高中数学必修五1。1。2正弦定理和余弦定理第二课时ppt
高中数学必修五 目录
第一章解三角形
1.1 正弦定理和余弦定理
1.1.1 正弦定理
1课时
1.1.2 余弦定理
第1课时
1.2 应用举例
第1课时高度、距离
第2课时角度及其他问题
第3课时正余弦定理在几何中的应用章末检测卷第二章数列
2.1 数列的概念与简单表示法
1课时
2.2 等差数列
第1课时等差数列的概念
第2课时等差数列的性质
2.3 等差数列的前n项和
第1课时等差数列前n项和公式
第2课时等差数列习题课
2.4 等比数列
第1课时等比数列的概念
第2课时等比数列的性质
2.5 等比数列的前n项和
第1课时等比数列的前n项和公式
第2课时等差、等比数列综合应用
第3课时数列求和
章末检测卷
第三章不等式
3.1不等关系与不等式
1课时
3.2一元二次不等式及其解法
第1课时一元二次不等式及其解法
第2课时一元二次不等式的应用
3.3二元一次不等式(组与简单的线性规划问题3.3.1 二元一次不等式(组与平面区域
1课时
3.3.2 简单的线性规划问题
第1课时简单的线性规划问题
第2课时简单的线性规划问题的应用3.4基本不等式第1课时基本不等式
第2课时基本不等式的应用
章末检测卷。
正弦定理和余弦定理课件PPT
【即时练习】
在△ABC 中,AB= 3,A=45°,C=75°,则 BC
等于( A )
A.3- 3
B. 2
C.2
D.3+ 3
[解析] 由sAinBC=sBinCA得,BC=3- 3.
探究点3 解三角形
1.一般地,把三角形的三个角A,B,C和它们的对 边a,b,c叫做三角形的元素. 2.已知三角形的几个元素,求其他元素的过程叫做 解三角形.
A. 3
B.2
C. 5
D. 7
【解析】选D.因为a2=b2+c2-2bccosA=22+32-2×2×3×
cos 60°=7,所以a=
7.
3.在△ABC中,a=3,b=4,c= ,则此三角形的最大角为
37
.
【解析】由c>b>a知C最大,
因为cosC=
a2
所以C=120°.
b2 c2 2ab
32 42 37 234
【拓展延伸】利用平面图形的几何性质和 勾股定理证明余弦定理 ①当△ABC为锐角三角形时,如图, 作CD⊥AB,D为垂足,则CD=bsinA, DB=c-bcosA,则a2=DB2+CD2=(c-bcosA)2+(bsinA)2 =b2+c2-2bccosA,其余两个式子同理可证;
b
b 2R, a 2R. 即得 :
A
sin B
sin A
C′
a b c 2R. R为三角形外接圆的半径
sin A sin B sin C
A
C
c
b aO
B
C
B`
Ob a B A` A c
人教版高中数学必修五正弦定理和余弦定理课件
解的情况
A为钝角或直角
a>b a≤b
一解 无解
a<bsinA
无解
A为锐角
a=bsinA bsinA<a<b
一解 两解
a≥b
一解
思考 : 在ABC中, a x, b 2, A 450,若这个三角形有
两解,则x的取值范围是 _____2_,_2____
正弦定理的推论: =2R (R为△ABC外接圆半径) (边换角)
在已知三边和一个角的情况下:求另一个角 ㈠用余弦定理推论,解唯一,可以免去判断舍取。 ㈡用正弦定理,计算相对简单,但解不唯一,要进行 判断舍取。
练习1:在△ABC中,已知
解:
=31+18 =49
∴b=7
练习2:
在△ABC中, a 7,b 4 3, c 13 ,求△ABC的最小角。
解:
72 (4 13)2 ( 13)2 274 3
二、可以用正弦定理解决的两类三角问题: (1)知两角及一边,求其它的边和角; (2)知三角形任意两边及其中一边的对角,求其它
的边和角(注意判断解的个数)
思考:你能用正弦定理来解释为什么在三角形中越大
的角所对的边就越大吗?
分析:设△ABC的三个角所对边长分别是a、b、c,
且∠A≥∠B≥∠C,
(1)若△ABC是锐角或直角三角形 ∵正弦函数y=sinx在 [0, ]上是增函数 2
2A 2k 2B 或 2A 2k 2B(k Z)
0 A,B ,∴k 0,则A B或A+B=
故△ABC为等腰三角形或直角三角形.
2
针对性练习 1、已知△ABC中,sin2A=sin2B+sin2C,且 b sinB=c sinC,则△ABC的形状是
§1.1.2-2 余弦定理(二)
利用余弦定理判断三角形的形状:
(1)若A为直角,则a² b² = +c²
(2)若A为锐角,则a² b² < +c²
(3)若A为钝角,则a² b² > +c²
2013-1-17 重庆市万州高级中学 曾国荣 wzzxzgr@ 12
五、作业
§1.1.2-2 余弦定理(二)
1. (2009 天津卷理)在⊿ABC 中,BC= 5 ,AC=3,
重庆市万州高级中学 曾国荣 wzzxzgr@
2
一、复习 4.余弦定理及其推论:
§1.1.2-2 余弦定理(二)
a b c 2bc cos A 2 2 2 b a c 2ac cos B 2 2 2 c a b 2ab cos C
2 2 2
b2 c 2 a 2 cos A 2bc 2 2 2 c a b cos B 2ca 2 a 2 b2 c cos C 2ab
定理选用
正弦定理 余弦定理
一般解法
由A+B+C=180°求角A,由正弦定 理求出b与c 由余弦定理求出第三边c,再由正 弦定理求出剩下的角 由正弦定理求出角B,再求角C,最后 求出 c边.可有两解,一解或无解.
