(仅颜色不同)的甲袋中随机摸出1个球,若是红球,则获得奖金15元,否则,没有奖金,兑奖后将摸出的球放回甲袋中;方案B,从装有2个红、1个白球(仅颜色不同)的乙袋中随机摸出1个球,若是红球则获得奖金10元,否则,没有奖金,兑奖后将摸出的球放回乙袋中.2 .抽奖条件是:顾客购买商品的金额每满100元,可根据方案A抽奖一次:每满足150元,可根据方案B抽奖一次(例如某顾客购买商品的金额为310元,则该顾客采用的抽奖方式可以有以下三种,根据方案A抽奖三次或方案B抽奖两次或方案A,B各抽奖一次).已知某顾客在该商场购买商品的金额为250元.(1)若该顾客只选择根据方案A进行抽奖,求其所获奖金为15元的概率;(2)以顾客所获得的奖金的平均值为依据,应采用哪种方式抽奖更合算?并说明理由.;答案:(1)49(2)选择方案A、方案B各抽1次的方案,更为合算.理由见解析分析:(1)利用列表法表示获得奖金15元所有可能出现结果情况,进而求出相应的概率即可;(2)由种抽奖方案,即:2次都选择方案A,1次方案A1次方案B,1次方案B,分别求出各种情况下获得奖金的平均值即可.(1)解:由于某顾客在该商场购买商品的金额为250元,只选择方案进行抽奖,因此可以抽2次,由抽奖规则可知,两次抽出的结果为一红一白的可获得奖金15元,从1个红球,2个白球中有放回抽2次,所有可能出现的结果情况如下:共有9种等可能出现的结果,其中一红一白,即可获奖金15元的有4种,所以该顾客只选择根据方案A 进行抽奖,获奖金为15元的概率为49;(2)解:①由(1)可得,只选择方案A ,抽奖2次,获得15元的概率为49,获得30元(2次都是红球)的概率为19,两次都不获奖的概率为49,所以只选择方案A 获得奖金的平均值为:15×49+30×19=10(元),②只选择方案B ,则只能摸奖1次,摸到红球的概率为23,因此获得奖金的平均值为:10×23≈6.7(元), ③选择方案A 1次,方案B 1次,所获奖金的平均值为:15×13+10×23≈11.7(元), 因此选择方案A 、方案B 各抽1次的方案,更为合算.小提示:本题考查列表法或树状图法求随机事件发生的概率,列举出所有可能出现的结果情况是正确解答的前提.。
九年级数学上册第25章《概率初步》综合复习练习题(含答案)
九年级数学上册第25章《概率初步》综合复习练习题(含答案)一、单选题1.不透明的袋子中装有10个黑球和若干个白球,这些球除颜色外无其他差别.从袋子中随机摸出一球记下其颜色,再把它放回袋子中摇匀,重复上述过程,共试验400次,其中有300次摸到白球,由此估计袋子中的白球大约有()A.6个B.10个C.15个D.30个2.从甲、乙、丙三名同学中随机抽取两名同学去参加义务劳动,则甲与乙恰好被选中的概率是()A.16B.14C.13D.123.某人在做抛掷硬币试验中,抛掷n次,正面朝上有m次,若正面朝上的频率是Pmn =,则下列说法正确的是()A.P一定等于0.5 B.多投一次,P更接近0.5C.P一定不等于0.5 D.投掷次数逐渐增加,P稳定在0.5附近4.分别向如图所示的四个区域投掷一个小球,小球落在阴影部分的概率最小的是()A.B.C.D.5.如图所示的是由8个全等的小正方形组成的图案,假设可以随意在图中取一点,那么这个点取在阴影部分的概率是()A.38B.12C.58D.16.甲、乙两人玩“石头,剪刀,布”的游戏,约定只玩一局,描述错误的是()A.甲,乙获胜的概率均低于0.5 B.甲,乙获胜的概率相同C.甲,乙获胜的概率均高于0.5 D.游戏公平7.如图,在56⨯的长方形网格飞镖游戏板中,每块小正方形除颜色外都相同,小正方形的顶点称为格点,扇形OAB的圆心及弧的两端均为格点.假设飞镖击中每一块小正方形是等可能的(击中扇形的边界或没有击中游戏板,则重投1次),任意投掷飞镖1次,飞镖击中扇形OAB (阴影部分)的概率是( )A .12π B .24πC .1060πD .560π 8.如图是用七巧板拼成的正方形桌面,一个小球在桌面上自由地滚动,它最终停在黑色区域的概率是( )A .14B .18C .316D .239.不透明的袋子中装有红、绿小球各一个,除颜色外两个小球无其他差别,从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么第一次摸到红球、第二次摸到绿球的概率是( )A .14B .13C .12D .3410.小明在一次用频率估计概率的实验中,统计了某一结果出现的频率,并绘制了如图所示的统计图,则符合这一结果的实验可能是( )A .掷一枚质地均匀的硬币,正面朝上的概率B .从一副去掉大小王的扑克牌中任意抽取一张,抽到黑桃的概率C.从一个装有2个白球和1个红球的不透明袋子中任意摸出一球(小球除颜色外,完全相同),摸到红球的概率D.任意买一张电影票,座位号是2的倍数的概率11.某人在做掷硬币试验时,抛掷m次,正面朝上有n次,则即正面朝上的频率是P=nm,下列说法中正确的是()A.P一定等于12B.抛掷次数逐渐增加,P稳定在12附近C.多抛掷一次,P更接近12D.硬币正面朝上的概率是n m12.如图是一个游戏转盘.自由转动转盘,当转盘停止转动后,指针落在数字1,2,3,4所示区域内可能性最大的是()A.1号B.2号C.3号D.4号二、填空题1321-,π,0,3这五个数中随机抽取一个数,恰好是无理数的概率是__.14.乐乐把8个红球,9个白球,a个黑球装在一个不透明布袋中,这些球每个球除颜色外都相同,从中任取一球,取得红球的概率是0.4,则a的值是______.15.不透明的袋子中有两个小球,上面分别写着数字“1”、“2”,除数字外两个小球无其他差别.从中随机摸出一个小球,记录其数字,放回并摇匀,再从中随机摸出一个小球,记录其数字,那么两次记录的数字之和为3的概率是______.16.学校食堂晚餐有四荤三素,荤菜有红烧肉、酸菜鱼、姜爆鸭和辣子鸡,素菜有干煸四季豆、青椒土豆丝和香干炒蒜苔,小南让食堂阿姨任打一道荤菜一道素菜,则刚好选到她爱吃的红烧肉和青椒土豆丝的概率为__.17.在一个不透明的口袋中,装有若干个红球和6个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球试验发现,摸到黄球的频率是0.3,摸到红球的频率是_____,则估计盒子中大约有红球_____个.三、解决问题18.如图是小丽设计可自由的均匀转盘,将其等分为12个扇形,每个扇形有1个有理数,转得下列各数的概率是多少?(1)转得非负数的概率是多少?(2)转得整数的概率是多少?(3)若小丽和妈妈做游戏,转得负整数小丽获胜;若转得的数绝对值大于等于8妈妈获胜,这个游戏公平吗?请说明理由.19.某校计划在下个月第三周的星期一至星期四开展社团活动.(1)若甲同学随机选择其中的一天参加活动,则甲同学选择在星期三的概率为______;(2)若乙同学随机选择其中的两天参加活动,请用画树状图(或列表)的方法求其中一天是星期二的概率.20.某校开展以“奋斗百年路•启航新征程”为主题的活动来庆祝建党百年.活动分为两个阶段:第一阶段是宣讲红色故事,有以党建党史、文化传承、人物传记为素材的3个宣讲项目(分别用A、B、C表示);第二阶段是主题文艺创作,有文学创作、美术创作、舞蹈创作、音乐创作4个项目(分别用D、E、F、G表示).要求参加人员在每个阶段各随机抽取一个项目完成.若小明参加该活动,请用画树状图或列表的方法列出小明参加项目的所有可能的结果,并求小明恰好抽中项目C和E的概率.21.琳琳有4盒外包装完全相同的糖果,其中有2盒巧克力味的,1盒牛奶味的,1盒水果味的,她准备和好朋友分享糖果.(1)若琳琳随机打开1盒糖果,恰巧是牛奶味的概率是______;(2)若琳琳从这4盒中随机挑选两盒打开,请用列表或画树状图法打开的两盒都是巧克力味的概率.22.建国中学有7位学生的生日是10月1日,其中男生分别记为1A,2A,3A,4A,女生分别记为1B,2B,3B.学校准备召开国庆联欢会,计划从这7位学生中抽取学生参与联欢会的访谈活动.(1)若任意抽取1位学生,且抽取的学生为女生的概率是;(2)若先从男生中任意抽取1位,再从女生中任意抽取1位,求抽得的2位学生中至少有1位是1A或1B的概率.(请用“画树状图”或“列表”等方法写出分析过程)23.下面是某学校生物兴趣小组在相同的实验条件下,对某植物种子发芽率进行研究时所得到的数据:试验的种子数n 500 1000 1500 2000 3000 4000 发芽的粒数m 4719461425 1898 28533812 发芽频率mn0.942 0.946x0.949y0.953(1)求表中x ,y 的值;(2)任取一粒这种植物种子,估计它能发芽的概率约是多少?(精确到0.01)(3)若该学校劳动基地需要这种植物幼苗7600棵,试估算需要准备多少粒种子进行发芽培育.24.概率与统计在我们日常生活中应用非常广泛,请同学们直接填出下列事件中所要求的结果:(1)我们平时娱乐的一副标准扑克去掉大小王后剩下的四种花色(红桃、方块、梅花、黑桃)共有52张,如果从中任抽一张得到红桃的概率为______;(2)盒子里有红黑两种颜色的5个相同的球,如果随机抽取1个球记下颜色,然后放回,再重复这个试验,通过大量重复试验后发现,抽到红球的频率稳定在0.8左右,则盒中红球有______个;(3)形如222a ab b ±+的式子称为完全平方式.若有一多项式为29a ka ++,其中k 的值可以从4张分别写有-3,-6,6,9的卡片中随机抽取,那么正好让这个多项式为完全平方式的概率为______;(4)如图是由全等的小正方形组成的图案,假设可以随意在图中取点,那么这个点取在阴影部分的概率是______.25.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共60个.小亮做摸球实验,他将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:(1)请估计:当n的值越来越大时,摸到白球的频率将会接近______;(精确到0.1)(2)假如你摸球一次,摸到白球的概率P(摸到白球)=______,摸到黑球的概率P(摸到黑球)=______;(3)请估算盒子里黑、白两种颜色的球各有多少个?26.小董利用均匀的骰子和同桌做游戏,规则如下:①两人同时做游戏,各自投掷一枚骰子,也可以连续投掷几次骰子;②当掷出的点数和不超过10,如果决定停止投掷,那么你的得分就是掷出的点数和;当掷出的点数和超过10,必须停止投掷,并且你的得分为0;③比较两人的得分,谁的得分多谁就获胜.在一次游戏中,同桌连续投掷两次,掷出的点数分别是2、6,同桌决定不再投掷;小董也是连续投掷两次,但是掷出的点数分别了3、4,小董决定再投掷一次.请问:(1)最终小董的得分为0分的概率多大?并说明原因.(2)小董获胜的概率多大?并说明原因.(3)做这个游戏时应该注意什么才能使游戏公平?参考答案1.D2.C3.D4.A5.A6.C7.A8.C9.A10.C11.B12.C13.2,π是无理数,P(恰好是无理数)25 =.故答案为:25.14.解:依题意有:889a++=0.4,解得a=3,经检验,a=3是原方程的解.故答案为:3.15.解:列表如下:12 123 234由表可知,共有4种等可能结果,其中两次记录的数字之和为3的有2种结果,所以两次记录的数字之和为3的概率为21 42 =.故答案为:12.16.红烧肉、酸菜鱼、姜爆鸭、辣子鸡分别用A、B、C、D表示,干煸四季豆、青椒土豆丝、香干炒蒜苔用a、b、c表示,根据题意画树状图如下:共有12种等可能的情况数,其中她选到红烧肉和青椒土豆丝的有1种,则刚好选到她爱吃的红烧肉和青椒土豆丝的概率为12.