(完整word版)小升初数学重点题型复习

合集下载

(完整word版)人教版小升初六年级下册数学重难点知识点复习资料大全

(完整word版)人教版小升初六年级下册数学重难点知识点复习资料大全

人教版小升初小学六年级下册数学复习资料〔一〕整数和小数1、整数和自然数像⋯, -3, -2, -1, 0, 1, 2, 3,⋯的数称〔整数〕。

整数的个数是〔无量〕的。

数物体的候 ,用来表示物体个数的 0,1,2,3⋯叫做〔自然数〕。

自然数整数的〔一局部〕。

〔“1〞〕是自然数的位。

最小的自然数是〔0 〕。

2、小数小数表示的就是十分之几,百分之几,千分之几⋯⋯的数,一位小数可表示十分之几的数,两位小数可表示百分之几的数,三位小数可表示千分之几的数⋯⋯熟:1234555513=13 44885788小数点右第一位是〔十分位〕,数位是〔十分之一〕;第二位是〔百分位〕,数位是〔百分之一〕⋯⋯小数局部有几个数位 ,就叫做几位小数。

如 3.305 是〔三〕位小数3、整数、小数的法和写法:整数注意先分再数。

小数注意小数局部次出每个数位上的数。

写数注意写好后,必然要一仔校。

了写方便,常常把大的数改写成用“万〞或“ 〞作位的数。

如只要求“改写〞,果是正确数。

如要求“省略〞万〔〕后边的尾数,果是近似数。

4、小数的性:小数的尾端添上0 也许去掉 0,小数的大小不 .5、小数点向右 (左 )移一位、两位、三位⋯⋯原来的数就大(小 )10倍、 100倍、 1000 倍⋯⋯6、正数、数0 既不是正数也不是数,0 是正数和数的分界点。

数< 0<正数两个数比,号后边的数越大个数反而越小。

〔二〕因数和倍数1、因数和倍数一个数的最小因数是1,最大的因数是它自己。

一个数的因数的个数是有限的。

一个数的最小倍数是它自己,没有最大倍数。

一个数的倍数的个数是无量的。

了方便,在研究因数和倍数的候,我所的数指的是整数〔一般不包括0〕2、奇数、偶数自然数中,是 2的倍数的数叫做偶数〔0 也是偶数〕,不是 2 的倍数的数叫做奇数。

最小的偶数是〔0 〕最小的奇数是〔 1 〕在全部自然数中,不是奇数就是偶数。

奇数±偶数 =〔奇数〕奇数±奇数 =〔偶数〕偶数±偶数 =( 偶数 )奇数×偶数 =〔偶数〕奇数×奇数 =〔奇数〕偶数×偶数 =( 偶数 )3、 2,3, 5 的倍数特色:个位上是0, 2,4, 6, 8 的数都是 2 的倍数。

(word完整版)小升初典型的计算题及解题常用方法

(word完整版)小升初典型的计算题及解题常用方法

专题一:典型的计算题及解题常用方法在小学计算题中有好多题型方法新颖独特,在升重点中学考试和进入中学分班考试中,多有出现,有的学生因为没见过这种题型常常得分很少或得零分,其实这种题型只要掌握一定的解题方法和规律一点都不难。

