(全国卷数学2017年高考一轮)椭圆及其性质
2017年全国统一高考新课标版Ⅰ卷全国1卷文科数学试卷及参考答案与解析
2017年全国统一高考新课标版Ⅰ卷全国1卷文科数学试卷及参考答案与解析一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x|x<2},B={x|3-2x>0},则( )A.A∩B={x|x<}B.A∩B=∅C.A∪B={x|x<}D.A∪B=R2.(5分)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别是x1,x2,…,xn,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A.x1,x2,…,xn的平均数 B.x1,x2,…,xn的标准差C.x1,x2,…,xn的最大值 D.x1,x2,…,xn的中位数3.(5分)下列各式的运算结果为纯虚数的是( )A.i(1+i)2B.i2(1-i)C.(1+i)2D.i(1+i)4.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A. B. C. D.5.(5分)已知F是双曲线C:x2-=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为( )A. B. C. D.6.(5分)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是( )A. B. C. D.7.(5分)设x,y满足约束条件,则z=x+y的最大值为( )A.0B.1C.2D.38.(5分)函数y=的部分图象大致为( )A. B. C.D.9.(5分)已知函数f(x)=lnx+ln(2-x),则( )A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称10.(5分)如图程序框图是为了求出满足3n-2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入( )A.A>1000和n=n+1B.A>1000和n=n+2C.A≤1000和n=n+1D.A≤1000和n=n+211.(5分)△ABC的内角A,B,C的对边分别为a,b,c,已知sinB+sinA(sinC-cosC)=0,a=2,c=,则C=( )A. B. C. D.12.(5分)设A,B是椭圆C:+=1长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是( )A.(0,1]∪[9,+∞)B.(0,]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0,]∪[4,+∞)二、填空题:本题共4小题,每小题5分,共20分。
2017年全国统一高考数学试卷(文科)全国卷1(详解版)
2017年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)(2017•新课标Ⅰ)已知集合A={x|x<2},B={x|3﹣2x>0},则()A.A∩B={x|x<}B.A∩B=∅C.A∪B={x|x<}D.A∪B=R2.(5分)(2017•新课标Ⅰ)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别是x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是()A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数3.(5分)(2017•新课标Ⅰ)下列各式的运算结果为纯虚数的是()A.i(1+i)2B.i2(1﹣i)C.(1+i)2D.i(1+i)4.(5分)(2017•新课标Ⅰ)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.B.C.D.5.(5分)(2017•新课标Ⅰ)已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.6.(5分)(2017•新课标Ⅰ)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()A.B.C.D.7.(5分)(2017•新课标Ⅰ)设x,y满足约束条件,则z=x+y的最大值为()A.0B.1C.2D.38.(5分)(2017•新课标Ⅰ)函数y=的部分图象大致为()A.B.C.D.9.(5分)(2017•新课标Ⅰ)已知函数f(x)=lnx+ln(2﹣x),则()A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称10.(5分)(2017•新课标Ⅰ)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入()A.A>1000和n=n+1B.A>1000和n=n+2C.A≤1000和n=n+1D.A≤1000和n=n+211.(5分)(2017•新课标Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c,已知sinB+sinA(sinC﹣cosC)=0,a=2,c=,则C=()A.B.C.D.12.(5分)(2017•新课标Ⅰ)设A,B是椭圆C:+=1长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是()A.(0,1]∪[9,+∞)B.(0,]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0,]∪[4,+∞)二、填空题:本题共4小题,每小题5分,共20分。
椭圆历年高考题
椭圆历年高考题(总6页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除椭圆历年高考真题(选填题)1.(2018·全国卷I高考文科·T4)已知椭圆C :+=1的一个焦点为,则C的离心率为()A .B .C .D .2.(2018·全国卷II高考理科·T12)已知F1,F2是椭圆C :+=1(a>b>0)的左,右焦点,A是C的左顶点,点P在过A 且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为()A .B .C .D .3.(2018·全国卷II高考文科·T11)已知F1,F2是椭圆C的两个焦点,P是C上的一点,若PF1⊥PF2,且∠PF2F1=60°,则C的离心率为()A.1-B.2-C .D .-14.(2017·全国乙卷文科·T12)设A,B是椭圆C:23x+2ym=1长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是()A.(0,1]∪[9,+∞)B.(0,3]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0, 3]∪[4,+∞)5.(2017·全国丙卷·理科·T10)已知椭圆C:22xa+22yb=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx-ay+2ab=0相切,则C的离心率为()A. 6B.3C.23D.136.(2017·全国丙卷·文科·T11)同(2017·全国丙卷·理科·T10)已知椭圆C:22xa+22yb=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx-ay+2ab=0相切,则C的离心率为()A.63B.33C.23D.137.(2016·全国卷Ⅰ高考文科·T5)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为()A.13B.12C.23D.348.(2016·全国卷3·理科·T11)已知O为坐标原点,F是椭圆C:2222x ya b=1(a>b>0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为()A.13B.12C.23D.349.(2016·江苏高考T10)如图,在平面直角坐标系xOy中,F是椭圆2222x y+=1a b(a>b>0)的右焦点,直线y=b2与椭圆交于B,C两点,且∠BFC=90°,则该椭圆的离心率是.10.(2015·全国1卷理科·T14)一个圆经过椭圆的三个顶点,且圆心在x轴上,则该圆的标准方程为 .椭圆历年高考真题(选填题)参考答案1.(2018·全国卷I高考文科·T4)已知椭圆C:+=1的一个焦点为,则C的离心率为()A.B.C.D.【解析】选C.因为椭圆的一个焦点为(2,0),则c=2,所以a2=b2+c2=8,a=2,所以离心率e=.2.(2018·全国卷II高考理科·T12)已知F1,F2是椭圆C:+=1(a>b>0)的左,右焦点,A是C的左顶点,点P在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为()A.B.C.D.【命题意图】本题考查了椭圆的标准方程和椭圆的性质的应用以及数学运算能力.【解析】选D.由题意直线AP的方程为y=(x+a),△PF1F2为等腰三角形,∠F1F2P=120°,所以PF2=2c,∠PF2x=60°,故P(2c,c),代入y=(x+a)得,(2c+a)=c,解得e==.3.(2018·全国卷II高考文科·T11)已知F1,F2是椭圆C的两个焦点,P是C上的一点,若PF1⊥PF2,且∠PF2F1=60°,则C的离心率为()A.1-B.2-C.D.-1【命题意图】本题考查椭圆的定义和性质的应用,考查了学生的运算和转化能力. 【解析】选D .在直角三角形PF 1F 2中,F 1F 2=2c ,∠PF 2F 1=60°, 所以PF 1=c ,PF 2=c ,又PF 1+PF 2=2a ,所以c +c =2a ,解得e ===-1.4.(2017·全国乙卷文科·T12)设A,B 是椭圆C:23x +2y m =1长轴的两个端点,若C 上存在点M 满足∠AMB=120°,则m 的取值范围是( ) A.(0,1]∪[9,+∞)3∪[9,+∞) C.(0,1]∪[4,+∞)3∪[4,+∞)【命题意图】本题主要考查椭圆的性质,利用椭圆的性质解决相关问题.【解析】选A.当0<m<3时,焦点在x 轴上,要使C 上存在点M 满足∠AMB=120°,则ab3即3m3,得0<m≤1;当m>3时,焦点在y 轴上,要使C 上存在点M 满足∠AMB=120°,则a b 3即3m3,得m≥9,故m 的取值范围为(0,1]∪[9,+∞),故选A. 5.(2017·全国丙卷·理科·T10)已知椭圆C: 22x a +22y b=1(a>b>0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线bx-ay+2ab=0相切,则C 的离心率为 ( ) A.63 B. 33 C.23 D.13【命题意图】本题考查椭圆的性质及直线和圆的位置关系,考查学生的运算求解能力. 【解析】选A.直线bx-ay+2ab=0与圆相切,所以圆心到直线的距离22a b=a,整理得a 2=3b 2,即a 2=3(a 2-c 2)⇒2a 2=3c 2,即22c a =23,e=ca =63. 6.(2017·全国丙卷·文科·T11)同(2017·全国丙卷·理科·T10)已知椭圆C:22x a +22yb=1(a>b>0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线bx-ay+2ab=0相切,则C 的离心率为 ( )A.6 B.3 C.2 D.13【命题意图】本题考查椭圆的性质及直线和圆的位置关系,考查学生的运算求解能力. 【解析】选A.直线bx-ay+2ab=0与圆相切,所以圆心到直线的距离d=22ab+=a,整理为a 2=3b 2,即a 2=3(a 2-c 2)⇒2a 2=3c 2,即22c a=23,e=c a =63.7.(2016·全国卷Ⅰ高考文科·T5)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的,则该椭圆的离心率为 ( ) A.13B.12C.23D.34【解析】选B.设椭圆的标准方程为22x a+22y b =1(a>b>0),右焦点F(c,0),则直线l 的方程为x c +yb =1,即bx+cy-bc=0,22bcb c -+=12b,又a 2=b 2+c 2,得b 2c 2=14b 2a 2,所以e=c a =12.8.(2016·全国卷Ⅲ·文科·T12)与(2016·全国卷3·理科·T11)相同已知O 为坐标原点,F 是椭圆C:2222x y a b+ =1(a>b>0)的左焦点,A,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M,与y 轴交于点E.若直线BM 经过OE 的中点,则C 的离心率为 ( ) A.13B.12C.23D.34【解题指南】点M 是直线AE 和直线BM 的交点,点M 的横坐标和左焦点相同,进而找到a,b,c 的联系. 【解析】选A.由题意可知直线AE 的斜率存在,设为k,直线AE 的方程为y=k ()x a +,令x=0可得点E 坐标为()0,ka ,所以OE 的中点H 坐标为ka 0,2⎛⎫⎪⎝⎭,又右顶点B(a,0),所以可得直线BM 的斜率为-k 2,可设其方程为y=-k 2x+k 2a,联立()y k x a ,k k y x a,22⎧=+⎪⎨=-+⎪⎩可得点M 横坐标为-a 3,又点M 的横坐标和左焦点相同,所以-a 3=-c,所以e=13.9.(2016·江苏高考T10)如图,在平面直角坐标系xOy 中,F是椭圆2222x y +=1a b (a>b>0)的右焦点,直线y=b2与椭圆交于B,C 两点,且∠BFC=90°,则该椭圆的离心率是 .【解题指南】利用k BF ·k CF =-1计算得出离心率的值. 【解析】将直线y=2b与椭圆的方程联立得B 3b a,2⎛⎫- ⎪ ⎪⎝⎭,C 3b a,2⎛⎫ ⎪ ⎪⎝⎭,F(c,0),则k BF =b 23a c --,k CF =b23a c -, 因为∠BFC=90°,所以k BF ·k CF =b 23a c 2--×b23a c 2-=-1, 整理得b 2=3a 2-4c 2,所以a 2-c 2=3a 2-4c 2,即3c 2=2a 2⇒e=ca =6. 答案:6 10.(2015·全国1卷理科·T14)(14)一个圆经过椭圆的三个顶点,且圆心在x 轴上,则该圆的标准方程为 。
2017年普通高等学校招生全国统一考试数学(含答案)
2017年普通高等学校招生全国统一考试(课标全国卷Ⅰ)文数本卷满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的1.已知集合A={x|x<2},B={x|3-2x>0},则( )A.A∩B={x|x<32}B.A∩B=⌀C.A∪B={x|x<32}D.A∪B=R2.为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数3.下列各式的运算结果为纯虚数的是( )A.i(1+i)2B.i2(1-i)C.(1+i)2D.i(1+i)4.如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A.14B.π8C.12D.π45.已知F是双曲线C:x2-y 23=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为( )A.13B.12C.23D.326.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是( )7.设x,y满足约束条件{x+3y≤3,x-y≥1,y≥0,则z=x+y的最大值为( )A.0B.1C.2D.38.函数y=sin2x1-cosx的部分图象大致为( )9.已知函数f(x)=ln x+ln(2-x),则( )A. f(x)在(0,2)单调递增B. f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称10.下面程序框图是为了求出满足3n-2n>1 000的最小偶数n,那么在和两个空白框中,可以分别填入( )A.A>1 000和n=n+1B.A>1 000和n=n+2C.A≤1 000和n=n+1D.A≤1 000和n=n+211.△ABC的内角A,B,C的对边分别为a,b,c.已知sin B+sin A(sin C-cos C)=0,a=2,c=√2,则C=( )A.π12B.π6C.π4D.π312.设A,B是椭圆C:x 23+y2m=1长轴的两个端点.若C上存在点M满足∠AMB=120°,则m的取值范围是( )A.(0,1]∪[9,+∞)B.(0,√3]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0,√3]∪[4,+∞)第Ⅱ卷(非选择题,共90分)二、填空题:本题共4小题,每小题5分,共20分.13.已知向量a=(-1,2),b=(m,1).若向量a+b与a垂直,则m= .14.曲线y=x2+1x在点(1,2)处的切线方程为.15.已知α∈(0,π2),tan α=2,则cos(α-π4)= .16.已知三棱锥S-ABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S-ABC的体积为9,则球O的表面积为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)记S n为等比数列{a n}的前n项和.已知S2=2,S3=-6.(1)求{a n}的通项公式;(2)求S n,并判断S n+1,S n,S n+2是否成等差数列.18.(12分)如图,在四棱锥P-ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;,求该四棱锥的侧面积.(2)若PA=PD=AB=DC,∠APD=90°,且四棱锥P-ABCD的体积为8319.(12分)为了监控某种零件的一条生产线的生产过程,检验员每隔30 min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm).下面是检验员在一天内依次抽取的16个零件的尺寸:抽取次序 1 2 3 4 5 6 7 8零件尺寸 9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04抽取次序9 10 11 12 13 14 15 16零件尺寸10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95经计算得x =116∑i=116x i =9.97,s=√116∑i=116(x i -x )2=√116(∑i=116x i 2-16x 2)≈0.212,√∑i=116(i -8.5)2≈18.439,∑i=116(x i -x )(i-8.5)=-2.78,其中x i 为抽取的第i 个零件的尺寸,i=1,2, (16)(1)求(x i ,i)(i=1,2,…,16)的相关系数r,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若|r|<0.25,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小);(2)一天内抽检零件中,如果出现了尺寸在(x -3s,x +3s)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (i)从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ii)在(x -3s,x +3s)之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01) 附:样本(x i ,y i )(i=1,2,…,n)的相关系数r=∑i=1n(x i -x )(y i -y )√∑i=1n (x i -x )√∑i=1n(y i -y ).√0.008≈0.09.20.(12分)设A,B 为曲线C:y=x 24上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM⊥BM,求直线AB 的方程.21.(12分)已知函数f(x)=e x(e x-a)-a2x.(1)讨论f(x)的单调性;(2)若f(x)≥0,求a的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4—4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为{x =3cosθ,y =sinθ(θ为参数),直线l 的参数方程为{x =a +4t ,y =1-t(t 为参数). (1)若a=-1,求C 与l 的交点坐标;(2)若C 上的点到l 距离的最大值为√17,求a.23.[选修4—5:不等式选讲](10分)已知函数f(x)=-x 2+ax+4,g(x)=|x+1|+|x-1|. (1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[-1,1],求a 的取值范围.2017年普通高等学校招生全国统一考试(课标全国卷Ⅰ)一、选择题1.A 本题考查集合的运算.由3-2x>0得x<32,则B={x |x <32},所以A∩B={x |x <32},故选A.2.B 本题考查样本的数字特征.统计问题中,体现数据的稳定程度的指标为数据的方差或标准差.故选B.3.C 本题考查复数的运算和纯虚数的定义. A.i(1+i)2=i×2i=-2; B.i 2(1-i)=-(1-i)=-1+i; C.(1+i)2=2i;D.i(1+i)=-1+i,故选C. 4.B 本题考查几何概型.设正方形的边长为2,则正方形的内切圆的半径为1,其中黑色部分和白色部分关于正方形的中心对称,则黑色部分的面积为π2,所以在正方形内随机取一点,此点取自黑色部分的概率P=π22×2=π8,故选B.5.D 本题考查双曲线的几何性质. 易知F(2,0),不妨取P 点在x 轴上方,如图.∵PF⊥x 轴,∴P(2,3),|PF|=3,又A(1,3), ∴|AP|=1,AP⊥PF, ∴S △APF =12×3×1=32.故选D.6.A 本题考查线面平行的判定.B 选项中,AB ∥MQ,且AB ⊄平面MNQ,MQ ⊂平面MNQ,则AB ∥平面MNQ;C 选项中,AB ∥MQ,且AB ⊄平面MNQ,MQ ⊂平面MNQ,则AB ∥平面MNQ;D 选项中,AB ∥NQ,且AB ⊄平面MNQ,NQ ⊂平面MNQ,则AB ∥平面MNQ.故选A.7.D 本题考查简单的线性规划问题. 作出约束条件表示的可行域如图:平移直线x+y=0,可得目标函数z=x+y 在A(3,0)处取得最大值,z max =3,故选D.8.C 本题考查函数图象的识辨.易知y=sin2x1-cosx 为奇函数,图象关于原点对称,故排除B 选项;sin 2≈sin 120°=√32,cos 1≈cos 60°=12,则f(1)=sin21-cos1=√3,故排除A 选项; f(π)=sin2π1-cos π=0,故排除D 选项,故选C.9.C 本题考查函数的图象与性质.函数f(x)=ln x+ln(2-x)=ln[x(2-x)],其中0<x<2,则函数f(x)由f(t)=ln t,t(x)=x(2-x)复合而成,由复合函数的单调性可知,x ∈(0,1)时, f(x)单调递增,x ∈(1,2)时, f(x)单调递减,则A 、B 选项错误;t(x)的图象关于直线x=1对称,即t(x)=t(2-x),则f(x)=f(2-x),即f(x)的图象关于直线x=1对称,故C 选项正确,D 选项错误.故选C. 10.D 本题考查程序框图问题.