实验十一 向量自回归模型(VAR模型)

合集下载

向量自回归模型简介

向量自回归模型简介

一、Var模型的基本介绍向量自回归模型(Vector Autoregressive Models,VAR)最早由Sims(1980)提出。

他认为,如果模型设定和识别不准确,那么模型就不能准确地反应经济系统的动态特性,也不能很好地进行动态模拟和政策分析。

因此,VAR模型通常使用最少的经济理论假设,以时间序列的统计特征为出发点,通常对经济系统进行冲击响应(Impulse-Response)分析来了解经济系统的动态特性和冲击传导机制。

由于VAR模型侧重于描述经济的动态特性,因而它不仅可以验证各种经济理论假设,而且在政策模拟上具有优越性。

VAR模型主要用于替代联立方程结构模型,提高经济预测的准确性。

用联立方程模型研究宏观经济问题,是当前世界各国经济学者的一种通用做法,它把理论分析和实际统计数据结合起来,利用现行回归或非线性回归分析方法,确定经济变量之间的结构关系,构成一个由若干方程组成的模型系统。

联立方程模型适合于经济结构分析,但不适合于预测:联立方程模型的预测结果的精度不高,其主要原因是需要对外生变量本身进行预测。

与联立方程模型不同,VAR模型相对简洁明了,特别适合于中短期预测。

目前,VAR模型在宏观经济和商业金融预测等领域获得了广泛应用。

二、VAR模型的设定VAR模型描述在同一样本期间内的n个变量(内生变量)可以作为它们过去值的线性函数。

一个VAR(p)模型可以写成为:或:其中:c是n × 1常数向量,A i是n × n矩阵,p是滞后阶数,A(L)是滞后多项式矩阵,L是滞后算子。

是n × 1误差向量,满足:1. —误差项的均值为02. Ω—误差项的协方差矩阵为Ω(一个n × 'n正定矩阵)3.(对于所有不为0的p都满足)—误差项不存在自相关虽然从模型形式上来看比较简单,但在利用VAR模型进行分析之前,对模型的设定还需要意以下两点:一是变量的选择。

理论上来讲,既然VAR模型把经济作为一个系统来研究,那么模型中包含的变量越多越好。

var-向量自回归模型

var-向量自回归模型

预测评估
采用适当的评估方法(如均方误差、平均绝 对误差等)对预测结果进行评估,以确保预 测的准确性和可靠性。
政策建议与展望
政策建议
根据VAR模型的实证分析结果,提出针对性 的政策建议,以促进经济的稳定和可持续发 展。
展望
对VAR模型未来的发展趋势和应用前景进行 展望,为进一步研究提供方向和思路。
05
VAR模型的优缺点与改 进方向
VAR模型的优点
01
描述经济变量之间的ຫໍສະໝຸດ 态关系VAR模型能够描述多个经济变量之间的动态关系,通过分析变量之间的
相互影响,揭示经济系统的内在机制。
02
避免结构化约束
VAR模型不需要对经济变量之间的因果关系进行结构化约束,而是通过
变量自身的历史数据来分析相互影响,减少了主观因素对模型的影响。
模型估计与结果解读
模型估计
采用适当的统计软件(如EViews、Stata等)对VAR模型进行估计,确定模型的最佳滞 后阶数,并检验模型的稳定性。
结果解读
对估计结果进行详细解读,包括各经济指标之间的动态关系、长期均衡关系等,以便更 好地理解经济现象。
模型预测与评估
模型预测
利用估计好的VAR模型对未来经济走势进行 预测,为政策制定提供参考依据。
拓展应用领域
可以将VAR模型拓展应用到其他领域,如金融市 场、环境经济学、健康经济学等,以揭示不同领 域变量之间的动态关系。
THANKS FOR WATCHING
感谢您的观看
金融市场分析
VAR模型可用于分析股票、债券等金 融市场的相关性,以及市场波动对其 他经济指标的影响。
国际经济关系研究
VAR模型可用于分析不同国家之间的 经济关系,例如贸易往来、汇率变动 等。

向量自回归模型

向量自回归模型
移而发生突变。
诊断主要是对模型残差进行一系列检验, 如果诊断结果表明模型存在问题,需要
以判断模型是否充分拟合了数据,是否 对模型进行修正或重新设定,以确保模
存在异常值或违反模型假设的情况。常
型的准确性和可靠性。
见的诊断方法包括残差诊断、正态性检
验、异方差性检验等。
03
向量自回归模型的实现
向量自回归模型的编程语言实现
诊断与修正困难
向量自回归模型在诊断和修正模型中的问题时较为复杂,需要较高 的统计技巧和经验。
对数据要求高
向量自回归模型要求数据具有平稳性,对于非平稳数据需要进行差分 或其他处理,可能会影响模型的准确性和稳定性。
向量自回归模型的发展趋势与未来展望
改进估计方法
针对向量自回归模型参数过多的问题,未来研究可以探索更加有 效的参数估计方法,提高模型的泛化能力。
能够更好地捕捉时间序列数据的长期趋势和稳定性。
解释性强
02
向量自回归模型能够清晰地揭示多个变量之间的相互影响关系,
有助于理解经济现象之间的内在联系。
适用范围广
03
向量自回归模型适用于多种类型的数据,包括平稳和非平稳时
间序列数据。
向量自回归模型的缺点
参数过多
向量自回归模型需要估计的参数数量较多,容易产生过拟合问题, 导致模型泛化能力下降。
极端天气事件预测
通过向量自回归模型预测极端天气事件的发生, 如暴雨、洪涝、干旱等,有助于减轻灾害损失。
3
气候变化对生态系统的影响
利用向量自回归模型分析气候变化对生态系统的 影响,如植被分布、物种多样性和生态平衡等。
向量自回归模型在社会科学领域的应用
经济发展预测
通过分析历史经济发展数据,利用向量自回归模型预测未来经济 发展趋势,为政策制定提供依据。