故答案为:112.17.解:摸到黄球的频率是0.3,摸到红球的频率是0.7,设有红球x个,根据题意得:60.36x=+,解得:x=14,经检验,x=14是原方程的解.故答案是:0.7,14.18.(1)解:由题意可知,转盘中有12个数,其中非负数为:0,15,8,11,6,5,23,这7个,所以转得非负数的概率为712.(2)解∶由题意可知,转盘中有12个数,其中整数为:﹣1,0,15,﹣17,8,11,6,﹣10,5,这9个,所以转得整数的概率为93 124=.(3)解:由题意可知,转盘中有12个数,其中负整数为:﹣1,﹣17,﹣10,这3个,转得负整数的概率为31124=,故小丽获胜的概率为:14;这12个数中转得的数绝对值大于等于8为:15,﹣17,8,11,﹣10,这5个,转得绝对值大于等于8的数的概率为512,故妈妈获胜的概率为:512;因为15 412≠,故这个游戏不公平.19.(1)总的可选日期为4个,则甲随机选择其中某一天的概率为1÷4=14,故答案为:14;(2)用A、B、C、D分别表示星期一、星期二、星期三、星期四,根据题意列表如下:总的可能情况数为12种,含星期二(B)的情况有6种,则乙同学选的两天中含星期二的概率为:6÷12=12,即所求概率为12.20.解:列表如下:D E F GA AD AE AF AGB BD BE BF BGC CD CE CF CG由表可以看出,共有12种等可能结果,其中小明恰好抽中项目C和E的结果只有1种,∴小明恰好抽中项目C和E的概率为112.21.(1)()1 =1?4=4P牛奶味;故答案为:14;(2)用Q1 、Q2表示巧克力味的,N表示牛奶味的,S表示水果味的,列表如下:共12种等可能结果,其中两盒都是巧克力味的结果有2种,随机挑选两盒都是巧克力味的概率为:()21 == 126P两盒巧克力味.22.(1)解:任意抽取1位学生,且抽取的学生为女生的概率是37,故答案为:37.(2)解:列出表格如下:一共有12种情况,其中至少有1位是1A或1B的有6种,∴抽得的2位学生中至少有1位是1A 或1B 的概率为61122=. 23.(1)解:14250.9501500x ==;28530.9513000y ==; (2)解:概率是大量重复试验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率;∴这种种子在此条件下发芽的概率约为0.95.(3)解:若该学校劳动基地需要这种植物幼苗7600棵, 需要准备760080000.95=(粒)种子进行发芽培育. 24.(1)解:∵一幅扑克牌中有13张红桃,去掉大小王后剩下52张, ∴P (抽中红桃)=131524=. 故答案为:14.(2)解:∵抽到红球的频率稳定在0.8左右, ∴抽到红球的概率为0.8, ∴红球个数为:5×0.8=4(个). 故答案为:4. (3)解:∵当k =±6时,29a ka ++是完全平方式, ∴P (完全平方式)=24=12.故答案为:12. (4)解:∵图中有9个小正方形,阴影部分有5个,∴随意在图中取点,这个点取在阴影部分的概率P (阴影)=59.故答案为:59.25.(1)解:当n 的值越来越大时,摸到白球的频率将会接近0.6, 故答案为:0.6;(2)根据频率估计概率可得,摸到白球的概率P (摸到白球)=0.6, 摸到黑球的概率P (摸到黑球)=1-0.6=0.4,故答案为:0.6,0.4;(3)60×0.4=24,60-24=36.∴黑球有24只,白球有36只.26.(1)解:1()由题意可知:小董投掷骰子的点数为4、5、6时,得分为0,∴小董得零分的概率为:P(小董得分为零31 62 ==).(2)解:根据题意得:小董再次投掷骰子,点数为2或3时得分为9或10,小董获胜,∴小董获胜的概率为:P(小董获胜21 63 ==).(3)根据游戏规则,前一个人投掷的骰子点数总和大小会影响后一个人是否再次投掷第二次骰子,∴在游戏过程中应注意轮流投掷骰子,先小董或同桌投掷第一次,如需投掷第二次,再同桌或小董投掷第二次,这样即可保证游戏公平.。
人教版九年级数学上册第二十五章 概率初步练习(含答案)
第二十五章 概率初步一、单选题1.下列事件中,属于必然事件的是( )A .购买一张彩票,中奖B .三角形的两边之和大于第三边C .经过有交通信号灯的路口,遇到红灯D .对角线相等的四边形是矩形 2.下列事件中,属于随机事件的是( ).A .三角形一边上的中线和这条边上的高重合B .用长度分别是1cm ,3cm ,4cm 的细木条首尾顺次相连可组成一个三角形C .若两个图形关于某条直线对称,则这两个图形全等D .任意一个三角形的内角和等于180°3.已知袋中有若干个球,其中只有2个红球,它们除颜色外其它都相同.若随机从中摸出一个,摸到红球的概率是14,则袋中球的总个数是( ) A .2 B .4C .6D .8 4.随机掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷两次骰子,掷得面朝上的点数之和是5的概率是( )A .16B .19C .118D .2155.经过某十字路口的汽车,它可能继续直行,也可能向左或向右转.若这三种可能性大小相同,则两辆汽车经过该十字路口全部继续直行的概率为( )A .13B .23C .19D .126.从1、2、3、4四个数中随机选取两个不同的数,分别记为a 、c ,则关于x 的一元二次方程240ax x c ++=有实数解的概率为( )A.14B.13C.12D.237.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是( )A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃B.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C.抛一个质地均匀的正六面体骰子,向上的面点数是5D.抛一枚硬币,出现反面的概率8.在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有( )A.6个B.15个C.13个D.12个9.学完《概率初步》这一章后,老师让同学结合实例说一说自己的认识,请你判断以下四位同学说法正确的是()A.小智说,做3次掷图钉试验,发现2次钉尖朝上,因此钉尖朝上的概率是2 3B.小慧说,某彩票的中奖概率是5%,那么如果买100张彩票一定会有5张中奖C.小通说,射击运动员射击一次只有两种结果:中靶与不中靶,所以它们发生的概率都是12D.小达做了20次抛掷均匀硬币的试验,其中有5次正面朝上,15次正面朝下,他认为再做一次,正面朝上的概率是二分之一10.如图,正方形ABCD中,点E是以AB为直径的半圆与对角线AC的交点.现随机向正方形ABCD内投掷一枚小针,则针尖落在阴影区域的概率为()A.18B.14C.13D.12二、填空题11.从一副扑克牌中任意抽一张扑克牌,是红桃2,此事件是____________事件.(填“必然”“随机”或“不可能”)12.在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是.13.如图是小明在抛掷图钉的试验中得到的图钉针尖朝上的折线统计图,请你估计抛掷图钉针尖朝上的概率是_____.14.现有五张质地大小完全相同的卡片,上面分别标有数字1、2、3、4、5,把分别标有数字3、4的两张卡片放入不透明的盒子A中,把分别标有数字1、2、5的三张卡片放入不透明的盆子B中.现随机从A和B两个盒子中各取出一张卡片,把从A盒中取出的卡片上标的数字记作a,从B盒中取出的卡片上标的数字记b,且a-b=k,则y关于x的正比例函数y=kx的图象经过一、三象限的概率是____________.三、解答题15.在一个不透明的口袋中装着大小、外形等一模一样的5个红球、3个蓝球和2个白球,它们已经在口袋中被搅匀了.请判断以下事情是不确定事件、不可能事件,还是必然事件.()1从口袋中任意取出一个球,是一个白球;()2从口袋中一次任取5个球,全是蓝球;()3从口袋中一次任意取出9个球,恰好红蓝白三种颜色的球都齐了.16.如图,现有一个均匀的转盘被平均分成六等份,分別标有2、3、4、5、6、7这六个数字,转动转盘,当转盘停止时,指针指向的数字即为转出的数字(当指针恰好指在分界线上时重转).(1)转动转盘,求转出的数字大于3的概率;(2)随机转动转盘,转盘停止后记下转出的数字,并与数字3和4分别作为三条线段的长度,求这三条线段能构成三角形的概率.17.某商场举办抽奖活动规则如下:在不透明的袋子中有2个黑球和2个红球,这些球除颜色外都相同,顾客每次摸出一个球,若摸到黑球,则获得1份奖品;若摸到红球,则没有奖品.(1)如果小芳只有一次摸球机会,那么小芳获得奖品的概率为.(2)如果小芳有两次摸球机会(摸出后不放回),请用表格法或树状图法求小芳获得2份奖品的概率.18.共享经济已经进入人们的生活.小沈收集了自已感兴趣的4个共享经济领域的图标,共享出行、共享服务、共享物品、共享知识,制成编号为A、B、C、D的四张卡片(除字母和内容外,其余完全相同).现将这四张卡片背面朝上,洗匀放好.(1)小沈从中随机抽取一张卡片是“共享服务”的概率是;(2)小沈从中随机抽取一张卡片(不放回),再从余下的卡片中随机抽取一张,请你用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率.(这四张卡片分别用它们的编号A、B、C、D表示)答案1.B 2.A 3.D4.B 5.C 6.C 7.B 8.D 9.D 10.B 11.随机12.4 513.0.614.2 315.()1不确定事件;()2不可能事件;()3必然事件16.(1)23;(2)5617.(1)12;(2)1618.(1)14;(2)16。
九年级数学上册第二十五章概率初步经典大题例题(带答案)