本题求解的是满足3n-2n>1 000的最小偶数n,判断循环结构为当型循环结构,即满足条件要执行循环体,不满足条件应输出结果,所以判断语句应为A≤1 000,另外,所求为满足不等式的偶数解,因此中语句应为n=n+2,故选D.11.B 本题考查正弦定理和两角和的正弦公式.在△ABC 中,sin B=sin(A+C),则sin B+sin A(sin C-cos C) =sin(A+C)+sin A(sin C-cos C)=0,即sin Acos C+cos Asin C+sin Asin C-sin Acos C=0,∴cos Asin C+sin Asin C=0,∵sin C≠0,∴cos A+sin A=0,即tan A=-1,即A=34π. 由a sinA =c sinC 得√22=√2sinC ,∴sin C=12,又0<C<π4,∴C=π6,故选B.12.A 本题考查圆锥曲线的几何性质.当0<m<3时,椭圆C 的长轴在x 轴上,如图(1),A(-√3,0),B(√3,0),M(0,1).图(1)当点M 运动到短轴的端点时,∠AMB 取最大值,此时∠AMB≥120°,则|MO|≤1,即0<m≤1; 当m>3时,椭圆C 的长轴在y 轴上,如图(2),A(0,√m ),B(0,-√m ),M(√3,0)图(2)当点M 运动到短轴的端点时,∠AMB 取最大值,此时∠AMB≥120°,则|OA|≥3,即√m ≥3,即m≥9.综上,m ∈(0,1]∪[9,+∞),故选A.二、填空题 13.答案 7解析 本题考查向量数量积的坐标运算. ∵a=(-1,2),b=(m,1),∴a+b=(m -1,3),又(a+b)⊥a, ∴(a+b)·a=-(m-1)+6=0,解得m=7. 14.答案 x-y+1=0解析 本题考查导数的几何意义.∵y=x 2+1x,∴y'=2x -1x2,∴y'|x=1=2-1=1,∴所求切线方程为y-2=x-1,即x-y+1=0.15.答案3√1010解析 因为α∈(0,π2),且tan α=sinαcosα=2,所以sin α=2cos α,又sin 2α+cos 2α=1,所以sin α=2√55,cos α=√55,则cos (α-π4)=cos αcos π4+sin αsin π4=√55×√22+2√55×√22=3√1010.16.答案 36π解析 由题意作出图形,如图.设球O 的半径为R,由题意知SB⊥BC,SA⊥AC,又SB=BC,SA=AC,则SB=BC=SA=AC=√2R.连接OA,OB,则OA⊥SC,OB⊥SC,因为平面SCA⊥平面SCB,平面SCA∩平面SCB=SC,所以OA⊥平面SCB,所以OA⊥OB,则AB=√2R,所以△ABC 是边长为√2R 的等边三角形,设△ABC 的中心为O 1,连接OO 1,CO 1. 则OO 1⊥平面ABC,CO 1=23×√32×√2R=√63R,则OO 1=√R 2-(√63R)2=√33R,则V S-ABC =2V O-ABC =2×13×√34(√2R)2×√33R=13R 3=9, 所以R=3.所以球O 的表面积S=4πR 2=36π.三、解答题17.解析 本题考查等差、等比数列. (1)设{a n }的公比为q,由题设可得{a 1(1+q )=2,a 1(1+q +q 2)=-6.解得q=-2,a 1=-2.故{a n }的通项公式为a n =(-2)n . (2)由(1)可得S n =a 1(1-q n )1-q=-23+(-1)n·2n+13.由于S n+2+S n+1=-43+(-1)n·2n+3-2n+23=2[-23+(-1)n·2n+13]=2S n ,故S n+1,S n ,S n+2成等差数列.18.解析 本题考查立体几何中面面垂直的证明和几何体侧面积的计算. (1)证明:由已知∠BAP=∠CDP=90°, 得AB⊥AP,CD⊥PD. 由于AB∥CD,故AB⊥PD, 从而AB⊥平面PAD. 又AB ⊂平面PAB, 所以平面PAB⊥平面PAD.(2)在平面PAD 内作PE⊥AD,垂足为E.由(1)知,AB⊥平面PAD, 故AB⊥PE,可得PE⊥平面ABCD. 设AB=x,则由已知可得AD=√2x,PE=√22x. 故四棱锥P-ABCD 的体积V P-ABCD =13AB·AD·PE=13x 3.由题设得13x 3=83,故x=2.从而PA=PD=2,AD=BC=2√2,PB=PC=2√2.可得四棱锥P-ABCD 的侧面积为12PA·PD+12PA·AB+12PD·DC+12BC 2sin 60°=6+2√3.19.解析 本题考查统计问题中的相关系数及样本数据的均值与方差. (1)由样本数据得(x i ,i)(i=1,2,…,16)的相关系数为r=∑i=116(x i -x )(i -8.5)√∑i=1(x i -x )2√∑i=1(i -8.5)2=0.212×√16×18.439≈-0.18.由于|r|<0.25,因此可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小.(2)(i)由于x =9.97,s≈0.212,由样本数据可以看出抽取的第13个零件的尺寸在(x -3s,x +3s)以外,因此需对当天的生产过程进行检查.(ii)剔除离群值,即第13个数据,剩下数据的平均数为115×(16×9.97-9.22)=10.02, 这条生产线当天生产的零件尺寸的均值的估计值为10.02.∑i=116x i 2=16×0.2122+16×9.972≈1 591.134,剔除第13个数据,剩下数据的样本方差为115×(1 591.134-9.222-15×10.022)≈0.008,这条生产线当天生产的零件尺寸的标准差的估计值为√0.008≈0.09.20.解析 本题考查直线与抛物线的位置关系. (1)设A(x 1,y 1),B(x 2,y 2),则x 1≠x 2,y 1=x 124,y 2=x 224,x 1+x 2=4, 于是直线AB 的斜率k=y 1-y2x 1-x 2=x 1+x 24=1.(2)由y=x 24,得y'=x2,设M(x3,y3),由题设知x32=1,解得x3=2,于是M(2,1).设直线AB的方程为y=x+m,故线段AB的中点为N(2,2+m),|MN|=|m+1|.将y=x+m代入y=x 24得x2-4x-4m=0.当Δ=16(m+1)>0,即m>-1时,x1,2=2±2√m+1.从而|AB|=√2|x1-x2|=4√2(m+1).由题设知|AB|=2|MN|,即4√2(m+1)=2(m+1),解得m=7.所以直线AB的方程为y=x+7.21.解析本题考查了利用导数研究函数的单调性、最值.(1)函数f(x)的定义域为(-∞,+∞), f '(x)=2e2x-ae x-a2=(2e x+a)(e x-a).①若a=0,则f(x)=e2x,在(-∞,+∞)单调递增.②若a>0,则由f '(x)=0得x=ln a.当x∈(-∞,ln a)时, f '(x)<0;当x∈(ln a,+∞)时, f '(x)>0.故f(x)在(-∞,ln a)单调递减,在(ln a,+∞)单调递增.③若a<0,则由f '(x)=0得x=ln(-a2).当x∈(-∞,ln(-a2))时,f '(x)<0;当x∈(ln(-a2),+∞)时, f '(x)>0.故f(x)在(-∞,ln(-a2))单调递减,在(ln(-a2),+∞)单调递增.(2)①若a=0,则f(x)=e2x,所以f(x)≥0.②若a>0,则由(1)得,当x=ln a时, f(x)取得最小值,最小值为f(ln a)=-a2ln a,从而当且仅当-a 2ln a≥0,即a≤1时, f(x)≥0.③若a<0,则由(1)得,当x=ln (-a 2)时, f(x)取得最小值,最小值为f (ln (-a2))=a 2[34-ln (-a2)].从而当且仅当a 2[34-ln (-a2)]≥0, 即a≥-2e 34时, f(x)≥0. 综上,a 的取值范围是[-2e 34,1].22.解析 本题考查极坐标与参数方程的应用. (1)曲线C 的普通方程为x 29+y 2=1.当a=-1时,直线l 的普通方程为x+4y-3=0. 由{x +4y -3=0,x 29+y 2=1解得{x =3,y =0或{x =-2125,y =2425.从而C 与l 的交点坐标为(3,0),(-2125,2425).(2)直线l 的普通方程为x+4y-a-4=0,故C 上的点(3cos θ,sin θ)到l 的距离为d=√17.当a≥-4时,d 的最大值为√17,由题设得√17=√17,所以a=8;当a<-4时,d 的最大值为√17,由题设得17=√17,所以a=-16.综上,a=8或a=-16.23.解析 本题考查含绝对值不等式的求解问题.(1)当a=1时,不等式f(x)≥g(x)等价于x2-x+|x+1|+|x-1|-4≤0.①当x<-1时,①式化为x2-3x-4≤0,无解;当-1≤x≤1时,①式化为x2-x-2≤0,从而-1≤x≤1;当x>1时,①式化为x2+x-4≤0,从而1<x≤-1+√17.2所以f(x)≥g(x)的解集为}.{x|-1≤x≤-1+√172(2)当x∈[-1,1]时,g(x)=2.所以f(x)≥g(x)的解集包含[-1,1],等价于当x∈[-1,1]时f(x)≥2.又f(x)在[-1,1]的最小值必为f(-1)与f(1)之一,所以f(-1)≥2且f(1)≥2,得-1≤a≤1.所以a的取值范围为[-1,1].。
2017年高考全国1卷数学试题及答案
2017高考全国Ⅰ卷数学文数 1-10
理数 11-16
1.已知集合A ={}|2x x <,B ={}|320x x ->,则
A .A
B =3|2x x ⎧⎫<⎨⎬⎩⎭ B .A B =∅
C .A B 3|2x x ⎧⎫=<⎨⎬⎩⎭
D .A
B=R 2.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是 A .x 1,x 2,…,x n 的平均数
B .x 1,x 2,…,x n 的标准差
C .x 1,x 2,…,x n 的最大值
D .x 1,x 2,…,x n 的中位数
3.下列各式的运算结果为纯虚数的是
A .i(1+i)2
B .i 2(1-i)
C .(1+i)2
D .i(1+i)
4.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是
A .14
B .π8
C .12
D .π 4 5.已知F 是双曲线C :x 2-2
3
y =1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3).则△APF 的面积为
A .13
B .1 2
C .2 3
D .3 2
6.如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是。
2017年全国统一高考数学试卷(理科)(新课标ⅲ)(含解析版)
2017 年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题:本题共12 小题,每小题5 分,共60 分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B 中元素的个数为()A.3 B.2 C.1 D.02.(5分)设复数z 满足(1+i)z=2i,则|z|=()A.B.C.D.23.(5 分)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014 年1 月至2016 年12 月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8 月D.各年1 月至6 月的月接待游客量相对于7 月至12 月,波动性更小,变化比较平稳4.(5 分)(x+y)(2x﹣y)5的展开式中的x3y3系数为()A.﹣80 B.﹣40 C.40 D.805.(5 分)已知双曲线C:﹣=1 (a>0,b>0)的一条渐近线方程为y= x,且与椭圆+ =1 有公共焦点,则C 的方程为()A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=1 6.(5分)设函数f(x)=cos(x+),则下列结论错误的是()A.f(x)的一个周期为﹣2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在(,π)单调递减7.(5分)执行如图的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为()A.5 B.4 C.3 D.28.(5 分)已知圆柱的高为1,它的两个底面的圆周在直径为2 的同一个球的球面上,则该圆柱的体积为()A.πB.C.D.9.(5 分)等差数列{a n}的首项为1,公差不为0.若a2,a3,a6 成等比数列,则{a n}前6 项的和为()A.﹣24 B.﹣3 C.3 D.810.(5 分)已知椭圆C:=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2 为直径的圆与直线bx﹣ay+2ab=0 相切,则C 的离心率为()A.B.C.D.11.(5 分)已知函数f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)有唯一零点,则a=()A.﹣B.C.D.112.(5 分)在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若=λ+μ,则λ+μ 的最大值为()A.3 B.2C.D.2二、填空题:本题共4 小题,每小题5 分,共20 分。
2017年高考浙江卷数学试题解析(解析版)
绝密★启用前2017年普通高等学校招生全国统一考试(浙江卷)数学选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{|11}P x x =-<<,{02}Q x =<<,那么P Q =U A .(1,2)-B .(0,1)C .(1,0)-D .(1,2)【答案】A【解析】P Q U 取,P Q 集合的所有元素,即12x -<<.故选A . 【考点】集合运算【点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.2.椭圆22194x y +=的离心率是A B C .23D .59【答案】B【解析】e =B . 【考点】 椭圆的简单几何性质【点睛】解决椭圆和双曲线的离心率的求值及范围问题,其关键就是确立一个关于,,a b c 的方程或不等式,再根据,,a b c 的关系消掉b 得到,a c 的关系式,建立关于,,a b c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.3.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是(第3题图)A .12π+ B .32π+ C .312π+ D .332π+ 【答案】A【解析】 有三视图可知,直观图是有半个圆锥与一个三棱锥构成,半圆锥体积()2111=13232S π⨯π⨯⨯=,棱锥体积211=213=132S ⎛⎫⨯⨯⨯ ⎪⎝⎭,所以几何体体积1212S S S π=+=+. 故选A .【考点】 三视图【点睛】思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整. 4.若x ,y 满足约束条件03020x x y x y ≥⎧⎪+-≥⎨⎪-≤⎩,则2z x y =+的取值范围是A .[0,6]B .[0,4]C .[6,)+∞D .[4,)+∞【答案】D【解析】如图,可行域为一开放区域,所以直线过点(2,1)时取最小值4,无最大值,选D .【考点】 简单线性规划【点睛】本题主要考查线性规划问题,首先由不等式组作出相应的可行域,作图时,可将不等式0Ax By C ++≥转化为y kx b ≤+(或y kx b ≥+),“≤”取下方,“≥”取上方,并明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.5.若函数f (x )=x 2+ ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M – mA .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关【答案】B【解析】取0,0a b ==;得1M m -=;取0,1a b ==得1M m -=; 取1,0a b ==;得2M m -=; 故与a 有关;与b 无关.故选B . 【考点】二次函数的最值【点睛】对于二次函数的最值或值域问题,通常先判断函数图象对称轴与所给自变量闭区间的关系,结合图象,当函数图象开口向上时,若对称轴在区间的左边,则函数在所给区间内单调递增;若对称轴在区间的右边,则函数在所给区间内单调递减;若对称轴在区间内,则函数图象顶点的纵坐标为最小值,区间端点距离对称轴较远的一端取得函数的最大值.6.已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】由46511210212(510)S S S a d a d d +-=+-+=,可知当0d >时,有46520S S S +->,即4652S S S +>,反之,若4652S S S +>,则0d >,所以“d >0”是“S 4 + S 6>2S 5”的充要条件,选C .【考点】 等差数列、充分必要性【点睛】本题考查等差数列的前n 项和公式,通过套入公式与简单运算,可知4652S S S d +-=, 结合充分必要性的判断,若p q ⇒,则p 是q 的充分条件,若p q ⇐,则p 是q 的必要条件,该题“0d >”⇔“46520S S S +->”,故互为充要条件.7.函数y=f (x )的导函数()y f x '=的图象如图所示,则函数y=f (x )的图象可能是(第7题图)【答案】D【解析】导数大于零,原函数递增,导数小于零,原函数递减,对照导函数图像和原函数图像.故选D .【考点】 导函数的图象【点睛】本题主要考查导数图象与原函数图象的关系:若导函数图象与x 轴的交点为0x ,且图象在0x 两侧附近连续分布于x 轴上下方,则0x 为原函数单调性的拐点,运用导数知识来讨论函数单调性时,由导函数()f'x 的正负,得出原函数()f x 的单调区间.8.已知随机变量i ξ满足P (i ξ=1)=p i ,P (i ξ=0)=1–p i ,i =1,2. 若0<p 1<p 2<12,则 A .1()E ξ<2()E ξ,1()D ξ<2()D ξ B .1()E ξ<2()E ξ,1()D ξ>2()D ξ C .1()E ξ>2()E ξ,1()D ξ<2()D ξD .1()E ξ>2()E ξ,1()D ξ>2()D ξ【答案】A【解析】∵1122(),()E p E p ξξ==,∴12()()E E ξξ<,∵111222()(1),()(1)D p p D p p ξξ=-=-,∴121212()()()(1)0D D p p p p ξξ-=---<,故选A . 【考点】 两点分布【点睛】求离散型随机变量的分布列,首先要根据具体情况确定X 的取值情况,然后利用排列,组合与概率知识求出X 取各个值时的概率.对于服从某些特殊分布的随机变量,其分布列可以直接应用公式给出,其中超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.由已知本题随机变量iξ服从两点分布,由两点分布数学期望与方差的公式可得A 正确.9.如图,已知正四面体D –ABC (所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP=PB ,2BQ CRQC RA==,分别记二面角D –PR –Q ,D –PQ –R ,D –QR –P 的平面角为α,β,γ,则(第9题图)A .γ<α<βB .α<γ<βC .α<β<γD .β<γ<α【答案】B【解析】 设D 在底面ABC 内射影为O ,判断O 到PR ,PQ ,QR 的距离, 显然有,αβ,γ均为锐角.1P 为三等分点,O 到1PQR △三边距离相等.动态研究问题.1P P ®,所以O 到QR 距离不变,O 到PQ 距离减少,O 到PR 距离变大.所以αγβ<<.【考点】 空间角(二面角)【点睛】立体几何是高中数学中的重要内容,也是高考重点考查的考点与热点.这类问题的设置一般有线面位置关系的证明与角度距离的计算等两类问题.解答第一类问题时一般要借助线面平行与垂直的判定定理进行;解答第二类问题时先建立空间直角坐标系,运用空间向量的坐标形式及数量积公式进行求解.10.如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O ,记1·I OA OB u u u r u u u r=,2·I OB OC u u u r u u u r =,3·I OC OD u u u r u u u r=,则(第10题图)A .123I I I <<B .132I I I <<C .312I I I <<D .213I I I <<【答案】C【解析】如图所示,四边形ABCE 是正方形,F 为正方形的对角线的交点,易得AO AF <,而90AFB ∠=o ,∴AOB ∠与COD ∠为钝角,AOD ∠与BOC ∠为锐角.根据题意12()I I OA OB OB OC OB OA OC OB CA -=⋅-⋅=⋅-=⋅=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r||||cos 0OB CA AOB ∠<u u u r u u u r,∴12I I <,同理23I I >.做AG BD ⊥于G ,又AB AD =.∴OB BG GD OD <=<,而OA AF FC OC <=<,∴||||||||OA OB OC OD ⋅<⋅u u u r u u u r u u u r u u u r,而cos cos 0AOB COD ∠=∠<,∴OA OB OC OD ⋅>⋅u u u r u u u r u u u r u u u r,即13I I >,∴312I I I <<,选C .G FOD【考点】 平面向量的数量积运算【点睛】平面向量的计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用.利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.列出方程组求解未知数.本题通过所给条件结合数量积运算,易得90AOB COD ∠=∠>o ,由AB =BC =AD =2,CD =3,可求得OA OC <,OB OD <,进而得到312I I I <<.非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
椭圆及其性质(二)
3-1 C. 2
D. 3-1
P
【解析】 由题设知∠F1PF2=90°,∠PF2F1=60°,|F1F2|=2c,
•
F1
o
•
F2
x
所以|PF2|=c,|PF1|= 3c.由椭圆的定义得|PF1|+|PF2|=2a,即 3c+c=2a,
所以( 3+1)c=2a,故椭圆 C 的离心率 e=ac= 32+1= 3-1.故选 D.
b2 所以 xP=c,将 xP=c 代入椭圆方程得 yP=ba2,即|PF|=ba2,则 tan∠PAF=||APFF||=a+a c=12,
结合 b2=a2-c2,整理得 2c2+ac-a2=0,两边同时除以 a2
得 2e2+e-1=0,解得 e=21或 e=-1(舍去). 故选 D.
b2 1 a2 ac 2b2
aac 2
上一页
返回导航
下一页
第二部分 专题五 解析几何
7
例 2.(1)已知椭圆 C:xa22+by22=1(a>b>0)的右焦点为 F,直线 l:2x-y=0 交椭圆 C 于 A,B 两点,且
|AF|+|BF|=6,若点 F 到直线 l 的距离不小于 2,则椭圆 C 的离心率 e 的取值范围是(
B.( 2-1,1)
C.(0, 3-1)
D.( 3-1,1)
解析:选 B.由题意得 F1(-c,0),F2(c,0),A-c,ba2,B-c,-ba2.