两边和其中一 边的对角 (如a,b,A) 三边(a,b,c)
正弦定理
余弦定理
先由余弦定理求出其中两个角,再 利用内角和为180°求出第三个角.
sin B cos A 2sin A cos A
4 3 2 3 当 cos A 0时,A= ,B ,a ,b 2 6 3 3 1 2 3 △ ABC的面积为S ab sin C 2 3
2013-1-17 重庆市万州高级中学 曾国荣 wzzxzgr@ 10
《正弦定理和余弦定理以及其应用-余弦定理(二)》课件11(28张PPT)(人教A版必修5)共30页
(人教A版必修5)
21、静念园林好,人间良可辞。 22、步步寻往迹,有处特依依。 23、望云惭高鸟,临木愧游鱼。 24、结庐在人境,而无车马喧;问君 何能尔 ?心远 地自偏 。 25、人生归有道,衣食固其端。
61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿
高中数学第一章解三角形1.1正弦定理和余弦定理1.1.2余弦定理(2)课件新人教a必修5
1.1.2 余弦定理(二)
学习目标
1.熟练掌握余弦定理及其变形形式. 2.会用余弦定理解三角形. 3.能利用正弦、余弦定理解决有关三角形的恒等式化简、 证明及形状判断等问题.
内容索引
问题导学 题型探究 当堂训练
问题导学
知识点一 已知两边及其中一边的对角解三角形
思考2
△ABC中,sin 2A=sin 2B.则A,B一定相等吗?
答案
∵A,B∈(0,π),∴2A,2B∈(0,2π), ∴2A=2B或2A=π-2B, 即 A=B 或 A+B=2π.
梳理
判断三角形形状,首先看最大角是钝角、直角还是锐角;其次看是否 有相等的边(或角).在转化条件时要注意等价.
知识点三 证明三角形中的恒等式
(3)当A为锐角时,如图,以点C为圆心,以a为半径作圆,
三角形解的个数取决于a与CD和b的大小关系: ①当a<CD时,无解; ②当a=CD时,一解; ③当CD<a<b时,则圆与射线AB有两个交点,此时B为锐角或钝角,此 时B的值有两个. ④当a≥b时,一解. (4)如果a>b,则有A>B,所以B为锐角,此时B的值唯一.
引申探究 将本例中的条件(a+b+c)(b+c-a)=3bc改为(b2+c2-a2)2=b3c+c3b- a2bc,其余条件不变,试判断△ABC的形状. 解答
反思与感悟
(1)判断三角形形状,往往利用正弦定理、余弦定理将边、角关系相互转化, 经过化简变形,充分暴露边、角关系,继而作出判断. (2)在余弦定理中,注意整体思想的运用,如:b2+c2-a2 =2bccos A,b2+ c2=(b+c)2-2bc等等.
思考
前面我们用正弦定理化简过acos B=bcos A,当时是把边化 成了角;现在我们学了余弦定理,你能不能用余弦定理把角 化成边?
正弦定理和余弦定理ppt课件
正弦定理和余弦定理在物理学中有着 广泛的应用。
详细描述
在物理学中,许多现象可以用三角函数来描 述,如重力、弹力等。通过正弦定理和余弦 定理,我们可以更准确地计算这些力的作用 效果,从而更好地理解和分析物理现象。
06 总结与展望
总结正弦a、b、c与对应的角A、B、C 的正弦值之比都相等,即$frac{a}{sin A} = frac{b}{sin B} = frac{c}{sin C}$。
表达式形式
正弦定理的表达式形式简洁,易于理解和记 忆。相比之下,余弦定理的表达式较为复杂
,需要更多的数学基础才能理解和应用。
定理间的互补性
要点一
解决问题时的互补性
在解决三角形问题时,正弦定理和余弦定理常常是互补使 用的。对于一些问题,使用正弦定理可能更方便;而对于 另一些问题,使用余弦定理可能更合适。通过结合使用两 种定理,可以更全面地理解三角形的性质和关系,从而更 好地解决各种问题。
深入研究正弦定理和余弦定理的性质
可以进一步研究正弦定理和余弦定理的性质,如推广到多边形、高维空间等。
开发基于正弦定理和余弦定理的算法和软件
可以开发基于正弦定理和余弦定理的算法和软件,用于解决实际问题。
如何进一步深化理解与应用
深入理解正弦定理和余弦定理的证明过程
01
理解证明过程有助于更好地理解和应用正弦定理和余弦定理。
02 正弦定理
正弦定理的定义
总结词
正弦定理是三角形中一个重要的定理,它描述了三角形各边与其对应角的正弦值 之间的关系。
详细描述
正弦定理是指在一个三角形中,任意一边与其相对角的正弦值的比值都相等,即 $frac{a}{sin A} = frac{b}{sin B} = frac{c}{sin C}$,其中$a, b, c$分别代表三角形 的三边长度,$A, B, C$分别代表与三边相对应的角。
高二数学余弦定理2
2
c a 2ac cos B
2 2
2 2 2
同理可证 a
c a b 2ab cosC
2 2 2
b c 2bc cos A
1.余弦定理 :三角形任何一边的平方等于其他两边平方的和减去 这两边与它们夹角的余弦的积的两倍。
b2 c2 a2 2 2 2 cos A 即 a b c 2bc cos A 2bc
1.1.2 余弦定理 课件
1.正弦定理:在任一个三角形中,各边和它所对角的正弦比相等,
a 即 sin A
=
b sin B
=
c sin C
=2R(R为△ABC外接圆半径)
2.正弦定理的应用: 从理论上正弦定理可解决两类问题: 1.两角和任意一边,求其它两边和一角; 2.两边和其中一边对角,求另一边的对角,进而可求其它的边和 角。
∴b2+c2-a2=a2+c2-b2 ,∴a2=b2 ,∴a=b, 故此三角形是等腰三角形. 解法二:利用正弦定理将边转化为角. ∵bcosA=acosB 又b=2RsinB,a=2RsinA ,∴2RsinBcosA=2RsinAcosB ∴sinAcosB-cosAsinB=0 ∴sin(A-B)=0 ∵0<A,B<π ,∴-π <A-B<π ,∴A-B=0 即A=B 故此三角形是等腰三角形.
例1在Δ ABC中,已知a=7,b=10,c=6,求A、B和C.
b2 c2 a2 解:∵ cos A =0.725, ∴ A≈44° 2bc
a2 b2 c2 ∵cosC =0.8071, 2ab ∴ B=180°-(A+C)≈100.
c sin A (∵sinC= a ≈0.5954,∴
=
人教版高中数学必修5(A版) 1.1.2《余弦定理》 PPT课件
A
c a
B
C
余弦定理:
三角形中任何一边的平方等于其他 两边的平方的和减去这两边与它们的夹 角的余弦的积的两倍.