VAR-向量自回归模型

VAR-向量自回归模型

VAR-向量自回归模型简介VAR(Vector Autoregressive Model)是一种常用的多变量时间序列预测模型。

它对每个时间点上的变量都建立回归模型,通过自身过去时间点和其他变量的过去时间点进行预测。

VAR模型考虑了变量之间的相互影响,在经济学、金融学等领域得到广泛应用。

模型原理VAR模型是基于向量的自回归模型,其基本思想是将多个变量组合成一个向量,然后对该向量进行自回归建模。

VAR模型可以表示为以下形式:VAR模型VAR模型其中,X_t是一个n\times1的向量,表示在时间点t上的多个变量的取值;A_1,A_2,…,A_p是一个n\times n的矩阵,表示自回归系数;U_t是误差项,通常假设为服从均值为0且方差为\Sigma的白噪声。

VAR模型需要估计自回归系数矩阵和白噪声方差矩阵。

估计方法可以使用最小二乘法或者极大似然法,具体选择的方法取决于模型中的假设条件。

模型应用VAR模型在经济学、金融学等领域广泛应用,常见的应用场景包括:1.宏观经济预测:VAR模型可以用于预测国民经济指标、通货膨胀率、利率等宏观经济变量。

通过分析过去的数据,可以建立一个VAR模型,然后用于预测未来的经济变量走势。

2.金融市场分析:VAR模型可用于分析金融市场的相关变量,例如股票价格、汇率、利率等。

通过建立VAR模型,可以评估不同变量之间的关系,从而帮助投资者做出更准确的决策。

3.宏观经济政策分析:VAR模型可以用于评估不同的宏观经济政策对经济变量的影响。

通过建立VAR模型,可以模拟在不同政策变化下的经济变量走势,从而指导决策者制定合适的宏观经济政策。

模型评估对于建立好的VAR模型,需要对其进行评估,以验证模型的有效性。

常用的模型评估方法包括:1.残差分析:通过对模型的残差进行分析,可以评估模型是否存在偏差或者哪些变量对模型的解释能力较差。

可以使用残差的自相关图、偏自相关图等图形方法进行分析。

2.模型拟合度评估:通过计算模型的决定系数(R-squared)、均方根误差(RMSE)等指标,可以评估模型的拟合程度。

向量自回归模型(-VAR)-和VEC

向量自回归模型(-VAR)-和VEC

模型建立与估计
模型建立
首先需要确定经济时间序列之间的长 期均衡关系,然后构建误差修正项, 最后将误差修正项引入VAR模型中。
模型估计
使用最小二乘法或广义矩估计法 (GMM)对模型进行估计。来自模型应用与实例应用
用于分析经济时间序列之间的长期均 衡关系和短期调整机制,如汇率、利 率、通货膨胀率等。
实例
02
向量误差修正模型(-VEC) 介 绍
定义与原理
定义
向量误差修正模型(Vector Error Correction Model,简称VEC)是一种用于分析 长期均衡关系和短期调整机制的计量经济模型。
原理
基于协整理论,VEC模型通过引入误差修正项来反映经济时间序列之间的长期均 衡关系,并分析短期调整机制。
向量自回归模型(-var)和vec
目录
Contents
• 向量自回归模型(-VAR) 介绍 • 向量误差修正模型(-VEC) 介绍 • 向量自回归模型(-VAR) 与向量误
差修正模型(-VEC) 的比较
目录
Contents
• 向量自回归模型(-VAR) 和向量误 差修正模型(-VEC) 的扩展与展望
以汇率和通货膨胀率为例,通过构建 VEC模型,可以分析两者之间的长期 均衡关系和短期调整机制,为政策制 定提供依据。
03
向量自回归模型(-VAR) 与向量 误差修正模型(-VEC) 的比较
模型相似性
两者都属于向量自回归模型家族, 用于分析多个时间序列之间的动
态关系。
两者都基于向量自回归模型,通 过估计参数来描述时间序列之间 的长期均衡关系和短期调整机制。
模型建立与估计
模型建立
在建立VAR模型之前,需要选择合适的滞后阶数,并确定模型中的变量。然后, 可以使用最小二乘法或最大似然法等估计方法来估计模型的参数。

向量自回归模型(VAR)与向量误差修正模型(vec)

向量自回归模型(VAR)与向量误差修正模型(vec)

向量自回归模型(VAR )与向量误差修正模型(VEC )§7.1 向量自回归模型(VAR(p))传统的经济计量学联立方程模型建摸方法, 是以经济理论为基础来描述经济变量之间的结构关系,采用的是结构方法来建立模型,所建立的就是联立方程结构式模型。

这种模型其优点是具有明显的经济理论含义。

但是,从计量经济学建摸理论而言,也存在许多弊端而受到质疑。

一是在模型建立之处,首先需要明确哪些是内生变量,哪些是外生变量,尽管可以根据研究问题和目的来确定,但有时也并不容易;二是所设定的模型,每一结构方程都含有内生多个内生变量,当将某一内生变量作为被解释变量出现在方程左边时,右边将会含有多个其余内生变量,由于它们与扰动项相关, 从而使模型参数估计变得十分复杂,在未估计前,就需要讨论识别性;三是结构式模型不能很好地反映出变量间的动态联系。

为了解决这一问题,经过一些现代计量经济学家门的研究,就给出了一种非结构性建立经济变量之间关系模型的方法,这就是所谓向量自回归模型(Vector Autoregression Model )。

VAR 模型最早是1980年,由C.A.Sims 引入到计量经济学中,它实质上是多元AR 模型在经济计量学中的应用,VAR 模型不是以经济理论为基础描述经济变量之间的结构关系来建立模型的,它是以数据统计性质为基础,把某一经济系统中的每一变量作为所有变量的滞后变量的函数来构造模型的。