下面老师跟你支支招: 一、 熟记规律,常能化难为易。

① 25×4=100, ②125×8=1000,③41=0.25=25%,④43=0.75=75%, ⑤81=0.125=12.5%, ⑥83=0.375=37.5%, ⑦85=0.625=62.5%, ⑧87=0.875=87.5% 利用①12321=111×111,1234321=1111×1111,123454321=11111×11111②123123=123×1001,12341234=1234×10001 ③12345679×9=111111111等规律巧解题:9999966666123454321⨯×108 11234565432999999888888⨯÷36 525525252252252525525525252252⨯⨯20102010×1999-2010×19991999 12345679×63 72×12345679二、利用积不变、拆数和乘法分配率巧解计算题: 28.67×67+3.2×286.7+573.4×0.05314×0.043+3.14×7.2-31.4×0.15 41.2×8.1+11×9.25+53.7×1.919931993×1993-19931992×1992-199319921.993×1993000+19.92×199200-199.3×19920-1992×1991333×332332333-332×333333332180-976796795976796⨯⨯+ 48-411363362411363⨯⨯+ 627-124894894123267⨯⨯+(211998⨯-20001)+2 (19981⨯-20001)-2000× (19981+21)+3151051284963642321251552012415931062531⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯9999×2222+3333×3334 4444×2222+8888×88894561+4564563003+45645645623023023三、牢记设字母代入法(1+0.21+0.32)×(0.21+0.32+0.43)-(1+0.21+0.32+0.43)×(0.21+0.32)(1+0.23+0.34)×(0.23+0.34+0.65)-(1+0.23+0.34+0.65)×(0.23+0.34)(1+21+31+41)×(21+31+41+51)-(1+21+31+41+51)×(21+31+41)(111+211+311+411)×(211+311+411+511)-(111+211+311+411+511)×(211+311+411)(135531+357579+975753)×(357579+975753+531135)-(135531+357579+975753+531135)×(357579+975753)四、利用a ÷b=ba巧解计算题:①(6.4×480×33.3)÷(3.2×120×66.6) ②(514+415)÷(43+53)五、利用裂项法巧解计算题211⨯+321⨯+431⨯+ …+100991⨯ 311⨯+531⨯+751⨯+ (1191)3122⨯+5342⨯+7562⨯+9782⨯+119102⨯21+61+121+201+301+421 1×2+2×3+3×4+……99×1001×2×3+2×3×4+3×4×5+……+9×10×111+361+5121+7201+9301+11421+13561+15721+17901六、(递推法或补数法)1.111111112483162124248496+++++++ 2. 21+41+81+161+321+……+5121+10241.3.211⨯+3212⨯⨯+43213⨯⨯⨯+543214⨯⨯⨯⨯+6543215⨯⨯⨯⨯⨯+76543216⨯⨯⨯⨯⨯⨯4.31+ 61+121+241+481+961+1921七.循环小数必须化分数再计算:(1)192.0 +291.0 +573.0 +625.0 (2) 928.2 -292.1 +921.0 (3) 033.0 ×681.0八.斜着约分更简单(1+21)×(1+31)(1+41)×……×(1+991)(1+1001)(1-21)×(1-31)(1-41)×……×(1-991)(1-1001)九.定义新运算,一点都不难。

(word版)小升初总复习数学归类讲解及训练(下含答案),文档

(word版)小升初总复习数学归类讲解及训练(下含答案),文档

小学数学总复习专题讲解及训练〔九〕教学内容:期中复习及考前模拟复习要点:〔一〕数与代数1、百分数的应用百分数的应用是在六年级〔上册〕认识百分数的根底上编排的,是本册教材的重点内容之一。

要联系实际解决一些求一个数比另一个数多〔或少〕百分之几的问题,解决较简单的有关纳税、利息、折扣的问题,解决一个数的百分之几是多少,求这个数的问题。

通过这些内容的教学,能让学生进一步理解百分数的意义,学会在日常生活中应用百分数。

2、比例的有关知识比例的知识有比例的意义、比例的根本性质和解比例。

这些知识有助于理解图形的放大与缩小,能用来解决有关比例尺的问题。

3、成正比例和成反比例的量教学正比例和反比例,着重理解正比例的意义和反比例的意义,让学生在现实的情境中作出相应的判断。

根据?标准?的精神,教材适当加强了正比例关系图像的教学,不再安排解答正比例或反比例的应用题。

〔二〕空间与图形1、圆柱和圆锥圆柱与圆锥是本册教材的又一个重点内容,包括圆柱和圆锥的形状特征,圆柱的外表积及计算方法,圆柱和圆锥的体积及计算方法等知识。

2、图形的放大或缩小图形的放大和缩小是小学数学新增加的教学内容,让学生初步了解图形可以按一定的比例发生大小变换。

这个内容安排在第三单元里,结合比例的知识进行教学。

3、确定位置等内容确定位置也是新增的教学内容,在初步认识方向的根底上,用“北偏东几度〞“南偏西几度〞的形式量化描述物体所在的具体方向,还要联系比例尺的知识,用“距离多少〞的形式描述物体所在的位置。