余弦定理:
三角形中任何一边的平方等于其他 两边的平方的和减去这两边与它们的夹 角的余弦的积的两倍. 即:
a b c 2bc cos A 2 2 2 b a c 2ac cos B 2 2 2 c a b 2ab cos C
复习引入
运用正弦定理能解怎样的三角形?
A
C
B
复习引入
运用正弦定理能解怎样的三角形? ①已知三角形的任意两角及其一边; ②已知三角形的任意两边与其中一边 的对角.
A C B
情境设置
问题1:
如果已知三角形的两边及其夹角, 根据三角形全等的判定方法,这个三 角形是大小、形状完全确定的三角形. 从量化的角度来看,如何从已知的两 边和它们的夹角求三角形的另一边和 两个角?
练习:
教材P. 8练习第1题. 在△ABC中,已知下列条件,解三角
形(角度精确到1 , 边长精确到0.1cm):
(1) a=2.7cm,b=3.6cm,C=82.2 ; (2) b=12.9cm,c=15.4cm,A=42.3 .
o o
o
课堂小结
1. 余弦定理是任何三角形边角之间存在 的共同规律,勾股定理是余弦定理的特 例; 2. 余弦定理的应用范围: ①已知三边求三角; ②已知两边及它们的夹角,求第三边.
思考4:
勾股定理指出了直角三角形中三边 平方之间的关系,余弦定理则指出了一 般三角形中三边平方之间的关系,如何 看这两个定理之间的关系?
思考4:
勾股定理指出了直角三角形中三边 平方之间的关系,余弦定理则指出了一 般三角形中三边平方之间的关系,如何 看这两个定理之间的关系?
高二数学必修5 正弦定理、余弦定理(二)
教学目标:
熟练掌握正、余弦定理应用,进一步熟悉三角函数公式和三角形中的有关性质,综合运用正、余弦定理、三角函数公式及三角形有关性质求解三角形问题;通过正、余弦定理在解三角形问题时沟通了三角函数与三角形有关性质的功能,反映了事物之间的内在联系及一定条件下的相互转化.
Ⅱ.讲授新课
[例1]在△ABC中,三边长为连续的自然数,且最大角是最小角的2倍,求此三角形的三边长.
分析:由于题设条件中给出了三角形的两角之间的关系,故需利用正弦定理建立边角关系.其中sin2α利用正弦二倍角展开后出现了cosα,可继续利用余弦定理建立关于边长的方程,从而达到求边长的目的.
解:设三角形的三边长分别为x,x+1,x+2,其中x∈N*,又设最小角为α,则
[例2]如图,在△ABC中,AB=4 cm,AC=3 cm,角平分线AD=2 cm,求此三角形面积.
分析:由于题设条件中已知两边长,故而联想面积公式S△ABC= AB·AC·sinA,需求出sinA,而△ABC面积可以转化为S△ADC+S△ADB,而S△ADC= AC·ADsin ,S△ADB= AB·AD·sin ,因此通过S△ABC=S△ADC+S△ADB建立关于含有sinA,sin 的方程,而sinA=2sin cos ,sin2 +cos2 =1,故sinA可求,从而三角形面积可求.
2.在△ABC中,已知角B=45°,D是BC边上一点,AD=5,AC=7,DC=3,求AB.
解:在△ADC中,
cosC= = = ,
又0<C<180°,∴sinC=
在△ABC中, =
∴AB= AC= · ·7= .
评述:此题在求解过程中,先用余弦定理求角,再用正弦定理求边,要求学生注意正、余弦定理的综合运用.
正弦定理和余弦定理-PPT课件
22
类型一
正弦定理和余弦定理的应用
解题准备:
1.正弦定理和余弦定理揭示的都是三角形的边角关系,根据题 目的实际情况,我们可以选择其中一种使用,也可以综合起 来运用.
2.在求角时,能用余弦定理的尽量用余弦定理,因为用正弦定 理虽然运算量较小,但容易产生增解或漏解.
23
3.综合运用正、余弦定理解三角形问题时,要注意以下关系式
32
∵0<A<π,0<B<π,∴sin2A=sin2B
∴2A=2B或2A=π-2B,即A=B或A+B= .
2
∴△ABC是等腰三角形或直角三角形.
33
解法二:同解法一可得2a2cosAsinB=2b2cosBsinA,
由正、余弦定理得
a2b•
b2
c2
a
2
=b2a•
a2 c2 b2
2bc
2ac
1 2 3 2 1 3.
2
2
(2)当|BC|=4时,S△=
1 2
|AB|·|BC|·sinB
1 2 3 4 1 2 3.
2
2
∴△ABC的面积为 2 3 或 3.
27
[反思感悟]本题主要考查正弦定理、三角形面积公式及分类 讨论的数学思想,同时也考查了三角函数的运算能力及推 理能力.
28
40
设云高CM x m,则CE x h,
DE x h, AE x h .
tan
又AE x h , x h x h
tan tan tan
解得x tan tan gh hgsin( ) m.
tan tan
sin( )
41
[反思感悟]在测量高度时,要理解仰角、俯角的概念.仰角和俯 角都是在同一铅垂面内,视线与水平线的夹角,当视线在水 平线之上时,称为仰角;当视线在水平线之下时,称为俯角.
人教版高中数学课件-高中数学必修五课件:1.1.2-2《余弦定理》(人教A版必修5)
[解] 设 b+c=4k,c+a=5k,a+b=6k,其中 k>0.易解得
a=72k,b=52k,c=32k,
3.在△ABC中,已知b=1,c=3,A= 60°,则a=________.
4.在△ABC中,若(a+b)2=c2+ab,则角 C等于________.
解析:∵(a+b)2=c2+ab,∴c2=a2+b2+ ab.
又c2=a2+b2-2abcosC.∴a2+b2+ab=a2 +b2-2abcosC.
由正弦定理sianA=sincC得
sinC=csianA=5×7
3 2 =5143,
∴最大角 A 为 120°,sinC=5143.
[例3] 在△ABC中,若b2sin2C+c2sin2B= 2bccosBcosC,试判断三角形的形状.