它是一种处理具有相关关系的多变量的分析和预测、随机扰动对系统的动态冲击的最方便的方法。

而且在一定条件下,多元MA 模型、ARMA 模型,也可化为VAR 模型来处理,这为研究具有相关关系的多变量的分析和预测带来很大方便。

7.1.1 VAR 模型的一般形式1、非限制性VAR 模型(高斯VAR 模型),或简化式非限制性VAR 模型设12(...)t t t kt y y y y '=为一k 维随机时间序列,p 为滞后阶数,12(...)t t t kt u u u u '=为一k 维随机扰动的时间序列,且有结构关系(1)(1)(1)(2)(2)(2)111111221111112122212()()()11112211(1)(1)(1)(2)(2)2211122212121122222................t t t k kt t t k kt p p p t p t p k kt p t t t t k kt t t y a y a y a y a y a y a y a y a y a y u y a y a y a y a y a y --------------=+++++++++++++=++++++(2)22()()()21212222(1)(1)111.............................................................................................................................k kt p p p t p t p k kt p tkt k t k a y a y a y a y u y a y a -----+++++++=+(1)(2)(2)(2)2211112122212()()()1122............t kk kt k t t k kt p p p k t p k t p kk kt p kt y a y a y a y a y a y a y a y u --------⎡⎢⎢⎢⎢⎢⎢⎢⎢+++++++⎢⎢+++++⎢⎣1,2,...,t T = (7.1.1) 若引入矩阵符号,记()()()11121()()()21222()()()12......,1,2,...,........................................i i i k i i i k i i i i k k kk a a a a a a A i p a a a ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦可写成 1122...t t t p t p t y A y A y A y u ---=++++,1,2,...,t T = (7.1.2) 进一步,若引入滞后算子L ,则又可表示成(),1,2,...,t t A L y u t T == (7. 1. 3)其中: 212()...pk p A L I A L A L A L =----,为滞后算子多项式.如果模型满足的条件: ①参数阵0,0;p A p ≠>②特征方程 212det[()]...0pk p A L I A L A L A L =----=的根全在单位园外;③~(0,)t u iidN ∑,1,2,...,t T =,即t u 相互独立,同服从以()0t E u =为期望向量、ov()()t t t C u E u u '==∑为方差协方差阵的k 维正态分布。

向量自回归var模型

向量自回归var模型

向量自回归var模型
Vector Autoregressive (VAR) model是一种常用的时间序列模型,用于研究在一段时间内几个变量之间的影响关系。

VAR模型根据变量的时间序列分析出多个变量之间的直接和间接影响。

VAR模型最常用于许多经济变量,如GDP、通货膨胀率和利率,这些经济变量之间有可能存在复杂的因果关系。

通常,VAR模型由几个变量的序列表示,并采用预测及其他统计程序来检验系统的影响。

一般而言,VAR模型的假设是参数是不变的,变量之间没有多个
共线性,变量存在自相关性,误差项是服从正态分布的独立同分布的,误差项的样本自相关为0/1特征(即不存在自相关)。

以上假设均有
助于我们更好地进行变量之间的因果关系研究。

VAR模型除了可以用来预测一个变量对另一个变量的变化对于研
究者来说还有另一个重要用处,可以捕捉变量之间复杂的因果关系。

作为时间序列模型,VAR模型最大的作用是识别变量之间的影响,可以解释在自然系统中发生的各种不确定性,并采取相应的行动及早消除
威胁。

总的来说,VAR模型是一种用于识别变量之间的影响关系的有效
方法,可以有效地使用多个变量时间序列来检验和预测这个系统的状态。

这种模型的强大特性使它在经济、金融和时间序列分析领域非常
流行,以检测变量之间的复杂关系以及把握因果效应。

向量自回归模型及其预测结果分析

向量自回归模型及其预测结果分析

向量自回归模型及其预测结果分析时间序列分析是统计学中的一个重要分支,主要关注某一个变量在时间上的变化规律,以及该变量与其他变量之间的关系。

在实际应用中,人们往往需要对未来的变量值进行预测。

而向量自回归模型是一种常用的时间序列模型,能够较准确地对未来时间点的变量值进行预测。

一、向量自回归模型介绍向量自回归模型(VAR)是一种多元时间序列模型,它能够同时考虑多个变量之间的相互作用,并描述每个变量在过去一段时间内的变化趋势。

VAR模型建立在向量自回归的基础上,用过去一段时间内自身的变量值来预测未来的变量值。

通常情况下,VAR模型是由基础时间序列、观察时间长度和滞后阶数三个因素共同决定的。

基础时间序列指的是多元时间序列模型中的所有变量,观察时间长度指的是时间序列模型的建立时间跨度,而滞后阶数则是指VAR模型所考虑的时间序列自回归的最高阶数。

VAR模型的优点在于它能够同时考虑多个变量之间的作用,而且能够较好地处理协整关系。

但是,它的缺点在于模型中包含的变量较多,需要较多的样本数据才能稳定地进行模型的预测。

二、VAR模型的建模流程VAR模型的建模流程主要包括以下几个步骤:1. 数据准备阶段:首先需要准备可以用来构建VAR模型的数据,要求数据可以被分解成多个变量的时间序列。

2. 模型估计阶段:VAR模型是基于多元回归模型的基础上建立的,需要通过估计模型中的系数来求解模型。

通常采用最小二乘法来进行估计。

3. 模型诊断阶段:对VAR模型进行一系列的检验、诊断,包括回归系数的显著性检验、残差的正态性检验、异方差性检验等等,以保证模型的可靠性。

4. 模型预测阶段:用已知的历史数据来建立VAR模型,再根据模型对未来的时间点进行预测。

三、VAR模型的预测结果分析VAR模型的预测结果主要包括两个方面,即点预测和置信区间。

点预测是指对未来时间点的变量值进行确定性的预测,而置信区间则是指预测的不确定性范围。

通过比较预测结果和实际观测值,可以对VAR模型的预测能力进行评估。

向量自回归var模型案例附数据

向量自回归var模型案例附数据

向量自回归var模型案例附数据向量自回归VAR模型案例附数据向量自回归(Vector Autoregression, VAR)模型是一种广泛应用于多元时间序列分析的模型框架。

