2011高考数学必看之-求解函数解析式的常用方法
求函数解析式的五种方法及其例子
求函数解析式的五种方法及其例子在数学领域中,求解函数解析式是一项重要的任务。
本文将介绍五种常用的方法来求解函数解析式,并通过例子来展示其应用。
1. 数列法:该方法适用于已知函数的输出序列,并希望找到一个函数解析式来描述它。
通过观察函数输出值之间的规律,可以尝试找到相应的数学模式。
例如,若某函数的输出序列为1,4,9,16,25,...,我们可以观察到这是个平方数序列,因此函数解析式为f(x) = x^2。
2. 经验法:该方法适用于已知函数的输入和输出值,但不清楚具体的数学关系。
通过绘制出函数的散点图,可以尝试通过经验找到适合的函数类型。
例如,若某函数的输入和输出值如下表所示:| x | 1 | 2 | 3 | 4 | 5 ||-------|-------|-------|-------|-------|-------|| y | 3 | 5 | 7 | 9 | 11 |我们可以观察到y值递增2,因此猜测函数解析式为f(x) = 2x + 1。
3. 代数法:该方法适用于通过已知函数的性质和结构来推导函数解析式。
例如,若需要求解一个线性函数,已知它通过点(1, 3)和(2, 5),可以使用直线的斜率公式来得到函数解析式。
根据两点之间的斜率公式,我们可以得到函数解析式f(x) = 2x + 1。
4. 差分法:该方法适用于已知函数的差分序列,即函数输出值之间的差异。
通过观察差分序列之间的规律,可以尝试找到函数的解析式。
例如,若某函数的输出值差分序列为1, 3, 5, 7,我们可以观察到差分序列的差值为2,因此猜测函数解析式为f(x) = 2x。
5. 推理法:该方法适用于已知函数的一些特殊性质或限制条件。
通过寻找函数性质和限制条件的推理,可以得到函数解析式。
例如,若某函数是一个偶函数且通过原点(0, 0),我们知道偶函数具有对称性,并且f(0) = 0。
因此,猜测函数解析式为f(x) = ax^2。
通过以上五种方法中的一种或多种方法,我们可以在求解函数解析式时获得准确的结果。
函数解析式的求解及常用方法
函数解析式的求解及常用方法
1.直接法:当函数的表达式比较简单时,可以通过观察函数在一些特定点上的值来找到函数的解析式。
例如,给定函数的函数值和定义域,通过观察函数的值与自变量之间的关系来确定函数的解析式。
2. 反函数法:对于一些特殊函数,可以通过求解函数的反函数来得到函数的解析式。
例如,对于幂函数y=x^n,可以通过求解其反函数
y=\sqrt[n]{x}来得到幂函数的解析式。
3.已知条件法:对于一些已知条件,可以通过利用这些条件来求解函数的解析式。
例如,已知函数的导函数或者积分表达式,可以利用这些条件来求解函数的解析式。
4.递归法:有些函数可以通过递归的方式来定义,即函数的值依赖于前面的函数值。
例如,斐波那契数列就是通过递归来定义的,可以通过递归的方式来求解函数的解析式。
5.求导和积分法:对于一些函数,可以通过求导和积分的方式来求解函数的解析式。
特别是对于一些常见的函数,可以通过求导和积分的规则来求解函数的解析式。
以上是常用的函数解析式求解方法,不同函数的特点和已知条件可能需要采用不同的方法来求解函数的解析式。
在实际问题中,需要根据具体情况选择合适的方法来求解函数的解析式。
求解函数解析式的几种常用方法
求解函数解析式的几种常用方法 高考要求 求解函数解析式是高考重点考查内容之一,需引起重视 本节主要帮助考生在深刻理解函数定义的基础上,掌握求函数解析式的几种方法,并形成能力,并培养考生的创新能力和解决实际问题的能力 重难点归纳 求解函数解析式的几种常用方法主要有1、换元法:已知))((x g f 的表达式,欲求)(x f ,我们常设)(x g t =,从而求得)(1t g x -=,然后代入))((x g f 的表达式,从而得到)(t f 的表达式,即为)(x f 的表达式。
2、凑配法若已知))((x g f 的表达式,欲求)(x f 的表达式,用换元法有困难时,(如)(x g 不存在反函数)可把)(x g 看成一个整体,把右边变为由)(x g 组成的3、待定系数法若已知)(x f 的结构时,可设出含参数的表达式,再根据已知条件,列方程或方程组,从而求出待定的参数,求得)(x f 的表达式。
式子,再换元求出)(x f 的式子。
4、赋值法在求某些函数的表达式或求某些函数值时,有时把已知条件中的某些变量赋值,使问题简单明了,从而易于求出函数的表达式。
另外,在解题过程中经常用到分类讨论、等价转化等数学思想方法5、消元法若已知以函数为元的方程形式,若能设法构造另一个方程,组成方程组,再解这个方程组,求出函数元,称这个方法为消元法。
典型题例示范讲解 例1 如果45)1(2+-=+x x x f ,那么f(x)=______________________.例2 设二次函数f(x)满足f(x-2)=f(-x-2),且图像在y 轴上的截距为1,被x 轴截得的线段长为22,求f(x)的解析式。
例 3 设y=f(x)是实数函数,且x xf x f =-)1(2)(,求证:232|)(|≥x f 。
例4 已知bx x f x af n n =-+)()(,其中n a ,12≠奇数,试求)(x f 。
例5 已知)12()()(+++=+b a a b f b a f ,且,1)0(=f 求)(x f 的表达式。
函数解析式的常用求解方法函数解析式的求解九种方式函数解析式有几种形式
一、函数解析式的常用求解方法(1)待定系数法:(已知函数类型如:一次、二次函数、反比例函数等):若已知f(x)的结构时,可设出含参数的表达式,再根据已知条件,列方程或方程组,从而求出待定的参数,求得f(x)的表达式。
待定系数法是一种重要的数学方法,它只适用于已知所求函数的类型求其解析式。
(2)换元法(注意新元的取值范围):已知f(g(x))的表达式,欲求f(x),我们常设t=g(x),从而求得,然后代入f(g (x))的表达式,从而得到f(t)的表达式,即为f(x)的表达式。
(3)配凑法(整体代换法):若已知f(g(x))的表达式,欲求f(x)的表达式,用换元法有困难时,(如g(x)不存在反函数)可把g(x)看成一个整体,把右边变为由g(x)组成的式子,再换元求出f (x)的式子。
