高二数学10月月考试题文(1)
山西省部分学校2024-2025学年高二上学期10月月考数学试题(含答案)
2024~2025学年高二10月质量检测卷数学(A 卷)考生注意:1.本试卷分选择题和非选择题两部分。
满分150分,考试时间120分钟。
2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚。
3.考生作答时,请将答案答在答题卡上。
选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效。
4.本卷命题范围:人教A 版选择性必修第一册第一章~第二章。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知直线经过,两点,则的倾斜角为()A.B.C.D.2.已知圆的方程是,则圆心的坐标是( )A. B. C. D.3.在长方体中,为棱的中点.若,,,则()A. B. C. D.4.两平行直线,之间的距离为( )B.3D.5.曲线轴围成区域的面积为( )l (A (B l 6π3π23π56πC 2242110x y x y ++--=C ()2,1-()2,1-()4,2-()4,2-1111ABCD A B C D -M 1CC AB a = AD b =1AA c = AM =111222a b c -+ 111222a b c ++12a b c-+12a b c++ 1:20l x y --=2:240l x y -+=y =xA. B. C. D.6.已知平面的一个法向量,是平面内一点,是平面外一点,则点到平面的距离是( )A. B.D.37.在平面直角坐标系中,圆的方程为,若直线上存在点,使以点为圆心,1为半径的圆与圆有公共点,则实数的取值范围是( )A. B.C. D.8.在正三棱柱中,,,为棱上的动点,为线段上的动点,且,则线段长度的最小值为( )A.2二、选择题:本题共3小题,每小题6分,共18分。
福建省莆田市第二中学2024-2025学年高二上学期10月月考数学试题
福建省莆田市第二中学2024-2025学年高二上学期10月月考数学试题一、单选题1.已知某数列为34562491625---L ,,,,,,按照这个规律,则该数列的第10项是( ) A .1081-B .1081C .11100-D .111002.已知等比数列{}210416,n a a a ,=,=则6a =( ) A .8 B .±8 C .10 D .±103.已知两点()()3,1,2,5M N -,直线l 过点()1,1P 且与线段MN 相交,则直线l 的斜率k 的取值范围是( ) A .(],1-∞- B .[)4,+∞C .[]1,4-D .(][),14,-∞-⋃+∞4.若数列{}n a 的前n 项和为n S ,且满足12a =,23a =,21n n n a a a +++=,则2024S 的值为( ) A .0B .3C .4D .55.已知数列{}n a 满足()123232n a a a na n n ++++=+L ,则66a =( ) A .2B .13366C .13766D .139666.我国的《洛书》中记载着世界上最古老的一个幻方,《洛书》上的图案由45个黑白圆点分别组合,摆成方形,南西东北分别有1,3,7,9个点,四角各有2,4,6,8个点,中间有5个点,简化成如图33⨯的方格,填好数字后各行、各列以及对角线上的3个数字之和都等于15.推广到一般情况,将连续的正整数21,2,3,,n L 填入n n ⨯的方格中,使得每行、每列以及两条对角线上的数字之和都相等,这样一个n 阶幻方就填好了,记n 阶幻方对角线上的数字之和为n S ,则8S 的值为( )A .111B .175C .260D .3697.在数列{}n a 中,25n a n n=+,则12232425a a a a a a -+-++-=L ( ) A .25B .32C .62D .728.已知数列{}n a 的前n 项和为n S ,且满足111,1,2,n n na n a a a n ++⎧==⎨⎩为奇数为偶数,则100S =( )A .5132156⨯-B .5132103⨯-C .5032156⨯-D .5032103⨯-二、多选题9.已知数列{}n a 的通项公式为()627nn a n ⎛⎫=+⋅ ⎪⎝⎭,则下列说法正确的是( )A .1a 是数列{}n a 的最小项B .4a 是数列{}n a 的最大项C .5a 是数列{}n a 的最大项D .当5n ≥时,数列{}n a 递减10.已知等差数列{}n a 的公差为()0d d ≠,前n 项和为n S ,若16121410S S S S +=+,则下列结论正确的是( )A .260S =B .若131S =-,则393S =C .当13n =时,n S 取得最小值D .当0d >时,满足0n S <的最大整数n 的值为2511.已知n T 是正项数列{}n a 的前n 项积,且n n n n a T a T +=,将数列{}n T 的第1项,第3项,第7项,…,第21n -项抽出来,按原顺序组成一个新数列{}n b ,令n n n c T b =,数列{}n c 的前n 项和为n S ,且不等式()1n n S λ>-⋅对*n ∀∈N 恒成立,则( )A .数列{}n T 是等比数列B .1+=n n a nC .12n n S n +=⋅D .实数λ的取值范围是(−4,16)三、填空题12.已知数列{}n a 的前n 项和()21n S n =+,则数列{}n a 的通项公式为13.等比数列 a n 中,112a =,44a =-,令1n n b a =,则数列 b n 前n 项和为n S =.14.已知函数31()31x x f x -=+,数列{}n a 满足121a a ==,()*3n n a a n +=∈N ,()()2340f a f a a ++=,则20241i i a ==∑.四、解答题15.已知公差不为0的等差数列{}n a 满足11a =.若5a ,2a ,1a 成等比数列. (1)求{}n a 的通项公式;(2)设12n n n b a -=+,求数列{}n b 的前n 项和n S16.已知直线l 过定点()1,4A ,且直线l 在x ,y 轴上的截距依次为m 和n . (1)若直线l 在x ,y 轴上的截距相等,求直线l 的方程;(2)若直线l 分别与x 轴正半轴、y 轴正半轴交于B ,C 两点,求直线与两坐标轴正半轴围成三角形BOC 面积最小时直线l 的方程.17.已知数列{}n a 满足11a =,132n n a a +=+,*n N ∈.数列{}n b 满足11b =,11n n n S n S b n +-=+++,其中n S 为数列{}n b 是前n 项和.(1)求数列{}n a ,{}n b 的通项公式; (2)令()()21n n n b n c n a +=+,求数列{}n c 的前n 项和n T ,并证明:1524n T ≤<. 18.记n S 是公差不为0的等差数列 a n 的前n 项和,已知3453a a S +=,154a a S =,数列 b n 满足()11322n n n b b n --=+≥,且111b a =-.(1)求 a n 的通项公式;(2)证明数列12n nb ⎧⎫+⎨⎬⎩⎭是等比数列,并求数列 b n 的通项公式; (3)求证:对于任意正整数n ,2221211112n a a a ++⋅⋅⋅+<19.已知数列{}n a 满足:11a =,25a =,2144n n n a a a ++=-. (1)求数列{}n a 的通项公式;(2)对于数列{}n b ,规定{}n b ∆为数列{}n b 的一阶差分数列,其中1n n n b b b +∆=-.如果{}n b 的一阶差分数列满足()*,,i j b b i j i j ∆≠∆∀∈≠N ,则称{}n b 是“绝对差异数列”.判断数列{}n a 是否为“绝对差异数列”并给出证明.(3)设12231nn a c n =+-,()()()112121nn n n n c d +-=++,记数列{}n d 的前n 项和为n T ,若对任意的n *∈N ,n m T ≥恒成立,求m 的取值范围.。
山东省菏泽市鄄城县第一中学2024-2025学年高二上学期10月月考数学试题(含解析)
高二数学试题考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写济楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.4.本卷命题范围:人教A 版选择性必修第一册第二章~第三章第2节.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线的倾斜角为( )A.B. C. D.2.已知双曲线的焦距为4,则的渐近线方程为( )A. B.C.D.3.已知椭圆与椭圆有相同的焦点,则( )A.B.C.3D.44.已知点在圆的外部,则实数的取值范围为( )A.B.C.D.5.已知点为双曲线左支上的一点,分别为的左、右焦点,则( )A.2B.4C.6D.86.已知点,若过定点的直线与线段相交,则直线的斜率的取值范围103x --=π6π32π35π6()222:11x C y a a-=>C y =y x=±y =y x =()222:1016x y C b b +=>221125x y +=b =()0,1-22220x y x my +--+=m ()3,∞-+()3,2-()()3,22,∞--⋃+()2,2-M 22:1916x y C -=12,F F C 1122MF F F MF +-=()()2,3,3,2A B ---()1,1P l AB l k是( )A.B.C.D.7.当变动时,动直线围成的封闭图形的面积为( )A.C.D.8.已知椭圆,若椭圆上的点到直线的最短距离,则长半轴长的取值范围为( )A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.若直线与直线平行,则的值可以是()A.0B.2C.D.410.已知点是椭圆上关于原点对称且不与的顶点重合的两点,分别是的左、右焦点,为原点,则( )A.的离心率为B.C.的值可以为3D.若的面积为,则11.已知点及圆,点是圆上的动点,则( )A.过原点与点的直线被圆截得的弦长为B.过点作圆的切线,则切线方程为C.当点到直线的距离最大时,过点与平行的一条直线的方程为D.过点作圆的两条切线,切点分别为,则直线的方程为(]3,4,4∞∞⎡⎫--⋃+⎪⎢⎣⎭34,4⎡⎤-⎢⎥⎣⎦1,5∞⎛⎫+ ⎪⎝⎭3,44⎡⎤-⎢⎥⎣⎦α2cos2sin24cos x y ααα+=π2π4π()2222:10x y E a b a b +=>>E 50x y ++=a (]0,2((⎤⎦()240a x y a -++=()()222420a x a a y -+++-=a 2-,A B 22:143x y C +=C 12,F F C O C 12228AF BF +=AB 12AF F V 3212154AF AF ⋅=()4,4P 22:40C x y x +-=Q C O P C P C 3440x y -+=Q PC Q PC 240x y ---=P C ,A B AB 240x y +-=三、填空题:本题共3小题,每小题5分,共15分.12.若方程表示椭圆,则的取值范围是__________.13.已知圆与两直线都相切,且圆经过点,则圆的半径为__________.14.把放置在平面直角坐标系中,点在直线的上方,点在边上,平分,且点都在轴上,直线的斜率为,则点的坐标为__________;直线在轴上的截距为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)已知直线及点.(1)若与垂直的直线过点,求与的值;(2)若点与点到直线的距离相等,求的斜截式方程.16.(本小题满分15分)已知双曲线的顶点为,且过点.(1)求双曲线的标准方程;(2)过双曲线的左顶点作直线与的一条渐近线垂直,垂足为为坐标原点,求的面积.17.(本小题满分15分)已知圆经过点,且与圆相切于原点.(1)求圆的标准方程;(2)若直线不同时为0与圆交于两点,当取得最小值时,与圆交于两点,求的值.18.(本小题满分17分)已知椭圆的上顶点与左,右焦点连线的斜率之积为.(1)求椭圆的离心率;(2)已知椭圆的左、右顶点分别为,且,点是上任意一点(与不重合),直线22164x y m m +=--m C 220,220x y x y -+=++=C ()1,1C ABC V A BC ,D E BC AD ,BAC AE BC ∠⊥,A E y AD 40,y AD -+==AC3-C AB x :210l x ay a -+-=()2,2A -l 320x my -+=A m a A ()1,1B -l l ()2222:10,0x y C a b a b-=>>()(),A B -()4P C C A C ,H O OHA V 1C ()2,0-222:480C x y x y +-+=O 1C :20(,l ax by a b a b ++-=)1C ,A B AB l 2C ,C D CD ()2222:10x y C a b a b+=>>45-C C ,A B 6AB =M C ,A B分别与直线交于点为坐标原点,求.19.(本小题满分17分)已知点是平面内不同的两点,若点满足,且,则点的轨迹是以有序点对为“稳点”的-阿波罗尼斯圆.若点满足,则点的轨迹是以为“稳点”的-卡西尼卵形线.已知在平面直角坐标系中,.(1)若以为“稳点”的-阿波罗尼斯圆的方程为,求的值;(2)在(1)的条件下,若点在以为“稳点”的5-卡西尼卵形线上,求(为原点)的取值范围;(3)卡西尼卵形线是中心对称图形,且只有1个对称中心,若,使得以—阿波罗尼斯圆与—卡西尼卵形线都关于同一个点对称.,MA MB :5l x =,,P Q O OP OQ ⋅,A B P (0PAPBλλ=>1)λ≠P (),A B λQ ()0QA QB μμ⋅=>Q (),A B μ()()()2,0,,2A B a b a -≠-(),A B λ221240x y x +-+=,,a b λQ (),A B OQ O 0,b λ==,a μ(),A B μ参考答案1.A 直线,所以其倾斜角为.故选A.2.D 由题意可知,所以,所以双曲线的渐近线方程为.故选D.3.C 因为椭圆与㮁圆有相同的焦点.所以,解得或(舍去).故选C.4.C 由题意可知解得或.故选C.5.B 因为为双曲线左支上的一点,分别为的左、右焦点,所以,故,由于,所以.故选B6.A 直线过定点,且直线与线段相交,由图象知,或,则紏率的取值范围是.故选A 7.D 方程可化为变动时,点到该直线的距离,则该直线是圆的切线,所以动直线围成的封闭图形的面积是圆的面积,面积为.故选D.103x --=π6214a +=23a =22213x C y -=y x =()22221016x y C b b +=>221125x y +=216125b -=-3b =3b =-222(1)20,(2)420,m m ⎧-++>⎨-+-⨯>⎩32m -<<-2m >M 22:1916x y C -=12,F F C 212MF MF a -=112222MF F F MF c a +-=-3,4,5a b c ====1122221064MF F F MF c a +-=-=-= l ()312131,1,4,21314PA PA P k k ----==-==--- AB ∴34k …4k -…k (]3,4,4∞∞⎡⎫--⋃+⎪⎢⎣⎭2cos2sin24cos x a y a a +=()2cos2sin22,x a y a α-+=()2,02d ==22(2)4x y -+=2cos2sin24cos x y ααα+=22(2)4x y -+=4π8.C 设直线与,则的方程为,由整理,得,因为上的点到直线的最短,所以,整理得,由椭圆的离心,可知,所以,所以,则,所以.故选C.9.AB 因为两直线平行,由斜率相等得,所以或,解得或0或,当时两直线重合,舍去.故选.10.AD 对于A ,椭圆中,,离心率为,A 正确;对于B.由对称性可得,所以,B 错误;对于C ,设且,则,故,所以C 错误;对于D ,不妨设在第一象限,,则,是,则,则,故,故D 正确.故选AD.11.ACD 圆的标准方程为,圆的半径,对于,直线的方程为0,点到直线,所以直线被圆截得的弦长为正确;对于,圆的过点的切线斜率存在时,设其方程为,即,,解得,此时切线方程为,另一条切线是斜率不存在的切线错误;对于C ,当点到直线的距离最大时,过点与平行的一条直线,即为与直线距离为2的图的切线,直线的斜率为2,设该切线方程为,则正确;对于D ,设,,可得切线的方程分别为l 50x y ++=l 30x y ++=22221,30,x y ab x y ⎧+=⎪⎨⎪++=⎩()2222222690a b x a x a a b +++-=E 50x y ++=()()422222Δ36490a a baa b =-+-…2290a b +-…E 22112b a -=2212b a =221902a a +-…26a …0a <…222424a a a a ---=-++20a -=2244a a ++=2a =2-2a =-AB 22:143x y C +=2,1a b c ===12c a =21BF AF =222124AF BF AF AF a +=+==(),,B m n n <<0n ≠22143m n +=)2OB ===()24,AB OB =∈A ()00,A x y 12013222AF F S c y =⋅⋅=V 032y =31,2A ⎛⎫⎪⎝⎭21335,4222AF AF ==-=12154AF AF ⋅=C ()22(2) 4.2,0x y C -+=C 2r =A OP x y -=C OP OP C A =B C P ()44y k x -=-440kx y k --+=234k =3440x y -+=4,x B =Q PC Q PC PC C PC 20x y t -+=2,4t =-±(11,A x y ()22,B x y ,PA PB,将代入两方程得,所以者在直线上,所以直线的方程为,即,D 正确.故选ACD.12.且且也给分) 由题意得,且6—,所以且,所以实数的取值范围是.易知直线与关于轴对称或关于对称,又当圆心在上时,该圆不存在,所以圆的圆心在轴上,设圆的方程为,由题意可知,,整理得,解得或,当时,,当时,.14.(2分)(3分) 直线的方程与直线联立得,因为直线的斜率为3,所以直线的方程为,由,得直线的斜率为0,由,得,所以直线的方程为,与联立得.设直线与轴交于点,点关于直线的对称点为,则点在直线上,所以.联立解得代入,得,所以直线在轴上的截距为15.解:(1)因为直线过点,所以,解得,因为与垂直,()()11122220,20x x y y x x x x y y x x +-+=+-+=()4,4P ()()11122244240,44240x y x x y x +-+=+-+=()()1122,,,A x y B x y ()44240x y x +-+=AB ()44240x y x +-+=240x y +-=()()4,55,6{|46m m ⋃<<5},46m m ≠<<5m ≠60,40m m ->->4m m ≠-46m <<5m ≠m ()()4,55,6⋃220x y -+=220x y ++=x 2x =-2x =-C x C 222()x a y r -+==22730a a -+=12a =3a =12a =r =3a =r =(1,1)AE 0x =AD 40y -+=()0,4A AC -AC 34y x =-+AE BC ⊥BC AD =AD 3AE =BC 1y =34y x =-+()1,1C AB x (),0F t F AD (),G a b G AC b a t =-402b -+=122,a tb ⎧=--⎪⎪⎨⎪=+⎪⎩34y x =-+t =AB x 320x my -+=()2,2A -6220m --+=2m =-3220x y ++=l所以.(2)解法一,若点与点到直线的距离相等,则直线与的斜率相等或的中点在上,又直钱的斜率为的中点坐标为,所以或.解得或.当时,的斜截式方程为,当时,的斜截式方程为.解法二:因为点与点到直线的距离相等,.解得,当时,的斜截式方程为,当时,的斜截式方程为.16.解:(1)因为双曲线的顶点为,且过点,所以,且,解得的标准方程为.(2)由双曲线方程,得渐近线方程为,,又,所以所以.123,32a a ==A()1,1B -l AB l AB l AB ()211,21AB --=---11,22⎛⎫- ⎪⎝⎭11a =-1121022a a --+-=1a =-1a =1a =-l 3y x =-+1a =l 1y x =+A ()1,1B -l =1a =±1a =-l 3y x =-+1a =l 1y x =+()2222:10,0x y C a b a b-=>>()(),A B -()4P a =2254161a b -=a b ==C 221188x y -=221188x y -=230x y ±=,OH HA OA ⊥=OH =11542213OHA S OH HA =⨯⨯==V17.解:(1)因为圆与图相切,且点在圆的外部,所以圆与圆外切,则三点共线,图化为.所以圆心,故圆心在直线上.设圆的标准方程为,又圆过原点,则,圆经过点,则,解得,故圆的标准方程为.(2)由(1)可知,圆的圆心坐标为,由直线化为,所以直线恒过点,易知点在圆的内部,设点到直线的距离为,则,要使取得最小值,则取得最大值,所以,此时.所以,则直线的方程为,即.又圆心到直线的距离,所以.18.解:(1)椭圆的上顶点的坐标为,左、右焦点的坐标分别为,由题意可知,即,1C 2C ()2,0-2C 1C 2C 12,,C O C 222:480C x y x y +-+=22(2)(4)20x y -++=()22,4C -1C 2y x =-1C 222()(2)x t y t r -++=1C ()0,0O 225r r =1C ()2,0-222(2)(02)5t t t --++=1t =-1C 22(1)(2)5x y ++-=1C ()1,2-:20l ax by a b ++-=()()210a x b y ++-=L ()2,1P -P 1C 1C l d AB ==AB d 1PC l ⊥121112PC k -==-+1t k =-l ()12y x -=-+10x y ++=2C 10x y ++=d 'CD ==C ()0,b ()(),0,,0c c -45b b c c ⎛⎫⋅-=- ⎪⎝⎭2245b c =又,所以,即的离心率.(2)由,得,即,所以椭圆的方程为.设,则,即,又,则,因为直线分别与直线交于点,所以,所以.19.(1)解:因为以为“稳点”的一阿波罗尼斯圆的方程为,设是该圆上任意一点,则,所以,因为为常数,所以,且,所以.(2)解:由(1)知,设,由,所以,,監理得,即,所以,222a b c =+2295a c =225,9c ca a ==C e =6AB =26a =3,2a c b ===C 22194x y +=()00,M x y 2200194x y +=22003649x y -=()()3,0,3,0A B -()()0000:3,:333y yMA y x MB y x x x =+=-+-,MA MB :5L x =,P Q 0000825,,5,33y y P Q x x ⎛⎫⎛⎫⎪ ⎪+-⎝⎭⎝⎭()()220000220000163648216641615,5,2525253399999x y y y OP OQ x x x x -⎛⎫⎛⎫⋅=⋅=+=+=-= ⎪ ⎪+---⎝⎭⎝⎭(),A B λ221240x y x +-+=(),P x y 22124x y x +=-22222222222222||(2)4416||()()22(122)24PA x y x y x xPB x a y b x y ax by a b a x by a b +++++===-+-+--++--+-+22||||PA PB 2λ2240,0a b b -+==2a ≠-2,0,a b λ====()()2,0,2,0A B -(),Q x y 5QA QB ⋅=5=()222242516x y x ++=+2240y x =--…42890x x --…()()22190x x +-…209x ……由,得,即的取值范围是.(3)证明:若,则以一阿波罗尼斯圆的方程为,整理得,该圆关于点对称.由点关于点对称及,可得—卡西尼卵形线关于点对称,令,解得,与矛盾,所以不存在实数,使得以—阿波罗尼斯圆与—卡西尼卵形线都关于同一个点对称OQ ==209r ……13OQ ……OQ []1,30b =(),A B 2222(2)2()x y x a y ⎡⎤++=-+⎣⎦()22244240x y a x a +-++-=()22,0a +()()2,0,,0A B a -2,02a -⎛⎫ ⎪⎝⎭QA QB μ⋅=μ2,02a -⎛⎫⎪⎝⎭2222a a -+=2a =-2a ≠=-,a μ(),A B μ。
