学一轮复习第七章第42课数列的综合应用自主学习(pdf)

合集下载

2019届高三数学一轮复习目录(理科)

2019届高三数学一轮复习目录(理科)

2019届高三第一轮复习《原创与经典》(苏教版)(理科)第一章集合常用逻辑用语推理与证明第1课时集合的概念、集合间的基本关系第2课时集合的基本运算第3课时命题及其关系、充分条件与必要条件第4课时简单的逻辑联结词、全称量词与存在量词第5课时合情推理与演泽推理第6课时直接证明与间接证明第7课时数学归纳法第二章不等式第8课时不等关系与不等式第9课时一元二次不等式及其解法第10课时二元一次不等式(组)与简单的线性规划问题第11课时基本不等式及其应用第12课时不等式的综合应用第三章函数的概念与基本初等函数第13课时函数的概念及其表示第14课时函数的定义域与值域第15课时函数的单调性与最值第16课时函数的奇偶性与周期性9第17课时二次函数与幂函数第18课时指数与指数函数第19课时对数与对数函数第20课时函数的图象第21课时函数与方程第22课时函数模型及其应用第四章 导数第23课时 导数的概念及其运算(含复合函数的导数)第24课时 利用导数研究函数的单调性与极值第25课时 函数的最值、导数在实际问题中的应用第五章 三角函数 第26课时任意角、弧度制及任意角的三角函数 第27课时同角三角函数的基本关系式与诱导公式 第28课时两角和与差的正弦、余弦和正切公式 第29课时二倍角的三角函数 第30课时三角函数的图象和性质 第31课时函数sin()y A x ωϕ=+的图象及其应用 第32课时正弦定理、余弦定理 第33课时解三角形的综合应用第六章 平面向量 第34课时平面向量的概念及其线性运算 第35课时平面向量的基本定理及坐标表示 第36课时平面向量的数量积 第37课时平面向量的综合应用第七章 数 列 第38课时数列的概念及其简单表示法 第39课时等差数列 第40课时等比数列 第41课时数列的求和 第42课时等差数列与等比数列的综合应用 第八章 立体几何初步 第43课时平面的基本性质及空间两条直线的位置关系第44课时直线、平面平行的判定与性质第45课时直线、平面垂直的判定与性质第46课时空间几何体的表面积与体积第47课时空间向量的应用——空间线面关系的判定第48课时空间向量的应用——空间的角的计算第九章平面解析几何第49课时直线的方程第50课时两直线的位置关系与点到直线的距离第51课时圆的方程第52课时直线与圆、圆与圆的位置关系第53课时椭圆第54课时双曲线、抛物线第55课时曲线与方程第56课时直线与圆锥曲线的位置关系第57课时圆锥曲线的综合应用第十章复数、算法、统计与概率第58课时抽样方法、用样本估计总体第59课时随机事件及其概率第60课时古典概型第61课时几何概型互斥事件第62课时算法的含义及流程图第63课时复数第十一章计数原理、随机变量及其分布第64课时分类计数原理与分步计数原理第65课时排列与组合第66课时二项式定理第67课时离散型随机变量及其概率分布第68课时事件的独立性及二项分布第69课时离散型随机变量的均值与方差第十二章选修4系列第70课时选修4-1 《几何证明选讲》相似三角形的进一步认识第71课时选修4-1 《几何证明选讲》圆的进一步认识第72课时选修4-2 《矩阵与变换》平面变换、变换的复合与矩阵的乘法第73课时选修4-2 《矩阵与变换》逆变换与逆矩阵、矩阵的特征值与特征向量第74课时选修4-4《参数方程与极坐标》极坐标系第75课时选修4-4《参数方程与极坐标》参数方程第76课时选修4-5《不等式选讲》绝对值的不等式第77课时选修4-5《不等式选讲》不等式的证明。

2025届高考数学一轮复习教案:数列-数列的综合应用

2025届高考数学一轮复习教案:数列-数列的综合应用

第六节数列的综合应用【核心考点·分类突破】考点一等差、等比数列的综合问题(规范答题)[例1](12分)(2023·新高考Ⅰ卷)设等差数列{a n}的公差为d,且d>1,令b n=2+,记S n,T n分别为数列{a n},{b n}的前n项和.(1)若3a2=3a1+a3,S3+T3=21,求{a n}的通项公式;(2)若{b n}为等差数列,且S99-T99=99,求d.审题导思破题点·柳暗花明(1)思路:根据等差数列的定义,灵活运用给定的条件,即可得到所求等差数列的通项公式;同时帮助学生理解题设条件,以顺利进入第(2)问的情境.(2)思路:所给题设条件“{b n}为等差数列”要求学生能够灵活转化为求解数列{a n}中公差与首项的关系,可以采用通性通法来解答.规范答题微敲点·水到渠成【解析】(1)因为3a2=3a1+a3,所以3d=a1+2d,解得a1=d,[1分]关键点根据已知条件,列方程求出首项a1和公差d的关系.所以S3=3a2=3(a1+d)=6d,又T3=b1+b2+b3=2+3+4=9,所以S3+T3=6d+9=21,即2d2-7d+3=0,解得d=3或d=12(舍去),[3分]所以a n=a1+(n-1)d=3n,所以的通项公式为a n=3n.[4分]阅卷现场(1)没有过程,只有a n=3n得1分;(2)结果正确时漏写a1=d不扣分;(3)d=12漏舍只得1分.(2)因为b n=2+,且为等差数列,所以2b2=b1+b3,即122=21+123,[6分]所以61+-11=61+2,所以12-3a1d+2d2=0,解得a1=d或a1=2d.[8分]传技巧取的前3项,利用等差中项2b2=b1+b3,得到首项a1和公差d之间的关系.解法一:①当a1=d时,a n=nd,所以b n=2+=2+B=r1,S99=99(r99)=99×50d,T99=99×51.因为S99-T99=99,所以99×50d-99×51=99,关键点利用S99-T99=99,列出关于d的方程,结果注意d>1.即50d2-d-51=0,解得d=5150或d=-1(舍去).[10分]②当a1=2d时,a n=(n+1)d,所以b n=2+=2+(r1)=,避易错讨论另一种情况,不可遗漏.S99=99(2r100)=99×51d,T99=99×50.因为S99-T99=99,所以99×51d-99×50=99,即51d2-d-50=0,解得d=-5051(舍去)或d=1(舍去).[11分]综上,d=5150.[12分]解法二:因为S99-T99=99,由等差数列的性质知,且99a50-99b50=99,即a50-b50=1,传技巧利用等差数列的性质,可以简化运算过程.列方程求出a50,注意由d>1可知a n>0.所以a50-255050=1,即a502-a50-2550=0,解得a50=51或a50=-50(舍去).[10分]①当a1=d时,a50=a1+49d=50d=51,解得d=5150.②当a1=2d时,a50=a1+49d=51d=51,解得d=1,与d>1矛盾,应舍去.[11分]综上,d=5150.[12分]解法三:因为,都是等差数列,且a nb n=n(n+1),=B=1(+1).[8分]所以可设=1(+1)=B或敲黑板构造新数列要考虑全面,少写一组不得分.(i)当a n=1(n+1),b n=kn时,S99-T99=1(2+3+…+100)-k(1+2+…+99)=99,即50k2+k-51=0,解得k=-5150或k=1,因为d=k>1,所以均不合题意.[10分](ii)当a n=kn,b n=1(n+1)时,S99-T99=k(1+2+…+99)-1(2+3+…+100)=99,即50k2-k-51=0,解得k=5150或k=-1.因为d=k>1,所以k=5150,所以d=5150.[12分]拓思维高考命题强调“多思考,少运算”的理念,试题面向全体学生,为考生搭建展示数学能力的平台.本解法根据给出的条件,巧妙的构造新的数列,突破常规解法,灵活运用数列知识,解题方法“高人一招”,解题速度“快人一步”.【解题技法】等差、等比数列综合问题的求解策略1.基本方法:求解等差、等比数列组成的综合问题,首先要根据数列的特征设出基本量,然后根据题目特征使用通项公式、求和公式、数列的性质等建立方程(组),确定基本量;2.基本思路:注意按照顺序使用基本公式、等差中项、等比中项以及证明数列为等差、等比数列的方法确定解题思路.【对点训练】(2022·全国甲卷)记S n为数列{a n}的前n项和.已知2+n=2a n+1.(1)证明:{a n}是等差数列;(2)若a4,a7,a9成等比数列,求S n的最小值.【解析】(1)由2+n=2a n+1,得2S n+n2=2a n n+n①,所以2S n+1+(n+1)2=2a n+1(n+1)+(n+1)②,②-①,得2a n+1+2n+1=2a n+1(n+1)-2a n n+1,化简得a n+1-a n=1,所以数列{a n}是公差为1的等差数列.(2)由(1)知数列{a n}的公差为1.由a4,a7,a9成等比数列,得72=a4a9,即(a1+6)2=(a1+3)(a1+8),解得a1=-12,所以S n=-12n+(-1)2=2-252=12(n-252)2-6258,所以,当n=12或n=13时,(S n)min=-78.考点二数列与函数、向量的综合[例2](1)(2023·龙岩模拟)已知函数f(x)=13x3+4x,记等差数列{a n}的前n项和为S n,若f(a1+2)=100,f(a2022+2)=-100,则S2022等于()A.-4044B.-2022C.2022D.4044【解析】选A.因为f(-x)=-13x3-4x=-f(x),所以f(x)是奇函数,因为f(a1+2)=100,f(a2022+2)=-100,所以f(a1+2)=-f(a2022+2),所以a1+2+a2022+2=0,所以a1+a2022=-4,所以S2022=2022(1+2022)2=-4044.(2)数列满足a1=1,a2=5,若m=1,r1+1,n=+r2,-2,m·n=0,则数列的通项公式为________.【解析】由已知m·n=0,得1×+r2-2r1+1=0,即r2-r1-r1-=2,则r1-是首项为a2-a1,公差为2的等差数列,则a n+1-a n=2-1+-1×2=2+1,于是a n=--1+-1--2+…+2-1+a1=2n+2-1+…+2×2+1=2+-1+…+2+1=n2+n-1.答案:a n=n2+n-1【解题技法】数列与函数、向量的综合问题的求解策略(1)已知函数条件,解决数列问题,此类问题一般是利用函数的性质、图象研究数列问题;(2)已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形;(3)涉及数列与三角函数有关的问题,常利用三角函数的周期性等特征,寻找规律后求解;(4)涉及数列与向量有关的综合问题,应根据条件将向量式转化为与数列有关的代数式求解.【对点训练】1.已知数列{a n}满足a n+2-a n+1=a n+1-a n,n∈N*,且a5=π2,若函数f(x)=sin2x+2cos22,记y n=f(a n),则数列{y n}的前9项和为()A.0B.-9C.9D.1【解析】选C.由题意知数列{a n}是等差数列.因为a5=π2,所以a1+a9=a2+a8=a3+a7=a4+a6=2a5=π.f(x)=sin2x+2cos22,所以f(x)=sin2x+cos x+1,所以f(a1)+f(a9)=sin2a1+cos a1+1+sin2a9+cos a9+1=2.同理f(a2)+f(a8)=f(a3)+f(a7)=f(a4)+f(a6)=2.因为f(a5)=1,所以数列{y n}的前9项和为9.2.数列{a n}是等差数列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,则实数λ的最大值为________.【解析】因为a4+λa10+a16=15,所以a1+3d+λ(a1+9d)+a1+15d=15,令λ=f(d)=151+9-2,因为d∈[1,2],所以令t=1+9d,t∈[10,19],因此λ=f(t)=15-2.当t∈[10,19]时,函数λ=f(t)是减函数,故当t=10时,实数λ有最大值,最大值为f(10)=-12.答案:-12考点三数列与不等式的综合【考情提示】数列不等式作为考查数列综合知识的载体,因其全面考查数列的性质、递推公式、求和等知识而成为高考命题的热点,重点考查不等式的证明、参数范围、最值等.角度1数列中的最值[例3]公比为2的等比数列{a n}中存在两项a m,a n满足a m a n=1612,则1+4的最小值为()A.32B.53C.43D.1310【解析】选A.由等比数列的通项公式知a m=a1×2m-1,a n=a1×2n-1,由a m a n=1612,可得12×2m+n-2=1612,易知a1≠0,故2m+n-2=16,解得m+n=6,则1+4=16(m+n)·(1+4)=16(1+4++4)≥16(5+2)=32(当且仅当m=2,n=4时取等号).角度2数列中的不等式证明[例4](2023·宁德模拟)已知数列,满足b n=a n+n2,a1+b1=3,a2+b2=8,且数列是等差数列.(1)求数列的通项公式;(2)n项和为S n,求证:12≤S n<1.【解析】(1)由b n=a n+n2得b1=a1+1,b2=a2+4,代入a1+b1=3,a2+b2=8得2a1+1=3,2a2+4=8,解得a1=1,a2=2.又因为数列为等差数列,故公差为d=a2-a1=1,因此a n=n,b n=n+n2.(2)由(1)可得b n=n+n2,所以1=1r2=1-1r1,所以S n=11+12+13+…+1=(1-12)+(12-13)+(13-14)+…+(1-1r1)=1-1r1,又因为n∈N*,所以0<1r1≤12(n=1时等号成立),所以12≤1-1r1<1,即12≤S n<1.角度3数列中的不等式恒成立[例5]已知数列{a n}的通项公式为a n=5-n,其前n项和为S n,将数列{a n}的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{b n}的前3项,记{b n}的前n项和为T n.若存在m∈N*,使对任意n∈N*,S n≤T m+λ恒成立,则实数λ的取值范围是()A.[2,+∞)B.(3,+∞)C.[3,+∞)D.(2,+∞)【解析】选D.依题意得S n=(4+5-)2=(9-)2,根据二次函数的性质知,当n=4,5时,S n 取得最大值为10.另外,根据通项公式得数列{a n}的前4项为a1=4,a2=3,a3=2,a4=1,观察易知抽掉第二项后,余下的三项可组成等比数列,所以数列{b n}中,b1=4,公比q=12,所以T n=4(1-12)1-12=8(1-12),所以4≤T n<8.因为存在m∈N*,对任意n∈N*,S n≤T m+λ恒成立,所以10<8+λ,所以λ>2.【解题技法】数列与不等式交汇问题的解题策略(1)判断数列问题的一些不等关系,可以利用数列的单调性比较大小或借助数列对应的函数的单调性比较大小.(2)考查与数列有关的不等式证明问题,此类问题一般采用放缩法进行证明,有时也可通过构造函数进行证明.(3)数列中有关项或前n 项和的恒成立问题,常转化为数列的最值问题;求项或前n 项和的不等关系可以利用不等式的性质或基本不等式求解.【对点训练】1.(2023·重庆模拟)设a >0,b >0,若3是3a 与9b 的等比中项,则1+2的最小值为()A .92B .3C .32+2D .4【解析】选A .因为3是3a 与9b 的等比中项,所以32=3a ·9b =3a +2b ,所以a +2b =2,所以1+2=12·(1+2)·(a +2b )=12(5+2+2)≥12·(5+2)=92,当且仅当a =b =23时取等号.2.数列{a n }满足a 1=14,a n +1=14-4,若不等式21+32+…+r2r1<n +λ对任何正整数n 恒成立,则实数λ的最小值为()A .74B .34C .78D .38【解析】选A .因为数列{a n }满足a 1=14,a n +1=14-4,所以反复代入计算可得a 2=26,a 3=38,a 4=410,a 5=512,…,由此可归纳出通项公式a n =2(r1),经验证,成立,所以r1=1+1(r2)=1+12(1-1r2),所以21+32+…+r2r1=n +1+12(1+12-1r2-1r3)=n +74-12(1r2+1r3).因为要求21+32+…+r2r1<n +λ对任何正整数n 恒成立,所以λ≥74.3.(2023·南京模拟)已知数列的前n 项和为S n ,a 1=2,(n -2)S n +1+2a n +1=nS n ,n ∈N *.(1)求数列的通项公式;(2)求证:112+122+…+12<716.【解析】(1)(n -2)S n +1+2a n +1=nS n ,则(n -2)S n +1+2(S n +1-S n )=nS n ,整理得到nS n +1=(n +2)S n ,故r1(r1)(r2)=(r1),,故(r1)=11×2=1,即S n=n(n+1).当n≥2时,a n=S n-S n-1=n(n+1)-n(n-1)=2n,验证当n=1时满足,故a n=2n,n∈N*.(2)12=142<142-1=12(12-1-12r1),故112+122+…+12<14+12(13-15+15-17+…+12-1-12r1)=14+12(13-12r1)<14+12×13=512<716.考点四数列在实际问题中的综合应用[例6](1)(2022·新高考Ⅱ卷)图1是中国古代建筑中的举架结构,AA',BB',CC',DD'是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图,其中DD1,CC1,BB1,AA1是举,OD1,DC1,CB1,BA1是相等的步,相邻桁的举步之比分别为B1B1=0.5,B1B1=k1,B1B1=k2,B1B1=k3.已知k1,k2,k3成公差为0.1的等差数列,且直线OA的斜率为0.725,则k3=()A.0.75B.0.8C.0.85D.0.9【解析】选D.设OD1=DC1=CB1=BA1=1,则CC1=k1,BB1=k2,AA1=k3,依题意,有k3-0.2=k1,k3-0.1=k2,且B1+B1+B1+B1B1+B1+B1+B1=0.725,所以0.5+33-0.34=0.725,故k3=0.9.(2)据统计测量,已知某养鱼场,第一年鱼的质量增长率为200%,以后每年的增长率为前一年的一半.若饲养5年后,鱼的质量预计为原来的t倍.下列选项中,与t值最接近的是()A.11B.13C.15D.17【解析】选B.设鱼原来的质量为a,饲养n年后鱼的质量为a n,q=200%=2,则a1=a(1+q),a2=a1(1+2)=a(1+q)(1+2),…,a5=a(1+2)×(1+1)×(1+12)×(1+122)×(1+123)=40532a≈12.7a,即5年后,鱼的质量预计为原来的13倍.【解题技法】数列在实际应用中的常见模型等差模型如果增加(或减少)的量是一个固定的数,则该模型是等差模型,这个固定的数就是公差等比模型如果后一个量与前一个量的比是一个固定的非零常数,则该模型是等比模型,这个固定的数就是公比递推数列模型如果题目中给出的前后两项之间的关系不固定,随项的变化而变化,则应考虑考查的是第n项a n与第(n+1)项a n+1(或者相邻三项等)之间的递推关系还是前n项和S n 与前(n+1)项和S n+1之间的递推关系【对点训练】1.(2023·武汉模拟)南宋数学家杨辉为我国古代数学研究作出了杰出贡献,他的著名研究成果“杨辉三角”记录于其重要著作《详解九章算法》,该著作中的“垛积术”问题介绍了高阶等差数列.以高阶等差数列中的二阶等差数列为例,其特点是从数列中的第二项开始,每一项与前一项的差构成等差数列.若某个二阶等差数列的前4项为2,3,6,11,则该数列的第15项为()A.196B.197C.198D.199【解析】选C.设该数列为,则a1=2,a2=3,a3=6,a4=11.由二阶等差数列的定义可知,a2-a1=1,a3-a2=3,a4-a3=5,…所以数列r1-是以a2-a1=1为首项,公差d=2的等差数列,即a n+1-a n=2n-1,所以a2-a1=1,a3-a2=3,a4-a3=5,…,a n+1-a n=2n-1.将所有上式累加可得a n+1=a1+n2=n2+2,所以a15=142+2=198,即该数列的第15项为198.2.(2023·深圳模拟)将一个顶角为120°的等腰三角形(含边界和内部)的底边三等分,挖去由两个等分点和上顶点构成的等边三角形,得到与原三角形相似的两个全等三角形,再对余下的所有三角形重复这一操作.如果这个操作过程无限继续下去,最后挖剩下的就是一条“雪花”状的Koch曲线,如图所示.已知最初等腰三角形的面积为1,则经过4次操作之后所得图形的面积是()A.1681B.2081C.827D.1027【解析】选A.根据题意可知,每次挖去的三角形面积是被挖三角形面积的13,所以每一次操作之后所得图形的面积是上一次三角形面积的23,由此可得,第n次操作之后所得图形的面积是,即经过4次操作之后所得图形的面积是=1681.。