A
y
因为△ABF2 是锐角三角形,所以∠AF2F1<45°,所以 tan∠AF2F1<1,
b2 即2ac<1.整理,得 b2<2ac,所以 a2-c2<2ac.两边同时除以 a2 并整理,
的面积是( C )
椭圆的定义、标准方程及其性质
椭圆的定义、标准方程及其性质[考纲传真]1.了解椭圆的实际背景,了解椭圆在刻画现实世界和解决实际问题中的作用.2.掌握椭圆的定义、几何图形、标准方程及简单性质(范围、对称性、顶点、离心率).3.理解数形结合思想.4.了解椭圆的简单应用.【知识通关】1.椭圆的定义(1)平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.(2)集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0.①当2a>|F1F2|时,M点的轨迹为椭圆;②当2a=|F1F2|时,M点的轨迹为线段F1F2;③当2a<|F1F2|时,M点的轨迹不存在.2.椭圆的标准方程和几何性质标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0)图形性质范围-a≤x≤a-b≤y≤b-b≤x≤b-a≤y≤a 对称性对称轴:坐标轴;对称中心:原点顶点A1(-a,0),A2(a,0),B1(0,-b),B2(0,b)A1(0,-a),A2(0,a),B1(-b,0),B2(b,0)离心率e=ca,且e∈(0,1)a,b,c的关系c2=a2-b2 1.点P(x0,y0)和椭圆的位置关系(1)点P(x0,y0)在椭圆内⇔x20a2+y20b2<1.(2)点P(x0,y0)在椭圆上⇔x20a2+y20b2=1.(3)点P (x 0,y 0)在椭圆外⇔x 20a 2+y 20b2>1.2.焦点三角形椭圆上的点P (x 0,y 0)与两焦点构成的△PF 1F 2叫做焦点三角形.r 1=|PF 1|,r 2=|PF 2|,∠F 1PF 2=θ,△PF 1F 2的面积为S ,则在椭圆x 2a 2+y 2b 2=1(a >b >0)中:(1)当r 1=r 2时,即点P 的位置为短轴端点时,θ最大;(2)S =b 2tan θ2=c |y 0|,当|y 0|=b 时,即点P 的位置为短轴端点时,S 取最大值,最大值为bc . (3)a -c ≤|PF 1|≤a +c .3.椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a 是斜边长,a 2=b 2+c 2.4.已知过焦点F 1的弦AB ,则△ABF 2的周长为4a . 5.椭圆中点弦的斜率公式若M (x 0,y 0)是椭圆x 2a 2+y 2b 2=1(a >b >0)的弦AB (AB 不平行y 轴)的中点,则有k AB ·k OM =-b 2a 2,即k AB =-b 2x 0a 2y 0.6.弦长公式:直线与圆锥曲线相交所得的弦长 |AB |=1+k 2|x 1-x 2| =(1+k 2)[(x 1+x 2)2-4x 1x 2] =1+1k2|y 1-y 2|=⎝ ⎛⎭⎪⎫1+1k 2[(y 1+y 2)2-4y 1y 2](k 为直线斜率). 【基础自测】1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)平面内与两个定点F 1,F 2的距离之和等于常数的点的轨迹是椭圆.( ) (2)椭圆上一点P 与两焦点F 1,F 2构成△PF 1F 2的周长为2a +2c (其中a 为椭圆的长半轴长,c 为椭圆的半焦距).( ) (3)椭圆的离心率e 越大,椭圆就越圆.( )(4)关于x ,y 的方程mx 2+ny 2=1(m >0,n >0,m ≠n )表示的曲线是椭圆.( ) [答案] (1)× (2)√ (3)× (4)√ 2.椭圆x 216+y 225=1的焦点坐标为( )A .(±3,0)B .(0,±3)C .(±9,0)D .(0,±9)B3.已知动点M 到两个定点A (-2,0),B (2,0)的距离之和为6,则动点M 的轨迹方程为( ) A .x 29+y 2=1 B .y 29+x 25=1 C .y 29+x 2=1 D .x 29+y 25=1 D4.若一个椭圆长轴的长、短轴的长和焦距成等比数列,则该椭圆的离心率是( ) A .5-12B .1+52C .-1+52D .-1±52C5.椭圆C :x 225+y 216=1的左、右焦点分别为F 1,F 2,过F 2的直线交椭圆C 于A ,B 两点,则△F 1AB 的周长为________. 20【题型突破】椭圆的定义及其应用【例1】 (1)已知两圆C 1:(x -4)2+y 2=169,C 2:(x +4)2+y 2=9,动圆在圆C 1内部且和圆C 1相内切,和圆C 2相外切,则动圆圆心M 的轨迹方程为( ) A .x 264-y 248=1 B .x 248+y 264=1 C .x 248-y 264=1 D .x 264+y 248=1 (2)F 1,F 2是椭圆x 29+y 27=1的两个焦点,A 为椭圆上一点,且∠AF 1F 2=45°,则△AF 1F 2的面积为( ) A .7 B .74 C .72D .752(1)D (2)C[方法总结] 1.椭圆定义的应用主要有两个方面:一是判定平面内动点的轨迹是否为椭圆;二是利用定义求焦点三角形的周长、面积、弦长、最值和离心率等. 2.椭圆的定义式必须满足2a >|F 1F 2|.(1)如图所示,一圆形纸片的圆心为O ,F 是圆内一定点,M 是圆周上一动点,把纸片折叠使M 与F 重合,然后抹平纸片,折痕为CD ,设CD 与OM 交于点P ,则点P 的轨迹是( ) A .椭圆 B .双曲线 C .抛物线D .圆(2)(2019·徐州模拟)已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1⊥PF 2,若△PF 1F 2的面积为9,则b =________. (1)A (2)3椭圆的标准方程【例2】 (1)在△ABC 中,A (-4,0),B (4,0),△ABC 的周长是18,则顶点C 的轨迹方程是( ) A .x 225+y 29=1(y ≠0) B .y 225+x 29=1(y ≠0) C .x 216+y 29=1(y ≠0) D .y 216+x 29=1(y ≠0) (2)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点⎝ ⎛⎭⎪⎫-32,52,(3,5),则椭圆方程为________.(3)过点(3,-5),且与椭圆y 225+x 29=1有相同焦点的椭圆的标准方程为________.(1)A (2)y 210+x 26=1 (3)y 220+x 24=1[方法总结] (1)求椭圆的标准方程多采用定义法和待定系数法.(2)利用定义法求椭圆方程,要注意条件2a >|F 1F 2|;利用待定系数法要先定形(焦点位置),再定量,也可把椭圆方程设为mx 2+ny 2=1(m >0,n >0,m ≠n )的形式.(1)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为33,过F 2的直线l 交C 于A ,B 两点,若△AF 1B 的周长为43,则C 的方程为( ) A .x 23+y 22=1 B .x 23+y 2=1 C .x 212+y 28=1 D .x 212+y 24=1 (2)椭圆E 的焦点在x 轴上,中心在原点,其短轴上的两个顶点和两个焦点恰为边长是2的正方形的顶点,则椭圆E 的标准方程为( ) A .x 22+y 22=1 B .x 22+y 2=1 C .x 24+y 22=1 D .y 24+x 22=1 (3)设F 1,F 2分别是椭圆E :x 2+y 2b 2=1(0<b <1)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点.若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的方程为________. (1)A (2)C (3)x 2+32y 2=1椭圆的几何性质►考法1 求离心率或范围【例3】 (1)(2019·深圳模拟)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为( ) A .36B .13C .12D .33(2)(2017·全国卷Ⅰ)设A ,B 是椭圆C :x 23+y 2m =1长轴的两个端点,若C 上存在点M 满足∠AMB =120°,则m 的取值范围是( ) A .(0,1]∪[9,+∞)B .(0,3]∪[9,+∞)C .(0,1]∪[4,+∞)D .(0,3]∪[4,+∞)(1)D (2)A►考法2 与椭圆几何性质有关的范围问题【例4】 (2019·合肥质检)如图,焦点在x 轴上的椭圆x 24+y 2b 2=1的离心率e =12,F ,A 分别是椭圆的一个焦点和顶点,P是椭圆上任意一点,则PF →·PA →的最大值为________. 4[方法总结] (1)求椭圆离心率的方法,①直接求出a ,c 的值,利用离心率公式直接求解.,②列出含有a ,b ,c 的齐次方程(或不等式),借助于b 2=a 2-c 2消去b ,转化为含有e 的方程(或不等式)求解.(2)利用椭圆几何性质求值或范围的思路,求解与椭圆几何性质有关的参数问题时,要结合图形进行分析,当涉及顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的关系.建立关于a 、b 、c 的方程或不等式.(1)(2018·全国卷Ⅱ)已知F 1,F 2是椭圆C 的两个焦点,P 是C 上的一点.若PF 1⊥PF 2,且∠PF 2F 1=60°,则C 的离心率为( ) A .1-32B .2- 3C .3-12D .3-1(2)若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为( ) A .2 B .3 C .6 D .8(1)D (2)C【真题链接】1.(2018·全国卷Ⅱ)已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,A是C的左顶点,点P在过A且斜率为36的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为()A.23B.12C.13D.14D2.(2016·全国卷Ⅰ)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的14,则该椭圆的离心率为()A.13B.12C.23D.34B。
2017年高考理科数学全国卷1含答案
2017年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名和座位号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,在选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{|1}A x x =<,{|31}xB x =<,则 A .{| 0}A B x x =< B .A B =RC .{|1}AB x x =>D .AB =∅2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14 B .8πC .12D .4π3.设有下面四个命题1p :若复数z 满足1z∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数1z ,2z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为 A .1p ,3pB .1p ,4pC .2p ,3pD .2p ,4p4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为 A .1B .2C .4D .85.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(1)1f =-,则满足1(2)1f x -≤-≤的x 的取值范围是 A .[2,2]- B .[1,1]-C .[0,4]D .[1,3]6.621(1)(1)x x ++展开式中2x 的系数为A .15B .20C .30D .357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为 A .10 B .12 C .14D .168.右面程序框图是为了求出满足321000n n ->的最小偶数n ,那么在和两个空白框中,可以分别填入 A .1000A >和1n n =+ B .1000A >和2n n =+ C .1000A ≤和1n n =+ D .1000A ≤和2n n =+9.已知曲线1:cos C y x =,22:sin(2)3C y x π=+,则下面结论正确的是 A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移6π个单位长度,得到曲线2CB .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移12π个单位长度,得到曲线2CC .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移6π个单位长度,得到曲线2CD .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移12π个单位长度,得到曲线2C10.已知F 为抛物线2:4C y x =的焦点,过F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于A 、B 两点,直线2l 与C 交于D 、E 两点,则||||AB DE +的最小值为 A .16B .14C .12D .1011.设x ,y ,z 为正数,且235x y z==,则A .235x y z <<B .523z x y <<C .352y z x <<D .325y x z <<12.几位大学生响应国家的创业号召,开发了一款应用软件。
2017年高考数学(理科)全国Ⅰ卷试卷分析
2017年高考数学(理科)全国Ⅰ卷试卷分析合肥一中吴建平1.试卷题型稳定,难、易适中选择、填空、解答题基本是按照由易到难的顺序排列,数学的几大主要板块进行了重点考查,主要是数列、三角函数、立体几何、概率统计、解析几何、函数导数以及选考部分参数方程和不等式,试卷结构和往年保持不变,体现了高考的稳定性和延续性,注重基础知识,体现数学素养,考查计算能力,有利于学生的正常发挥。
2.试卷体现了对数学核心素养和数学文化的考查试卷体现了数学文化,如第2题把几何概型的考查揉合进了我国古代的八卦图中,弘扬了优秀的传统文化,体现了图形的对称美。
12题的数学抽象和推理、16题的数学建模、19题的数学应用和数学建模,都是对学生的核心素养进行了很好的考查。
3.体现了基础性和常规性选择题前11题和填空题前3题都比较基础和常规,解答题的17、18及选考题都是常规的考查,和往年的全国一卷及模考题相类似。
体现了通性、通法,学生如有较扎实的基本功和运算能力,解答这些题目应该完全没有问题。
4.体现了综合性、创新性和应用性如选择题12题考查数列的通项、求和及不等式问题,16题考查了平面图形的折叠、函数模型的建立、锥体体积公式和函数最值的求法。
19题数学应用问题贴近生活、贴近学生,具有浓厚的生活气息,体现了数学和实际的紧密结合,对学生阅读理解、提取信息和数据处理能力要求较高,20题考查运算能力、特殊和一般关系问题,第21题第(1)问要求考生求出导函数的零点,进而对参数进行分类讨论,掌握函数的单调性;在此基础上,第(2)问要求根据函数有两个零点的条件,确定参数的取值范围,试题层层深入,为考生解答提供广阔的想象空间。
在知识的交汇点处命题,对学生的理性思维进行了很好的考查。
总之,整份试卷加强对学生理性思维的考查,渗透了数学文化,突出对创新应用能力的考查。
试题关注社会发展,引导考生运用所学数学知识解决生活实际问题,富有时代气息。
试卷遵循考试大纲的各项规定,试卷结构保持稳定,难易适度,各种难度的试题比例适当。
2017年全国高考理科数学试题及标准答案全国卷1
2017年普通高等学校招生全国统一考试理科数学本试卷5页,23小题,满分150分。
考试用时120分钟。
注意事项:1 •答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2 •作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑; 如需要改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3•非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按 以上要求作答无效。
4•考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共 12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
如图,正方形 ABCD 内的图形来自中国古代的太极图•正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称•在正方形内随机取一点,则此点取自黑色部分的概率是其中的真命题为4 .记S n 为等差数列{a n }的前n 项和.若a 4 a^ 24 , S^ 48,则{a .}的公差为5.函数f (x)在(」:,=)单调递减,且为奇函数.若 f(1)=「1,则满足-1岂f(x-2)空1的x 的取值范绝密★启用前1.已知集合 A ={x |x <1}, B={x | 3x:::1},则 A . A"B 二{x|x :::0} B. A U B = RC. A U B ={x|x 1}D.A AB =:;2. 3.A.-4设有下面四个命题 B . n8C.丄2D.P 1 :若复数z 满足1 • R ,则z R ;z P 2 :若复数 z 满足 P 3 :若复数Z 1,Z 2满足刊2 R ,则乙=乙2 ;P 4 :若复数,则 z R .A. P 1, P 3 B . P 1, P 4 C. P 2, P 3D. P 2 , P 4A. 1B . 2C. 42D.把C 上各点的横坐标缩短到原来的11倍,纵坐标不变,再把得到的曲线向左平移」个单位长度,126 . (V 2^)(1 x)6展开式中x 2的系数为x7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形 .该多面体的各个面中有若干个是梯形,这些梯形的面积之和为围是 A . [-2,2]B - [-1,1]C. [0,4]D [1,3]A . 15B . 20C. 30D. 35A . 10B . 12 C. &右面程序框图是为了求出满足3n -2n >1000的最小偶数n,那么在 <[> 和——两个空白框中,可以分别填入A. A >1 000 和 n =n +1 9.已知曲线 G : y =cos x , C 2: A >1 000 和 n =n +2 C. A< 1 000 和 n =n +1 D. A< 1 000 和 n =n +2y =s in (2x +N), 3则下面结论正确的是A .把C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移 卫个单位长度,得6B .把C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移」个单位长度,12得到曲线C 2C.把C 上各点的横坐标缩短到原来的1丄倍,纵坐标不变,再把得到的曲线向右平移2 丄个单位长度,得6到曲线C 21610.已知F为抛物线C: y2=4x的焦点,过F作两条互相垂直的直线I1, I2,直线l 1与C交于A、B两点,DE的最小值为直线丨2与C交于D E两点,贝U|AB+|A. 16B. 14C. 12D. 1011 .设xyz为正数,且2x =3^5z,则A. 2x<3y<5zB. 5z<2x<3yC. 3y<5z<2xD. 3y<2x<5z12. 几位大学生响应国家的创业号召,开发了一款应用软件。
2017年高考全国卷一理科数学试题及答案