VAR模型可以同时对多个相互关联的时间序列变量进行建模,捕捉它们之间的动态关系。

以下是一个VAR模型的案例,并附有相关的数据。

案例背景:假设我们有三个相互关联的时间序列变量:GDP增长率(gdp)、通货膨胀率(infl)和利率(interest)。

我们希望利用VAR模型来分析这三个变量之间的动态关系,并对它们进行预测。

数据集:本案例使用的是一个包含20个观测值的人工数据集,其中包括三个变量:gdp、infl和interest。

数据如下所示:观测值 gdp infl interest1 2.5 1.8 3.22 2.8 2.1 3.53 3.1 2.4 3.84 2.7 2.6 4.15 2.9 2.2 3.76 3.3 2.8 4.27 3.5 3.1 4.58 3.2 2.9 4.39 3.6 3.3 4.710 3.8 3.5 5.111 3.4 3.2 4.612 3.6 3.4 4.813 4.1 3.7 5.314 4.3 4.1 5.715 4.5 4.3 6.116 4.2 4.5 5.917 4.4 4.2 6.218 4.7 4.6 6.519 4.9 4.8 6.720 5.1 5.2 7.1在这个案例中,我们可以构建一个VAR模型,将gdp、infl和interest 作为内生变量,并估计它们之间的动态关系。

通过对模型进行诊断和评估,我们可以了解这三个变量之间的相互影响,并基于模型对未来的GDP增长率、通货膨胀率和利率进行预测。

第十一章向量自回归VAR模型和向量误差修正VEC模型

第十一章向量自回归VAR模型和向量误差修正VEC模型
,即分别建立VAR(1)、VAR(2)、VAR(3)、VAR(4)模型 ,比较AIC、SC,使它们同时取最小值的p值即为所求 。而对月度数据,一般比较到P=12。
当AIC与SC的最小值对应不同的p值时,只能用LR 检验法。
12
(2)用似然比统计量LR选择p值。LR定义为 :
LR 2ln l( p) ln l( p i) 2( f ) (11.2)
21
三、约翰森(Jonhamson)协整检验
Jonhamson(1995)协整检验是基于VAR模 型的一种检验方法,但也可直接用于多变量间的协 整检验。
11
的自相关。但p值又不能太大。p值过大,待估参数多, 自由度降低严重,直接影响模型参数估计的有效性。 这里介绍两种常用的确定p值的方法。
(1)用赤池信息准则(AIC)和施瓦茨(SC)准 则确定p值。确定p值的方法与原则是在增加p值的过程 中,使AIC和 SC值同时最小。
具体做法是:对年度、季度数据,一般比较到P=4
9
(2)VAR模型对参数不施加零约束 (如t检 验);
(3)VAR模型的解释变量中不含t期变量,所 有与联立方程组模型有关的问题均不存在;
(4)VAR模型需估计的参数较多。如VAR模型 含3个变量(N=3),最大滞后期为p=2,则有 PN2=2×32=18个参数需要估计;
(5)当样本容量较小时,多数参数估计的精 度较差,故需大样本,一般n>50。
8
所以, VAR模型既可用于预测,又可用于结构 分析。近年又提出了结构VAR模型(SVAR: Structural VAR)。 有取代结构联立方程组模 型的趋势。由VAR模型又发展了VEC模型。
2. VAR模型的特点
VAR模型较联立方程组模型有如下特点: (1)VAR模型不以严格的经济理论为依据。 在建模过程中只需明确两件事:第一,哪些变量 应进入模型(要求变量间具有相关关系——格兰 杰因果关系 );第二,滞后阶数p的确定(保证 残差刚好不存在自相关);

实验十一 向量自回归模型(VAR模型)

实验十一  向量自回归模型(VAR模型)
实验十一 协整与向量自回归模型
1
协整
0、问题的提出
经典回归模型 (classical regression model)是建立在 稳定数据变量基础上的,对于非稳定变量,不能使用经典 回归模型,否则会出现虚假回归等诸多问题。 由于许多经济变量是非稳定的,这就给经典的回归分析方 法带来了很大限制。 但是,如果变量之间有着长期的稳定关系,即它们之间是 协整 的( cointegration) ,则是可以使用经典回归模型方 法建立回归模型的。 例如,中国居民人均消费水平与人均GDP变量的例子中: 因果关系回归模型要比ARMA模型有更好的预测功能, 其原因在于,从经济理论上说,人均GDP决定着居民人均 消费水平,而且它们之间有着长期的稳定关系,即它们之 间是协整的(cointegration)。
12
二、协整检验的具体方法 (一)EG检验
假如Xt和Yt都是I (1),如何检验它们之间是否存 在协整关系,我们可以遵循以下思路:
首先用OLS对协整回归方程 yt xt t 行估计。 进
然后,检验残差 e 是否是平稳的。因为如果Xt和 t Yt没有协整关系,那么它们的任一线性组合都是 非平稳的,残差 et 也将是非平稳的。
从协整的定义可以看出:
(d,d)阶协整是一类非常重要的协整关系,它的经济意义 在于: 两个变量,虽然它们具有各自的长期波动规律,但 是如果它们是(d,d)阶协整的,则它们之间存在着一个长 期稳定的比例关系。 例如:假设中国CPC和GDPPC,它们各自都是2阶单整, 并且将会看到,它们是(2,2)阶协整,说明它们之间存在着 一个长期稳定的比例关系,从计量经济学模型的意义上讲, 建立如下居民人均消费函数模型
CPCt 0 1GDPPC t t