[精]高三第一轮复习全套课件3数列:数列的综合应用

[精]高三第一轮复习全套课件3数列:数列的综合应用
新疆 源头学子小屋 特级教师 王新敞
wxckt@ /wxc/
新疆 源头学子小屋 特级教师 王新敞
wxckt@
/wxc/
证明:①根据 S n a n
a 1 , ( n 1) 得 an=a+(n─1) 2b, S n S n 1 , ( n 2 )
新疆 源头学子小屋 特级教师 王新敞
wxckt@ /wxc/
新疆 源头学子小屋 特级教师 王新敞
wxckt@
/wxc/
例 6 数列{an}的前 n 项和 Sn=na+(n─1)nb,(n=1,2,…),a,b 是常数,且 b≠0, ①求证{an}是等差数列; ②求证以(an,Sn/n─1)为坐标的点 Pn 都落在同一直线上,并求出直线方程; ③设 a=1,b=1/2,C 是以(r,r)为圆心,r 为半径的圆(r>0),求使得点 P1,P2,P3 都落 在圆外的 r 的取值范围
新疆 源头学子小屋 特级教师 王新敞
wxckt@
/wxc/
解:①依题意,由{an}是等差数列,有 ar+ar+2=2ar+1 (r∈N),即 x=─1 时,方程 成立,因此方程恒有实数根 x=─1; ②设公差为 d(化归思想),先解出方程的另一根 mr=─ar+2/ar, ∴ 1/(mr+1)=ar/(ar─ar+2)=─ar/(2d), ∴ 1/(mr+1+1)─1/(mr+1)= 〔─ar+1/(2d)〕─〔─ar/(2d)〕=─1/2, ∴ {1/(mr+1)}是等差数列
∴{an}是等差数列,首项为 a,公比为 2b
②由 x=an=a+(n─1)2b, y=Sn/n─1=a+(n─1)b 两式中消去 n,得:x─2y+a─2=0, (另外算斜率也是一种办法)

【2022高考数学一轮复习(步步高)】目录

【2022高考数学一轮复习(步步高)】目录

第一章集合、常用逻辑用语、不等式§1.1集合§1.2 充分条件与必要条件§1.3 全称量词与存在量词§1.4 不等关系与不等式§1.5 一元二次不等式及其解法§1.6 基本不等式强化训练1不等式中的综合问题第二章函数概念与基本初等函数Ⅰ§2.1 函数的概念及其表示第1课时函数的概念及其表示第2课时函数的定义域与值域§2.2 函数的基本性质第1课时单调性与最大(小)值第2课时奇偶性、对称性与周期性第3课时函数性质的综合问题§2.3 幂函数与二次函数§2.4 指数与指数函数§2.5 对数与对数函数§2.6 函数的图象§2.7 函数与方程强化训练2函数与方程中的综合问题§2.8 函数模型及其应用第三章导数及其应用§3.1 导数的概念及运算§3.2 导数与函数的单调性§3.3 导数与函数的极值、最值强化训练3导数中的综合问题高考专题突破一高考中的导数综合问题第1课时利用导数研究恒(能)成立问题第2课时利用导函数研究函数的零点第3课时利用导数证明不等式第四章三角函数、解三角形§4.1任意角和弧度制、三角函数的概念§4.2 同角三角函数基本关系式及诱导公式§4.3 简单的三角恒等变换第1课时两角和与差的正弦、余弦和正切公式第2课时简单的三角恒等变换§4.4 三角函数的图象与性质§4.5 函数y=A sin(ωx+φ)的图象及应用强化训练4三角函数中的综合问题§4.6 解三角形高考专题突破二高考中的解三角形问题第五章平面向量、复数§5.1 平面向量的概念及线性运算§5.2 平面向量基本定理及坐标表示§5.3 平面向量的数量积强化训练5平面向量中的综合问题§5.4 复数第六章数列§6.1 数列的概念与简单表示法§6.2 等差数列及其前n项和§6.3 等比数列及其前n项和强化训练6数列中的综合问题高考专题突破三高考中的数列问题第七章立体几何与空间向量§7.1空间几何体及其表面积、体积强化训练7空间几何体中的综合问题§7.2 空间点、直线、平面之间的位置关系§7.3 直线、平面平行的判定与性质§7.4 直线、平面垂直的判定与性质强化训练8空间位置关系中的综合问题§7.5 空间向量及其应用高考专题突破四高考中的立体几何问题第八章解析几何§8.1直线的方程§8.2 两条直线的位置关系§8.3 圆的方程§8.4 直线与圆、圆与圆的位置关系强化训练9直线与圆中的综合问题§8.5 椭圆第1课时椭圆及其性质第2课时直线与椭圆§8.6 双曲线§8.7 抛物线强化训练10圆锥曲线中的综合问题高考专题突破五高考中的圆锥曲线问题第1课时范围与最值问题第2课时定点与定值问题第3课时证明与探索性问题第九章统计与统计案例§9.1 随机抽样、用样本估计总体§9.2 变量间的相关关系、统计案例强化训练11统计中的综合问题第十章计数原理、概率、随机变量及其分布§10.1 分类加法计数原理与分步乘法计数原理§10.2 排列、组合§10.3 二项式定理§10.4 随机事件的概率与古典概型§10.5 离散型随机变量的分布列、均值与方差§10.6 二项分布与正态分布高考专题突破六高考中的概率与统计问题。

数列的综合应用总结

数列的综合应用总结

数列的综合应用总结数列作为数学中常见的一种数学对象,在各个领域中都有着广泛的应用。

本文将对数列的综合应用进行总结和分析,包括数列的定义、数列求和的方法以及数列在实际问题中的应用等方面。

一、数列的定义数列是由一系列按照一定规律排列的数所组成的有序集合。

一般用an表示数列中的第n个数,其中n为正整数,称为项号。

数列的通项公式表示了数列中任意一项与项号之间的关系。

二、数列求和的方法1.等差数列求和等差数列的通项公式为an = a1 + (n-1)d,其中a1为首项,d为公差。

等差数列的前n项和Sn可以通过等差数列求和公式来计算,即Sn =(a1 + an) * n / 2。

2.等比数列求和等比数列的通项公式为an = a1 * q^(n-1),其中a1为首项,q为公比。

等比数列的前n项和Sn可以通过等比数列求和公式来计算,即Sn =(a1 * (1 - q^n)) / (1 - q),当|q| < 1时成立。

3.其他数列求和方法除了等差数列和等比数列,还存在一些特殊的数列,它们的求和方法也各不相同。

比如斐波那契数列、调和数列等,它们的求和方法需要根据具体的问题和数列的规律来确定。

三、数列在实际问题中的应用数列的应用广泛存在于实际问题的建模和解决过程中。

下面以几个具体的应用场景来说明数列在实际问题中的应用。

1.金融领域在金融领域中,利率、投资回报率等与时间相关的指标可以使用数列进行建模。

比如等额本息还款方式下,每期的还款金额就可以通过等差数列求和来计算。

2.物理学领域在物理学中,许多物理现象的变化过程可以用数列进行描述。

比如自由落体运动的位移、速度、加速度等物理量随时间的变化可以用等差数列或等比数列来表示和推导。

3.计算机科学领域在算法设计和数据处理中,数列也有着重要的应用。

比如在排序算法中,快速排序、归并排序等算法利用了数列的递推和分治思想来实现高效的排序。

四、总结数列作为一种常见的数学对象,具有广泛的应用价值。

2024届苏教版高考数学一轮复习数列求和及综合应用课件

2024届苏教版高考数学一轮复习数列求和及综合应用课件

=

+
=2,所以

=2.
所以 a1,a3,a5,…成等比数列;a2,a4,a6,…成等比数列,
所以 S2 018=a1+a2+a3+a4+a5+a6+…+a2 017+a2 018
=(a1+a3+a5+…+a2 017)+(a2+a4+a6+…+a2 018)
=
-

-
+
(-
A.


B.


C.

D.