绝密★启用前2017年普通高等学校招生全国统一考试全国卷一理科数学本试卷5页,23小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =< B .A B =R C .{|1}A B x x =>D .AB =∅2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .π8C .12D .π43.设有下面四个命题1p :若复数z 满足1z∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =; 4p :若复数z ∈R ,则z ∈R .其中的真命题为 A .13,p pB .14,p pC .23,p pD .24,p p4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .85.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]6.621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A .10B .12C .14D .168.右面程序框图是为了求出满足321000n n ->的最小偶数n ,那么在和两个空白框中,可以分别填入A .1000A >和1n n =+B .1000A >和2n n =+C .1000A ≤和1n n =+D .1000A ≤和2n n =+9.已知曲线122:cos ,:sin(2)3C y x C y x π==+,则下面结论正确的是 A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CB .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2CC .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CD .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2C10.已知F 为抛物线2:4C y x =的焦点,过F 作两条互相垂直的直线12,l l ,直线1l 与C 交于A 、B 两点,直线2l 与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .1011.设xyz 为正数,且235x y z ==,则A .235x y z <<B .523z x y <<C .352y z x <<D .325y x z <<12.几位大学生响应国家的创业号召,开发了一款应用软件。
2017年高考文科数学全国卷1(含详细答案)
数学试卷 第1页(共18页) 数学试卷 第2页(共18页)绝密★启用前2017年普通高等学校招生全国统一考试文科数学本试卷满分150分,考试时间120分钟考生注意:1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,监考员将试题卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}|2A x x =<,{}|320B x x =->,则( ) A .3|2A B x x ⎧⎫=<⎨⎬⎩⎭B .A B =∅C .3|2AB x x ⎧⎫=<⎨⎬⎩⎭D .AB =R2.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为1x ,2x ,……,n x ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A .1x ,2x ,……,n x 的平均数B .1x ,2x ,……,n x 的标准差C .1x ,2x ,……,n x 的最大值D .1x ,2x ,……,n x 的中位数3.下列各式的运算结果为纯虚数的是( ) A .2(1)i i +B .2(1)i i -C .2(1)i +D .(1)i i +4.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A .14B .π8C .12D .π 45.已知F 是双曲线C :1322=-y x 的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),△APF 的面积为( )A .13B .1 2C .23D .3 26.如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 不平行的是( )A .B .C .D .7.设x ,y 满足约束条件33,1,0,x y x y y +≤⎧⎪-≥⎨⎪≥⎩则z x y =+的最大值为( )A .0B .1C .2D .3-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名_____________ 考生号_________________________________________________________________数学试卷 第3页(共18页)数学试卷 第4页(共18页)8.函数sin21cos xy x=-的部分图像大致为( )A .B .C .D .9.已知函数()ln ln(2)f x x x =+-,则( ) A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .()y f x =的图像关于直线1x =对称D .()y f x =的图像关于点(1,0)对称10.下面程序框图是为了求出满足321000nn->的最小偶数n ,框中,可以分别填入( )A .1000A >和1n n =+B .1000A >和2n n =+C .1000A ≤和1n n =+D .1000A ≤和2n n =+11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin sin (sin cos )0B A C C +-=,2a =,c =C =( )A .π12B .π6 C .π4 D .π3 12.设A ,B 是椭圆C :2213x y m+=长轴的两个端点,若C 上存在点M 满足120AMB ∠=︒,则m 的取值范围是( ) A .(0,1][9,)+∞B .[9,)+∞C .(0,1][4,)+∞D .[4,)+∞二、填空题:本题共4小题,每小题5分,共20分.13.已知向量)2(–1,=a ,)1(,m =b .若向量+a b 与a 垂直,则m =________.14.曲线21y x x=+在点(1,2)处的切线方程为______________. 15.已知π(0)2α∈,,tan 2α=,则πcos ()4α-=__________.16.已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA AC =,SB BC =,三棱锥S ABC -的体积为9,则球O 的表面积为________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22.23题为选考题,考生根据要求作答. (一)必考题:共60分.17.(12分)记n S 为等比数列{}n a 的前n 项和,已知22S =,36S =-. (1)求{}n a 的通项公式;(2)求n S ,并判断1n S +,n S ,2n S +是否成等差数列.18.(12分)如图,在四棱锥P ABCD -中,AB CD ∥,且90BAP CDP ∠=∠=.数学试卷 第5页(共18页)数学试卷 第6页(共18页)(1)证明:平面PAB ⊥平面PAD ;(2)若PA PD AB DC ===,90APD ∠=,且四棱锥P ABCD -的体积为83,求该四棱锥的侧面积.19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每隔30 min ,从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸:经,18.439≈,161()(8.5) 2.78i i x x i =--=-∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.(1)求(,)i x i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).(2)一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ⅱ)在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本(,)i i x y (1,2,,)i n =⋅⋅⋅的相关系数()()niix x y y r --=∑,0.09≈.20.(12分)设A ,B 为曲线C :24x y =上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM BM ⊥,求直线AB 的方程. 21.(12分)已知函数2()()xxe ef x a a x =--. (1)讨论()f x 的单调性;(2)若()0f x ≥,求a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4−4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t y t =+⎧⎨=-⎩(t 为参数). (1)若1-=a ,求C 与l 的交点坐标;(2)若C 上的点到l a . 23.[选修4−5:不等式选讲](10分)已知函数2()4f x x ax =-++,g()|1||1|x x x =++-. (1)当1a =时,求不等式()g()f x x ≥的解集;毕业学校_____________ 姓名_____________ 考生号_________________________________________________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共18页)数学试卷 第8页(共18页)(2)若不等式()g()f x x ≥的解集包含[1,1] ,求a 的取值范围.2017年普通高等学校招生全国统一考试文科数学答案解析一、选择题 1.【答案】A 【解析】由320x ->得32x <,所以33{|2}{|}{|}22A B x x x x x x ⋂=<⋂<=<,选A .2.【答案】B【解析】刻画评估这种农作物亩产量稳定程度的指标是标准差,故选B 3.【答案】C【解析】由2(1)2i i +=为纯虚数,选C . 4.【答案】B【解答】解:根据图象的对称性知,黑色部分为圆面积的一半,设圆的半径为1,则正方形的边长为2,则黑色部分的面积π2S =,则对应概率ππ248P ==,故选B .5.【答案】D【解析】由2224c a b =+=得2c =,所以(2,0)F ,将2x =代入2213y x -=,得3y =±,所以3PF =,又A 的坐标是(1,3),故APF 的面积为133(21)22⨯⨯-=,选D .6.【答案】A【解析】由B ,AB MQ ∥,则直线AB ∥平面MNQ ;由C ,AB MQ ∥,则直线AB ∥平面MNQ ;由D ,AB NQ ∥,则直线AB ∥平面MNQ .故A 不满足,选A .7.【答案】D【解析】如图,目标函数z x y =+经过(3,0)A 时最大,故max 303z =+=,故选D .8.【答案】C【解析】由题意知,函数sin 21cos xy x=-为奇函数,故排除B ;当πx =时,0y =,排除D ;当1x =时,sin 201cos2y =>-,排除A ,故选C .9.【答案】C 【解答】解:函数()ln ln(2)f x x x =+-,(2)ln(2)ln f x x x ∴-=-+,即()(2)f x f x =-,即()y f x =的图象关于直线1x =对称,故选:C . 10.【答案】D【解析】由题意选择321000n n ->,则判定框内填1000A ≤,由因为选择偶数,所以矩形框内填2n n =+,故选D . 11.【答案】B【解析】由题意sin()sin (sin cos )0A C A C C ++-=得sin cos cos sin sin sin sin cos 0A C A C A C A C ++-=,即πsin (sin cos )sin()0C A A C A ++=,所以3π4A =.由正弦定理sin sin a c A C =得23πsin 4=即1sin 2C =,得π6C =,故选B . 12.【答案】A【解析】当03m <<,焦点在x 轴上,要使C 上存在点M满足120AMB ∠=,则tan 603ab ≥=≥,得01m <≤;当3m >,焦点在y 轴上,要使C 上存在点M 满足120AMB ∠=,则tan 603ab ≥=≥9m ≥,故m 的取值范围为(0,1][9,)⋃+∞,选A .二、填空题 13.【答案】7【解析】由题得(1,3)m +=-a b , 因为()0+=a b a , 所以(1)230m --+⨯= 解得7m =14.【答案】1y x =+ 【解析】设()y f x = 则21()2f x x x'=-所以(1)211f '=-=所以在(1,2)处的切线方程为21(1)y x -=⨯-,即1y x =+.15.【解析】π(0,)2α∈,tan 2α=,sin 2cos αα∴=,22sin cos 1αα+=,解得sin αcos α=πππcos()cos cos sin sin 444ααα∴-=+=+=, 16.【答案】36π【解析】取SC 的中点O ,连接,OA OB 因为,SA AC SB BC == 所以,OA SC OB SC ⊥⊥ 因为平面SAC ⊥平面SBC 所以OA ⊥平面SBC 设OA r =3111123323A SBC SBC V S OA r r r r -∆=⨯⨯=⨯⨯⨯⨯=所以31933r r =⇒=所以球的表面积为24π36πr = 三、解答题17.【答案】(1)(2)n n a =- (2)1n S +,n S ,2n S +成等差数列.【解析】(1)设等比数列{}n a 首项为1a ,公比为q ,则332628a S S ==--=--,则31228a a q q -==,328a a q q-==, 由122a a +=,2882q q--+=,整理得2440q q ++=, 解得:2q =-, 则12a =-,1(2)(2)(2)n nn a =--=﹣-.(2)由(1)可知:11(1q )1[2(2)]13n n n a S q +-==-+--, 则211[2(2)]3n n S ++=-+-,321[2(2)]3n n S ++=-+-, 由231211[2(2)][2(2)]33n n n n S S +++++=-+--+-=12114(2)(2)[](2)(2)3n n ++-+-⨯-+-⨯- 111142(2)2(2(2)33[][)]n n ++=-+⨯-=⨯-⨯+-2n S =,即122n n n S S S +++=所以1n S +,n S ,2n S +成等差数列. 18.【答案】(1)90BAP AB PA ∠=︒⇒⊥90CDP CD PD ∠=︒⇒⊥AB CD ∥,PA PD P =,AB PAD ∴⊥平面 AB PAD ⊂平面 PAB PAD ∴平面⊥平面(2)6+【解析】(1)见答案(2)由(1)知AB PAD ⊥平面,90APB ∠=︒,PA PD AB DC ===.取AD 中点O ,所以OP ABCD ⊥底面,,OP AB AD =, 1833P ABCDV AB AB -∴=⨯= 2AB ∴=AD BC ∴==,2PA PD AB DC ====,PO =,PB PC ∴==111222PADPABPDCPBCPA PD PA PB DC S SSSS=⨯⨯+⨯⨯+⨯⨯∴=+++侧111122222222226=⨯⨯+⨯⨯+⨯⨯+⨯=+ 19.【答案】(1)0.18-(2)(i )需要对当天的生产过程进行检查. (ii )均值为10.02,标准差约为0.09. 【解析】(1)16()(8.5)0.18ixx i r --==≈-∑因为||0.25r <,所以可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小. (2)(i)39.9730.2129.334x s -=-⨯=,39.9730.21210.636x s +=+⨯=所以合格零件尺寸范围是(9.334,10.606),显然第13号零件尺寸不在此范围之内,因此需要对当天的生产过程进行检查.(ii )剔除离群值后,剩下的数据平均值为169.22169.979.2210.021515x -⨯-==, 0.09s ==.20.【答案】(1)1 (2)7y x =+【解析】(1)设()()1122,,,A x y B x y ,则2221212121214414ABx x y y x x K x x x x --+====-- (2)设20(,)4x M x ,则C 在M 处的切线斜率'00112ABy K K x x x ====- 02x ∴=,则()12,1A ,又AM BM ⊥,22121212121111442222AM BM x x y y K K x x x x ----==----()()()121212222411616x x x x x x +++++===-即()12122200x x x x +++= 又设AB :y x m =+,代入24x y = 得2440x x m --=124x x ∴+=,124x x m =-48200m =-++7m ∴=故AB :y x =+721.【答案】(1)当0a =时,()f x 在R 上单调递增,当0a >时,()f x 在(ln )a -∞,上单调递减,在(ln )a +∞,上单调递增,当0a <时,()f x 在(,ln())2a -∞-上单调递减,在(ln())2a -+∞,上单调递增, (2)34]21[,e -.【解析】(1)222()x x x x f x e e a a x e e a a x =-=-()--, 222(2)()x x x x f x e ae a e a e a ∴'==-+-()﹣,①当0a =时,()0f x '>恒成立,()f x ∴在R 上单调递增.②当0a >时,20x e a +>,令()0f x '=,解得ln x a =, 当ln x a <时,()0f x '<,函数()f x 单调递减, 当ln x a >时,()0f x '>,函数()f x 单调递增,③当0a <时,0x e a -<,令()0f x '=,解得ln()2ax =-,当ln()2a x -<时,()0f x '<,函数()f x 单调递减,当ln()2ax ->时,()0f x '>,函数()f x 单调递增.综上所述,当0a =时,()f x 在R 上单调递增,当0a >时,()f x 在(ln )a -∞,上单调递减,在(ln )a +∞,上单调递增,当0a <时,()f x 在(,ln())2a-∞-上单调递减,在(ln())2a -+∞,上单调递增,(2)①当0a =时,2()0x f x e =>恒成立,②当0a >时,由(1)可得2()()ln 0min f x f lna a a ==-≥,ln 0a ∴≤, 01a ∴≤<.③当0a <时,由(1)可得:223()(ln(-))ln(-)0242mina a af x f a ==-≥,3ln(-)24a ∴≤,3420e a ∴≤﹣<,综上所述a 的取值范围为34]21[,e -. 22.【答案】(1)(3,0)和(,2125)4225- (2)16a =-或8a =【解析】(1)当1a =-时,14,:1,x t L y t =-+⎧⎨=-⎩(t 为参数),L 消参后的方程为430x y +-=,曲线C 消参后为221x y y +=,与直线联立方程221,430,x y y x y ⎧+=⎪⎨⎪+-=⎩解得3,0,x y =⎧⎨=⎩或21,2524.25x y ⎧=-⎪⎪⎨⎪=⎪⎩椭圆C 和直线L 的交点为(3,0)和(,2125)4225-.(2)L 的普通方程为440x y a +--=, 设曲线C 上任一点为()3cos,sin P θθ, 由点到直线的距离公式,d =,d =max d =∴()max5sin 417aθϕ+--=,当()sin 1θϕ+=时最大,即5417a --=时,16a =-, 当()sin1θϕ+=-时最大,即917a +=时,8a =,综上:16a =-或8a =. 23.【答案】(1)(1. (2)a 的取值范围是[]1,1-.【解析】(1)当1a =时,21()4a f x x x ==-++时,,是开口向下,对称轴为12x =的二次函数, 2,1,()112|,1,|12,1,x x g x x x x x x ⎧⎪=++-=-⎨⎪--⎩>≤≤<当(1)x ∈+∞,时,令242x x x ++=-,解得x =,()g x 在(1)+∞,上单调递增,()f x 在(1)+∞,上单调递减,此时()()f x g x ≥的解集为(1; 当,1[]1x ∈-时,()2g x =,()(1)2f x f ≥-=.当(1)x ∈-∞,-时,()g x 单调递减,()f x 单调递增,且(1)(1)2g f -=-=.综上所述,()()f x g x ≥的解集为(1; (2)依题意得:242x ax -++≥在[]1,1-恒成立,即220x ax -≤-在[]1,1-恒成立,则只需221120,(1)(1)20,a a ⎧--⎨----⎩≤≤解得11a -≤≤, 故a 的取值范围是[]1,1-.数学试卷第17页(共18页)数学试卷第18页(共18页)。
习题-椭圆及其性质