九年级数学上册第二十五章概率初步经典大题例题单选题1、某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是( )A .19B .16C .13D .23 答案:C分析:将三个小区分别记为A 、B 、C ,列举出所有情况即可,看所求的情况占总情况的多少即可. 详解:将三个小区分别记为A 、B 、C ,列表如下:3种,所以两个组恰好抽到同一个小区的概率为39=13.故选C .点睛:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.2、某市有6名教师志愿到四川地震灾区的甲、乙、丙三个镇去支教,每人只能去一个镇,则恰好其中一镇去4名,另两镇各去1名的概率为( )A .2081B .1081C .5243D .10243答案:B分析:因为对于这六个人来说,会被随机分派到3个镇中的任何一个,所以一共有36种情况,而有4个人的镇可能是3个镇中的任何一个,剩下两个镇各派一个人的派法是3×C 64,根据概率公式求解.解:6名教师志愿随机派到3个镇中的任何一个共有36种情况,有4个人的镇可能是3个镇中的任何一个,另两镇各去1名的结果数为3×6×5,所以恰好其中一镇去4名,另两镇各去1名的概率=3×6×536=1081, 故选:B . 【小提示】选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.3、同时抛掷两枚质地均匀的硬币,则一枚硬币正面向上、一枚硬币反面向上的概率是( )A .14B .13C .12D .23答案:C分析:根据题意可画出树状图,然后进行求解概率即可排除选项.解:由题意得:∴一枚硬币正面向上、一枚硬币反面向上的概率是P =24=12; 故选C .小提示:本题主要考查概率,熟练掌握利用树状图求解概率是解题的关键.4、现有4盒同一品牌的牛奶,其中2盒已过期,随机抽取2盒,至少有一盒过期的概率是( )A .12B .23C .34D .56答案:D分析:列举出所有的情况,再得到至少有一盒过期的情况数,利用概率公式计算即可.解:∵有4盒同一品牌的牛奶,其中2盒已过期,设未过期的两盒为A ,B ,过期的两盒为C ,D ,随机抽取2盒,则结果可能为(A ,B ),(A ,C ),(A ,D ),(B ,C ),(B ,D ),(C ,D ),共6种情况,其中至少有一盒过期的有5种,∴至少有一盒过期的概率是56,故选D .小提示:此题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n .5、不透明的袋子中装有红、绿小球各一个,除颜色外两个小球无其他差别,从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么第一次摸到红球、第二次摸到绿球的概率是( )A .14B .13C .12D .34 答案:A分析:首先根据题意画出树状图,由树状图求得所有等可能的结果与第一次摸到红球,第二次摸到绿球的情况,然后利用概率公式求解即可求得答案.解:画树状图得:∵共有4种等可能的结果,第一次摸到红球,第二次摸到绿球有1种情况,∴第一次摸到红球,第二次摸到绿球的概率为14,故选:A .小提示:本题考查了画树状法或列表法求概率,列出所有等可能的结果是解决本题的关键.6、如图是用七巧板拼成的正方形桌面,一个小球在桌面上自由地滚动,它最终停在黑色区域的概率是( )A .14B .18C .316D .23答案:C分析:先求出黑色区域的面积是正方形桌面的分率,再根据概率公式即可得出答案.解:观察图形可知,黑色区域的面积是正方形桌面的316, ∴最终停在黑色区域的概率是316, 故选:C .小提示:本题考查几何概率,熟练掌握几何概率的计算方法是解题的关键.7、将一枚飞镖任意投掷到如图所示的正六边形镖盘上,飞镖落在白色区域的概率为( )A .12B .13C .25D .35 答案:A分析:随机事件A 的概率P (A )=事件A 发生时涉及的图形面积÷一次试验涉及的图形面积,因为这是几何概率.解:设正六边形边长为a ,过A 作AD ⊥BC 于D ,过B 作BE ⊥CE 于E ,如图所示:∵正六边形的内角为180°−360°6=120°,∴在RtΔACD 中,∠ADC =90°,∠CAD =60°,AC =a ,则AD =12a,CD =√32a , ∴BC =2CD =√3a ,∴在RtΔBCE 中,∠BEC =90°,∠BCE =60°,BC =√3a ,则CE =√32a,BE =32a , 则灰色部分面积为3S ΔABC =3×12BC ⋅AD =3×12×√3a ×12a =34√3a 2,白色区域面积为2S ΔBCE =2×12CE ⋅BE =√32a ×32a =3√34a 2,所以正六边形面积为两部分面积之和为32√3a 2, 飞镖落在白色区域的概率P =34√3a 232√3a 2=12, 故选:A .小提示:本题考查了几何概率,熟练掌握几何概率模型及简单概率公式是解决问题的关键.8、若气象部门预报明天下雨的概率是70%,下列说法正确的是( )A .明天下雨的可能性比较大B .明天下雨的可能性比较小C .明天一定会下雨D .明天一定不会下雨答案:A分析:根据“概率”的意义进行判断即可.解:A .明天下雨的概率是70%,即明天下雨的可能性是70%,也就是说明天下雨的可能性比较大,因此选项A 符合题意;B .明天下雨的可能性是70%,也就是说明天下雨的可能性比较大,因此选项B 不符合题意;C . 明天下雨的可能性是70%,并不代表明天一定会下雨,因此选项C 不符合题意;D . 明天下雨的可能性比较大,与明天一定不会下雨是矛盾的,因此选项D 不符合题意; 故选:A . 小提示:本题考查了概率与可能性的关系,正确理解概率的意义是解题的关键.9、五张不透明的卡片,正面分别写有实数−1,√2,115,√9,5.06006000600006……(相邻两个6之间0的个数依次加1).这五张卡片除正面的数不同外其余都相同,将它们背面朝上混合均匀后任取一张卡片,取到的卡片正面的数是无理数的概率是( )A .15B .25C .35D .45 答案:B分析:通过有理数和无理数的概念判断,然后利用概率计算公式计算即可.有理数有:−1,115,√9;无理数有:√2,5.06006000600006……;则取到的卡片正面的数是无理数的概率是2,5故选:B.小提示:本题主要考查了有理数、无理数的概念和简单概率计算,先判断后计算概率即可.10、某校有35名同学参加眉山市的三苏文化知识竞赛,预赛分数各不相同,取前18名同学参加决赛. 其中一名同学知道自己的分数后,要判断自己能否进入决赛,只需要知道这35名同学分数的().A.众数B.中位数C.平均数D.方差答案:B分析:由于比赛取前18名参加决赛,共有35名选手参加,根据中位数的意义分析即可.详解:35个不同的成绩按从小到大排序后,中位数及中位数之后的共有18个数,故只要知道自己的成绩和中位数就可以知道是否进入决赛了.故选B.点睛:本题考查了统计量的选择,以及中位数意义,解题的关键是正确的求出这组数据的中位数填空题11、如图,在边长为1的小正方形组成的3×3网格中,A,B两点均在格点上,若在格点上任意放置点C,恰的概率为_________.好使得△ABC的面积为12答案:3##0.3758分析:按照题意分别找出点C所在的位置,根据概率公式求出概率即可.的三角形,解:可以找到6个恰好能使△ABC的面积为12,则概率为:6÷16=38所以答案是:3.8小提示:此题主要考查了概率公式,解决此题的关键是正确找出恰好能使△ABC的面积为1的点.12、从分别标有A、B、C的3根纸签中随机抽取一根,然后放回,再随机抽取一根,两次抽签的所有可能结果的树形图如下:那么抽出的两根签中,一根标有A,一根标有C的概率是__________.答案:29分析:依据树状图分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.解:由树状图得:两次抽签的所有可能结果一共有9种情况,一根标有A,一根标有C的有A,C与C,A两种情况,∴一根标有A,一根标有C的概率是29.所以答案是:29.小提示:本题考查的是用画树状图法求概率.画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.13、一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来数的情况下,为估计白球的个数,先向盒中放入5个黑球,摇匀后从中随机摸出1个球记下颜色,再把它放回盒中,不断重复,共摸球500次,其中25次摸到黑球,则估计盒中有__________个白球.答案:95分析:可根据“黑球数量÷黑白球总数=黑球所占比例”来列等量关系式,其中“黑白球总数=黑球个数+白球个数”,“黑球所占比例=随机摸到的黑球次数÷总共摸球的次数”.解:设盒子里有白球x个,根据题意得:5 x+5=25500,解得:x=95,答:估计盒中大约有白球95个;所以答案是:95.小提示:本题主要考查利用频率估计概率,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.14、如图,四边形ABCD 的对角线AC ⊥BD ,E ,F ,G ,H 分别是AD ,AB ,BC ,CD 的中点,若在四边形ABCD 内任取一点,则这一点落在图中阴影部分的概率为_____________.答案:12##0.5 分析:先由三角形的中位线定理推知四边形EFGH 是平行四边形,然后由AC ⊥BD 可以证得平行四边形EFGH 是矩形.解:如图,∵E 、F 、G 、H 分别是线段AD ,AB ,BC ,CD 的中点,∴EH 、FG 分别是△ACD 、△ABC 的中位线,EF 、HG 分别是△ABD 、△BCD 的中位线,根据三角形的中位线的性质知,EF ∥BD ,GH ∥BD 且EF =12BD ,GH =12BD , ∴四边形EFGH 是平行四边形,又∵AC ⊥BD ,∴EF ⊥FG∴四边形EFGH 是矩形,∴四边形EFGH 的面积=EF •FG =14AC •BD , ∵四边形ABCD 的面积=12AC •BD , ∴这一点落在图中阴影部分的概率为:14AC·BD 12AC·BD =12, 所以答案是:12. 小提示:本题主要考查了几何概率,中点四边形,解题时,利用三角形中位线定理判定四边形EFGH 是平行四边形是解题的关键.15、汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为2:3,现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为__________.答案:1213分析:设勾为2k,则股为3k,弦为√13k,由此求出大正方形面积和阴影区域面积,由此能求出针尖落在阴影区域的概率.详解:设勾为2k,则股为3k,弦为√13k,∴大正方形面积S=√13k×√13k=13k2,中间小正方形的面积S′=(3−2)k•(3−2)k=k2,故阴影部分的面积为:13 k2-k2=12 k2∴针尖落在阴影区域的概率为:12k213k2=1213.故答案为1213.点睛:此题主要考查了几何概率问题,用到的知识点为:概率=相应的面积与总面积之比.解答题16、下列事件中,哪些是必然事件?哪些是不可能事件?哪些是随机事件?(1)太阳从西边落山;(2)某人的体温是100 ℃;(3)a2+b2=0;(4)某个等腰三角形中任意两个角都不相等;(5)经过有信号灯的十字路口,遇见红灯.答案:(1) “太阳从西边落山”是必然事件;(2) “某人的体温是100 ℃”是不可能事件;(3) “a2+b2=0”是随机事件;(4) “某个等腰三角形中任意两个角都不相等”是不可能事件;(5) “经过有信号灯的十字路口,遇见红灯”是随机事件.分析:根据必然事件、不可能事件、随机事件的概念进行判断即可.解:(1)根据生活常识,可知太阳一定从西边落山,所以“太阳从西边落山”是必然事件.(2)因为正常人体的体温都在37 ℃左右,所以“某人的体温是100 ℃”是不可能事件.(3)当a=b=0时,a2+b2=0,当a,b中至少有一个不等于0时,a2+b2为正数,所以“a2+b2=0”是随机事件.(4)根据等腰三角形的性质,等腰三角形中至少有两个角相等,所以“某个等腰三角形中任意两个角都不相等”是不可能事件.(5)经过有信号灯的十字路口,可能遇见红灯,也可能不遇见红灯,所以“经过有信号灯的十字路口,遇见红灯”是随机事件.小提示:本题考查了必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.17、从甲、乙、丙、丁4名学生中选2名学生参加一次乒乓球单打比赛,求下列事件发生的概率.(1)甲一定参加比赛,再从其余3名学生中任意选取1名,恰好选中丙的概率是;(2)任意选取2名学生参加比赛,求一定有乙的概率.(用树状图或列表的方法求解).答案:(1)13(2)12分析:(1)利用例举法例举所有的等可能的情况数,再利用概率公式进行计算即可;(2)先列表得到所有的等可能的情况数以及符合条件的情况数,再利用概率公式进行计算即可.