知识点梳理〔一〕数与代数1、百分数的应用〔1〕求一个数比另一个数多〔少〕百分之几的实际问题①要点:一个数比另一个数多〔少〕百分之几=一个数比另一个数多〔少〕的量÷另一个数②例题:六年级男生有180人,女生有160人,男生比女生多百分之几?女生比男生少百分只几?男生比女生多的人数÷女生人数=百分之几〔180-160〕÷160=%女生比男生少的人数÷男生人数=百分之几〔180-160〕÷180≈%2〕纳税问题①要点:应该缴纳的税款叫做应纳税额,应纳税额与各种收入的比率叫做税率,应纳税额=收入×税率②例题:张强编写的书在出版后得到稿费1400元,稿费收入扣除800元后按14%的税率缴纳个人所得税,张强应该缴纳个人所得税多少元?1400-800〕×14%=84〔元〕3〕利息问题①要点:存入银行的钱叫做本金,取款时银行除还给本金外,另外付给的钱叫做利息,利息占本金的百分率叫做利率。

小升初数学总复习题库

小升初数学总复习题库

小升初数学总复习题库数学是小升初考试中的重要科目之一,为了帮助学生更好地复习数学知识,提高解题能力,以下是一些精选的数学复习题,涵盖了小学数学的主要知识点。

一、基础运算1. 计算下列各题:- 56 × 78- 1234 - 2345- 0.75 + 1.25- 3.14 × 2.52. 完成以下分数的加减法:- 1/4 + 3/8- 5/6 - 2/3二、分数和小数1. 将下列分数化为最简形式:- 8/12- 15/302. 将下列小数转换为分数,并化简:- 0.75- 0.333...三、比例和比例尺1. 如果一个比例尺是1:500,那么在地图上1厘米代表实际地面上的多少米?2. 已知比例为3:4,如果一个数是比例中的3部分,求4部分对应的数值。

四、几何图形1. 一个长方形的长是15厘米,宽是10厘米,求其周长和面积。

2. 一个圆的半径是7厘米,求其周长和面积。

五、应用题1. 小明买了3个苹果和2个橙子,苹果每斤10元,橙子每斤8元,小明一共花了多少钱?2. 一个班级有48名学生,其中女生占3/5,求女生和男生各有多少人?六、百分数1. 一个商品原价100元,打8折后的价格是多少?2. 一个班级有50名学生,其中80%的学生通过了考试,求通过考试的学生人数。

七、方程和不等式1. 解方程:3x + 5 = 232. 解不等式:2x - 7 < 9八、数据的收集与处理1. 一个班级有30名学生,他们的数学成绩分别为:85, 90, 78, 82, 88, 92, 76, 84, 95, 80, 81, 83, 79, 91, 87, 93, 86, 75, 77, 94, 89, 74, 96。

求这组数据的平均分和中位数。

2. 根据上述数据,绘制频数分布直方图。

九、逻辑推理1. 一个班级有5个学生,他们的数学成绩分别是:A, B, C, D, E。

已知B的成绩高于A,C的成绩高于D,E的成绩最高。

(完整word)小升初数学专题复习讲义

(完整word)小升初数学专题复习讲义

数学专题一数论考点扫描数论知识包括数的奇偶性、质数、合数、数的整除、余数的性质、数位的含义、平均数、分解因数、平方数、倍数与因数。

1.数的奇偶性奇数+奇数=偶数奇数+偶数=奇数偶数+偶数=偶数奇数×奇数=奇数偶数×偶数=偶数奇数×偶数=偶数奇数个奇数相加=奇数偶数个奇数相加=偶数(只要式子中含有偶数,那么相乘结果就是偶数)2.数的整除,常见的数的整除特征(1)2:个位是偶数;(2)3:各个数位之和是3的倍数;(3)5:个位是 0或5;(4)4、25:后两位可以被4(25)整除;(5)8、125:后三位可以被8(125)整除;(6)9:各个数位之和是9的倍数;(7)7:一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,差是7的倍数。