9.2 椭圆及其性质基础篇 固本夯基考点一 椭圆的定义及标准方程1.(2022届黑龙江大庆月考,4)与双曲线y 22-x 2=1共焦点,且离心率为√32的椭圆的标准方程为 ( )A.y 22+x 2=1 B.x 22+y 2=1 C.y 24+x 2=1 D.x 24+y 2=1 答案 C2.(2021新高考Ⅰ,5,5分)已知F 1,F 2是椭圆C:x 29+y 24=1的两个焦点,点M 在C 上,则|MF 1|·|MF 2|的最大值为( )A.13B.12C.9D.6 答案 C3.(2021合肥一模,5)已知F 是椭圆E:x 2a 2+y 2b2=1(a>b>0)的左焦点,椭圆E 上一点P(2,1)关于原点的对称点为Q,若△PQF 的周长为4√2+2√5,则a-b=( ) A.√2 B.√22 C.√3 D.√32答案 A4.(2022届云南师大附中月考,8)已知椭圆x 24+y 23=1,F 是椭圆的左焦点,P 是椭圆上一点,若椭圆内一点A(1,1),则|PA|+|PF|的最小值为 ( )A.3B.√10C.√5+12 D.√5+1答案 A5.(2022届贵阳一中月考,15)已知m,n ∈{0,1,2,3,4,5,6,7,8,9},则方程C 9m x 2+C 9ny 2=1表示不同的椭圆的个数为 . 答案 206.(2022届四川树德中学开学考,15)已知椭圆C:x 24+y 23=1的左、右焦点分别为F 1、F 2,M 为椭圆C 上任意一点,N 为圆E:(x-3)2+(y-2)2=1上任意一点,则|MN|-|MF 1|的最小值为 .答案 2√2-57.(2019课标Ⅲ,15,5分)设F 1,F 2为椭圆C:x 236+y 220=1的两个焦点,M 为C 上一点且在第一象限.若△MF 1F 2为等腰三角形,则M 的坐标为 . 答案 (3,√15)8.(2020哈尔滨三中二模,14)已知圆C:(x+1)2+y 2=36与定点M(1,0),动圆N 过点M 且与圆C 相切,则动圆圆心N 的轨迹方程为 . 答案x 29+y 28=1 9.(2019浙江,15,4分)已知椭圆x 29+y 25=1的左焦点为F,点P 在椭圆上且在x 轴的上方.若线段PF 的中点在以原点O 为圆心,|OF|为半径的圆上,则直线PF 的斜率是 . 答案 √1510.(2021河南名校4月冲刺考试,15)已知点F 1,F 2分别为椭圆C:x 2a 2+y 2b2=1(a>b>0)的左,右焦点,点A 为C 的左顶点,C 上的点到点F 2的最小距离为2.过原点O 的直线l 交C 于P,Q 两点,直线QF 1交AP 于点B,且|AB|=|BP|,则椭圆C 的标准方程为 . 答案x 29+y 28=1 考点二 椭圆的几何性质1.(2019北京,4,5分)已知椭圆x 2a 2+y 2b2=1(a>b>0)的离心率为12,则( ) A.a 2=2b 2B.3a 2=4b 2C.a=2bD.3a=4b答案 B2.(2017课标Ⅲ,10,5分)已知椭圆C:x 2a 2+y 2b2=1(a>b>0)的左、右顶点分别为A 1、A 2,且以线段A 1A 2为直径的圆与直线bx-ay+2ab=0相切,则C 的离心率为( ) A.√63B.√33C.√23D.13答案 A3.(2021河南、河北名校联盟联考,11)点P 在椭圆x 2a 2+y 2b2=1(a>b>0)上,F 1,F 2是椭圆的两个焦点,∠F 1PF 2=90°,且△F 1PF 2的三条边长成等差数列,则此椭圆的离心率为( ) A.57B.56C.45D.35答案 A4.(2022届安徽蚌埠开学考,10)已知椭圆x 2a 2+y 2b2=1(a>b>0)的右顶点为A,坐标原点为O,若椭圆上存在一点P 使得△OAP 是等腰直角三角形,则该椭圆的离心率为( ) A.√33B.√22C.√63D.√32答案 C5.(2022届山西长治月考,11)古希腊数学家阿波罗尼奥斯采用平面切割圆锥的方法来研究圆锥曲线,用垂直于圆锥轴的平面去截圆锥,得到的截面是圆;把平面渐渐倾斜得到的截面是椭圆.若用周长为72的矩形ABCD 截某圆锥得到椭圆τ,且τ与矩形ABCD 的四边相切,椭圆τ的离心率为0.6,若点M,N 为椭圆τ长轴的两个端点,P 为椭圆上除去长轴端点外的任意一点,则△PMN 面积的取值范围是( ) A.(0,80) B.(0,80] C.(0,160) D.(0,160] 答案 B6.(2021全国甲,15,5分)已知F 1,F 2为椭圆C:x 216+y 24=1的两个焦点,P,Q 为C 上关于坐标原点对称的两点,且|PQ|=|F 1F 2|,则四边形PF 1QF 2的面积为 . 答案 87.(2021皖北协作体4月联考,14)“天问一号”推开了我国行星探测的大门,通过一次发射,将实现火星环绕、着陆、巡视,是世界首创,也是我国真正意义上的首次深空探测.2021年2月10日,天问一号探测器顺利进入火星的椭圆环火轨道(将火星近似看成一个球体,球心为椭圆的一个焦点).2月15日17时,天问一号探测器成功实施捕获轨道“远火点(椭圆轨迹上距离火星表面最远的一点)平面机动”,同时将近火点高度调整至约265公里.若此时远火点距离约为11 945公里,火星半径约为3 400公里,则调整后“天问一号”的运行轨迹(环火轨道曲线)的离心率约为 .(精确到0.1) 答案 0.68.(2022届云南玉溪质量检测一,15)已知A,B 为椭圆E:x 2a 2+y 2b2=1(a>b>0)的左,右顶点,点P 在E 上,在△APB 中,tan ∠PAB=12,tan ∠PBA=29,则椭圆E 的离心率为 . 答案2√239. (2022届广西柳铁一中“韬智杯”大联考,16)椭圆C:x 218+y 2b 2=1的上、下顶点分别为A 、C,如图,点B 在椭圆上,平面四边形ABCD 满足∠BAD=∠BCD=90°,且S △ABC =2S △ADC ,则该椭圆的短轴长为 .答案 6考点三 直线与椭圆的位置关系1.(2022届江西景德镇模拟,11)已知椭圆C:x 29+y 24=1上有一动点E(异于顶点),点F,G 分别在x,y 轴上,使得E 为FG 的中点,若x 轴上一点H,满足FG ⊥EH,则|GH|的最小值为( ) A.3 B.43√5 C.45√5 D.5答案 B2.(2021名校联盟4月押题卷(一),12)已知椭圆C:x 2a 2+y 2b2=1(a>b>0)的左焦点为F(-1,0),过点F 的直线交椭圆C 于A,B 两点,若A(1,y 1),则点B 横坐标的取值范围为( ) A.(-3,0) B.(-3,-1) C.(-2,0) D.(-2,-1) 答案 B3.(2021南昌重点中学联考,14)已知椭圆E:x 2a 2+y 2b2=1(a>b>0)的右焦点为F(3,0),过点F 的直线交E 于A,B 两点.若弦AB 的中点坐标为(1,-1),则E 的标准方程为 . 答案x 218+y 29=1 4.(2018课标Ⅰ,19,12分)设椭圆C:x 22+y 2=1的右焦点为F,过F 的直线l 与C 交于A,B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:∠OMA=∠OMB. 解析 (1)由已知得F(1,0),l 的方程为x=1, 由已知可得,点A 的坐标为(1,√22)或(1,−√22).所以AM 的方程为y=-√22x+√2或y=√22x-√2.(2)当l 与x 轴重合时,∠OMA=∠OMB=0°,当l 与x 轴垂直时,直线OM 为AB 的垂直平分线,所以∠OMA=∠OMB.当l 与x 轴不重合也不垂直时,设l 的方程为y=k(x-1)(k ≠0),A(x 1,y 1),B(x 2,y 2),则x 1<√2,x 2<√2,直线MA,MB 的斜率之和为k MA +k MB =y 1x 1-2+y 2x 2-2,由y 1=kx 1-k,y 2=kx 2-k 得k MA +k MB =2kx 1x 2-3k(x 1+x 2)+4k (x 1-2)(x 2-2).将y=k(x-1)代入x 22+y 2=1得(2k 2+1)x 2-4k 2x+2k 2-2=0,所以,x 1+x 2=4k 22k 2+1,x 1x 2=2k 2-22k 2+1.则2kx 1x 2-3k(x 1+x 2)+4k=4k 3-4k -12k 3+8k 3+4k2k 2+1=0,从而k MA +k MB =0,故MA,MB 的倾斜角互补,所以∠OMA=∠OMB.综上,∠OMA=∠OMB.5.(2022届云南师大附中月考,17)椭圆C:x 2a 2+y 2b2=1(a>b>0)的离心率是√32,且点A(2,1)在椭圆C 上,O 是坐标原点.(1)求椭圆C 的方程;(2)直线l 过原点,且l ⊥OA,若l 与椭圆C 交于B,D 两点,求弦BD 的长度. 解析 (1)由e=√32,得c=√32a,b=12a,又点A(2,1)在椭圆上,所以4a 2+1a24=1,解得a=2√2,b=√2,所以椭圆C 的方程是x 28+y 22=1.(2)由题意得直线OA 的方程是y=12x,因为l ⊥OA,且l 过原点O,所以直线l 的方程是y=-2x,与椭圆联立,得17x 2=8,即x=±√2√17,不妨令B (√2√17√2√17),D (-2√217√2√17),则|BD|=√(√2√17√2√17)2+(√2√17√2√17)2=4√17017.6.(2022届甘肃嘉峪关一中开学考,20)已知椭圆C:x 2a 2+y 2b2=1(a>b>0)的左、右焦点分别为F 1、F 2,且|F 1F 2|=2,点M (√3,√32)在椭圆C 上.(1)求椭圆C 的标准方程;(2)已知点P(1,t)为椭圆C 上一点,过点F 2的直线l 与椭圆C 交于异于点P 的A,B 两点,若△PAB 的面积是9√27,求直线l 的方程.解析 (1)设椭圆的半焦距为c,由题意可得{2c =2,3a 2+34b2=1,a 2=b 2+c 2,解得a 2=4,b 2=3,故椭圆C 的标准方程为x 24+y 23=1.(2)因为P(1,t)在椭圆C 上,所以14+t 23=1,解得|t|=32.当直线l 的斜率为0时,|AB|=2a=4,S △PAB =12|AB||t|=12×4×32=3.因为△PAB 的面积是9√27,所以直线l 的斜率为0不符合题意,故可设直线l 的方程为x=my+1,A(x 1,y 1),B(x 2,y 2),联立{x =my +1,x 24+y 23=1,整理得(3m 2+4)y 2+6my-9=0,则y 1+y 2=-6m 3m 2+4,y 1y 2=-93m 2+4.故|AB|=√m 2+1|y 1-y 2|=√m 2+1·√(-6m 3m 2+4)2-4(-93m 2+4)=12(m 2+1)3m 2+4.因为点P 到直线l 的距离d=32|m|√=3|m|√,所以S △PAB =12|AB|d=12·12(m 2+1)3m 2+4·3|m|√=9|m|√m 2+13m 2+4,因为△PAB 的面积是9√27,所以9|m|√m 2+13m 2+4=9√27,整理得31m 4+m 2-32=0,解得m 2=1,即m=±1.故直线l 的方程为x=±y+1,即x±y -1=0,7.(2020天津,18,15分)已知椭圆x 2a 2+y 2b2=1(a>b>0)的一个顶点为A(0,-3),右焦点为F,且|OA|=|OF|,其中O 为原点.(1)求椭圆的方程;(2)已知点C 满足3OC ⃗⃗⃗⃗⃗ =OF ⃗⃗⃗⃗⃗ ,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P,且P 为线段AB 的中点.求直线AB 的方程.解析 (1)由已知可得b=3.记半焦距为c,由|OF|=|OA|可得c=b=3.又由a 2=b 2+c 2,可得a 2=18.所以,椭圆的方程为x 218+y 29=1. (2)因为直线AB 与以C 为圆心的圆相切于点P,所以AB ⊥CP.依题意,直线AB 和直线CP 的斜率均存在.设直线AB 的方程为y=kx-3.由方程组{y =kx -3,x 218+y 29=1,消去y,可得(2k 2+1)·x 2-12kx=0,解得x=0,或x=12k 2k 2+1.依题意,可得点B 的坐标为(12k2k 2+1,6k 2-32k 2+1).因为P 为线段AB 的中点,点A 的坐标为(0,-3),所以点P 的坐标为(6k 2k 2+1,-32k 2+1).由3OC ⃗⃗⃗⃗⃗ =OF ⃗⃗⃗⃗⃗ ,得点C 的坐标为(1,0),故直线CP 的斜率为-32k 2+1-06k 2k 2+1-1,即32k 2-6k+1.又因为AB ⊥CP,所以k ·32k 2-6k+1=-1,整理得2k 2-3k+1=0,解得k=12或k=1.所以直线AB 的方程为y=12x-3或y=x-3.8.(2021北京,20)已知椭圆E:x 2a 2+y 2b2=1(a>b>0)过点A(0,-2),以四个顶点围成的四边形面积为4√5. (1)求椭圆E 的标准方程;(2)过点P(0,-3)的直线l 的斜率为k,交椭圆E 于不同的两点B,C,直线AB 交y=-3于点M,直线AC 交y=-3于点N,若|PM|+|PN|≤15,求k 的取值范围.解析 (1)将A(0,-2)代入椭圆方程得b=2,由椭圆四个顶点围成的四边形面积为2ab=4√5,解得a=√5, 所以椭圆E 的标准方程为x 25+y 24=1.(2)由题意得直线l 的方程为y+3=k(x-0),即y=kx-3,将y=kx-3代入椭圆方程并化简得(4+5k 2)x 2-30kx+25=0,由Δ=(-30k)2-4×25(4+5k 2)>0,解得k<-1或k>1,设B(x 1,y 1),C(x 2,y 2),不妨设点B 位于第一象限,点C 位于第四象限,如图所示.则x 1+x 2=30k 4+5k2,x 1x 2=254+5k2,直线AB 的方程为y+2y 1+2=x -0x 1-0,令y=-3,解得x=-x 1y 1+2,得M (-x 1y 1+2,-3),同理可得N (-x 2y 2+2,-3),∴|PM|+|PN|=x 1y 1+2+x2y 2+2=x 1(y 2+2)+x 2(y 1+2)(y 1+2)(y 2+2)=x 1(kx 2-1)+x 2(kx 1-1)[(kx 1-3)+2][(kx 2-3)+2]=2kx 1x 2-(x 1+x 2)(kx 1-1)(kx 2-1)=2kx 1x 2-(x 1+x 2)k 2x 1x 2-k(x 1+x 2)+1=2k ·254+5k 2-30k 4+5k2k 2·254+5k2-k ·30k 4+5k2+1=50k -30k25k 2-30k 2+4+5k2=5k ≤15,解得k ≤3,又k>1,所以1<k ≤3.由椭圆的对称性知,当点B 位于第二象限,点C 位于第三象限时,-3≤k<-1. 综上,k 的取值范围为[-3,-1)∪(1,3].9.(2022届四川石室中学开学考,21)已知椭圆C 1:x 2a 2+y 2b2=1(a>b>0)的离心率为√22,椭圆C 1的长轴是圆C 2:x 2+y 2=2的直径. (1)求椭圆C 1的标准方程;(2)过椭圆C 1的右焦点F 作两条相互垂直的直线l 1,l 2,其中l 1交椭圆C 1于P,Q 两点,l 2交圆C 2于M,N 两点,求四边形PMQN 面积的取值范围. 解析 由题意得,c a =√22,2a=2√2,解得a=√2,c=1,又a 2=b 2+c 2,所以b=1,故椭圆C 1的标准方程为x 22+y 2=1. (2)由(1)知椭圆C 1的右焦点F(1,0), 当直线l 1的斜率不存在时,|PQ|=2b 2a =√2,|MN|=2√2,故四边形PMQN 的面积S=12×√2×2√2=2, 当直线l 1的斜率为0时,|PQ|=2a=2√2,|MN|=2, 故四边形PMQN 的面积S=12×2√2×2=2√2,当直线l 1的斜率存在且不为0时,设直线l 1的方程为x=my+1,P(x 1,y 1),Q(x 2,y 2),由{x =my +1,x 22+y 2=1,得(2+m 2)y 2+2my-1=0,所以y 1+y 2=-2m 2+m 2,y 1·y 2=-12+m 2,所以|PQ|=√1+m 2√(y 1+y 2)2-4y 1·y 2=2√2(1+m 2)2+m 2,此时l 2的方程为mx+y-m=0,坐标原点到l 2的距离为d=|m|√,所以|MN|=2√2−(|m|√)2=2√2+m 21+m2,故四边形PMQN 的面积S=12×2√2(1+m 2)2+m 2×2√2+m 21+m 2=2√2√1+m 22+m 2=2√2√1−12+m 2∈(2,2√2),综上,四边形PMQN 面积的取值范围是[2,2√2].综合篇 知能转换考法一 求椭圆的标准方程1.(2022届陕西西北工业大学附属中学月考,5)如果点M(x,y)在运动过程中,总满足关系式√x 2+(y +3)2+√x 2+(y -3)2=4√3,则点M 的轨迹是( ) A.不存在 B.椭圆 C.线段 D.双曲线 答案 B2.(2021豫北名校5月联考,10)已知F 1(-1,0)为椭圆C:x 2a 2+y 2b2=1(a>b>0)的左焦点,过F 1的直线与椭圆C 交于A,B 两点,与y 轴交于D 点.若AD ⃗⃗⃗⃗⃗ =2DB ⃗⃗⃗⃗⃗⃗ ,|AD|=|F 1B|,则椭圆C 的标准方程为( ) A.x 22+y 2=1 B.x 23+y 22=1 C.x 24+y 23=1 D.x 25+y 24=1 答案 D3.(2021四川绵阳二模,15)已知F(1,0)为椭圆E:x 2a 2+y 2b2=1(a>b>0)的右焦点,过E 的下顶点B 和F 的直线与E 的另一个交点为A,若4BF ⃗⃗⃗⃗⃗ =5FA ⃗⃗⃗⃗⃗ ,则a= . 答案 34.(2022届贵州部分重点中学月考,16)已知圆C:x 2+(y+1)2=16,P 是圆C 上的动点,若A(0,1),线段PA 的垂直平分线与直线PC 相交于点Q,则点Q 的轨迹方程是 ;若M(2,1),则|MQ|+|QC|的最大值为 . 答案x 23+y 24=1;6 5.(2020课标Ⅲ,20,12分)已知椭圆C:x 225+y 2m 2=1(0<m<5)的离心率为√154,A,B 分别为C 的左、右顶点. (1)求C 的方程;(2)若点P 在C 上,点Q 在直线x=6上,且|BP|=|BQ|,BP ⊥BQ,求△APQ 的面积. 解析 (1)由题设可得√25−m 25=√154,得m 2=2516,所以C 的方程为x 225+y 22516=1. (2)设P(x P ,y P ),Q(6,y Q ),根据对称性可设y Q >0,由题意知y P >0.由已知可得B(5,0),直线BP 的方程为y=-1y Q(x-5),所以|BP|=y P √1+y Q 2,|BQ|=√1+y Q 2.因为|BP|=|BQ|,所以y P =1,将y P =1代入C 的方程,解得x P =3或-3.由直线BP 的方程得y Q =2或8.所以点P,Q 的坐标分别为P 1(3,1),Q 1(6,2);P 2(-3,1),Q 2(6,8).|P 1Q 1|=√10,直线P 1Q 1的方程为y=13x,点A(-5,0)到直线P 1Q 1的距离为√102,故△AP 1Q 1的面积为12×√102×√10=52.|P 2Q 2|=√130,直线P 2Q 2的方程为y=79x+103,点A 到直线P 2Q 2的距离为√13026,故△AP 2Q 2的面积为12×√13026×√130=52.综上,△APQ 的面积为52.6.(2022届四川乐山月考,20)已知椭圆C:x 2a 2+y 2b2=1(a>b>0),过点P (-1,√22),离心率e=√22.(1)求椭圆C 的方程;(2)过椭圆C 的左焦点F 1的直线l 交椭圆C 于A,B 两点,若在直线x=-2上存在点P,使得△ABP 为正三角形,求点P 的坐标.解析 (1)由题意得{ 1a 2+12b 2=1,c a =√22,a 2=b 2+c 2,则a 2=2,b 2=1,c 2=1,所以椭圆C 的方程为x 22+y 2=1.(2)由题知,F 1(-1,0),当直线l 的斜率不存在或斜率为0时,易知,不存在符合条件的点P.当直线l 的斜率存在且不为0时,设直线l 的方程为y=k(x+1)(k ≠0),线段AB 的中点为M,A(x 1,y 1),B(x 2,y 2),将y=k(x+1)代入x 22+y 2=1,整理得(1+2k 2)x 2+4k 2x+2k 2-2=0,所以x 1+x 2=-4k 21+2k 2,x 1x 2=2k 2-21+2k 2,则x M =-2k 21+2k 2,y M =k(x M +1)=k 1+2k2,故|AB|=√(1+k 2)[(x 1+x 2)2-4x 1x 2]=√(1+k 2)[16k4(1+2k 2)2-8k 2-81+2k2]=2√2×1+k21+2k2.因为△ABP为正三角形,所以PM ⊥AB,则k PM ·k AB =-1,即k PM =-1k ,故直线PM 的方程为y-k 1+2k 2=-1k (x +2k 21+2k2),将x=-2代入直线PM 的方程可得y=2k +3k 1+2k 2,故P (-2,2k +3k 1+2k2),所以点P 到直线l 的距离为|k+2k +3k2|√1+k ,又|PM|=√32|AB|,所以|k+2k +3k 2|√1+k =√32×2√2×1+k21+2k2,解得k 2=2,即k=±√2,故P 的坐标为(-2,±4√25). 7.