[分析] 由题目可获取以下主要信息:
① 边 角 之 间 的 关 系 : b2sin2C + c2sin2B = 2bccosBcosC;
利用余弦定理可以解决以下两类解斜三角 形的问题: 各角
(1)已知三边,求
第;三边和其他两个角
(2)已知两边和它们的夹角,求 .
1.在△ABC中,AB=5,BC=6,AC=8, 则△ABC的形状是
( )
A.锐角三角形 形
B.直角三角
C.钝角三角形
D.非钝角三角形
解 析 : 因 为 AB2 + BC2 - AC2 = 52 + 62 - 82<0,
[分析] 由条件知C为边a、b的夹角,故应 由余弦定理来求c的值.
(人教版)高中数学必修5课件:第1章 解三角形1.1.2
高效测评 知能提升
[问题3] 你会利用向量求边AC吗? [提示] 会.|B→A|=3,|B→C|=2,〈B→A,B→C〉=60°. A→C2=(B→C-B→A)2 =B→C2-2B→C·B→A+B→A2 =22-2×2×3×cos 60°+32 =7. ∴|A→C|= 7,即边AC为 7.
数学 必修5
1.利用余弦定理解三角形的步骤: (1) 两边和它们的夹角 余―弦――定→理 另一边 余―正 弦―弦 定――定 理―理 推→论 另两角
数学 必修5
第一章 解三角形
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
2.利用余弦定理解三角形的注意事项: (1)余弦定理的每个等式中包含四个不同的量,它们分别是 三角形的三边和一个角,要充分利用方程思想“知三求一”. (2)已知三边及一角求另两角时,可利用余弦定理的推论也 可利用正弦定理求解.利用余弦定理的推论求解运算较复杂, 但较直接;利用正弦定理求解比较方便,但需注意角的范围, 这时可结合“大边对大角,大角对大边”的法则或图形帮助判 断,尽可能减少出错的机会.
6- 2
2,
故A=60°时,C=75°,c=
6+ 2
2或A=120°时,
C=15°,c=
6- 2
2 .
数学 必修5
第一章 解三角形
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
已知两边及一边对角解三角形的方法及注意 事项
(1)解三角形时往往同时用到正弦定理与余弦定理,此时要 根据题目条件优先选择使用哪个定理.
第一章 解三角形
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
余弦定理
三角形中任何一边的平方等于其他两边的平方的和减去这 两边与它们的夹角的余弦的积的两倍.
1.1.2余弦定理-人教A版高中数学必修五课件
试一试
若三角形的三边为7,8,3,试判断此三角形的形
状.
钝角三角形
四.小结
四类解三角形问题:
(1)已知两角和任意一边,求其他两边和一角; (2)已知两边和其中一边的对角,求其他的边和 角。 (3)已知两边和它们的夹角,求第三边和其他两 个角; (4)已知三边,求三个角。
五、题型探究
题型一 余弦定理的简单应用
解:由余弦定理知,有 cos B a 2 c 2 b2 , 2ac
代入c a cos B, 得c a a 2 c 2 b2 , b2 c 2 a 2 2ac
△ABC是以A为直角的直角三角形,sin C c a
又 b a sin C, b a c c. a
△ ABC也是等腰三角形
又 2cos Asin B sin C,且sin B 0 cos A sin C c . 2sin B 2b
由余弦定理,有 cos A b2 c 2 a 2 , 2bc
c b2 c 2 a 2 ,即c 2 b2 c 2 a 2 , a b
2b
2bc
又 (a b c)(a b c) 3ab,且a b
例3、在△ABC中,a2>b2+c2,那么A是( A )
A、钝角
B、直角
C、锐角
D、不能确定
结论:一般地,判断△ABC是锐角,直角还是钝角
三角形,可用如下方法.
设a是最长边,则由 cos
A
b2
c2
a2
可得
2bc
(1)A为直角⇔a²=b²+c²
(2)A为锐角⇔a²<b²+c²
(3)A为钝角⇔a²>b²+c²
又 2cos Asin B sin C,
《正弦定理余弦定理》课件
THANKS
感谢观看
REPORTING
基础习题2
基础习题3
已知三角形ABC中,角A、B、C所对 的边分别为a、b、c,若$a = 8, b = 10, C = 45^{circ}$,求边c。
在三角形ABC中,已知A=60°,a=3, b=4, 求角B的大小。
进阶习题
进阶习题1
在三角形ABC中,已知A=45°, a=5, b=5sqrt{2}, 求边c。
详细描述
正弦定理是指在一个三角形中,任意一边与其对应角的正弦值的比等于其他两边的平方和与该边的平方的差的平 方根。余弦定理则是指在一个三角形中,任意一边的平方等于其他两边的平方和减去两倍的另一边与其对应角的 余弦值的乘积。
定理的推导过程
总结词
正弦定理和余弦定理的推导过程涉及到三角函数的定义、性质以及一些基本的 代数运算。
进阶习题2
已知三角形ABC中,角A、B、C所 对的边分别为a、b、c,若$a = 10, b = 8, C = 120^{circ}$,求 边c。
进阶习题3
已知三角形ABC中,角A、B、C所 对的边分别为a、b、c,若$a = 6, b = 8, C = 60^{circ}$,求边c。
综合习题
综合习题1
面积求解
总结词
余弦定理还可以用于计算三角形的面积,通过已知的两边及其夹角,使用面积公式进行计算。
详细描述
已知边a、边b和夹角C,可以使用余弦定理结合面积公式计算三角形ABC的面积,公式为:S = 1/2 ab sin(C)。
PART 04
正弦定理与余弦定理的对 比与联系
REPORTING
定理的异同点
详细描述
首先,利用三角函数的定义和性质,我们可以得到一些基本的等式。然后,通 过一系列的代数运算,将这些等式转化为正弦定理和余弦定理的形式。
第一章 1.1.2 第2课时 正弦定理和余弦定理