(4)消元法(如自变量互为倒数、已知f(x)为奇函数且g(x)为偶函数等):若已知以函数为元的方程形式,若能设法构造另一个方程,组成方程组,再解这个方程组,求出函数元,称这个方法为消元法。
(5)赋值法(特殊值代入法):在求某些函数的表达式或求某些函数值时,有时把已知条件中的某些变量赋值,使问题简单明了,从而易于求出函数的表达式。
二、函数解析式的求解九种方式:1.代入法:已知f(x)的解析式,求f[g(x)] 的解析式.[例1] 若f(x)=2x+1,g(x)=x-1, 求f[g(x)],g[f(x)].2. 换元法已知f[g(x)]=h(x), 求f(x)的解析式.令g(x)=tx=(t),则f(t)=h[(t)],再将t换成x即可.但要注意换元前后变量的等价性。
[例2] 已知f( +1)= x+2 ,求f(x),f(x+1).3.配凑法已知f[g(x)]=h(x), 求f(x)的解析式。
若能将h(x)用g(x)表示, 然后用x去代换g(x),则就可以得到f(x)的解析式。
[例3] 已知f(x+ )= x3 + , 求f(x),f(x+1).4.待定系数法根据已知函数的类型或者特征,求函数解析式。
(完整版)七种求法求函数解析式
七 种 求 法 求函 数 解 析 式一、 待定系数法:在已知函数解析式的构造时,可用待定系数法。
例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f解:设b ax x f +=)( )0(≠a ,则b ab x a b b ax a b x af x f f ++=++=+=2)()()]([∴⎩⎨⎧=+=342b ab a ∴⎩⎨⎧⎩⎨⎧=-===3212b a b a 或 32)(12)(+-=+=∴x x f x x f 或 二、 配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。
但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。
例2 已知221)1(xx x x f +=+ )0(>x ,求 ()f x 的解析式 解:2)1()1(2-+=+x x x x f Θ, 21≥+xx 2)(2-=∴x x f )2(≥x三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。
与配凑法一样,要注意所换元的定义域的变化。
例3 已知x x x f 2)1(+=+,求)1(+x f解:令1+=x t ,则1≥t ,2)1(-=t x Q x x x f 2)1(+=+∴,1)1(2)1()(22-=-+-=t t t t f1)(2-=∴x x f )1(≥xx x x x f 21)1()1(22+=-+=+∴ )0(≥x四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法。
例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式解:设),(y x M 为)(x g y =上任一点,且),(y x M '''为),(y x M 关于点)3,2(-的对称点则⎪⎩⎪⎨⎧=+'-=+'3222y y x x ,解得:⎩⎨⎧-='--='y y x x 64 , Θ点),(y x M '''在)(x g y =上x x y '+'='∴2把⎩⎨⎧-='--='yy x x 64代入得: )4()4(62--+--=-x x y整理得672---=x x y ∴67)(2---=x x x g五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。
函数解析式常见的求解方法
函数解析式常见的求解方法函数的解析式是指用数学表达式来表示函数的关系式,它是研究函数性质和求解函数值的基本工具。
常见的求解函数解析式的方法有以下几种:1.数学归纳法:对于一些特定的函数关系,在给定一些初始条件的情况下,通过递推关系式或递推公式,可以用数学归纳法来求解函数的解析式。
举个例子,求解斐波那契数列的解析式,我们知道当n=1时,F(1)=1;n=2时,F(2)=1;而当n>2时,斐波那契数列的数值等于它前两项的值之和,即F(n)=F(n-1)+F(n-2)。
根据这个递推关系式,可以通过数学归纳法求解得到斐波那契数列的解析式。
2.函数关系的图像法:通过观察函数关系图像的特点,可以得到函数的解析式。
举个例子,我们知道一次函数的图像是一条直线,它的解析式通常表示为y=ax+b,其中a和b是常数,a表示斜率,b表示截距。
因此,通过观察一次函数的图像的斜率和截距,可以得到函数的解析式。
3.函数关系的特殊情况法:对于一些特殊的函数关系,可以通过特定的方法求解函数的解析式。
举个例子,对于二次函数y=ax^2+bx+c,如果已知函数的图像经过三个点(x1, y1)、(x2, y2)和(x3, y3),可以通过代数的方法求解得到函数的解析式。
4.函数关系的逆运算法:对于一些函数关系,如果已知逆运算的解析式,可以通过求解逆运算的解析式来得到函数的解析式。
举个例子,对于指数函数y=a^x,如果已知函数的解析式为y=a^x,可以通过求解对数函数y=log_a(y),其中log_a表示以a为底的对数,来得到函数的解析式。
5.差值法和插值法:对于一些离散函数关系,可以通过差值和插值的方法来求解函数的解析式。
差值法是指通过已知的离散数据点,通过构造等差差分的方式,来求解函数的解析式。
插值法是指通过已知的离散数据点,通过构造合适的插值函数,并通过插值误差的原则,来求解函数的解析式。
综上所述,函数解析式的求解方法有数学归纳法、函数关系的图像法、函数关系的特殊情况法、函数关系的逆运算法、差值法和插值法等多种方法。
求函数解析式的六种常用方法
求函数解析式的六种常用方法函数解析式指的是用代数式或公式来表示函数的方式。
以下是六种常用方法:一、明确函数定义域和值域在确定函数解析式之前,首先需要明确函数的定义域和值域。
函数的定义域是指函数可以取值的自变量的范围,而值域则是函数的函数值可以取的范围。
明确函数的定义域和值域可以帮助我们确定函数解析式的形式和特点。
二、利用已知条件和性质确定函数解析式在求函数解析式时,可以利用已知条件和性质来确定函数解析式的形式。