例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数;(8)11:奇数位上的数字之和与偶数位上的数字之和的差(以大减小)是11的倍数;(9)13:一个多位数的末三位数与末三位以前的数字所组成的数之差,可以被13整除即可被13整除;(10)17:若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。

3.余数的性质(1)余数的可加性:和的余数等于余数的和;(2)余数的可减性:差的余数等于余数的差;(3)余数的可乘性:积得余数等于余数的积;(4)同余的性质:对于同一个余数,如果有两个整数余数相同,那么它们的差就一定能被这个除数整除;对于同一个除数,如果有两个整数余数相同,那么它们的乘方就一定能被这个除数整数。

抛砖引玉【例1】下列各数中,()同时是3和5的倍数.A.18 B.102 C.45【解析】同时是3和5的倍数必须满足:末尾是0或5,并且各个数位上的和能被3整除;进而得出结论.18个位上是8,不是5的倍数,102个位上是2,不是5的倍数,45是5的倍数,4+5=9,是3的倍数。

(完整word版)小升初冲刺名校复习讲义资料(精品)

(完整word版)小升初冲刺名校复习讲义资料(精品)

小升初·数学·培粹讲义第一节整数和小数【例题1】有一个九位数,最高位上是最小的合数,千万位上是最小的质数,百位上是最小的奇数,其他各位上都是0,这个数写作,读作,把这个数改写成以“万”作单位的数是,省略亿后面的尾数约是。

【跟踪训练】1、一个数由50个亿、500个万和5005个一组成,这个数是位数,写作,读作,这个数最高位上的5是最低位上的5的倍。

2、一个九位数,最高位上的数字是2,千万位和万位上的数字都是最小的合数,百位上的数字是最大的一位数,其余各位上的数字都是0,这个数是,改写成以“万”为单位的数是万,省略亿后面的尾数约是亿。

【例题2】用最小的一位数、最小的质数、最小的合数和三个0组成六位数。

(1)一个“零”都不读出的最小六位数是。

(2)只读一个“零”的最大六位数是。

(3)读出二个“零”的六位数有。

【跟踪训练】1、用三个8和三个0组成满足下列要求的六位数。

(1)一个“零”都不读出的六位数有。

(2)只读一个“零”的六位数有。

(3)读出二个“零”的六位数有。

2、有三张数字卡片1、2、3,利用这三张卡片可排出多少个不同的三位数?请你试着把它们写下来。

如果把卡片2换成卡片0,那么又会是多少个呢?【例题3】一个三位小数保留一位小数后是3.8,则这个三位小数最大是最小是。

【跟踪训练】1、判断题。

(1)小数都比整数小。

()(2)大于0.3而小于0.5的小数只有0.4一个。

()(3)去掉小数40.50末尾的0后,小数的大小不变,计数单位也不变,()(4)把9.895用“四舍五入”的方法保留两位小数后是9.9。

()2、选择题。

(1)由8个千、4个十和5个百分之一组成的数是()。

A、8540B、8040.05C、8000.45D、8504(2)把59.9954精确到百分位是()。

A、59.995B、50C、60.0D、60.00(3)一个两位小数精确到十分位后是10.0,则这个小数一定在()之间。

小升初数学必考题型汇总

小升初数学必考题型汇总

2024小升初数学必考题型汇总2024小升初数学必考题型汇总一、计算1、数的加减法 (1)整数和小数的加减法 (2)分数和百分数的加减法2、数的乘法与除法 (1)整数的乘法与除法 (2)分数的乘法与除法 (3)小数和百分数的乘法与除法3、方程 (1)一元一次方程 (2)二元一次方程 (3)三元一次方程4、简算与巧算 (1)加减法简算与巧算 (2)乘除法简算与巧算 (3)混合运算简算与巧算二、几何1、平面图形 (1)直线、射线、线段 (2)角的度量与计算 (3)三角形、四边形、多边形2、立体图形 (1)长方体、正方体、圆柱、圆锥 (2)球、棱柱、四面体三、统计与概率1、统计初步知识 (1)数据的收集与整理 (2)统计表与统计图2、概率初步知识 (1)事件的发生与可能性 (2)事件的概率与概率计算四、应用题1、行程问题 (1)一般行程问题 (2)多次相遇问题 (3)变速行程问题2、工程问题 (1)一般工程问题 (2)周期工程问题 (3)分工合作工程问题3、比例问题 (1)一般比例问题 (2)百分数比例问题 (3)浓度问题4、分数问题 (1)一般分数问题 (2)分数工程问题 (3)分数行程问题五、拓展题1、多位数问题2、逻辑推理问题3、数独问题2024小升初数学必考题型分类汇总2024小升初数学必考题型分类汇总一、计算题1、有括号的先算小括号里面的,没有括号的先算乘除,再算加减。