(1)解:由甲一定参加比赛,再从其余3名学生中任意选取1名,共有甲、乙,甲、丙,甲、丁三种等可能,符合条件的情况数有1种,∴甲一定参加比赛,再从其余3名学生中任意选取1名,恰好选中丙的概率是1.3(2)列表如下:所以一定有乙的概率为:612=1 2 .小提示:本题考查的是利用例举法,列表的方法求解简单随机事件的概率,概率公式的应用,掌握“例举法与列表法求解概率”是解本题的关键.18、如图为计算机“扫雷”游戏的画面,在9×9个小方格的雷区中,随机地埋藏着10颗地雷,每个小方格最多能埋藏1颗地雷.(1)小明如果踩在9×9个小方格的任意一个小方格,则踩中地雷的概率是______;(2)如图,小明游戏时先踩中一个小方格,显示数字3,它表示与这个小方格相邻的8个小方格(图中黑框所围区域,设为A区域)中埋藏着3颗地雷.①若小明第二步选择踩在A区域内的小方格,则踩中地面的概率是______;②小明和小亮约定:若第二步选择踩在A区域内的小方格,不踩雷则小明胜;若选择踩在A区域外的小方格,不踩雷则小亮胜,请用所学的概率的知识,通过计算来说明这个约定对谁有利.答案:(1)1081(2)①38;②这个约定对小亮有利,理由见解析.分析:(1)直接利用概率公式计算;(2)①直接利用概率公式计算;②根据概率公式,分别计算出小明胜的概率和小亮胜的概率,然后比较两概率的大小即可得到这个约定对谁有利.(1)解:小明如果踩在9×9个小方格的任意一个小方格,则踩中地雷的概率为1081;所以答案是:1081;(2)①小明第二步选择踩在A区域内的小方格,则踩中地雷的概率=38;所以答案是:38;②小明胜的概率=8−38=58,小亮胜的概率=81−9−781−9=6572,∵58=4572<6572,∴小亮胜的机会大,即这个约定对小亮有利.小提示:考查了概率的计算公式,用到的知识点为:概率=所求情况数与总情况数之比.。
人教版九年级数学上册 第二十五章 概率初步 25.1.2 概率 课后练习
人教版九年级数学上册第二十五章概率初步25.1.2 概率课后练习一、选择题1.下列说法正确的是()A.“打开电视机,正在播世界杯足球赛”是必然事件B.“掷一枚硬币正面朝上的概率是”表示每抛掷硬币2次就有1次正面朝上C.一组数据2,3,4,5,5,6的众数和中位数都是5D.甲组数据的方差S甲2=0.24,乙组数据的方差S甲2=0.03,则乙组数据比甲组数据稳定2.有四张质地相同的卡片,它们的背面相同,其中两张的正面印有“粽子”的图案,另外两张的正面印有“龙舟”的图案,现将它们背面朝上,洗均匀后排列在桌面,任意翻开两张,那么两张图案一样的概率是( )A.13B.12C.14D.153.甲箱装有40个红球和10个黑球,乙箱装有60个红球、40个黑球和50个白球.这些球除了颜色外没有其他区别.搅匀两箱中的球,从箱中分别任意摸出一个球.正确说法是().A.从甲箱摸到黑球的概率较大B.从乙箱摸到黑球的概率较大C.从甲、乙两箱摸到黑球的概率相等D.无法比较从甲、乙两箱摸到黑球的概率4.在某中学的迎国庆联欢会上有一个小嘉宾抽奖的环节,主持人把分别写有“我”、“爱”、“祖”、“国”四个字的四张卡片分别装入四个外形相同的小盒子并密封起来,由主持人随机地弄乱这四个盒子的顺序,然后请出抽奖的小嘉宾,让他在四个小盒子的外边也分别写上“我”、“爱”、“祖”、“国”四个字,最后由主持人打开小盒子取出卡片,如果每一个盒子上面写的字和里面小卡片上面写的字都不相同就算失败,其余的情况就算中奖,那么小嘉宾中奖的概率为()A.23B.58C.34D.9165.如图,正方形ABCD是一块绿化带,其中阴影部分EOFB,GHMN都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟不落在花圃上的概率为()A.1936B.12C.1736D.17326.如图,在3×3的方格中,A,B,C,D,E,F分别位于格点上,从C,D,E,F四点中任意取一点,与点A,B为顶点作三角形,则所作三角形为等腰三角形的概率是()A.1B.14C.12D.347.下列说法中,正确的是( )A.为检测我市正在销售的酸奶质量,应该采用抽样调查的方式B.在连续5次的数学测试中,两名同学的平均分相同,方差较大的同学数学成绩更稳定C.某同学连续10次抛掷质量均匀的硬币,3次正面向上,因此正面向上的概率是30%D.“2012年将在我市举办全运会,这期间的每一天都是晴天”是必然事件.8.如图,在ABC中,D是线段AB上的点,且:1:2AD BD=,F是线段BC上的点,DE BC,FE BA.小亮同学随机在ABC内部区域投针,则针扎到DEF(阴影)区域内的概率是,,A.13B.29C.518D.499.现有6张正面分别标有数字﹣1,0,1,2,3,4的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a,则使得关于x的二次函数y=x2﹣2x+a﹣2与x轴有交点,且关于x的分式方程11222axx x-+=--有解的概率为()A .12B .13C .56D .1610.从﹣3,﹣2,﹣1,0,1这五个数中,随机取出一个数,记为a ,若a 使得关于x 的不等式组053(2)x a x x -≤⎧⎨--⎩<无解,且关于x 的分式方程1322x a x x--=--有整数解的概率为( ) A .15 B .25 C .35 D .45二、填空题11.现有张正面分别标有数字0,1,2,3,4,5的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a ,则使得关于x 的一元二次方程2202a x x -+=有实数根,且关于x 的分式方程11222ax x x-+=--有解的概率为______. 12.如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个对角线为AC 和BD 的菱形,使不规则区域落在菱形内,其中AC=8m ,BD=4m ,现向菱形内随机投掷小石子(假设小石子落在菱形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数25%,由此可估计不规则区域的面积是_____m 2.13.为了庆祝“六一儿童节”,育才初一年级同学在班会课进行了趣味活动,小舟同学在模板上画出一个菱形ABCD ,将它以点O 为中心按顺时针方向分别旋转90°,180°,270°后得到如图所示的图形,其中120ABC ∠=︒,AB =,然后小舟将此图形制作成一个靶子,那么当我们投飞镖时命中阴影部分的概率为______.14.如图,已知平行四边形ABCD ,过A 做AH CD ⊥于点H ,8,4AB AH ==,若在平行四边形内取一点,则该点到平行四边形的四个顶点的距离均不小于1的概率为_______.15.如图,以扇形AOB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为()2,0,45AOB∠=.现从3112,,1,,0,222----中随机选取一个数记为a,则a的值既使得抛物线212y x a=+与扇形AOB的边界有公共点,又使得关于x的方程112axx+=--的解是正数的概率是________.三、解答题16.在一个不透明的袋子中装有3个红球和6个黄球,这些球除颜色外都相同,将袋子中的球充分摇匀后,随机摸出一球.(1)分别求出摸出的球是红球和黄球的概率.(2)为了使摸出两种球的概率相同,再放进去7个同样的红球或黄球,那么这7个球中红球和黄球的数量分别应是多少?17.如图,现有一个均匀的转盘被平均分成六等份,分別标有2、3、4、5、6、7这六个数字,转动转盘,当转盘停止时,指针指向的数字即为转出的数字(当指针恰好指在分界线上时重转).(1)转动转盘,求转出的数字大于3的概率;(2)随机转动转盘,转盘停止后记下转出的数字,并与数字3和4分别作为三条线段的长度,求这三条线段能构成三角形的概率.18.为了解家长对“学生在校带手机”现象的看法,某校“九年级兴趣小组”随机调查了该校学生家长若干名,并对调查结果进行整理,绘制如下不完整的统计图:请根据以上信息,解答下列问题(1)这次接受调查的家长总人数为________人;(2)在扇形统计图中,求“很赞同”所对应的扇形圆心角的度数;(3)若在这次接受调查的家长中,随机抽出一名家长,恰好抽到“无所谓”的家长概率是多少.19.为了缓解新冠病毒疫情带来的影响,某商场设立了一个可以自由转动的转盘吸引顾客,并规定:顾客每购买100元商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红、黄或绿色区域,顾客就可以分别获得100元、50元、20元的购物券.(转盘等分成16个扇形),如果冲冲的妈妈购物120元.(1)她获得购物券的概率是多少?(2)冲冲的妈妈获得100元、50元、20元购物券的概率分别是多少?20.我们来定义下面两种数:(一)平方和数:若一个三位数或者三位以上的整数分拆成最左边、中间、最右边三个数后满足:中间数=(最左边数)2+(最右边数)2,我们就称该整数为平方和数.例如:对于整数251.它中间的数字是5,最左边数是2,最右边数是1.222+1=5∴,251是一个平方和数又例如:对于整数3254,它的中间数是25,最左边数是3,最右边数是4,223+4=25∴,3254是一个平方和数.当然152和4253这两个数也是平方和数;(二)双倍积数:若一个三位数或者三位以上的整数分拆成最左边、中间、最右边三个数后满足:中间数=2⨯最左边数⨯最右边数,我们就称该整数为双倍积数.例如:对于整数163,它的中间数是6,最左边数是1,最右边数是3,⨯⨯∴,是一个双倍积数,213=6163又例如:对于整数3305,它的中间数是30,最左边数是3,最右边数是5,,是一个双倍积数,当然361和5303这两个数也是双倍积数.235=303305⨯⨯∴注意:在下面的问题中,我们统一用字母a 表示一个整数分拆出来的最左边数,用字母b 表示该整数分拆出来的最右边数,请根据上述定义完成下面问题:(1)①若一个三位整数为平方和数,且十位数为4,则该三位数为________;②若一个三位整数为双倍积数,且十位数字为 6 ,则该三位数为_________;③若一个整数既为平方和数,又是双倍积数,则,a b 应满足的数量关系为_______;(2)若565a b (即这是个最左边数为a ,中间数为565,最右边数为b 的整数,以下类同)是一个平方和数, 276a b 是一个双倍积数,求22a b 的值.(3)从所有三位整数中任选一个数为双倍积数的概率.21.一堆彩球有红、黄两种颜色,首先数出的50个球中有49个红球,以后每数出8个球中都有7个红球,一直数到最后8个球,正好数完,在已经数出的球中红球的数目不少于90,,,1)这堆球的数目最多有多少个?,2)在(1)的情况下,从这堆彩球中任取两个球,恰好为一红一黄的概率有多大?22.A,B 两人做游戏,掷一枚硬币,若正面出现则A 得1分,反面出现则B 得1分,先得10分者获胜,胜者获得全部赌金,现在A 已得8分,B 已得7分,而游戏因故中断,问赌金应如何分配才合理?23.写出下列事件发生的可能性,并标在图中的大致位置上.(1)袋中有10个红球,摸到红球;(2)袋中有10个红球,摸到白球;(3)一副混合均匀的扑克牌(除去大、小王),从中任意抽取一张,这一张恰好是A ;(4)一个布袋中有2个黑球和2个白球,从中任意摸出一个球,恰好是黑球;(5)任意掷出一个质地均匀的骰子(每个面上分别标有数字1,2,3,4,5,6),朝上一面的数字大于2.【参考答案】1.D 2.A 3.B 4.B 5.A 6.D 7.A 8.B 9.A 10.A11.1612.4.13.214.132π-15.1616.(1)12,33 ;(2) 5个和2 个 17.(1)23;(2)5618.(1)200;(2)36°;(3)1519.(1)她获得购物券的概率=716;(2)冲冲的妈妈获得100元、50元、20元的概率分别为116、18、14. 20.(1)①240;②361或163;③a b =;(2) 493±;(3)17900 21.,1,210个(2,0.1822.赌金按照11:5来分23.(1)1(2)0(3)113(4)12(5)23。