河北省鸡泽县第一中学2024-2025学年高二上学期10月月考数学试题 (含答案)
2024~2025学年度高二上学期10月月考数学全卷满分150分,考试时间120分钟.注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将条形码粘贴在答题卡上的指定位置.2.请按题号顺序在答题卡上各题目的答题区战内作答,写在试卷、草稿纸和答题卡上的非答题区域均无效.3.选择题用2B 铅笔在答题卡上把所选答案的标号涂黑;非选择题用黑色签字笔在答题卡上作答;字体工整,笔迹清楚.4.考试结束后,请将试卷和答题卡一并上交.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设直线的倾斜角为,则( )A.B.C.D.2.已知平面的一个法向量为,直线的一个方向向量为,若,则( )A.B.C.1D.23.已知直线与平行,且过点,则( )A.B.3C.D.24.如图,在正三棱锥中,点为的重心,点是线段上的一点,且,记,则( )A. B.:80l x +=αα=30 60 120 150α()4,2,n m =- l ()1,3,2u =--l ∥αm =2-1-1:250l x y ++=2:30l x ay b ++=2l ()3,1-ab=3-2-P ABC -G ABC V M PG 3PM MG =,,PA a PB b PC c === AM =311444a b c -++ 311434a b c-++C. D.5.已知从点发出的一束光线,经过直线反射,反射光线恰好过点,则反射光线所在的直线方程为()A. B.C. D.6.如图,在直三棱柱中,是等边三角形,,,则点到直线的距离为()7.已知实数满足,且,则的取值范围为()A. B.C. D.8.在正三棱锥中,,点满足,则的最小值为()D.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知空间向量,且,则下列说法正确的是()111444a b c-++111434a b c-++()1,5-220x y-+=()2,72110x y+-=410x y--=4150x y+-=90x y+-=111ABC A B C-ABCV1AA=2AB=C1AB ,x y21y x=-12x-……63yx--[)9,3,4∞∞⎛⎤--⋃+⎥⎝⎦93,4⎡⎤-⎢⎥⎣⎦[)9,3,4∞∞⎛⎤-⋃+⎥⎝⎦9,34⎡⎤⎢⎥⎣⎦P ABC-3PA AB==M()2PM xPA yPB x y PC=++--AM ()()()1,2,3,23,0,5,2,4,a abc m=+=-=a ∥cA.B.C. D.10.已知直线和直线,下列说法正确的是( )A.始终过定点B.若,则或C.若,则或2D.当时,始终不过第三象限11.如图,在棱长为2的正方体中,点是底面内的一点(包括边界),且,则下列说法正确的是()A.点的轨迹长度为B.点到平面的距离是定值C.直线与平面D.三、填空题:本题共3小题,每小题5分,共15分.12.已知过点的直线在轴上的截距是其在轴上截距的3倍,则满足条件的一条直线的方程为__________.13.已知向量,若共面,则__________.14.如图,在正三棱柱中,为棱上的动点(包括端点),为b = 6m =()2b c a +⊥cos ,b c <>= 1:0l x ay a +-=()2:2310l ax a y ---=2l 21,33⎛⎫⎪⎝⎭1l ∥2l 1a =3-12l l ⊥0a =0a >1l 1111ABCD A B C D -,P M 1111A B C D AP BM AC =⊥P πM 1A BD CP ABCD PM 1()3,1P l x y l ()()()3,2,3,1,3,2,7,0,a b c λ=-=--= ,,a b cλ=111ABC A B C -12,AB AA M ==11B C N的中点,则直线与平面所成角的正弦值的取值范围为__________.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程及演算步骤.15.(本小题满分13分)已知的顶点坐标为.(1)若点是边上的中点,求直线的方程;(2)求边上的高所在的直线方程.16.(本小题满分15分)如图,在直三棱柱中,,点分别为棱的中点.(1)求证:平面;(2)求直线与直线的夹角的余弦值.17.(本小题满分15分)如图,在直四棱柱中,四边形是矩形,,点是棱上的一点,且.AM CN 11ABB A ABC V ()()()1,6,3,1,4,2A B C ---D AC BD AB 111ABC A B C -1,AB AC AB AC AA ⊥==,E F 11,AB A B AF ∥1B CE 1C E AF 1111ABCD A B C D -ABCD 11,2AC DB AA ⊥==P 1DD 12DP PD =(1)求证:四边形为正方形;(2)求直线与平面所成角的正弦值.18.(本小题满分17分)已知直线过定点.(1)求过点且在两坐标轴上截距的绝对值相等的直线的方程;(2)若直线交轴正半轴于点,交轴负半轴于点的面积为(为坐标原点),求的最小值,并求此时直线的方程.19.(本小题满分17分)如图,在四棱锥中,底面为直角梯形,,且平面平面,在平面内过作,交于,连接.(1)求证:平面;(2)求二面角的正弦值;(3)在线段上存在一点,使直线与平面,求的长.ABCD 1AD PAC ()1:340l kx y k k ---=∈R P P 2l 1l x A y ,B ABO V S O S 1l P ABCD -ABCD 90,1,2,60,30ADC BCD BC CD PD PDA PAD ∠∠∠∠======= PAD ⊥ABCD ABCD B BO AD ⊥AD O PO PO ⊥ABCD A PB C --PA M BM PAD PM2024~2025学年度高二上学期10月月考·数学参考答案、提示及评分细则1.A 因为直线的斜率为,又,.故选A.2.B 因为,所以,所以,解得.故选B.3.D 因为直线与直线平行,,解得,直线过,则得,经验证与不重合,.故选D.4.A 因为为的重心,所以,又点是线段上的一点,且,所以.故选A.5.C 点关于对称的点设为,则,反射光线经过点,则反射光线所在的直线方程为,即,故选C.6.C 取的中点,则,建立如图所示的空间直角坐标系,所以,所以,所以在上的投影的长度为,:80l x +=k =tan α=0180α< …30α= l ∥αn u ⊥ 4620n u m ⋅=-++= 1m =-1:250l x y ++=2:30l x ay b ++=12121313,,22k k k k a a=-=-=⇒-=-6a =2:l ()3,1-960b -++=3b =1l 2l 2ab∴=G ABC V ()()()1112333AG AB AC PB PA PC PA b c a =+=-+-=+-M PG 3PM MG =()()1131311132444443444AM AG GM AG GA AP PA AG a b c a b c a =+=++=-+=-+⨯+-=+-()1,5-220x y -+=(),x y ()51312351202y x x y y x -⎧=-⎪=⎧⎪+⇒⎨⎨=+⎩⎪--+=⎪⎩()()733,3,2,7,423k -==--()433y x =--+4150x y +-=AC O ,BO AC BO ⊥=O xyz -()()10,1,0,,0,1,0A B C -()1,0,2,0AB CA ==-CA 1AB11CA AB AB ⋅==故点到直线的距离为.故选C.7.D 由于点满足关系式,且,可知在线段上移动,且,,设,则,因为点在线段上,所以的取值范围是,故选D.8.B 延长至点,使得,所以,又由,所以四点共面,所以的最小值为点到平面的距离,又点是的中点,所以点到平面的距离是点到平面的距离的一半,又,易得点到平面的距离为,所以.故选B.9.ABD ,故A 正确;,设,故B 正确;,故C 错误;,故D正确.故选ABD.10.ACD11.BCD 因为,所以,即点在底面C 1AB d ==(),x y 21y x =-12x -……(),x y AB ()1,3A --()2,3B ()3,6Q ()()63963,331432QA QB k k ---====---(),x y AB 63y x --9,34⎡⎤⎢⎥⎣⎦,,PA PB PC ,,D E F 2,2,2PD PA PE PB PF PC ===()()22222x y x y PM xPA yPB x y PC PD PE PF --=++--=++ ()21222x y x y --++=,,,M D E F AM A DEF A PD A DEF P DEF 6PD PE PF DE DF EF ======P DEF AM ()()()1,2,3,23,0,5,2,1,1,a a b b b =+=-∴=--∴== ()2,4,,c m a = ∥c 121,24263a c m m λλλλλ=⎧⎧=⎪⎪=∴=⇒⎨⎨⎪⎪==⎩⎩()()22,2,8,2212283260b c a b c +=-⋅+=-⨯+⨯+⨯=≠cos ,b c b c b c⋅<>===⋅AP ===11A P =E内是以为圆心、半径为1的圆上,所以点的轨迹长度为,故A 错误;在正方体中,,又平面,所以平面,所以点的轨迹为线段,又平面,所以点到平面的距离是定值,故B 正确;因为点到的距离为定值2,记点在平面的投影为,所以当取得最小值时,直线与平面所成角的正切值最大,又,所以直线与平面所成角的正切,故C 正确;到直线的距离为落在上时,,故D 正确.故选BCD.12.答案见错题集13.5 因为共面,所以存在实数,使得,即,即14. 取中点,以为原点,建立如图所示的空间直角坐标系,则,,设,且,因为为的中点,故,于是,平面的一个法向量为,1111A B C D 1A 14P π21111ABCD A B C D -AC BD ⊥,,,AC BM BD BM B BD BM ⊥⋂=⊂DBM AC ⊥DBM M 11B D 11B D ∥1A BD M 1A BD P ABCD P ABCD P 'P C 'CP ABCD min 1P C ='CP ABCD 1A 11B D d =,P M 11A C min 1PM =-,,a b c ,x y c xa yb =+ ()()()7,0,3,2,31,3,2x y λ=-+--73023,3,2, 5.32x yx y x y x y λλ=-⎧⎪=-+===⎨⎪=-⎩解得AB O O ()0,1,0A )CM a a ⎛- ⎝a ⎡∈⎣N AM 2a N ⎛ ⎝2a CN a ⎛= ⎝ 11ABB A )OC =cos ,OC CN OC CN OC CN⋅<>==⋅设,则,,故.15.(1)因为点是边上的中点,则,所以,所以直线的方程为,即;(2)因为,所以边上的高所在的直线的斜率为,所以边上的高所在的直线方程为,即.16.(1)证明:由于三棱柱是直三棱柱,所以,因为点分别为棱的中点,所以,则四边形是平行四边形,所以,又因为平面平面,所以平面(2)解:因为直三棱柱,所以以为原点,所在直线为轴,轴,轴建立如图所示的空间直角坐标系,不妨设,则,于是,设直线与直线的夹角为,则2a t t ⎡=∈⎢⎣cos ,OC CN <>==1t ⎡∈⎢⎣cos ,OC CN <>∈ D AC 3,42D ⎛⎫⎪⎝⎭14103932BD k --==--BD ()10139y x +=+109210x y -+=167312AB k --==-+AB 27-AB ()2247y x -=--27220x y +-=111ABC A B C -11AB A B ∥,E F 11,AB A B 1AE B F ∥1AEB F AF ∥1B E AF ⊄11,B CE B E ⊂1B CE AF ∥1;B CE 111,ABC A B C AB AC -⊥A 1,,AB AC AA x y z 12AA =()()()10,2,2,1,0,0,1,0,2C E F ()()11,2,2,1,0,2C E AF =--=1C E AF θ11cos C E AF C E AFθ⋅==⋅所以直线与直线17.(1)证明:连接,如图所示,在直四棱柱中,平面,又平面,所以,又平面,所以平面,又平面,所以,又四边形是矩形,所以四边形为正方形;(2)解:以为坐标原点,所在的直线分别为轴,轴,轴,建立空间直角坐标系,如图所示,所以,所以,设平面的一个法向量为,所以,令,解得,所以平面的一个法向量为,设直线与平面所成角的大小为,1C E AF DB 1111ABCD A B C D -1BB ⊥ABCD AC ⊂ABCD 1BB AC ⊥111111,,,AC DB BB DB B BB DB ⊥⋂=⊂1BDB AC ⊥1BDB BD ⊂1BDB AC BD ⊥ABCDABCD D 1,,DA DCDD x y z )()()14,,0,0,2,0,0,3AC D P ⎛⎫ ⎪⎝⎭()144,,233PA PC AD ⎫⎛⎫=-=-=⎪ ⎪⎭⎝⎭PAC (),,n xy z =403403n EA z n EC z ⎧⋅=-=⎪⎪⎨⎪⋅=-=⎪⎩3z =x y ==PAC ()n =1AD PAC θ所以,即直线与平面.18.答案见错题集19.答案见错题集111sin cos ,||n AD n AD n AD θ⋅==== 1AD PAC。
四川省成都2024-2025学年高二上学期10月月考试题 数学含答案
成都2024—2025学年度高二上期10月月考数学试卷(答案在最后)注意事项:1.本试卷分第I 卷和第II 卷两部分;2.本堂考试120分钟,满分150分;3.答题前,考生务必将自己的姓名、学号正确填写在答题卡上,并使用2B 铅笔填涂;4.考试结束后,将答题卡交回.第I 卷一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项符合题目要求.1.现须完成下列2项抽样调查:①从12瓶饮料中抽取4瓶进行食品卫生检查;②某生活小区共有540名居民,其中年龄不超过30岁的有180人,年龄在超过30岁不超过60岁的有270人,60岁以上的有90人,为了解居民对社区环境绿化方面的意见,拟抽取一个容量为30的样本.较为合理的抽样方法分别为()A .①随机数法,②抽签法B .①随机数法,②分层抽样C .①抽签法,②分层抽样D .①抽签法,②随机数法2.已知向量()1,2,1a =- ,()3,,b x y = ,且//a b r r,那么实数x y +等于()A .3B .-3C .9D .-93.若,l n 是两条不相同的直线,,αβ是两个不同的平面,则下列命题中为真命题的是()A .若l n ⊥,n β⊥,则l //βB .若αβ⊥,l α⊥,则l //βC .若//αβ,l α⊂,则l //βD .若//l α,//αβ,则l //β4.如图,空间四边形OABC 中,,,OA a OB b OC c ===,点M 为BC 中点,点N 在侧棱OA上,且2ON NA =,则MN =()A .121232a b c--+B .211322a b c-++C .211322a b c-- D .111222a b c+-5.为了养成良好的运动习惯,某人记录了自己一周内每天的运动时长(单位:分钟),分别为53,57,45,61,79,49,x ,若这组数据的第80百分位数与第60百分位数的差为3,则x =()A .58或64B .59或64C .58D .596.已知点D 在ABC V 确定的平面内,O 是平面ABC 外任意一点,正数,x y 满足23DO xOA yOB OC =+- ,则yx 21+的最小值为()A .25B .29C .1D .27.现有一段底面周长为12π厘米和高为12厘米的圆柱形水管,AB 是圆柱的母线,两只蜗牛分别在水管内壁爬行,一只从A 点沿上底部圆弧顺时针方向爬行π厘米后再向下爬行3厘米到达P 点,另一只从B 沿下底部圆弧逆时针方向爬行π厘米后再向上爬行3厘米爬行到达Q 点,则此时线段PQ 长(单位:厘米)为()A .B .C .6D .128.如图,四边形,4,ABCD AB BD DA BC CD =====ABD △沿BD 折起,当二面角A BD C --的大小在[,63ππ时,直线AB 和CD 所成角为α,则cos α的最大值为()A .16B C .16D .8二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列命题中,正确的是()A .两条不重合直线12,l l 的方向向量分别是()2,0,1a =-,()4,0,2b =- ,则12//l l B .直线l 的方向向量()1,1,2c =-,平面α的法向量是()6,4,1m =- ,则l α⊥C .两个不同的平面α,β的法向量分别是()2,2,1u =-,()3,4,2v =- ,则αβ⊥D .直线l 的方向向量()0,1,1d = ,平面α的法向量()1,0,1n =,则直线l 与平面α所成角的大小为π310.小刘一周的总开支分布如图①所示,该周的食品开支如图②所示,则以下说法正确的是()A .娱乐开支比通信开支多5元B .日常开支比食品中的肉类开支多100元C .娱乐开支金额为100元D .肉类开支占储蓄开支的1311.已知四面体OABC 的所有棱长都为1,,D E 分别是,OA BC 的中点.N M ,是该四面体内切球球面上的两点,P 是该四面体表面上的动点.则下列选项中正确的是()A.DE 的长为44B.D 到平面ABC 的距离为66C.当线段MN 最长时,PN PM ⋅的最大值为31D.直线OE 与直线AB 所成角的余弦值为33第II 卷三、填空题:本题共3小题,每小题5分,共15分.12.某校高一年级共有学生200人,其中1班60人,2班50人,3班50人,4班40人.该校要了解高一学生对食堂菜品的看法,准备从高一年级学生中随机抽取40人进行访谈,若采取按比例分配的分层抽样,则应从高一2班抽取的人数是.13.已知(2,1,3),(1,4,2)a b =-=-- ,c (4,5,)λ=,若,,a b c 三向量不能构成空间向量的一组基底,则实数λ的值为.14.在正方体ABCD A B C D -''''中,点P 是AA '上的动点,Q 是平面BB C C ''内的一点,且满足A D BQ '⊥,则平面BDP 与平面BDQ 所成角余弦值的最大值为.四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.(满分13分)15.已知向量()6a m = ,,()1,0,2=b ,()()2R c m =∈ (1)求()a b c ⋅-的值;(2)求cos b c ,;(3)求a b - 的最小值.(满分15分)16.成都市政府委托市电视台进行“创建文明城市”知识问答活动,市电视台随机对该市1565~岁的人群抽取了n人,绘制出如图所示的频率分布直方图,回答问题的统计结果如表所示.组号分组回答正确的人数回答正确的人数占本组的频率第一组[15,25)500.5第二组[25,35)180a第三组[35,45)x0.9第四组[45,55)90b第五组[55,65)y0.6a b x y的值;(1)分别求出,,,(2)从第二、三、四、五组回答正确的人中用分层抽样的方法抽取7人,则从第二、三、四、五组每组回答正确的人中应各抽取多少人.-中,ABCD是边长为2的正方形,平面PBC⊥(满分15分)17.如图,在四棱锥P ABCDPC=.平面ABCD,直线PA与平面PBC所成的角为45︒,2(1)若E,F分别为BC,CD的中点,求证:直线AC⊥平面PEF;(2)求二面角D PA B--的正弦值.(满分17分)18.随着时代不断地进步,人们的生活条件也越来越好,越来越多的人注重自己的身材,其中体脂率是一个很重要的衡量标准.根据一般的成人体准,女性体脂率的正常范围是20%至25%,男性的正常范围是15%至18%.这一范围适用于大多数成年人,可以帮助判断个体是否存在肥胖的风险.某市有关部门对全市100万名成年女性的体脂率进行一次抽样调查统计,抽取了1000名成年女性的体脂率作为样本绘制频率分布直方图,如图.(1)求a ;(2)如果女性体脂率为25%至30%属“偏胖”,体脂率超过30%属“过胖”,那么全市女性“偏胖”,“过胖”各约有多少人?(3)小王说:“我的体脂率是调查所得数据的中位数.”小张说:“我的体脂率是调查所得数据的平均数.”那么谁的体脂率更低?(精确到小数点后2位)(满分17分)19.如图,四面体ABCD 中,2,AB BC BD AC AD DC ======(1)求证:平面ADC ⊥平面ABC ;(2)若(01)DP DB λλ=<<,①若直线AD 与平面APC 所成角为30°,求λ的值;②若PH ⊥平面,ABC H 为垂足,直线DH 与平面APC 的交点为G .当三棱锥CHP A -体积最大时,求DGGH的值.高二上10月月考数学答案一、单选题:C D C C A B A B二、多选题:AC;BCD;BC3三、填空题:10;5;318:(1)由频率直方图可得,(2)由频率分布直方图可得样本中女性⨯=,所以全市女性50.020.1⨯=,10000000.1100000。
四川省南充2024-2025学年高二上学期10月月考数学试题含答案