2、递等式计算题,不能急于求成,要按照先乘除,后加减,遇到有括号的要先算括号里面的运算顺序进行计算。

3、混合运算题,不能掉以轻心,要认真仔细,先算乘除,后加减,遇到括号要先计算括号里面的运算。

二、填空题1、填空题一定要仔细审题,比较大小题,大于号和小于号一定填正确。

2、填空题答案不唯一,要认真审题,填写正确的答案。

3、填空题涉及到的知识点较多,需要加强练习,积累经验。

三、选择题1、选择题不要盲目选择,要仔细分析题目,选择正确的答案。

小升初数学重点题型汇总

小升初数学重点题型汇总

小升初数学重点题型汇总一、填空题。

(必考、易考题型)1、求近似值改写用“万”、“亿”做单位或省略“万”、“亿”后面的尾数或“四舍五入”以及数的组成(必然出现一种)典型题(0)七千零三十万四千写作(),改写用“万”做单位的数是(),省略“万”后面的尾数是()。

(1)5个1,16个1/100组成的数是()。

(2)第五次全国人口普查结果,全国总人口为十二亿九千五百三十三万,这个数写作(),四舍五入到亿位约是()。

(3)0.375读作(),它的计数单位是()。

(4)付河大桥投资约36250万元,改写成用“亿”作单位的数是()亿。

(5)用万作单位的准确数5万与进似数5万比较,最多相差()。

(6)由三个百、六个一、七个十分之一、八个万分之一组成的小数是(),保留两位小数约是()。

2、找规律可能考典型题找规律:1,3,2,6,4,(),(),12,……3、中位数、众数或平均数(必考一题)典型题(1)六(3)班同学体重情况如下表30 33 36 39 42 45 48体重/千克人数 2 4 5 12 10 4 3上面这组数据中,平均数是(),中位数是(),众数是()。

(2)甲乙丙三个偶数的平均数是16,三个数的比是3:4:5,甲乙丙三个偶数分别是()、()、()。

(3)有三个数,甲乙两数的平均数是28.5,乙丙两数的平均数是32,甲丙两数的平均数是21,那么甲数是(),乙数是()。

4、负数正数有可能考典型题(1)0、0.9、1、-1、4、103、-320七个数中,()是自然数,()是整数。

(2)月球的表面白天的平均气温是零上126摄氏度,记作()摄氏度,夜间平均气温是零下150摄氏度,记作()摄氏度。

5、倒数可能考典型题(1)一个最小的质数,它的倒数是作()。

(2)6又5/7的倒数是(),()的倒数是最小的质数。

6、最简比及比值可能考典型题(1)3/4与0.125的最简整数比是(),比值是()。

(2)一个小圆的直径和大圆的半径都是4厘米,大圆与小圆的周长的最简整数比是(),面积的最简整数比是()。

小升初考试小升初数学考试大重点整理.docx

小升初考试小升初数学考试大重点整理.docx

1、工程问题1. 甲乙两个水管单独开,注满一池水,分别需要20 小时, 16 小时 . 丙水管单独开,排一池水要10 小时,若水池没水,同时打开甲乙两水管, 5 小时后,再打开排水管丙,问水池注满还是要多少小时?解: 1/20+1/16=9/80 表示甲乙的工作效率9/80 ×5=45/80 表示 5 小时后进水量1-45/80=35/80表示还要的进水量35/80 ÷(9/80-1/10)=35表示还要35小时注满答: 5 小时后还要 35 小时就能将水池注满。