第2课时 正弦定理和余弦定理学习目标 1.熟练掌握正弦、余弦定理及其变形形式.2.能利用正弦、余弦定理解决有关三角形的恒等式化简、证明及形状判断等问题.知识点一 正弦定理、余弦定理及常见变形 1.正弦定理及常见变形(1)a sin A =b sin B =c sin C =2R (其中R 是△ABC 外接圆的半径); (2)a =b sin A sin B =c sin A sin C =2R sin A ;(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R .2.余弦定理及常见变形 (1)a 2=b 2+c 2-2bc cos A , b 2=a 2+c 2-2ac cos B , c 2=a 2+b 2-2ab cos C ; (2)cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.知识点二 有关三角形的隐含条件 (1)由A +B +C =180°可得sin(A +B )=sin C ,cos(A +B )=-cos C , (2)由大边对大角可得sin A >sin B ⇔A >B .(3)由锐角△ABC 可得任意两内角之和大于π2,进而可得sin A >cos B .1.当b 2+c 2-a 2>0时,△ABC 为锐角三角形.( × ) 2.△ABC 中,若cos 2A =cos 2B ,则A =B .( √ ) 3.在△ABC 中,恒有a 2=(b -c )2+2bc (1-cos A ).( √ )4.△ABC 中,若c 2-a 2-b 2>0,则角C 为钝角.( √ )题型一 利用正弦、余弦定理解三角形例1 在△ABC 中,若c cos B =b cos C ,cos A =23,求sin B 的值.解 由c cos B =b cos C ,结合正弦定理, 得sin C cos B =sin B cos C ,故sin(B -C )=0,∵0<B <π,0<C <π, ∴-π<B -C <π,∴B -C =0,B =C ,故b =c .∵cos A =23,∴由余弦定理可知,a 2=b 2+c 2-2bc cos A =2b 2-2b 2·23=23b 2,得3a 2=2b 2,再由余弦定理,得cos B =66,故sin B =306. 引申探究1.对于本例中的条件,c cos B =b cos C ,能否使用余弦定理? 解 由余弦定理,得c ·a 2+c 2-b 22ac =b ·a 2+b 2-c 22ab .化简得a 2+c 2-b 2=a 2+b 2-c 2, ∴c 2=b 2,从而c =b .2.本例中的条件c cos B =b cos C 的几何意义是什么? 解 如图,作AD ⊥BC ,垂足为D . 则c cos B =BD ,b cos C =CD .∴c cos B =b cos C 的几何意义为边AB ,AC 在BC 边上的射影相等. 反思感悟 (1)边、角互化是处理三角形边、角混合条件的常用手段. (2)解题时要画出三角形,将题目条件直观化,根据题目条件,灵活选择公式.跟踪训练1 在△ABC 中,已知b 2=ac ,a 2-c 2=ac -bc . (1)求A 的大小; (2)求b sin B c的值.解 (1)由题意及余弦定理知, cos A =b 2+c 2-a 22bc =ac +bc -ac 2bc =12,∵A ∈(0,π),∴A =π3.(2)由b 2=ac ,得b c =ab ,∴b sin Bc =sin B ·a b =sin B ·sin A sin B =sin A =32. 题型二 判断三角形形状例2 在△ABC 中,已知a ,b ,c 分别是角A ,B ,C 的对边,若a +b a =cos B +cos A cos B ,试判断三角形的形状.解 方法一 由正弦定理知,a =2R sin A ,b =2R sin B ,R 为△ABC 外接圆半径. ∵a +b a =cos B +cos Acos B , ∴sin A +sin B sin A =cos B +cos Acos B,∴sin A cos B +sin B cos B =sin A cos B +sin A cos A , ∴sin B cos B =sin A cos A , ∴sin 2B =sin 2A , ∴2A =2B 或2A +2B =π, 即A =B 或A +B =π2,∴△ABC 为等腰三角形或直角三角形.方法二 由a +b a =cos B +cos A cos B ,得1+b a =1+cos Acos B ,b a =cos Acos B,由余弦定理,得cos A cos B =b 2+c 2-a 22bc a 2+c 2-b 22ac=a b ·b 2+c 2-a2a 2+c 2-b 2,∴b a =a (b 2+c 2-a 2)b (a 2+c 2-b 2). a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2), a 2c 2-a 4=b 2c 2-b 4, c 2(a 2-b 2)=(a 2-b 2)(a 2+b 2). ∴a 2=b 2或c 2=a 2+b 2.∴△ABC 是等腰三角形或直角三角形.反思感悟 (1)要结合题目特征灵活选择使用正弦定理还是使用余弦定理. (2)变形要注意等价性,如sin 2A =sin 2B ⇏2A =2B . c 2(a 2-b 2)=(a 2-b 2)(a 2+b 2) ⇏c 2=a 2+b 2.跟踪训练2 在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不能确定答案 C解析 由正弦定理知,sin A =a 2R ,sin B =b 2R ,sin C =c2R .∴sin 2A +sin 2B <sin 2C 可化为 a 2+b 2<c 2,a 2+b 2-c 2<0. ∴cos C =a 2+b 2-c 22ab<0.∴角C 为钝角,△ABC 为钝角三角形.题型三 利用正弦、余弦定理进行求值、化简和证明 例3 在△ABC 中,有 (1)a =b cos C +c cos B ; (2)b =c cos A +a cos C ; (3)c =a cos B +b cos A ,这三个关系式也称为射影定理,请给出证明.证明 方法一 (1)由正弦定理,得 b =2R sin B ,c =2R sin C ,∴b cos C +c cos B =2R sin B cos C +2R sin C cos B =2R (sin B cos C +cos B sin C ) =2R sin(B +C ) =2R sin A =a . 即a =b cos C +c cos B .同理可证(2)b =c cos A +a cos C ; (3)c =a cos B +b cos A . 方法二 (1)由余弦定理,得cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab ,∴b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac=a 2+b 2-c 22a +a 2+c 2-b 22a =2a 22a =a .∴a =b cos C +c cos B .同理可证(2)b =c cos A +a cos C ; (3)c =a cos B +b cos A .反思感悟 证明三角形中边角混合关系恒等式,可以考虑两种途径:一是把角的关系通过正弦、余弦定理转化为边的关系,正弦借助正弦定理转化,余弦借助余弦定理转化;二是通过正弦定理把边的关系转化为角的关系.