南充高中高2023级上期第一次月考数学试卷(答案在最后)考试时间:120分钟满分:150分注意事项:1.答题前,务必将自己的姓名、班级、考号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,将答案书写在答题卡相应位置上,写在本试卷上无效.4.考试结束后将答题卡交回.一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的4个选项中,只有一项是符合题目要求的)1.“2sin 2θ=”是“π4θ=”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【答案】C 【解析】【分析】判断“sin 2θ=”和“π4θ=”之间的逻辑推理关系,即可得答案.【详解】当2sin 2θ=时,π2π,Z 4k k θ=+∈或3π2π,Z 4k k θ=+∈,推不出π4θ=;当π4θ=时,必有2sin 2θ=,故“sin 2θ=”是“π4θ=”的必要不充分条件,故选:C2.设l ,m 是两条不同的直线,α,β,γ是三个不同的平面,下列说法正确的是()A.若//l α,//m α,则//l mB.若//l α,//l β,则//αβC.若l α⊥,m α⊥,则//l mD.若αγ⊥,βγ⊥,则//αβ【答案】C【分析】根据直线与直线的位置关系、直线与平面的位置关系和平面与平面的位置关系依次判断选项即可.【详解】对选项A ,若//l α,//m α,则l 与m 的位置关系是平行,相交和异面,故A 错误.对选项B ,若//l α,//l β,则α与β的位置关系是平行和相交,故B 错误.对选项C ,若l α⊥,m α⊥,则根据线面垂直的性质得l 与m 的位置关系是平行,故C 正确.对选项D ,若αγ⊥,βγ⊥,则α与β的位置关系是平行和相交,故D 错误.故选:C3.若sin 2αα-+=,则tan(π)α-=()A. B.C.3D.3-【答案】C 【解析】【分析】由sin 2αα-+=两边同时平方,从而利用sin tan cos =aa a可以实现角α的弦切互化,【详解】由sin 2αα-+=两边同时平方,可得22sin cos 3cos 4αααα-+=,∴222222sin cos 3cos tan 34sin cos tan 1ααααααααα-+-+==++,解得tan 3α=-.()tan tan 3παα∴-=-=.故选:C.4.如图,在正方体1111ABCD A B C D -中,,M N 分别为11,DB A C 的中点,则直线1A M 和BN 夹角的余弦值为()A.23B.33C.23D.13【解析】【分析】以1,,DA DC DD 所在直线为,,x y z 轴,建立空间直角坐标系,根据向量夹角的余弦公式求解即可.【详解】分别以1,,DA DC DD 所在直线为,,x y z轴,建立如图所示空间直角坐标系,设正方体1111ABCD A B C D -的棱长为2,则()1(2,0,2),(1,1,0),(2,2,0),1,1,2A M B N ,所以()1(1,1,2),1,1,2MA BN =-=--设向量1MA 与BN的夹角为θ,则1142cos 63MA BN MA BNθ⋅===⋅,所以直线1A M 和BN 夹角的余弦值为23,故选:C .5.在三棱锥S ABC -中,()()20SC SA BS SC SA ++⋅-=,则ABC V 是()A.等边三角形B.直角三角形C.等腰三角形D.等腰直角三角形【答案】C 【解析】【分析】由向量的线性运算得到2,SC SA BS BC BA SC SA BC BA ++=+-=- ,从而说明22BC BA = ,即可求解.【详解】()()22,SC SA BS SC SA SB SC SB SA SB BC BA SC SA AC BC BA ++=+-=-+-=+-==- ,()()()()2220SC SA SB SC SA BC BA BC BA BC BA ∴+-⋅-=+⋅-=-= ,BC BA ∴=,即BC BA =,所以ABC V 是等腰三角形.故选:C6.杭州亚运会的三个吉祥物分别取名“琮琮”“宸宸”“莲莲”,如图,现将三张分别印有“琮踪”“宸宸”“莲莲”图案的卡片(卡片的形状、大小和质地完全相同)放入盒子中.若从盒子中依次有放回地取出两张卡片,则一张为“琮琮”,一张为“宸宸”的概率是()A.38B.29C.59D.34【答案】B 【解析】【分析】记印有“琮琮”“宸宸”“莲莲”图案的卡片分别为,,A B C ,用列举法即可求解.【详解】记印有“琮琮”“宸宸”“莲莲”图案的卡片分别为,,A B C ,(),x y 代表依次摸出的卡片,{},,,x y A B C ∈,则基本事件分别为:()()()()()()()()(),,,,,,,,,,,,,,,,,A A A B A C B A B B B C C A C B C C ,其中一张为“琮琮”,一张为“宸宸”的共有两种情况:()(),,,A B B A ,所以从盒子中依次有放回地取出两张卡片,则一张为“琮琮”,一张为“宸宸”的概率是29.故选:B.7.已知函数()3f x x =,若正实数a ,b 满足()()490f a f b +-=,则11a b+的最小值为()A.1B.3C.6D.9【答案】A 【解析】【分析】根据函数的奇偶性可得49a b +=,再结合基本不等式“1”的代换可得解.【详解】由已知()3f x x =,定义域为R ,且()()()33f x x x f x -=-=-=-,则()f x 是R 上的奇函数,且函数()3f x x =在R 上单调递增,又()()490f a f b +-=,即()()()499f a f b f b =--=-,则49a b =-,即49a b +=,且0a >,0b >,所以()1111114144415999a b a b a b a b a b b a b a ⎛⎫⎛⎫⎛⎫+=++=+++=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭又44a b b a +≥=,即()11141554199a b a b b a ⎛⎫+=++≥+= ⎪⎝⎭,当且仅当4a b b a =,即32a =,3b =时,等号成立,即11a b+的最小值为1.故选:A.8.已知正三棱锥P ABC -的六条棱长均为6,S 是ABC V 及其内部的点构成的集合.设集合{}5T Q S PQ =∈=,则集合T 所表示的曲线长度为()A.5πB.2πC.3D.π【答案】B 【解析】【分析】求出以P 为球心,5为半径的球与底面ABC 的截面圆的半径后即可求解.【详解】设顶点P 在底面上的投影为O ,连接BO ,则O 为三角形ABC 的中心,且23632BO =⨯⨯=,故PO ==因为5PQ =,故1OQ =,故S 的轨迹为以O 为圆心,1为半径的圆,集合T 所表示的曲线长度为2π故选:B二、多选题(本题共3小题,每小题6分,共18分.在每小题给出的4个选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部份分分,有选错的得0分.)9.函数()()sin 0,π2f x x ϕωϕω⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,则()A.2ω=B.π6ϕ=C.()f x 的图象关于点π,012⎛⎫⎪⎝⎭对称D.()f x 在区间5ππ,4⎛⎫⎪⎝⎭上单调递增【答案】ACD 【解析】【分析】根据三角函数的图象,先求得ω,然后求得ϕ,根据三角函数的对称性、单调性确定正确答案.【详解】()()5ππ2ππ,π,2,sin 22632T T f x x ωϕω=-=∴==∴==+,π2sin π133f ϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,由于πππ2π7π,22636ϕϕ-<<<+<,所以2πππ,326ϕϕ+==-,所以A 选项正确,B 选项错误.()ππππsin 2,2π,,66122k f x x x k x k ⎛⎫=--==+∈ ⎪⎝⎭Z ,当0k =时,得π12x =,所以()f x 关于π,012⎛⎫⎪⎝⎭对称,C 选项正确,11111πππππ2π22π,ππ,26263k x k k x k k -+<-<+-+<<+∈Z ,当11k =时,得()f x 在54π,π63⎛⎫ ⎪⎝⎭上递增,则()f x 在区间5ππ,4⎛⎫⎪⎝⎭上单调递增,所以D 选项正确.故选:ACD10.对于随机事件A 和事件B ,()0.3P A =,()0.4P B =,则下列说法正确的是()A.若A 与B 互斥,则()0.3P AB =B.若A 与B 互斥,则()0.7P A B ⋃=C.若A 与B 相互独立,则()0.12P AB =D.若A 与B 相互独立,则()0.7P A B ⋃=【答案】BC 【解析】【分析】根据互斥事件、相互独立事件的概率公式计算可得.【详解】对于A :若A 与B 互斥,则()0P AB =,故A 错误;对于B :若A 与B 互斥,则()()()0.7P A B P A P B =+= ,故B 正确;对于C :若A 与B 相互独立,则()()()0.12P AB P A P B ==,故C 正确;对于D :若A 与B 相互独立,则()()()()0.30.40.30.40.58P A B P A P B P AB ⋃=+-=+-⨯=,故D 错误.故选:BC11.如图,边长为1的正方形ABCD 所在平面与正方形ABEF 在平面互相垂直,动点,M N 分别在正方形对角线AC 和BF 上移动,且(0CM BN a a ==<<,则下列结论中正确的有()A.(a ∃∈,使12MN CE=B.线段MN 存在最小值,最小值为23C.直线MN 与平面ABEF 所成的角恒为45°D.(a ∀∈,都存在过MN 且与平面BEC 平行的平面【分析】利用向量的线性运算可得()1MN a BC aBE =-+,结合向量的模的计算可判断B 的正误,结合向量夹角的计算可判断C 的正误,结合共面向量可判断D 的正误.【详解】因为四边形ABCD 正方形,故CB AB ⊥,而平面ABCD ⊥平面ABEF ,平面ABCD 平面ABEF AB =,CB ⊂平面ABCD ,故CB ⊥平面ABEF ,而BE ⊂平面ABEF ,故CB BE ⊥.设MC AC λ=,则= BN BF λ,其中()0,1λ=,由题设可得MN MC CB BN AC CB BF λλ=++=++,()()()1BC BA CB BA BE BC BE λλλλ=-+++=-+,对于A ,当12λ=即2a =时,111222MN BC BE CE =-+= ,故A 正确;对于B ,()22222111221222MN λλλλλ⎛⎫=-+=-+=-+ ⎪⎝⎭ ,故22MN ≥,当且仅当12λ=即2a =时等号成立,故min 22MN =,故B 错误;对于C ,由B 的分析可得()1MN BC BE λλ=-+,而平面ABEF 的法向量为BC 且()211MN BC BC λλ⋅=-=-,故cos ,MN BC =,此值不是常数,故直线MN 与平面ABEF 所成的角不恒为定值,故C 错误;对于D ,由B 的分析可得()1MN BC BE λλ=-+ ,故,,MN BC BE为共面向量,而MN ⊄平面BCE ,故//MN 平面BCE ,故D 正确;故选:AD三、填空题(本题共3小题,每小题5分,共15分.)12.复数2i12iz +=-的共轭复数z =______.【分析】根据复数的除法运算及共轭复数的概念可求解.【详解】因为2i 12i z +=-()()()()2i 12i 12i 12i ++=-+5i i 5==,所以z =i -.故答案为:i-13.已知向量()2,1,1a =- ,()1,,1b x = ,()1,2,1c =-- ,当a b ⊥ 时,向量b 在向量c上的投影向量为________.(用坐标表示)【答案】()1,2,1-【解析】【分析】先根据向量垂直得到方程,求出3x =,再利用投影向量公式求出答案.【详解】因为a b ⊥ ,所以210a b x ⋅=-+=,所以3x =.因为()1,3,1b = ,所以b 在c 上的投影向量为()1,2,1||||b c cc c c ⋅⋅=-=-.故答案为:()1,2,1-14.已知在ABC V 中,满足)34AB AC AB ACAB AC AB AC++=+,点M 为线段AB 上的一个动点,若MA MC ⋅ 取最小值3-时,则BC 边的中线长为______.【答案】1112【解析】【分析】设)34,,AB AC AB AC AD AN AE ABAC AB AC+===+,根据题意可推得||3,||4AD AN == ,2π3ADE ∠=,进一步根据MA MC ⋅ 取最小值3-时,求得对应的AC =AB =,由此即可得解.【详解】设)34,,AB AC AB AC AD AN AE ABAC AB AC+===+,则//,//AD EN AN DE ,四边形ADEN为平行四边形,||||3||3,||4,||4||||AB AD AD AN AE AC AN =====,22343712πcos 23423ADE ADE +-∴∠==-⇒∠=⨯⨯,又四边形ADEN 为平行四边形,3πBAC ∴∠=,设,,0,0MA AD AC AN λμλμ==≤≥,()()296MA MC MA MA AC AD AD AN λλμλλμ⋅=⋅+=⋅+=+,由题意2963λλμ+≥-即29630λλμ++≥恒成立,且存在,R λμ∈使得29630λλμ++=成立,其次29630λλμ++=当且仅当2296303Δ361080λλλμμμ⎧⎧=-++=⎪⇔⎨⎨=-=⎩⎪=⎩,此时AC ==AB ==所以BC边的中线长为122AB AC +===.故答案为:2.四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.如图,四边形ABCD 为矩形,且2AD =,1AB =,PA ⊥平面ABCD ,1PA =,E 为BC 的中点.(1)求证:PE DE ⊥;(2)求四棱锥P ABCD -的外接球体积.【答案】(1)证明见解析(2【解析】【分析】(1)连接AE ,由线面垂直得到PA DE ⊥,再由线面垂直的判定定理得到DE ⊥平面PAE ,即可证明;(2)由底面为矩形利用长方体的性质可得四棱锥外接球的半径,再由体积公式计算体积.【小问1详解】连结,AE E 为BC 的中点,1EC CD ==,∴DCE △为等腰直角三角形,则45DEC ∠=︒,同理可得45AEB ∠=︒,∴90AED ∠=︒,∴DE AE ⊥,又PA ⊥平面ABCD ,且DE ⊂平面ABCD ,∴PA DE ⊥,又∵AE PA A = ,,AE PA ⊂平面PAE ,∴DE ⊥平面PAE ,又PE ⊂平面PAE ,∴DE PE ⊥.【小问2详解】∵PA ⊥平面ABCD ,且四边形ABCD 为矩形,∴P ABCD -的外接球直径2R =∴2R =,故:3344ππ332V R ⎛⎫=== ⎪ ⎪⎝⎭,∴四棱锥P ABCD -.16.ABC V 的内角,,A B C 的对边分别为,,a b c ,已知cos cos a B b A b c -=+.(1)求角A 的值;(2)若a ABC = ,求,b c .【答案】(1)2π3(2)2,2【解析】【分析】(1)由正弦定理及三角恒等变换化简即可得解;(2)由三角形面积公式及余弦定理求解即可.【小问1详解】cos cos a B b A b c -=+ ,由正弦定理可得:sin cos sin cos sin sin A B B A B C -=+,sin sin()sin cos cos sin C A B A B A B =+=+ ,sin cos sin cos sin sin cos cos sin A B B A B A B A B ∴-=++,即2sin cos sin B A B -=,sin 0B ≠ ,1cos 2A ∴=-,(0,π)A ∈ ,2π3A ∴=.【小问2详解】由题意,1sin 24ABC S bc A bc ===△,所以4bc =,由222222cos a b c bc A b c bc =+-=++,得()2216b c a bc +=+=,所以4b c +=,解得:2b c ==.17.全国执业医师证考试分实践技能考试与医学综合笔试两部分,每部分考试成绩只记“合格”与“不合格”,两部分考试都“合格”者,则执业医师考试“合格”,并颁发执业医师证书.甲、乙、丙三人在医学综合笔试中“合格”的概率依次为45,34,23,在实践技能考试中“合格”的概率依次为12,23,23,所有考试是否合格互不影响.(1)求甲没有获得执业医师证书的概率;(2)这三人进行实践技能考试与医学综合理论考试两项考试后,求恰有两人获得执业医师证书的概率.【答案】(1)35(2)13【解析】【分析】(1)先根据对立事件的概率公式结合独立事件概率乘积公式计算;(2)先应用对立事件的概率公式及独立事件概率乘积公式应用互斥事件求和计算;【小问1详解】记甲,乙,丙三人在医学综合笔试中合格依次为事件1A ,1B ,1C ,在实践考试中合格依次为2A ,2B ,2C ,设甲没有获得执业医师证书的概率为P124131()1525P P A A =-=-⨯=.【小问2详解】甲、乙、丙获得执业医师证书依次为12A A ,12B B ,12C C ,并且1A 与2A ,1B 与2B ,1C 与2C 相互独立,则()12412525P A A =⨯=,()12321432P B B =⨯=,()12224339P C C =⨯=,由于事件12A A ,12B B ,12C C 彼此相互独立,“恰有两人获得执业医师证书”即为事件:()()()()()()()()()121212121212121212A A B B C C A A B B C C A A B B C C ++,概率为212142141(1)(1)(1)52952952934P =⨯⨯-+⨯-⨯+-⨯⨯=.18.为深入学习贯彻习近平总书记关于禁毒工作重要指示精神,切实落实国家禁毒委员会《关于加强新时代全民禁毒宣传教育工作的指导意见》,巩固青少年毒品预防教育成果,大力推进防范青少年滥用涉麻精药品等成瘾性物质宣传教育活动,进一步增强青少年学生识毒防毒拒毒意识和能力,某市每年定期组织同学们进行禁毒知识竞赛活动,为了解同学们对禁毒知识的掌握情况,现从所有答卷中随机抽取100份作为样本,将样本的成绩(满分100分,成绩均为不低于40分的整数)分成六段:40,50,50,60,…,90,100得到如图所示的频率分布直方图.(1)求频率分布直方图中a 的值;(2)求样本成绩的第75百分位数;(3)已知落在50,60的平均成绩是56,方差是7,落在60,70的平均成绩为65,方差是4,求两组成绩的总平均数z 和总方差2s .【答案】(1)0.030(2)84(3)平均数为62;方差为23【解析】【分析】(1)根据频率之和为1即可求解,(2)根据百分位数的计算公式即可求解,(3)根据平均数的计算公式可求得两组成绩的总平均数;再由样本方差计算总体方差公式可求得两组成绩的总方差,即可求解.【小问1详解】由每组小矩形的面积之和为1得,0.050.10.2100.250.11a +++++=,解得0.030a =.【小问2详解】成绩落在[)40,80内的频率为0.050.10.20.30.65+++=,落在[)40,90内的频率为0.050.10.20.30.250.9++++=,显然第75百分位数[)80,90m ∈,由()0.65800.0250.75m +-⨯=,解得84m =,所以第75百分位数为84;【小问3详解】由频率分布直方图知,成绩在[)50,60的市民人数为1000.110⨯=,成绩在[)60,70的市民人数为1000.220⨯=,所以10562065621020z ⨯+⨯==+;由样本方差计算总体方差公式,得总方差为()(){}222110756622046562231020s ⎡⎤⎡⎤=+-++-=⎣⎦⎣⎦+.19.如图,三棱柱111ABC A B C -中,2AB =,且ABC V 与1ABA △均为等腰直角三角形,1π2ACB AA B ∠=∠=.(1)若1A BC 为等边三角形,证明:平面1AAB ⊥平面ABC ;(2)若二面角1A AB C --的平面角为π3,求以下各值:①求点1B 到平面1A CB 的距离;②求平面11B A C 与平面1A CB 所成角的余弦值.【答案】(1)证明见解析(2)①2217,②277【解析】【分析】(1)根据等腰直角三角形及等边三角形的性质可得各边长,再根据勾股定理证明线线垂直,根据线线垂直可证线面垂直,进而可证面面垂直;(2)根据二面角的定义可值1CEA 为等边三角形,①利用等体积转化法可得点到平面距离;②根据二面角的定义可得两平面夹角.【小问1详解】设AB 的中点为E ,连接CE ,1A E ,如图所示,因为ABC V 与1ABA △均为等腰直角三角形,1π2ACB A AB ∠=∠=,故1cos 452BC A B AB ==⋅︒=CE AB ⊥,且112CE AB ==,1112A E AB ==,因为1A BC 为等边三角形,故12==AC BC ,故22211A C CE A E =+,即1CE A E ⊥,又AB ,1A E ⊂平面1AA B ,1A E AB E ⋂=,故CE ⊥平面1AA B ,且CE ⊂平面ABC ,故平面1AA B ⊥平面ABC ;【小问2详解】①由(1)知,CE AB ⊥,1A E AB ⊥,且平面1AA B ⋂平面ABC AB =,故1CEA ∠即二面角1A AB C --的平面角,即1π3CEA ∠=,故1CEA 为等边三角形,则111CA CE A E ===,因为CE AB ⊥,1A E AB ⊥,1A E CE E ⋂=,且CE ,1A E ⊂平面1CEA ,所以AB ⊥平面1CEA ,设线段1A E 中点为F ,则1CF A E ⊥,AB CF ⊥,又AB ,1A E ⊂平面11ABB A ,1AB A E E = ,CF ∴⊥平面11ABB A ,又在三角形1CEA中易知:2CF =,∴11111112133226C A BB A BB V CF S -=⋅=⨯⨯⨯⨯= ,又在三角形1A BC 中,由11AC =,1BC A B ==则22211113cos 24BC A B A CA BC BC AB +-∠==⋅,1sin 4A BC ∠=,则11117sin 24A BC S AB BC A BC =⋅⋅∠= ,设点1B 到平面1A CB 的距离为d ,又由1111113C A BB B A BC A BC V V S d --==⋅⋅△,可得7d =,即求点1B 到平面1A CB 的距离为2217;②由①知,AB ⊥平面1CEA ,而11//AB A B ,故11A B ⊥平面1CEA ,且1A C ⊂平面1CEA ,故111A B AC ⊥,则2211115B C A B AC =+=,设1AC 和1B C 的中点分别为M ,N ,连接MN ,BN ,BM,则11//MN A B ,11112MN A B ==,1MN AC ⊥,又因为12BC A B ==1BM A C ⊥,且MN ⊂平面11A B C ,BM ⊂平面1A BC ,故BMN ∠即二面角11B A C B --的平面角,且222211722BM BC CM BC A C ⎛⎫=-=-= ⎪⎝⎭,因为112BB AA BC ===,故1BN B C ⊥,则222211322BN BC CN BC B C ⎛⎫=-=-= ⎪⎝⎭,所以222731744cos 277212BM MN BN BMN BM MN +-+-∠==⋅⨯⨯,故平面11B A C 与平面1A CB 所成角的余弦值为277.。
2011-2012学年高二数学上10月月考试卷(文)及答案