2.修一条水渠,单独修,甲队需要 20 天完成,乙队需要 30 天完成。

如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。

现在计划16 天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天 ?解:由题意知,甲的工效为1/20 ,乙的工效为 1/30 ,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100 ,可知甲乙合作工效 >甲的工效 >乙的工效。

又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。

只有这样才能“两队合作的天数尽可能少”。

设合作时间为x天,则甲独做时间为(16-x)天1/20*(16-x)+7/100*x=1 x=10答:甲乙最短合作10 天3.一件工作,甲、乙合做需 4 小完成,乙、丙合做需 5 小完成。

在先甲、丙合做 2 小后,余下的乙需做 6 小完成。

乙独做完件工作要多少小 ?解:由意知,工作量 (1/4+1/5)1/4 表示甲乙合作 1 小的工作量, 1/5×2=9/10 表示甲做了 2 小、乙做了表示乙丙合作 1 小的4 小、丙做了 2 小的工作量。

根据“甲、丙合做 2 小后,余下的乙需做 6 小完成”可知甲做 2 小、乙做 6 小、丙做 2 小一共的工作量 1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小升初数学重点题型复习具有独特的结构特征的和特定的解题规律的复合应用题,通常叫做典型应用题。

一、平均数问题:平均数是等分除法的发展。

解题关键:在于确定总数量和与之相对应的总份数。

算术平均数:已知几个不相等的同类量和与之相对应的份数,求平均每份是多少。

数量关系式:数量之和÷数量的个数=算术平均数。

加权平均数:已知两个以上若干份的平均数,求总平均数是多少。

数量关系式(部分平均数×权数)的总和÷(权数的和)=加权平均数。

差额平均数:是把各个大于或小于标准数的部分之和被总份数均分,求的是标准数与各数相差之和的平均数。

数量关系式:(大数-小数)÷2=小数应得数最大数与各数之差的和÷总份数=最大数应给数最大数与个数之差的和÷总份数=最小数应得数。

例:一辆汽车以每小时 100 千米的速度从甲地开往乙地,又以每小时 60 千米的速度从乙地开往甲地。

求这辆车的平均速度。

分析:求汽车的平均速度同样可以利用公式。

此题可以把甲地到乙地的路程设为“ 1 ”,则汽车行驶的总路程为“ 2 ”,从甲地到乙地的速度为 100 ,所用的时间为,汽车从乙地到甲地速度为 60 千米,所用的时间是,汽车共行的时间为 + = , 汽车的平均速度为2 ÷ =75 (千米)二、归一问题:已知相互关联的两个量,其中一种量改变,另一种量也随之而改变,其变化的规律是相同的,这种问题称之为归一问题。

根据求“单一量”的步骤的多少,归一问题可以分为一次归一问题,两次归一问题。

根据球痴单一量之后,解题采用乘法还是除法,归一问题可以分为正归一问题,反归一问题。

一次归一问题,用一步运算就能求出“单一量”的归一问题。

又称“单归一。

”两次归一问题,用两步运算就能求出“单一量”的归一问题。

又称“双归一。

”正归一问题:用等分除法求出“单一量”之后,再用乘法计算结果的归一问题。

反归一问题:用等分除法求出“单一量”之后,再用除法计算结果的归一问题。

解题关键:从已知的一组对应量中用等分除法求出一份的数量(单一量),然后以它为标准,根据题目的要求算出结果。

数量关系式:单一量×份数=总数量(正归一)总数量÷单一量=份数(反归一)例一个织布工人,在七月份织布 4774 米,照这样计算,织布 6930 米,需要多少天?分析:必须先求出平均每天织布多少米,就是单一量。

693 0 ÷(477 4 ÷ 31 )=45 (天)三、归总问题:是已知单位数量和计量单位数量的个数,以及不同的单位数量(或单位数量的个数),通过求总数量求得单位数量的个数(或单位数量)。