跟踪训练3 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若a =4,b =5,c =6,则sin 2Asin C = . 答案 1解析 由余弦定理得cos A =b 2+c 2-a 22bc =25+36-162×5×6=34,所以sin 2A sin C =2sin A cos A sin C =2a cos A c =4cos A 3=1.求三角形一角的值典例 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为( )A.π6B.π3或2π3C.π3D.π6或5π6 答案 B解析 ∵cos B =a 2+c 2-b 22ac ,∴a 2+c 2-b 2=2ac cos B ,代入已知等式得2ac ·cos B tan B =3ac , 即sin B =32,则B =π3或2π3. [素养评析] 选择运算方法是数学运算素养的内涵之一.运算从一点出发可以有无限个方向.一个式子也可以有无限个变形,逐个试探肯定不现实.那么如何选择运算方向才能算得出,算得快?要点有3个:①公式要熟,如本例至少应知道cos B =a 2+c 2-b 22ac ,tan B =sin Bcos B .②观察联想,如看到a 2+c 2-b 2应联想到a 2+c 2-b 2=2ac cos B .③权衡选择,如本例也可把所有的边都化为相应角的正弦,但权衡运算繁简,不如整体把a 2+c 2-b 2化为2ac cos B 简单.1.在△ABC 中,若b 2=a 2+c 2+ac ,则B 等于( ) A .60° B .45°或135° C .120° D .30°答案 C解析 ∵b 2=a 2+c 2-2ac cos B =a 2+c 2+ac , ∴ac =-2ac cos B ,cos B =-12,又0°<B <180°, ∴B =120°.2.在△ABC 中,角A ,B ,C 所对的边的长分别为a ,b ,c ,若a sin A +b sin B <c sin C ,则△ABC 的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不确定答案 C解析 根据正弦定理可得a 2+b 2<c 2.由余弦定理得cos C =a 2+b 2-c 22ab <0,故C 是钝角,△ABC 是钝角三角形.3.已知在△ABC 中,sin A ∶sin B ∶sin C =4∶3∶2,则cos B 等于( ) A.1116 B.79 C.2116 D.2916 答案 A解析 依题意设a =4k ,b =3k ,c =2k (k >0),则cos B =a 2+c 2-b 22ac =16k 2+4k 2-9k 22×4k ×2k =1116.4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且c cos A +a cos C =2c ,若a =b ,则sin B 等于( ) A.154 B.14 C.34D.32答案 A解析 ∵c cos A +a cos C =2c ,∴由正弦定理可得sin C cos A +sin A cos C =2sin C , ∴sin(A +C )=2sin C , ∴sin B =2sin C ,∴b =2c , 又a =b ,∴a =2c .∴cos B =a 2+c 2-b 22ac =4c 2+c 2-4c 22×2c 2=14,∵B ∈(0,π),∴sin B =1-cos 2B =154.1.熟悉正弦、余弦定理的各种变形,注意观察题目条件的结构特征,根据这些特征尽量使用正弦、余弦定理各种变形整体代换,可以有效减少计算量. 2.对所给条件进行变形,主要有两种方向 (1)化边为角. (2)化角为边.一、选择题1.若三条线段的长分别为5,6,7,则用这三条线段( ) A .能组成直角三角形 B .能组成锐角三角形 C .能组成钝角三角形 D .不能组成三角形答案 B解析 设最大角为θ,则最大边对应的角的余弦值为 cos θ=52+62-722×5×6=15>0,所以能组成锐角三角形.2.已知在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若2b 2-2a 2=ac +2c 2,则sin B 等于( ) A.154 B.14 C.32 D.12答案 A解析 由2b 2-2a 2=ac +2c 2,得2(a 2+c 2-b 2)+ac =0. 由余弦定理,得a 2+c 2-b 2=2ac cos B , ∴4ac cos B +ac =0.∵ac ≠0,∴4cos B +1=0,cos B =-14,又B ∈(0,π),∴sin B =1-cos 2B =154. 3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =13,b =3,A =60°,则边c 等于( )A .1B .2C .4D .6答案 C解析 ∵a 2=c 2+b 2-2cb cos A , ∴13=c 2+9-2c ×3×cos 60°, 即c 2-3c -4=0,解得c =4或c =-1(舍去).4.若△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,满足(a +b )2-c 2=4,且C =60°,则ab 的值为( )A.43 B .8-4 3 C .1 D.23 答案 A解析 由余弦定理c 2=a 2+b 2-2ab cos C =(a +b )2-2ab -2ab cos C , ∴(a +b )2-c 2=2ab (1+cos C ) =2ab (1+cos 60°)=3ab =4, ∴ab =43.5.已知在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且c 2-b 2=ab ,C =π3,则sin Asin B 的值为( )A.12 B .1 C .2 D .3 答案 C解析 由余弦定理得c 2-b 2=a 2-2ab cos C =a 2-ab =ab ,所以a =2b ,所以由正弦定理得sin Asin B =a b=2. 6.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若b +c =2a,3sin A =5sin B ,则C 等于( )A.π3B.3π4C.2π3D.5π6 答案 C解析 由正弦定理a sin A =b sin B 和3sin A =5sin B ,得3a =5b ,即b =35a ,又b +c =2a ,∴c =75a ,由余弦定理得cos C =a 2+b 2-c 22ab =-12,∴C =2π3.7.