2011-2012学年高二10月月考试题数学试卷(文)时间:120分钟 满分:150分 时间:2011.10.06第Ⅰ卷(客观题)一、选择题(只有一个选项正确,每题5分,12道小题,共计60分.)1.以下公式中:①()112n n a ⎡⎤=--⎣⎦;②n a =③()()0,n n a n =⎨⎪⎩为奇数为偶数,通项公式的是( ) A .①②B .②③C .①③D .①②③2.ABC ∆的三边a ,b ,c 既成等比数列又成等差数列,则三角形的形状是( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形 D .等边三角形3.已知}{n a 是等比数列,且0>n a ,252645342=∙+∙+∙a a a a a a ,那么53a a + 的值是( ) A .5 B .6 C .7 D .25 4. 已知a ,b ,c ,d 均为实数,有下列命题:0,0,0)2(;0,00)1(>->->>->->ad bc bda c ab b d dc ad bc ab 则若则,若其中正确命题的个数是则若,0,,0)3(>>->-ab bda c ad bc ( )A. 0B. 1C. 2D. 35. 设2a=3,2b=6,2c=12,则a ,b ,c ( ) A .是等差数列但不是等比数列 B .是等比数列但不是等差数列 C .是等差数列也是等比数列D .不是等差数列也不是等比数列6. 设数列{a n }、{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,则a 37+b 37等于 ( ) A. 0 B. 37 C. 100 D. -377. 在数列{a n }中,a 1=1,当n ≥2时,n 2=a 1a 2…a n 恒成立,则a 3+a 5等于( )A .73 B .6116 C .3115 D .114Ⅱ卷(主观题) 二、填空题(每题5分,4道小题,共计20分)13.等差数列{a n } 中,S n 是它的前n 项和,且6778,S S S S <>,则①此数列的公差d<0 ②S 9<S 6 ③a 7是各项中最大的一项 ④S 7一定是S n 中的最大值.其中正确的是______ (填序号). 14.设等比数列{}n a 的公比为q ,前n 项和为n S ,若12,,n n n S S S ++成等差数列,则q = . 15.已知数列}{n a 的通项公式是254-=n a n ,其前n 项和n S ,则10S = . 16.已知0,0>>n m ,且12=+n m ,则nm 21+的最小值为 _________ .三、解答题(6道小题,共计70分,解答题要有必要的证明过程和解题步骤.) 17.设a ∈R 且a≠2-,比较a+22与a -2的大小.18.有四个数,其中前三个数成等比数列,其积为216,后三个数成等差数列,其和为36,求这四个数.19.已知数列))(,(,1,}{11N n a a P a a n n n ∈=+且点中在直线x -y +1=0上. (1)求数列{a n }的通项公式; (2)若函数),2,(1111)(321≥∈++++++++=n N n a n a n a n a n n f n且 求函数f (n )的最小值.20. 数列{}n a 中,2,841==a a 且满足n n n a a a -=++122(*N n ∈)(1)求数列{}n a 的通项公式; (2)设n b =)12(1n a n -)(),(*21*N n b b b T N n n n ∈+++=∈ ,是否存在最大的整数m ,使得对任意*N n ∈,均有>n T 32m成立?若存在,求出m 的值;若不存在,请说明理由. 21.围建一个面积为360m 2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m 的进出口,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:元). (1)将y 表示为x 的函数;(2)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用.22. 数列{}n a 满足:*)(2123,23,11221N n a a a a a n n n ∈-===++(1)记n n n a a d -=+1,求证:{d n }是等比数列; (2)求数列}{n a 的通项公式;(3)令23-=n b n ,求数列}{n n b a ⋅的前n 项和S n .数学试卷(文)答案18.答案:3,6,12,1819.解:(1)1(,)()n n P a a n N +∈ 在直线x -y +1=0上 110n n a a +∴-+=122311110,10,,10,,10,1.n n n n a a a a a a a a n a a n n -∴-+=-+=-+=-+-==+-= 以上各式相加得(2) n n n n f 212111)(+++++= , 221121213121)1(+++++++++=+n n n n n n f ,01122122111221121)()1(=+-+++>+-+++=-+∴n n n n n n n f n f .,)(是单调递增的n f ∴.127)2()(=f n f 的最小值是故 20.解:(1)由题意,n n n n a a a a -=-+++112,}{n a ∴为等差数列,设公差为d ,由题意得2382-=⇒+=d d ,n n a n 210)1(28-=--=∴.(2))111(21)1(21)12(1+-=+=-=n n n n a n b n n∴n T )]111()111()4131()3121()211[(21+-+--++-+-+-=n n n n .)1(2+=n n104403603602252≥-+=∴x x y .当且仅当225x=x2360时,等号成立.即当x=24m 时,修建围墙的总费用最小,最小总费用是10440元.22.解:(1)21123,23,11221=-=-∴==a a a a 又n n n n a a a a 2121112-=-+++。
黑龙江省哈尔滨市2024-2025学年高二上学期10月月考试题 数学含答案
哈尔滨市2024-2025学年度上学期十月学业阶段性评价考试高二数学学科考试试卷(答案在最后)(考试时间:120分钟满分150分)第Ⅰ卷(共58分)一、单选题(共8小题,每小题5分,每小题只有一个选项符合题意)1.在空间直角坐标系中,点()2,1,4-关于x 轴对称的点坐标是()A.()2,1,4-- B.()2,1,4 C.()2,1,4--- D.()2,1,4-2.若向量{}123,,e e e 是空间中的一个基底,那么对任意一个空间向量a,存在唯一的有序实数组(),,x y z ,使得:123a xe ye ze =++ ,我们把有序实数组(),,x y z 叫做基底{}123,,e e e 下向量a 的斜坐标.设向量p 在基底{},,a b c 下的斜坐标为()1,2,3-,则向量p 在基底{},,a b a b c +-下的斜坐标为()A.13,,322⎛⎫--⎪⎝⎭B.13,,322⎛⎫-- ⎪⎝⎭ C.13,,322⎛⎫-⎪⎝⎭ D.13,,322⎛⎫-⎪⎝⎭3.已知两条直线12:410,:20l ax y l x ay +-=++=,则“2a =”是“12l l //”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.已知平面α的一个法向量(2,2,1)n =--,点()1,3,0A -在平面α内,若点()2,1,P z -到α的距离为103,则z =()A.16B.4- C.4或16- D.4-或165.已知点()2,3A -,()3,2B --,若过点()1,1的直线与线段AB 相交,则该直线斜率的取值范围是()A.[)3,4,4⎛⎤-∞-+∞ ⎥⎝⎦B.(]3,4,4⎡⎫+∞⎪⎢⎣--⋃⎭∞C.3,44⎡⎤-⎢⎥⎣⎦D.34,4⎡⎤-⎢⎣⎦6.直线l 过点()2,3A ,则直线l 与x 轴、y 轴的正半轴围成的三角形的面积最小值为()A.9B.12C.18D.247.如图,在平行六面体ABCD A B C D -''''中,5,3,7AB AD AA ='==,60BAD ∠=︒,45BAA DAA ''∠=∠=︒,则AC '的长为()A. B.C.D.8.正三棱柱ABC ﹣A 1B 1C 1中,所有棱长均为2,点E ,F 分别为棱BB 1,A 1C 1的中点,若过点A ,E ,F 作一截面,则截面的周长为()A. B.C. D.2+二、多选题(共3小题,每小题有多个选项符合题意,全部选对的得6分,部分选对得得部分分,有选错的得0分)9.下列命题中正确的是()A.若向量,a b 满足0a b ⋅<,则向量,a b 的夹角是钝角B.若,,OA OB OC 是空间的一组基底,且232OD OA OB OC =-+,则,,,A B C D 四点共面C.若向量{},,a b c 是空间的一个基底,若向量m a c =+,则{},,a b m 也是空间的一个基底D.若直线l 的方向向量为(1,0,3)e = ,平面α的法向量为(2,0,2)n =-,则直线l 与平面α所成角的余弦值为5510.以下四个命题为真命题的是()A.过点()10,10-且在x 轴上的截距是在y 轴上截距的4倍的直线的方程为11542y x =-+B.直线()cos 20R x θθ+=∈的倾斜角的范围是π5π0,,π66⎡⎤⎡⎫⎪⎢⎢⎣⎦⎣⎭C.直线10x y +-=与直线2210x y ++=D.直线()()()1213m x m y m m -+-=-∈R 恒过定点()5,2-11.如图,在多面体ABCDES 中,SA ⊥平面ABCD ,四边形ABCD 是正方形,且//DE SA ,22SA AB DE ===,,M N 分别是线段,BC SB 的中点,Q 是线段DC 上的一个动点(含端点,D C ),则下列说法正确的是()A.不存在点Q ,使得NQ SB⊥B.存在点Q ,使得异面直线NQ 与SA 所成的角为60o C.三棱锥Q AMN -体积的最大值是23D.当点Q 自D 向C 处运动时,直线DC 与平面QMN 所成的角逐渐增大第Ⅱ卷(共92分)三、填空题(共3个小题,每小题5分)12.已知()()()1,1,0,0,3,0,2,2,2A B C ,则向量AB 在AC上的投影向量的坐标是______.13.当点()2,1P --到直线l :()()()131240x y λλλλ+++--=∈R 距离的最大值时,直线l 的一般式方程是______.14.离散曲率是刻画空间弯曲性的重要指标.设P 为多面体Γ的一个顶点,定义多面体Γ在点P 处的离散曲率为()122311112πP k k k Q PQ Q PQ Q PQ Q PQ -∅=-∠+∠++∠+∠ ,其中i Q (1i =,2,……,k ,3k ≥)为多面体Γ的所有与点P 相邻的顶点,且平面12Q PQ ,平面23Q PQ ,…,平面1k k Q PQ -和平面1k Q PQ 为多面体Γ的所有以P 为公共点的面.如图,四棱锥S ABCD -的底面ABCD 是边长为2的菱形,且2AC =,顶点S 在底面的射影O 为AC 的中点.若该四棱锥在S 处的离散曲率13S ∅=,则直线OS 与平面SAB 所成角的正弦值为___________.四、解答题(共5小题,总计77分,解答应写出必要的文字说明、证明过程或演算步骤)15.已知直线()():12360m a x a y a -++-+=,:230n x y -+=.(1)若坐标原点O 到直线m ,求a 的值;(2)当0a =时,直线l 过m 与n 的交点,且它在两坐标轴上的截距相反,求直线l 的方程.16.已知ABC V 的顶点()1,2,A AB 边上的中线CM 所在直线的方程为210,x y ABC +-=∠的平分线BH 所在直线的方程为y x =.(1)求直线BC 的方程和点C 的坐标;(2)求ABC V 的面积.17.如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,AB AD ⊥,1AB =,2AD =,AC CD ==(1)求证:PD ⊥平面PAB .(2)在棱PA 上是否存在点M ,使得//BM 平面PCD ?若存在,求AMAP的值;若不存在,说明理由.18.已知两个非零向量a ,b ,在空间任取一点O ,作OA a = ,OB b =,则AOB ∠叫做向量a ,b 的夹角,记作,a b <> .定义a 与b 的“向量积”为:a b ⨯是一个向量,它与向量a ,b 都垂直,它的模sin ,a b a b a b ⨯=.如图,在四棱锥P ABCD -中,底面ABCD 为矩形,PD ⊥底面ABCD ,4DP DA ==,E 为AD 上一点,AD BP ⨯=.(1)求AB 的长;(2)若E 为AD 的中点,求二面角P EB A --的余弦值;19.如图①所示,矩形ABCD 中,1AD =,2AB =,点M 是边CD 的中点,将ADM △沿AM 翻折到PAM △,连接PB ,PC ,得到图②的四棱锥P ABCM -,N 为PB 中点,(1)若平面PAM ⊥平面ABCD ,求直线BC 与平面PMB 所成角的大小;(2)设P AM D --的大小为θ,若π0,2θ⎛⎤∈ ⎥⎝⎦,求平面PAM 和平面PBC 夹角余弦值的最小值.哈尔滨市2024-2025学年度上学期十月学业阶段性评价考试高二数学学科考试试卷(考试时间:120分钟满分150分)第Ⅰ卷(共58分)一、单选题(共8小题,每小题5分,每小题只有一个选项符合题意)【1题答案】【答案】C【2题答案】【答案】D【3题答案】【答案】A【4题答案】【答案】C【5题答案】【答案】B【6题答案】【答案】B【7题答案】【答案】A【8题答案】【答案】B二、多选题(共3小题,每小题有多个选项符合题意,全部选对的得6分,部分选对得得部分分,有选错的得0分)【9题答案】【答案】BC【10题答案】【答案】BD【11题答案】【答案】CD第Ⅱ卷(共92分)三、填空题(共3个小题,每小题5分)【12题答案】【答案】111,,663⎛⎫ ⎪⎝⎭【13题答案】【答案】3250x y +-=【14题答案】【答案】1323-四、解答题(共5小题,总计77分,解答应写出必要的文字说明、证明过程或演算步骤)【15题答案】【答案】(1)14a =-或73a =-(2)370x y -=或120x y -+=【16题答案】【答案】(1)2310x y --=,51(,)77,(2)107.【17题答案】【答案】(1)证明见解析;(2)存在,AM AP 的值为14.【18题答案】【答案】(1)2(2)13-【19题答案】【答案】(1)π6;(2)11。
河南省新乡市原阳县第一高级中学2024-2025学年高二上学期10月月考数学试题(含答案)
2024-2025学年高二上期10月月考数学试卷考生须知:1.本卷共4页满分150分,考试时间120分钟.2.答题前,在答题卷指定区域填写班级、姓名、考场号、座位号及准考证号并填涂相应数字.3.所有答案必须写在答题纸上,写在试卷上无效.4.考试结束后,只需上交答题纸.选择题部分一、选择题;本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.的倾斜角是( )A. B. C.D.2.已知平面的法向量为,平面的法向量为,若,则k 等于( )A. 4B. -4C. 5D. 3.若双曲线离心率为2,过点,则该双曲线的方程为( )A. B. C. D. 4.若圆:与圆:相切,则( )A .9B .10C .11D .9或115.如图,一束光线从出发,经直线反射后又经过点,则光线从A 到B 走过的路程为()AB .CD .6.如图,棱长为1的正方体,中M ,N 点,分别是线段,的中点,记E 是线段的中点,则点E 到面的距离为()10y --=3π-6π-6π3πα(1,2,2)a =-β(2,4,)b k =-- αβ⊥5-2222:1x y C a b-=2221x y -=2213y x -=22531x y -=22126x y -=1C ()()22121x y ++-=2C ()()22256x y r -++=r =()1,0A 10x y ++=()6,5B -1111ABCD A B C D -1BB 1DD 1MC 1ANBA.BCD .7.已知,,动点P 满足,则点P 的轨迹与圆相交的弦长等于()A .BCD8.棱长为2的菱形ABCD 中,,将沿对角线BD 翻折,使A 到P 的位置,得到三棱锥,在翻折过程中,下列结论正确的是( )A .三棱锥B .C .存在某个位置,使得D .存在某个位置,使得面BCD二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,部分选对的得部分分.9.以下四个命题正确的有()A .直线与直线B .直线l 过定点,点和到直线l 距离相等,则直线l 的方程为C .点到直线D .已知,则“直线与直线垂直”是“”的必要不充分条件10.下列说法正确的是()A .在四面体OABC 中,若,则A ,B ,C ,G 四点共面B .若G 是四面体OABC 的底面三角形ABC 的重心,则C .已知平行六面体的棱长均为1,且,则2313()2,0A -()2,0B PAPB=224x y +=60BAD ∠=︒ABD △P BCD -P BCD -CD PC⊥CD PB⊥CP ⊥220x y +-=2410x y ++=()0,1-()3,4A --()6,3B 330x y -++=()1,210x y +-=a R ∈210ax y +-=()120a x ay a +-+=3a =151266OG OA OB OC =-++()13OG OA OB OC=++1111ABCD A B C D -1160BAD BAA DAA ∠=∠=∠=︒对角线D .若向量,则称为在基底下的坐标,已知向量在单位正交基底下的坐标为,则向量在基底下的坐标为11“黄金椭圆”,在椭圆中,,,,分别是椭圆的左、右顶点和上、下顶点,,是椭圆的左、右焦点,P 是椭圆上的动点,则下列选项中,能使椭圆是“黄金椭圆”的有()A .轴且B .C .四边形的内切圆过D .非选择题部分三、填空题,本题共3小题,每小题5分,共15分12.已知椭圆C :,则椭圆的短轴长为______.13.已知,过定点M 的动直线与过定点N 的动直线相交于点P ,则的最大值是______.14.已知一张纸上画有半径为4的圆O ,在圆O 内有一个定点A ,且,折叠纸片,使圆上某一点刚好与A 点重合,这样的每一种折法,都留下一条直线折痕,当取遍圆上所有点时,所有折痕与的交点形成的曲线记为C .则曲线C 上的点到点O 的最大距离为______.四、解答题;本题共6个小题,共70分.解答应写出文字说明,证明过程或演算步骤.15.(本小题13分)如图,在正方体中,E 为的中点.(1)求证:平面;(2)求直线与平面所成角的正弦值.1AC =p mx n y k z =++ (),,m n k p {},,x y z p{},,a b c ()1,2,3p {},,a b a b c -+ 13,,322⎛⎫- ⎪⎝⎭()222210x y a b a b+=>>1A 2A 1B 2B 1F 2F 1PF x ⊥21//PO A B 2121122F F A F A F =1122A B A B 1F 2212A B F B ⊥2221x y +=a R ∈310ax y a --+=310x ay a +--=PM PN 2OA =A 'A 'OA '1111ABCD A B C D -1BB 1A C ⊥11AB D 1CC 1AD E16.(本小题15分)圆C 过点和,圆心C 在直线上.(1)求圆C 的标准方程(2)直线l 经过点,且被圆C 所截得的弦长为4,求直线l 的方程17.(本小题15分)已知O 为坐标原点,是椭圆C:的左焦点,点P 是椭圆的上顶点,以点P 为圆心且过的圆恰好与直线相切.(1)求椭圆C 的方程(2)斜率为1的直线l 交椭圆C 于A ,B两点,求面积的最大值18.(本小题17分)如图,在四棱锥中,平面平面ABCD ,,,BD 是的平分线,且,二面角的大小为60°.(1)若E 是棱PC 的中点,求证:平面PAD(2)求平面PAB 与平面PCD 所成的二面角的夹角的余弦值19.(本小题17分)已知圆O 的方程为,与x 轴的正半轴交于点N ,过点作直线与圆O交于A 、B 两点.(1)若坐标原点O 到直线AB 的距离为1,求直线AB 的方程;(2)如图所示,已知点P(-4,0), 一条斜率为-1的直线交圆于R ,S 两点,连接PS ,PR ,试问是否存在锐角,,使得为定值?若存在,求出该定值,若不存在,说明理由.()4,2A ()1,3B 1y x =-()1,1P -()11,0F -()222210x y a b a b+=>>1F x =AOB △P ABCD -PAD ⊥2PA AD ==4BD =AB =ADC ∠BD BC ⊥P AB D --//BE 2216x y +=()3.0M NPS ∠NPR ∠NPS NPR ∠+∠高二年级数学答案一、选择题:1.D 2.D 3.B 4.D 5.C 6.D 7.A 8.C 二、选择题;9.ACD 10.BCD 11.CD三、填空题;1213.4 14.3四、解答题;解答应写出文字说明,证明过程或演算步骤.15.解:(Ⅰ)由正方体的性质可知,面,则,又,,∴面,则同理,,∴平面(Ⅱ)解法一:以A 为原点,AD 、AB 、分别为x 、y 和z 轴建立如图所示的空间直角坐标系,设正方体的棱长为a ,则,,,,∴,,,设平面的法向量为,则,即,令,则,,∴,设直线与平面所成角为θ,则,故直线与平面所成角的正弦值为.BC ⊥11ABB A 1BC AB ⊥11AB A B ⊥1BC A B B = AB ⊥1A BC 11AB A C⊥111B D A C ⊥1111B D AB B = 1A C ⊥11AB D 1AA ()0,0,0A ()10,0,A a =()1,0,D a a 10,,2E a a ⎛⎫ ⎪⎝⎭()10,0,AA a = ()1,0,AD a a = 10,,2AE a a ⎛⎫= ⎪⎝⎭ 1AD E (),,m x y z = 10m AD m AE ⎧⋅=⎪⎨⋅=⎪⎩ ()0102a x z a y z +=⎧⎪⎨⎛⎫+= ⎪⎪⎝⎭⎩2z =2x =-1y =-()2,1,2m =--1AA 1AD E 11122sin cos ,33m AA a m AA a m AA θ⋅====⋅⋅1CC 1AD E 23解法二:设正方体的棱长为,则,,,, 由余弦定理知,∴,∴,设点到平面的距离为h ,∵,∴,∴,设直线与平面所成角为θ,则.故直线与平面所成角的正弦值为.16.(1)AB 的中垂线方程为,联立,知,则∴圆C 的标准方程是(2)若直线l 的斜率不存在,直线l :,弦长,成立若直线l 的斜率存在,设直线l :,圆心C到直线l 的距离为1,,则直线l :∴直线l :或17.(1)∴椭圆C 的方程为(2)设,,直线l :联立方程,得2a 1AD =AE =13ED a =1212222AA D S a a a =⋅⋅=△2221111cos 2AD AE ED EAD AD AE +-∠===⋅⋅1sin EAD ∠=12111sin 32EAD S AD AE EAD a =⋅⋅∠=△1A 1EAD 111A EAD E AA D V V --=221132233h a a a ⋅=⋅⋅43h a =1AA 1AD E 1423sin 23a h AA a θ===1CC 1AD E 2335y x =-351y x y x =-⎧⎨=-⎩()2,1C r =()()22215x y -+-=1x =4=()11y k x +=-134k =3744y x =-1x =3744y x =-a =1c =2212x y +=()11,A x y ()22,B x y y x m=+2212y x m x y =+⎧⎪⎨+=⎪⎩2234220x mx m ++-=∵直线l 交椭圆C 于A ,B 两点 ∴,得,∴弦长又点O 到直线l 的距离∴当,即时取得等号 ∴18.解:(1)取CD 中点F ,连接BF ,EF ∵ ∴,则而B D 是的平分线,则,从而,则,BF 不在平面PAD 内,平面PAD ,则平面PAD E ,F 分别是PC ,CD 的中点,则,EF 不在平面PAD 内,平面PAD ,则平面PAD ,又∴平面平面PAD ∴平面PAD(2)由题知,,又面面ABCD ,得面PAD 则是二面角的平面角,即,是等边三角形,如图建系,,,设平面PAB 的一个法向量为,则,得,令,则()221612220m m ∆=-->23m <1243m x x +=-212223m x x -=2ABx =-=d 1122S AB d =⋅==≤232m =m =max S =BDBC ⊥BF DF =FDB FBD∠=∠ADC ∠FDB ABD ∠=∠FBD ADB ∠=∠//BF AD AD ⊆//BF//EF PD PD ⊆//EF EF BF F= //BEF //BE BA AD ⊥PAD ⊥BA ⊥PAD ∠P AB D --60PAD ∠=︒PAD ∆(P ()1,0B -()0,1,0D ()C ()1,,n x y z =1100n AP n AB ⎧⋅=⎪⎨⋅=⎪⎩0y ⎧=⎪⎨=⎪⎩1z =()10,n =同理平面的PCD 一个法向量,设平面PAB 与平面PCD 的夹角为α则∴平面PAB 与平面PCD19.(1)若直线AB 的斜率不存在,距离为3,不符合若直线AB 的斜率存在,设直线AB :,得∴直线AB 的方程为(2)设直线RS :,,记,,联立方程,得 ∴,,∴,∴∵,都是锐角 ∴的定值.()1n =-1212cos n n n n α⋅==()3y k x =-1=k =y x =y x =y x m =-+()11,R x y ()22,S x y 111tan 4y k NPR x ==∠+222tan 4y k NPS x ==∠+2216x y y x m⎧+=⎨=-+⎩2222160x mx m -+-=12x x m +=212162m x x -=()12122y y x x m m +=-++=()()21212162m y y x m x m -=-+-+=()1212121244tan tan tan 1tan tan 144y yx x NPS NPRNPS NPR y y NPS NPR x x +++∠+∠∠+∠==-∠⋅∠-⋅++()()()12121212122484161416416x x m x x m m x x x x y y m -+-+++===+++-+NPS ∠NPR ∠0NPS NPR π<∠+∠<4πNPS NPR ∠+∠=。
福建省厦门市同安第一中学2024-2025学年高二上学期第一次月考(10月)数学试题