解析:bn= =



=

=

-

++ (+)(+) + +
选 B.
B )






,前 10 项和为 - + - +…+ - = - = .故
4.数列{an}的前n项和为Sn,已知Sn=1-2+3-4+…+(-1)n-1·n,则S17=
a2a3=8.
(1)求数列{an}的通项公式;
解:(1)由题设知 a1a4=a2a3=8,
又 a1+a4=9,解得
= , = ,

(舍去).
=
=
3
设等比数列{an}的公比为 q,由 a4=a1q 得 q=2,
n-1
n-1
故 an=a1q =2 ,n∈N+.
例1-2

高考数学课程一轮复习 第41课时 数列的综合应用

高考数学课程一轮复习 第41课时  数列的综合应用

第41课时 数列的综合应用【考点点知】知己知彼,百战不殆根据新课标高考的趋势,高考对数列求和的要求是:①会用观察法写出一些简单的数列的通项公式;②能根据n a a 与n S 的关系求解n a a ;③会用构造法、累加法、累乘法等方法对递推公式进行转化求解通项公式;④会用倒序相加法、公式法、错位相减法、裂项法等方法求解特殊数列的和.递推数列也是新课标高考的重点,尤其是函数、不等式、导数与递推数列的综合题更是高考的热点.新课标对数列的应用的基本要求是:“认识数列的函数特性,能结合方程、不等式、解析几何等知识解决一些数列综合题,并能在实际情形中运用数列知识解决实际问题.”因此,新课标高考将突出数列与其他知识的综合与交汇,方法灵活,难度较大的数列综合题往往成为高考的压抽题,当然,随着新课标对分析问题、解决问题能力的重视,也有可能出现数列的实际应用问题.考点一: 通项公式的求解1.观察法:观察法就是观察数列特征,找出各项共同的构成规律,横向看各项之间的关系结构,纵向看各项与项数n 的关系,从而确定出数列的通项.2.构造等差、等比数列法:构造法就是根据所给数列的递推公式以及其他有关关系式,进行变形整理,构出一个新的等差或等比数列,利用等差或等比数列的通项公式求解.3.猜归法:猜归法就是由已知条件先求出数列的前n 项,一般是1234,,,a a a a 等,由此归纳猜想出n a ,然后用数学归纳法证明.4.累加法:如果已知数列{n a a }的相邻两项1n a +a 与n a a的差的一个关系式,我们可依次写出前n 项中所有相邻两项差的关系,然后把这n-1个式子相加,整理求出数列的通项.5.累积法:如果已知数列{n a a }的相邻两项1n a +a 与n a a的商的关系,我们可依次写出前n 项中所有相邻两项的商的关系式,然后把这n-1个式子相乘,整理求出数列的通项.6.待定系数法:如果已知数列{n a a }的通项公式的结构形式,我们可以先设出通项公式,然后再由已知条件求出待定系数.考点二: 数列求和的方法1.公式法:直接应用等差数列,等比数列的求和公式,以及正整数的平方和公式,立方和公式等公式求解.2.倒序相加(乘)法:如果一个数列{n a a },与首末两项等距离的两项之和(积)等于首末两项之和(积),可采用把正着写和倒着写的两个式子相加(乘),就得到一个常数列的和(积),进而求出数列前n 项和(积).3.错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列对应项乘积组成,此时可把式子12n n S a a a =++⋅⋅⋅+a 两边同乘以公比q ,得到12n n qS a q a q a q =++⋅⋅⋅+a ,两式错位相减整理即可求出n S .4.裂项相消法:把数列的通项拆成两项之差,在求和时一些正负项相互抵消,于是前n 项和变成首尾若干少数项之和.5.分组转化法:把数列的每一项分成多个项或把数列的项重新组合,使其转化成等差数列或等比数列,然后由等差、等比数列求和公式求解.6.归纳法:先用不完全归纳法猜想出前n 项和,然后再用数学归纳法证明.考点三: 用数学模型解题的基本模式 1.模式2.常见的数列模型(1)等差数列模型:通过读题分析,由题意抽象出等差数列,利用等差数列有关知识解决问题.(2)等比数列模型:通过读题分析,由题意抽象出等比数列,利用等比数列有关知识解决问题.(3)递推公式模型:通过读题分析,由题意把所给条件用数列递推式表达出来,然后通过分析递推关系式求解.①含有n S 、n a 、()f n 的递推数列,可利用1(2)n n n a S S n -=-≥先消去n S 求通项或者先消去n a 求出n S 后再求通项或者构造方程组消去()f n 、n S 得到1n a -、n a 、1n a +(2)n ≥的递推关系后再求通项.②已知数列{}n a 满足()1n n a a f n +=+,首项为1a ,则()()()()11(1),1231(2).n a n a a f f f f n n =⎧⎪=⎨+++++-≥⎪⎩③已知数列{}n a 满足1(0,1,0)n n a pa r p p r +=+≠≠≠,首项为1a ,则1111n n r ra a p p p -⎛⎫=+- ⎪--⎝⎭. 【小题热身】明确考点,自省反思1.(辽宁卷)已知数列{}n a 满足1133,2,n n a a a n +=-=则na n的最小值为_____. 2.(江西卷)等比数列{}n a 中,182,4a a ==,函数128()()()()f x x x a x a x a =--⋅⋅⋅-,则'(0)f = .3.(天津卷)设{}n a 是等比数列,公比q =,n S 为{}n a 的前n 项和.记2117n nn n S S T a +-=,n +∈N ,设0n T 为数列{}n T 的最大项,则0n = .【考题点评】分析原因,醍醐灌顶例1.数列}{n a 中,S n 是前n 项和,若)1(31,111≥==+n S a a n n ,则n a = . 思路透析:由题意:)1(311≥=+n Sn a n (1), 推得131-=n n S a (2),相减得n n n a a a 311=-+ 即,341=+n n a a 又由.3131,1121===a a a所以数列{}n a 从第2项后是从31为首项,以34为公比的等比数列, 则21,1,14(), 2.33n n n a n -=⎧⎪=⎨⋅≥⎪⎩点评:已知数列{n a a }的第n 项n a a 与n S 的关系式时,可以利用公式⎩⎨⎧≥-==-2,1,11n S S n S a n n n 求其通项公式,但是求解过程中要注意数列首项的代入验证,即在递推得214(),233n n a n -=⋅≥a 时,其前提条件为2n ≥,若此等式也满足1a a =1,则表达式可统一为一个单独的解析式,否则可以写为分段的形式.例2.设平面内有n 条直线)3(≥n ,其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用)(n f 表示这n 条直线交点的个数,则)4(f =____________;当4>n 时,=)(n f .(用n 表示)思路透析:由图所示, 可得5)4(=f ,由2)3(=f ,5)4(=f ,9)5(=f ,14)6(=f ,可推得直线每增加1条,其与前面的每一条直线均增加一个交点,第n 条直线与前面的n-1条直线,则交点增 加了)1(-n 个,∴)1(432)(-++++=n n f (21)(2)2n n +--=1(1)(2)2n n =+-.点评:先通过几条特殊的直线相交一一数出交点的个数,再根据每增加一条直线交点个数的增加情况得出关于交点个数的一般关系式,求其通项即可.例 3.一系列椭圆都以一定直线l 为准线,所有椭圆的中心都在定点M ,且点M 到l 的距离为2. 若这一系列椭圆的离心率组成以43为首项,31为公比的等比数列,而椭圆相应的长半轴长依次为i a (i =1,2,…,n),则1a +2a +…+n a = .思路透析:由题意得准线:c a ca 2,222==即, (1) 又,4311=a c ⋅⋅⋅==121,413322a c a c 所以由121432a a ⋅=,得,231=a 21,4122222=⋅=a a a 得,,61,12123323=⋅=a a a 得┄综上知:321,,a a a ┄是以首项,231=a 公比为31的等比数列. 则有⎥⎦⎤⎢⎣⎡-=-⎥⎦⎤⎢⎣⎡-=+⋅⋅⋅+++n n n a a a a )31(149311)31(123321 点评:本题考查了椭圆的离心率生成数列,首先根据椭圆的基本量关系确定数列的各相应的几前项,再根据数列的关系求得其通项公式.例4.某国采用养老储备金制度.公民在就业的第一年就交纳养老储备金,数目为a 1,以后每年交纳的数目均比上一年增加d (d >0),因此,历年所交纳的储务金数目a 1,a 2,…是一个公差为d 的等差数列,与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利.这就是说,如果固定年利率为r (r >0),那么,在第n 年末,第一年所交纳的储备金就变为a 1(1+r )a -1,第二年所交纳的储备金就变为a 2(1+r )a -2,……,以T n 表示到第n 年末所累计的储备金总额.(Ⅰ)写出T n 与T n -1(n ≥2)的递推关系式;(Ⅱ)求证:T n =A n +B n ,其中{A n }是一个等比数列,{B n }是一个等差数列.思路透析:(Ⅰ)我们有1(1)(2)n n n T T r a n -=++≥. (Ⅱ)11T a =,对2n ≥反复使用上述关系式,得2121(1)(1)(1)n n n n n n T T r a T r a r a ---=++=++++=12121(1)(1)(1)n n n n a r a r a r a ---=+++++++ ,①在①式两端同乘1r +,得12121(1)(1)(1)(1)(1)n n n n n r T a r a r a r a r --+=++++++++②②-①,得121(1)[(1)(1)(1)]n n n n n rT a r d r r r a --=++++++++-1[(1)1](1)n n n dr r a r a r =+--++-. 即1122(1)nn a r d a r d d T r n r r r ++=+--.如果记12(1)nn a r d A r r +=+,12n a r d d B n r r+=--,则n n n T A B =+.其中{}n A 是以12(1)a r dr r ++为首项,以1(0)r r +>为公比的等比数列;{}n B 是以12a r d d r r +--为首项,dr-为公差的等差数列.点评:数列的递推应用问题往往是以一定的实际问题作为背景进行命题,该问题来源于生产实践之中,解题时先将实际生活模型用数学公式或等量关系式列出,然后递得出将数列的递推关系式.适当的时候也可以利用特殊化思想方法先求得前几项,可先应用不完全归纳法得出通项来,再进行进一步的论证.【即时测评】学以致用,小试牛刀1. 在直角坐标系中,O 是坐标原点,P 1(x 1,y 1)、P 2(x 2,y 2)是第一象限的两个点,若1,x 1,x 2,4依次成等差数列,而1,y 1,y 2,8依次成等比数列,则△OP 1P 2的面积是( )A. 1B. 2C. 3D. 42.根据市场调查结果,预测某种家用商品从年初开始的n 个月内累积的需求量S n (万件)近似地满足S n =90n(21n -n 2-5)(n =1,2,……,12).按此预测,在本年度内,需求量超过1.5万件的月份是( ) 月.A. 6B. 7C. 8D. 7或83.在各项均不为零的等差数列{}n a 中,若2110(2)n n n a a a n +--+=≥,则214n S n --=( )A. 2-B. 2C. 3D. -34.已知函数f (x )=x 2-5x +10.当x ∈(,1]n n + ( n =1,2,3,…)时,函数f (x )的值域为D n ,将D n 中整数的个数记为n a a ,则数列{n a a }的通项公式为n a a =( )A.24n a n =-aB. 42n a n =-aC.2, 1,24, 2.nn a n n =⎧=⎨-≥⎩a D.2, 1,1, 2,24, 3.n n a n n n =⎧⎪==⎨⎪-≥⎩a【课后作业】学练结合,融会贯通一、填空题:1. 一工厂生产了某种产品16800件,它们来自甲、乙、丙3条生产线.为检查这批产品的质量,决定采用分层抽样的方法进行抽样.已知从甲、乙、丙3条生产线抽取的个体数组成一个等差数列,则乙生产线生产了 件产品.2.气象学院用3.2万元买了一台天文观测仪,已知这台观测仪从启用的第一天起连续使用,第n 天的维修保养费为1049+n 元(n ∈N *),使用它直至报废最合算(所谓报废最合算是指使用的这台仪器的平均耗资最少)为止,一共使用了 天.3.某班在元旦游艺活动中进行了抽奖和表演节目,且表演节目的个数大于抽奖次数.活动开始时,先进行第一次抽奖,第一次抽奖后表演1个节目及余下节目的18;第二次抽奖后表演2个节目及余下的18;第三次抽奖后表演3个节目及余下的18;如此类推,且在最后一次抽奖和表演节目后,恰好所有节目表演完成,则这次活动进行的抽奖次数与,共表演的节目数分别为 .4. 若数列{}n a 的通项公式为a n =5(25 )2n-2-4(25 )n-1(n ∈N *),{a n }的最大项为第x 项,最小项为第y 项,则x y +等于 .5. 记n 项正项数列为n a a a ,,,21 , n π为其前n 积”.如果有2005项的正项数列200521,,,a a a 的“叠加积”为20062,则有2006项的数列200521,,,,2a a a 的“叠加积”为 .6.将正偶数排列如下表:2 4 6 8 10 12 14 16 18 20……其中第i 行第j 个数表示为a ij (i ∈N +,j ∈N +),例如a 32=10,若a ij =2006,则i =_______________,j =______________.二、解答题:7ΔOBC 的在个顶点坐标分别为(0,0)、(1,0)、(0,2), 设P 1为线段BC 的中点,P 2为线段CO 的中点,P 3为线段OP 1的中点,对于每一个正整数n, P n+3为线段P n P n+1的 中点,令P n 的坐标为(x n,y n ), .2121++++=n n n n y y y a (Ⅰ)求321,,a a a 及n a ; (Ⅱ)证明;,414*+∈-=N n y y nn (Ⅲ)若记,,444*+∈-=N n y y b n n n 证明{}n b 是等比数列.8.设数列{}n a 的前n 项和为n S ,且满足S n =2-a n n =1,2,3,··· (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列{}n b 满足11,b =且1 +=+n n n b b a ,求数列{}n b 的通项公式; (Ⅲ)设(3) =-n n c n b ,求数列{}n c 的前n 项和n T .第41课时 数列的综合应用参考答案【小题热身】 1. 2122. 1223. 4【即时测评】1. A2. D3. A4. D【课后作业】一、填空题:1. 56002. 3003. 7 494. 35. 20062 6. 45,13i j ==二、解答题:7.解析:(1)因为43,21,153421=====y y y y y ,所以2321===a a a ,又由题意可知213+-+=n n n y y y ,得到321121++++++=n n n n y y y a =221121++++++n n n n y y y y =,2121n n n n a y y y =++++ 所以{}n a 为常数列. 即.,21*∈==N n a a n (2)将等式22121=++++n n n y y y 两边除以2,得,124121=++++n n n y y y 又所以2214++++=n n n y y y , 即.414n n yy -=+(3)因为)41()41(44444341n n n n n y y y y b ---=-=+++-=)(41444n n y y --+=,41n b -又所以,041431≠-=-=y y b 所以{}n b 是公比为41-的等比数列.8.解析:(Ⅰ)1n = 时,11112a S a a +=+=, ∴11a =. ∵2n n S a =- 即2n n a S += , ∴112n n a S +++=, 两式相减:110n n n n a a S S ++-+-= 即 110n n n a a a ++-+= 故有 12n n a a +=, ∵a n ≠0∴112n n a a += ()n N *∈. ∴数列{}n a 为首项11a =,公比12的等比数列.11()2n n a -= ()n N *∈. (Ⅱ)∵ 1 (1,2,3)+=+=⋅⋅⋅n n n b b a n ∴111()2n n n b b -+-=,得211b b -=,3212b b -=,2431()2b b -=, … …211()2n n n b b ---= (n 2,3,)=⋅⋅⋅将这n -1个等式相加,得12321111()1111121()()()22()12222212-----=+++++==-- n n n n b b又 11,b =∴1132()2n n b -=- (1,2,3)=⋅⋅⋅n(Ⅲ) (3)n n c n b =-112()2n n -= .∴0221111112[()2()3()(1)()()]22222--=++++-+ n n n T n n ①而2311111112[()2()3()(1)()()]222222-=++++-+ n nn T n n ② ①-② 得:01211111112[()()()()]2()222222n nn T n -=++++-11()1244()1212nn n T n -=-⋅-81184()8(84)222n n n n n =--=-+ .。