(含答案)九年级数学人教版上册课时练第25章《25.1.2 概率》(2)
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!课时练第25章概率初步25.1.2概率一、单选题1.掷一枚质地均匀的骰子,前3次都是6点朝上,掷第4次时6点朝上的概率是()A.1B.56C.23D.162.下列说法中,正确的是()A.“打开电视,正在播放河南新闻节目”是必然事件B.某种彩票中奖概率为10%是指买十张一定有一张中奖C.神州飞船发射前需要对零部件进行抽样检查D.了解某种节能灯的使用寿命适合抽样调查3.某班共有学生36人,其中男生20人,女生16人,今从中选一名班长,任何人都有同样的当选机会,下列叙述正确的是()A.男生当选与女生当选的可能性相等B.男生当选的可能性大于女生当选的可能性C.男生当选的可能性小于女生当选的可能性D.无法确定4.下面说法正确的是().A.一个袋子里有100个同样质地的球,小华摸了8次球,每次都只摸到黑球,这说明袋子里面只有黑球B.某事件发生的概率为0.5,也就是说,在两次重复的试验中必有一次发生C.随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率为1 3D.某校九年级有400名学生,一定有2名学生同一天过生日5.在一个不透明的布袋中装有52个白球和若干个黑球,除颜色外其他都相同,小强每次摸出一个球记录下颜色后并放回,通过多次试验后发现,摸到黑球的频率稳定在0.2左右,则布袋中黑球的个数可能有()A.11B.13C.24D.306.如图,正方形ABCD内接于⊙O,⊙O在正方形ABCD内的概率是()A.2pB.2pC.12pD二、填空题7.某家庭电话,打进的电话响第一声时被接的概率为0.1,响第二声被接的概率为0.2,响第三声或第四声被接的概率都是0.25,则电话在响第五声之前被接的概率为___________.8.在一个不透明的笔袋中装有两支黑色笔和一支红色笔,除颜色不同外其他都相同,随机从中摸出一支黑色笔的概率是___________.9.甲、乙两人轮流做下面的游戏:掷一枚均匀的骰子(每个面分别标有1,2,3,4,5,6这六个数字),如果朝上的数字大于3,则甲获胜,如果朝上的数字小于3,则乙获胜,你认为获胜的可能性比较大的是_____.10.在一个不透明的布袋中装有2个白球和n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,摸到黄球的概率是45,则n=______.11.如图,一块飞镖游戏板由大小相等的小等边三角形构成,向游戏板随机投掷一枚飞镖(飞镖每次都落在游戏板上),则击中黑色区域的概率是____________.12.下列说法中,正确的是_____(填序号).①一年有365天,如果你随便说出一天,恰好是我的生日,这是绝对不可能的.②一个自然数不是偶数便是奇数,这是必然的.③有理数中不是正数,就一定是负数.④在一个袋子里装有形状和大小都相同的5个红球和3个黑球,从中随机摸出一个,那么摸出红球的可能性要比摸出黑球的可能性大.⑤若每500000张彩票有一个特等奖,小明前去买了1张,那么他是不可能中特等奖的.三、解答题13.足球比赛前,由裁判员拋掷一枚硬币,若正面向上则由甲队首先开球,若反面向上则由乙队首先开球,这种确定首先开球一方的做法对参赛的甲、乙两队公平吗?为什么?14.10件外观相同的产品中有1件不合格,现从中随机抽取1件进行检测,抽到不合格产品的概率为多少?15.如图是计算机中“扫雷”游戏的画面.在一个有9×9个方格的正方形雷区中,随机埋藏着10颗地雷,每个方格内最多只能藏1颗地雷.小王在游戏开始时随机地点击一个方格,点击后出现了如图所示的情况.我们把与标号3的方格相邻的方格记为A区域(画线部分),A区域外的部分记为B区域.数字3表示在A 区域有3颗地雷.如果小王在游戏开始时点击的第一个方格出现标号1,那么下一步点击哪个区域比较安全?16.用力旋转如图所示的甲转盘和乙转盘的指针,如果指针停在蓝色区域就称为成功.A同学说:“乙转盘大,相应的蓝色部分的面积也大,所以选乙转盘成功的机会比较大.”B同学说:“转盘上只有两种颜色,指针不是停在红色上就是停在蓝色上,因此两个转盘成功的机会都是50%.”你同意两人的说法吗?如果不同意,请你预言旋转两个转盘成功的机会有多大?17.在一个木箱中装有卡片共50张,这些卡片共有三种,它们分别标有1、2、3的字样,除此之外其他都相同,其中标有数字2卡片的张数是标有数字3卡片的张数的3倍少8张.已知从箱子中随机摸出一张.标有数字1卡片的概率是15(1)求木箱中装有标1的卡片张数;(2)求从箱子中随机摸出一张标有数字3的卡片的概率.18.如图是一个可以自由转动的转盘,转盘分成7个大小相同的扇形,颜色分为红、绿、黄三种颜色.指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形).求下列事件的概率:(1)指针指向红色;(2)指针指向红色或黄色;(3)指针不指向红色.参考答案1.D2.D3.B4.D5.B6.A7.0.88.2 39.甲10.811.1 312.②④13.解:公平.因为抛掷一枚硬币,正面向上的概率和反面向上的概率各为12,所以采用这种方法确定哪一队首先开球是公平的.14.解:10件外观相同的产品中有1件不合格,现从中随机抽取1件进行检测,抽到不合格产品的概率为:1. 1015.解:将与标号为1的方格相邻的方格记为A区域,A区域以外的部分记为B区域,P(点击A区域遇到地雷)=18,P(点击B区域遇到地雷)=9999´-=972=18.∵P(点击A区域遇到地雷)=P(点击B区域遇到地雷),∴两个区域一样.16.不同意这两名学生的看法,它们的说法都不正确.理由如下:因为无论转动甲转盘还是转动乙转盘,蓝色区域所占面积均为总面积的14,所以,转动两个转盘成功的可能性都是14,因此成功的机会都是25%.17.解:(1)根据题意得:50×15=10,答:箱中装有标1的卡片10张.(2)设装有标3的卡片x 张,则标2的卡片3x-8张根据题意得x+3x ﹣8=40解得x=12.所以摸出一张有标3的卡片的概率P=1250=625;18.解:按颜色把7个扇形分别记为:1红,2红,3红,1绿,2绿,1黄,2黄.所有可能结果的总数为7,并且它们出现的可能性相等.(1)指针指向红色(记为事件A )的结果有3种,即红1,红2,红3,因此()37P A =.(2)指针指向红色或黄色(记为事件B )的结果有5种,即1红,2红,3红,1黄,2黄,因此()57P B =.(3)指针不指向红色(记为事件C )的结果有4种,即1绿,2绿,1黄,2黄,因此()47P C =.。
2022学年人教版九年级数学上册第25章《概率初步》期末复习练附答案
2022学年九年级数学上册第25章《概率初步》期末复习练一、选择题(每题3分,共30分)1.已知事件A:小明刚到教室,上课铃声就响了;事件B:掷一枚质地均匀的骰子(骰子的六个面上分别刻有1到6的点数).向上一面的点数不大于6.下列说法正确的是()A.只有事件A是随机事件B.只有事件B是随机事件C.都是随机事件D.都是确定性事件2.春天园游会有一个摊位的游戏,先旋转一个转盘的指针,如果指针箭头停在奇数的位置(落在分界线上重转),那么玩的人就可以从袋子中抽出一个弹珠.转盘和袋子里的弹珠如图25-4-1所示,抽到黑色的弹珠就能得到奖品,小刚玩了这个游戏,小刚得到奖品的可能性为()图25-4-1A.不可能B.非常有可能C.不太可能D.大约有50%的可能3.下列说法正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天降雨的概率为40%”,表示明天有40%的时间都在降雨C.“篮球队队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,lal≥0”是不可能事件4.关于频率与概率有下列几种说法,其中正确的说法是()①“明天下雨的概率是90%”表示明天下雨的可能性很大;②“抛一枚硬币正面朝上的概率为”表示每抛两次就有一次正面朝上;③“某彩票中奖的概率是1%”表示买10张该种彩票不可能中奖;④“抛一枚硬币正面朝上的概率为”表示随着抛掷次数的增加,“抛出正面朝上”这一事件发生的频率稳定在附近.A.①③B.①④C.②③D.②④5.在一个不透明的口袋里装有白、黄、蓝三种颜色的乒乓球,它们除颜色外其余都相同,其中白球有2个,黄球有1个.已知从中任意摸出一个是蓝球的概率为,则袋中蓝球有()A.3个B.4个C.5个D.6个6.小强、小亮、小文三位同学玩投硬币游戏.三人同时各投出一枚均匀硬币,若出现三个正面向上或三个反面向上,则小强赢;若出现2个正面向上一个反面向上,则小亮赢;若出现一个正面向上2个反面向上,则小文赢.下面说法正确的是()A .小强赢的概率最小B .小文赢的概率最小C .小亮赢的概率最小D .三人赢的概率都相等7.正方形ABCD 的边长为2,以各边为直径在正方形内画半圆,得到如图所示的阴影部分,若随机向正方形ABCD 内投一粒米,则米粒落在阴影部分的概率为A .π-22B .π-24C .π-28D .π-2168.小李与小陈做猜拳游戏,规定每人每次至少要出一个手指,两人出拳的手指数之和为偶数时小李获胜,那么,小李获胜的概率为A .1325B .1225C .425D .129.投掷一枚质地均匀的骰子两次,向上一面的点数依次记为a ,b.那么方程x 2+ax +b =0有解的概率是A .12B .13C .815D .193610.如图是一个沿3×3正方形方格纸的对角线AB 剪下的图形,一质点P 由A 点出发,沿格点线每次向右或向上运动1个单位长度,则点P 由A 点运动到B 点的不同路径共有A .4条B .5条C .6条D .7条二、填空题(每题3分,共24分)11.海枯石烂,这是事件.(填“必然事件”“随机事件”“不可能事件”)12.有四张不透明卡片,分别写有实数,﹣1,,,除正面的数不同外其余都相同,将它们背面朝上洗匀后,从中任取一张卡片,取到的数是无理数的可能性大小是.13.小华抛一枚质地均匀的硬币10次,只有2次正面朝上,当他抛第11次时,正面朝上的概率是.14.有四张背面完全相同的不透明的卡片,正面分别写有4,-l-2l ,(2)0,(-1)²ᴼ¹⁹,把卡片背面朝上洗匀后,先随机抽取一张记下数字后放回,洗匀后再抽取一张,则两次抽到的数字互为相反数的概率是______________.15.(2017四川成都武侯模拟)在一个不透明的盒子中装有x 颗白色棋子和y 颗黑色棋子,它们除颜色外完全相同,现从该盒子中随机取出一颗棋子,取得白色棋子的概率是52,将取出的棋子放回,再往该盒子中放进6颗同样的黑色棋子,此时从盒子中随机取出一颗棋子,取得白色棋子的概率是41,那么原来盒子中的白色棋子有________颗.16.一个口袋里有25个球,其中红球、黑球、黄球若干个,从口袋中随机摸出一球记下其颜色,再把它放回口袋中摇匀,重复上述过程,共试验200次,其中有120次摸到黄球,由此估计袋中的黄球约有_____个.17.一枚均匀的正方体骰子,六个面上分别标有数字1,2,3,4,5,6, 连续抛掷两次,朝上的数字分别是m、n,若把m、n作为点A的横、纵坐标,那么点A(m,n)在函数y=2x的图像上的概率是。