福建省厦门市同安第一中学2024-2025学年高二上学期第一次月考(10月)数学试题一、单选题1.在空间直角坐标系中,点()2,1,4-关于x 轴对称的点坐标是( ) A .()2,1,4--B .()2,1,4C .()2,1,4---D .()2,1,4-2.若{},,a b c r r r 和{},,a b b c m +-r r r r r 都为基底,则m r不可以为( )A .a rB .c rC .a c +r rD .-r r a c3.若直线3m y x n m ⎛⎫=-+ ⎪⎝⎭在y 轴上的截距为-1,且它的倾斜角是直线1322y x =+的倾斜角的2倍,则( ) A .4m =-,3n =- B .4m =,3n = C .4m =,3n =-D .4m =-,3n =4.在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别是11B C 和11A D 的中点,则直线AC 与平面ABEF 所成角的正弦值为( )A B C D 5.集合{}6,2,3A =-,集合{}7,1,2B =-,从A ,B 中各任意取一个数相加为a ,则直线1:430l x ay +-=与直线2:440l ax y ++=平行的概率为( )A .19B .49C .13D .296.如图,在三棱锥P ABC -中,PAC V 是边长为3的正三角形,M 是AB 上一点,12AM MB =u u u u r u u u r ,D 为BC 的中点,N 为PD 上一点且23PN PD =u u u r u u u r ,则MN =( )A .5B .3 CD 7.如图,在棱长为2的正方体1111ABCD A B C D -中,P 为线段11AC 的中点,Q 为线段1BC 上的动点,则下列结论正确的是( )A .存在点Q ,使得//PQ BDB .存在点Q ,使得PQ ⊥平面11ABCD C .三棱锥Q APD -的体积是定值D .存在点Q ,使得PQ 与AD 所成的角为π68.设m R ∈,过定点A 的动直线10x my ++=和过定点B 的动直线230mx y m --+=交于点(),P x y ,则PA PB +的最大值( )A.B .C .3D .6二、多选题9.下列说法正确的是( )A .“1a =-”是“直线210a x y -+=与直线20x ay --=互相垂直”的充分不必要条件B .直线sin 20x y α++=的倾斜角θ的取值范围是π3π0,,π44⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭C .过()()1122,,,x y x y 两点的所有直线,其方程均可写为112121y y x x y y x x --=-- D .已知()()2,4,1,1A B ,若直线:20l kx y k ++-=与线段AB 有公共点,则21,32k ⎡⎤∈-⎢⎥⎣⎦10.关于空间向量,以下说法正确的是( )A .若直线l 的方向向量为()2,4,2m =-r ,平面α的一个法向量为()1,2,1n =--r,则l α⊥B .若空间中任意一点O ,有111362OP OA OB OC =-+u u u r u u u r u u u r u u u r,则P 、A 、B 、C 四点共面C .若空间向量a r ,b r 满足0a b ⋅<r r ,则a r 与b r 夹角为钝角D .若空间向量()1,0,1=r a ,()0,1,1b =-r ,则a r在b r 上的投影向量为110,,22⎛⎫- ⎪⎝⎭11.布达佩斯的伊帕姆维泽蒂博物馆收藏的达·芬奇方砖在正六边形上画了具有视觉效果的正方体图案,如图,把三片这样的达·芬奇方砖拼成组合,把这个组合再转换成空间几何体.若图中每个正方体的棱长为1,则下列结论正确的是( )A .122CQ AB AD AA =--+u u u r u u u r u u u r u u u rB .点1C 到直线CQ C .3CQ =u u u rD .异面直线CQ 与BD 所成角的正切值为4三、填空题12.求经过()2,2且在两坐标轴上截距相等的直线方程为.13.在棱长为2的正四面体ABCD 中,点M 满足()1AM xAB yAC x y AD =+-+-u u u u r u u u r u u u r u u u r,点N 满足()1BN BA BC λλ=+-u u u r u u u r u u u r ,当AM 、BN 最短时,AM MN ⋅=uuu r uuu r.14.如图,正四棱锥P ABCD -的棱长均为2,点E 为侧棱PD 的中点.若点M ,N 分别为直线AB ,CE 上的动点,则MN 的最小值为.四、解答题15.在三棱锥P-ABC 中,2AB BC PC PB ====,90ABC ∠=︒,E 为AC 的中点,PB AC ⊥.(1)求证:平面PBE ⊥平面ABC ; (2)求点C 到平面P AB 的距离.16.已知ABC V 的顶点()4,2A -,顶点C 在x 轴上,AB 边上的高所在的直线方程为20x y m ++=.(1)求直线AB 的方程;(2)若AC 边上的中线所在的直线方程为40x y --=,求m 的值.17.如图,在直三棱柱111ABC A B C -中,AB AC ⊥,2AB AC ==,且14AA =,14CC CE =u u u u r u u u r,直线AE 与1AC 交于点F .(1)证明:1AC ⊥平面ABE . (2)求二面角1A BE A --的正弦值.18.在面积为S 的ABC V 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且()22sin sin 2sin sin sin C A S a b A B C ⎛⎫+=+ ⎪⎝⎭. (1)求C 的值;(2)若c ABC V 周长的最大值;(3)若ABC V 为锐角三角形,且AB 边上的高h 为2,求ABC V 面积的取值范围.19.如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,AB AD ⊥,5AB AD +=,CD 120PAD ∠=︒,=45ADC ∠︒.(1)求证:平面PAB ⊥平面PAD ; (2)设AB AP =.①若直线PB 与平面PCD ,求线段AB 的长. ②在线段AD 上是否存在点G ,使得点P ,C ,D 在以G 为球心的球上?若存在,求线段AB 的长;若不存在,说明理由.。
福建省宁德市柘荣县第一中学2024-2025学年高二上学期10月月考数学试题(含解析)
2024—2025学年柘荣一中第一学期第一次月考(高二数学)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在等差数列中,已知,,则( )A.9B.12C.15D.182.已知数列为等比数列,,且,则的值为( )A.1或 B.1C.2或D.23.已知数列的前项和,,则( )A.20B.17C.18D.194.在等差数列中,若为其前项和,,则的值是( )A.60B.55C.50D.115.《张丘建算经》是我国北魏时期大数学家张丘建所著,约成书于公元466-485年间.其中记载着这么一道“女子织布”问题:某女子善于织布,一天比一天织得快,且每日增加的数量相同.已知第一日织布4尺,20日共织布232尺,则该女子织布每日增加( )尺A.B.C.D.6.各项不为0的等差数列中,,数列是等比数列,且,则( )A.2B.4C.8D.167.在数列中,若,,则( )A. B.1C.D.2.8.高斯(Gauss )被认为是历史上最重要的数学家之一,并享有“数学王子”之称.小学进行的求和运算时,他这样算的:,,…,,共有50组,所以,这就是著名的高斯算法,课本上推导等差数列前项和的方法正是借助了高斯算法.已知正数数列是公比不等于1的等比数列,且,试根据以上提示探求:若,则( )A.2023B.4046C.2022D.4044二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.{}n a 53a =96a =13a ={}n a 12a =53a a =10a 1-2-{}n a 221n S n =+*n ∈N 5a ={}n a n S n 65a =11S 47162981545{}n a 23711220a a a -+={}n b 77b a =68b b ={}n a 11a =-()*112,N 1n n a n n a -=≥∈-10a =1-12123100++++ 1100101+=299101+=5051101+=501015050⨯=n {}n a 120231a a =24()1f x x=+()()()122023f a f a f a +++=9.(5分)已知等差数列满足,前3项和,等比数列满足,,的前项和为.则下列命题错误的是()A.的通项公式为B.等差数列的前项和为C.等比数列的公比为D.10.古希腊毕达哥拉斯学派的数学家用沙粒和小石子来研究数,他们根据沙粒或小石子所排的形状,把数分成许多类,如图1,图形中黑色小点个数:1,3,6,10,称为三角形数,如图2,图形中黑色小点个数:1,4,9,16,…称为正方形数,记三角形数为数列,正方形数为数列,则( )图(1)图(2)A. B. C. D.11.已知数列满足,,则( )A. B.数列是等差数列C. D.数列的前99项和小于三、填空题:本题共3小题,每小题5分,共15分.12.在等差数列中,,则___________.13.已知等比数列满足,且,,成等差数列,则___________.14.若数列满足(为常数),则称数列为等比和数列,为公比和.已知数列是以3为公比和的等比和数列,其中,,则___________.四、解答题:(本题共77分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本题13分)已知等差数列公差,且,,成等比数列,(1)求的通项公式;{}n a 32a =392S ={}n b 11b a =415b a ={}n b n n T {}n a 24n a n =-{}n a n 234n n nS +={}n b 1221n n T =-⋯{}n a {}n b 515a =520b =101045b a =+(1)2n n n a +={}n a 12a =1(1)(1)(2)2n n n na n a n n n +-+=++216a =n a n ⎧⎫⎨⎬⎩⎭10102400a =2n a n ⎧⎫⎨⎬⎩⎭2516{}n a 1359a a a ++=24a a +={}n a 4780a a -=1a 21a +3a 5a ={}n a 211n n n na a k a a ++++=k {}n a k {}n a 11a =22a =2202a ={}n a 2d =5a 6a 9a {}n a(2)设数列的前项和为,求的最小值及此时的值.16.(本题15分)设是公比为正数的等比数列,,.(1)求的通项公式;(2)设是首项为1,公差为2的等差数列,求数列的前项和.17.(本题15分)设是等差数列的前项和,已知,.(I )求;(II )若数列,求数列的前项和.18.(本题17分)已知数列的首项,且满足.(1)求证:数列为等比数列;(2)若,求满足条件的最大正整数.19.(本题17分)已知数列的前项和为,,数列满足,.(1)求数列,的通项公式;(2)令,求数列的前项和;(3)若,求对所有的正整数都有成立的的取值范围.{}n a n n S n S n {}n a 12a =324a a =+{}n a {}n b {}n n a b +n n S n S {}n a n 132a a +=-()*1575N S n =∈9S ()()1144n n n b a a +=++{}n b n n T {}n a 127a =()*1231n n n a a n a +=∈+N 13n a ⎧⎫-⎨⎬⎩⎭1231111100na a a a +++⋯+<n {}n a n n S ()*12N 2n n S a n =-∈{}n b 11b =120n n b b +-+={}n a {}n b n n n c a b =⋅{}n c n n T 0λ>n 222nnb k a λλ-+>k柘荣一中20242025学年第一学期第一次月考(高二数学)参考答案1. A在等差数列中,,,所以,所以,2.C设等比数列的公比为,因为,且,所以,解得,所以.故选:C.3.C因为数列的前项和,,所以.4.B因为在等差数列中,若为其前项和,,所以.故选:B.5.D设该妇子织布每天增加尺,由题意知,解得.故该女子织布每天增加尺.故选:D 6.D等差数列中,,故原式等价于解得或,各项不为0的等差数列,故得到,数列是等比数列,故.故选:D.7.A解:因为,,所以,,{}n a 53a =96a =95132a a a =+139522639a a a =-=⨯-={}n a q 12a =53a a =21q =1q =±91012a a q ==±{}n a 221n S n =+*N n ∈()()2255425124118a S S =-=⨯+-⨯+={}n a n S n 65a =()1111161111552a a S a +===d 2020192042322S d ⨯=⨯+=45d =45{}n a 31172a a a +=27740a a -=70a =74a ={}n a 774a b =={}n b 268716b b b ==11a =-()*112,N 1n n a n n a -=≥∈-2111111(1)2a a ===---321121112a a ===--,,所以数列是以3为周期的周期数列,所以.8.B解:选B 根据等比数列的下标性质由,函数,,令,则,,.9.AC【解答】解:设等差数列的公差为,因为,,所以,,解得,,所以,故A 错误;,故B 正确;设等比数列的公比为,由,,可得,解得,故C 错误;,故D 正确.故选:AC.10.ACD【详解】依题意,,,AD 正确;,,B 错误;,,C 正确.故选:ACD 11.ACD解:A 选项,中得,,故,A 正确;413111112a a a ===-=--52411111(1)2a a a ====---{}n a 1033111a a a ⨯+===-12023202411n n a a a a -⋅=⇒⋅= 24()1f x x =+222214444()41111x f x f x x x x+⎛⎫∴+=+== ⎪++⎝⎭+()()()122023T f a f a f a =+++ ()()()202320231T f a f a f a =+++ ()()()()()()120232202220231242023T f a f a f a f a f a f a ∴=++++++=⨯ 4046T ∴={}n a d 32a =392S =122a d +=9332a d +=11a =12d =1n 11(1)22n a n +=+-=211n 3n(1)224n S n n n +=+-⨯={}n b q 111b a ==4158b a ==38q =2q =n122112n n T -==--(1)12342n n n a n +=+++++=55(51)152a +==2[1(21)]1357(21)2n n n b n n +-=+++++-== 525b =1010(101)552a +==1010100554545b a ==+=+1(1)(1)(2)2n n n na n a n n n +-+=++1n =21223212a a -=⨯⨯=216a =B 选项,变形得到,故数列不是等差数列,B 错误;C 选项,,……,,上面个式子相加得,设①,则②,式子①-②得,则,故,所以,故,C 正确;D 选项,由C 选项知,,则,所以为公比为2的等比数列,的前99项和为,D 正确.12.【详解】在等差数列中,,解得,所以.13.【解答】解:设等比数列的公比为,由,可得,解得,由,,成等差数列,可得,即为,解得,所以,故答案为:32.11(1)2(2)2(1)(2)1n n n n n n na n a a an n n n n n++-+=⇒-=+⋅+++n a n ⎧⎫⎨⎬⎩⎭2321232,422132a a a a -=⨯-=⨯11(1)21n n n a a n n n ---=+⋅-(1)n -2113242(1)21n n a a n n --=⨯+⨯+++⋅ 213242(1)2n n T n -=⨯+⨯+++⋅ 2323242(1)2n n T n =⨯+⨯+++⋅ 231426222(1)26(1)22212nn nn n n T n n n ---=++++-+⋅=+-+⋅=-⋅- 22n n T n =⋅-222n na n n-=⋅-22n n a n =⋅210101021001024102400a =⋅=⨯=22nn a n =122(1)2n n a n a n ++=2n a n ⎧⎫⎨⎬⎩⎭2n a n ⎧⎫⎨⎬⎩⎭()1002512991001004252222222221612-+++==-<==- {}n a 313539a a a a =++=33a =24326a a a +=={}n a q 4780a a -=3748a q a ==2q =1a 21a +3a ()21321a a a +=+()1122141aa a a +=+12a =5232as ==14.【分析】令,先利用等比和数列的定义得到①,又②,两式相减得,然后由求得,求出,再利用累乘法求出.【解答】解:令,则①,又②,由②-①得,即,,,,故答案为:.【点评】本题主要考查数列新定义、数列通项公式的求法及累乘法在求数列通项公式中的应用,属于中档题.15.【答案】(1)(2)最小值为,.【小问1详解】由知为等差数列,设的公差为,则,,,成等比数列,所以,即,解得,又,所以的通项公式为;【小问2详解】由(1)得,所以当时,取得最小值,最小值为.16.【分析】(1)设为等比数列的公比,由已知可得关于的一元二次方程,求解可得值,则数列的通项可求;(2)由已知可得,然后分组,再由等差数列与等比数列的前项和公式求解.【解答】解:(1)设为等比数列的公比,则由,得,1n n na b a +=13n n b b ++=123n n b b +++=2n n b b +=1b 2b n b 2020a n 1nn a b a +=13n n b b ++=123n n b b +++=20n n b b +-=2n n b b +=2112a b a == 2131b b ∴=-=*1*1,2,N 2,21,Nn n n a n k k b a n k k +⎧=∈∴==⎨=-∈⎩101032019202022020112201820191212122a a a a a a a a a a ∴=⨯⨯⨯⋯⨯⨯=⨯⨯⨯⨯⋯⨯⨯=1010229n a n =-16-4n =12n n a a +-={}n a {}n a d 2d =5a 6a 9a 2659a a a =()()()211110816a a a +=++17a =-2d ={}n a 29n a n =-22(729)8(4)162n n n S n n n -+-==-=--4n =n S 16-q {}n a q q {}n a 12(1)21n b n n =+-=-n q {}n a 12a =324a a =+2224q q =+即,解得或(舍去),因此,的通项为;(2)由已知可得,,,【点评】本题考查等比数列的通项公式,考查等差数列与等比数列前项和的求法,是中档题.17.【解答】解:(I )设等差数列的公差为,则由,,得,解得.;(II )由(I )知,,,.【点评】本题考查等差数列的通项公式,考查了利用裂项相消法求数列的前n 项和,是中档题.18.(1)由已知递推公式得,由此可得证;(2)由(1)得,根据等比数列的求和公式可求得,再令,得函数的单调性和,可得答案.(1)解:,,,,又,,220q q --=2q =1q =-2q ={}n a ∴n 1n 222n a -=⨯=12(1)21n b n n =+-=-2(21)n n n a b n ∴+=+-()12212(1)222122n n n n n S n n +-+∴=+⨯-=+--n {}n a d 132a a +=-1575S =112221510575a d a d +=-⎧⎨+=⎩121a d =-⎧⎨=⎩9989(2)1182S ⨯∴=⨯-+⨯=21(1)3n a n n =-+⨯-=-()()1111144(1)(2)12n n n b a a n n n n +∴===-++++++123111111112334122224n n n T b b b b n n n n ⎛⎫⎛⎫⎛⎫∴=+++⋯+=-+-++-=-= ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭ 1111332n n a a +⎛⎫-=- ⎪⎝⎭1132nn a ⎛⎫=+ ⎪⎝⎭1231111na a a a +++⋯+1()3992xf x x ⎛⎫=-- ⎪⎝⎭()f x (33)0f <(34)0f >1231n n n a a a +=+ 13112n n na a a ++∴=111322n n a a +∴=+1111332n n a a +⎛⎫∴-=- ⎪⎝⎭127a =1171322a ∴=-=数列是以为首项,为公比的等比数列.(2)解:由(1)可知,,,,若,则,,令,所以在上单调递增,且,,所以满足条件的最大正整数.19.【解答】解:(1)数列的前项和为①,当时,解得.当时,②,①-②得,整理得,所以(常数),所以数列是以为首项,2为公比的等比数列;所以.数列满足,点在直线上.所以(常数),所以.(2),所以①,②,①-②得,整理得.∴13n a ⎧⎫-⎨⎬⎩⎭1212111113222n n n a -⎛⎫⎛⎫∴-== ⎪ ⎪⎝⎭⎝⎭1132nn a ⎛⎫∴=+ ⎪⎝⎭2123111111113132222nnn n n a a a a ⎛⎫⎛⎫⎛⎫⎛⎫∴++++=++++=-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭1231111100n a a a a ++++< 1131002nn ⎛⎫-+< ⎪⎝⎭13992nn ⎛⎫∴-< ⎪⎝⎭1()3992xf x x ⎛⎫=-- ⎪⎝⎭()f x R 331(33)999902f ⎛⎫=--< ⎪⎝⎭341(34)1029902f ⎛⎫=--> ⎪⎝⎭33n ={}n a n ()*1,22n n n S S a n =-∈N 1n =112a =2n ≥11122n n S a --=-1122n n n n n a S S a a --=-=-12n n a a -=12n n a a -={}n a 1222n n a -={}n b 11b =()1,n n P b b +20x y -+=12n n b b +-=21n b n =-2(21)2n n n n c a b n -==-⋅21113252(21)2n n T n -=⨯+⨯+⨯++⋅- 1211232(21)n n T n -=⨯+⨯++⋅- ()2211212222(21)2n n n T n ---=+++++-- 13(23)22n n T n -=+-⋅(3)由(1)得,所以,所以数列为单调递减数列,所以,所以的最大值为1,对所有的正整数都有都成立,故,可得,所以恒成立,只需满足,故,故的取值范围为.【点评】本题考查的知识要点:数列的递推关系式,数列的通项公式的求法及应用,错位相减法在数列求和中的应用,数列的单调性,恒成立问题,基本不等式,主要考查学生的运算能力,属于中档题.2222(21)n nnb n a -=⋅-222212(1)22(21)2(21)2(56)0n n n n nn nb b n n n a a ---++=⋅+-⋅-=-<2n n b a ⎧⎫⎨⎬⎩⎭1221n n b b a a ≤=2n n b a n 222nnb k a λλ-+>221k λλ-+>21k λλ<+1k λλ<+min12k λλ⎛⎫<+= ⎪⎝⎭2k <k (,2)-∞。
湖南省长沙市2024-2025学年高二上学期10月月考数学试题含答案