2023年新高考数学一轮复习7-5 数列的综合应用(知识点讲解)含详解

2023年新高考数学一轮复习7-5 数列的综合应用(知识点讲解)含详解

专题7.5 数列的综合应用(知识点讲解)【知识框架】【核心素养】1.数列与传统数学文化、实际问题相结合,考查等差、等比数列的基本运算,凸显数学建模的核心素养. 2.数列与新定义问题相结合,考查转化、迁移能力,凸显数学抽象的核心素养.3.数列与函数、不等式、解析几何等相结合,考查学生综合分析解决问题的能力,凸显逻辑推理的核心素养.【知识点展示】(一)数列与函数数列与函数的综合问题主要有以下两类:(1)已知函数条件,解决数列问题,此类问题一般是利用函数的性质、图象研究数列问题;(2)已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形.(二)数列与不等式1.数列型不等式的证明常用到“放缩法”,一是在求和中将通项“放缩”为“可求和数列”;二是求和后再“放缩”.放缩法常见的放缩技巧有: (1)1k 2<1k 2-1=12⎝ ⎛⎭⎪⎫1k -1-1k +1.(2)1k -1k +1<1k 2<1k -1-1k . (3)2(n +1-n )<1n<2(n -n -1).2.数列中不等式恒成立的问题数列中有关项或前n 项和的恒成立问题,往往转化为数列的最值问题;求项或前n 项和的不等关系可以利用不等式的性质或基本不等式求解.(三)解答数列实际应用问题的步骤(1)确定模型类型:理解题意,看是哪类数列模型,一般有等差数列模型、等比数列模型、简单递推数列模型.基本特征如下:等差数列模型:均匀增加或者减少等比数列模型:指数增长或减少,常见的是增产率问题、存款复利问题简单递推数列模型:指数增长的同时又均匀减少.如年收入增长率为20%,每年年底要拿出a(常数)作为下年度的开销,即数列{}1 1.2n n n a a a a +满足=-(2)准确解决模型:解模就是根据数列的知识,求数列的通项、数列的和、解方程(组)或者不等式(组)等,在解模时要注意运算准确.(3)给出问题的回答:实际应用问题最后要把求解的数学结果化为对实际问题的答案,在解题中不要忽视了这点.【常考题型剖析】题型一:数列与函数的综合例1.(2021·河南·睢县高级中学高三阶段练习(理))已知数列{}n a 的首项11a =,函数()()41cos221n n f x x a x a +=+-+有唯一零点,则通项n a =( ) A .13n -B .12n -C .21n -D .32n -例2.(2023·全国·高三专题练习)设函数()12ln x f x x -=+,11a =,()*21N 1,23n n a f f n f f n n n n n -⎛⎫=+++⋅ ⎪⋅⋅+∈≥ ⎪⎝⎛⎫⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭⎝⎭⎭.则数列{}n a 的前n 项和n S =______. 例3.(2017·上海·高考真题)根据预测,某地第n *()n ∈N 个月共享单车的投放量和损失量分别为n a 和n b (单位:辆),其中4515,1310470,4n n n a n n ⎧+≤≤=⎨-+≥⎩,5n b n =+,第n 个月底的共享单车的保有量是前n 个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n 个月底的单车容纳量24(46)8800n S n =--+(单位:辆). 设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?【温馨提醒】解题时要注意数列与函数的内在联系,灵活运用函数的思想方法求解,在问题的求解过程中往往会遇到数列的求和、和的最值,利用函数性质或不等式性质求解较为常规. 题型二:数列与不等式的综合例4.(2021·浙江·高考真题)已知数列{}n a 的前n 项和为n S ,194a =-,且1439n n S S +=-.(1)求数列{}n a 的通项;(2)设数列{}n b 满足*3(4)0()n n b n a n N +-=∈,记{}n b 的前n 项和为n T ,若n n T b λ≤对任意N n *∈恒成立,求实数λ的取值范围.例5.(2021·天津·高考真题)已知{}n a 是公差为2的等差数列,其前8项和为64.{}n b 是公比大于0的等比数列,1324,48b b b =-=. (I )求{}n a 和{}n b 的通项公式;(II )记2*1,n n nc b b n N =+∈,(i )证明{}22nn c c -是等比数列;(ii )证明)*nk n N =∈ 例6.(2021·全国·高考真题(文))设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <. 【温馨提醒】数列与不等式的结合,除应熟练掌握数列的通项公式、求和公式,关于不等式证明、不等式恒成立问题的处理方法亦应灵活运用. 题型三:数列与实际应用问题例7.【多选题】(2022·全国·高三专题练习)参加工作5年的小郭,因工作需要向银行贷款A 万元购买一台小汽车,与银行约定:这A 万元银行贷款分10年还清,贷款的年利率为r ,每年还款数为X 万元,则( )A .()1011ArX r =+- B .小郭第3年还款的现值为()31Xr +万元C .小郭选择的还款方式为“等额本金还款法”D .小郭选择的还款方式为“等额本息还款法”例8.(2021·全国·高三专题练习)某集团公司有一下属企业A 从事一种高科技产品的生产.A 企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了40%,预计以后每年资金年增长率与第一年的相同.集团公司要求A 企业从第一年开始,每年年底上缴资金t 万元(800t <),并将剩余资金全部投入下一年生产.设第n 年年底A 企业上缴资金后的剩余资金为n a 万元.则( ) A .22800a t =- B .175n n a a t +=-C .1n n a a +>D .当400t =时,33800a >【总结提升】1.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.2.等比数列最值有关问题的解题思路:求解此类问题的常用思路是根据题目所给条件建立关于变量n 的函数关系进行求解.有时也注意基本不等式的应用.题型四:数列的“新定义”问题例9.(2022·全国·高三专题练习)对于数列{}n a ,定义11222-=+++n n n A a a a 为数列{}n a 的“加权和”,已知某数列{}n a 的“加权和”12n n A n +=⋅,记数列{}+n a pn 的前n 项和为n T ,若5≤n T T 对任意的N n *∈恒成立,则实数p 的取值范围为( ) A .127,53⎡⎤--⎢⎥⎣⎦B .167,73⎡⎤--⎢⎥⎣⎦C .512,25⎡⎤--⎢⎥⎣⎦D .169,74⎡⎤--⎢⎥⎣⎦例10.(2022·江西抚州·高二阶段练习(理))对大于1的自然数m 的三次幂可用奇数进行以下形式的“分裂”:3325⎧⎨⎩,3739,11⎧⎪⎨⎪⎩,3131541719⎧⎪⎪⎨⎪⎪⎩,…仿此,若3m 的“分裂数”中有一个是1111,则m 的值为( ) A .32 B .33 C .34 D .35例11.(2022·河南开封·高二期末(理))若数列{}n a 中不超过()f m 的项数恰为()*,m b n m ∈N ,则称数列{}m b 是数列{}n a 的生成数列,称相应的函数()f m 是数列{}n a 生成{}m b 的控制函数.已知2n n a =,()f m m =,记数列{}m b 的前m 项和为m S ,则63S =( ) A .258B .264C .642D .636例12.(2022·全国·高三专题练习)定义:对于任意一个有穷数列,第一次在其每相邻的两项间都插人这两项的和,得到的新数列称之为一阶和数列,如果在一阶和数列的基础上再在其相邻的两项间插入这两项的和称之为二阶和数列,以此类推可以得到n 阶和数列,如{1,5}的一阶和数列是{1,6,5},设它的n 阶和数列各项和为n S .(1)试求{1,5}的二阶和数列各项和2S 与三阶和数列各项和3S ,并猜想n S 的通项公式(无需证明); (2)若()()311log 3log 33n n n c S S +=--⋅-,求{}n c 的前n 项和n T ,并证明:1126n T -<≤-.【温馨提醒】立足于“转化”,将新定义问题转化成等差数列、等比数列问题求解. 题型五:数列与解析几何例12.(2021·浙江·高考真题)已知,R,0a b ab ∈>,函数()2R ()f x ax b x =+∈.若(),(),()f s t f s f s t -+成等比数列,则平面上点(),s t 的轨迹是( ) A .直线和圆B .直线和椭圆C .直线和双曲线D .直线和抛物线例13.(2017山东,理19)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2 (Ⅰ)求数列{x n }的通项公式;(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1, 1),P 2(x 2, 2)…P n+1(x n+1, n+1)得到折线P 1 P 2…P n+1,求由该折线与直线y=0,11n x x x x +==,所围成的区域的面积.题型六:数列与传统文化例14.(2022·云南师大附中模拟预测(理))《九章算术》是我国秦汉时期一部杰出的数学著作,书中第三章“衰分”有如下问题:“今有大夫、不更、簪裹、上造、公士,凡五人,共出百钱.欲令高爵出少,以次渐多,问各几何?”意思是:“有大夫、不更、簪裏、上造、公士(爵位依次变低)5个人共出100钱,按照爵位从高到低每人所出钱数成递增等差数列,这5个人各出多少钱?”在这个问题中,若不更出17钱,则公士出的钱数为( ) A .10B .14C .23D .26例15.(2022·山东青岛·一模)我国古代数学著作《九章算术》中有如下问题:“今有人持金出五关,前关二税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤.问本持金n T几何?”其意思为“今有人持金出五关,第1关收税金为持金的12,第2关收税金为剩余金的13,第3关收税金为剩余金的14,第4关收税金为剩余金的15,第5关收税金为剩余金的16,5关所收税金之和恰好重1斤.问原来持金多少?”.记这个人原来持金为a 斤,设()101,115,01x x f x x x +>⎧=⎨-<≤⎩,则()f a =( )A .5-B .7C .13D .26例16.(2017·全国·高考真题(理))我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( ) A .1盏 B .3盏 C .5盏 D .9盏【总结提升】理解题意,构造数列,应用数列模型解题.专题7.5 数列的综合应用(知识点讲解)【知识框架】【核心素养】1.数列与传统数学文化、实际问题相结合,考查等差、等比数列的基本运算,凸显数学建模的核心素养. 2.数列与新定义问题相结合,考查转化、迁移能力,凸显数学抽象的核心素养.3.数列与函数、不等式、解析几何等相结合,考查学生综合分析解决问题的能力,凸显逻辑推理的核心素养.【知识点展示】(一)数列与函数数列与函数的综合问题主要有以下两类:(1)已知函数条件,解决数列问题,此类问题一般是利用函数的性质、图象研究数列问题;(2)已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形.(二)数列与不等式1.数列型不等式的证明常用到“放缩法”,一是在求和中将通项“放缩”为“可求和数列”;二是求和后再“放缩”.放缩法常见的放缩技巧有: (1)1k 2<1k 2-1=12⎝ ⎛⎭⎪⎫1k -1-1k +1.(2)1k -1k +1<1k 2<1k -1-1k . (3)2(n +1-n )<1n<2(n -n -1).2.数列中不等式恒成立的问题数列中有关项或前n 项和的恒成立问题,往往转化为数列的最值问题;求项或前n 项和的不等关系可以利用不等式的性质或基本不等式求解.(三)解答数列实际应用问题的步骤(1)确定模型类型:理解题意,看是哪类数列模型,一般有等差数列模型、等比数列模型、简单递推数列模型.基本特征如下:等差数列模型:均匀增加或者减少等比数列模型:指数增长或减少,常见的是增产率问题、存款复利问题简单递推数列模型:指数增长的同时又均匀减少.如年收入增长率为20%,每年年底要拿出a(常数)作为下年度的开销,即数列{}1 1.2n n n a a a a +满足=-(2)准确解决模型:解模就是根据数列的知识,求数列的通项、数列的和、解方程(组)或者不等式(组)等,在解模时要注意运算准确.(3)给出问题的回答:实际应用问题最后要把求解的数学结果化为对实际问题的答案,在解题中不要忽视了这点.【常考题型剖析】题型一:数列与函数的综合例1.(2021·河南·睢县高级中学高三阶段练习(理))已知数列{}n a 的首项11a =,函数()()41cos221n n f x x a x a +=+-+有唯一零点,则通项n a =( ) A .13n - B .12n -C .21n -D .32n -【答案】C 【解析】 【分析】由奇偶性定义可判断出()f x 为偶函数,由此可确定唯一零点为0x =,从而得到递推关系式;利用递推关系式可证得数列{}1n a +为等比数列,由等比数列通项公式可推导得到n a . 【详解】()()()()()()4411cos 221cos221n n n n f x x a x a x a x a f x ++-=-+--+=+-+=,()f x ∴为偶函数,图象关于y 轴对称,()f x ∴的零点关于y 轴对称,又()f x 有唯一零点,()f x ∴的零点为0x =,即()()10210n n f a a +=-+=,121n n a a +∴=+,即()1121n n a a ++=+,又112a +=,∴数列{}1n a +是以2为首项,2为公比的等比数列,12n n a ∴+=,则21n n a =-.故选:C. 【点睛】关键点点睛:本题考查函数与数列的综合应用问题;解题关键是能够根据奇偶性的性质确定函数的唯一零点为0x =,从而结合零点确定数列的递推关系式,由递推关系式证得数列{}1n a +为等比数列. 例2.(2023·全国·高三专题练习)设函数()12ln x f x x -=+,11a =,()*21N 1,23n n a f f n f f n n n n n -⎛⎫=+++⋅ ⎪⋅⋅+∈≥ ⎪⎝⎛⎫⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭⎝⎭⎭.则数列{}n a 的前n 项和n S =______. 【答案】2n n 1-+ 【解析】 【分析】由题设11()()4n f f n n-+=,讨论n 的奇偶性求{}n a 的通项公式,再求n S . 【详解】由题设,111()()4ln(1)ln 41n f f n n n n -+=+-+=-, 所以()()**14121,2,N 221421,21,N 2n n f n n k k a n n n k k ⎧⎛⎫⎛⎫⨯-+=-=∈ ⎪ ⎪⎪⎪⎝⎭⎝⎭=⎨-⎪⨯=-=+∈⎪⎩,即2(1)n a n =-且n ≥ 2, 当1n =时,11S =,当2n ≥时,21242(1)1n S n n n =+++⋅⋅⋅+-=+-,所以21n S n n =-+,n *∈N故答案为:2n n 1-+.例3.(2017·上海·高考真题)根据预测,某地第n *()n ∈N 个月共享单车的投放量和损失量分别为n a 和n b (单位:辆),其中4515,1310470,4n n n a n n ⎧+≤≤=⎨-+≥⎩,5n b n =+,第n 个月底的共享单车的保有量是前n 个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n 个月底的单车容纳量24(46)8800n S n =--+(单位:辆). 设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量? 【答案】(1)935;(2)见解析. 【解析】 【详解】试题分析:(1)计算{}n a 和{}n b 的前4项和的差即可得出答案;(2)令n n a b ≥得出42n ≤,再计算第42个月底的保有量和容纳量即可得出结论. 试题分析:(1)()()1234123496530935a a a a b b b b +++-+++=-=(2)10470542n n n -+>+⇒≤,即第42个月底,保有量达到最大()()()()12341234420503864742965878222a a a ab b b b ⎡⎤+⨯+⨯+++⋅⋅⋅+-+++⋅⋅⋅+=+-=⎢⎥⎣⎦()2424424688008736S =--+=,∴此时保有量超过了容纳量.【温馨提醒】解题时要注意数列与函数的内在联系,灵活运用函数的思想方法求解,在问题的求解过程中往往会遇到数列的求和、和的最值,利用函数性质或不等式性质求解较为常规. 题型二:数列与不等式的综合例4.(2021·浙江·高考真题)已知数列{}n a 的前n 项和为n S ,194a =-,且1439n n S S +=-.(1)求数列{}n a 的通项;(2)设数列{}n b 满足*3(4)0()n n b n a n N +-=∈,记{}n b 的前n 项和为n T ,若n n T b λ≤对任意N n *∈恒成立,求实数λ的取值范围.【答案】(1)33()4nn a =-⋅;(2)31λ-≤≤.【解析】【分析】(1)由1439n n S S +=-,结合n S 与n a 的关系,分1,2n n =≥讨论,得到数列{}n a 为等比数列,即可得出结论;(2)由3(4)0n n b n a +-=结合(1)的结论,利用错位相减法求出n T ,n n T b λ≤对任意N n *∈恒成立,分类讨论分离参数λ,转化为λ与关于n 的函数的范围关系,即可求解. 【详解】(1)当1n =时,1214()39a a a +=-,229272749,4416a a =-=-∴=-, 当2n ≥时,由1439n n S S +=-①, 得1439n n S S -=-②,①-②得143n n a a += 122730,0,164n n n a a a a +=-≠∴≠∴=, 又213,{}4n a a a =∴是首项为94-,公比为34的等比数列, 1933()3()444n n n a -∴=-⋅=-⋅;(2)由3(4)0n n b n a +-=,得43(4)()34n n n n b a n -=-=-, 所以234333333210(4)44444nn T n ⎛⎫⎛⎫⎛⎫⎛⎫=-⨯-⨯-⨯⨯++-⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎝+⎭⎭,2413333333321(5)(4)444444nn n T n n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯-⨯-⨯++-⋅+-⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,两式相减得234113333333(4)4444444nn n T n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯++++--⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1193116493(4)34414n n n -+⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=-+-- ⎪⎝⎭-111993334(4)44444n n n n n +++⎛⎫⎛⎫⎛⎫=-+---⋅=-⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以134()4n n T n +=-⋅,由n n T b λ≤得1334()(4)()44n nn n λ+-⋅≤-⋅恒成立,即(4)30n n λ-+≥恒成立,4n =时不等式恒成立;4n <时,312344n n n λ≤-=----,得1λ≤; 4n >时,312344n n n λ≥-=----,得3λ≥-; 所以31λ-≤≤.【点睛】易错点点睛:(1)已知n S 求n a 不要忽略1n =情况;(2)恒成立分离参数时,要注意变量的正负零讨论,如(2)中(4)30n n λ-+≥恒成立,要对40,40,40n n n -=->-<讨论,还要注意40n -<时,分离参数不等式要变号.例5.(2021·天津·高考真题)已知{}n a 是公差为2的等差数列,其前8项和为64.{}n b 是公比大于0的等比数列,1324,48b b b =-=. (I )求{}n a 和{}n b 的通项公式;(II )记2*1,n n nc b b n N =+∈,(i )证明{}22nn c c -是等比数列;(ii )证明)*nk n N =∈ 【答案】(I )21,n a n n N *=-∈,4,n n N b n *=∈;(II )(i )证明见解析;(ii )证明见解析.【解析】 【分析】(I )由等差数列的求和公式运算可得{}n a 的通项,由等比数列的通项公式运算可得{}n b 的通项公式;(II )(i )运算可得2224nn n c c =⋅-,结合等比数列的定义即可得证;(ii )放缩得21222422n n n n n a n c a c +<-⋅,进而可得112n n k k k-==,结合错位相减法即可得证. 【详解】(I )因为{}n a 是公差为2的等差数列,其前8项和为64. 所以12818782642a a a a ⨯++⋅⋅⋅+=+⨯=,所以11a =, 所以()12121,n n n n N a a *=+-=-∈;设等比数列{}n b 的公比为(),0q q >,所以()221321484q b b b q q b q ==-=--,解得4q =(负值舍去), 所以114,n n n b q n N b -*==∈;(II )(i )由题意,221441n n nn n b c b =++=,所以22224211442444n n nn nnn c c ⎛⎫⎛⎫=+-+=⋅ ⎪ ⎪⎝⎭⎝⎭-,所以220nn c c ≠-,且212222124424n n n n nn c c c c +++⋅==⋅--, 所以数列{}22nn c c -是等比数列; (ii )由题意知,()()22122222121414242222n n n n n n n n n a n n c c a +-+-==<-⋅⋅⋅,12n n-,所以112nn k k k k-==, 设10121112322222nn k n k k nT --===+++⋅⋅⋅+∑, 则123112322222n n n T =+++⋅⋅⋅+, 两式相减得21111111122121222222212nn n n nn n n n T -⎛⎫⋅- ⎪+⎝⎭=+++⋅⋅⋅+-=-=--, 所以1242n n n T -+=-,所以1112422nn k n k k n --==+⎫-<⎪⎭ 例6.