(2022届四省八校期中联考,19)在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b2=1(a>b>0)的左、右焦点分别为F 1和F 2,若A 为椭圆上一动点,直线AF 2与椭圆交于另一点B,若三角形ABF 1的周长为8,且点(1,−32)在椭圆上. (1)求椭圆的标准方程;(2)设直线F 1A 、F 1B 与直线x=4分别交于点M 、N,记直线MF 2和直线NF 2的斜率分别为k 1和k 2,若k 1k 2=54,试求直线AB 的斜率.解析 (1)由题意可得,4a=8,所以a=2,又点(1,−32)在椭圆上,易得b=√3,所以椭圆的标准方程为x 24+y 23=1. (2)由题意得直线AB 的斜率不为0,故可设直线AB 的方程为x=my+1,设A(x 1,y 1),B(x 2,y 2),联立方程组{x =my +1,x 24+y 23=1,整理得(3m 2+4)y 2+6my-9=0,故y 1+y 2=-6m 3m 2+4,y 1·y 2=-93m 2+4,故k AF 1=y 1x 1+1,k BF 1=y 2x 2+1,所以直线F 1A 的方程为y=y 1x 1+1(x+1),故可得M (4,5y 1x 1+1),同理可得N (4,5y 2x 2+1),故k 1=5y 13(x 1+1),k 2=5y 23(x 2+1),所以k 1k 2=25y 1y 29(x 1+1)(x 2+1)=259×y 1y 2(my 1+2)(my 2+2)=259×y 1y 2m 2y 1y 2+2m(y 1+y 2)+4=259×-93m 2+4-9m 23m 2+4-12m23m 2+4+4=-2516−9m 2.故-2516−9m 2=54,解得m=±2.所以直线AB 的斜率k=±12. 8.(2018天津,19,14分)设椭圆x 2a 2+y 2b2=1(a>b>0)的左焦点为F,上顶点为B.已知椭圆的离心率为√53,点A 的坐标为(b,0),且|FB|·|AB|=6√2. (1)求椭圆的方程;(2)设直线l:y=kx(k>0)与椭圆在第一象限的交点为P,且l 与直线AB 交于点Q.若|AQ||PQ|=5√24sin ∠AOQ(O 为原点),求k 的值.解析 (1)设椭圆的焦距为2c,由已知有c 2a 2=59, 又由a 2=b 2+c 2,可得2a=3b.由已知可得,|FB|=a,|AB|=√2b,由|FB|·|AB|=6√2,可得ab=6,从而a=3,b=2. 所以,椭圆的方程为x 29+y 24=1.(2)设点P 的坐标为(x 1,y 1),点Q 的坐标为(x 2,y 2). 由已知有y 1>y 2>0,故|PQ|sin ∠AOQ=y 1-y 2. 又因为|AQ|=y 2sin ∠OAB ,而∠OAB=π4,故|AQ|=√2y 2.由|AQ||PQ|=5√24sin ∠AOQ,可得5y 1=9y 2. 由方程组{y =kx,x 29+y 24=1消去x,可得y 1=√9k +4. 易知直线AB 的方程为x+y-2=0,由方程组{y =kx,x +y -2=0消去x,可得y 2=2kk+1.由5y 1=9y 2,可得5(k+1)=3√9k 2+4,两边平方,整理得56k 2-50k+11=0,解得k=12或k=1128. 所以,k 的值为12或1128. 考法二 求椭圆的离心率(或其范围)1.(2020长沙一模,8)设椭圆C:x 2a 2+y 2b2=1(a>b>0)的左、右焦点分别为F 1、F 2,点E(0,t)(0<t<b).已知动点P 在椭圆上,且P,E,F 2三点不共线,若△PEF 2的周长的最小值为3b,则椭圆C 的离心率为( ) A.√32B.√22C.12D.√53答案 D2.(2022届甘肃靖远开学考,10)已知F 1、F 2分别是椭圆C:x 2a 2+y 2b2=1(a>b>0)的左、右焦点,点P,Q 是C 上位于x 轴上方的任意两点,且PF 1∥QF 2,若|PF 1|+|QF 2|≥b,则C 的离心率的取值范围是( ) A.(0,12] B.[12,1) C.(0,√32] D.[√32,1)答案 C3.(2022届河南部分名校联考,11)已知点F 1,F 2,分别为椭圆C:x 2a 2+y 2b2=1(a>b>0)的左,右焦点,点M 在直线l:x=-a 上运动,若∠F 1MF 2的最大值为60°,则椭圆C 的离心率是( ) A.13 B.12C.√32D.√33答案 C4.(2018课标Ⅱ,12,5分)已知F 1,F 2是椭圆C:x 2a 2+y 2b2=1(a>b>0)的左、右焦点,A 是C 的左顶点,点P 在过A 且斜率为√36的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P=120°,则C 的离心率为( )A.23B.12C.13D.14答案 D5.(2021全国乙理,11,5分)设B 是椭圆C:x 2a 2+y 2b2=1(a>b>0)的上顶点,若C 上的任意一点P 都满足|PB|≤2b,则C 的离心率的取值范围是( ) A.[√22,1) B.[12,1) C.(0,√22] D.(0,12]答案 C6.(2021九师联盟4月联考,11)设椭圆x 2a 2+y 2b2=1(a>b>0)上有一个点A,它关于原点的对称点为B,点F 为椭圆的右焦点,且满足AF ⊥BF,设∠ABF=θ,且θ∈(π12,π3),则椭圆的离心率的取值范围为( ) A.(√33,√62] B.[√22,√63) C.(√33,√62) D.(√22,√63)答案 B7.(2021东北三省四市联考,12)第24届冬季奥林匹克运动会于2022年2月4日在中华人民共和国北京市和张家口市联合举行.这是中国历史上第一次举办冬季奥运会,北京成为奥运史上第一个举办夏季奥林匹克运动会和冬季奥林匹克运动会的城市.同时中国也成为第一个实现奥运“全满贯”(先后举办奥运会、残奥会、青奥会、冬奥会、冬残奥会)国家.根据规划,国家体育场(鸟巢)成为北京冬奥会开、闭幕式的场馆.国家体育场“鸟巢”的钢结构鸟瞰图如图1所示,内外两圈的钢骨架是离心率相同的椭圆,若由外层椭圆长轴一端点A 和短轴一端点B 分别向内层椭圆引切线AC,BD(如图2),且两切线斜率之积等于-916,则椭圆的离心率为( )图1 图2A.34B.√74C.916 D.√32答案 B8. (2022届重庆第十一中学月考,15)美学四大构件是:史诗、音乐、造型(绘画、建筑等)和数学.素描是学习绘画的必要一步,它包括了明暗素描和结构素描,而学习几何体结构素描是学习素描最重要的一步.某同学在画“切面圆柱体”(用与圆柱底面不平行的平面去截圆柱,底面与截面之间的部分叫做切面圆柱体)的过程中,发现“切面”是一个椭圆,若“切面”所在平面与底面成30°角,则该椭圆的离心率为 .答案 129.(2020课标Ⅱ,19,12分)已知椭圆C 1:x 2a 2+y 2b2=1(a>b>0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A,B 两点,交C 2于C,D 两点,且|CD|=43|AB|. (1)求C 1的离心率;(2)设M 是C 1与C 2的公共点.若|MF|=5,求C 1与C 2的标准方程.解析 (1)由已知可设C 2的方程为y 2=4cx,其中c=√a 2-b 2.不妨设A,C 在第一象限,由题设得A,B 的纵坐标分别为b 2a ,-b 2a ;C,D 的纵坐标分别为2c,-2c,故|AB|=2b 2a ,|CD|=4c.由|CD|=43|AB|得4c=8b 23a ,即3×c a =2-2(c a)2.解得c a =-2(舍去)或c a =12.所以C 1的离心率为12. (2)由(1)知a=2c,b=√3c,故C 1:x 24c 2+y 23c 2=1. 设M(x 0,y 0),则x 024c 2+y 023c 2=1,y 02=4cx 0,故x 024c 2+4x 03c=1.① 由于C 2的准线为x=-c,所以|MF|=x 0+c,而|MF|=5,故x 0=5-c,代入①得(5-c)24c2+4(5−c)3c =1,即c 2-2c-3=0,解得c=-1(舍去)或c=3.所以C 1的标准方程为x 236+y 227=1,C 2的标准方程为y 2=12x. 考法三 直线与椭圆位置关系问题1.(2021兰州诊断,11)已知P(2,-2)是离心率为12的椭圆x 2a 2+y 2b2=1(a>b>0)外一点,经过点P 的光线被y 轴反射后,所有反射光线所在直线中只有一条与椭圆相切,则此条切线的斜率是 ( ) A.-18 B.-12 C.1 D.18答案 D2.(2022届安徽怀宁中学月考,20)已知椭圆C:x 2a 2+y 2b2=1(a>b>0)过点-12,-√154,(√303,√66).(1)求椭圆C 的方程;(2)已知直线l:y=kx-2与椭圆C 交于M,N 两点. (i)若k=1,求线段MN 的中点坐标;(ii)当△OMN 的面积取到最大值时,求k 的值.解析 (1)由题意得{14a 2+1516b 2=1,103a 2+16b2=1,解得{a 2=4,b 2=1,故椭圆C 的方程为x 24+y 2=1.(2)设M(x 1,y 1),N(x 2,y 2),MN 的中点P 的坐标为(x 0,y 0),联立{y =kx -2,x 24+y 2=1,整理得(4k 2+1)x 2-16kx+12=0,∴Δ=(-16k)2-48(4k 2+1)>0,即k 2>34,x 1+x 2=16k4k 2+1,x 1x 2=124k 2+1.(i)∵k=1,∴x 1+x 2=165,∴x 0=85,y 0=x 0-2=-25,∴线段MN 的中点坐标为(85,-25). (ii)|MN|=√1+k 2|x 1-x 2|=√1+k 2√(x 1+x 2)2-4x 1x 2=4√(k 2+1)(4k 2-3)4k 2+1,又点O 到直线l 的距离d=√1+k ,∴S △OMN =12d ·|MN|=12·√1+k·4√(k 2+1)(4k 2-3)4k 2+1=4√4k 2-34k 2+1,令√4k 2-3=t,则t>0,∴S △OMN =4t t 2+4=4t+4t ≤44=1,当且仅当t=2时等号成立,此时k=±√72,且满足Δ>0,∴△OMN 面积的最大值是1,此时k 的值为±√72.3.(2022届陕西西北工业大学附属中学月考,21)过点A(0,1)作圆x 2+y 2=12的切线,两切线分别与x 轴交于点F 1(x 1,0),F 2(x 2,0)(x 1<x 2),以F 1,F 2为焦点的椭圆C 经过点A.(1)求椭圆C 的方程;(2)直线AF 2与椭圆C 的另一个交点为B,求直线BF 1被椭圆C 截得的线段长.解析 (1)过点A(0,1)作圆x 2+y 2=12的切线,显然切线斜率存在,故可设切线方程为y=kx+1,即kx-y+1=0,则圆心(0,0)到该切线的距离d=|0-0+1|k 2+(−1)2=1k 2+1,又圆x 2+y 2=12的半径r=√22,∴1k 2+1=√22,解得k=±1,故切线方程为y=x+1或y=-x+1.令y=0,解得x 1=-1,x 2=1,故F 1(-1,0),F 2(1,0).依题意可设椭圆的方程为x 2a 2+y 2b 2=1(a>b>0),又椭圆过点A(0,1),∴b=1,又c=1,∴a 2=b 2+c 2=2,故椭圆C 的方程为x 22+y 2=1.(2)由题知A(0,1),F 2(1,0),故直线AF 2的方程为x 1+y 1=1,即x+y-1=0.设直线AF 2与椭圆C 的另一个交点为B(x 3,y 3),联立{x +y -1=0,x 22+y 2=1,整理得3y 2-2y-1=0,∴y 3+1=23,解得y 3=-13,故x 3=1-(-13)=43,∴B 43,-13,则k BF 1=-13-043-(-1)=-17,故直线BF 1的方程为y=-17(x+1).设直线BF 1与椭圆C 的另一个交点为M(x 4,y 4),联立{y =−17(x +1),x22+y 2=1,整理得51y 2+14y-1=0,∴y 4-13=-1451,解得y 4=117,故x 4=-2417,∴M (-2417,117),∴|BM|=√(-2417-43)2+(117+13)2=√1402512+202512=100√251,所以直线BF 1被椭圆C 截得的线段长为100√251. 4.(2022届昆明一中双基检测二)已知椭圆C:x 2a 2+y 2b2=1(a>b>0)的右焦点为F,且F 与椭圆C 上点的距离的取值范围为[2-√3,2+√3]. (1)求a,b;(2)若点P 在圆M:x 2+y 2=5上,PA,PB 是C 的两条切线,A,B 是切点,求△PAB 面积的最小值. 解析 (1)由题意得{a -c =2−√3,a +c =2+√3,解得{a =2,c =√3,则b=√a 2-c 2=1.(2)由(1)得,椭圆C 的方程为x 24+y 2=1,设A(x 1,y 1),B(x 2,y 2),P(x 0,y 0),由x 124+y 12=1,得A 在直线l 1:x 1x4+y 1y=1上,将直线l 1与椭圆C 联立得,y 12x 24+y 12y 2=y 12x 24+(1−x 1x 4)2=y 12,即(x 12+4y 12)x 2-8x 1x+16-16y 12=0,则Δ=64x 12-4(x 12+4y 12)(16-16y 12)=64y 12(x 12+4y 12-4)=0,故直线l 1与C 相切,故C 在A 处的切线方程为l 1:x 1x 4+y 1y=1,同理C 在B 处的切线方程为l 2:x 2x4+y 2y=1.∵直线l 1与直线l 2相交于点P(x 0,y 0),故有x 1x 04+y 1y 0=1且x 2x 04+y 2y 0=1,∴直线AB 的方程为l:x 0x4+y 0y=1,将直线l 与椭圆C 联立得(x 02+4y 02)x 2-8x 0x+16-16y 02=0,则x 1+x 2=8x 0x 02+4y 02,x 1·x 2=16−16y 02x 02+4y 02,,故当y 0≠0时, |AB|=√1+x 0216y 02·√(x 1+x 2)2-4x 1·x 2 =√x 02+16y 024|y 0|·√(8x 0x 02+4y 02)2-4·16−16y 02x 02+4y 02 =2√x 02+16y 02·√x 02-(1-y 02)(x 02+4y 02)|y 0|(x 02+4y 02)=2√x 02+16y 02·√x 02+4y 02-4x 02+4y 02,故|AB|=2√x 02+16y 02·√x 02+4y 02-4x 02+4y 02.易验证当y 0=0时,该式也成立.∵点P 到直线l 的距离d=|x 024+y 02-1|√x 0216+y 02=0202√020,∴△PAB 的面积S=12|AB|·d=(x 02+4y 02-4)√x 02+4y 02-4x 02+4y 02,令t=√x 02+4y 02-4=√5−y 02+4y 02-4=√1+3y 02∈[1,4],则S=t 3t 2+4=11t +4t 3,易知S=11t +4t 3在t ∈[1,4]上单调递增,∴当t=1,即y 0=0,x 0=±√5时,△PAB 面积取得最小值15.5.(2021合肥二模,20)已知椭圆C:x 2a 2+y 2b2=1(a>b>0)的离心率为12,右顶点M 到左焦点的距离为3,直线l 与椭圆C 交于点A,B. (1)求椭圆C 的标准方程;(2)设直线MA,MB 的斜率为k 1,k 2.若4k 1k 2+9=0,求|AB|的最小值.解析 (1)设椭圆的半焦距为c,由题意得{ca =12,a +c =3,解得{a =2,c =1.∴b=√3,∴椭圆C 的标准方程为x 24+y 23=1.(2)由题意知,直线l 的斜率不为0,设其方程为x=my+n,A(x 1,y 1),B(x 2,y 2), 由{x =my +n,x 24+y 23=1得(3m 2+4)y 2+6mny+3n 2-12=0, ∴y 1+y 2=-6mn 3m 2+4,y 1y 2=3n 2-123m 2+4,Δ=(6mn)2-4(3m 2+4)·(3n 2-12)=48(3m 2-n 2+4)>0. 由(1)知M(2,0),则直线MA,MB 的斜率分别为k 1=y 1x 1-2,k 2=y 2x 2-2,∴k 1k 2=y 1y 2(x 1-2)(x 2-2)=y 1y 2(my 1+n -2)(my 2+n -2)=y 1y 2m 2y 1y 2+m(n -2)(y 1+y 2)+(n -2)2=3n 2-123m 2+4m 2·3n 2-123m 2+4+m(n -2)(-6mn 3m 2+4)+(n -2)2=3n 2-124(n -2)2=3(n+2)4(n -2)=-94,解得n=1. ∴直线l 的方程为x=my+1,直线l 过定点(1,0),此时,y 1+y 2=-6m 3m 2+4,y 1y 2=-93m 2+4, ∴|AB|=√1+m 2|y 1-y 2|=√1+m 2·√(y 1+y 2)2-4y 1y 2=√1+m 2√(-6m 3m 2+4)2+363m 2+4=√1+m 2·√144(m 2+1)(3m 2+4)2=12(m 2+1)3m 2+4=4·3m 2+33m 2+4=4(1−13m 2+4)≥3(当且仅当m=0时取等号),∴|AB|的最小值为3.6.(2021天一大联考顶尖计划第三次联考,20)已知椭圆Γ:x 2a 2+y 2b2=1(a>b>0)的右焦点为F(c,0)(c>0),离心率为√32,经过F 且垂直于x 轴的直线交Γ于第一象限的点M,O 为坐标原点,且|OM|=√132.(1)求椭圆Γ的方程;(2)设不经过原点O 且斜率为12的直线交椭圆Γ于A,B 两点,A,B 关于原点O 对称的点分别是C,D,试判断四边形ABCD 的面积有没有最大值.若有,请求出最大值;若没有,请说明理由. 解析 (1)由题意知c a =√32,即a 2=43c 2,① 又由a 2=b 2+c 2,可得b 2=c 23.②联立{x =c,x 2a 2+y 2b 2=1,解得{x =c,y =±b 2a,则点M (c,b2a ).则|OM|=√c 2+(b2a )2=√132.③联立①②③,解得c=√3,a=2,b=1. 故椭圆Γ的方程为x 24+y 2=1.(2)设直线AB 的方程为y=12x+m,联立{y =12x +m,x 24+y 2=1,消去y 得2x 2+4mx+4(m 2-1)=0, 由题意得Δ=(4m)2-4×2×4(m 2-1)=16(2-m 2)>0,解得-√2<m<√2. 设A(x 1,y 1),B(x 2,y 2),则x 1+x 2=-2m,x 1x 2=2(m 2-1).则|AB|=√1+(12)2|x 1-x 2|=√52√(x 1+x 2)2-4x 1x 2=√52√(-2m)2-4×2(m 2-1)=√52√8−4m 2.原点O 到直线AB 的距离d=√(12)+(−1)2=2√55·|m|,则直线CD 到直线AB 的距离d'=2d=4√55|m|, 显然四边形ABCD 是平行四边形, 所以S 四边形ABCD =|AB|d'=√52√8−4m 2·4√55|m| =2√m 2(8-4m 2)=2√14·4m 2(8-4m 2)≤2√14·(4m 2+8−4m 22)2=4,当且仅当4m 2=8-4m 2,即m=±1时,等号成立,故四边形ABCD 的面积存在最大值,且最大值为4.7.(2021宁夏名校二模,20)已知椭圆C 1:x 2a 2+y 2b2=1(a>b>0)的离心率为12,过点E(√7,0)的椭圆C 1的两条切线相互垂直.(1)求椭圆C 1的方程;(2)在椭圆C 1上是否存在这样的点P,过点P 引抛物线C 2:x 2=4y 的两条切线l 1、l 2,切点分别为B 、C,且直线BC 过点A(1,1)?若存在,指出这样的点P 有几个(不必求出点的坐标);若不存在,请说明理由.解析 (1)由椭圆的对称性,不妨设在x 轴上方的切点为M,x 轴下方的切点为N,则k NE =1,NE 的直线方程为y=x-√7,因为椭圆C 1:x 2a 2+y 2b2=1(a>b>0)的离心率为12,所以c a =12,则a=2c,由a 2=b 2+c 2得b 2=3c 2,所以椭圆C 1:x 24c 2+y 23c 2=1,联立直线NE 与椭圆的方程得{y =x -√7,x 24c 2+y 23c 2=1,消去y 得7x 2-8√7x+28-12c 2=0,则有Δ=0,即(-8√7)2-4×7×(28-12c 2)=0,解得c 2=1,所以椭圆C 1的方程为x 24+y 23=1.(2)设点B(x 1,y 1),C(x 2,y 2),P(x 0,y 0),由x 2=4y,即y=14x 2,得y'=12x,∴抛物线C 2在点B 处的切线l 1的方程为y-y 1=x 12(x-x 1).即y=x12x+y 1-12x 12,∵y 1=14x 12,∴y=x 12x-y 1.∵点P(x 0,y 0)在切线l 1上,∴y 0=x 12x 0-y 1.① 同理,y 0=x 22x 0-y 2.②由①、②得,点B(x 1,y 1),C(x 2,y 2)的坐标都满足方程y 0=x 2x 0-y.∵经过B(x 1,y 1),C(x 2,y 2)两点的直线是唯一的,∴直线BC 的方程为y 0=x 2x 0-y, ∵点A(1,1)在直线BC 上,∴y 0=12x 0-1, ∴点P 的轨迹方程为y=12x-1.又∵点P 在椭圆C 1上,在直线y=12·x-1上,直线y=12x-1经过椭圆C 1内一点(0,-1),∴直线y=12x-1与椭圆C 1交于两点,∴满足条件的点P 有两个.。