例如,已知函数的导函数,可以通过求导的逆运算确定原函数的解析式。
又如,已知函数的周期性质,可以利用周期性质来确定函数解析式的形式。
三、从实际问题中建立函数关系函数解析式可以从实际问题中建立起来。
在解决实际问题时,可以首先建立自变量和函数值之间的关系,然后根据问题中给出的条件来确定函数解析式。
例如,求解经济学中的需求函数、生长模型等。
四、利用已知函数的性质和运算建立函数解析式在求函数解析式时,可以利用已知函数的性质和运算来建立函数解析式。
例如,可以利用已知函数的线性性质、对称性质、指数性质等来建立函数解析式。
又如,可以利用已知函数的运算性质,如加减乘除、复合等来建立函数解析式。
五、利用恒等式和方程组建立函数解析式在求解一些复杂的函数问题时,可以利用恒等式和方程组来建立函数解析式。
通过列方程并求解,可以得到函数解析式中的一些未知系数。
例如,可以通过建立差分方程求解离散函数的解析式。
六、利用已知函数的级数展开建立函数解析式在求解一些函数的解析式时,可以利用已知函数的级数展开式来建立函数解析式。
通过逐项求和,可以得到函数解析式的形式。
例如,可以利用幂级数展开来确定一些特殊函数的解析式。
求函数解析式的方法和例题
求函数解析式的方法和例题一、常见的求函数解析式的方法。
1. 代数法,通过代数运算,将已知的函数关系式化简成解析式的形式。
例如,对于一元一次函数y=ax+b,我们可以通过代数运算将已知的函数关系式y=ax+b化简为解析式y=2x+3。
2. 图像法,通过观察函数的图像特征,推导出函数的解析式。
例如,对于二次函数y=ax^2+bx+c,我们可以通过观察抛物线的开口方向、顶点坐标等特征来推导出函数的解析式。
3. 系数法,对于一些特定的函数类型,可以通过系数的求解来得到函数的解析式。
例如,对于指数函数y=a^x,我们可以通过已知的函数值和指数的关系来求解出函数的解析式。
4. 反函数法,有些函数的解析式可以通过求解其反函数得到。
例如,对于对数函数y=log_a(x),我们可以通过求解其反函数来得到函数的解析式。
二、求函数解析式的例题。
1. 求一元一次函数y=ax+b的解析式,已知当x=1时,y=3;当x=2时,y=5。
解:根据已知条件,我们可以列出方程组:a1+b=3。
a2+b=5。
通过解方程组,可以求解出a=2,b=1,因此函数的解析式为y=2x+1。
2. 求二次函数y=ax^2+bx+c的解析式,已知其图像经过点(1,2),顶点坐标为(-1,3)。
解:根据已知条件,我们可以列出方程组:a1^2+b1+c=2。
a(-1)^2+b(-1)+c=3。
通过解方程组,可以求解出a=1,b=0,c=1,因此函数的解析式为y=x^2+1。
3. 求指数函数y=a^x的解析式,已知当x=2时,y=16;当x=3时,y=64。
解:根据已知条件,我们可以列出方程组:a^2=16。
a^3=64。
通过解方程组,可以求解出a=4,因此函数的解析式为y=4^x。
以上就是关于求函数解析式的方法和例题的介绍,希望能对大家有所帮助。
通过学习和掌握这些方法和技巧,相信大家可以更好地理解和运用函数解析式,提高数学解题的能力。
求函数解析式的四种常用方法
求函数解析式的四种常用方法函数是数学中的重要概念,它描述了变量之间的关系。
函数解析式是用代数表达式来表示函数的定义域、值域和具体的变化规律。
常用的四种方法来得到函数的解析式是:通过公式、通过图像、通过数据和通过给定条件。
一、通过公式:一些函数的解析式可以通过简单的数学公式来得到。
例如,直线函数y = kx + b、二次函数y = ax^2 + bx + c以及指数函数y = a^x等。
这些函数可以根据已知的系数和常数来确定解析式。
例如,对于直线函数y = 2x + 3,我们可以知道它的斜率是2,截距是3,因此解析式为y = 2x + 3二、通过图像:函数的解析式可以通过观察图像来确定。
例如,可以根据函数的特点,如对称性、切线的斜率等,来确定解析式。
对于一元函数来说,可以通过绘制函数的图像来判断函数的特点,从而得到函数的解析式。
例如,对于一次函数来说,可以通过观察图像的直线特点来确定解析式;对于二次函数来说,可以根据开口方向、抛物线的顶点位置等来确定解析式。
三、通过数据:有时候可以通过给定的数值表格或函数的值来确定函数的解析式。
通过列举一组合适的输入和输出值,然后观察数值的规律,可以找到函数的解析式。
例如,已知函数的自变量为x,函数的值为y,通过给定一些具体的x和对应的y值,可以通过观察它们之间的关系来确定函数的解析式。
四、通过给定条件:在一些具体的问题中,函数的解析式可以通过给定的条件来确定。
例如,在几何问题中,根据给定的几何条件和函数的特性,可以建立函数的解析式。
例如,根据直线过点的条件和斜率的特性,可以确定直线的解析式。
综上所述,函数解析式的四种常用方法是通过公式、通过图像、通过数据和通过给定条件。
通过这些方法,可以确定函数的解析式,进而研究函数的性质和变化规律,以及解决一些实际问题。
求函数解析式的六种常用方法
求函数解析式的六种常用方法函数解析式是用数学语言描述数学函数的一种方法。
它可以方便地表示函数的定义域、值域、性质等,并且能够通过函数图像和方程表达式等形式直观地展现函数的特征。
下面将介绍六种常用的方法来求函数的解析式。
1.常函数法:常函数法是求解常函数的一种简单方法。
常函数表示所有的输入值都对应着相同的输出值。
常函数的解析式通常形如"f(x)=c",其中c是常数。
常函数的定义域和值域都是全体实数值。
例如,函数f(x)=3就是一个常函数,它的输出始终为32.幂函数法:幂函数是一种具有形如y=x^a的解析式的函数。
幂函数法是通过给定了函数的一些特定点来推导出整个函数的解析式。
常见的幂函数包括正幂函数、负幂函数和倒数函数。
例如,给定函数f(x)通过点(1,2)和(2,4),我们可以通过观察得出f(x)=2^x。
3.分段函数法:分段函数是一种具有不同解析式在不同区间上的函数。
分段函数法是通过将函数的定义域按照不同的区间划分,然后在每个区间上分别确定函数的解析式来得到函数的解析式。
例如,函数f(x)=,x,在x<0时取值为-x,在x≥0时取值为x,这就是一个分段函数。
4.复合函数法:复合函数是通过使用一个函数的输出结果作为另一个函数的输入来得到的函数。