(2021·全国·高考真题(文))设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <. 【答案】(1)11()3n n a -=,3n nn b =;(2)证明见解析. 【解析】 【分析】(1)利用等差数列的性质及1a 得到29610q q -+=,解方程即可;(2)利用公式法、错位相减法分别求出,n n S T ,再作差比较即可. 【详解】(1)因为{}n a 是首项为1的等比数列且1a ,23a ,39a 成等差数列,所以21369a a a =+,所以211169a q a a q =+,即29610q q -+=,解得13q =,所以11()3n n a -=,所以33n n n na nb ==. (2)[方法一]:作差后利用错位相减法求和211213333n n n n nT --=++++,012111111223333-⎛⎫=++++ ⎪⎝⎭n n S , 230121123111112333323333n n n n S n T -⎛⎫⎛⎫-=++++-++++= ⎪ ⎪⎝⎭⎝⎭012111012222333---++++111233---+n nn n .设0121111101212222Γ3333------=++++n n n , ⑧ 则1231111012112222Γ33333-----=++++n nn . ⑨由⑧-⑨得1121113312111113322Γ13233332313--⎛⎫--- ⎪⎛⎫⎝⎭=-++++-=-+- ⎪⎝⎭-n n n n n n n . 所以211312Γ432323----=--=-⨯⨯⨯n n n n n n . 因此10232323--=-=-<⨯⨯n n n n nS n n nT . 故2nn S T <. [方法二]【最优解】:公式法和错位相减求和法证明:由(1)可得11(1)313(1)12313n n n S ⨯-==--, 211213333n n nn n T --=++++,①231112133333n n n n nT +-=++++,② ①-②得23121111333333n n n n T +=++++- 1111(1)1133(1)1323313n n n n n n ++-=-=---,所以31(1)4323n n nnT =--⋅,所以2n n S T -=3131(1)(1)043234323n n n nn n ----=-<⋅⋅,所以2nn S T <. [方法三]:构造裂项法由(Ⅰ)知13⎛⎫= ⎪⎝⎭n n b n ,令1()3αβ⎛⎫=+ ⎪⎝⎭n n c n ,且1+=-n n n b c c ,即1111()[(1)]333αβαβ+⎛⎫⎛⎫⎛⎫=+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭n n n n n n ,通过等式左右两边系数比对易得33,24αβ==,所以331243nn c n ⎛⎫⎛⎫=+⋅ ⎪ ⎪⎝⎭⎝⎭.则12113314423nn n n n T b b b c c +⎛⎫⎛⎫=+++=-=-+ ⎪⎪⎝⎭⎝⎭,下同方法二.[方法四]:导函数法 设()231()1-=++++=-n nx x f x x x x x x,由于()()()()()()1221'111'11(1)'1(1)1n n n n nx x x x x x x x nx n x x x x +⎡⎤⎡⎤⎡⎤----⨯--+-+⎣⎦⎣⎦⎢⎥==---⎢⎥⎣⎦, 则12121(1)()123(1)+-+-+=++++='-n nn nx n x f x x x nxx .又1111333-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭n n n b n n ,所以2112311111233333n n n T b b b b n -⎡⎤⎛⎫⎛⎫=++++=+⨯+⨯++⋅=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦12111(1)11133333113n nn n f +⎛⎫⎛⎫+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭⋅=⨯ ⎪⎝⎭⎛⎫- ⎪⎝⎭'13113311(1)4334423n nnn n n +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+-+=-+⎢⎥ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,下同方法二. 【整体点评】本题主要考查数列的求和,涉及到等差数列的性质,错位相减法求数列的和,考查学生的数学运算能力,是一道中档题,其中证明不等式时采用作差法,或者作商法要根据式子得结构类型灵活选择,关键是要看如何消项化简的更为简洁.(2)的方法一直接作差后利用错位相减法求其部分和,进而证得结论;方法二根据数列的不同特点,分别利用公式法和错位相减法求得,n n S T ,然后证得结论,为最优解;方法三采用构造数列裂项求和的方法,关键是构造1()3αβ⎛⎫=+ ⎪⎝⎭nn c n ,使1+=-n n n b c c ,求得n T 的表达式,这是错位相减法的一种替代方法,方法四利用导数方法求和,也是代替错位相减求和法的一种方法. 【温馨提醒】数列与不等式的结合,除应熟练掌握数列的通项公式、求和公式,关于不等式证明、不等式恒成立问题的处理方法亦应灵活运用. 题型三:数列与实际应用问题例7.【多选题】(2022·全国·高三专题练习)参加工作5年的小郭,因工作需要向银行贷款A 万元购买一台小汽车,与银行约定:这A 万元银行贷款分10年还清,贷款的年利率为r ,每年还款数为X 万元,则( ) A .()1011ArX r =+- B .小郭第3年还款的现值为()31Xr +万元C .小郭选择的还款方式为“等额本金还款法”D .小郭选择的还款方式为“等额本息还款法” 【答案】BD 【解析】 【分析】因为小郭每年还款钱数相等,所以小郭选择为“等额本息还款法”,所以利用等比数列前n 项和公式求出X ,再设小郭第3年还款的现值为y ,根据复利规则求出y . 【详解】解:小郭与银行约定,每年还一次欠款,并且每年还款的钱数都相等,∴小郭靖选择的还款方式为“等额本息还款法”,故D 正确,C 错误, 设每年应还X 元,还款10次,则该人10年还款的现金与利息和为29[1(1)(1)(1)]X r r r +++++⋯++, 银行贷款A 元10年后的本利和为10(1)A r +.2910[1(1)(1)(1)](1)X r r r A r ∴+++++⋯++=+, ∴10101[1(1)](1)1(1)r X A r r ⨯-+⋅=+-+, 即1010(1)(1)1Ar r X r +=+-,故A 错误.设小郭第三年还款的现值为y ,则3(1)y r X ⋅+=,所以()31Xy r =+,故B 正确;例8.(2021·全国·高三专题练习)某集团公司有一下属企业A 从事一种高科技产品的生产.A 企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了40%,预计以后每年资金年增长率与第一年的相同.集团公司要求A 企业从第一年开始,每年年底上缴资金t 万元(800t <),并将剩余资金全部投入下一年生产.设第n 年年底A 企业上缴资金后的剩余资金为n a 万元.则( ) A .22800a t =- B .175n n a a t +=-C .1n n a a +>D .当400t =时,33800a >【答案】BC 【解析】先求得第一年年底剩余资金1a ,第二年底剩余资金2a ,即可判断A 的正误;分析总结,可得1n a +与n a 的关系,即可判断B 的正误;根据题意,求得n a 的表达式,利用作差法即可比较1n a +与n a 的大小,即可判断C 的正误,代入400t =,即可求得3a ,即可判断D 的正误,即可得答案. 【详解】第一年年底剩余资金12000(140%)2800a t t =⨯+-=-,第二年底剩余资金211712(140%)392055a a t a t t =⨯+-=-=-,故A 错误;第三年底剩余资金3227109(140%)5488525t a a t a t =⨯+-=-=-,⋅⋅⋅ 所以第n +1年年底剩余资金为17(140%)5n n n a a t a t +=⨯+-=-,故B 正确;因为212277777()()55555n n n n a a t a t t a t t ---=-=--=--12217777()[1()()]5555n n a t --=-+++⋅⋅⋅+117[1()]75()(2800)7515n n t t ---=---=11757()(2800)[()1]525n n t t -----=1775()(2800)522n t t --+,所以111722775277[()(2800)]()(2800)555522552n n n n n n n t t t a a a t a a t t --+-=--=-=-+-=-, 因为800t <,所以7280002t->, 所以11277()(2800)0552n n n ta a -+-=->,即1n n a a +>,故C 正确;当400t =时,310910940054885488374438002525t a ⨯=-=-=<,故D 错误;【总结提升】1.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.2.等比数列最值有关问题的解题思路:求解此类问题的常用思路是根据题目所给条件建立关于变量n 的函数关系进行求解.有时也注意基本不等式的应用.题型四:数列的“新定义”问题例9.(2022·全国·高三专题练习)对于数列{}n a ,定义11222-=+++n n n A a a a 为数列{}n a 的“加权和”,已知某数列{}n a 的“加权和”12n n A n +=⋅,记数列{}+n a pn 的前n 项和为n T ,若5≤n T T 对任意的N n *∈恒成立,则实数p 的取值范围为( ) A .127,53⎡⎤--⎢⎥⎣⎦B .167,73⎡⎤--⎢⎥⎣⎦C .512,25⎡⎤--⎢⎥⎣⎦D .169,74⎡⎤--⎢⎥⎣⎦【答案】A 【解析】 【分析】根据n A 与n a 的关系求出n a ,再根据等差数列的求和公式求出n T ,将5≤n T T 化为216(5)06+⎛⎫-+≤ ⎪+⎝⎭n n p n 对任意的n *∈N 恒成立,分类讨论n 可求出结果. 【详解】 由1112222n n n n A a a a n -+=+++=⋅,∴2n ≥时,212122(1)2n n n a a a n --+++=-⋅,∴1122(1)2-+⋅=⋅--⋅n n n n a n n ,∴22n a n =+,1n =时,14a =也成立,∴22n a n =+,∴数列{}+n a pn 的前n 项和为:12(12)n n T a a a p n =+++++++2(422)(1)(1)3222++++=+⋅=++⋅n n n n n n p n n p ,∵5≤n T T 对任意的n *∈N 恒成立,∴225(1)56353522+⨯++⋅≤=+⨯+⨯n n n n p T p , 即225335(1)5(51)022p pn n n n -+-⨯++-⨯⨯+≤, 即22225335(5)(5)022p p n n n n -+-⨯+-+-≤,即5(5)(53)0222pn p p n n -+++++≤, 即(6)(5)(8)02p n n n +-++≤, 即216(5)06+⎛⎫-+≤ ⎪+⎝⎭n n p n 对任意的n *∈N 恒成立,当14n ≤≤时,2164266+-≤=+++n p n n 对任意的n *∈N 恒成立, 因为4412226465n +≥+=++,∴125-≤p ,所以125p ≥-,当5n =时,216(5)06n n p n +⎛⎫-+= ⎪+⎝⎭恒成立,R p ∈,当6n ≥时,2164266+-≥=+++n p n n 对任意的n *∈N 恒成立, 因为447226663n +≤+=++,∴73-≥p ,所以73p ≤-,综上可得:实数p 的取值范围为127,53⎡⎤--⎢⎥⎣⎦.故选:A .例10.(2022·江西抚州·高二阶段练习(理))对大于1的自然数m 的三次幂可用奇数进行以下形式的“分裂”:3325⎧⎨⎩,3739,11⎧⎪⎨⎪⎩,3131541719⎧⎪⎪⎨⎪⎪⎩,…仿此,若3m 的“分裂数”中有一个是1111,则m 的值为( ) A .32B .33C .34D .35【答案】B 【解析】 【分析】根据分裂数的定义,求出从32到()31m -、从32到3m 分裂数个数,再根据所有分裂数成等差数列求出1111对应的位置,进而根据不等式求m 值. 【详解】由题意,对于332,...,m ,它们依次对应2、3、…、m 个分裂数,则从32到()31m -各分裂数个数的和为(2)(1)2m m -+,从32到3m 各分裂数个数和为(1)(2)2m m -+,又332,...,m 的分裂数{}n a ,构成首项为3,公差为2的等差数列,所以21n a n =+,令211111n +=,可得555n =,所以(2)(1)(1)(2)55522m m m m -+-+<≤,当32m =时,(1)(2)5275552m m -+=<不符合; 当33m =时,(1)(2)5605552m m -+=>,(2)(1)5275552m m -+=<符合; 当34m =时,(2)(1)5605552m m -+=>不符合; 综上,33m =. 故选:B例11.(2022·河南开封·高二期末(理))若数列{}n a 中不超过()f m 的项数恰为()*,m b n m ∈N ,则称数列{}m b 是数列{}n a 的生成数列,称相应的函数()f m 是数列{}n a 生成{}m b 的控制函数.已知2n n a =,()f m m =,记数列{}m b 的前m 项和为m S ,则63S =( ) A .258 B .264 C .642 D .636【答案】A 【解析】 【分析】分析可知对任意的N k *∈,当)12,2k k m +⎡∈⎣,满足2nn a m =≤的项数为k ,即m b k =,满足条件的m 的个数为1222k k k +-=,进而可求得63S 的值.【详解】因为562632<<,由题中定义,对任意的N k *∈,当)12,2k k m +⎡∈⎣, 满足2nn a m =≤的项数为k ,即m b k =,满足条件的m 的个数为1222k k k +-=,当1m =时,0m b =,当)122,2m ⎡∈⎣时,1m b =,此时满足条件的m 的个数为12,当)232,2m ⎡∈⎣时,2m b =,此时满足条件的m 的个数为22,当)562,2m ⎡∈⎣时,5m b =,此时满足条件的m 的个数为52, 因此,01234563021222324252258S =⨯+⨯+⨯+⨯+⨯+⨯=.故选:A.例12.(2022·全国·高三专题练习)定义:对于任意一个有穷数列,第一次在其每相邻的两项间都插人这两项的和,得到的新数列称之为一阶和数列,如果在一阶和数列的基础上再在其相邻的两项间插入这两项的和称之为二阶和数列,以此类推可以得到n 阶和数列,如{1,5}的一阶和数列是{1,6,5},设它的n 阶和数列各项和为n S .(1)试求{1,5}的二阶和数列各项和2S 与三阶和数列各项和3S ,并猜想n S 的通项公式(无需证明);(2)若()()311log 3log 33n n n c S S +=--⋅-,求{}n c 的前n 项和n T ,并证明:1126n T -<≤-. 【答案】(1)21263=+⨯S ,()12312633=+⨯+S ,133n n S +=+ (2)1122=-+n T n ,证明见解析 【解析】【分析】(1)根据定义求出{1,5}的二阶和数列各项和2S 与三阶和数列各项和3S ,由此归纳出n S ,(2)由(1)化简n c ,再由裂项相消法求其前n 项和,并完成证明.(1)由题意得,116512S =++=,217611512181263S =++++=+=+⨯,()2123187136171116512185412636312633S =++++++++=++=+⨯+⨯=+⨯+,41981572013196231728112716215S =++++++++++++++++121854162=+++2312636363=+⨯+⨯+⨯()123126333=+⨯++, …()12311263333(1)n n S n -=+⨯++++≥,由等比数列的前n 项和公式可得,()113131263313n n n S -+-=+⨯=+-, 所以{}n S 的通项公式133n n S +=+.(2)由于133n n S +=+,所以()()33111111log 3log 31221n n n c S S n n n n +⎛⎫=-=--=- ⎪-⋅-++++⎝⎭, 则1111111132432122n T n n n =-+-++-=-+++, 因为n *∈N ,所以102n >+,所以111222n ->-+, 又n T 随n 的增大而减小,所以当1n =时,n T 取得最大值16-,故1126n T -<≤-. 【温馨提醒】立足于“转化”,将新定义问题转化成等差数列、等比数列问题求解.题型五:数列与解析几何例12.(2021·浙江·高考真题)已知,R,0a b ab ∈>,函数()2R ()f x ax b x =+∈.若(),(),()f s t f s f s t -+成等比数列,则平面上点(),s t 的轨迹是( )A .直线和圆B .直线和椭圆C .直线和双曲线D .直线和抛物线【答案】C 【解析】【分析】首先利用等比数列得到等式,然后对所得的等式进行恒等变形即可确定其轨迹方程.【详解】由题意得2()()[()]f s t f s t f s -+=,即()2222()()a s t b a s t b as b ⎡⎤⎡⎤-+++=+⎣⎦⎣⎦, 对其进行整理变形:()()()22222222asat ast b as at ast b as b +-++++=+, ()()222222(2)0as at b ast as b++--+=, ()2222222240as at b at a s t ++-=, 222242220a s t a t abt -++=,所以22220as at b -++=或0=t ,其中2212s t b b a a-=为双曲线,0=t 为直线.故选:C.例13.(2017山东,理19)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2(Ⅰ)求数列{x n }的通项公式;(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1, 1),P 2(x 2, 2)…P n+1(x n+1, n+1)得到折线P 1 P 2…P n+1,求由该折线与直线y=0,11n x x x x +==,所围成的区域的面积.【答案】(I)(II )(II )过……向轴作垂线,垂足分别为……, 由(I)得记梯形的面积为.由题意, 所以 ……+n T 12.n n x -=(21)21.2n n n T -⨯+=123,,,P P P 1n P +x 123,,,Q Q Q 1n Q +111222.n n n n n x x --+-=-=11n n n n P P Q Q ++n b 12(1)2(21)22n n n n n b n --++=⨯=+⨯123n T b b b =+++n b=……+ ①又……+ ②①-②得= 所以题型六:数列与传统文化 例14.(2022·云南师大附中模拟预测(理))《九章算术》是我国秦汉时期一部杰出的数学著作,书中第三章“衰分”有如下问题:“今有大夫、不更、簪裹、上造、公士,凡五人,共出百钱.欲令高爵出少,以次渐多,问各几何”意思是:“有大夫、不更、簪裏、上造、公士(爵位依次变低)5个人共出100钱,按照爵位从高到低每人所出钱数成递增等差数列,这5个人各出多少钱?”在这个问题中,若不更出17钱,则公士出的钱数为( )A .10B .14C .23D .26【答案】D【解析】【分析】设大夫、不更、簪裹、上造、公士所出的钱数依次构成等差数列{}n a ,根据217a =,前5项和为100求解.【详解】解:设大夫、不更、簪裹、上造、公士所出的钱数依次排成一列,构成数列{}n a .由题意可知,等差数列{}n a 中217a =,前5项和为100,设公差为(0)d d >,前n 项和为n S ,则535100S a ==,解得320a =,所以323d a a , 所以公士出的钱数为532202326a a d =+=+⨯=,故选:D .例15.(2022·山东青岛·一模)我国古代数学著作《九章算术》中有如下问题:“今有人持金出五关,前关二税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤.问本持金101325272-⨯+⨯+⨯+32(21)2(21)2n n n n ---⨯++⨯0122325272n T =⨯+⨯+⨯+21(21)2(21)2n n n n ---⨯++⨯121132(22......2)(21)2n n n T n ----=⨯++++-+⨯1132(12)(21)2.212n n n ---+-+⨯-(21)21.2n n n T -⨯+=几何?”其意思为“今有人持金出五关,第1关收税金为持金的12,第2关收税金为剩余金的13,第3关收税金为剩余金的14,第4关收税金为剩余金的15,第5关收税金为剩余金的16,5关所收税金之和恰好重1斤.问原来持金多少?”.记这个人原来持金为a 斤,设()101,115,01x x f x x x +>⎧=⎨-<≤⎩,则()f a =( ) A .5-B .7C .13D .26【答案】C 【解析】【分析】 根据题意求得每次收的税金,结合题意得到111111223344556a a a a a ++++=⨯⨯⨯⨯,求得a 的值,代入函数的解析式,即可求解.【详解】由题意知:这个人原来持金为a 斤,第1关收税金为:12a 斤;第2关收税金为111(1)3223a a ⋅-⋅=⋅⨯斤; 第3关收税金为1111(1)42634a a ⋅--⋅=⋅⨯斤, 以此类推可得的,第4关收税金为145a ⋅⨯斤,第5关收税金为156a ⋅⨯斤, 所以111111223344556a a a a a ++++=⨯⨯⨯⨯, 即1111111111(1)(1)12233445566a a -+-+-+-+-⋅=-⋅=,解得65a =, 又由()101,115,01x x f x x x +>⎧=⎨-<≤⎩,所以66()1011355f =⨯+=. 故选:C.例16.(2017·全国·高考真题(理))我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏【答案】B【解析】【详解】。