第5节 第1课时 椭圆的定义、标准方程及其简单几何性质--2025年高考数学复习讲义及练习解析
第五节椭圆第1课时椭圆的定义、标准方程及其简单几何性质1.椭圆的定义把平面内与两个定点F1,F2的距离的和等于01常数(大于|F 1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的02焦点,两焦点间的距离叫做椭圆的03焦距.2.椭圆的标准方程及简单几何性质焦点的位置焦点在x轴上焦点在y轴上图形标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0)范围04-a≤x≤a且-b≤y≤b05-b≤x≤b且-a≤y≤a顶点06A1(-a,0),A2(a,0),B1(0,-b),B2(0,b)07A1(0,-a),A2(0,a),B1(-b,0),B2(b,0)轴长短轴长为082b,长轴长为092a焦点10F1(-c,0),F2(c,0)11F1(0,-c),F2(0,c)焦距|F1F2|=122c对称性对称轴:13x轴和y轴,对称中心:14原点离心率e=ca(0<e<1)a,b,c的关系15a2=b2+c2椭圆的焦点三角形椭圆上的点P(x0,y0)与两焦点构成的△PF1F2叫做焦点三角形.如图所示,设∠F1PF2=θ.(1)当P为短轴端点时,θ最大,S△F1PF2最大.(2)S△F1PF2=12|PF1|·|PF2|sinθ=b2tanθ2=c|y0|.(3)|PF1|max=a+c,|PF1|min=a-c.(4)|PF1|·|PF2|=a2.(5)4c2=|PF1|2+|PF2|2-2|PF1|·|PF2|·cosθ.1.概念辨析(正确的打“√”,错误的打“×”)(1)平面内与两个定点F1,F2的距离之和等于常数的点的轨迹是椭圆.()(2)椭圆是轴对称图形,也是中心对称图形.()(3)y2 m2+x2n2=1(m≠n)表示焦点在y轴上的椭圆.()(4)x2 a2+y2b2=1(a>b>0)与y2a2+x2b2=1(a>b>0)的焦距相等.()答案(1)×(2)√(3)×(4)√2.小题热身(1)(人教A选择性必修第一册习题3.1T3改编)已知椭圆C:16x2+4y2=1,则下列结论正确的是()A.长轴长为12B.焦距为34C .短轴长为14D .离心率为32答案D解析把椭圆方程16x 2+4y 2=1化为标准方程可得y 214+x 2116=1,所以a =12,b =14,c =34,则长轴长2a =1,焦距2c =32,短轴长2b =12,离心率e =c a =32.故选D.(2)(人教A 选择性必修第一册习题3.1T5改编)已知点P 为椭圆x 216+y 29=1上的一点,B 1,B 2分别为椭圆的上、下顶点,若△PB 1B 2的面积为6,则满足条件的点P 的个数为()A .0B .2C .4D .6答案C解析在椭圆x 216+y 29=1中,a =4,b =3,则短轴|B 1B 2|=2b =6,设椭圆上点P 的坐标为(m ,n ),由△PB 1B 2的面积为6,得12|B 1B 2|·|m |=6,解得m =±2,将m =±2代入椭圆方程,得n =±332,所以符合题意的点P ,22,共4个满足条件的点P .故选C.(3)(人教A 选择性必修第一册习题3.1T1改编)已知点M (x ,y )在运动过程中,总满足关系式x 2+(y -2)2+x 2+(y +2)2=8,则点M 的轨迹方程为________________.答案x 212+y 216=1解析因为x 2+(y -2)2+x 2+(y +2)2=8>4,所以点M 的轨迹是以(0,2),(0,-2)为焦点的椭圆,设椭圆方程为x 2b 2+y 2a 2=1(a >b >0),由题意得2a =8,即a =4,则b 2=a 2-c 2=12,所以点M 的轨迹方程为x 212+y 216=1.(4)(人教A 选择性必修第一册习题3.1T4改编)已知椭圆C 的焦点在x 轴上,且离心率为12,则椭圆C 的方程可以为________________(写出满足题意的一个椭圆方程即可).答案x 24+y 23=1(答案不唯一)解析因为焦点在x 轴上,所以设椭圆的方程为x 2a 2+y 2b 2=1,a >b >0,因为离心率为12,所以ca=12,所以c 2a 2=a 2-b 2a2=14,则b 2a 2=34.所以椭圆C 的方程可以为x 24+y 23=1(答案不唯一).考点探究——提素养考点一椭圆的定义及其应用(多考向探究)考向1利用椭圆的定义求轨迹方程例1(2024·山东烟台一中质检)已知圆(x +2)2+y 2=36的圆心为M ,设A 是圆上任意一点,N (2,0),线段AN 的垂直平分线交MA 于点P ,则动点P 的轨迹方程为________.答案x 29+y 25=1解析点P 在线段AN 的垂直平分线上,故|PA |=|PN |.又AM 是圆的半径,所以|PM |+|PN |=|PM |+|PA |=|AM |=6>|MN |.由椭圆的定义知,点P 的轨迹是以M ,N 为焦点的椭圆,且2a =6,2c =4,故所求的轨迹方程为x 29+y 25=1.【通性通法】在求动点的轨迹时,如果能够判断动点的轨迹满足椭圆的定义,那么可以直接求解其轨迹方程.【巩固迁移】1.△ABC 的两个顶点为A (-3,0),B (3,0),△ABC 的周长为16,则顶点C 的轨迹方程为()A .x 225+y 216=1(y ≠0)B .y 225+x 216=1(y ≠0)C .x 216+y 29=1(y ≠0)D .y 216+x 29=1(y ≠0)答案A解析由题意,知点C 到A ,B 两点的距离之和为10,故顶点C 的轨迹为以A (-3,0),B (3,0)为焦点,长轴长为10的椭圆,故2a =10,c =3,b 2=a 2-c 2=16.其方程为x 225+y 216=1.又A ,B ,C 三点不能共线,所以x 225+y 216=1(y ≠0).故选A.考向2利用椭圆的定义解决焦点三角形问题例2(1)如图,△ABC 的顶点B ,C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是________.答案43解析因为a 2=3,所以a = 3.△ABC 的周长为|AC |+|AB |+|BC |=|AC |+|CF 2|+|AB |+|BF 2|=2a +2a =4a =43.(2)设点P 为椭圆C :x 2a 2+y 24=1(a >2)上一点,F 1,F 2分别为C 的左、右焦点,且∠F 1PF 2=60°,则△PF 1F 2的面积为________.答案433解析解法一:由题意,知c =a 2-4.又∠F 1PF 2=60°,|PF 1|+|PF 2|=2a ,|F 1F 2|=2a 2-4,∴|F 1F 2|2=(|PF 1|+|PF 2|)2-2|PF 1||PF 2|-2|PF 1||PF 2|cos60°=4a 2-3|PF 1||PF 2|=4a 2-16,∴|PF 1||PF 2|=163,∴S △PF 1F 2=12|PF 1||PF 2|sin60°=12×163×32=433解法二:S △PF 1F 2=b 2tan ∠F 1PF 22=4tan30°=433.【通性通法】将定义和余弦定理结合使用可以解决焦点三角形的周长和面积问题.【巩固迁移】2.(2023·全国甲卷)已知椭圆x 29+y 26=1,F 1,F 2为两个焦点,O 为原点,P 为椭圆上一点,cos∠F 1PF 2=35,则|PO |=()A .25B .302C .35D .352答案B解析解法一:因为|PF 1|+|PF 2|=2a =6①,|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos ∠F 1PF 2=|F 1F 2|2,即|PF 1|2+|PF 2|2-65|PF 1||PF 2|=12②,联立①②,解得|PF 1||PF 2|=152,|PF 1|2+|PF 2|2=21,而PO →=12(PF 1→+PF 2→),所以|PO |=|PO →|=12|PF 1→+PF 2→|,即|PO →|=12|PF 1→+PF 2→|=12|PF 1→|2+2PF 1→·PF 2→+|PF 2→|2=1221+2×152×35=302.故选B.解法二:设∠F 1PF 2=2θ,0<θ<π2,所以S △PF 1F 2=b 2tan∠F 1PF 22=b 2tan θ,由cos ∠F 1PF 2=cos2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=35,解得tan θ=12.由椭圆的方程可知,a 2=9,b 2=6,c 2=a 2-b 2=3,所以S △PF 1F 2=12|F 1F 2|×|y P |=12×23×|y P |=6×12,解得y 2P =3,所以x 2P ==92,因此|PO |=x 2P +y 2P =3+92=302.故选B.解法三:因为|PF 1|+|PF 2|=2a =6①,|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos ∠F 1PF 2=|F 1F 2|2,即|PF 1|2+|PF 2|2-65|PF 1||PF 2|=12②,联立①②,解得|PF 1|2+|PF 2|2=21,由中线定理可知,(2|PO |)2+|F 1F 2|2=2(|PF 1|2+|PF 2|2)=42,易知|F 1F 2|=23,解得|PO |=302.故选B.考向3利用椭圆的定义求最值例3已知F 1,F 2是椭圆C :x 216+y 212=1的两个焦点,点M ,N 在C 上,若|MF 2|+|NF 2|=6,则|MF 1|·|NF 1|的最大值为()A .9B .20C .25D .30答案C解析根据椭圆的定义,得|MF 1|+|MF 2|=8,|NF 1|+|NF 2|=8,因为|MF 2|+|NF 2|=6,所以8-|MF 1|+8-|NF 1|=6,即|MF 1|+|NF 1|=10≥2|MF 1|·|NF 1|,当且仅当|MF 1|=|NF 1|=5时,等号成立,所以|MF 1|·|NF 1|≤25,则|MF 1|·|NF 1|的最大值为25.故选C.【通性通法】在椭圆中,结合|PF 1|+|PF 2|=2a ,运用基本不等式或三角形任意两边之和大于第三边可求最值.【巩固迁移】3.(2024·河北邯郸模拟)已知F 是椭圆x 29+y 25=1的左焦点,P 是此椭圆上的动点,A (1,1)是一定点,则|PA |+|PF |的最大值为________,最小值为________.答案6+26-2解析由题意知a =3,b =5,c =2,F (-2,0).设椭圆的右焦点为F ′,则|PF |+|PF ′|=6,所以|PA |+|PF |=|PA |-|PF ′|+6.当P ,A ,F ′三点共线时,|PA |-|PF ′|取到最大值|AF ′|=2或最小值-|AF ′|=- 2.所以|PA |+|PF |的最大值为6+2,最小值为6- 2.考点二椭圆的标准方程例4(1)已知椭圆C 的焦点为F 1(-1,0),F 2(1,0),过F 2的直线与C 交于A ,B 两点.若|AF 2|=2|F 2B |,|AB |=|BF 1|,则椭圆C 的方程为()A .x 22+y 2=1B .x 23+y 22=1C .x 29+y 26=1D .x 25+y 24=1答案B解析设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),由椭圆的定义,得|AF 1|+|AB |+|BF 1|=4a .∵|AB |=|BF 1|,∴|AF 1|+2|AB |=4a .又|AF 2|=2|F 2B |,∴|AB |=32|AF 2|,∴|AF 1|+3|AF 2|=4a .又|AF 1|+|AF 2|=2a ,∴|AF 2|=a ,∴A 为椭圆的短轴端点.如图,不妨设A (0,b ),又F 2(1,0),AF 2→=2F 2B →,∴将B 点坐标代入椭圆方程x 2a 2+y 2b 2=1,得94a 2+b 24b 2=1,∴a 2=3,b 2=a 2-c 2=2.∴椭圆C 的方程为x 23+y 221.故选B.(2)(2024·山西大同模拟)过点(2,-3),且与椭圆x 24+y 23=1有相同离心率的椭圆的标准方程为________________.答案x 28+y 26=1或y 2253+x 2254=1解析椭圆x 24+y 23=1的离心率是e =12,当焦点在x 轴上时,设所求椭圆的标准方程是x 2a 2+y 2b2=1(a >b >0)=12,b 2+c 2,+3b 2=1,2=8,2=6,∴所求椭圆的标准方程为x 28+y 26=1;当焦点在y 轴上时,设所求椭圆的标准方程为y 2a 2+x 2b2=1(a >b >0)=12,b 2+c 2,+4b 2=1,2=253,2=254,∴所求椭圆的标准方程为y 2253+x 2254=1.故所求椭圆的标准方程为x 28+y 26=1或y 2253+x 2254=1.【通性通法】1.求椭圆方程的常用方法(1)定义法:根据椭圆的定义,确定a 2,b 2的值,结合焦点位置写出椭圆方程.(2)待定系数法求椭圆标准方程的一般步骤注意:一定先判断椭圆的焦点位置,即先定型后定量.2.椭圆标准方程的两个应用(1)方程x 2a 2+y 2b 2=1(a >0,b >0)与x 2a 2+y 2b2=λ(a >0,b >0,λ>0)有相同的离心率.(2)与椭圆x 2a 2+y 2b 2=1(a >b >0)共焦点的椭圆系方程为x 2a 2+k +y 2b 2+k =1(a >b >0,k +b 2>0).恰当选用椭圆系方程,可使运算更简便.【巩固迁移】4.已知F 1,F 2为椭圆C :x 2a 2+y 2b 2=1(a >b>0)的两个焦点,若P |PF 1|+|PF 2|=4,则椭圆C 的方程为________________.答案x 24+y 23=1解析由|PF 1|+|PF 2|=4得2a =4,解得a=2.又P C :x 2a 2+y 2b2=1(a >b >0)上,所以1222+1,解得b=3,所以椭圆C的方程为x24+y23=1.5.已知椭圆的中心在原点,以坐标轴为对称轴,且经过P1(6,1),P2(-3,-2)两点,则该椭圆的方程为________________.答案x29+y23=1解析设椭圆的方程为mx2+ny2=1(m>0,n>0,且m≠n).因为椭圆经过P1,P2两点,所以点P1,P2的坐标满足椭圆方程,m+n=1,m+2n=1,=19,=13.所以所求椭圆的方程为x29+y23=1.考点三椭圆的简单几何性质(多考向探究)考向1椭圆的长轴、短轴、焦距例5已知椭圆x225+y29=1与椭圆x225-k+y29-k=1(k<9,且k≠0),则两椭圆必定() A.有相等的长轴长B.有相等的焦距C.有相等的短轴长D.有相同的离心率答案B解析由椭圆x225+y29=1,知a=5,b=3,c=4,所以长轴长是10,短轴长是6,焦距是8.在椭圆x225-k+y29-k1(k<9,且k≠0)中,因为a1=25-k,b1=9-k,c1=4,所以其长轴长是225-k,短轴长是29-k,焦距是8.所以两椭圆有相等的焦距.故选B.【通性通法】求解与椭圆几何性质有关的问题时,要理清顶点、焦点、长轴长、短轴长、焦距等基本量的内在联系.【巩固迁移】6.若连接椭圆短轴的一个顶点与两焦点的三角形是等边三角形,则长轴长与短轴长之比为()A.2B.23C.233D.4答案C解析因为连接椭圆短轴的一个顶点与两焦点的三角形是等边三角形,所以a=2c,所以b2=a 2-c 2=3c 2,所以b =3c ,故2a 2b =a b =2c 3c =233,所以长轴长与短轴长之比为233.故选C.7.(2024·河北沧州统考期末)焦点在x 轴上的椭圆x 2a 2+y 23=1的长轴长为43,则其焦距为________.答案6解析由题意,得2a =43,所以a 2=12,c 2=a 2-b 2=12-3=9,解得c =3,故焦距2c =6.考向2椭圆的离心率例6(1)(2024·江苏镇江模拟)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2作x 轴的垂线与C 交于A ,B 两点,F 1B 与y 轴交于点D ,若AD ⊥F 1B ,则椭圆C 的离心率为________.答案33解析由题意知F 1(-c ,0),F 2(c ,0),其中c =a 2-b 2,因为过F 2且与x 轴垂直的直线为x=c ,由椭圆的对称性,可设它与椭圆的交点为,因为AB 平行于y 轴,且|F 1O |=|OF 2|,所以|F 1D |=|DB |,即D 为线段F 1B 的中点,又|AF 1|=|BF 1|,则△AF 1B 为等边三角形.解法一:由|F 1F 2|=3|AF 2|,可知2c =3·b 2a ,即3b 2=2ac ,所以3(a 2-c 2)=2ac ,即3e 2+2e -3=0,解得e =33(e =-3舍去).解法二:由|AF 1|+|BF 1|+|AB |=4a ,可知|AF 1|=|BF 1|=|AB |=43a ,又|AF 1|sin60°=|F 1F 2|,所以43a ×322c ,解得c a =33,即e =33.解法三:由|AF 1|+|BF 1|+|AB |=4a ,可知|AB |=|AF 1|=|BF 1|=43a ,即2b 2a =43a ,即2a 2=3b 2,所以e =c 2a 2=1-b 2a 2=33.(2)(2024·广东七校联考)已知F 1,F 2是椭圆的两个焦点,满足MF 1→·MF 2→=0的点M 总在椭圆内部,则椭圆离心率的取值范围是________.答案解析根据椭圆的对称性,不妨设焦点在x 轴上的椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),设F 1(-c ,0),F 2(c ,0).解法一:设M (x 0,y 0),MF 1→·MF 2→=0⇒(-c -x 0,-y 0)·(c -x 0,-y 0)=0⇒x 20-c 2+y 20=0⇒y 20=c2-x 20,点M (x 0,y 0)在椭圆内部,有x 20a 2+y 20b 2<1⇒b 2x 20+a 2(c 2-x 20)-a 2b 2<0⇒x 20>2a 2-a 4c2,要想该不等式恒成立,只需2a 2-a 4c 2<0⇒2a 2c 2<a 4⇒2c 2<a 2⇒e =c a <22,而e >0⇒0<e <22,即椭圆离心解法二:由MF 1→·MF 2→=0,可知点M 在以F 1F 2为直径的圆上,即圆x 2+y 2=c 2在椭圆x 2a 2+y 2b 2=1(a >b >0)内部,所以c <b ,则c 2<b 2,即c 2<a 2-c 2,所以2c 2<a 2,即e 2<12,又e >0,所以0<e <22,【通性通法】求椭圆离心率的方法方法一直接求出a ,c ,利用离心率公式e =ca求解方法二由a 与b 的关系求离心率,利用变形公式e =1-b 2a2求解方法三构造a ,c 的齐次式,可以不求出a ,c 的具体值,而是得出a 与c 的关系,从而求得e注意:解题的关键是借助图形建立关于a ,b ,c 的关系式(等式或不等式),转化为e 的关系式.【巩固迁移】8.(2023·新课标Ⅰ卷)设椭圆C 1:x 2a 2+y 2=1(a >1),C 2:x 24+y 2=1的离心率分别为e 1,e 2.若e 2=3e 1,则a =()A .233B .2C .3D .6答案A解析由e 2=3e 1,得e 22=3e 21,因此4-14=3×a 2-1a 2,而a >1,所以a =233.故选A.9.(2024·广东六校联考)设F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若在直线x =a 2c 上存在点P ,使线段PF 1的中垂线过点F 2,则椭圆离心率的取值范围是________.答案33,解析设F 1(-c ,0),F 2(c ,0),由线段PF 1的中垂线过点F 2,得|PF 2|=|F 1F 2|,即2c ,得m 2=4c 2=-a 4c2+2a 2+3c 2≥0,即3c 4+2a 2c 2-a 4≥0,得3e 4+2e 2-1≥0,解得e 2≥13,又0<e <1,故33≤e <1,即椭圆离心率的取值范围是33,考向3与椭圆几何性质有关的最值(范围)问题例7(2024·石家庄质检)设点M 是椭圆C :x 29+y 28=1上的动点,点N 是圆E :(x -1)2+y 2=1上的动点,且直线MN 与圆E 相切,则|MN |的最小值是________.答案3解析由题意知,圆E 的圆心为E (1,0),半径为1.因为直线MN 与圆E 相切于点N ,所以NE ⊥MN ,且|NE |=1.又E (1,0)为椭圆C 的右焦点,所以2≤|ME |≤4,所以当|ME |=2时,|MN |取得最小值,又|MN |=|ME |2-|NE |2,所以|MN |min =22-12= 3.【通性通法】与椭圆有关的最值(范围)问题的求解策略【巩固迁移】10.如图,焦点在x 轴上的椭圆x 24+y 2b 2=1(b >0)的离心率e =12,F ,A 分别是椭圆的左焦点和右顶点,P 是椭圆上任意一点,则PF →·PA →的最大值为________.