复合函数法是通过将两个或多个函数的定义域和值域相互组合,然后确定新函数的解析式来求解函数的解析式。
例如,给定函数f(x)=x+1和g(x)=2x,我们可以求得f(g(x))=2x+15.反函数法:反函数是指一个函数的自变量和因变量对换后得到的新函数。
反函数法是通过将一个函数的自变量和因变量交换位置,然后求解得到函数的解析式。
例如,给定函数f(x)=2x,我们通过交换x和y的位置,可以求得反函数f^(-1)(x)=x/26.曲线拟合法:曲线拟合法是通过已知函数的一些点来找到一个与这些点最接近的函数的解析式。
它可以应用于实验数据分析和模型建立等领域。
求函数解析式常用的方法
求函数解析式常用的方法函数的解析式是指能够描述函数关系的数学表达式。
常见的函数解析式有多种求法,下面介绍几种常用的方法。
一、通过已知的函数图像求函数的解析式:1.方程法:已知函数的图像,可以通过观察图像上的点与坐标轴的交点,列方程来求解。
例如,已知函数图像上点(1,3)和(2,5),可以列出方程f(1)=3和f(2)=5,然后通过解方程组的方法求得函数解析式。
2.函数平移法:已知函数图像上的一些平移属性,可以通过对已知函数进行平移操作得到所求函数的解析式。
例如,已知函数f(x)在原坐标系上的图像向左平移2个单位,可以得到函数f(x+2)。
3.倒推法:已知函数的图像为已知函数的变换之一,可以从已知函数推导出所求函数的解析式。
例如,已知函数f(x)的图像是函数g(x)的图像上关于y轴对称得到的,可以通过对函数f(x)进行关于y轴对称操作得到函数g(x)的解析式。
二、通过已知函数求函数的解析式:1.基本函数的组合:常见的基本函数包括线性函数、二次函数、指数函数、对数函数等。
可以通过将基本函数进行合理的组合和变换,来构建所求函数的解析式。
2.反函数法:已知函数的反函数,可以通过对已知函数的自变量和因变量进行互换得到所求函数的解析式。
例如,已知函数f(x)的反函数是g(x),则所求函数的解析式为f(y)=x。
3.极限法:当函数的极限存在时,可以通过极限的概念推导所求函数的解析式。
例如,已知函数的极限为一些常数,可以通过求出极限值来得到所求函数的解析式。
三、通过函数的性质求函数的解析式:1.函数的奇偶性:如果一个函数是奇函数,那么它的解析式中不含有$x^2$的项;如果一个函数是偶函数,那么它的解析式中不含有$x$的项。
2.函数的周期性:如果一个函数是周期函数,那么它的解析式中必定含有正弦或余弦等与周期函数相关的函数。
3.函数的导数与微分:通过求函数的导数和微分,可以得到函数所满足的微分方程,然后进一步求解微分方程从而得到函数的解析式。
求函数解析式的方法
求函数解析式的方法函数解析式是描述函数规律的数学表达式,它可以帮助我们更深入地理解函数的性质和特点。
在数学学习中,求函数解析式是一个常见的问题,下面将介绍几种方法来求函数解析式。
一、根据函数图像求解析式。
如果已知函数的图像,我们可以通过观察图像的特点来求解析式。
首先,我们可以根据图像的对称性来确定函数的奇偶性,进而确定函数中是否含有偶函数项或奇函数项。
其次,我们可以通过观察图像的零点、极值点和拐点来确定函数的根、极值和拐点的坐标,从而得到函数的具体形式。
最后,我们可以根据图像的增减性和凹凸性来确定函数的增减区间和凹凸区间,进而得到函数的解析式。
二、根据函数性质求解析式。
除了根据函数图像求解析式外,我们还可以根据函数的性质来求解析式。
例如,对于一些特殊的函数,我们可以利用函数的定义和性质来求解析式。
比如,对于指数函数和对数函数,我们可以利用指数和对数的性质来求解析式;对于三角函数,我们可以利用三角函数的周期性和对称性来求解析式;对于反三角函数,我们可以利用反三角函数的定义和性质来求解析式。
通过对函数性质的深入理解,我们可以更加灵活地求解析式。
三、根据函数的已知条件求解析式。
在实际问题中,我们经常遇到需要求解析式的情况。
例如,已知函数过某点、在某点处的导数等条件,我们可以利用这些已知条件来求解析式。
在这种情况下,我们可以利用函数的定义和导数的性质来建立方程组,进而求解析式。
通过分析已知条件,我们可以逐步确定函数的形式,最终得到函数的解析式。
四、利用数学工具求解析式。
除了以上几种方法外,我们还可以利用数学工具来求解析式。
例如,利用泰勒级数展开、利用微积分的方法等。
这些方法虽然有一定的复杂性,但在一些特殊的情况下可以更快更准确地求解析式。
总结:求函数解析式的方法有很多种,我们可以根据具体情况选择合适的方法来求解析式。
在实际问题中,我们经常需要根据已知条件来求解析式,这就需要我们对函数的性质和数学工具有深入的理解。
(完整版)求函数解析式常用的方法
求函数解析式常用的方法求函数解析式常用的方法有:待定系数法、换元法、配凑法、消元法、特殊值法。
以下主要从这几个方面来分析。
(一)待定系数法待定系数法是求函数解析式的常用方法之一,它适用于已知所求函数类型(如一次函数,二次函数,正、反例函数等)及函数的某些特征求其解析式的题目,它在函数解析式的确定中扮演着十分重要的角色。
其方法:已知所求函数类型,可预先设出所求函数的解析式,再根据题意列出方程组求出系数。
例1:已知()f x 是二次函数,若(0)0,f =且(1)()1f x f x x +=++试求()f x 的表达式。
解析:设2()f x ax bx c =++ (a ≠0)由(0)0,f =得c=0 由(1)()1f x f x x +=++ 得22(1)(1)1a x b x c ax bx c x ++++=++++整理得22(2)()1ax a b x a b c ax b c x c +++++=++++得 212211120011()22a ab b a bc c b c c f x x x ⎧=⎪+=+⎧⎪⎪⎪++=+⇒=⎨⎨⎪⎪=⎩=⎪⎪⎩∴=+ 小结:我们只要明确所求函数解析式的类型,便可设出其函数解析式,设法求出其系数即可得到结果。
类似的已知f(x)为一次函数时,可设f(x)=ax+b(a≠0);f(x)为反比例函数时,可设f(x)= k x(k≠0);f(x)为二次函数时,根据条件可设①一般式:f(x)=ax2+bx+c(a≠0) ②顶点式:f(x)=a(x-h)2+k(a≠0) ③双根式:f(x)=a(x-x1)(x-x2)(a≠0)(二)换元法换元法也是求函数解析式的常用方法之一,它主要用来处理不知道所求函数的类型,且函数的变量易于用另一个变量表示的问题。