人教版九年级上册数学 25章概率初步 同步检测带答案。
25.1随机事件与概率一.选择题1.下列事件中,是必然事件的是()A.明天太阳从西边出来B.打开电视,正在播放《云南新闻》C.昆明是云南的省会D.小明跑完800米所用的时间恰好为1分钟2.一个不透明的盒子里装有红、黄、白三种颜色的球,个数分别为2、3、4,这些球除颜色外都相同,从盒子中任抽一个球,则抽到红球的概率是()A.B.C.D.3.“翻开数学书,恰好翻到第16页”,这个事件是()A.随机事件B.必然事件C.不可能事件D.确定事件4.在一个不透明的袋子里装有2个黑球3个白球,它们除颜色外都相同,随机从中摸出一个球,是黑球的概率是()A.B.C.D.5.从﹣3,,0,,这5个数中任意抽取一个,抽到无理数的概率为()A.B.C.D.6.下列说法正确的是()A.“穿十条马路连遇十次红灯”是不可能事件B.任意画一个三角形,其内角和是180°是必然事件C.某彩票中奖概率为1%,那么买100张彩票一定会中奖D.“福山福地福人居”这句话中任选一个汉字,这个字是“福”字的概率是7.小丽书包里准备的3只包装相同的备用口罩中有2只是医用外科口罩,由于感冒她想取一只医用外科口罩去医院就医时佩戴,则她一次取对的概率是()A.0B.C.D.8.下列事件中,是随机事件的是()A.抛出的篮球会下落B.爸爸买彩票中奖了C.地球绕着太阳转D.一天有24小时9.掷一枚质地均匀的硬币6次,下列说法正确的是()A.必有3次正面朝上B.可能有3次正面朝上C.至少有1次正面朝上D.不可能有6次正面朝上10.某商店举办有奖销售活动,购货满100元者发奖券一张,在10000张奖券中设特等奖1个、一等奖10个、二等奖100个,若某人购物满100元,那么他中奖的概率是()A.B.C.D.二.填空题11.一个不透明的袋中装有3个红球,1个黑球,每个球除颜色外都相同.从中任意摸出2球,则“摸出的球至少有1个黑球”是事件.(填“必然”、“不可能”或“随机”)12.有8张卡片,标号为1,2,3,4,5,6,7,8从中任意抽取一张,P(抽到大于3)=.13.掷一枚均匀的硬币,前20次抛掷的结果都是正面朝上,那么第21次抛掷的结果正面朝上的概率为.14.在9张质地完全相同的卡片上分别写上数字﹣4、﹣3、﹣2、﹣1、0、1、2、3、4,从中任意抽取一张卡片,则所抽卡片上的数字的绝对值大于2的概率是.15.一个盒中装着大小、外形一模一样的x颗白色弹珠和12颗黑色弹珠,已知从盒中随机取出一颗弹珠,取得白色弹珠的概率是,则盒中有白色弹珠的颗数为.三.解答题16.①四边形内角和是180°;②今年的五四青年节是晴天;③367人中有2人同月同日生.指出上述3个事件分别是什么事件?并按事件发生的可能性由大到小排列.17.如图,转盘被等分成六个扇形,并在上面依次写上数字1、2、3、4、5、6.(1)若自由转动转盘,当它停止转动时,指针指向偶数区域的概率是多少?(2)请你用这个转盘设计一个游戏,当自由转动的转盘停止时,指针指向区域的概率为.18.一个不透明的布袋里装有3个球,其中2个红球,1个白球,它们除颜色外其余都相同.(1)求摸出1个球是白球的概率;(2)现再将n个白球放入布袋,搅匀后.使摸出1个白球的概率为.求n的值.参考答案1.解:A、明天太阳从西边出来是不可能事件;B、打开电视,正在播放《云南新闻》是随机事件;C、昆明是云南的省会是必然事件;D、小明跑完800米所用的时间恰好为1分钟是不可能事件;故选:C.2.解:∵盒子里装有红、黄、白三种颜色的球,个数分别为2、3、4,共9个球,从盒子中任抽一个球共有9种结果,其中出现红球的情况2种可能,∴抽到红球的概率是:.故选:C.3.解:“翻开数学书,恰好翻到第16页”确实有可能刚好翻到第16页,也有可能不是翻到第16页,故这个事件是随机事件.故选:A.4.解:∵在一个不透明的袋子里装有2个黑球3个白球,共5个球,∴随机从中摸出一个球,摸到黑球的概率是.故选:A.5.解:∵﹣3,,0,,这五个数中,无理数有2个,∴随机抽取一个,则抽到无理数的概率是,故选:B.6.解:A、“穿十条马路连遇十次红灯”是随机事件,故此选项错误;B、任意画一个三角形,其内角和是180°是必然事件,正确;C、某彩票中奖概率为1%,那么买100张彩票也不一定会中奖,故此选项错误;D、“福山福地福人居”这句话中任选一个汉字,这个字是“福”字的概率是,故此选项错误.故选:B.7.解:∵共有3只包装相同的备用口罩,其中有2只是医用外科口罩,∴她一次取对的概率为;故选:D.8.解:A、抛出的篮球会下落的是,是必然事件,不符合题意;B、爸爸买彩票中奖了,是随机事件,符合题意;C、地球绕着太阳转,是必然事件,不符合题意;D、一天有24小时是必然事件,不符合题意,故选:B.9.解:掷一枚质地均匀的硬币,可能正面向上,也可能反面向上,可能性是均等的,不会受到前一次的影响,掷一枚质地均匀的硬币6次,不一定3次正面朝上,因此A选项不符合题意,“可能有3次正面朝上”是正确的,因此B选项正确;可能6次都是反面向上,因此C不符合题意,有可能6次正面向上,因此D选项不符合题意;故选:B.10.解:∵在10000张奖券中设特等奖1个、一等奖10个、二等奖100个,∴他中奖的概率是=;故选:D.11.解:一个不透明的袋中装有3个红球,1个黑球,每个球除颜色外都相同.从中任意摸出2球,共有以下2种情况:1、2个红球;2、1个红球,1个黑球;所以从中任意摸出2球,“摸出的球至少有1个黑球”是随机事件,故答案为:随机.12.解:标号为1,2,3,4,5,6,7,8的卡片中大于3的有5张,∴P(抽到大于3)=,故答案为:.13.解:由于每一次正面朝上的概率相等,∴第21次抛掷的结果正面朝上的概率为0.5;故答案为:0.5.14.解:∵数的总个数有9个,绝对值大于2的数有﹣4、﹣3、3、4,共4个,∴任意抽取一张卡片,则所抽卡片上数字的绝对值大于2的概率是,故答案为:.15.解:设盒中有白色弹珠x颗,那么盒中一共有弹珠(x+12)颗,∵从盒中随机取出一颗弹珠,取得白色弹珠的概率是,∴=,解得:x=6.故答案为:6.16.解:①是不可能事件;②是随机事件;③必然事件.答:按事件发生的可能性由大到小排列为:③>②>①.17.解:(1)P(指针指向偶数区域)==;(2)方法一:如图,自由转动转盘,当转盘停止时,指针指向阴影部分区域的概率为;方法二:自由转动转盘,当它停止时,指针指向数字不大于4的区域的概率是.故答案为:18.解:(1)∵一个不透明的布袋里装有3个球,其中2个红球,1个白球,∴摸出1个球是白球的概率为;(2)由题意得:,解得:n=4.经检验,n=4是所列方程的解,且符合题意,∴n=4.人教版 九年级数学 25.2 用列举法求概率一、选择题(本大题共10道小题)1. 从同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为( ) A.16B.13C.12D.232. 2019·临沂 经过某十字路口的汽车,可能直行,也可能向左转或向右转,若这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是( ) A.23B.29C.13D.193. 如图25-2-1,有以下三个条件:①AC =AB ;②AB ∥CD ;③∠1=∠2.从这三个条件中选两个作为题设,另一个作为结论,则组成的命题是真命题的概率是( )A .0B.13C.23D .14. 一个盒子中装有标号分别为1,2,3,4,5的五个小球,这些球除标号不同外其余都相同,从中随机摸出两个小球,则摸出的小球标号之和大于5的概率为( ) A.15B.25C.35D.455. 如图,有一块质地均匀的圆铁片,两面上分别写有数字1,2,有一个均匀的三棱锥旋转器和一个均匀的四棱锥旋转器,它们的侧面上分别写有数字1,2,3和数字1,2,3,4.在桌面上同时旋转这三件器物,停下来后,面向桌面的三个数字的积为奇数的概率是( )A.12B.13C.16D.186. 小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中的一项,那么两人同时选择“参加社会调查”的概率为( ) A.14B.13C.12D.347. 如图,正方形ABCD 内的图形来自中国古代的太极图,现随机向正方形内掷一枚小针,则针尖落在阴影区域内的概率为( )A.14B.12C.π8D.π48. 三张背面完全相同的数字牌,它们的正面分别印有数字“1”“2”“3”,将它们背面朝上,洗匀后随机抽取一张,记录牌上的数字并把牌放回,再重复这样的步骤两次,得到三个数字a ,b ,c ,则以a ,b ,c 为边长的三角形是等边三角形的概率是( ) A.19B.127C.59D.139. 如图,在4×4的正方形网格中,阴影部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂上阴影,使阴影部分的图形仍然构成一个轴对称图形的概率是( )A.613 B.513C.413D.31310. 把十位上的数字比个位、百位上的数字都大的三位数叫做中高数,如796就是一个“中高数”.若十位上的数字为7,则从3,4,5,6,8,9中任选两数,与7组成“中高数”的概率是( ) A.12B.23C.25D.35二、填空题(本大题共8道小题)11. 如图,甲、乙两个转盘分别被分成了3等份与4等份,每份内均标有数字,分别转动这两个转盘,将转盘停止后指针所指区域内的两数相乘.(1)请将所有可能出现的结果填入下表:甲乙积 1 2 3 4123(2)积为9的概率为________,积为偶数的概率为________;(3)从1~12这12个整数中,随机选取1个整数,该数不是(1)中所填数字的概率为________.12. (2019·甘肃陇南)一个猜想是否正确,科学家们要经过反复的实验论证.下表是几位科学家“掷硬币”的实验数据:请根据以上数据,估计硬币出现“正面朝上”的概率为__________(精确到0.1).13. 一张圆桌旁有四个座位,A先坐在如图所示的位置上,B,C,D三人随机坐到其他三个座位上,则A与B不相邻坐的概率为________.14. 从2019年高中一年级学生开始,湖南省全面启动高考综合改革,学生学习完必修课程后,可以根据高校相关专业的选课要求和自身兴趣、志向、优势,从思想政治、历史、地理、物理、化学、生物6个科目中,自主选择3个科目参加等级考试.学生A已选物理,还要从思想政治、历史、地理3个文科科目中选1科,再从化学、生物2个理科科目中选1科,则选修地理和生物的概率为________.15. 如图,转盘中6个扇形的面积相等,任意转动转盘1次,转盘停止转动后,指针指向的数小于5的概率为________.16. 如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的展开图的一部分,现从其余的小正方形中任取1个涂上阴影,能构成这个正方体的展开图的概率是________.17. 某校欲从初三年级3名女生、2名男生中任取两名学生代表学校参加全市举办的“中国梦·青春梦”演讲比赛,则恰好选中一男一女的概率是________.18. 已知电路AB由如图所示的开关控制,闭合a,b,c,d,e五个开关中的任意两个,则能使电路形成通路的概率是________.三、解答题(本大题共4道小题)19. 某景区7月1日~7月7日一周的天气预报如图25-2-2,小丽打算选择这期间的一天或两天去该景区旅游,求下列事件的概率:(1)随机选择一天,恰好天气预报是晴;(2)随机选择连续的两天,恰好天气预报都是晴.20. 