湖南2024—2025学年意高二第一学期第一次大徐习数学(答案在最后)时量:120分钟满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知z=,则z=()A.1i33-B.1i33+ C.12i33- D.12i33+【答案】A【解析】【分析】根据复数的除法运算,即可求出答案.【详解】由题意得11i333z-===-,故选:A2.设集合{}(){}212,ln1A x xB y y x=+≤==+,则A B=()A.[]0,1B.[]3,0- C.[)3,∞-+ D.[)0,+∞【答案】C【解析】【分析】由绝对值不等式解出集合A,再由对数的单调性得到集合B,最后求并集即可;【详解】由题意可得21231x x-≤+≤⇒-≤≤,所以{}3|1A x x=-≤≤,因为211x+≥,所以()2ln10y x=+≥,所以{}|0B y y=≥,所以[)3,A B=-+∞,故选:C.3.)A.2π B.3πC. D.【答案】B【解析】【分析】设圆锥的底面半径为r,根据轴截面面积求出r,结合圆锥侧面积公式,即可求得答案.【详解】设圆锥的底面半径为r,,母线长为2r,1212r r⨯=∴=,则该圆锥的表面积为2π1π123π⨯+⨯⨯=,故选:B4.若角α满足ππcos()2cos()36αα+=-,则πcos(23α-=()A.45- B.35- C.45 D.35【答案】B【解析】【分析】根据给定条件,利用诱导公式求出t n(aπ6α-,再利用二倍角的余弦公式,结合齐次式法求值.【详解】由ππcos()2cos()36αα+=-,得πππcos[()]2cos()266αα+-=-,即ππsin(2cos()66αα--=-,则πtan(26α-=-所以2222ππcos()sin()ππ66cos(2)cos2()ππ36cos()sin()66αααααα----=-=-+-2222π1tan()1(2)36π1(2)51tan()6αα----===-+-+-.故选:B5.已知平面上三个单位向量,,a b c满足()2ac b=+,则a c⋅=()A.12B.2C.14D.34【答案】C【解析】【分析】将()2ac b=+平方后求出78a b⋅=-,再根据数量积的运算律,即可求得答案.【详解】由题意知平面上三个单位向量,,a b c满足()2ac b=+,则()2214a bc==+,即22148488a a b b a b +⋅=++=⋅ ,则78a b ⋅=- ,故()2712222284a c a ab a a b =⋅=⋅++⋅=-⨯=,故选:C6.若函数()f x 在定义域[],a b 上的值域为()(),f a f b ⎡⎤⎣⎦,则称()f x 为“Ω函数”.已知函数()25,024,24x x f x x x m x ≤≤⎧=⎨-+<≤⎩是“Ω函数”,则实数m 的取值范围是()A.[]4,10 B.[]4,14 C.[]10,14 D.[)10,+∞【答案】C 【解析】【分析】根据“Ω函数”的定义确定()25,024,24x x f x x x m x ≤≤⎧=⎨-+<≤⎩的值域为[0,]m ,结合每段上的函数的取值范围列出相应不等式,即可求得答案.【详解】由题意可知()25,024,24x x f x x x m x ≤≤⎧=⎨-+<≤⎩的定义域为[0,4],又因为函数()25,024,24x x f x x x m x ≤≤⎧=⎨-+<≤⎩是“Ω函数”,故其值域为()()[0,4]f f ;而()()00,4f f m ==,则值域为[0,]m ;当02x ≤≤时,()5[0,10]f x x =∈,当24x <≤时,()24f x x x m =-+,此时函数在(2,4]上单调递增,则()(4,]f x m m ∈-,故由函数()25,024,24x x f x x x m x ≤≤⎧=⎨-+<≤⎩是“Ω函数”可得041010m m ≤-≤⎧⎨≥⎩,解得1014m ≤≤,即实数m 的取值范围是[]10,14,故选:C7.已知,A B 两点的坐标分别为()()0,1,1,0A B ,两条直线1:10l mx y -+=和()2:10l x my m +-=∈R 的交点为P ,则AP BP +的最大值为()A.2B.C.1D.2【答案】D【解析】【分析】由直线所过定点和两直线垂直得到点P 的轨迹,再设ABP θ∠=,结合辅助角公式求出即可;【详解】由题意可得直线1:10l mx y -+=恒过定点()0,1A ,2:10l x my +-=恒过定点()1,0B ,且两直线的斜率之积为1-,所以两直线相互垂直,所以点P 在以线段AB 为直径的圆上运动,AB =,设ABP θ∠=,则,AP BP θθ==,所以π2sin 4AP BP θθθ⎛⎫+=+=+ ⎪⎝⎭,所以当π4θ=时,即0m =时,AP BP +取得最大值2,此时点P 的坐标为()1,1.故选:D.8.已知点P 在椭圆τ:22221x y a b +=(a>b >0)上,点P 在第一象限,点P 关于原点O 的对称点为A ,点P 关于x 轴的对称点为Q ,设3,4PD PQ →→=直线AD 与椭圆τ的另一个交点为B ,若PA ⊥PB ,则椭圆τ的离心率e =()A.12B.2C.2D.3【答案】C 【解析】【分析】设P 的坐标,由题意可得,A Q 的坐标,再由向量的关系求出D 的坐标,求出,AD PA 的斜率,设B 坐标,,P B 在椭圆上,将,P B 的坐标代入椭圆的方程,两式相减所以可得224 PA PB b k k a⋅=-,再由PA PB ⊥可得,a b 的关系,进而求出离心率.【详解】设()11,P x y ,则()()1111,,,A x y Q x y ---,3,4PD PQ →→=,则11,2y D x ⎛⎫- ⎪⎝⎭,设()22,B x y ,则2211222222221 ,1x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩两式相减得到:()()()()1212121222x x x x y y y y a b +-+-=-,2121221212,,PBAD AB y y x x b k k k x x a y y -+==-⋅=-+即()1211211121124 ,4PA y y y y y y k x x x x x x ++===++,,PA PB ⊥故 1PA PBk k ⋅=-,即2241b a -=-,故2234a c =,故3 2e =.故选:C.【点睛】本题考查了椭圆的离心率,意在考查学生的计算能力和转化能力,属于中档题.二、选择题:本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.若圆()22260x y x y a a +--+=∈R 上至多存在一点,使得该点到直线3450x y ++=的距离为2,则实数a 可能为()A.5B.6C.7D.8【答案】BCD 【解析】【分析】根据圆的方程确定圆心和半径以及10a <,再结合题意列出相应不等式,即可求得答案.【详解】圆()22260x y x y a a +--+=∈R 即圆()()()221310x y a a -+-=-∈R ,需满足10a <,则圆心为()1,3圆心()1,3到直线3450x y ++=的距离为312545d ++==,要使圆()22260x y x y a a +--+=∈R 上至多存在一点,使得该点到直线3450x y ++=的距离为2,需满足42≥,解得610a ≤<,结合选项可知6,7,8符合题意,故选:BCD10.已知函数()f x 的定义域为(),1f x -R 为偶函数,()1f x +为奇函数,则下列选项正确的是()A.()f x 的图象关于直线1x =-对称B.()f x 的图象关于点()1,0对称C.()31f -=D.()f x 的一个周期为8【答案】ABD 【解析】【分析】根据函数的奇偶性可推出函数的对称性,判断AB ;利用赋值法求出()1f 的值,结合对称性可求()3f ,判断C ;结合函数奇偶性、对称性可推出函数的周期,判断D.【详解】由于函数()f x 的定义域为(),1f x -R 为偶函数,则()()11f x f x --=-,即()()2f x f x --=,则()f x 的图象关于直线1x =-对称,A 正确;又()1f x +为奇函数,则()()11f x f x -+=-+,即()()2f x f x -+=-,故()f x 的图象关于点()1,0对称,B 正确;由于()()11f x f x -+=-+,令0x =,则()()()11,10f f f =-∴=,又()f x 的图象关于直线1x =-对称,故()()310f f -==,C 错误;又()()2f x f x --=,()()2f x f x -+=-,则()()22f x f x --=--+,故()()22f x f x -=-+,即()()4f x f x +=-,则()()8f x f x +=,即()f x 的一个周期为8,D 正确,故选:ABD11.在棱长均为1的三棱柱111ABC A B C -中,1160A AB A AC BAC ∠=∠=∠=,点T 满足1AT xAB y AC z AA =++,其中[],,0,1x y z ∈,则下列说法一定正确的有()A.当点T 为三角形111A B C 的重心时,2x y z ++=B.当1x y z ++=时,AT 的最小值为3C.当点T 在平面11BB C C 内时,x y z ++的最大值为2D.当1x y +=时,点T 到1AA 的距离的最小值为2【答案】BCD 【解析】【分析】将AT 用1,,AB AC AA 表示,再结合1AT xAB y AC z AA =++ 求出,,x y z ,即可判断A ;将AT平方,将()1z x y =-+代入,再结合基本不等式即可判断B ;当点T 在平面11BB C C 内时,则存在唯一实数对(),λμ使得()11BT BB BC BB AC AB λμλμ=+=+- ,再根据1AT xAB y AC z AA =++ ,求出,,x y z ,再根据[],,0,1x y z ∈即可判断C ;求出AT 在1AA方向上的投影,再利用勾股定理结合基本不等式即可判断D.【详解】对于A ,当点T 为三角形111A B C 的重心时,()()11111211323AT A B A C AB AC =⨯+=+,所以1111133A AA A T AB AC A T A =++=+ ,又因为1AT xAB y AC z AA =++ ,所以1,13x y z ===,所以53x y z ++=,故A 错误;对于B ,2222211221222xy AB AC xz AB AA yz AC AA AT x AB y AC z AA +⋅+⋅+++⋅=+222x y z xy xz yz =+++++()()()21x y z xy xz yz xy xz yz =++-++=-++,因为1x y z ++=,所以()1z x y =-+,则()()()1xy xz yz xy x y z xy x y x y ⎡⎤++=++=++-+⎣⎦()()()()()2224x y xy x y x y x y x y +=++-+≤++-+()()223321144333x y x y x y ⎛⎫=-+++=-+-+≤ ⎪⎝⎭,当且仅当23x y +=时取等号,所以()2121133AT xy xz yz =-++≥-= ,所以3AT ≥,所以AT 的最小值为63,故B 正确;对于C ,当点T 在平面11BB C C 内时,则存在唯一实数对(),λμ使得()11BT BB BC BB AC AB λμλμ=+=+-,则()11AT AB BT AB AC AA μμλ=+=-++ ,又因为1AT xAB y AC z AA =++ ,所以1,,x y z μμλ=-==,所以11x y z μμλλ++=-++=+,因为[]0,1z λ=∈,所以[]11,2λ+∈,所以x y z ++的最大值为2,故C 正确;对于D ,当1x y +=时,由A 选项知,()()22222221AT x y z xy xz yz x y z xy x y z z xy z =+++++=++-++=+-+ ,AT 在1AA 方向上的投影为111111AT AA xAB AA y AC AA z AA AA AA ⋅=⋅+⋅+⋅111222x y z z =++=+,所以点T 到1AA的距离d ==因为()2144x y xy +≤=,所以2d =≥=,当且仅当12x y ==时,取等号,所以点T 到1AA的距离的最小值为2,故D 正确.故选:BCD.【点睛】关键点点睛:当点T 在平面11BB C C 内时,则存在唯一实数对(),λμ使得()11BT BB BC BB AC AB λμλμ=+=+- ,再根据1AT xAB y AC z AA =++,求出,,x y z ,是解决C选项的关键.三、填空题:本题共3小题,每小题5分,共15分.12.已知随机事件,A B 满足()()()111,,342P A P B P A B ==+=,则()P AB =____________.【答案】112【解析】【分析】根据随机事件的和事件的概率计算公式,即可求得答案.【详解】由题意可知()()()111,,342P A P B P A B ==+=,故()()()()P A B P A P B P AB +=+-,则()()()()111134212P AB P A P B P A B =+-+=+-=,故答案为:11213.已知正三棱台的高为1,上、下底面边长分别为积为__________.【答案】100π【解析】【分析】分别求得上下底面所在平面截球所得圆的半径,找到球心,求得半径,再由球的表面积公式可得结果.【详解】由题意设三棱台为111ABC A B C -,如图,上底面111A B C所在平面截球所得圆的半径是112332O A =⨯⨯,1(O 为上底面截面圆的圆心)下底面222A B C所在平面截球所得圆的半径是2223432O A =⨯⨯,2(O 为下底面截面圆的圆心)由正三棱台的性质可知,其外接球的球心O 在直线12O O 上,当O 在线段12O O1=,无解;当O 在12O O1=,解得225R =,因此球的表面积是24π4π25100πS R ==⨯=.故答案为:100π14.已知2024是不等式()22log 2321log x x a a+->+的最小整数解,则a 的取值范围为____________.【答案】2021202222a ≤<【解析】【分析】结合分式不等式和对数函数与指数函数互换的性质变形不等式,再分21log a +大于零和小于零时分类讨论即可;【详解】由题意可得012230xa a a >⎧⎪⎪≠⎨⎪->⎪⎩,变形不等式可得()()222222223log 2log 2321log 01log 1log 1log xx a x x a a a a a a-+-+-+-=>+++,当211log 02a a +>⇒>时,有2223log 20x a x a-+->,由指数函数和对数函数的互化并整理可得2223240x x a a -⋅->,即()()2420xxaa -+>,解得24x a >或2x a <-(舍去),从而2log 4x a >,又12a >时2log 41a >,所以要使2024是不等式()22log 2321log x x aa+->+的最小整数解,有22023log42024a ≤<,解得2021202222a ≤<,所以2021202222a ≤<,当211log 002a a +<⇒<<时,注意到20242024323212a ->->,此时,不等式的分子大于零,不符合题意,综上,a 的取值范围为2021202222a ≤<.故答案为:2021202222a ≤<.四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.某研究小组经过研究发现某种疾病的患病者与未患病者的某项医学指标有明显差异,经过大量调查,得到如下的患病者和未患病者该指标的频率分布直方图:利用该指标制定一个检测标准,需要确定临界值c ,将该指标大于c 的人判定为阳性,小于或等于c 的人判定为阴性.此检测标准的漏诊率是将患病者判定为阴性的概率,记为()p c ;误诊率是将未患病者判定为阳性的概率,记为()q c .假设数据在组内均匀分布.(1)当漏诊率()0.5%p c =时,求临界值c 和误诊率()q c ;(2)已知一次调查抽取的未患病者样本容量为100,且该项医学指标检查完全符合上面频率分布直方图(图2),临界值99c =,从样本中该医学指标在[]95,105上的未患病者中随机抽取2人,则2人中恰有一人为被误诊者的概率是多少?【答案】(1)97.5c =,() 3.5%q c =(2)815【解析】【分析】(1)由图1,根据漏诊率()0.5%p c =列式求出c ,再由图2求出误诊率()q c ;(2)根据图2求出100个未患病者中,该项医学指标在[]95,105中的人数以及被误诊者的人数,再利用列举法和古典概型的概率公式可求出结果.【小问1详解】依题可知,图1第一个小矩形的面积为50.0020.5%⨯>,所以95100c <<,所以()950.0020.5%c -⨯=,解得97.5c =,()()0.0110097.550.0020.035 3.5%q c =⨯-+⨯==.【小问2详解】由题可知,100个未患病者中,该项医学指标在[]95,105中的有100(0.0100.002)56⨯+⨯=人,其中被误诊者有100(10099)0.0110050.0022⨯-⨯+⨯⨯=人,记随机抽取的2人恰有一人为被误诊者为事件A .分别用a ,b ,c ,d ,E ,F 表示这6人,E ,F 代表被误诊的2人,样本空间{},,,,,,,,,,,,,,ab ac ad aE aF bc bd bE bF cd cE cF dE dF EF Ω=,事件{},,,,,,,A aE aF bE bF cE cF dE dF =,故()15n Ω=,()8n A =,()()()815n A P A n ==Ω,故2人中恰有一人为被误诊者的概率是815.16.已知圆22:80C x y y +-=,过点()2,2P 的直线l 与圆C 交于,A B 两点,点M 满足2OM OA OB =+,其中O 为坐标原点.(1)求点M 的轨迹方程;(2)若CMP !的面积为2,求AB .【答案】(1)()()22132x y -+-=(2)【解析】【分析】(1)设s ,求出圆心坐标,利用CM MP ⊥的数量积为零求出轨迹方程即可;(2)设圆心到直线的距离为d ,由三角形面积公式求出2d ,再利用弦长公式求解即可;【小问1详解】由2OM OA OB =+可得点M 为线段AB 的中点,设s ,圆方程化为标准方程为()22416x y +-=,所以圆心()0,4C ,半径4r=,所以()(),4,2,2CM x y MP x y =-=--,因为CM MP ⊥,所以()(),42,20x y x y -⋅--=,整理可得()()22132x y -+-=,所以点M 的轨迹方程为()()22132x y -+-=,【小问2详解】设圆心到直线的距离为d ,因为M 为AB 的中点,且CM AB ⊥,CMP !的面积为2,CP =所以122d =,即4d =,解得24d =,由弦长公式可得AB ===17.如图,在四棱锥P ABCD -中,底面ABCD是矩形,PA PD ==,PB PC ==90APB CPD ∠=∠=︒,点M ,N 分别是棱BC ,PD 的中点.(1)求证://MN 平面PAB ;(2)若平面PAB ⊥平面PCD ,求直线MN 与平面PCD 所成角的正弦值.【答案】(1)见解析(2)69【解析】【分析】(1)取PA 的中点为Q ,连接NQ ,BQ ,由平面几何知识可得//NQ BM 且NQ BM =,进而可得//MN BQ ,由线面平行的判定即可得证;(2)过点P 作PE AB ⊥交AB 于点E ,作PF CD ⊥交CD 于点F ,连接EF ,取EF 的中点为O ,连接OP ,建立空间直角坐标系后,求出平面PCD 的一个法向量为n 、直线MN 的方向向量MN,利用sin cos n MN n MN n MNθ⋅=⋅=⋅即可得解.【详解】(1)证明:取PA 的中点为Q ,连接NQ ,BQ ,如图:又点N 是PD 的中点,则//NQ AD 且12NQ AD =,又点M 是BC 的中点,底面ABCD 是矩形,则12BM AD =且//BM AD ,∴//NQ BM 且NQ BM =,∴四边形MNQB 是平行四边形,∴//MN BQ ,又MN ⊄平面PAB ,BQ ⊂平面PAB ,∴//MN 平面PAB ;(2)过点P 作PE AB ⊥交AB 于点E ,作PF CD ⊥交CD 于点F ,连接EF ,则PF AB ⊥,PE PF P = ,∴AB ⊥平面PEF ,又AB ⊂平面ABCD ,∴平面PEF ⊥平面ABCD ,∵3PA PD ==,6PB PC ==90APB CPD ∠=∠=︒,∴3AB CD ==,2PE PF ==2BE CF ==,1AE DF ==.设平面PAB ⋂平面PCD l =,可知////l CD AB ,∵平面PAB ⊥平面PCD ,∴90EPF ∠=︒,∴2EF =,取EF 的中点为O ,连接OP 、OM ,则OP ⊥平面ABCD ,1OP =,∴OM 、OF 、OP 两两垂直,以O 为坐标原点,分别以OM ,OF ,OP 所在直线为x ,y ,z 轴建立空间直角坐标系,O xyz -,如图所示,则()0,0,1P ,()2,1,0C ,()1,1,0D -,()2,0,0M ,111,,222N ⎛⎫-⎪⎝⎭,∴()2,1,1PC =- ,()1,1,1PD =--,511,,222MN ⎛⎫=- ⎪⎝⎭,设平面PCD 的一个法向量为(),,n x y z =,则由020n PD x y z n PC x y z ⎧⋅=-+-=⎨⋅=+-=⎩ ,令1y =可得()0,1,1n =r .设直线MN 与平面PCD 所成角为θ,则6sin cos 9n MN n MN n MNθ⋅=⋅===⋅∴直线MN 与平面PCD所成角的正弦值为9.【点睛】本题考查了线面平行的判定及利用空间向量求线面角,考查了空间思维能力与运算求解能力,属于中档题.18.已知P是椭圆C :22221x y a b+=(a >b >0)上一点,以点P 及椭圆的左、右焦点F 1,F 2为顶点的三角形面积为2(1)求椭圆C 的标准方程;(2)过F 2作斜率存在且互相垂直的直线l 1,l 2,M 是l 1与C 两交点的中点,N 是l 2与C 两交点的中点,求△MNF 2面积的最大值.【答案】(1)22184x y +=;(2)49﹒【解析】【分析】(1)由椭圆过的点的坐标及三角形的面积可得a ,b ,c 之间的关系,求出a ,b 的值,进而求出椭圆的标准方程;(2)由题意设直线1l 的方程,与椭圆联立求出两根之和,进而求出交点的中点M 的纵坐标,同理求出N 的纵坐标,进而求出2MNF 面积的表达式,换元由函数的单调性求出其最大值.【小问1详解】由题意可得22222231122a b c c a b ⎧+=⎪⎪⎪⋅=⎨⎪=-⎪⎪⎩,解得:28a =,24b =,∴椭圆的标准方程为:22184x y +=;【小问2详解】由(1)可得右焦点2(2,0)F ,由题意设直线1l 的方程为:2x my =+,设直线与椭圆的交点1(x ,1)y ,2(x ,2)y ,则中点M 的纵坐标为122M y y y +=,联立直线1l 与椭圆的方程222184x my x y =+⎧⎪⎨+=⎪⎩,整理可得:22(2)480m y my ++-=,12242m y y m -+=+,∴222Mmy m -=+,同理可得直线2l 与椭圆的交点的纵坐标2212()21122()N m m y m m-⋅-==++-,∴2221|||||||2MNF M N S MF NF y y =⋅=⋅△22422222(1)2(1)||||2522(1)m m m m m m m m ++==++++222||121m mm m =+⋅++,设0m >,令212m t m+=,则2212MNF S t t=+△,令1()2f t t t =+,2t ,21()2f t t '=-,2t ,()0f t '>恒成立,∴()f t 在[2,)+∞单调递增,∴22241192222MNF S t t ==+⨯+△.∴2MNF 面积的最大值为:49.19.基本不等式是最基本的重要不等式之一,二元基本不等式为122a a +≥.由低维到高维,知识与方法上的类比是探索发展的重要途径,是发现新问题、新结论的重要方法.基本不等式可以推广到一般的情形:对于n 个正数12,,...,n a a a ,它们的算术平均数121...1nn n i i a a a A a n n =+++==∑(注:121...nin i aa a a ==+++∑)不小于它们的几何平均数()11121...nnnn ni i G a a a a =⎛⎫== ⎪⎝⎭∏(注:121...ni n i a a a a ==∏),即)12...n n n a a a A G n+++≥≥,当且仅当12...n a a a ===时,等号成立.