向量自回归var模型的应用

向量自回归var模型的应用

向量自回归var模型的应用
向量自回归(Vector Autoregression,VAR)模型是一种多变量时间序列模型,广泛应用于经济学、金融学等领域。

VAR模型的主要应用包括以下几个方面:
1. 宏观经济预测:VAR模型可以用于预测宏观经济变量,如GDP、通货膨胀率、失业率等。

通过建立包含多个宏观经济变量的VAR模型,可以对未来的经济走势进行预测,并为政府决策提供参考。

2. 金融市场分析:VAR模型可以用于分析金融市场的波动和相关性。

通过建立包含多个金融市场变量的VAR模型,可以研究不同市场之间的相互影响,并预测金融市场的未来趋势。

3. 货币政策分析:VAR模型可以用于评估货币政策的效果。

通过建立包含货币政策变量和宏观经济变量的VAR模型,可以分析货币政策对经济的影响,并评估不同政策措施的效果。

4. 风险管理:VAR模型可以用于风险管理和投资组合优化。

通过建立包含不同资产价格变量的VAR模型,可以估计不同资产之间的风险敞口,并为投资组合的风险管理提供参考。

5. 冲击传导分析:VAR模型可以用于分析经济冲击的传导机制。

通过VAR模型,可以估计不同变量之间的冲击传导路径,从而揭示经济体系中的关键变量和传导机制。

VAR模型是一种灵活、全面的分析工具,可以应用于各种经济、金融问题的研究和预测分析。

向量自回归模型(VAR)-Eviews实现

向量自回归模型(VAR)-Eviews实现
缺点
对于滞后阶数的选择存在主观性,可 能导致模型拟合不足或过度拟合;无 法进行因果检验和结构分析。
02 Eviews软件介绍
Eviews软件的特点
界面友好
Eviews软件采用图形用户界面,操作简便,易 于上手。
灵活多变
Eviews软件支持自定义函数和命令,用户可以 根据需要自行编写程序。
ABCD
系方面的有效性。
实证分析中,我们采用了国内生 产总值(GDP)、消费者价格指数 (CPI)和货币供应量(M2)三个经 济指标,通过VAR模型分析它们 之间的动态关系,并利用Eviews 软件进行了模型估计和检验。
实证结果表明,VAR模型能 够有效地描述多个时间序列 变量之间的动态关系,并且 通过Eviews软件可以实现方
02
模型通过估计变量之间的滞后系数来分析变量之间 的动态关系。
03
滞后阶数决定了模型中包含的滞后项数量,滞后阶 数越多,模型拟合的自由度越少。
VAR模型的应用场景
用于分析多个经济指标或金融变量之间的动态关 系。 用于预测经济趋势和政策效应。
用于评估经济政策的有效性。
VAR模型的优缺点
优点
能够同时考虑多个时间序列变量之间 的动态关系,能够捕捉到变量之间的 长期均衡关系和短期调整机制。
预测性能评估
使用各种预测性能指标, 如MSE、MAE、RMSE等, 对VAR模型的预测性能进 行评估。
04 案例分析
案例选择与数据准备
案例选择
选择一个具有代表性的经济时间序列数据集,如股票收益率、汇 率等。
数据准备
收集所需数据,进行数据清洗和整理,确保数据准确性和一致性。
数据预处理
对数据进行必要的预处理,如缺失值填充、异常值处理等。

向量自回归模型(VAR)和VEC

向量自回归模型(VAR)和VEC

数据清洗
对数据进行预处理,如缺失值填 充、异常值处理、数据转换等, 以保证数据的质量和一致性。
数据平稳性检验
对时间序列数据进行平稳性检验, 以避免伪回归问题,确保模型的 有效性。
模型选择与参数估计
模型选择
根据研究目的和数据特征,选择合适的VAR或VECM模型。 考虑模型的滞后阶数、变量个数等参数设置。
向量自回归模型(VAR) 和VECM
目录
Contents
• 向量自回归模型(VAR)介绍 • 向量误差修正模型(VECM)介绍 • VAR与VECM的比较 • 实证分析 • 结论与展望
01 向量自回归模型(VAR)介绍
VAR模型的原理
多个时间序列变量同时受到各 自过去值和彼此过去值的影响。
模型通过将多个时间序列变 量视为内生变量,并考虑它 们之间的相互影响,来分析 这些变量之间的动态关系。
将VAR和VECM模型的结果进行对比 分析,探讨两种模型在解释变量相互 影响方面的异同点。
政策建议
根据模型结果,提出针对性的政策建 议,为政府决策提供参考依据。
不足与展望
总结研究的不足之处,并提出进一步 研究的方向和展望。
05 结论与展望
结论总结
本文通过实证分析,探讨了向量自回归 模型(VAR)和向量误差修正模型(VECM) 在分析多个时间序列数据时的适用性和 优势。
01
参数估计
采用合适的估计方法,如最小二乘法、 极大似然法等,对模型参数进行估计。
02
03
模型诊断
对模型进行诊断检验,如残差检验、 稳定性检验等,以确保模型的合理性 和有效性。
模型结果解释与讨论
结果解释
对模型结果进行详细解释,包括各变 量的系数估计值、符号、显著性等, 分析其对内生变量的影响。

var模型原理

var模型原理

var模型原理VAR(Vector Autoregression,向量自回归)模型是一种广泛应用于时间序列数据预测和因果关系分析的方法。

它可以考虑多个变量之间的相互影响关系,同时可以预测未来的变化趋势。

下面将介绍VAR模型的原理和应用场景。

一、VAR模型的原理VAR模型基于向量自回归的思想,其中"向量"表示多个变量,"自回归"表示变量之间的相互影响关系。

该模型可以被表示为:yt = α1 y(t-1) + α2 y(t-2) + … + αp y(t-p) + et其中yt代表时间序列中的观测值,et代表误差项,α1…αp为回归系数。