若△ABC 的两边长分别为2,3,其夹角的余弦值为13,则其外接圆的直径为( )A.922B.924C.928 D .9 2答案 B解析 设另一条边为x ,则x 2=22+32-2×2×3×13=9,∴x =3.设cos θ=13,θ为长度为2,3的两边的夹角,则sin θ=1-cos 2θ=223.∴2R =3sin θ=3223=924.8.在△ABC 中,∠ABC =π4,AB =2,BC =3,则sin ∠BAC 等于( )A.1010 B.105 C.31010 D.55答案 C解析 在△ABC 中,由余弦定理,得 AC 2=BA 2+BC 2-2BA ·BC ·cos ∠ABC =(2)2+32-2×2×3×cos π4=5.∴AC =5,由正弦定理BC sin ∠BAC =ACsin ∠ABC ,得sin ∠BAC =BC ·sin ∠ABCAC =3×sinπ45=3×225=31010.二、填空题9.在△ABC 中,B =60°,a =1,c =2,则csin C = .答案 2解析 ∵由余弦定理得,b 2=a 2+c 2-2ac cos B =3,∴b =3,∴由正弦定理得,c sin C =b sin B =332=2. 10.若△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a sin A +c sin C -2a sin C =b sin B ,则B = .答案 45°解析 由正弦定理,得a 2+c 2-2ac =b 2,由余弦定理,得b 2=a 2+c 2-2ac cos B ,故cos B =22. 又因为B 为三角形的内角,所以B =45°.11.在△ABC 中,a 2-b 2=3bc ,sin C =23sin B ,则A = .答案 30°解析 由sin C =23sin B 及正弦定理,得c =23b ,把它代入a 2-b 2=3bc ,得a 2-b 2=6b 2,即a 2=7b 2.由余弦定理,得cos A =b 2+c 2-a 22bc =b 2+12b 2-7b 22b ·23b =6b 243b 2=32, 又0°<A <180°,所以A =30°.三、解答题12.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,a 2+c 2-b 2=65ac . 求2sin 2A +C 2+sin 2B 的值. 考点 正弦、余弦定理与其他知识的综合题点 正弦、余弦定理与三角变换的综合解 由已知得a 2+c 2-b 22ac =35, 所以cos B =35, 又因为角B 为△ABC 的内角,所以sin B >0,所以sin B =1-cos 2B =45,所以2sin 2A +C 2+sin 2B =2cos 2B 2+sin 2B =1+cos B +2sin B cos B=1+35+2×45×35=6425. 13.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b -c )sin B +(2c -b )sin C .(1)求角A 的大小;(2)若sin B +sin C =3,试判断△ABC 的形状.解 (1)∵2a sin A =(2b -c )sin B +(2c -b )sin C ,∴2a 2=(2b -c )b +(2c -b )c ,即bc =b 2+c 2-a 2,∴cos A =b 2+c 2-a 22bc =12. ∵0°<A <180°,∴A =60°.(2)∵A +B +C =180°,∴B +C =180°-60°=120°,由sin B +sin C =3,得sin B +sin(120°-B )=3,∴sin B +sin 120°cos B -cos 120°sin B =3,∴32sin B +32cos B =3,即sin(B +30°)=1. 又∵0°<B <120°,∴30°<B +30°<150°,∴B +30°=90°,即B =60°,∴A =B =C =60°,∴△ABC 为正三角形.14.在△ABC 中,若a 2=bc ,则角A 是( )A .锐角B .钝角C .直角D .不确定答案 A解析 ∵cos A =b 2+c 2-a 22bc =b 2+c 2-bc 2bc=⎝⎛⎭⎫b -c 22+3c 242bc >0,∴0°<A <90°,即角A 是锐角.15.在△ABC 中,A ,B ,C 的对边分别为a ,b ,c ,且sin A a =3cos C c. (1)求C 的大小;(2)如果a +b =6,CA →·CB →=4,求c 的值.考点 正弦、余弦定理与其他知识的综合题点 正弦、余弦定理与平面向量的综合解 (1)由正弦定理,sin A a =3cos C c 可化为sin A 2R sin A =3cos C 2R sin C,即tan C = 3.又∵C ∈(0,π),∴C =π3. (2)CA →·CB →=|C A →||CB →|cos C =ab cos C =4, 且cos C =cos π3=12.∴ab =8. 由余弦定理,得c 2=a 2+b 2-2ab cos C=(a +b )2-2ab -2ab cos π3=(a +b )2-3ab =62-3×8=12.∴c =2 3.。
正弦定理和余弦定理课件PPT
在钝角三角形 ABC 中,a=1,b=2,c=t,且 C 是最大角,则 t 的取值范围是________.
[错解] ∵△ABC 是钝角三角形且 C 是最大角,∴C>90°, ∴cosC<0,∴cosC=a2+2ba2b-c2<0, ∴a2+b2-c2<0,即 1+4-t2<0. ∴t2>5.又 t>0,∴t> 5, 即 t 的取值范围为( 5,+∞).
sin A
3
y 4sin x 4sin( 2 x) 2 3 3
4 3 sin(x ) 2 3, 6
A ,0 B x 2 .
3
3
故 x ( , 5),sin(x ) (1 ,1],
6 66
62
∴y的取值范围为 (4 3,6 3].
正、余弦定理的综合应用 【名师指津】正、余弦定理的综合应用
(2)由于 a:b:c=1: 3:2, 可设 a=x,b= 3x,c=2x. 由余弦定理的推论,得 cosA=b2+2cb2c-a2 =32x×2+43xx2×-2xx2= 23,故 A=30°. 同理可求得 cosB=12,cosC=0,所以 B=60°,C=90°.
已知三角形的三边长分别为 x2+x+1,x2-1 和 2x+ 1(x>1),求这个三角形的最大角.
∵∠ADC=45°,DC=2x, ∴在△ADC 中,根据余弦定理,得 AC2=AD2+DC2-2AD×DC×cos45°, AC2=4x2-4x+2, 又 AC= 2AB, ∴AC2=2AB2, 即 x2-4x-1=0,解得 x=2± 5. ∵x>0,∴x=2+ 5,即 BD=2+ 5.