它主要适用于已知复合函数的解析式,但使用换元法时要注意新元定义域的变化,最后结果要注明所求函数的定义域。
例2:已知1)1,f x =+求()f x 的解析式。
高中数学:求函数解析式的10种常见方法
高中数学:求函数解析式的10种常见方法一、配凑法:给定$f(x+1)=x-3x+2$,求$f(x)$。
练1:设函数$f(x)=2x+3$,$g(x+2)=f(x)$,求$g(x)$。
练2:设$f(f(x))=x^2+2$,求$f(x)$。
练3:设$f(x+2)+f(x)=x^3+x$,求$f(x)$。
二、待定系数法:例1:如果反比例函数的图像经过点$(1,-2)$,那么这个反比例函数的解析式为$\frac{-2}{x-1}$,求$f(x)$。
练1:在反比例函数$y=\frac{k}{x}$的图像上有一点P,它的横坐标$m$与纵坐标$n$是方程$t^2-4t-2=0$的两个根,求$k$。
练2:已知二次函数$f(x)$满足$f(x+1)=f(x)+2x+8$,求$f(x)$的解析式。
练3:已知$f(x-2)=2x-9x+13$,求$f(x)$。
三、换元(或代换)法:例1:已知函数$f(\frac{1-x}{1+x})=\frac{1+x}{1-x}$,求:(1)$f(2)$的值;(2)$f(x)$的表达式。
练1:已知$f(x+1)=x+2x$,求$f(x)$及$f(x^2)$;练2:已知$f(x)=\frac{1}{2}x+\frac{1}{x}$,求$f(x+1)$.四、消去法:例1:设函数$f(x)$满足$f(x)+2f(\frac{1}{x})=x$,求$f(x)$.练1:已知$f(x)-2f(-x)=3x+2$,求$f(x)$.练2:已知定义在R上的函数$f(x)$满足$f(-x)+2f(x)=x+1$,求$f(x)$.练3:已知$f(x)+3f(-x)=2x+1$,求$f(x)$.练4:设函数$f(x)$满足$af(x)+bf(\frac{1}{x})=cx$(其中$a,b,c$均不为$0$,且$a\neq\pm b$),求$f(x)$.五、反函数法:例1:已知$f(a^2-x^2)=x$,求$f(x)$。
高中数学-求函数解析式的六种常用方法
高中数学-求函数解析式的六种常用方法求函数解析式是高中数学中的重要内容之一,常用的方法有六种。
下面分别介绍这六种方法。
一、换元法如果已知复合函数$f[g(x)]$的解析式,要求原函数$f(x)$的解析式,可以令$g(x)=t$,求$f(t)$的解析式,再把$t$换为$x$即可。
例如,已知$f(x)=\frac{x^2+11x+1}{x(x+1)}$,要求$f(x)$的解析式。
设$g(x)=\frac{1}{x}$,则$x=\frac{1}{g(x)}$,代入$f(x)$得$f(g(x))=\frac{g(x)^2+11g(x)+1}{g(x)+1}$,再令$t=g(x)$,则$f(t)=\frac{t^2+11t+1}{t+1}$,最后把$t$换为$x$,得到$f(x)=\frac{x^2+11x+1}{x(x+1)}$。
二、配凑法如果已知$f(x+1)=x+2x^2$,要求$f(x)$的解析式,可以使用配凑法。
首先,把$x+1$视为自变量$x$,则有$f(x)=x^2-1$,但要注意函数的定义域的变化,即$x+1\geq 1$,即$x\geq 0$。
三、待定系数法如果已知函数类型,可以使用待定系数法求函数的解析式。
例如,已知二次函数$f(x)$满足$f(0)=0$,$f(x+1)=f(x)+2x+8$,要求$f(x)$的解析式。
设$f(x)=ax^2+bx+c$,代入已知条件得到$c=0$,$a+b=8$,$2a+b=0$,解得$a=1$,$b=7$,$c=0$,所以$f(x)=x^2+7x$。
四、消去法如果已知$f(x)+2f(\frac{1}{x})=\frac{x}{x-1}$,要求$f(x)$的解析式,可以使用消去法。
把已知中的$f(\frac{1}{x})$用$f(x)$表示出来,得到$2f(x)+f(\frac{1}{x})=\frac{x}{x-1}$,再把$x$换成$\frac{1}{x}$,得到$2f(\frac{1}{x})+f(x)=\frac{1}{x-1}$,解得$f(x)=-\frac{x}{3(x-1)}$。
求函数解析式的6种方法
求函数解析式的6种方法函数解析式是描述函数行为的一种数学表示方法,可以通过不同的方法得到。
以下是六种常见的方法:1.点斜式:如果已知函数通过一点(x1,y1)且斜率为m,则可以使用点斜式来表示函数解析式。
点斜式的一般形式为y-y1=m(x-x1)。
例如,如果已知函数通过点(2,3)且斜率为4,则函数解析式可以表示为y-3=4(x-2)。
2.两点式:如果已知函数通过两个点(x1,y1)和(x2,y2),则可以使用两点式来表示函数解析式。
两点式的一般形式为(y-y1)/(y2-y1)=(x-x1)/(x2-x1)。
例如,如果已知函数通过点(1,2)和(3,4),则函数解析式可以表示为(y-2)/(4-2)=(x-1)/(3-1)。
3. 斜截式:如果已知函数通过y轴截距b且斜率为m,则可以使用斜截式来表示函数解析式。
斜截式的一般形式为y = mx + b。
例如,如果已知函数通过y轴截距为2且斜率为3,则函数解析式可以表示为y =3x + 24.一般式:一般式是一种通用的函数解析式表示方法,用Ax+By+C=0的形式表示。
其中A、B、C为常数。
一般式的选择通常取决于特定问题或需要。
例如,已知函数为3x+2y-6=0,则可以将其表示为一般式。
5.法线式:如果已知函数通过一点(x1,y1),则可以使用法线式来表示函数解析式。
法线式与点斜式类似,但斜率的倒数与点斜式斜率相反。
法线式的一般形式为y-y1=(-1/m)(x-x1),其中m为函数的斜率。
例如,如果已知函数通过点(2,3)且斜率为4,则函数解析式可以表示为y-3=(-1/4)(x-2)。
6.函数图形:通过观察函数的图形,可以得到函数的一些特征和规律,从而推断出函数解析式。
例如,通过观察函数图形的对称性、零点、极值点等,可以得到函数解析式的一些重要信息。
这种方法通常适用于简单的函数图形,对于复杂的函数图形可能需要借助计算机软件进行分析。