在VAR模型中,每个观测值都可以视为一个向量,因此其它变量对它的影响可以通过回归系数表示出来。

VAR模型的基本思想是,在确定时期,一个变量的取值不仅仅会受到自身的历史取值的影响,还会受到其他变量历史取值的影响。

二、VAR模型的应用场景1. 宏观经济预测VAR模型可以用于宏观经济预测,例如预测CPI,GDP等经济指标。

由于各种经济指标相互依赖,VAR模型可以帮助分析它们之间的相互关系,进而预测可能发生的变化趋势。

2. 金融市场分析VAR模型还可以用于预测金融市场的走势,例如股票价格和汇率。

对于股票市场,VAR模型可以通过考虑影响自身和其它相关金融指标走势的因素,进而做出更为准确的预测。

3. 生态环境分析VAR模型也可以用于生态环境分析,例如预测气候变化和水质变化趋势。

对于这类变量,VAR模型可以通过回归分析发现其变化与其它生态环境因素的关系,进而对未来情况做出预测。

总之,VAR模型是一种融合了多个变量间相关性的时间序列分析方法,适用于多个领域的预测和分析。

第十一章_向量自回归(VAR)模型和向量误差修正(VEC)模型_理论及EVIEWS操作

第十一章_向量自回归(VAR)模型和向量误差修正(VEC)模型_理论及EVIEWS操作

19
表11.3
P AIC
AIC与SC随P的变化
SC
Lnl(P )
1 2 3 4
-5.3753 -5.6603 -5.8804 -5.6693
-4.8474 -4.7271 -4.5337 -3.9007
108.7551 120.0551 129.9676 132.5442
由表11.3知,在P=1时,SC 最小(-4.8474) ,在P=3时,AIC 最小(-5.8804),相互矛盾不 能确定P值,只能用似然比LR确定P值。
模型形式 (C t p)
(c 0 3) (c 0 0) (c 0 0)
DW值
1.6551 1.9493 1.8996
结论
LGDPt ~I(1) LCt ~I( 1) LIt~I(1)
LCt
2
LIt
2
注 C为位移项, t为趋势,p为滞后阶数。
由表11.1知, LGDPt、 LCt和LIt均为一阶单 整,可能存在协整关系。
待估参数个数为2 × 2×2= P N 2 用线性方程组表示VAR(2)模型:
y t 1 1 1 y t 1 1 1 2 x t 1 2 1 1 y t 2 2 1 2 x t 2 u 1t x t 1 2 1 y t 1 1 2 2 x t 1 2 2 1 y t 2 2 2 2 x t 2 u 2 t
4
政策分析。但实际中,这种模型的效果并不令人满 意。
联立方程组模型的主要问题:
(1)这种模型是在经济理论指导下建立起来的结构模型 。遗憾的是经济理论并不未明确的给出变量之间的动态关 系。 (2)内生、外生变量的划分问题较为复杂; (3)模型的识别问题,当模型不可识别时,为达到可识别 的目的,常要将不同的工具变量加到各方程中,通常这种 工具变量的解释能力很弱; (4)若变量是非平稳的(通常如此),则会违反假设, 带来更严重的伪回归问题。

向量自回归var模型案例附数据

向量自回归var模型案例附数据

向量自回归var模型案例附数据向量自回归VAR模型案例附数据向量自回归(Vector Autoregression, VAR)模型是一种广泛应用于多元时间序列分析的建模方法。