名师辨误做答
第一章
解三角形
第一章
1.1 正弦定理和余弦定理
1.1.2余弦定理(第二课时)
A=30 度, A=30 度, A=30 度, 120度 A=120度, A=120度, 120度
10, a=10, 10, a=10, 10, a=10, 10, a=10, a=10, 10,
( 20; 一解) b=20; 一解) 一解) b=6; (一解) 15; 二解) b=15;(二解) 一解) b=5; (一解) 无解) b=15. (无解)
即 b 2 • 2 s in A • c o s B = a 2 • 2 s in B • c o s A , b 2 s in A c o s B 即 2 • • =1 . a s in B c o s A
b sin B 因为Q = ;代入 a sin A
s in 2 B s in A c o s B s in B • c o s B =1 ⇒ =1 • • 2 s in A s in B c o s A s in A • c o s A
的值, 在△ABC中,已知 ,b,A的值,三角形 中 已知a, , 的值 的解的情况如上表, 的解的情况如上表,同学们可以在做题时认 真体会,以防出现错误. 真体会,以防出现错误
课堂练习: 课堂练习: 1.在 根据下列条件解三角形, 1.在△ABC中,根据下列条件解三角形,其中有两个 解的是 (D )
即 , 对 三 角 形
b + c = a ⇔ A为 角 直 ;
2 2 2
b + c > a ⇔ A为 角 锐 ; b2 + c2 < a2 ⇔ A为 角 钝
2 2 2
新课: 新课:正、余弦定理的综合运用
已知下列条件解三角形. 例1.在△ABC中,已知下列条件解三角形. 1.在
(1) (2) (3) (4) (5)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(角化边公式)
余弦定理:
a b c 2bc cos A 2 2 2 b2 a c 2ac cos B 2 2 c a b 2ab cos C
2
2 2
b2 c 2 a 2 cos A 2bc
cos B cosC
c2 a 2 b2 2ca a 2 b2 c 2 2ab
正弦定理和余弦定理
正弦定理:
a b c 2 R( R为ABC外接圆的半径) sin A sin B sin C
正弦定理的一些常见变形:
()a 2R sin A, b 2R sin B, c 2R sin C (边化角公式) 1
a b c (2) A sin ,sin B ,sin C 2R 2R 2R (3)a : b : c sin A : sin B : sin C
25
已知两边和其中一边对角,求另一边及另两角
注:解决这类问题可有两种方法: (1)正弦定理 (2)利用方程的思想,引出含第三边为未知量 的方程, 间接利用余弦定理解决问题
二. 判断三角形形状
一是应用正弦定理、余弦定理将已知条件 转化为边与边之间的关系,通过因式分解 等方法化简得到边与边关系式,从而判断 出三角形的形状;(角化边) 判断三角形的形状的途径有两条: 二是应用正弦定理、余弦定理将已知条件 转化为角与角之间三角函数的关系,通过 三角恒等变形以及三角形内角和定理得到 内角之间的关系,从而判断出三角形的形状。 (边化角)
例.在△ABC中,bCosA=acosB,则三角形为( C
A.直角三角形
) B.锐角三角形C.等腰三角形D. b2 c2 a2 a2 c2 b2 a ∵bcosA=acosB,∴b· 2bc 2ac
∴b2+c2-a2=a2+c2-b2,∴a2=b2,∴a=b, 故此三角形是等腰三角形. 解法二:利用正弦定理将边转化为角.∵bcosA=acosB 又b=2RsinB,a=2RsinA,∴2RsinBcosA=2RsinAcosB ∴sinAcosB-cosAsinB=0∴sin(A-B)=0 ∵0<A,B<π ,∴-π <A-B<π ,∴A-B=0 即A=B 故此三角形是等腰三角形.
三角形的面积求解
S ABC
S ABC
1 底高 2
1 1 1 ab sin C bc sin A ac sin B 2 2 2
在ABC中,A 1200 , AB 5, BC 7, 求ABC的面积。
1、在△ABC中,已知sinA:sinB:sinC=5:7:8,
当a=b时,△ABC为等腰三角形; 当c2=a2+b2时,△ABC为直角三角形. ∴△ABC为等腰三角形或直角三角形. 解法2:由a·cosA=b·cosB以及正弦定 理得 2R·sinA·cosA=2R·sinB·cosB,即sin2A =sin2B. 又∵A、B∈(0,π),∴2A、2B∈(0,2π), 故有2A=2B或2A+2B=π,即A=B或A +B=.
④已知两边和它的夹角,求第三边和其他两个角,用 余弦 定理。 要数形结合,画图分析边角关系,合理使用公式。
例、Δ ABC中,c= 求b和B、C a c 解:∵ = sin A sin C
,A=450 a=2, 6
0 c sin A 3 6 sin 45 ∴ sinC= a =sinC= = 2 2
练习: 在△ABC中,a· cosA=b· cosB, 试确定此三角形的形状.
解析:解法 1:由 a· cosA=b· cosB 以及余弦定理得 b2+c2-a2 a2+c2-b2 a· 2bc =b· 2ac , 得 a2(b2+c2-a2)=b2(a2+c2-b2), a2b2+a2c2-a4-a2b2-b2c2+b4=0,即(a2-b2)(c2-a2 -b2)=0. ∴a2=b2 或 c2=a2+b2, ∴a=b 或 c2=a2+b2.
补充练习
1.在△ABC中,若
a b bc c,
2 2 2
判断三角形形状并求角A.
(答案:A=1200)
2.在△ABC中,若a2>b2+c2,则△ABC为 钝角三角形 ;若a2=b2+c2, 直角三角形 2<b2+c2且b2<a2+c2且c2<a2+b2, 则△ABC为 ;若a
则△ABC为
角化边公式
问题一:三角形中的边角运算 问题二:三角形的形状判断 问题三:三角形的面积求解
可归纳出—— 解斜三角形的类型:
求角时要注意用“大 边对大角” 进行取舍。 ①已知两角和任一边,求其他两边和一角,用 正弦 定理
②已知两边和一边的对角,求第三边和其他两角,用 正弦 定理。 ③已知三边求三角,用 余弦 定理。
∴C=600 或C=1200
∴当C=600时,B=750
6 sin 750 c sin B b= = = 3 +1 0 sin 60 sin C
24
∴当C=1200 时,B=150 ,
6 sin150 c sin B b= = = 3 -1 0 sin 60 sin C
∴b= 3 +1, B=750 ,C=600 或b= 3 -1, B=150 ,C=1200
则B=
120
0
应用三:钝角三角形的三边长分别为a,a+1,
a+2,其最大内角不超过120°,求a的取值
范围.
a>0 解:易知 ,即 a>1,又三角 a+a+1>a+2
形为钝角三角形, 设最大边 a+2 所对应角为 α,
1 则 - ≤cosα<0 , 由 余 弦 定 理 得 cosα = 2 a2+a+12-a+22 a-3 = , 2a 2· aa+1 1 a-3 3 ∴- ≤ <0,解得 ≤a<3. 2 2a 2
锐角三角形 。
3.在△ABC中,sinA=2cosBsinC,则三角形为 等腰三角形 。
判断三角形形状
(1)a cos A b cos B; 等腰三角形或直角三角形
a b c ( 2) ; 等边三角形 cos A cos B cos C
(3)b a cosC
直角三角形
等腰三角形
(4)sin A 2sin B cos C