(1)已知0x y >>,求()1x y x y +-的最小值;(2)已知12,,...,0n a a a >且12...1n a a a +++=.(ⅰ)求证:()()2221111nnniii i a na==-≥-∏∏;(ⅱ)当2024n ≥,求3111nii i i a n a a =++-∑的最小值,其中11n a a +=.【答案】(1)3(2)(ⅰ)证明见解析(ⅱ)421n n -【解析】【分析】(1)直接使用均值不等式即可证明()13x y x y +≥-,再构造取到等号的例子即可;(2)(ⅰ)使用适当的1n +元和1n -元均值不等式,再将所得结果相乘即可;(ⅱ)先研究函数()()()ln 1ln 1f x x x =---+的性质,再利用相应性质得到结果.【小问1详解】由均值不等式得()()()1133x y x y y x y y x y +=+-+≥⋅--.而当2x =,1y =时,有0x y >>,()112321x y x y +=+=--.所以()1x y x y +-的最小值是3.【小问2详解】(ⅰ)由于12,,...,0n a a a >,12...1n a a a +++=,故对1,2,...,i n =,由均值不等式有()()11121112111......1......n i i i i i n i i i i n a a a a a a a a n a a a a a a a +-+-++=++++++++≥+⋅⋅⋅⋅⋅⋅⋅⋅,()()11121112111......1......n i i i n i i n a a a a a a n a a a a a --+-+-=++++++≥-⋅⋅⋅⋅⋅⋅.将二者相乘,得()()2222211121111......nn nii i nia n a a a a a a+--+-≥-⋅⋅⋅⋅⋅⋅⋅.再将该不等式对1,2,...,i n =相乘,即得()()()()()22212112222211111111n n n nn n n n nnn i i i i i i i i a n a n a n a -⋅++-====⎛⎫⎛⎫-≥-=-=- ⎪ ⎪⎝⎭⎝⎭∏∏∏∏.(ⅱ)对01x <<,设()()()ln 1ln 1f x x x =---+.则()1111f x x x'=--+,()()()2211011f x x x ''=+>-+.对01a b <<<,设()()()()()h u f u f b u b f b '=---,01u <<.则()()()h u f u f b '''=-,()()0h u f u ''''=>,所以()h u '在()0,1上递增.所以对0u b <<有()()()0h u f u f b '''=-<,对1b u <<有()()()0h u f u f b '''=->.这表明()h u 在()0,b 上递减,在(),1b 上递增,所以由a b ≠有()()()()()()0f a f b a b f b h a h b '---=>=.这就得到()()()()0f a f b a b f b '--->,同理有()()()()0f b f a b a f a '--->,即()()()()0f a f b a b f a '---<.再设()()()()()()11g t tf a t f b f ta t b =+--+-,01t ≤≤.则()()()()()()1g t f a f b a b f ta t b ''=---+-,()()()()210g t a b f ta t b ''''=--+-<.所以()g t '在[]0,1上递减.而()()()()()00g f a f b a b f b ''=--->,()()()()()10g f a f b a b f a ''=---<.所以一定存在01η<<,使得对0t η<<有()0g t '>,对1t η<<有()0g t '<.故()g t 在[]0,η上递增,在[],1η上递减,而()()010g g ==,结合()g t 的单调性,知对任意01t <<有()0g t >.特别地,有102g ⎛⎫>⎪⎝⎭,即()()022f a f b a b f ++⎛⎫-> ⎪⎝⎭,此即()()22f a f b a b f ++⎛⎫> ⎪⎝⎭.对01b a <<<,同理有()()22f a f b a b f ++⎛⎫> ⎪⎝⎭.而对01a b <=<,显然有()()22f a f b a b f ++⎛⎫= ⎪⎝⎭.综上,对任意(),0,1a b ∈,有()()22f a f b a b f ++⎛⎫≥ ⎪⎝⎭.先证明一个引理:设()12,,...,0,1n a a a ∈,则()()()1212......n nf a f a f a a a a f nn ++++++⎛⎫≥ ⎪⎝⎭.用数学归纳法证明.①当1n =时,结论显然成立.②若结论对n k =成立,则对()122,,...,0,1k a a a ∈,有()()()()()()()()()12212122.........222k k k k k f a f a f a f a f a f a f a f a f a k k k+++++++++++=+1212212122 (1)11222k k k k kk k k a a a a a a a a a a a a f f f f k k k k ++++++++++⎛++++++⎫⎛⎫⎛⎫⎛⎫⎛⎫≥+=+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1212212122............22k k k kk k k k a a a a a a a a a a a a k k f f k ++++++++++⎛⎫+ ⎪+++++++⎛⎫≥=⎪ ⎪⎝⎭⎪⎝⎭.从而结论对2n k =也成立.结合①②,可知原结论对无穷多个正整数n 成立.③若结论对1n k =+成立,则对()12,,...,0,1k a a a ∈,有()()()()()()12121212 (1)kk k k a a a f a f a f a f f a f a f a a a a k f k kk k +++⎛⎫++++ ⎪++++++⎛⎫⎝⎭=- ⎪⎝⎭()()()121212.........111k k k a a a f a f a f a f a a a k k f k k k k +++⎛⎫++++ ⎪++++⎛⎫⎝⎭≥⋅ ⎪+⎝⎭1221212.........111k k k k k a a a a a a a a a k k f f k k k k +++++⎛⎫++++ ⎪++++⎛⎫≥⋅-⎪ ⎪+⎝⎭⎪⎝⎭121212 (1)1k kka a a a a a a a a k f f f k k k k k ++++++++++⎛⎫⎛⎫⎛⎫=⋅-= ⎪⎪⎪⎝⎭⎝⎭⎝⎭.从而结论对n k =也成立.由于原结论对无穷多个正整数n 成立,再结合③,即知原结论对任意的正整数n 成立.引理证毕,回到原题.由于我们有()()()21ln 1ln 1ln1f x x x x =---+=-,故1211111ln 122223332111111111e 1nn i i n n nna nnni i i i i i i i i i i i i i a a a n n n n n a a a a a a a =⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪- ⎪⎝⎭ ⎪⎝⎭====++++∏⎛⎫⎛⎫⎛⎫≥===⋅ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭∑∏∏∏()221111ln1111114ln11222222221eeeee111n nni i k i k k f a f a f n n n a n n n n n n n n n n n ===⎛⎫⎛⎫⎛⎫⎪- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭∑∑=⋅=⋅≥⋅=⋅=⋅=⋅=-⎛⎫- ⎪⎝⎭.而当121...n a a a n ====时,有2343222111113111111nnni i i i i i a n n n nn n n n a a n n n n n===++===⋅=-----∑∑∑.所以3111ni i i i a n a a =++-∑的最小值是421nn -.【点睛】关键点点睛:本题的关键点在于对全新知识和工具的运用,适当运用工具方可解决问题.。
江苏省盐城市东台市第一中学2024-2025学年高二上学期10月月考数学试题(含答案)
2024年秋东台市第一中学高二年级月考一数学试题(考试时间120分钟 总分150分)命题人:审题人:第Ⅰ卷(选择题 共58分)一、单项选择题:(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求,请在答题纸的指定位置填涂答案选项.)1.经过,两点的直线的倾斜角是( )A .B .C .D .2.过直线和的交点,且与直线垂直的直线方程是( )A .B .C .D .3.设为实数,若直线与圆相切,则点与圆的位置关系是( )A .在圆外B .在圆上C .在圆内D .不能确定4.已知圆,圆,则两圆的公切线有( )A .0条B .1条C .2条D .3条5.若直线与直线的交点位于第一象限,则直线的倾斜角的范围是( )A .B .C .D .6.著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事体。
”事实上,有很多代数问题可以转化可以转化为平面上点与点的距离.结合上述观点,可得的最小值为( )A .B .CD .7.已知两点,,若直线上存在点满足,则实数的取值范围是()A .B .C .D .8.已知圆,点为直线上一动点,过点向圆引两条切线,为切点,则直线经过定点()()1,3A -()1,1B -45︒60︒90︒135︒30xy +-=260x y -+=230x y +-=4290x y +-=290xy -+=290x y +-=4290x y -+=,a b 1ax by +=221x y +=(),P a b 221:1C x y +=()()222:3449C x y -+-=:l y kx =-2360x y +-=l ππ,63⎡⎫⎪⎢⎣⎭ππ,32⎡⎤⎢⎥⎣⎦ππ,32⎛⎫⎪⎝⎭ππ,62⎛⎫⎪⎝⎭(),M x y (),N a b y =+3()1,0M -()1,0N 0x y m -+=P 0PM PN ⋅=m (][),22,-∞-+∞ (),-∞+∞[]2,2-⎡⎣22:1C x y +=P 240x y +-=P C ,PA PB ,A B ABA .B .C .D .二、多项选择题:(本大题共3个小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分)9.直线经过点,且在两坐标轴上的截距互为相反数,则直线的方程可能是( )A .B .C .D .10.下列说法不正确的是()A .平面直角坐标系内的任意一条直线都存在倾斜角和斜率B.不经过原点的直线都可以用方程表示C .“直线与直线互相垂直”是“”的充分不必要条件D .直线的倾斜角的取值范围是11.设直线与圆,则下列结论正确的为()A .可能将的周长平分B .若直线与圆相切,则C .当时,圆上有且仅有2个点到直线的距离都等于1D .若直线与圆交于两点,则面积的最大值为2第Ⅱ卷(非选择题 共92分)三、填空题:(本大题共3小题,每小题5分,计15分.不需要写出解答过程,请把答案写在答题纸的指定位置上.)12.已知,则P 点关于直线的对称点的坐标为______.13.两条平行直线和间的距离为,则的值分别为______.14.已知圆,从点向圆作两条切线,切点分别为,,若,则点的轨迹方程为______;点到直线的最大距离为______.四、解答题:(本大题共5小题,共77分,请在答题纸指定的区域内作答,解答时应写出文字说明、证明过程或演算步骤.)15.(本小题满分13分)已知的三个顶点为,,.(1)求边上的高的直线方程;11,42⎛⎫⎪⎝⎭11,24⎛⎫⎪⎝⎭⎫⎪⎪⎭⎛⎝l ()3,2-l 230x y +=320x y +=50x y --=10x y +-=1x ya b+=210a x y -+=20x ay --=1a =-sin 20x y α++=θπ3π0,,π44⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭():4l y kx k =+∈R 22:4C x y +=l C l C k =1k =C l l C ,A B ABC △()2,1P :30l x y -+=Q 230x y -+=340ax y +-=d d ()()2200:4M x x y y -+-=()3,4N M ,NP NQ P Q π3PNQ ∠=M M 34250x y ++=ABC △()4,0A ()2,3B ()4,6C BC AD(2)求过点且与两点距离相等的直线方程.16.(本小题满分15分)已知圆的圆心在轴上,且经过点,.(1)求圆的标准方程;(2)过点的直线与圆相交于两点,且,求直线的方程.17.已知圆.(1)若满足,求的取值范围;(2)若直线与圆交于不同的两点,当为锐角时,求的取值范围;18.(本小题满分17分)已知直线恒过点,且与轴,轴分别交于两点,为坐标原点.(1)求点的坐标;(2)当点到直线的距离最大时,求直线的方程;(3)当取得最小值时,求的面积.19.(本小题满分17分).古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名,他发现;平面内到两个定点的距离之比为定值(且)的点所形成的图形是圆.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.已知在平面直角坐标系中,,.点满足,设点所构成的曲线为.(1)求点的轨迹方程;(2)若,求点的轨迹的方程;(3)过作两条互相垂直的直线,与点的轨迹分别交于和四点,求四边形面积的最大值.B AC 、C x ()1,0A -()1,2B C ()0,2P l C ,M N MN =l 22:2O x y +=,x y 222x y +=2y x+:2l y kx =-O ,A B AOB ∠k :20l ax y a -+-=P x y ,A B O P O l l PA PB ⋅AOB △A B 、λ0λ>1λ≠xOy ()1,0A ()2,0B -P 12PA PB=P 1C P PA AQ =Q 2C A 1l 2l Q 2C M N 、P Q 、MPNQ2024年秋东台市第一中学高二年级月考一数学答案第Ⅰ卷(选择题 共58分)一、单项选择题:(本大题共8小题,每小题5分,共40分.)题号12345678答案CBBADADA二、多项选择题:(本大题共3小题,每小题6分,共18分.)题号91011答案ACABCBCD第Ⅱ卷(非选择题 共92分)三、填空题:(本大题共3小题,每小题5分,计15分).12.1314.;14四、解答题:15.(本小题满分13分).【解析】(1)由点的坐标,得直线的斜率,由,得直线的斜率,由点斜式方程得直线的方程为,整理得,所以边上的高的直线方程为.(2)由点的坐标,得线段的中点坐标为,①到直线的距离相等,而直线轴,于是直线的方程为;②到与直线平行的直线的距离也相等,而直线轴,此时所求直线方程为,所以过点且与距离相等的直线方程为和.16.(本小题满分15分).【解析】(1)设的中点为,则,由圆的性质得,所以,得,()2,5-()()223416x y -+-=B C 、BC 633422BC k -==-AD BC ⊥AD 123AD BC k k =-=-AD ()2043y x -=--2380x y +-=BC AD 2380x y +-=A C 、AC E ()4,3,A C BE BE y ⊥BE 3y =,A C AC AC x ⊥2x =B ,A C 2x =3y =AB D ()0,1D CD AB ⊥1CD AB K K ⨯=-1CD K =-所以线段的垂直平分线方程是.设圆的标准方程为,其中,半径为,由圆的性质,圆心在直线上,化简得,所以圆心,,所以圆的标准方程为;(2)由(1)设为中点,则,得,圆心到直线的距离,①当直线的斜率不存在时,的方程,此时,符合题意;②当直线的斜率存在时,设的方程,即,由题意得;故直线的方程为,即;综上直线的方程为或.17.(本小题满分15分)【解析】(1),令,即直线与圆有公共点,圆心到直线的距离小于等于半径解得或.即(2)设的坐标分别为,,将直线代入,整理,得,,,,即,当为锐角时,AB 10x y +-=C ()222x a y r -+=(),0C a ()0r r >(),0C a CD 1a =()1,0C 2r CA ==C ()2214x y -+=F MN CF l ⊥FM FN ==C l 1d CF ===l l 0x =1CF =l l 2y kx =+20kx y -+=d 34k =-l 324y x =-+3480x y +-=l 0x =3480x y +-=22:2O x y +=2y k x+=:20l kx y --= l O ∴()0,0O l r =d =≤1k ≤-1k ≥][()2,11,y x+∈-∞-+∞ ,A B ()11,x y ()22,x y :2l y kx =-222x y +=()221420k x kx +-+=12241k x x k ∴+=+12221x x k =+()()224810k k ∆=--+>21k >AOB ∠()()1212121222OA OB x x y y x x kx kx ⋅=+=+--,解得,又,或.故的取值范围为.(用几何法同样得分)18.(本小题满分17分)【解析】(1)直线,整理可得:,可得直线恒过;(2)要使点到直线的距离最大,则,可得,即到直线的距离两边平方可得:,整理得,所以,所以,即.(3)由题意,直线的截距均不为0,由题意和(1)可得,,且、,因为,所以,,所以,仅当时等号成立,所以时取最小值,当,则,,此时的面积为;当,则,,此时的面积为;()()22121226212401k kx x k x x k-=+-++=>+23k <21k >1k <<-1k <<k ()(1- :20l ax y a -+-=()120a x y --+=()1,2P O l OP l ⊥OP ==O l d 224451a a a -+=+()22441210a a a ++=+=12a =-15022x y --+=250x y +-=2,0a A a -⎛⎫⎪⎝⎭()0,2B a -0a ≠2a ≠()1,2P PA ==PB ==124PA PB a a ⎛⎫⋅==+≥ ⎪ ⎪⎝⎭1a =±1a =±PA PB ⋅1a =()1,0A -()0,1B AOB △121a =-()3,0A ()0,3B AOB △92所以的面积为或.19.(本小题满分17分)【解析】(1)设点,化简可得.(2)设点,,由(1)点满足方程:即 代入上式消去可得的轨迹方程为.(3)设圆心到直线,的距离分别为,则当且仅当时,等号成立因此,四边形面积的最大值为7.AOB △1292(),P x y =()2224x y -+=(),Q x y ()00,P x y P ()202024x y -+=PA AQ= ()()001,1,x y x y ∴--=-0011x x y y-=-⎧⎨-=⎩002x xy y=-⎧∴⎨=-⎩Q 224x y +=O 1l 2l 12,d d 222121d d OA +==12S MN PQ =⋅==()()()22121222448817d d d d ≤-+-=-+=-=12d d =MPNQ。
海南省海口市海南中学2024-2025学年高二上学期第一次单元测试(10月月考)数学试题
海南省海口市海南中学2024-2025学年高二上学期第一次单元测试(10月月考)数学试题一、单选题1.若直线经过(0,1),A B 两点,则直线AB 的倾斜角为 A .30oB .45oC .60oD .o 1202.两条平行直线210x y --=和243x y -=-之间的距离是( )A .12B C .1D 3.一个动圆与圆221:(3)1C x y ++=外切,与圆()222:381C x y +-=内切,则这个动圆圆心的轨迹方程为( ) A .2212516y x +=B .2212516x y +=C .221169y x +=D .221169x y +=4.如何计算一个椭圆的面积?这个问题早已在约2000年前被伟大的数学、物理学先驱阿基米德思考过.他采用“逼近法”,得出结论:一个椭圆的面积除以圆周率等于其长半轴长与短半轴长的乘积.即πS ab =.那如何计算它的周长呢?这个问题也在约400年前被我国清代数学家项名达思考过.一个椭圆的周长约等于其短半轴长为半径的圆周长加上四倍的该椭圆长半轴长与短半轴长的差.即()2π4C b a b ≈+-.若一个椭圆的面积为8π,那么其周长的取值范围为( )A .)⎡+∞⎣ B .()+∞C .(),+∞D .),⎡+∞⎣5.设12F F 、是椭圆22:19x C y +=的两个焦点,点P 在椭圆C 上,若12PF F V 为直角三角形,则12PF F V 的面积为( )A B .1C D .16.已知圆22:(4)(2)4C x y -+-=,若圆C 刚好被直线():10,0l ax by a b +=>>平分,则12a b+的最小值为( ) A .8B .10C .16D .8+7.已知圆()221:14O x y -+=与圆222:4230O x y x y +-++=交于,A B 两点,则AB =( )AB .C .D .8.已知,M N 是椭圆22:12516x yC +=上关于原点对称的两点,F 是椭圆C 的右焦点,则2||6MF NF +的取值范围为( ) A .[]2,26B .[]51,52C .[]51,76D .[]52,76二、多选题9.若方程22131x y t t +=--所表示的曲线为椭圆,则下列命题正确的是( )A .该椭圆焦距为B .12t <<表示焦点在x 轴上的椭圆C t 的取值为75或135D .焦距为10.已知圆22:4C x y +=,点P 为直线40x y +-=上一动点,过点P 向圆C 引两条切线PA 、PB ,A 、B 为切点,则以下四个命题正确的是( )A .圆C 上有且仅有3个点到直线:0l x y -的距离都等于1B .圆C 与圆222:680C x y x y m +--+=恰有三条公切线,则16m = C .不存在点P ,使得60APB ∠=oD .直线AB 经过定点()1,111.已知P 是椭圆C :22221x y a b +=(0a b >>)位于第一象限上的一点,1F ,2F 是C 的两个焦点,122π3F PF ∠=,点Q 在12F PF ∠的平分线上,12F PF ∠的平分线与x 轴交于点M ,O 为原点,1//OQ PF ,且OQ b =,则下列结论正确的是( )A .12PF F V 2B .CC .点P 到xD .OM三、填空题12.若方程2242x y x y m +-+=表示圆,则实数m 的取值范围为.13.若圆()221:19C x y +-=与圆2C 关于直线:4230l x y --=对称,则圆2C 的方程为. 14.椭圆22221x y a b+=(0a b >>)的右顶点为A ,上顶点为B ,右焦点为F ,若直线BF 与以A 为圆心半径为13b 的圆相切,则椭圆离心率等于.四、解答题15.已知ABC V 的三个顶点分别为()2,0A ,()2,4B ,()4,2C ,直线l 经过点()1,4D . (1)求ABC V 外接圆M 的方程;(2)若直线l 与圆M 相交于P ,Q 两点,且PQ =l 的方程;(3)若直线l 与圆M 相交于P ,Q 两点,求PMQ V 面积的最大值,并求出直线l 的斜率.16.如图,已知椭圆2222:1(0)x y C a b a b+=>>过点()3,1P ,焦距为13-的直线l与椭圆C 相交于异于点P 的,M N 两点,且直线,PM PN 均不与x 轴垂直.(1)求椭圆C 的方程;(2)若MN =MN 的方程;(3)记直线PM 的斜率为1k ,直线PN 的斜率为2k ,证明:12k k 为定值.17.已知圆22:(1)16A x y ++=和点(1,0)B ,点P 是圆上任意一点,线段PB 的垂直平分线与线段PA 相交于点Q ,记点Q 的轨迹为曲线C . (1)求曲线C 的方程;(2)设动直线l 与坐标轴不垂直,l 与曲线C 交于不同的M ,N 两点,且直线BM 和BN 的斜率互为相反数.①证明:动直线l恒过x轴上的某个定点,并求出该定点的坐标;面积的最大值.②求OMN。