这种模型将每个内生变量作为其自身滞后值和所有其他内生变量的滞后值的线性函数进行描述。

VAR模型具有简单、灵活和易于推广的优点,因此在宏观经济分析、金融数据分析等领域得到了广泛应用。

以下是一个基于R语言对VAR模型进行估计和预测的案例示例,数据来自于加拿大的一些宏观经济变量:数据说明:变量包括加拿大的实际GDP(rgdp)、GDP平减指数(deflator)、实际进口量(im)和实际出口量(ex),时间范围为1981年第1季度到2001年第2季度,共81个观测值。

```r# 导入数据canadata <- read.table("canadata.txt", header = TRUE)str(canadata)# 对数据取对数并构造时间序列对象y <- log(canadata[, 2:5])z <- ts(y, start = c(1981, 1), frequency = 4)# 估计VAR模型library(vars)var.model <- VAR(z, p = 2, type = "const")summary(var.model)# 预测fcast <- predict(var.model, n.ahead = 8)# 数据可视化plot(fcast$fcst[, 1], type = 'l', ylim = range(z[, 1], fcast$fcst[, 1]), xlab = "Time", ylab = "rgdp", main = "Canadian GDP Forecast")lines(z[, 1], col = "blue")```。

VAR向量自回归模型

VAR向量自回归模型
相互之间可以同期相关,但不与自己的滞后值相关及不与
等式右边的变量相关
2
由于仅仅有内生变量的滞后值出现在等式的右边,所 以不存在同期相关性问题,用普通最小二乘法(OLS)能得 到VAR简化式模型的一致且有效的估计量。即使扰动向量
t有同期相关,OLS仍然是有效的,因为所有的方程有相
同的回归量,其与广义最小二乘法(GLS)是等价的。注意, 由于任何序列相关都可以通过增加更多的yt的滞后而被消 除(absorbed),所以扰动项序列不相关的假设并不要求 非常严格。
21
(二) 在Eviews软件关于VAR模型的各种检验 一旦完成VAR模型的估计,EViews会提供关于被
估 计 的 VAR 模 型 的 各 种 视 图 。 将 主 要 介 绍 View/Lag Structure和View/Residual Tests菜单下 提供的检验 。
22
1.VAR模型滞后结构的检验 (1) AR根的图表 如果被估计的VAR模型所有根模的倒数小于1,即 位于单位圆内,则其是稳定的。如果模型不稳定,某些 结果将不是有效的(如脉冲响应函数的标准误差)。共 有kp个根,其中k是内生变量的个数,p是最大滞后阶数。 如果估计一个有r个协整关系的VEC模型,则应有k r个 根等于1。 对于例3.1,可以得到如下的结果:
23
有2个单位根的 模大于1,因此例3.1 的模型不满足稳定 性条件,而且在输 出结果的下方会给 出警告(warning)。
24
下面给出单位根的图形表示的结果:
25
(2) Granger 因果检验 选择View/Lag Structure/ Pairwise Granger Causality Tests,即可进行Granger因果检验。输出结果对于VAR 模型中的每一个方程,将输出每一个其他内生变量的滞ytΒιβλιοθήκη a10 a(111) yt1

向量自回归模型公式

向量自回归模型公式

向量自回归模型公式
向量自回归模型(Vector Autoregression Model,VAR模型)是一种多变量时间序列预测模型,被广泛应用于经济学、金融学等领域。

其核心思想是通过将目标变量的过去值与其他相关变量的过去值结合起来来预测目标变量的未来值。

VAR模型的公式可以表示为:
Y_t = c + A_1*Y_(t-1) + A_2*Y_(t-2) + ... + A_p*Y_(t-p) + e_t
其中,Y_t是一个k维的向量,表示t时刻的目标变量;c是一个k维常数向量;A_1, A_2, ..., A_p是k×k的系数矩阵,用于表示目标变量与其他相关变量的关系;Y_(t-1), Y_(t-2), ..., Y_(t-p)是目标变量的过去值向量;e_t是一个k维的误差向量,表示不可解释的随机因素。

VAR模型的建立涉及到系数矩阵的估计,可以使用最小二乘法等方法进行求解。

建立好模型后,可以通过输入过去的变量值来预测未来的目标变量值。

VAR模型的优点是可以同时考虑多个相关变量的影响,能够捕捉到变量之间的相互依赖关系。

然而,由于VAR模型依赖于历史值来进行预测,对于长期预测可能存在误差累积的问题。

因此,在实际应用中,需要根据具体情况选择合适的模型及参数设置来提高预测准确性。

总的来说,VAR模型是一种有力的工具,可以帮助我们对多变量时间序列进行预测分析,为决策提供参考依据。

VAR模型的概念和构造

VAR模型的概念和构造

实验六VAR模型的概念和构造一、实验目的理解VAR模型的概念,掌握VAR模型的形式和特点,掌握VAR模型的识别、估计、检验和预测,了解似然比检验法,掌握脉冲响应的作用和应用,掌握使用Eviews软件进行相关的检验。

二、基本概念VAR模型即向量自回归模型由希姆斯( C.A.Smis)提出,在一个含有n个方程(被解释变量)的VAR模型中,每个被解释变量都对自身以及其它被解释变量的若干期滞后值回归,若令滞后阶数为k,则VAR模型的一般形式可用下式表示:kZ t 二、A i Z t -i V ti =1其中,乙表示由第t期观测值构成的n维列向量,A i为n*n系数矩阵,V t是由随机误差项构成的n维列向量,其中随机误差项V i ( i=1,2,…n )为白噪音过程,且满足E(v ")=0 (i,j=1,2,…,n,且i =j)。

对某变量全部滞后项系数的联合检验能够告诉我们该变量是否对被解释变量有显著的影响,但是不能告诉我们这种影响是正还是负,也不能告诉我们这种影响发生作用所需要的时间。

为解决这一问题,经常应用的方法是测量脉冲响应。

脉冲响应度量的是被解释变量对单位冲击的响应。

三、实验内容及要求1、实验内容:在Eviews软件中利用VAR模型对我国货币政策的有效性进行检验。

取我国狭义货币供应量M1 ,商品零售物价指数P,以及代表产出水平的国内生产总值GDP的季度数据,时间为1994年第一季度到2004年第二季度。

所有的数据我们都取它们的增长率,以保证序列的平稳性。

2、实验要求:(1 )深刻理解VAR模型的基本概念,以及脉冲响应的基本概念;(2 )思考:如何建立适当的VAR模型;如何利用VAR模型进行预测;(3)熟练掌握相关Eviews操作。

四、实验指导1、导入数据打开Eviews 软件,点击"File ” — " New--Workfile ”选项,出现"Workfile Range ” 对话框,在“ Workfile freque ncy ” 框中选择"Quarterly ” ,在“ Start date ” 和“ End date' 框中分别输入“ 1994:1 ”和“ 2004:2 ”,然后单击“ OK。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

的完整定义并加以推广。
假设Yt和Xt之间的长期关系式为:
Yt KX t
1
(11.13)
式中,K和 1为估计常量。例如,Y可以是商品
的需求量,X则是价格。1 就是Y对X的长期弹
性。
15
对式(11.13)两边取对数可得:
ln Yt ln K 1 ln Xt 或 yt 1xt
CPCt 0 1GDPPC t t
变量选择是合理的,随机误差项一定是“白噪声”(即均 值为0,方差不变的稳定随机序列),模型参数有合理的经 济解释。
这也解释了尽管这两时间序列是非稳定的,但却可以用 经典的回归分析方法建立回归模型的原因。
• 从这里,我们已经初步认识到:检验变 量之间的协整关系,在建立计量经济学模 型中是非常重要的。 而且,从变量之间是否具有协整关系 出发选择模型的变量,其数据基础是牢固 的,其统计性质是优良的。
Yt 1X t vt
式中,vt=t-t-1。