高三数学一轮总结复习目录

高三数学一轮总结复习目录

高三数学一轮总结复习目录理科数学 -模拟试题分类目录1第一章会合与常用逻辑用语1.1 会合的观点与运算专题 1 会合的含义与表示、会合间的基本关系专题 2 会合的基本运算专题 3 与会合有关的新观点问题1.2 命题及其关系、充要条件专题 1 四种命题及其关系、命题真假的判断专题 2 充足条件和必需条件专题 3 充足、必需条件的应用与研究(利用关系或条件求解参数范围问题)1.3 简单的逻辑联络词、全称量词与存在量词专题 1 含有简单逻辑联络词的命题的真假专题 2 全称命题、特称命题的真假判断专题 3 含有一个量词的命题的否认专题 4 利用逻辑联络词求参数范围第二章函数2.1 函数及其表示专题 1 函数的定义域专题 2 函数的值域专题 3 函数的分析式专题 4 分段函数2.2 函数的单一性与最值专题 1 确立函数的单一性(或单一区间)专题 2 函数的最值专题 3 单一性的应用2.3 函数的奇偶性与周期性专题 1 奇偶性的判断专题 2 奇偶性的应用专题 3 周期性及其应用2.4 指数与指数函数专题 1 指数幂的运算专题 2 指数函数的图象及应用专题 3 指数函数的性质及应用2.5 对数与对数函数专题 1 对数的运算专题 2 对数函数的图象及应用专题 3 对数函数的性质及应用2.6 幂函数与二次函数专题 1 幂函数的图象与性质专题 2 二次函数的图象与性质2.7 函数的图像专题 1 函数图象的辨别专题 2 函数图象的变换专题 3 函数图象的应用2.8 函数与方程专题 1 函数零点所在区间的判断专题 2 函数零点、方程根的个数专题 3 函数零点的综合应用2.9 函数的应用专题 1 一次函数与二次函数模型专题 2 分段函数模型2专题 3 指数型、对数型函数模型第三章导数及其应用3.1 导数的观点及运算专题 1 导数的观点与几何意义专题 2 导数的运算3.2 导数与函数的单一性、极值、最值专题 1 导数与函数的单一性专题 2 导数与函数的极值专题 3 导数与函数的最值3.3 导数的综合应用专题 1 利用导数解决生活中的优化问题专题 2 利用导数研究函数的零点或方程的根专题 3 利用导数解决不等式的有关问题3.4 定积分与微积分基本定理专题 1 定积分的计算专题 2 利用定积分求平面图形的面积专题 4 定积分在物理中的应用第四章三角函数、解三角形4.1 三角函数的观点、同角三角函数的基本关系及引诱公式专题 1 三角函数的观点专题 2 同角三角函数的基本关系专题 3 引诱公式4.2 三角函数的图像与性质专题 1 三角函数的定义域、值域、最值专题 2 三角函数的单一性专题 3 三角函数的奇偶性、周期性和对称性4.3 函数 y = A sin(wx +j ) 的图像及应用专题 1 三角函数的图象与变换专题 2 函数 y=Asin( ωx+φ ) 图象及性质的应用4.4 两角和与差的正弦、余弦与正切公式专题 1 非特别角的三角函数式的化简、求值专题 2 含条件的求值、求角问题专题 3 两角和与差公式的应用4.5 三角恒等变换专题 1 三角函数式的化简、求值专题 2 给角求值与给值求角专题 3 三角变换的综合问题4.6 解三角形专题 1 利用正弦定理、余弦定理解三角形专题 2 判断三角形的形状专题 3 丈量距离、高度及角度问题专题 4 与平面向量、不等式等综合的三角形问题第五章平面向量5.1 平面向量的观点及线性运算专题 1 平面向量的线性运算及几何意义专题 2 向量共线定理及应用专题 3 平面向量基本定理的应用5.2 平面向量基本定理及向量的坐标表示专题 1 平面向量基本定理的应用3专题 2 平面向量的坐标运算专题 3 平面向量共线的坐标表示5.3 平面向量的数目积专题 1 平面向量数目积的运算专题 2 平面向量数目积的性质专题 3 平面向量数目积的应用5.4 平面向量的应用专题 1 平面向量在几何中的应用专题 2 平面向量在物理中的应用专题 3 平面向量在三角函数中的应用专题 4 平面向量在分析几何中的应用第六章数列6.1 数列的观点与表示专题 1 数列的观点专题 2 数列的通项公式6.2 等差数列及其前 n 项和专题 1 等差数列的观点与运算专题 2 等差数列的性质专题 3 等差数列前 n 项和公式与最值6.3 等比数列及其前 n 项和专题 1 等比数列的观点与运算专题 2 等比数列的性质专题 3 等比数列前 n 项和公式6.4 数列乞降专题 1 分组乞降与并项乞降专题 2 错位相减乞降专题 3 裂项相消乞降6.5 数列的综合应用专题 1 数列与不等式相联合问题专题 2 数列与函数相联合问题专题 3 数列中的研究性问题第七章不等式推理与证明7.1 不等关系与一元二次不等式专题 1 不等式的性质及应用专题 2 一元二次不等式的解法专题 3 一元二次不等式恒建立问题7.2 二元一次不等式(组)与简单的线性规划问题专题 1 二元一次不等式(组)表示的平面地区问题专题 2 与目标函数有关的最值问题专题 3 线性规划的实质应用7.3 基本不等式及其应用专题 1 利用基本不等式求最值专题 2 利用基本不等式证明不等式专题 3 基本不等式的实质应用7.4 合情推理与演绎推理专题 1 概括推理专题 2 类比推理专题 3 演绎推理7.5 直接证明与间接证明专题 1 综合法4专题 2 剖析法专题 3 反证法7.6 数学概括法专题 1 用数学概括法证明等式专题 2 用数学概括法证明不等式专题 3 概括-猜想-证明第八章立体几何8.1 空间几何体的构造及其三视图和直观图专题 1 空间几何体的构造专题 2 三视图与直观图8.2 空间几何体的表面积与体积专题 1 空间几何体的表面积专题 2 空间几何体的体积专题 3 组合体的“接”“切”综合问题8.3 空间点、直线、平面之间的地点关系专题 1 平面的基天性质及应用专题 2 空间两条直线的地点关系专题 3 异面直线所成的角8.4 直线、平面平行的判断与性质专题 1 线面平行、面面平行基本问题专题 2 直线与平面平行的判断与性质专题 3 平面与平面平行的判断与性质8.5 直线、平面垂直的判断与性质专题 1 垂直关系的基本问题专题 2 直线与平面垂直的判断与性质专题 3 平面与平面垂直的判断与性质专题 4 空间中的距离问题专题 5 平行与垂直的综合问题(折叠、研究类)8.6 空间向量及其运算专题 1 空间向量的线性运算专题 2 共线定理、共面定理的应用专题 3 空间向量的数目积及其应用8.7 空间几何中的向量方法专题 1 利用空间向量证明平行、垂直专题 2 利用空间向量解决研究性问题专题 3 利用空间向量求空间角第九章分析几何9.1 直线的倾斜角、斜率与直线的方程专题 1 直线的倾斜角与斜率专题 2 直线的方程9.2 点与直线、两条直线的地点关系专题 1 两条直线的平行与垂直专题 2 直线的交点问题专题 3 距离公式专题 4 对称问题9.3 圆的方程专题 1 求圆的方程专题 2 与圆有关的轨迹问题专题 3 与圆有关的最值问题59.4 直线与圆、圆与圆的地点关系专题 1 直线与圆的地点关系专题 2 圆与圆的地点关系专题 3 圆的切线与弦长问题专题 4 空间直角坐标系9.5 椭圆专题 1 椭圆的定义及标准方程专题 2 椭圆的几何性质专题 3 直线与椭圆的地点关系9.6 双曲线专题 1 双曲线的定义与标准方程专题 2 双曲线的几何性质9.7 抛物线专题 1 抛物线的定义与标准方程专题 2 抛物线的几何性质专题 3 直线与抛物线的地点关系9.8 直线与圆锥曲线专题 1 轨迹与轨迹方程专题 2 圆锥曲线中的范围、最值问题专题 3 圆锥曲线中的定值、定点问题专题 4 圆锥曲线中的存在、研究性问题第十章统计与统计事例10.1 随机抽样专题 1 简单随机抽样专题 2 系统抽样专题 3 分层抽样10.2 用样本预计整体专题 1 频次散布直方图专题 2 茎叶图专题 3 样本的数字特点专题 4 用样本预计整体10.3 变量间的有关关系、统计事例专题 1 有关关系的判断专题 2 回归方程的求法及回归剖析专题 3 独立性查验第十一章计数原理11.1 分类加法计数原理与分步乘法计数原理专题 1 分类加法计数原理专题 2 分步乘法计数原理专题 3 两个计数原理的综合应用11.2 摆列与组合专题 1 摆列问题专题 2 组合问题专题 3 摆列、组合的综合应用11.3 二项式定理专题 1 通项及其应用专题 2 二项式系数的性质与各项系数和专题 3 二项式定理的应用第十二章概率与统计612.1 随机事件的概率专题 1 事件的关系专题 2 随机事件的频次与概率专题 3 互斥事件、对峙事件12.2 古典概型与几何概型专题 1 古典概型的概率专题 2 古典概型与其余知识的交汇(平面向量、直线、圆、函数等)专题 3 几何概型在不一样测度中的概率专题 4 生活中的几何概型问题12.3 失散型随机变量及其散布列专题 1 失散型随机变量的散布列的性质专题 2 求失散型随机变量的散布列专题 3 超几何散布12.4 失散型随机变量的均值与方差专题 1 简单的均值、方差问题专题 2 失散型随机变量的均值与方差专题 3 均值与方差在决议中的应用12.5 二项散布与正态散布专题 1 条件概率专题 2 互相独立事件同时发生的概率专题 3 独立重复试验与二项散布专题 4 正态散布下的概率第十三章算法初步、复数13.1 算法与程序框图专题 1 次序构造专题 2 条件构造专题 3 循环构造13.2 基本算法语句专题 1 输入、输出和赋值语句专题 2 条件语句专题 3 循环语句13.3 复数专题 1 复数的有关观点专题 2 复数的几何意义专题 3 复数的代数运算第十四章选修模块14.1 几何证明选讲专题 1 平行线分线段成比率定理专题 2 相像三角形的判断与性质专题 3 直角三角形的射影定理专题 4 圆周角、弦切角及圆的切线专题 5 圆内接四边形的判断及性质专题 6 圆的切线的性质与判断专题 7 与圆有关的比率线段14.2 坐标系与参数方程专题 1 极坐标与直角坐标的互化专题 2 直角坐标方程与极坐标方程的互化专题 3 曲线的极坐标方程的求解专题 4 曲线的参数方程的求解专题 5 参数方程与一般方程的互化7专题 6 极坐标方程与参数方程的应用14.3 不等式选讲专题 1 含绝对值不等式的解法专题 2 绝对值三角不等式的应用专题 3 含绝对值不等式的问题专题 4 不等式的证明8。