辽宁省大连市滨城高中联盟2024-2025学年高二上学期10月月考试题 数学含答案
滨城高中联盟2024-2025学年度上学期高二10月份考试数学试题(答案在最后)命题人:(时间:120分钟,满分:150分)第I 卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图所示,在四面体A -BCD 中,点E 是CD 的中点,记AB a = ,AC b =,ADc =,则BE 等于()A.1122a b c-++ B.1122a b c-+C.1122a b c -+D.1122a b c-++2.若平面α的法向量为μ,直线l 的方向向量为v,直线l 与平面α的夹角为θ,则下列关系式成立的是()A.cos ||||v v μθμ⋅=B.||cos ||||v v μθμ⋅= C.sin |||v v μθμ⋅= ∣D.||sin ||||v v μθμ⋅=3.若直线AB 的一个法向量是)1a =-,则该直线的倾斜角为()A.30oB.60oC.120D.1504.已知空间向量()()1,1,2,1,2,1a b =-=- ,则向量a在向量b 上的投影向量是()A.()1,1,1- B.555,,663⎛⎫-⎪⎝⎭ C.555,,636⎛⎫-⎪⎝⎭ D.111,,424⎛⎫-⎪⎝⎭5.设P 是120 的二面角l αβ--内一点,PA α⊥,PB β⊥,A 、B 是垂足,4PA =,3PB =,则AB 的长度为()A. B.5C.D.6.对于空间一点O 和不共线三点,,A B C ,且有2OP PA OB OC =-+,则()A .,,,O A B C 四点共面B.,,,P A B C 四点共面C.,,,O P B C 四点共面D.,,,,O P A B C 五点共面7.将正方形ABCD 沿对角线BD 折成直二面角,下列结论不正确的是()A.AC BD⊥B.AB ,CD 所成角为60︒C.ADC △为等边三角形D.AB 与平面BCD 所成角为60︒8.正方形11ABB A 的边长为12,其内有两点,P Q ,点P 到边111,AA A B 的距离分别为3,2,点Q 到边1,BB AB 的距离也分别是3和2.如图,现将正方形卷成一个圆柱,使得AB 和11A B 重合.则此时两点,P Q 间的距离为()A.πB.π C.π D.π二、多项选择题:体题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的按部分得分,有选错的得0分.9.下列说法中,正确的有()A.直线()32y ax a a =-+∈R 必过定点()3,2B.方程0Ax By C ++=是直线的一般式方程C.直线10x ++=的斜率为D.点()5,3-到直线20y +=的距离为110.已知空间单位向量,,i j k两两垂直,则下列结论正确的是()A.向量i j + 与k j -共线B.问量i j k ++C.{},,i j i j k +-可以构成空间的一个基底D.向量i j k ++ 和k 夹角的余弦值为3311.如图,已知正六棱柱ABCDEF A B C D E F ''''''-的底面边长为2,所有顶点均在球O 的球面上,则下列说法错误的是()A.直线DE '与直线AF '异面B.若M 是侧棱CC '上的动点,则AM MD '+C.直线AF '与平面DFE '所成角的正弦值为3D.球O 的表面积为18π第II 卷(非选择题)三、填空题:本题共3小题,每小题5分,共15分.12.已知点()1,2A -关于直线y kx b =+对称的点是()1,6B --,则直线y kx b =+在x 轴上的截距是__________.13.若三条直线2,3,100y x x y mx ny =+=++=相交于同一点,则点(),m n 到原点的距离的最小值为__________.14.已知正三棱柱ABC A B C '''-的底面边长为2,点P 是其表面上的动点,该棱柱内切球的一条直径是MN ,则PM PN ⋅的取值范围是__________.四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15.已知直线l 与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l 的方程:(1)过定点A (-3,4);(2)斜率为16.16.如图,在四面体ABCD 中,AD ⊥面,2,BCD AD M =是AD 的中点,P 是BM 的中点,点Q 在棱AC 上,且3AQ QC =.请建立适当的空间直角坐标系,证明://PQ 面BCD .17.如图所示,平行六面体1111ABCD A B C D -中,111ππ1,2,,23AB AD AA BAD BAA DAA ===∠=∠=∠=.(1)用向量1,,AB AD AA 表示向量1BD,并求1BD ;(2)求1cos ,BD AC.18.如图,在五棱锥P ABCDE -中,PA ⊥平面,,,ABCDE AB CD AC ED AE BC ∥∥∥,45,24ABC AB BC AE ∠=︒===、三角形PAB 是等腰三角形.(1)求证:平面PCD ⊥平面PAC :(2)求直线PB 与平面PCD 所成角的大小;19.如图,在三棱柱111ABC A B C -中,棱1,AC CC 的中点分别为1,,D E C 在平面ABC 内的射影为D ,ABC V 是边长为2的等边三角形,且12AA =,点F 在棱11B C 上运动(包括端点).请建立适当的空间直角坐标系,解答下列问题:(1)若点F 为棱11B C 的中点,求点F 到平面BDE 的距离;(2)求锐二面角F BD E --的余弦值的取值范围.滨城高中联盟2024-2025学年度上学期高二10月份考试数学试题命题人:(时间:120分钟,满分:150分)第I卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】A【2题答案】【答案】D【3题答案】【答案】B【4题答案】【答案】C【5题答案】【答案】D【6题答案】【答案】B【7题答案】【答案】D【8题答案】【答案】B二、多项选择题:体题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的按部分得分,有选错的得0分.【9题答案】【答案】AD【10题答案】【答案】BCD【11题答案】【答案】AC第II 卷(非选择题)三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】8-【13题答案】【答案】【14题答案】【答案】[]0,4四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.【15题答案】【答案】(1)2x +3y -6=0或8x +3y +12=0;(2)x -6y +6=0或x -6y -6=0.【16题答案】【答案】证明见解析【17题答案】【答案】(1)11BD AD AA AB =+- ,1BD =(2)3【18题答案】【答案】(1)证明见解析(2)6π【19题答案】【答案】(1)334(2)1,22⎡⎢⎣⎦。
上海市建平中学2024-2025学年高二上学期10月月考数学试题
上海市建平中学2024-2025学年高二上学期10月月考数学试题一、填空题1.圆22:4O x y +=在点处的切线方程为. 2.抛物线22y x =的焦点坐标是.3.已知函数()f x =R ,则m 的取值范围为.4.已知1F ,2F 是椭圆22193x y+=的两个焦点,过1F 的直线交此椭圆于A ,B 两点.若228AF BF +=,则AB =;5.双曲线222x y k -=的焦距是10,则实数k 的值为.6.设集合{}23A m m =-<,22123x y B m m m ⎧⎪=+=⎨+-⎪⎩是双曲线},则A B =I.7.已知双曲线2222:1(0,0)x y C a b a b-=>>的左顶点为A ,右焦点为F ,点()0,2B b ,双曲线的渐近线上存在一点P ,使得顺次连接,,,A B F P 构成平行四边形,则双曲线C 的离心率为.8.设P 是椭圆2214x y +=第一象限部分上的一点,过P 分别向x 轴、y 轴作垂线,垂足分别为M 、N ,则矩形OMPN 的面积的最大值为.9.若直线ax +y +b ﹣1=0(a >0,b >0)过抛物线y 2=4x 的焦点F ,则11a b+的最小值是.10.已知抛物线对称轴为x 轴.若抛物线上的动点到直线34120x y +-=的最短距离为1,则该抛物线的标准方程为.11.坐标平面上一点P 到点()1,0A ,(),2B a 及到直线1x =-的距离都相等.如果这样的点P 有且只有两个,那么实数a 的取值范围是.12.已知函数()2f x ax b =-,其中,R a b ∈,()f x 的最大值为(),M a b ,则(),M a b的最小值为.二、单选题13.方程210x -+=的两个根可分别作为( )A .椭圆和双曲线的离心率B .两双曲线的离心率C .两椭圆的离心率D .以上皆错14.“222a b R +<”是“圆()()222x a y b R -+-=与坐标轴有四个交点”的( )A .充分非必要条件;B .必要非充分条件;C .充要条件;D .非充分非必要条件.15.已知方程()()22222200b x a k x b a b b a ⎡⎤---=>>⎣⎦的根大于a ,则实数k 满足( )A .bk a > B .b k a < C .a k b>D .a k b<16.设曲线E 的方程为2249x y +=1,动点A (m ,n ),B (﹣m ,n ),C (﹣m ,﹣n ),D (m ,﹣n )在E 上,对于结论:①四边形ABCD 的面积的最小值为48;②四边形ABCD 外接圆的面积的最小值为25π.下面说法正确的是( )A .①错,②对B .①对,②错C .①②都错D .①②都对三、解答题17.已知,αβ是方程24420x mx m -++=的两个实数根. (1)求m 的取值范围;(2)若()22f x αβ=+,求()f m 的最小值.18.已知p :点()1,3M 不在圆()()2216x m y m ++-=的内部,q :“曲线2122:128x yC m m +=+表示焦点在x 轴上的椭圆”,s :“曲线222:11x ym t m t C +=---表示双曲线”.(1)若p 和q 都成立,求实数m 的取值范围; (2)若q 是s 的必要不充分条件,求t 的取值范围.19.如图1,某十字路口的花圃中央有一个底面半径为2m 的圆柱形花柱,四周斑马线的内侧连线构成边长为20m 的正方形.因工程需要,测量员将使用仪器沿斑马线的内侧进行测量,其中仪器P 的移动速度为1.5m/s ,仪器的移动速度为1m/s .若仪器Р与仪器Q 的对视光线被花柱阻挡,则称仪器Q 在仪器P 的“盲区”中.(1)如图2,斑马线的内侧连线构成正方形ABCD ,仪器Р在点A 处,仪器Q 在BC 上距离C 点4m 处,试判断仪器Q 是否在仪器P 的“盲区”中,并说明理由;(2)如图3,斑马线的内侧连线构成正方形ABCD ,仪器P 从点A 出发向点D 移动,同时仪器Q 从点C 出发向点B 移动,在这个移动过程中,仪器Q 在仪器Р的“盲区”中的时长为多少?20.如图所示,已知动直线y kx =交圆()2224x y -+=于坐标原点O 和点A ,交直线4x =于点B ,若动点M 满足OM AB =u u u u r u u u r,动点M 的轨迹C 的方程为(),0F x y =.(1)试用k 表示点A 、点B 的坐标; (2)求动点M 的轨迹方程(),0F x y =;(3)以下给出曲线C 的五个方面的性质,请你选择其中的三个方面进行研究,并说明理由.(若你研究的方面多于三个,我们将只对试卷解答中的前三项予以评分) ①对称性;②顶点坐标(定义:曲线与其对称轴的交点称为该曲线的顶点); ③图形范围; ④渐近线;⑤对方程(),0F x y =,当0y ≥时,函数()y f x =的单调性.21.已知直线0x y +与椭圆222:1x E y a+=有且只有一个公共点.(1)求椭圆E 的方程;(2)是否存在实数λ,使椭圆E 上存在不同两点P 、Q 关于直线20x y λ--=对称?若存在,求λ的取值范围;若不存在,请说明理由;(3)椭圆E 的内接四边形ABCD 的对角线AC 与BD 垂直相交于椭圆的左焦点,S 是四边形ABCD 的面积,求S 的最小值.。
江西省景德镇市乐平市第三中学2024-2025学年高二上学期10月月考数学试题
江西省景德镇市乐平市第三中学2024-2025学年高二上学期10月月考数学试题一、单选题1.已知α,β是两个平面,m ,n 是两条直线,则下列命题正确的是( ) A .若m α⊂,n β⊂,//m n ,则//αβB .若m α⊥,//m n ,n β⊂,则αβ⊥C .若αβ⊥,m αβ=I ,n m ⊥,则n β⊥D .若αβ⊥,m α⊥,则//m β2.用斜二测画法画水平放置的ABC V 的直观图,得到如图所示的等腰直角A B C '''V .已知O '是斜边B C ''的中点,且1A O ''=,则ABC V 的边BC 上的高为( )A .1B .2C .D 3.如图,A 是平面α内一定点,B 是平面α外一定点,且AB =AB 与平面α所成角为30°,设平面α内动点M 到点A B ,的距离相等,则线段AM 的长度的最小值为( )A .4B .C .2D 4.攒尖式屋顶是中国古代传统建筑的一种屋顶样式,如图所示的建筑屋顶是圆形攒尖,可近似看作一个圆锥,已知该圆锥的底面直径为6m ,高为4m ,则该屋顶的面积约为( )A .215πmB .230πmC .224πmD .220πm5.如图,在长方体1111ABCD A B C D -中,已知11,2AB BC BB ===,E 为11B C 的中点,则异面直线BD 与CE 所成角的余弦值为( )A B .34 C D .256.已知球O 的半径4OA =,平面α经过OA 的中点,且与OA 所成的线面角为45︒,则平面α截球O 的面积为( )A .16πB .14πC .12πD .10π7.已知正三棱锥P ABC -的底面边长为若半径为1的球与该正三棱锥的各棱均相切,则三棱锥P ABC -外接球的半径为( )AB .2CD 8.圆台的上底面半径为1,下底面半径为2,母线长为6.已知P 为该圆台某条母线的中点,若一质点从点P 出发,绕着该圆台的侧面运动一圈后又回到点P ,则该质点运动的最短路径长为( )A .9B .6C .6πD .3π二、多选题9.如图,一个漏斗形状的几何体上面部分是一个长方体,下面部分是一个四棱锥P ABCD -,四棱锥的四条侧棱都相等,两部分的高都是12,公共面ABCD 是一个边长为1的正方形,则( )A .该几何体的体积23B .直线PD 与平面ABCDC .异面直线AP 与CC 1D .存在一个球,使得该几何体所有顶点都在球面上10.正方体1111ABCD A B C D -中,E 是棱1DD 的中点,F 在侧面11CDD C 上运动,且满足1//B F 平面1A BE .以下命题中正确的有( )A .点F 的轨迹是一线段B .直线1B F 与直线BC 所成角可能为30︒C .侧面11CDD C 上存在点F ,使得11B F CD ⊥D .平面1A BE 与平面11CDD C 所成锐二面角的正切值为11.如图为清代官员夏日所用官帽、凉帽的形制,无檐,形如圆锥,俗称喇叭式.材料多为藤、竹制成.外裹绫罗,多用白色,也有用湖色、黄色等.不同型号的官帽大小经常用帽坡长(母线长)和帽底宽(底面圆的直径长)两个指标进行衡量.现有一个官帽,帽坡长20cm ,帽底宽,关于此官帽,下面说法正确的是( )A .官帽轴截面(过顶点和底面中心的截面图形)的顶角为120︒B .过官帽顶点和官帽侧面上任意两条母线的截面三角形的最大面积为2C .若此官帽顶点和底面圆上所有点都在同一个球上,则该球的表面积为21600πcmD .此官帽放在平面上,可以盖住的球(保持官帽不变形)的最大半径为()30cm三、填空题12.如图,已知正方体1111ABCD A B C D -的棱长为1F ,是棱1CC 的中点,平面α过点,A F 且与直线11B D 平行,则平面α截正方体所得截面的周长是.13.如图,在长方体1111ABCD A B C D -中,15,3,4,AB AD AA P ===是线段1BC 上异于1,B C 的一点,则1CP PD +的最小值为.14.勒洛四面体是一个非常神奇的“四面体”,它能在两个平行平面间像球一样来回自由滚动,并且始终保持与两平面都接触(如图).勒洛四面体是以一个正四面体的四个顶点分别为球心,以正四面体的棱长为半径的四个球的公共部分围成的几何体.若构成勒洛四面体ABCD 的正四面体ABCD 的棱长为2,在该“空心”勒洛四面体ABCD 内放入一个球,则该球的球半径最大值是.四、解答题15.在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面12ABCD AB PA AD AC ===,,,的中点为O ,以AC 为直径的球面交PD 于点M ;(1)求证:AM ⊥平面PCD ;(2)求三棱锥P AMC -的体积.16.如图,长方体1111ABCD A B C D -中,1AB AD ==,12AA =,点P 为1DD 的中点.(1)求证:直线1BD ∥平面P AC ;(2)求直线1A B 与平面11BDD B 所成的角的正弦值.17.如图,在四棱锥P ABCD -中,底面ABCD 是菱形.60DAB ∠=︒,,E F 分别为,AD AB 的中点,且AC PE ⊥.(1)证明:AC PF ⊥.(2)若2PA PD AB ===,求点D 到平面PAF 的距离. 18.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,E 为PD 的中点,AD BC ∥,90BAD ∠=︒,1,2PA AB BC AD ====.(1)求证:平面PAC ⊥平面PDC(2)求直线EC 与平面P AC 所成角的正弦值. 19.如图,在长方体1111ABCD A B C D -中,11,2AD AA AB ===,点E 是AB 的中点.(1)证明:11D E A D ⊥;(2)在棱1DD 上是否存在一点P ,使得//AP 平面1D EC ,若存在,求1DP DD ,若不存在,说明理由;(3)求二面角1D EC B --的正切值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
铜梁一中高2020级高二上期第一次月考
数学试卷(文科)
本试卷分为第Ⅰ卷和第Ⅱ卷两部分,满分150分,时间120分钟。
第Ⅰ卷(选择题60分)
一、选择题:(本大题共12小题,每小题5分,共60分)
1.如图所示,观察四个几何体,其中判断正确的是( ) A .(1)是棱台 B .(2)是圆台 C .(3)是棱锥 D .(4)不是棱柱
2.某空间几何体的正视图是三角形,则该几何体不可能是( ) A.四面体
B .圆锥
C .圆柱
D .三棱柱
3.垂直于同一条直线的两条直线的位置关系是( )
A.平行
B. 相交
C. 异面
D. A 、B 、C 均有可能
4.棱长分别为2( )
A .4π
B .12π
C .24π
D .48π
5.已知梯形ABCD 是直角梯形,按照斜二测画法画出它的直观图A B C D ''''(如图所示),
其中2A D ''=,4B C ''=,1A B ''=,则直角梯形DC 边的长度是( )
A .
B .
C
D .6.如图,在正方体1111ABCD A B C D -中,M 、N 分别为棱C 1D 1、C 1C 的中点,有以下四个结论:
①直线AM 与CC 1是相交直线; ②直线BN 与MB 1是异面直线; ③直线AM 与BN 是平行直线; ④直线AM 与DD 1是异面直线.
其中正确的结论为( )
A .③④
B .①②
C .①③
D .②④
7.长方体ABCD-A 1B 1C 1D 1中,∠BAB 1 =60°,则C 1D 与B 1B 所成的角是( )]A . 60° B . 90° C . 30° D . 45°
8.一个直角梯形的两底长分别为2和5,高为4,绕其较长的底旋转一周,所得的几何体的体积为( )
A. 45π
B. 34π
C. 48π
D. 37π
9.已知正三棱柱111ABC A B C -(底面是正三角形且侧棱垂直底面)底面边长为1且侧棱长为4,E 为1AA 的中点,从E 拉一条绳子绕过侧棱1CC 到达B 点的最短绳长为( ) A
. C
D
11. 某三棱锥的三视图如图所示,则该三棱锥四个面的面积中最大的是 ( )
A .
C. D .3
第Ⅱ卷 (非选择题 共90分)
二、填空题:(本大题共4个小题,每小题5分,共20分)
13.如图所示是一个几何体的表面展开的平面图,则该几何体中与“数”字面相对的是“ ______ ”.
14.平面α截球o 的球面所得圆的半径为1,球心o 到平面α
,则此球的体积为________.
15.若圆柱的侧面展开图是一个边长为2的正方形则圆柱的体积为________.
16.如图是一个棱长为2的无盖正方体盒子的平面展开图,A ,B ,C ,D 为其上四个点,则以
A ,
B ,
C ,
D 为顶点的三棱锥的体积为________.
三、解答题(本大题共6小题,共计70分) 17 . (本小题满分10分)
P
B A
C
D
某几何体的三视图及其尺寸如下图所示,求该几何体的表面积和体积.
18. (本小题满分12分)
如图所示,四棱锥V-ABCD 的底面为边长等于2的正方形,顶点V 与底面正方形中心的连线为棱锥的高,侧棱长均为4,求这个四棱锥的体积及表面积.
19. (本小题满分12分)
如图,在三棱锥P-ABC 中, ,PA AB PA AC ⊥⊥且⊥PA 底面
ABC ,D 是PC 的中点,已知2
π
=
∠BAC ,AB=2,AC=(
1
)求三棱锥P-ABC 的体积
(2)求异面直线BC 与AD 所成角的余弦值。
20. (本小题满分12分)
如图所示(单位:cm),四边形ABCD 是直角梯形,求图中阴影部分绕AB 旋转一周所成几何体的
表面积和体积.(参考公式::台体的体积公式:()
1
=3
V S S h '+,圆台的侧面积公式:()S rl r l π'=+)
21. (本小题满分12分)
如图所示,在边长为a 正方体1
111A B C D A B C D
-中,,,,E F G H 分别为棱
111,,,CC BC AB D C 的中点.
(1)求证:点,,,E F G H 四点共面; (2)求三棱锥11B A C D -的体积。
22. (本小题满分12分)
有一块扇形铁皮OAB ,∠AOB =60,OA =72cm ,要剪下来一个扇环形ABCD ,做圆台形容器的侧面,并在余下的扇形OCD 内剪下一块与其相切的圆形使它恰好作圆台形容器的下底面(大底面),试求:
(1)AD 应取多长? (2)容器的容积是多少?
高二上期文科数学10月月考试题参考答案 一、选择题
1-6:CCDBBD 7-12:CCBABC 二、填空题 13.学 14.
323
π 15.2π 16. 4
3
三、解答题
17. (本小题满分10分)
(8 (1018. (本小题满分12分)
(815 (12ABC
S =42=
(6
AED 中,
故:异面直线 (1220. (本小题满分12分) 解:(1)由题意得:
)
(6
(1221. (本小题满分12分) 解:(1)证明:连接1BC ∵,H G 为中点 ∴1
HC 平行且等于GB ,即平行四边形
1
HGBC
∴HG 平行
1
BC ∵,E F 为中点 ∴EF 平行
1
BC
∴EF 平行HG ∴,,,E F G H 四点共面 ………(6分)
(2)
113
3
114323B A C D
a v a a a a -=-⨯⨯⨯⨯⨯=
………(12分)
22. (满分12分)(1)如图,设圆台上、下底面半径分别为r 、R ,
AD =x ,则OD =72−x ,
由题意得,∴R=12,r=6,x=36,∴AD=36cm。
………(5分)
(2)圆台所在圆锥的高H==12,圆台的高h=,∴()3cm………(12分)。