特点:两种相关联的量,其中一种量变化,另一种量也跟着变化,不过变化的规律相反,和反比例算法彼此相通。

数量关系式:单位数量×单位个数÷另一个单位数量 = 另一个单位数量单位数量×单位个数÷另一个单位数量= 另一个单位数量。

例修一条水渠,原计划每天修 800 米, 6 天修完。

实际 4 天修完,每天修了多少米?分析:因为要求出每天修的长度,就必须先求出水渠的长度。

所以也把这类应用题叫做“归总问题”。

不同之处是“归一”先求出单一量,再求总量,归总问题是先求出总量,再求单一量。

80 0 × 6 ÷ 4=1200 (米)四、和差问题:已知大小两个数的和,以及他们的差,求这两个数各是多少的应用题叫做和差问题。

解题关键:是把大小两个数的和转化成两个大数的和(或两个小数的和),然后再求另一个数。

解题规律:(和+差)÷2 = 大数大数-差=小数(和-差)÷2=小数和-小数= 大数例某加工厂甲班和乙班共有工人 94 人,因工作需要临时从乙班调 46 人到甲班工作,这时乙班比甲班人数少 12 人,求原来甲班和乙班各有多少人?分析:从乙班调 46 人到甲班,对于总数没有变化,现在把乙数转化成 2 个乙班,即9 4 - 12 ,由此得到现在的乙班是( 9 4 - 12 )÷ 2=41 (人),乙班在调出 46 人之前应该为 41+46=87 (人),甲班为 9 4 - 87=7 (人)五、和倍问题:已知两个数的和及它们之间的倍数关系,求两个数各是多少的应用题,叫做和倍问题。

解题关键:找准标准数(即1倍数)一般说来,题中说是“谁”的几倍,把谁就确定为标准数。

求出倍数和之后,再求出标准的数量是多少。

根据另一个数(也可能是几个数)与标准数的倍数关系,再去求另一个数(或几个数)的数量。

解题规律:和÷倍数和=标准数标准数×倍数=另一个数例:汽车运输场有大小货车 115 辆,大货车比小货车的 5 倍多 7 辆,运输场有大货车和小汽车各有多少辆?分析:大货车比小货车的 5 倍还多 7 辆,这 7 辆也在总数 115 辆内,为了使总数与( 5+1 )倍对应,总车辆数应( 115-7 )辆。

列式为( 115-7 )÷( 5+1 ) =18 (辆),18 × 5+7=97 (辆)六、差倍问题:已知两个数的差,及两个数的倍数关系,求两个数各是多少的应用题。

解题规律:两个数的差÷(倍数-1 )= 标准数标准数×倍数=另一个数。

例甲乙两根绳子,甲绳长 63 米,乙绳长 29 米,两根绳剪去同样的长度,结果甲所剩的长度是乙绳长的 3 倍,甲乙两绳所剩长度各多少米?各减去多少米?分析:两根绳子剪去相同的一段,长度差没变,甲绳所剩的长度是乙绳的 3 倍,实比乙绳多( 3-1 )倍,以乙绳的长度为标准数。

列式( 63-29 )÷( 3-1 ) =17 (米)…乙绳剩下的长度,17 × 3=51 (米)…甲绳剩下的长度, 29-17=12 (米)…剪去的长度。

七、行程问题:关于走路、行车等问题,一般都是计算路程、时间、速度,叫做行程问题。

解答这类问题首先要搞清楚速度、时间、路程、方向、杜速度和、速度差等概念,了解他们之间的关系,再根据这类问题的规律解答。

解题关键及规律:同时同地相背而行:路程=速度和×时间。

同时相向而行:相遇时间=速度和×时间同时同向而行(速度慢的在前,快的在后):追及时间=路程速度差。

同时同地同向而行(速度慢的在后,快的在前):路程=速度差×时间。

例甲在乙的后面 28 千米,两人同时同向而行,甲每小时行 16 千米,乙每小时行9 千米,甲几小时追上乙?分析:甲每小时比乙多行( 16-9 )千米,也就是甲每小时可以追近乙( 16-9 )千米,这是速度差。