高考一轮复习数列综合应用

高考一轮复习数列综合应用

年 级 高三 学科数学内容标题 数列综合应用 编稿老师张鸿菊【本讲主要内容】数列的综合应用.等差数列与等比数列的综合问题,数列与其他数学知识的综合问题,数列在实际问题中的应用.【知识掌握】 【知识点精析】1. 等差数列与等比数列的综合问题,主要是运用它们的性质、通项公式、前n 项和公式将已知条件转化为数学式子(方程或不等式等).2. 在解决数列与其他数学知识的综合问题中,应该注意思维的角度和解题途径的选择,从“数列是特殊的函数”的角度出发,运用运动变化的观点,将问题变形转换,要分清所给问题中的数列是哪种类型,与其他数学知识的关系如何,以达到解决问题的目的.3. 用数列解决实际应用性问题,主要有增长率问题,存贷款的利息问题,几何模型中的问题等等.要把实际应用题转化为某种数列的模型,要分清是等差数列还是等比数列,还是有递推关系的数列,分清所涉及的量是数列中的项n a ,还是各项和n S ,有时还要注意数清项数,以使问题准确解决.【解题方法指导】例1.在等差数列}{n a 中,公差d ≠0,2a 是1a 与4a 的等比中项,已知数列,,,,,,n k k k a a a a a 2131成等比数列,求数列}{n k 的通项n k .解题思路分析:这是一道等差数列与等比数列的综合问题,只需依题设条件,按已知的公式列式即可.解:依题意得41221)1(a a a d n a a n ⋅=-+=,,)3()(1121d a a d a +=+∴,整理得d a d 12=, 10a d d =∴≠, ,得nd a n =,所以,由已知得 ,,,,,,d k d k d k d d n 213是等比数列, 由d ≠0,所以数列1,3,21k k ,,…,n k ,…也是等比数列, 首项为1,公比为q=3,由此得91=k ,等比数列{n k }的首项91=k ,公比q=3,所以)21(33911 ,,==⨯=+-n k n n n , 即得到数列{n k }的通项*)(31N n k n n ∈=+.例2.假设某市2004年新建住房400万平方米,其中有250万平方米是中低价房,预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%,另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米,那么,到哪一年底,(1)该市历年所建中低价房的累计面积(以2004年为累计的第一年)将首次不少于4750万平方米?(2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%? 解题思路分析:这是一道实际应用题,依题意,先分析出中低价房面积逐年增长后,每年的面积数成等差数列,首项为250(万平方米),公差为50(万平方米);而每年新建住房面积逐年增长后,每年的面积数成等比数列,首项是400(万平方米),公比为(1+8%),然后再依据题中条件列式,而第(1)问中,指的是中低价房的累计面积,所以应为数列的前n 项和;而第(2)问中,指的是该年建造的住房面积,应为数列的第n 项.解:(1)设中低价房面积形成数列}{n a ,由题意可知}{n a 是等差数列,其中502501==d a ,,则n n n n n S n 22525502)1(2502+=⨯-+=, 令4750225252≥+n n ,即019092≥-+n n ,而n 是正整数, ∴n ≥10,∴到2013年底,该市历年所建中低价房的累计面积将首次不小于4750万平方米. (2)设新建住房面积形成数列}{n b ,由题意可知}{n b 是等比数列,其中08.14001==q b ,,则1)08.1(400-⋅=n n b , 由题意可知n n b a 85.0>,有85.0)08.1(40050)1(2501⋅⋅>⨯-+-n n ,即1)08.1(8.64-⋅>+n n ,由计算器解得满足上述不等式的最小正整数n=6,∴到2009年底,当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%.例3. 设函数*)(122N n x x nx x y ∈+++-=的最大值为n a ,最小值为n b ,又记)31(4n n n b a nc +=, (1)求数列}{n c 的通项公式; (2)求证:)2(12111112321≥-<+++<+-n nc c c n n . 解:(1)将函数解析式变形为0)1()1(2=-+++-n y x y x y①当y=1时,=x 21-n ; 当y ≠1,由方程①有实根,得0))(1(4)1(2≥---+=∆n y y y 即014)64(32≤-++-n y n y②而y=1也是此不等式的解.,由题意知,不等式②的解集为[n n b a ,],则n n b a ,是方程 014)4(32=-++-n y b n y 的两个实数根(此方程判别式大于零), 据根与系数关系,得314-=n b a n n , 2)31(4n b a nc n n n =+=∴. (2)对于n ≥2,有)1(1321211113121111122221-++⨯+⨯+<++++=+++n n n c c c n nn n 12)111()3121()211(1-=--++-+-+= .而111111111121++++>+++=+++n 1123)111()4131()3121(1+-=+-++-+-+=n n n .所以结论成立.评述:因为数列是特殊的函数,所以求}{n c 的通项公式,就是确定n c 与n 的关系,由题设可知要求n c ,应先求出n n b a ,,这又涉及到求一个分式函数的最值问题,这里是将函数式转化成关于x 的二次方程,然后由判别式求解的.本题第二问又涉及到不等式的证明,运用放缩法将nc c c 11121+++ 转化为可求和的两个数列,从而得证.【考点突破】【考点指要】数列的综合问题在高考题中常常出现在解答题中,而且多数在最后的大题,占12~14分.以05年、06年各省市的高考题来看,有一半以上的试卷都是最后一道大题,占14分.从知识内容上看,有等差数列、等比数列各公式和性质;有不等式的解和证明;有函数的性质;有实际应用题;有解析几何中曲线的性质等等.从方法上看,有用数学归纳法;数列求和的一些方法;不等式证明中的一些方法,还有的是新定义的一些数列,考查分析、归纳能力的问题.【典型例题分析】例4.已知数列}{n a 中,211=a ,点(n ,n n a a -+12)在直线y=x 上,其中n=1,2,3,… (I )令11--=+n n n a ab ,求证数列}{n b 是等比数列; (II )求数列}{n a 的通项; 解:(I )由已知得n a a a n n +==+11221, 4312143143122-=--=--=a a a ,又111211--=∴--=++++n n n n n n a a b a a b ,=----=∴+++11121n n n a a a a b b 211211122)1(11=----=---+-++++n n n n a a a a a a n a n a }{n b ∴是以43-为首项,以21为公比的等比数列.(II )由(I )知n n n b 2123)21(431⨯-=⨯-=-, n n n a a 212311⨯-=--∴+,2123112⨯-=--∴a a ,22321231⨯-=--a a …⨯-=---2311n n a a )2(211≥-n n将以上各式相加得:)212121(23121-n n , )321(22321212321223211)211(21231111 ,,,,=-+=∴=-+=-+=--⋅--+=∴-n n a a n n a a n n n n n评述:证明数列是等比数列,就是证明nn b b 1+=常数,本例第(II )问,用的是将各式累加的方法而求得n a 的..例5.在数列}{n a 中,若21a a ,是正整数,且||21---=n n n a a a ,n=3,4,5,…,则称}{n a 为“绝对差数列”.(I )举出一个前五项不为零的“绝对差数列”(只要求写出前十项);(II )若“绝对差数列”}{n a 中,032120==a a ,,数列}{n b 满足21++++=n n n n a a a b ,n=1,2,3,…,分别判断当n →∞时,n a 与n b 的极限是否存在,如果存在,求出其极限值;解:(I ),,,,,,,,,011011213987654321=========a a a a a a a a a 110=a .(答案不唯一)(II )因为在“绝对差数列”}{n a 中,032120==a a ,,所以自第20项开始,该数列是032120==a a ,,033033272625242322======a a a a a a ,,,,,,…即自第20项开始,每三个相邻的项周期地取值3,0,3,所以当n →∞时,n a 的极限不存在,当n ≥20时,621=++=++n n n n a a a b ,所以6lim =∞→n n b评述:这是一道自定义的一个数列,考查分析、推理能力.【综合测试】一、选择题1. 某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个),经3小时,这种细菌由1个可以繁殖成( )A . 511个B . 512个C . 1023个D . 1024个2. 若互不相等的实数a ,b ,c 成等差数列,c ,a ,b 成等比数列,且a+3b+c=10,则a=( )A . 4B . 2C . -2D . -43. 如果数列}{n a 的前n 项和)49(41nn n n S -=,那么这个数列( ) A . 是等差数列不是等比数列B . 是等比数列不是等差数列C . 既是等差数列又是等比数列D . 既不是等差数列又不是等比数列4. 数列}{}{n n b a ,分别为由正数组成的等差数列与等比数列,且11b a =,1212++=n n b a ,则( )A . 11++>n n b aB . 11++=n n b aC . 11++<n n b aD . 11++≥n n b a5. 设数列⎭⎬⎫⎩⎨⎧++11n n 的前n 项和9=n S ,则n 等于( )A . 88B . 99C . 100D . 1106. 数列1, ,,,,,,,,,414141413131312121的前100项和等于( ) A . 14913 B . 141113 C . 14114D . 143147. 设A (11y x ,)B (4,9),C (22y x ,)是右焦点为F 的椭圆122=+y x 上三个不同的点,则“|AF|,|BF|,|CF|成等差数列”是821=+x x 的( )A . 充要条件B . 必要不充分条件C . 充分不必要条件D . 既不充分也不必要条件8. 农民收入由工资性收入和其他收入两部分构成,2003年某地区农民人均收入为3150元(其中工资性收入为1800元,其他收入为1350元)预计该地区自2004年起的5年内,农民的工资性收入将以每年6%的年增长率增长,其他收入每年增加160元,根据以上数据,2008年该地区农民人均收入介于( )A . 4200~4400元B . 4400~4600元C . 4600~4800元D . 4800~5000元二、填空题9. 设数列}{n a 是公比为q 的等比数列,n S 是前n 项和,若}{n S 是等差数列,则q=_________.10. 某渔场养鱼,第一年重量的增长率为200%,预计以后,每年的增长率都是前一年增长率的一半,当饲养4年后,鱼的预计重量是原来的_________倍.11.设常数a>0,42)1(xax +展开式中3x 的系数为23,则=+++∞→)(l i m 2n n a a a _________.12. 若n a n ++++= 321,则数列⎭⎬⎫⎩⎨⎧n a 1的前n 项和n S =_________. 13. 一个热气球在第1min 时间里上升了25m 高度,在以后的每1min 里,它上升的高度都是它在前1min 里上升高度的80%,这个热气球最多能上升_________m .14.在等差数列}{n a 中,若10=a ,则有等式*)19(192121N n n a a a a a a n n ∈<+++=+++-, 成立,类比上述性质,相应地:在等比数列}{n b 中,若19=b ,则有等式_________成立.三、解答题15. 已知}{n a 是公比为q 的等比数列,且231a a a ,,成等差数列. (I )求q 的值;(II )设}{n b 是以2为首项,q 为公差的等差数列,其前n 项和为n S ,当n ≥2时比较n S 与n b 的大小,并说明理由.16. 已知数列}{n a 满足*)(12111N n a a a n n ∈+==+, (I )求数列}{n a 的通项公式;(II )若数列}{n b 满足*)()1(44411121N n a n n b n b b b ∈+=⋅--- ,证明}{n b 是等差数列. 17. 如图,对每个正整数n 、)(n n n y x A ,是抛物线y x 42=上的点,过焦点F 的直线n FA ,交抛物线于另一点)(n n n t S B ,.(I )试证:)1(4≥-=⋅n S x n n .(II )取n n x 2=,并记n C 为抛物线上分别以n A 与n B 为切点的两条切线的交点.试证:)1(122||||||121≥+-=++++-n FC FC FC n n n .yxFOA 1A 2A nB 1B 2B nC n【综合测试答案】一、选择题1. B 解析:3小时分裂9次,51229=.2. D 解析:解方程组⎪⎩⎪⎨⎧=++⋅=+=10322c b a b c a c a b 得⎪⎩⎪⎨⎧==-=⎪⎩⎪⎨⎧===824)(222c b a c b a 或舍3. B 解析:由)49(41nn nn S -=求得数列通项n n a )49(45⋅=. 4. D 解析:1211212112112+++++⋅=⋅=+=n n n n n a a b b b a a a , , 12121212++⋅≥⎪⎭⎫ ⎝⎛+n n a a a a .11++≥∴n n b a5. B 解析:n n n n -+=++111,91112312=-+=-+++-+-=∴n n n S n ,∴n=99.6. A 解析:由数列的规律可以看出,141414141131313112121=+++=++=+,,, ∴91213)131(13321=+=++++ , 前91项之和为13,第92项到第100项均为141, 14913100=∴S . 7. A 解析:三点A 、B 、C 在椭圆上,它们到右焦点的距离,分别等于其离心率e 乘以它们到右准线的距离,∵离心率=e 4,右准线为25=x , 11545)425(54||x x AF -=-=∴,2545||4545||x CF BF -=⨯-=,.若||||||CF BF AF ,,成等差数列,则||||||2CF AF BF +=, 所以)(541059221x x +-=⨯,即821=+x x ,反之若821=+x x ,则||2||||BF CF AF =+,即|AF|,|BF|,|CF|成等差数列. 8. B 解析:工资性收入构成以1800为首项,1+6%为公比的等比数列,其他收入构成以1350为首项,160为公差的等差数列,则2008年该地区农民人均收入为44902150)06.051(180016051350%)61(18005=+⨯+≈⨯+++=T (元).二、填空题9. 1 解析:只用第三项计算即可,设}{n a 的前三项分别为2aq aq a ,,,则)()(22aq aq a a aq a +++=+,∵a ,q 均不为零,∴q=1.10.445 解析:由已知鱼群的年增长率构成首项为2,公比为21的等比数列, ∴第n 年的增长率为)211()21()21(22121----+=∴=⋅n n n n n a a ,, 301⋅=∴a a (0a 为原重量), ⋅==⋅=2301262a a a a a ,034044545923a a a a =⋅==,, 故4年后预计重量是原来的445倍.11. 1 解析:展开式r rr r x ax C T )()(214241--+⋅⋅=,令32128=--r r ,得r=2, 所以3x 项的项系数为2123224==⋅a a C ,, 121121)(lim 2=-=+++∴∞→n n a a a .12.12+n n 解析:)1(23222122)1(+++⨯+⨯=∴+=n n S n n a n n ,12111312121112+=⎥⎦⎤⎢⎣⎡+-++-+-=n n n n13. 125 解析:热气球在每分钟上升的高度构成无穷递缩等比数列,则上升的高度之和为)(12554125m S =-=. 14. *)17(172121N n n b b b b b b n n ∈<=-,解析:)17(12917118162171<======-+-n b b b b b b b b b n n n n117121=∴+b b b b b n n ,1721211b b b b b b n n n ++=∴,而*)17(11172121117171N n n b b b b b b b b b b nn n n ∈<=∴==--+,,, .三、解答题15. 解:(I )由题设2132a a a +=,即q a a q a 11212+=,∵211012021-==∴=--∴≠q q q q a 或,,, (II )若q=1,则+=n S n 22312)1(2nn n n +=⨯-, 当n ≥2时,02)2)(1(1>+-==--n n S b S n n n ,故n n b S >,若21-=q ,则49)21(2)1(22nn n n n S n +-=--+=,当n ≥2时,4)10)(1(1---==--n n S b S n n n ,故对于*N n ∈;,当92≤≤n 时,n n b S >;当n=10时,n n b S =,当n ≥11时,n n b S <.16. (I )解:121+=+n n a a ,)1(211+=+∴+n n a a ,}1{+∴n a 是以211=+a 为首项,2为公比的等比数列,n n a 21=+∴,即*)(12N n a n n ∈-=.(II )证明:n n n n nb )b b (b b n b b b n a 24)1(4442121111=-∴+=⋅+++--- ,,n n nb n b b b =-+++∴])[(221 ①,1121)1()]1()[(2+++=+-++++n n n b n n b b b b ②,②-①,得n n n nb b n b -+=-++11)1()1(2, 即02)1(1=+--+n n nb b n③, 02)1(12=++-∴++n n b n nb④,④-③,得0212=+-++n n n nb nb nb ,即0212=+-++n n n b b b ,*)(112N n b b b b n n n n ∈-=-∴+++, }{n b ∴是等差数列.7. (I )证明:对任意固定的n ≥1,因为焦点F (0,1),所以可设直线n n B A 的方程为x k y n =-1,将它与抛物线方程y x 42=联立得0442=--x k x n ,由一元二次方程根与系数的关系得4-=n n S x .(II )证明:对任意固定的n ≥1,利用导数知识易得抛物线y x 42=在n A 处的切线的斜率2n A x k n =,故y x 42=在n A 处的切线方程为)(2n n n x x x y y -=-①,类似地,可求得y x 42=在n B 处的切线方程为)(2n nn S x S t y -=-②, 由②减去①得,2222nn n n n n S x x S x t y -+--=-, 从而-=-4422nn S x 2222n n n n S x x S x -+-, 24222n n n n n n S x x S x x S x +=∴-=-∴,③,将③代入①并注意4-=n n S x 得交点n C 的坐标为(2nn S x +,-1), 由两点间的距离公式得,2222222222442444)2(||⎪⎪⎭⎫ ⎝⎛+=++=++=++=n n n n n n n n n x x x x S x S x FC , 从而||22||||n n n x x FC +=, 取n n x 2=,利用上述已证结论并由等比数列求和公式得,122)22()12()212121(2)222(21)||1||1||1(2|)||||(|21||||||1122212121+-=-+-=+++++++=+++++++=++++-+-n n n n n n n n n x x x x x x FC FC FC。