实际情况往往并非如此
如果 t-1 期末,发生了上述第二种情况,即 Y 的值小于 其均衡值,则Y的变化往往会比第一种情形下Y的变化Yt 大一些; 反之,如果Y的值大于其均衡值,则Y的变化往往会小 于第一种情形下的Yt 。 可见,如果 Yt=0+1Xt+t 正确地提示了 X 与 Y 间的长 期稳定的“均衡关系”,则意味着Y对其均衡点的偏离从 本质上说是“临时性”的。 因此, 一个重要的假设就是 : 随机扰动项 t 必须是平 稳序列。 显然,如果t有随机性趋势(上升或下降),则会导 致Y对其均衡点的任何偏离都会被长期累积下来而不能被 消除。
其中定义第二个新变量β0=b0/ 。
(11.20)
20
根据式(11.20),Y的当前变化决定于X的变 换以及前期的非均衡程度,也就是说前期的误 差项对当期的Y值进行调整。所以(11.20)就 是一阶误差修正模型,也是最简单的形式。 t 1 yt 1 0 1xt 1 表示系统对均衡状态的偏离 程度,可以称之为“均衡误差”。 在模型(11.20)中, yt 1 0 1 xt 1 描述了 对均衡关系偏离的一种长期调解。这样在误差 修正模型中,长期调节和短期调节的过程同样 被考虑进去。因而,误差修正模型的优点在于 它提供了解释长期关系和短期调节的途径。
21
当xt 0 且 t 1 0 的时候,后者意味着 yt 1比
均衡值高出太多。由于 0 ,那么 t 1 0, 因此 yt 0 。换句话说,如果 yt 1 高于均衡值 水平,那么在下一个时间段,yt 1 会开始下降,
误差值就会被慢慢修正,这就是所说的误差修
17
在对(11.16)进行估计的时候,其中的变量可 能是不平稳的,不能运用OLS估计,否则将出 现伪回归现象。对此,重新进行转化。两边分 别减去yt-1 :得
yt yt 1 b0 b1xt b2 xt 1 (1 ) yt 1 t
(11.17)
18
并进一步进行变化:
式中:t是随机扰动项。
该均衡关系意味着:给定X的一个值,Y相应的 均衡值也随之确定为0+1X。
在t-1期末,存在下述三种情形之一:
(1)Y等于它的均衡值:Yt-1= 0+1Xt ; (2)Y小于它的均衡值:Yt-1< 0+1Xt ; (3)Y大于它的均衡值:Yt-1> 0+1Xt ; 在时期t,假设X有一个变化量Xt,如果变量X与Y在时 期t与t-1末期仍满足它们间的长期均衡关系,则Y的相应变 化量由式给出:
12
二、协整检验的具体方法 (一)EG检验
假如Xt和Yt都是I (1),如何检验它们之间是否存 在协整关系,我们可以遵循以下思路:
首先用OLS对协整回归方程 yt xt ห้องสมุดไป่ตู้t 行估计。 进
然后,检验残差 e 是否是平稳的。因为如果Xt和 t Yt没有协整关系,那么它们的任一线性组合都是 非平稳的,残差 et 也将是非平稳的。
11
(4)如果Xt~ I (0),Yt~ I (1),则aXt+bYt是I (1), 即I (1)具有占优势的性质。 (5)如果Xt和Yt都是I (1),则aXt+bYt一般情况下是 I (1),但不保证一定是I (1)。如果该线性组合是I (0), Xt和Yt就是协整的,a、b就是协整参数。
正模型。当 t 1 0 ,则是完全相反的情况,
整个机制是相同的。
22
向量自回归模型
23
VAR模型的起源
巨大的模型均未预测到20世纪70年代早期由于石油危机 而引发的世界经济的衰退和随之而来的滞胀,也未能就治 理滞胀开出有效的“药方”。由此导致了对结构模型的批 判,其中最具影响的便是著名的“卢卡斯批判(the Lucas critique)”。 卢卡斯指出:使用计量经济模型(结构模型)预测未来经 济政策的变化所产生的效用是不可信的。他认为,如果一 个模型的某些参数所反映的是私人行为对以前的经济政策 的反应函数的适应性,如果政策反应函数被改变,则私人 行为对新的反应函数将再适应,其结果是,所估计的参数 将不再描述这种适应。 卢卡斯批判所隐含的是,如果政策反应函数出现变化,这 种变化也将改变模型的参数,于是,联立方程的简约形式 也将随之发生变化。
假如有序列Xt和Yt,一般有如下性质存在: (1) 如果Xt~ I (0),即Xt是平稳序列,则a+bXt也 是I (0); (2) 如果Xt~ I (1),这表示Xt只需经过一次差分就 可变成平稳序列。那么a+bXt也是I (1); (3) 如果Xt和Yt都是I (0),则aXt+bYt是I (0) ;
16
由于X和Y通常处于非均衡状态,可以建立一个 包含X和Y滞后项的短期或非均衡关系,假设采
取如下形式:
yt b0 b1xt b2 xt 1 yt 1 t
0 1
(11.16)
(11.16)式是基础的形式,只包括一阶滞后项, 说明对于变量X的变化,变量Y需要一段时间进 行调整。
从协整的定义可以看出:
(d,d)阶协整是一类非常重要的协整关系,它的经济意义 在于: 两个变量,虽然它们具有各自的长期波动规律,但 是如果它们是(d,d)阶协整的,则它们之间存在着一个长 期稳定的比例关系。 例如:假设中国CPC和GDPPC,它们各自都是2阶单整, 并且将会看到,它们是(2,2)阶协整,说明它们之间存在着 一个长期稳定的比例关系,从计量经济学模型的意义上讲, 建立如下居民人均消费函数模型
13
检验 t 是否平稳可以采用前文提到的单位根检 验,但需要注意的是,此时的临界值不能再用 (A)DF检验的临界值,而是要用恩格尔和格兰杰 (Engle and Granger)提供的临界值,故这种 协整检验又称为(扩展的)恩格尔格兰杰检验 (简记(A)EG检验)。
e
14
误差修正模型
Engle和Granger于1987年提出了误差修正模型
式Yt=0+1Xt+t中的随机扰动项也被称为非均衡误差
(disequilibrium error),它是变量X与Y的一个线性组合:
t Yt 0 1 X t
(*)
因此,如果Yt=0+1Xt+t式所示的X与Y间的长期均衡关 系正确的话,(*)式表述的非均衡误差应是一平稳时间序 列,并且具有零期望值,即是具有0均值的I(0)序列。 从这里已看到, 非稳定的时间序列,它们的线性组合也可 能成为平稳的。 例如:假设 Yt=0+1Xt+t 式中的 X 与 Y 是 I(1) 序列,如果该式 所表述的它们间的长期均衡关系成立的话,则意味着由非均 衡误差(*)式给出的线性组合是 I(0)序列。这时我们称变量 X与Y是协整的(cointegrated)。
⒉协整
如果序列{X1t,X2t,…,Xkt}都是d阶单整,存在向量 =(1,2,…,k),使得 Zt= XT ~ I(d-b) 其中,b>0,X=(X1t,X2t,…,Xkt)T,则认为序列{X1t,X2t,…,Xkt} 是(d,b)阶协整,记为Xt~CI(d,b),为协整向量(cointegrated vector)。 在中国居民人均消费与人均GDP的例中,该两序列都是2阶 单整序列,而且可以证明它们有一个线性组合构成的新序列为0 阶单整序列,于是认为该两序列是(2,2)阶协整。 由此可见:如果两个变量都是单整变量,只有当它们的单整 阶数相同时,才可能协整;如果它们的单整阶数不相同,就不 可能协整。
实验十一 协整与向量自回归模型
1
协整
0、问题的提出
经典回归模型 (classical regression model)是建立在 稳定数据变量基础上的,对于非稳定变量,不能使用经典 回归模型,否则会出现虚假回归等诸多问题。 由于许多经济变量是非稳定的,这就给经典的回归分析方 法带来了很大限制。 但是,如果变量之间有着长期的稳定关系,即它们之间是 协整 的( cointegration) ,则是可以使用经典回归模型方 法建立回归模型的。 例如,中国居民人均消费水平与人均GDP变量的例子中: 因果关系回归模型要比ARMA模型有更好的预测功能, 其原因在于,从经济理论上说,人均GDP决定着居民人均 消费水平,而且它们之间有着长期的稳定关系,即它们之 间是协整的(cointegration)。
yt yt 1 b0 b1xt b1xt 1 b1xt 1 b2 xt 1 (1 ) yt 1 t ,即: yt b0 b1xt (b1 b2 ) xt 1 yt 1 t
(11.18)
在这里 (1 )。我们对上式进行重新整理, 得到:
19
在这里 (1 ) 。我们对上式进行重新整理, 得到:
相关文档
最新文档