如图①,一枚质地均匀的正四面体骰子,它有四个面,且每个面上分别标有数字1,2,3,4.如图②,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边按顺时针方向连续跳几个边长.如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从圈D开始顺时针连续跳2个边长,落到圈B……设游戏者从圈A起跳.(1)嘉嘉随机掷一次骰子,求落回到圈A的概率P1;(2)淇淇随机掷两次骰子,用列表法求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A 的可能性是否一样.21. 如图①,在Rt△ABC中,∠C=90°,两条直角边长分别为a,b,斜边长为c.如图②,现将与Rt△ABC全等的四个直角三角形拼成一个正方形EFMN.(1)若Rt△ABC的两直角边长之比为2∶3,现随机向图②掷一枚小针,则针尖落在四个直角三角形区域的概率是多少?(2)若正方形EFMN的边长为8,Rt△ABC的周长为18,求Rt△ABC的面积.22. 母亲节当天,小明去花店买花送给母亲,挑中了康乃馨和兰花两种花.已知康乃馨每枝5元,兰花每枝3元,小明只有30元,希望购买花的枝数不少于7枝,其中至少有一枝是康乃馨.(1)小明一共有多少种可能的购买方案?列出所有方案;(2)如果小明先购买一张2元的祝福卡,再从(1)中任选一种方案买花,求他能实现购买愿望的概率.人教版九年级数学25.2 用列举法求概率课时训练-答案一、选择题(本大题共10道小题)1. 【答案】A2. 【答案】B3. 【答案】D [解析] 构成如下命题:如果①AC =AB ,②AB ∥CD ,那么③∠1=∠2;如果②AB ∥CD ,③∠1=∠2,那么①AC =AB ;如果①AC =AB ,③∠1=∠2,那么②AB ∥CD .这三个命题都是真命题. 故选D.4. 【答案】C [解析] 随机摸出两个球,所有可能的结果有20种,每种结果的可能性相同,其中摸出的小球标号之和大于5的结果有12种,所以所求概率P =1220=35.故选 C.5. 【答案】C [解析] 画树状图如下:因为共有24种等可能结果,面向桌面的三个数字的积为奇数的结果有4种,所以所求概率为16.6. 【答案】A7. 【答案】C [解析] 设正方形ABCD 的边长为2a ,针尖落在阴影区域内的概率=12×π×a24a2=π8. 故选C.8. 【答案】A [解析] 画树状图如下:由树状图知,共有27种等可能的结果,构成等边三角形的结果有3种,所以以a ,b ,c 为边长的三边形是等边三角形的概率是327=19.故选A.9. 【答案】B [解析] 因为根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,共13种情况,而能构成一个轴对称图形的有下列5种情况:所以使图中阴影部分的图形仍然构成一个轴对称图形的概率是513.故选B.10. 【答案】C [解析] 列表如下:由表格可知,所有等可能的结果有30种,其中组成“中高数”的结果有12种,因此组成“中高数”的概率为1230=25.二、填空题(本大题共8道小题)11. 【答案】[解析] (2)一共有12种等可能的结果,其中积为9的结果只有1种,所以积为9的概率为112;12种的结果中积为偶数的结果有8种,所以积为偶数的概率为812=23.(3)1~12这12个数中,不是表格中所填数字的有5,7,10,11,所以所求的概率为412=13. 解:(1)填表如下:(2)112 23 (3)1312. 【答案】0.5【解析】因为表中硬币出现“正面朝上”的频率在0.5左右波动,所以估计硬币出现“正面朝上”的概率为0.5.故答案为:0.5.13. 【答案】13[解析] 可设第一个位置和第三个位置都与A 相邻.画树状图如下:∵共有6种等可能结果,A 与B 不相邻坐的结果有2种, ∴A 与B 不相邻坐的概率为13.14. 【答案】16[解析] 画树状图如下:由图可知,选修结果共有6种,每种结果出现的可能性相等,其中选修地理和生物的结果只有1种,因此所求概率为16.15. 【答案】23[解析] 转盘转动一次,出现6种等可能的结果,小于5的结果共有4种,故指针指向的数小于5的概率为46=23.16. 【答案】47[解析] 余下的小正方形共有7个,其中上面的4个涂上阴影都能构成正方体的展开图,所以任取1个小正方形涂上阴影,能构成正方体的展开图的概率为47.17. 【答案】35[解析] 解法1:列表如下:共有20种等可能的结果,其中恰好选中一男一女的结果有12种, 所以恰好选中一男一女的概率P =1220=35. 解法2:画树状图如下:共有20种等可能的结果,其中恰好选中一男一女的结果有12种, 所以恰好选中一男一女的概率P =1220=35.18. 【答案】35[解析] 列表如下:a b c d e e (a ,e ) (b ,e ) (c ,e ) (d ,e ) d (a ,d ) (b ,d ) (c ,d ) (e ,d ) c (a ,c ) (b ,c ) (d ,c ) (e ,c ) b (a ,b ) (c ,b ) (d ,b ) (e ,b ) a(b ,a )(c ,a )(d ,a )(e ,a )∴一共有20种等可能的结果,使电路形成通路的结果有12种, ∴使电路形成通路的概率是1220=35.三、解答题(本大题共4道小题)19. 【答案】解:(1)∵天气预报是晴的有4天,∴随机选择一天,恰好天气预报是晴的概率为47. (2)∵随机选择连续的两天的结果有晴晴,晴雨,雨阴,阴晴,晴晴,晴阴, ∴随机选择连续的两天,恰好天气预报都是晴的概率为26=13.20. 【答案】解:(1)∵掷一次骰子有4种等可能的结果,只有掷得4时,才会落回到圈A , ∴P 1=14. (2)列表如下:所有等可能的结果共有16种,当两次掷得的数字和为4的倍数,即掷得的结果为(1,3),(2,2),(3,1),(4,4)时,才可落回到圈A ,共有4种结果, ∴P 2=416=14.而P 1=14,∴淇淇与嘉嘉落回到圈A 的可能性一样.21. 【答案】(1)因为Rt △ABC 的两直角边长之比为2∶3, 所以设b =2k ,a =3k ,由勾股定理,得c =a2+b2=13k ,所以针尖落在四个直角三角形区域的概率为4×12×2k×3k13k2=1213. (2)因为正方形EFMN 的边长为8,所以c =8,所以a2+b2=c2=64. 因为Rt △ABC 的周长为18, 即a +b +c =18, 所以a +b =10,所以Rt △ABC 的面积=12ab =14[(a +b)2-(a2+b2)] =9.22. 【答案】(1)设小明购买x 枝康乃馨,y 枝兰花,其中x≥1,x ,y 均为整数,则⎩⎪⎨⎪⎧5x +3y≤30,①7≤x +y.②①+②×3,得5x +3y +21≤30+3x +3y , 所以x≤92,所以1≤x≤92. 当x =1时,5×1+3y≤30, 所以y≤253,所以y 可取8,7,6,所以可购买1枝康乃馨,8枝兰花或1枝康乃馨,7枝兰花或1枝康乃馨,6枝兰花. 当x =2时,5×2+3y≤30, 所以y≤203,所以y 可取6,5,所以可购买2枝康乃馨,6枝兰花或2枝康乃馨,5枝兰花. 当x =3时,5×3+3y≤30, 所以y≤5,所以y 可取5,4,所以可购买3枝康乃馨,5枝兰花或3枝康乃馨,4枝兰花. 当x =4时,5×4+3y≤30, 所以y≤103,所以y 可取3, 所以可购买4枝康乃馨,3枝兰花. 综上所述,共有8种购买方案. 方案如下表:(单位:枝)(2)若小明先购买一张2元的祝福卡,则5x +3y≤28,则他能实现购买愿望的方案为方案二、方案三、方案四、方案五、方案七,共5种,所以从(1)中任选一种方案买花,他能实现购买愿望的概率为58.第25章 概率初步 25.3 用频率估计概率1. 关于频率和概率的关系,下列说法正确的是( ) A .概率等于频率B .当试验次数很大时,频率稳定在概率附近C .当试验次数很大时,概率稳定在频率附近D .试验得到的频率与概率不可能相同2. 从生产的一批螺钉中抽取1000个进行质量检查,结果发现有5个是次品,那么从中任取1个是次品概率约为( ). A .11000 B .1200C .12 D .153.下列说法正确的是( ).A .抛一枚硬币正面朝上的机会与抛一枚图钉钉尖着地的机会一样大;B .为了解汉口火车站某一天中通过的列车车辆数,可采用全面调查的方式进行;C .彩票中奖的机会是1%,买100张一定会中奖;D .中学生小亮,对他所在的那栋住宅楼的家庭进行调查,发现拥有空调的家庭占100%,于是他得出全市拥有空调家庭的百分比为100%的结论.4. 在抛掷一枚硬币的试验中,第一小组做了 500 次试验,当出现正面的频数为________时,其出现正面的频率才是 49.6 %( ) A .248 B .250 C .258 D .无法确定5. 某人把50粒黄豆染色后与一袋黄豆充分混匀,接着抓出100黄豆,数出其中有10粒黄豆被染色,则这袋黄豆原来有( ). A .10粒 B .160粒 C .450粒 D .500粒 6.某校男生中,若随机抽取若干名同学做“是否喜欢足球”的问卷调查,抽到喜欢足球的同学的概率是53,这个53的含义是( ). A .只发出5份调查卷,其中三份是喜欢足球的答卷; B .在答卷中,喜欢足球的答卷与总问卷的比为3∶8; C .在答卷中,喜欢足球的答卷占总答卷的53;D.在答卷中,每抽出100份问卷,恰有60份答卷是不喜欢足球.7.要在一只口袋中装入若干个形状与大小都完全相同的球,使得从1,四位同学分别采用了下列装法,你认为他袋中摸到红球的概率为5们中装错的是().A.口袋中装入10个小球,其中只有两个红球;B.装入1个红球,1个白球,1个黄球,1个蓝球,1个黑球;C.装入红球5个,白球13个,黑球2个;D.装入红球7个,白球13个,黑球2个,黄球13个.8.某学生调查了同班同学身上的零用钱数,将每位同学的零用钱数记录了下来(单位:元):2,5,0,5,2,5,6,5,0,5,5,5,2,5,8,0,5,5,2,5,5,8,6,5,2,5,5,2,5,6,5,5,0,6,5,6,5,2,5,0.假如老师随机问一个同学的零用钱,老师最有可能得到的回答是().A. 2元 B.5元 C.6元 D.0元9. 小明想知道一碗芝麻有多少粒,于是就从中取出100粒涂上黑色,然后放入碗中充分搅匀后再随意取出100粒,其中有5粒是黑色的,因此可以估算这碗芝麻有粒.10. 为了估计水塘中的鱼的个数,养鱼者首先从鱼塘中捕获30条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘,再从鱼塘中打捞200条鱼.如果在这200条鱼中有5条鱼是有记号的,则鱼塘中鱼的条数可估计为条.11. 在一个不透明的箱子里装有红色、蓝色、黄色的球共20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在10%和15%,则箱子里蓝色球的个数很可能是个.12. 同时抛掷两枚硬币,按照正面出现的次数,可以分为“2个正面”、“1个正面”和“没有正面”这3种可能的结果,小红与小明两人共做了6组实验,每组实验都为同时抛掷两枚硬币10次,下表为实验记录的统计表:结果第一组第二组第三组第四组第五组第六组两个正面 3 3 5 1 4 2一个正面 6 5 5 5 5 7没有正面 1 2 0 4 1 1由上表结果,计算得出现“2个正面”、“1个正面”和“没有正面”这3种结果的频率分别是___________________.当试验组数增加到很大时,请你对这三种结果的可能性的大小作出预测:______________.13.红星养猪场400头猪的质量(质量均为整数千克)频率分布如下,其中数据不在分点上组别频数频率46 ~ 50 4051 ~ 55 8056 ~ 60 16061 ~ 65 80从中任选一头猪,质量在65kg以上的概率是___________.14. 图表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约是.(精确到0.1)从袋口里随机摸出5个球(不放回),其中有2个为黑球,请你估计口袋里大约有多少个白球?参考答案:1---8 BBBAC CCB9. 200010. 120011. 1512. 3113,,102020111 ,, 42413. 0.1, 0.2, 0.4, 0.2, 0.075, 0.025;0.114. 0.515. 解:设有x个白球,根据已知,得25=8x+8,解得x=12,所以可估计口袋中共有12个白球.。