江苏省2015高考数学一轮复习 第七章 第42课 数列的综合应用检测与评估答案(pdf)

江苏省2015高考数学一轮复习 第七章 第42课 数列的综合应用检测与评估答案(pdf)

+
1 1 - 4 7
+

n 1 1 1 1 1 - + 10-3n 13-3n ]= 3 10-3n 10 = 10(10-3n) .
11. (1) 因为a,b,c成等差数列,所以a+c=2b. 由正弦定理得sinA+sinC=2sinB. 因为sinB=sin[π-(A+C)]=sin(A+C), 所以sinA+sinC=2sin(A+C). (2) 因为a,b,c成等比数列,所以b2=ac.
第42课
1. (-1)n(2n-1)
n n-1
数列的综合应用
解析:易知a1=S1=-1,当n≥2
n
时,an=Sn-Sn-1=(-1) n-(-1) (n-1)=(-1) (2n-1),因为a1=-1满足上式,所以 an=(-1)n(2n-1).
2. 64
解析:由题意知a1·a99=16=
2 a50 a3 ,又an>0,所以a50=4,所以a40a50a60= 50 =43=64.
10 5 解得- 3 ≤d≤- 2 ,
所以d=-3.
故数列{an}的通项公式为an=13-3n.
1 1 1 1 (2) 由(1)知bn= (13-3n)(10-3n) = 3 10-3n 13-3n .
1 3


Tn=b1+b2+

+bn=
[
1 1 - 7 10
x
an n -1, n 2 又点
(n∈N*)在函数f(x)=ax的图象上,
2
n an 1 n-1 2 n -1 所以 n = 2 ,即an= 2 .

高考数学一轮总复习课件:数列的综合应用

高考数学一轮总复习课件:数列的综合应用

又因为an≤15,所以6×1.2n-1≤15, 所以n-1≤5,所以n≤6. 所以an=611×,1n.2=n-11,,2≤n≤6,
15,n≥7.
(2)由(1)得,2021年全年的投资额是(1)中数列{an}的前12项 和,所以S12=a1+(a2+…+a6)+(a7+…+a12)=11+6×(1.2+… +1.25)+6×15=101+6×1.2×(1.21-.251-1)≈154.64(万元).
(1)证明:an+2-an=λ; (2)是否存在λ,使得{an}为等差数列?并说明理由. 【思路】 (1)已知数列{an}的前n项和Sn与相邻两项an,an+1间 的递推关系式anan+1=λSn-1,要证an+2-an=λ,故考虑利用an+1= Sn+1-Sn消去Sn进行证明. (2)若{an}为等差数列,则有2a2=a1+a3,故可由此求出λ,进 而由an+2-an=4验证{an}是否为等差数列即可.
【解析】 (1)证明:由已知,得bn=2an>0. 当n≥1时,bbn+n 1=2an+1-an=2d. 所以数列{bn}是首项为2a1,公比为2d的等比数列. (2)函数f(x)=2x在(a2,b2)处的切线方程为y-2a2=(2a2ln2)(x -a2),它在x轴上的截距为a2-ln12. 由题意,a2-ln12=2-ln12,解得a2=2. 所以d=a2-a1=1,所以an=n,bn=2n,anbn2=n·4n.
比数列.所以an+1=45+-25190n.
(3)因为an+1>60%,即
4 5

-25
9 10
n
>
3 5
,则
9 10
n
<
1 2
,所以
n(lg9-1)<-lg2,n>1-lg22lg3≈6.572 1.

第42课 数列的综合应用【自主学习】

第42课 数列的综合应用【自主学习】

第42课数列的综合应用(本课对应学生用书第90-91页)自主学习回归教材1. 数列可以与函数、方程、不等式、三角函数、平面向量、解析几何等组成综合问题,灵活运用等差数列、等比数列的知识分析问题、解决问题是关键.2. 解答有关数列的实际应用问题,通常可分为三步:(1) 根据题意建立数列模型;(2) 运用数列知识求解数列模型;(3) 检验结果是否符合题意,给出问题的答案.1. (必修5P38练习4改编)已知一个直角三角形的三边的长组成等差数列,其中最小边长为3,则该直角三角形的斜边长为.[答案]5[解析]设另一直角边长为b,斜边长为c,则有3+c=2b,32+b2=c2,解得c=5.2. (必修5P41练习2改编)已知等差数列{an }的前n项和为Sn,若OB=a1OA+a200OC,且A,B,C三点共线(该直线不过原点O),则S200=. [答案]100[解析]依题意得a1+a200=1,S200=12002a a×200=100.3. (必修5P48习题13改编)如图所示的三角形数阵,根据图中的规律,第n行(n≥2)第2个数是.[答案]2-22n n +[解析]设第n 行的第2个数为a n ,不难得出规律:n 1a +=a n +n,累加得a n =a 1+1+2+3+…+(n-1)=2-22n n +.4. (必修5P39习题8改编)已知x>0,y>0,x,a 1,a 2,y 成等差数列,x,b 1,b 2,y 成等比数列,则21212()a a b b +的最小值是 .[答案]4[解析]由题意知a 1+a 2=x+y,b 1b 2=xy,故21212()a a b b +=2()x y xy +=222x y xy xy ++=x y +yx +2≥4,当且仅当x=y 时取“=”.5. (必修5P55例5改编)某人为了购买商品房,从2008年起,每年1月1日到银行存入a 元一年定期储蓄.若年利率为p 且保持不变,并约定每年到期存款及利息均自动转为新一年定期存款,到2016年1月1日(当日不存只取)将所有的存款及利息全部取回(不计利息税),则可取人民币总数为 元.[答案]8(1)[(1)-1]a p p p ++[解析]由题意知,到2016年1月1日可取回钱的总数为a(1+p)8+a(1+p)7+…+a(1+p)=8(1)[(1)-1]a p p p ++.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. (必修5P38练习4改编)已知一个直角三角形的三边的长组成等差数列,其中最小
边长为3,则该直角三角形的斜边长为
.
[答案]5
[解析]设另一直角边长为b,斜边长为c,则有3+c=2b,32+b2=c2,解得c=5.
2. (必修5P41练习2改编)已知等差数列{an}的前n项和为Sn,若 OB =a1 OA +a200 OC ,且
n2 -n 2 +(n-1)= 2 .
4. (必修5P39习题8改编)已知x>0,y>0,x,a1,a2,y成等差数列,x,b1,b2,y成等比数列,
(a1 a2 )2
则 b1b2 的最小值是
.
[答案]4
(a1 a2 )2 (x y)2 x2 y2 2xy x y
[解析]由题意知a1+a2=x+y,b1b2=xy,故 b1b2 = xy =
A,B,C三点共线(该直线不过原点O),则S200=
.
[答案]100
a1 a200 [解析]依题意得a1+a200=1,S200= 2 ×200=100.
3. (必修5P48习题13改编)如图所示的三角形数阵,根据图中的规律,第n行(n≥2)第
2个数是
.
n2 -n 2 [答案] 2
[解析]设第n行的第2个数为an,不难得出规律: an1 =an+n,累加得an=a1+1+2+3+…
xyቤተ መጻሕፍቲ ባይዱ
= y + x +2≥4,
当且仅当x=y时取“=”.
5. (必修5P55例5改编)某人为了购买商品房,从2008年起,每年1月1日到银行存入a
元一年定期储蓄.若年利率为p且保持不变,并约定每年到期存款及利息均自动转为
新一年定期存款,到2016年1月1日(当日不存只取)将所有的存款及利息全部取回(不
第42课 数列的综合应用
(本课对应学生用书第90-91页)
自主学习 回归教材
1. 数列可以与函数、方程、不等式、三角函数、平面向量、解析几何等组成综 合问题,灵活运用等差数列、等比数列的知识分析问题、解决问题是关键.
2. 解答有关数列的实际应用问题,通常可分为三步: (1) 根据题意建立数列模型; (2) 运用数列知识求解数列模型; (3) 检验结果是否符合题意,给出问题的答案.
计利息税),则可取人民币总数为
元.
a(1 p)[(1 p)8 -1]
[答案]
p
[解析]由题意知,到2016年1月1日可取回钱的总数为
a(1 p)[(1 p)8 -1]
a(1+p)8+a(1+p)7+…+a(1+p)=
p
.
相关文档
最新文档