这些方法不是互斥的,可以根据具体问题和已知条件选择合适的方法来得到函数解析式。
求函数解析式的几种常用方法
求函数解析式的几种常用方法函数解析式是用来描述一个函数的数学表达式,它是数学中非常重要的概念。
在数学中,我们常常使用函数解析式来描述一个函数的性质、图像以及其他相关信息。
下面介绍几种常用的方法来求函数解析式。
一、观察法观察法是最常见的一种方法,它适用于一些简单的函数。
通过观察函数的各个特点,我们可以推测出函数的解析式。
例如,对于线性函数y = kx + b来说,我们可以通过观察到该函数的图像是一条直线,并且通过截距b可以确定直线的位置。
同时,我们还可以通过观察到斜率k来确定直线的斜率。
二、代入法代入法是一种常用的方法,它可以通过代入已知的数据来求得函数的解析式。
例如,假设我们已知一个函数满足条件f(0) = 2,f(1) = 3,f(2) = 4,我们可以通过代入这些数据来求得函数的解析式。
首先,我们可以设函数的解析式为f(x) = ax + b,然后代入第一个条件f(0) = 2,得到2 = a * 0 + b,从而得到b = 2、接着,我们再代入第二个条件f(1) = 3,得到3 = a * 1 + 2,从而得到a = 1、最后,代入第三个条件f(2) = 4,得到4 = 1 * 2 + 2,从而验证了我们的答案。
三、求导和积分法对于一些复杂的函数,我们可以利用求导和积分的方法来求函数的解析式。
首先,我们可以通过求导的方法来求得函数的导函数,然后再通过积分的方法来求得函数的解析式。
例如,对于函数f(x)=x^2+2x+1来说,我们可以通过求导的方法来求得导函数f'(x)=2x+2,然后再通过积分的方法来求得函数的解析式。
具体的方法和步骤可以根据函数的特点来确定。
四、简化法简化法是一种常用的方法,它适用于一些复杂的函数。
通过对函数的特征进行简化,我们可以得到函数的解析式。
例如,对于一个多项式函数f(x)=2x^3+3x^2+4x+5来说,我们可以通过简化法来求得函数的解析式。
首先,我们可以对多项式进行化简,得到f(x)=x^2*(2x+3)+4x+5,然后再进行进一步的化简。
求函数解析式的方法和例题
求函数解析式的方法和例题一、常见的求函数解析式的方法:1. 图像法,通过观察函数的图像特点,可以推测出函数的解析式。
例如,对于一次函数y=kx+b,可以通过观察函数的图像特点来确定k和b的值。
2. 常数法,对于一些特殊的函数,可以通过代入不同的自变量值,利用函数的性质和已知条件来求解函数的解析式。
例如,对于指数函数y=a^x,可以通过代入x=0、x=1等值来求解a的值。
3. 反函数法,对于已知函数的反函数,可以通过求解反函数来得到原函数的解析式。
例如,对于对数函数y=loga(x),可以通过求解反函数来得到对数函数的解析式。
4. 组合函数法,对于复杂的函数,可以通过将函数进行分解,然后分别求解各个部分函数的解析式,最后组合得到原函数的解析式。
例如,对于复合函数y=f(g(x)),可以先求解g(x)和f(x),然后将其组合得到y的解析式。
二、求函数解析式的例题:例题1,已知一次函数y=2x+3,求函数的解析式。
解,根据一次函数的一般形式y=kx+b,可以得到k=2,b=3,因此函数的解析式为y=2x+3。
例题2,已知指数函数y=2^x,且y(1)=4,求函数的解析式。
解,代入x=1,得到2^1=2,因此a=2,所以函数的解析式为y=2^x。
例题3,已知对数函数y=log2(x),求函数的解析式。
解,对数函数的底数为2,因此函数的解析式为y=log2(x)。
例题4,已知复合函数y=(x+1)^2,求函数的解析式。
解,将函数进行分解,得到g(x)=x+1,f(x)=x^2,因此函数的解析式为y=(x+1)^2。
以上就是关于求函数解析式的方法和例题的介绍。
希望对大家有所帮助,也希望大家在学习数学的过程中能够灵活运用这些方法,提高数学解题能力。
求函数解析式的常用方法
求函数解析式的常用方法在数学中,函数是一种数学对象,它将一个或多个输入值映射到一个输出值上。
函数解析式是用代数方式表示函数的方式,它可以描述函数的特征、性质和行为。
在数学领域,有很多方法可以得到函数的解析式。
下面将介绍一些常用的方法。
1.反复求导或积分:通过对函数进行反复求导或积分,可以得到函数的解析式。
这种方法适用于已知函数的导函数或原函数的情况。
例如,已知函数的导函数为2x,则原函数可以表示为x^2+C,其中C是任意常数。
2.利用已知条件:有时候,我们可以利用已知条件来构造函数解析式。
例如,如果我们已知函数通过点(1, 2)和(3, 4),可以写出函数的解析式为y = ax + b,并通过代入已知点的坐标来求解a和b的值。
3.应用已知函数的性质:已知函数的性质可以直接帮助我们找到函数的解析式。
例如,已知函数为指数函数且经过点(0,1),我们可以得到解析式为y=a^x,其中a是一个正实数。
4.利用函数对称性:有时候,函数的对称性可以帮助我们推导出函数的解析式。
例如,如果函数是偶函数,则函数的解析式中只含有偶次幂的项。
5.积化和差化和差公式:通过运用积化和差化和差公式,可以将复杂的函数转化为较简单的形式。
例如,通过将sin(x+y)转化为sin(x)cos(y) + cos(x)sin(y),我们可以得到复杂函数的解析式。
6.利用复合函数和反函数:通过利用复合函数和反函数的性质,可以求得函数的解析式。
例如,如果我们已知函数f(x)=x^2,我们可以得到f(f(x))=(x^2)^2=x^4,这样就得到了复合函数的解析式。
7.利用泰勒展开式:泰勒展开式是将一个函数表示为其在其中一点的无穷阶导数的多项式。
通过使用泰勒展开式,我们可以将复杂的函数近似为多项式,从而得到函数的解析式。
8.利用已知函数的特殊形式:有些函数具有特殊的形式,可以利用这些特殊形式推导函数的解析式。
例如,指数函数、对数函数和三角函数等都具有特殊的形式,可以根据这些形式推导函数的解析式。
求函数解析式的四种常用方法
求函数解析式的四种常用方法
(3)换元法: 已知复合函数 f(g(x))的解析式,
可用换元法, 此时要注意新元的取值范围;
求函数解析式的四种常用方法
(4)解方程组法: 已知关于 f(x)与
1 fx或
f(-
x)的表达式,可根据已知条件再构造出另 外一个等式组成方程组,通过解方程求出 f(x).