人教版九年级上册(新)第25章《概率初步》全章试题含答案
人教版九年级上册(新)第25章《概率初步》全章试题班级: 姓名: 分数一、单选题1.“抛一枚均匀硬币,落地后正面朝上”.这一事件是 ( )A. 随机事件B. 确定事件C. 必然事件D. 不可能事件 2.下列说法不正确的是A .选举中,人们通常最关心的数据是众数( )B .从1、2、3、4、5中随机取一个数,取得奇数的可能性比较大C .必然事件的概率为1D .某游艺活动的中奖率是60%,说明参加该活动10次就有6次会获奖3.在一个不透明的口袋中,装有3个红球,2个白球,除颜色不同外其余都相同,则随机从口袋中摸出一个球为红色的概率是( ) A .31 B .52 C .51 D .53 4.在一个不透明袋子里装有一个黑球和一个白球,它们除颜色外都相同,随机从中摸出一球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球,两次都摸到黑球的概率是( ) A .14 B .13C .12D .23 5.为了估计水塘中的鱼数,养鱼者首先从鱼塘中捕获30条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘,再从鱼塘中打捞200条鱼,如果在这200条鱼中有5条鱼是有记号的,则鱼塘中鱼的可估计为( )A .3000条B .2200条C .1200条D .600条6.下表是某种抽奖活动中,封闭的抽奖箱中各种球的颜色、数量,以及它们所代表的奖项:为了保证抽奖的公平性,这些小球除了颜色外,其他都相同,而且每一个球被抽中的机会均相等,则该抽奖活动抽中一等奖的概率为( ) A.16 B. 51C. 310D. 12 7.某奥体中心的构造如图所示,其东、西面各有一个入口A 、B ,南面为出口C ,北面分别有两个出口D 、E .聪聪若任选一个入口进入,再任选一个出口离开,那么他从入口A 进入并从北面出口离开的概率为( ) A .16 B .15 C .13D .12第8题图8. 如图,正方形ABCD 内接于⊙O ,⊙O 的直径为2分米,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD 内的概率是( )A .π2 B .2π C .π21D .π29.四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为( )A.14 B. 12 C. 34D. 1 10. 从正五边形的五个顶点中,任取四个顶点连成四边形,对于事件M :“这个四边形是等腰梯形” .下列判断正确的是( ) A .事件M 是不可能事件 B .事件M 是必然事件 C .事件M 发生的概率为 15D .事件M 发生的概率为 25二、填空题11.一个盒子内装有大小、形状相同的四个球,其中红球1个,绿球1个,白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是 ; 12.同时抛掷两枚硬币正面均朝上的概率为____ .13.在一个木制的棱长为3的正方体的表面涂上颜色,将它的棱三等分,然后从等分点把正方体锯开,得到27个棱长为l 的小正方体,将这些小正方体充分混合后,装入口袋,从这个口袋中任意取出一个第7题图小正方体,则这个小正方体的表面恰好涂有两面颜色的概率是 .14.在一个不透明的袋子里装有黄色、白色乒乓球共40个,除颜色外其他完全相同.小明从这个袋子中随机摸出一球,放回.通过多次摸球实验后发现,摸到黄色球的概率稳定在15%附近,则袋中黄色球可能有___________个.15.一只盒子中有红球m 个,白球8个,黑球n 个,每个球除颜色外都相同,从中任取一个球,取得白球的概率与不是白球的概率相同,那么m +n = .16.甲、乙两人玩抽扑克牌游戏,游戏规则是:从牌面数字分别为5、6、7的三张扑克牌中,随机抽取一张,放回后,再随机抽取一张.若所抽的两张牌面数字的积为奇数,则甲获胜;若所抽的两张牌面数字的积为偶数,则乙获胜.这个游戏 .(填“公平”或“不公平”).17. 在x 2□2xy□y 2的空格□中,分别填上“+”或“-”,在所得的代数式中,能构成完全平方式的概率是___________.18.从-2,-1,2这三个数中任取两个不同的数作为点的坐标,该点在第四象限的概率是 .19. 从-2、-1、0、1、2这5个数中任取一个数,作为关于x 的一元二次方程20x x k -+= 的k 值,则所得的方程中有两个不相等的实数根的概率是 .20.如图,第(1)个图有1个黑球;第(2)个图为3个同样大小球叠成的图形,最下一层的2个球为黑色,其余为白色;第(3)个图为6个同样大小球叠成的图形,最下一层的3个球为黑色,其余为白色;;则从第(n )个图中随机取出一个球,是黑球的概率是 .三、解答题21.有3张形状材质相同的不透明卡片,正面分别写有1、2、-3,三个数字.将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字作为一次函数b kx y +=中k 的值;第二次从余下的两张卡片中再随机抽取一张,上面标有的数字作为b 的值.(1)k 的值为正数的概率是 ; (2)用画树状图或列表法求所得到的一次函数b kx y +=的图像经过第一、三、四象限的概率.22.小英与她的父亲、母亲计划清明小长假外出旅游,初步选择了苏州、常州、上海、南京四个城市,由于时间仓促,他们只能去其中一个城市,到底去哪一个城市三个人意见不统一,在这种情况下,小英父亲建议,用小英学过的摸球游戏来决定,规则如下:①在一个不透明的袋子中装一个红球(苏州)、一个白球(常州)、一个黄球(上海)和一个黑球(南京),这四个球除颜色不同外,其余完全相同;②小英父亲先将袋中球摇匀,让小英从袋中随机摸出一球,父亲记录下其颜色,并将这个球放回袋中摇匀,然后让小英母亲从袋中随机摸出一球,父亲记录下它的颜色;③若两人所摸出球的颜色相同,则去该球所表示的城市旅游,否则,前面的记录作废,按规则②重新摸球,直到两人所摸出球的颜色相同为止.按照上面的规则,请你解答下列问题:(1)已知小英的理想旅游城市是常州,小英和母亲随机各摸球一次,,请用画树状图或列表法求两人均摸出白球的概率是多少?(2)已知小英母亲的理想旅游城市是上海,小英和母亲随机各摸球一次,至少有一人摸出黄球的概率是多少?参考答案一、填空题1、A2、D 3、D 4、A 5、A 6、A 7、A 8、A 9、B 10、B 二、填空 11、61、12、41 13、4914、6 15、 8 16: 不公平 17、21 18、31 19、53 20、21n三、解答题 21、(1)32 (2)3222、答案:解:(1)画树状图得:········· 2分∵共有16种等可能的结果,均摸出白球的只有1种情况,·········3分∴小英和母亲随机各摸球一次,均摸出白球的概率是:;·········5分(2)由(1)得:共有16种等可能的结果,至少有一人摸出黄球的有7种情况,··6分∴小英和母亲随机各摸球一次,至少有一人摸出黄球的概率是:.·········8分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(九年级数学)第25章概率初步2——练习
第周星期班别姓名学号
题组一:
1、请指出下列事件中,
①通常温度降到0℃以下,纯净的水结冰;
②随意翻到一本书的某页,这页的页码是奇数;
③地面发射1枚导弹,未击中空中目标;
-︒;
④测量某天的最低气温,结果为150C
⑤汽车累积行驶1万千米,从未出现故障;
⑥购买一张彩票,中奖。
其中,随机事件有,必然事件有,
不可能事件有(写编号)
2、已知地球表面陆地面积与海洋面积的比约为3:7,如果宇宙中飞来一块陨石落在地球上,“落在海洋里”与“落在陆地上”哪个可能性更大?
解:“落在”的可能性更大。
题组二:
1、如图是一个转盘,转盘分成7个相同的扇形,颜色分为红、绿、黄三种颜色。
指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形),求下列事件的概率:
(1)P(指针指向红色)=
(2)P(指针指向红色或黄色)=
(3)P(指针不指向红色)=
2、掷一枚质地均匀的硬币的试验有哪几种可能的结果:
其中正面朝上的概率是
3、10件外观相同的产品中有1件不合格,现从中任意抽取1件进行检测,抽到不合格产品的概率是
4、一个质地均匀的小正方体骰子,六个面分别标有数字“1”“1”“2”“4”“5”“5”,掷骰子后,观察朝上一面的数字,出现“5”的概率是,
出现“6”的概率是,出现奇数的概率是
5、把一副扑克牌中的13张黑桃牌洗匀后正面向下放在桌面上,从中任意抽取一张,则P(抽出的牌的点数是6)= ,P(抽出的牌的点数是10)= ,
P(抽出的牌带有人像)= ,P(抽出的牌的点数小于5)= ,
P(抽出的牌的花色是黑桃)=
6、袋子中装有5个红球3个绿球,这些球除了颜色外都相同,从袋子中随机地摸出一个球,它是红色与是绿色的可能性相等吗?两者的概率分别是多少?
题组三:
1、袋子中装有红、绿各一个小球,除颜色外无其他差别,随机摸出1个小球后放回,再随机摸出一个,求下列事件的概率:(1)第一次摸到红球,第二次摸到绿球;(2)两次都摸到相同颜色的小球;
(3)两次摸到的球中有一个绿球和一个红球。
2、同时掷两个质地均匀的骰子,计算下列事件的概率:
(1)两个骰子的点数相同;(2)两个骰子点数的和是9;
(3)至少有一个骰子的点数为2。
3、在6张卡片上分别写有1~6的整数,随机地抽取一张后放回,再随机地抽取一张,那么第二次取出的数字能够整除第一次取出的数字的概率是多少?
4、经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种可能性相同,三辆汽车经过这个十字路口,求下列事件的概率:
(1)三辆车全部继续直行;(2)两辆车向右转,一辆车向左转;
(3)至少有两辆车向左转。
题组四:
1、足球比赛前,由裁判员掷一枚硬币,如果正面朝上则甲队首先开球,如果反面朝上则由乙队首先开球,这种确定首先开球一方的做法对参赛的甲、乙两队公平吗?为什么?
2、如图是一个可以自由转动的没涂颜色的转盘,被分成
12个相同的扇形,请你在转盘的适当地方涂上红、蓝两种颜色,使得转动的转盘自由停止
时,指针指向红、蓝两色的概率分别为
13和16
3、一只蚂蚁在由如图所示的树枝上寻觅食
物,假定蚂蚁在每个岔路口都会随机地选择一条路径,它获得食物的概率是
多少?。