已知甲在乙的后面 28 千米(追击路程), 28 千米里包含着几个( 16-9 )千米,也就是追击所需要的时间。

列式2 8 ÷ ( 16-9 ) =4 (小时)八、流水问题:一般是研究船在“流水”中航行的问题。

它是行程问题中比较特殊的一种类型,它也是一种和差问题。

它的特点主要是考虑水速在逆行和顺行中的不同作用。

船速:船在静水中航行的速度。

水速:水流动的速度。

顺水速度:船顺流航行的速度。

逆水速度:船逆流航行的速度。

顺速=船速+水速逆速=船速-水速解题关键:因为顺流速度是船速与水速的和,逆流速度是船速与水速的差,所以流水问题当作和差问题解答。

解题时要以水流为线索。

解题规律:船行速度=(顺水速度+ 逆流速度)÷2流水速度=(顺流速度逆流速度)÷2路程=顺流速度× 顺流航行所需时间路程=逆流速度×逆流航行所需时间例一只轮船从甲地开往乙地顺水而行,每小时行 28 千米,到乙地后,又逆水航行,回到甲地。

逆水比顺水多行 2 小时,已知水速每小时 4 千米。

求甲乙两地相距多少千米?分析:此题必须先知道顺水的速度和顺水所需要的时间,或者逆水速度和逆水的时间。

已知顺水速度和水流速度,因此不难算出逆水的速度,但顺水所用的时间,逆水所用的时间不知道,只知道顺水比逆水少用 2 小时,抓住这一点,就可以就能算出顺水从甲地到乙地的所用的时间,这样就能算出甲乙两地的路程。

列式为284 × 2=20 (千米) 2 0 × 2 =40 (千米)40 ÷(4 × 2 ) =5 (小时)28 × 5=140 (千米)。

九、还原问题:已知某未知数,经过一定的四则运算后所得的结果,求这个未知数的应用题,我们叫做还原问题。

解题关键:要弄清每一步变化与未知数的关系。

解题规律:从最后结果出发,采用与原题中相反的运算(逆运算)方法,逐步推导出原数。

根据原题的运算顺序列出数量关系,然后采用逆运算的方法计算推导出原数。

解答还原问题时注意观察运算的顺序。

若需要先算加减法,后算乘除法时别忘记写括号。

例某小学三年级四个班共有学生 168 人,如果四班调 3 人到三班,三班调 6 人到二班,二班调 6 人到一班,一班调 2 人到四班,则四个班的人数相等,四个班原有学生多少人?分析:当四个班人数相等时,应为168 ÷ 4 ,以四班为例,它调给三班 3 人,又从一班调入 2 人,所以四班原有的人数减去 3 再加上 2 等于平均数。

四班原有人数列式为168 ÷ 4-2+3=43 (人)一班原有人数列式为168 ÷ 4-6+2=38 (人);二班原有人数列式为168 ÷ 4-6+6= 42 (人)三班原有人数列式为168 ÷ 4-3+6=45 (人)。

十、植树问题:这类应用题是以“植树”为内容。

凡是研究总路程、株距、段数、棵树四种数量关系的应用题,叫做植树问题。

解题关键:解答植树问题首先要判断地形,分清是否封闭图形,从而确定是沿线段植树还是沿周长植树,然后按基本公式进行计算。

解题规律:沿线段植树棵树=段数+1 棵树=总路程÷株距+1株距=总路程÷(棵树-1)总路程=株距×(棵树-1)沿周长植树棵树=总路程÷株距株距=总路程÷棵树总路程=株距×棵树例沿公路一旁埋电线杆 301 根,每相邻的两根的间距是 50 米。

后来全部改装,只埋了201 根。

求改装后每相邻两根的间距。

分析:本题是沿线段埋电线杆,要把电线杆的根数减掉一。

列式为50 ×( 301-1 )÷( 201-1 ) =75 (米)十一、盈亏问题:是在等分除法的基础上发展起来的。

他的特点是把一定数量的物品,平均分配给一定数量的人,在两次分配中,一次有余,一次不足(或两次都有余),或两次都不足),已知所余和不足的数量,求物品适量和参加分配人数的问题,叫做盈亏问题。

相关文档
最新文档