答案:x -4x+3
2
3.设 y=f(x)是二次函数,方程 f(x)=0 有两个相等实根, 且 f′(x)=2x+2,求 f(x)的解析式.
解:设 f(x)=ax2+bx+c(a≠0), 则 f′(x)=2ax+b=2x+2, ∴a=1,b=2,f(x)=x +2x+c. 又∵方程 f(x)=0 有两个相等实根, ∴Δ=4-4c=0,c=1,故 f(x)=x2+2x+1.
(4)定义在(-1,1)内的函数 f(x)满足 2f(x)-f(-x)=lg(x+1), 求函数 f(x)的解析式.
方程组法
[练一练]
1.设 g(x)=2x+3,g(x+2)=f(x),则 f(x)等于( A,-2x+1 B,2x-1 C,2x-3 D,2x+7 答案:D
2
2.若 f(x)=x +bx+c,且 f(1)=0,f(3)=0, f(x)=________.
求函数解析式的四种常用方法
求函数解析式的四种常用方法
(1) 配凑法:由已知条件 f(g(x))=F(x), 可将 F(x)改写成关于 g(x)的表达式, 然后以 x 替代 g(x), 便得 f(x)的表达式;Βιβλιοθήκη 变式 题换元法拼凑法
求函数解析式的四种常用方法
(2)待定系数法:若已知函数的类型 (如一次函数、 二次函数)可用待定系数法;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学复习专题讲座 求解函数解析式的几种常用方法高考要求求解函数解析式是高考重点考查内容之一,需引起重视 本节主要帮助考生在深刻理解函数定义的基础上,掌握求函数解析式的几种方法,并形成能力,并培养考生的创新能力和解决实际问题的能力重难点归纳求解函数解析式的几种常用方法主要有1 待定系数法,如果已知函数解析式的构造时,用待定系数法;2 换元法或配凑法,已知复合函数f [g (x )]的表达式可用换元法,当表达式较简单时也可用配凑法;3 消参法,若已知抽象的函数表达式,则用解方程组消参的方法求解f (x );另外,在解题过程中经常用到分类讨论、等价转化等数学思想方法典型题例示范讲解例1 (1)已知函数f (x )满足f (log a x )=)1(12x x a a -- (其中a >0,a ≠1,x >0),求f (x )的表达式(2)已知二次函数f (x )=ax 2+bx +c 满足|f (1)|=|f (-1)|=|f (0)|=1,求f (x ) 的表达式命题意图 本题主要考查函数概念中的三要素 定义域、值域和对应法则,以及计算能力和综合运用知识的能力知识依托 利用函数基础知识,特别是对“f ”的理解,用好等价转化,注意定义域错解分析 本题对思维能力要求较高,对定义域的考查、等价转化易出错技巧与方法 (1)用换元法;(2)用待定系数法解 (1)令t=log a x (a >1,t >0;0<a <1,t <0),则x =a t因此f (t )=12-a a (a t -a -t) ∴f (x )=12-a a (a x -a -x)(a >1,x >0;0<a <1,x <0)(2)由f (1)=a +b +c ,f (-1)=a -b +c ,f (0)=c得⎪⎪⎪⎩⎪⎪⎪⎨⎧=--=--+=)0()]1()1([21)0()]1()1([21f c f f b f f f a并且f (1)、f (-1)、f (0)不能同时等于1或-1, 所以所求函数为f (x )=2x 2-1 或f (x )=-2x 2+1 或f (x )=-x 2-x +1或f (x )=x 2-x -1 或f (x )=-x 2+x +1 或f (x )=x 2+x -1例2设f (x )为定义在R 上的偶函数,当x ≤-1时,y =f (x )的图象是经过点(-2,0),斜率为1的射线,又在y =f (x )的图象中有一部分是顶点在(0,2),且过点(-1,1)的一段抛物线,试写出函数f (x )的表达式,并在图中作出其图象命题意图 本题主要考查函数基本知识、抛物线、射线的基本概念及其图象的作法,对分段函数的分析需要较强的思维能力 因此,分段函数是今后高考的热点题型知识依托 函数的奇偶性是桥梁,分类讨论是关键,待定系数求出曲线方程是主线错解分析 本题对思维能力要求很高,分类讨论、综合运用知识易发生混乱技巧与方法 合理进行分类,并运用待定系数法求函数表达式解 (1)当x ≤-1时,设f (x )=x +b∵射线过点(-2,0) ∴0=-2+b 即b =2,∴f (x )=x +2(2)当-1<x <1时,设f (x )=ax 2+2∵抛物线过点(-1,1),∴1=a ·(-1)2+2,即a =-1 ∴f (x )=-x 2+2(3)当x ≥1时,f (x )=-x +2综上可知 f (x )=⎪⎩⎪⎨⎧≥+-<<---≤+1,211,21,12x x x x x x 作图由读者来完成例3已知f (2-cos x )=cos2x +cos x ,求f (x -1)解法一 (换元法)∵f (2-cos x )=cos2x -cos x =2cos 2x -cos x -1 令u =2-cos x (1≤u ≤3),则cos x =2-u∴f (2-cos x )=f (u )=2(2-u )2-(2-u )-1=2u 2-7u +5(1≤u ≤3) ∴f (x -1)=2(x -1)2-7(x -1)+5=2x 2-11x +4(2≤x ≤4) 解法二 (配凑法)f (2-cos x )=2cos 2x -cos x -1=2(2-cos x )2-7(2-cos x )+5∴f (x )=2x 2-7x -5(1≤x ≤3),即f (x -1)=2(x -1)2-7(x -1)+5=2x 2-11x +14(2≤x ≤4)学生巩固练习1 若函数f (x )=34 x mx (x ≠43)在定义域内恒有f [f (x )]=x ,则m 等于( )A 3B23 C -23 D -32 设函数y =f (x )的图象关于直线x =1对称,在x ≤1时,f (x )=(x +1)2-1,则x >1时f (x )等于( )A f (x )=(x +3)2-1B f (x )=(x -3)2-1C f (x )=(x -3)2+1D f (x )=(x -1)2-13 已知f (x )+2f (x1)=3x ,求f (x )的解析式为_________ 4已知f (x )=ax 2+bx +c ,若f (0)=0且f (x +1)=f (x )+x +1,则f (x )=_________5 设二次函数f (x )满足f (x -2)=f (-x -2),且其图象在y 轴上的截距为1,在x 轴上截得的线段长为2,求f (x )的解析式6 设f (x )是在(-∞,+∞)上以4为周期的函数,且f (x )是偶函数,在区间[2,3]上时,f (x )=-2(x -3)2+4,求当x ∈[1,2]时f (x )的解析式若矩形ABCD 的两个顶点A 、B 在x 轴上,C 、D 在y =f (x )(0≤x ≤2)的图象上,求这个矩形面积的最大值7 动点P 从边长为1的正方形ABCD 的顶点A 出发顺次经过B 、C 、D 再回到A ,设x 表示P 点的行程,f (x )表示PA 的长,g (x )表示△ABP 的面积,求f (x )和g (x ),并作出g (x )的简图8 已知函数y =f (x )是定义在R 上的周期函数,周期T =5,函数y =f (x )(-1≤x ≤1)是奇函数,又知y =f (x )在[0,1]上是一次函数,在[1,4]上是二次函数,且在x =2时,函数取得最小值,最小值为-5(1)证明 f (1)+f (4)=0;(2)试求y =f (x ),x ∈[1,4]的解析式; (3)试求y =f (x )在[4,9]上的解析式参考答案1 解析 ∵f (x 34-x mx∴f [f (x )]=334434--⋅-⋅x mx x mxm =x ,整理比较系数得m =3 答案 A2 解析 利用数形结合,x ≤1时,f (x )=(x +1)2-1的对称轴为x =-1,最小值为-1,又y =f (x )关于x =1对称,故在x >1上,f (x )的对称轴为x =3且最小值为-1答案 B3 解析 由f (x )+2f (x 1)=3x 知f (x 1)+2f (x x 1 由上面两式联立消去f (x 1)可得f (x )=x2-x答案 f (x )= x2-x4 解析 ∵f (x )=ax 2+bx +c ,f (0)=0,可知c =0 又f (x +1)=f (x )+x +1,∴a (x +1)2+b (x +1)+0=ax 2+bx +x +1,即(2a +b )x +a +b =bx +x +1故2a +b =b +1且a +b =1,解得a =21,b =21,∴f (x )=21x 2+21x答案21x 2+21x 5 解 利用待定系数法,设f (x )=ax 2+bx +c ,然后找关于a 、b 、c 的方程组求解,f (x )=178722++x x 6 解 (1)设x ∈[1,2],则4-x ∈[2,3],∵f (x )是偶函数,∴f (x )=f (-x ),又因为4是f (x )的周期,∴f (x )=f (-x )=f (4-x )=-2(x -1)2+4(2)设x ∈[0,1],则2≤x +2≤3,f (x )=f (x +2)=-2(x -1)2+4, 又由(1)可知x ∈[0,2]时,f (x )=-2(x -1)2+4, 设A 、B 坐标分别为(1-t ,0),(1+t ,0)(0<t ≤1),则|AB |=2t ,|AD |=-2t 2+4,S 矩形=2t (-2t 2+4)=4t (2-t 2),令S 矩=S ,∴82S =2t 2(2-t 2)·(2-t 2)≤(3222222t t t -+-+)3=2764,当且仅当2t 2=2-t 2,即t =36时取等号∴S 2≤27864⨯即S ≤9616,∴S max =96167 解 (1)如原题图,当P 在AB 上运动时,PA =x ;当P 点在BC 上运动时,由Rt △ABD 可得PA =2)1(1-+x ;当P 点在CD 上运动时,由Rt △ADP 易得PA =2)3(1x -+;当P 点在DA 上运动时,PA =4-x ,故f (x )的表达式为 f (x )=⎪⎪⎩⎪⎪⎨⎧≤<-≤<+-≤<+-≤≤)43(4)32( 106)21(22)10(22x x x x x x x x x x(2)由于P 点在折线ABCD 上不同位置时,△ABP 的形状各有特征,计算它们的面积也有不同的方法,因此同样必须对P 点的位置进行分类求解如原题图,当P 在线段AB 上时,△ABP 的面积S =0; 当P 在BC 上时,即1<x ≤2时,S △ABP =21AB ·BP =21(x -1);当P 在CD 上时,即2<x ≤3时,S △ABP =21·1·1=21;当P 在DA 上时,即3<x ≤4时,S △ABP =21(4-x )故g (x )=⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≤<-≤<≤<-≤≤)43( )4(21)32(21)21( )1(21)10(0x x x x x x8 (1)证明∵y =f (x )是以5为周期的周期函数,∴f (4)=f (4-5)=f (-1),又y =f (x )(-1≤x ≤1)是奇函数,∴f (1)=-f (-1)=-f (4),∴f (1)+f (4)=0(2)解 当x ∈[1,4]时,由题意,可设f (x )=a (x -2)2-5(a ≠0),由f (1)+f (4)=0得a (1-2)2-5+a (4-2)2-5=0,解得a =2,∴f (x )=2(x -2)2-5(1≤x ≤4)(3)解 ∵y =f (x )(-1≤x ≤1)是奇函数,∴f (0)=-f (-0),∴f (0)=0, 又y =f (x ) (0≤x ≤1)是一次函数, ∴可设f (x )=kx (0≤x ≤1),∵f (1)=2(1-2)2-5=-3, f (1)=k ·1=k ,∴k =-3∴当0≤x ≤1时,f (x ) =-3x , 当-1≤x <0时,f (x )=-3x ,当4≤x ≤6时,-1≤x -5≤1,∴f (x )=f (x -5)=-3(x -5)=-3x +15,当6<x ≤9时,1<x -5≤4,f (x )=f (x -5)=2[(x -5)-2]2-5=2(x -7)2-5∴f (x )=⎩⎨⎧≤<--≤≤+-)96(5)7(2)64(1532x x x x。