答案4解析由题意,知a =2,因为e =c a =12,所以c =1,所以b 2=a 2-c 2=3,故椭圆的方程为x 24+y 23=1.设点P 的坐标为(x 0,y 0),所以-2≤x 0≤2,-3≤y 0≤3.因为F (-1,0),A (2,0),所以PF →=(-1-x 0,-y 0),PA →=(2-x 0,-y 0),所以PF →·PA →=x 20-x 0-2+y 20=14x 20-x 0+1=14(x 0-2)2,所以当x 0=-2时,PF →·PA →取得最大值4.课时作业一、单项选择题1.已知动点M 到两个定点A (-2,0),B (2,0)的距离之和为6,则动点M 的轨迹方程为()A .x 29+y 2=1B .y 29+x 25=1C .y 29+x 2=1D .x 29+y 25=1答案D解析由题意有6>2+2=4,故点M 的轨迹为焦点在x 轴上的椭圆,则2a =6,c =2,故a 2=9,所以b 2=a 2-c 2=5,故椭圆的方程为x 29+y 25=1.故选D.2.(2024·九省联考)椭圆x 2a 2+y 2=1(a >1)的离心率为12,则a =()A .233B .2C .3D .2答案A解析由题意得e =a 2-1a=12,解得a =233.故选A .3.(2024·河南信阳模拟)与椭圆9x 2+4y 2=36有相同焦点,且满足短半轴长为25的椭圆方程是()A .x 225+y 220=1B .x 220+y 225=1C .x 220+y 245=1D .x 280+y 285=1答案B解析由9x 2+4y 2=36,可得x 24+y 29=1,所以所求椭圆的焦点在y 轴上,且c 2=9-4=5,b=25,a 2=25,所以所求椭圆方程为x 220+y 225=1.4.设e 是椭圆x 24+y 2k =1的离心率,且e k 的取值范围是()A .(0,3)BC .(0,3)D .(0,2)答案C解析当k >4时,c =k -4,由条件,知14<k -4k <1,解得k >163;当0<k <4时,c =4-k ,由条件,知14<4-k4<1,解得0<k <3.故选C.5.已知两圆C 1:(x -4)2+y 2=169,C 2:(x +4)2+y 2=9.动圆M 在圆C 1内部,且与圆C 1内切,与圆C 2外切,则动圆的圆心M 的轨迹方程是()A .x 264-y 248=1B .x 248+y 264=1C .x 248-y 264=1D .x 264+y 248=1答案D解析设动圆的圆心M (x ,y ),半径为r ,因为圆M 与圆C 1:(x -4)2+y 2=169内切,与圆C 2:(x +4)2+y 2=9外切,所以|MC 1|=13-r ,|MC 2|=3+r .因为|MC 1|+|MC 2|=16>|C 1C 2|=8,由椭圆的定义,知M 的轨迹是以C 1,C 2为焦点,长轴长为16的椭圆,则a =8,c =4,所以b 2=82-42=48,动圆的圆心M 的轨迹方程为x 264+y 248=1.故选D.6.(2023·全国甲卷)设F 1,F 2为椭圆C :x 25+y 2=1的两个焦点,点P 在C 上,若PF 1→·PF 2→=0,则|PF 1|·|PF 2|=()A .1B .2C .4D .5答案B解析解法一:因为PF 1→·PF 2→=0,所以∠F 1PF 2=90°,从而S △F 1PF 2=b 2tan45°=1=12|PF 1|·|PF 2|,所以|PF 1|·|PF 2|=2.故选B.解法二:因为PF 1→·PF 2→=0,所以∠F 1PF 2=90°,由椭圆方程可知,c 2=5-1=4⇒c =2,所以|PF 1|2+|PF 2|2=|F 1F 2|2=42=16,又|PF 1|+|PF 2|=2a =25,平方得|PF 1|2+|PF 2|2+2|PF 1|·|PF 2|=16+2|PF 1|·|PF 2|=20,所以|PF 1|·|PF 2|=2.故选B.7.(2023·甘肃兰州三模)设椭圆x 24+y 23=1的一个焦点为F ,则对于椭圆上两动点A ,B ,△ABF周长的最大值为()A .4+5B .6C .25+2D .8答案D解析设F 1为椭圆的另外一个焦点,则由椭圆的定义可得|AF |+|BF |+|AB |=2a -|AF 1|+2a -|BF 1|+|AB |=4a +|AB |-|BF 1|-|AF 1|=8+|AB |-|BF 1|-|AF 1|,当A ,B ,F 1三点共线时,|AB |-|BF 1|-|AF 1|=0,当A ,B ,F 1三点不共线时,|AB |-|BF 1|-|AF 1|<0,所以当A ,B ,F 1三点共线时,△ABF 的周长取得最大值8.8.(2024·安徽三市联考)已知椭圆C 的左、右焦点分别为F 1,F 2,P ,Q 为C 上两点,2PF 2→=3F 2Q →,若PF 1→⊥PF 2→,则C 的离心率为()A .35B .45C .135D .175答案D解析设|PF 2→|=3m ,则|QF 2→|=2m ,|PF 1→|=2a -3m ,|QF 1→|=2a -2m ,|PQ |=5m ,在△PQF 1中,得(2a -3m )2+25m 2=(2a -2m )2,即m =215a .因此|PF 2→|=25a ,|PF 1→|=85a ,|F 2F 1→|=2c ,在△PF 1F 2中,得6425a 2+425a 2=4c 2,故17a 2=25c 2,所以e =175.故选D.二、多项选择题9.对于曲线C :x 24-k +y 2k -1=1,下列说法中正确的是()A .曲线C 不可能是椭圆B .“1<k <4”是“曲线C 是椭圆”的充分不必要条件C .“曲线C 是焦点在y 轴上的椭圆”是“3<k <4”的必要不充分条件D .“曲线C 是焦点在x 轴上的椭圆”是“1<k <2.5”的充要条件答案CD解析对于A ,当1<k <4且k ≠2.5时,曲线C 是椭圆,A 错误;对于B ,当k =2.5时,4-k =k -1,此时曲线C 是圆,B 错误;对于C ,若曲线C 是焦点在y 轴上的椭圆,-k >0,-1>0,-1>4-k ,解得2.5<k <4,所以“曲线C 是焦点在y 轴上的椭圆”是“3<k <4”的必要不充分条件,C 正确;对于D ,若曲线C 是焦点在x 轴上的椭圆,-1>0,-k >0,-k >k -1,解得1<k <2.5,D 正确.故选CD.10.(2024·海口模拟)设椭圆x 29+y 23=1的右焦点为F ,直线y =m (0<m <3)与椭圆交于A ,B两点,则()A .|AF |+|BF |为定值B .△ABF 周长的取值范围是[6,12]C .当m =32时,△ABF 为直角三角形D .当m =1时,△ABF 的面积为6答案ACD解析设椭圆的左焦点为F ′,则|AF ′|=|BF |,∴|AF |+|BF |=|AF |+|AF ′|=6,为定值,A 正确;△ABF 的周长为|AB |+|AF |+|BF |,∵|AF |+|BF |为定值6,|AB |的取值范围是6),∴△周长的取值范围是(6,12),B 错误;将y =32与椭圆方程联立,解得-332,又F (6,0),∴AF →·BF →=0,∴AF ⊥BF ,∴△ABF 为直角三角形,C 正确;将y =1与椭圆方程联立,解得A (-6,1),B (6,1),∴S △ABF=12×26×1=6,D 正确.故选ACD.三、填空题11.(2023·四川南充三诊)若椭圆x 2+my 2=1的焦点在y 轴上,且长轴长是短轴长的两倍,则m 的值为________.答案14解析将原方程变形为x 2+y 21m=1.由题意知a 2=1m,b 2=1,所以a =1m ,b =1,所以1m=2,m =14.12.(2024·南昌模拟)已知椭圆E 的中心为原点,焦点在x 轴上,椭圆上一点到焦点的最小距离为22-2,离心率为22,则椭圆E 的方程为________.答案x 28+y 24=1解析椭圆E 的中心在原点,焦点在x 轴上,椭圆上一点到焦点的最小距离为22-2,离心率为22,c =22-2,=22,=22,=2,从而a 2=8,b 2=4,所以椭圆E 的方程为x 28+y 24=1.13.(2024·河南名校教研联盟押题)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,下顶点为A ,AF 的延长线交C 于点B ,若|AF |∶|BF |=2∶1,则C 的离心率为________.答案33解析解法一:如图,设椭圆C 的右焦点为F ′,则|AF |=|AF ′|=a ,因为|AF |∶|BF |=2∶1,所以|BF |=a 2,所以|AB |=|AF |+|BF |=3a 2,又|BF |+|BF ′|=2a ,所以|BF ′|=2a -|BF |=3a2,由余弦定理可知cos ∠BAF ′=|AB |2+|AF ′|2-|BF ′|22|AB ||AF ′|=13,设O 为坐标原点,椭圆C 的焦距为2c ,则离心率e =ca =sin ∠OAF ′,因为∠BAF ′=2∠OAF ′,故cos ∠BAF ′=1-2sin 2∠OAF ′=1-2e 2,所以e =33.解法二:设B 在x 轴上的射影为D ,由于|AF |∶|BF |=2∶1,所以|BD |=|OA |2=b 2,|FD |=|OF |2=c 2,即-3c 2,将B 的坐标代入C 的方程,得9c 24a 2+b 24b 2=1,得e =33.14.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的短轴长为2,上顶点为A ,左顶点为B ,左、右焦点分别为F 1,F 2,且△F 1AB 的面积为2-32,若点P 为椭圆上任意一点,则1|PF 1|+1|PF 2|的取值范围是________.答案[1,4]解析由已知,得2b =2,故b =1.∵△F 1AB 的面积为2-32,∴12(a -c )b =2-32,∴a -c=2-3,又a 2-c 2=(a -c )(a +c )=b 2=1,∴a =2,c =3,∴1|PF 1|+1|PF 2|=|PF 1|+|PF 2||PF 1|·|PF 2|=2a|PF 1|(2a -|PF 1|)=4-|PF 1|2+4|PF 1|.又2-3≤|PF 1|≤2+3,∴1≤-|PF 1|2+4|PF 1|≤4,∴1≤1|PF 1|+1|PF 2|≤4,即1|PF 1|+1|PF 2|的取值范围为[1,4].四、解答题15.(2024·辽宁阜新校考期末)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),四点P 1(1,1),P 2(0,1),P 1P C 上.(1)求椭圆C 的方程;(2)设点A (0,-1),点M 是椭圆C 上任意一点,求|MA |的最大值.解(1)因为P 3,P 4关于坐标轴对称,所以P 3,P 4必在椭圆C 上,有1a 2+34b 2=1,将点P 1(1,1)代入椭圆方程得1a 2+1b 2>1a 2+34b 2=1,所以P 1(1,1)不在椭圆C 上,P 2(0,1)在椭圆C 上,所以b 2=1,a 2=4,即椭圆C 的方程为x 24+y 2=1.(2)点A (0,-1)是椭圆C 的下顶点,设椭圆上的点M (x 0,y 0)(-1≤y 0≤1),则x 204+y 20=1,即x 20=4-4y 20,所以|MA |2=x 20+(y 0+1)2=4-4y 20+(y 0+1)2=-3y 20+2y 0+5=-0+163,又函数y =-+163在∞,+,所以当y 0=13时,|MA |2取到最大值,为163,故|MA |的最大值为433.16.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),焦点F 1(-c ,0),F 2(c ,0),左顶点为A ,点E 的坐标为(0,c ),A 到直线EF 2的距离为62b .(1)求椭圆C 的离心率;(2)若P 为椭圆C 上的一点,∠F 1PF 2=60°,△PF 1F 2的面积为3,求椭圆C 的标准方程.解(1)由题意,得A (-a ,0),直线EF 2的方程为x +y =c ,因为A 到直线EF 2的距离为62b ,即|-a -c |12+12=62b ,所以a +c =3b ,即(a +c )2=3b 2,又b 2=a 2-c 2,所以(a +c )2=3(a 2-c 2),所以2c 2+ac -a 2=0,因为离心率e =ca ,所以2e 2+e -1=0,解得e =12或e =-1(舍去),所以椭圆C 的离心率为12.(2)由(1)知离心率e =c a =12,即a =2c ,①因为∠F 1PF 2=60°,△PF 1F 2的面积为3,所以12|PF 1|·|PF 2|sin60°=3,所以|PF 1|·|PF 2|=4,1|+|PF 2|=2a ,1|2+|PF 2|2-2|PF 1|·|PF 2|cos60°=(2c )2,所以a 2-c 2=3,②联立①②,得a =2,c =1,所以b 2=a 2-c 2=3,所以椭圆C 的标准方程为x 24+y 23=1.17.(多选)(2023·山东济南模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,且|F 1F 2|=2,点P (1,1)在椭圆内部,点Q 在椭圆上,则以下说法正确的是()A .|QF 1|+|QP |的最小值为2a -1B .椭圆C 的短轴长可能为2C .椭圆CD .若PF 1→=F 1Q →,则椭圆C 的长轴长为5+17答案ACD解析由题意知2c =2,则c =1,因为点Q 在椭圆上,所以|QF 1|+|QF 2|=2a ,|QF 1|+|QP |=2a -|QF 2|+|QP |,又-1≤-|QF 2|+|QP |≤1,所以A 正确;因为点P (1,1)在椭圆内部,所以b >1,2b >2,所以B 错误;因为点P (1,1)在椭圆内部,所以1a 2+1b 2<1,即b 2+a 2-a 2b 2<0,又c =1,b 2=a 2-c 2,所以(a 2-1)+a 2-a 2(a 2-1)<0,化简可得a 4-3a 2+1>0(a >1),解得a 2>3+52或a 2<3-52(舍去),则椭圆C 的离心率e =ca<13+52=15+12=5-12,又0<e <1,所以椭圆C 所以C 正确;由PF 1→=F 1Q →可得,F 1为PQ 的中点,而P (1,1),F 1(-1,0),所以Q (-3,-1),|QF 1|+|QF 2|=(-3+1)2+(-1-0)2+(-3-1)2+(-1-0)2=5+17=2a ,所以D 正确.故选ACD.18.(多选)(2023·辽宁大连模拟)已知椭圆C :x 216+y 29=1的左、右焦点分别是F 1,F 2,左、右顶点分别是A 1,A 2,点P 是椭圆C 上异于A 1,A 2的任意一点,则下列说法正确的是()A .|PF 1|+|PF 2|=4B .存在点P 满足∠F 1PF 2=90°C .直线PA 1与直线PA 2的斜率之积为-916D .若△F 1PF 2的面积为27,则点P 的横坐标为±453答案CD解析由椭圆方程,知a =4,b =3,c =7,|PF 1|+|PF 2|=2a =8,A 错误;当P 在椭圆上、下顶点时,cos ∠F 1PF 2=2a 2-4c 22a 2=18>0,即∠F 1PF 2的最大值小于π2,B 错误;若P (x ′,y ′),则k P A 1=y ′x ′+4,k P A 2=y ′x ′-4,有k P A 1·k P A 2=y ′2x ′2-16,而x ′216+y ′29=1,所以-16y ′2=9(x ′2-16),即有k P A 1·k P A 2=-916,C 正确;若P (x ′,y ′),△F 1PF 2的面积为27,即2c ·|y ′|2=27,故y ′=±2,代入椭圆方程得x ′=±453,D 正确.故选CD.19.(2023·河北邯郸二模)已知O 为坐标原点,椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,上顶点为B ,线段BF 的中垂线交C 于M ,N 两点,交y 轴于点P ,BP →=2PO →,△BMN 的周长为16,求椭圆C 的标准方程.解如图,由题意可得|BP |=23b ,|PO |=13b ,连接PF .由题意可知|BP |=|PF |,在Rt △POF 中,由勾股定理,得|PO |2+|OF |2=|PF |2,+c 2,整理得b 2=3c 2,所以a 2-c 2=3c 2,即a 2=4c 2,所以椭圆C 的离心率e =c a =12.在Rt △BOF 中,cos ∠BFO =|OF ||BF |=c a =12,所以∠BFO =60°.设直线MN 交x 轴于点F ′,交BF 于点H ,在Rt △HFF ′中,有|FF ′|=|HF |cos ∠BFO =a =2c ,所以F ′为椭圆C 的左焦点,又|MB |=|MF |,|NB |=|NF |,所以△BMN 的周长等于△FMN 的周长,又△FMN 的周长为4a ,所以4a =16,解得a =4.所以c =2,b 2=a 2-c 2=12.故椭圆C 的标准方程为x 216+y 212=1.20.已知F 1,F 2是椭圆的两个焦点,P 为椭圆上一点,∠F 1PF 2=60°.(1)求椭圆的离心率的取值范围;(2)求证:△F 1PF 2的面积只与椭圆的短轴长有关.解(1)不妨设椭圆的方程为x 2a 2+y 2b2=1(a >b >0),焦距为2c .在△F 1PF 2中,由余弦定理,得cos60°=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=(|PF 1|+|PF 2|)2-2|PF 1|·|PF 2|-|F 1F 2|22|PF 1|·|PF 2|,即4a 2-2|PF 1|·|PF 2|-4c 22|PF 1|·|PF 2|=12,所以|PF 1|·|PF 2|=4a 2-2|PF 1|·|PF 2|-4c 2,所以3|PF 1|·|PF 2|=4b 2,所以|PF 1|·|PF 2|=4b 23.又因为|PF 1|·|PF 2|=a 2,当且仅当|PF 1|=|PF 2|时,等号成立,所以3a 2≥4(a 2-c 2),所以c a ≥12,所以e ≥12.又因为0<e <1,所以椭圆的离心率的取值范围是12,(2)证明:由(1)可知|PF 1|·|PF 2|=43b 2,所以S △F 1PF 2=12|PF 1|·|PF 2|sin60°=12×43b 2×32=33b 2,所以△F 1PF 2的面积只与椭圆的短轴长有关.。
椭圆及其性质复习课件
真题在线
8.[2013·新课标全国卷Ⅰ] 已知圆 M:(x+1)2+y2=1,圆 N:(x-1)2+y2=9,动圆 P 与 圆 M 外切并且与圆 N 内切,圆心 P 的轨迹为曲线 C. (1)求 C 的方程; (2)l 是与圆 P,圆 M 都相切的一条直线,l 与曲线 C 交于 A,B 两点,当圆 P 的半径最长 时,求|AB|.
真题在线
若 l 的倾斜角不为 90°,由 r1≠R 知 l 不平行于 x 轴,设 l 与 x 轴的交点为 Q,则||QQMP||=
rR1,可求得 Q(-4,0),所以可设 l:y=k(x+4).
由 l 与圆 M 相切得
1|3+k|k2=1,解得
k=±
2 4.
当 k= 42时,将 y= 42x+ 2代入x42+y32=1,并整理得 7x2+8x-8=0,解得 x1,2=
不小于45,则椭圆 E 的离心率的取值范围是
()
A.(0,
3 2]
B.(0,34]
C.[ 23,1)
D.[34,1)
[解析] A 因为直线 l 过原点,不妨 设 A 在第一象限,左焦点为 F′,由对 称性可知四边形 AF′BF 为平行四边 形,所以|AF|+|BF|=|AF′|+|AF|=2a =4,所以 a=2,点 M(0,b)到直线 l 的距离 d=|0-54b|≥45且 b<a,所以 1
的方程为xc+by=1,椭圆中心到直线 l
的距离为
|-b2+bcc| 2=
1 4
×2b.
又
a2=b2
+c2,所以离心率 e=ac=12.
真题在线
2.[2019·全国卷Ⅲ] 已知 O 为坐标原点,F 是椭圆 C:ax22+yb22=1(a>b>0)的左焦点,A, B 分别为 C 的左、右顶点.P 为 C 上一点, 且 PF⊥x 轴.过点 A 的直线 l 与线段 PF 交 于点 M,与 y 轴交于点 E.若直线 BM 经过 OE 的中点,则 C 的离心率为( )
椭圆的定义与标准方程
疑问二:椭圆的标准方程有几种形式?它 们的相同点和不同点各是什么?
思维辨析
1. 若方程 x 2 y 2 1 表示椭圆,则 k 的取值范围是
.
5k k 3
2. 写出适合下列条件的椭圆的标准方程
一、情景激疑 知识梳理
典例剖析
例 1 已知两定点 F1 , F2 ,且 F1F2 10 ,
动点 M 分别满足下列条件时的轨迹是什么?
1 MF1 MF2 10 2 MF1 MF2 16 3 MF1 MF2 6
教材 P49 页 A 组 1 题
例 2 如果点 M (x, y) 在运动过程中,总满足关系式
2013 年大纲卷理数第 8 题:椭圆 C: x 2 y 2 1 的左右顶点分别为 43
A1, A2 ,点 P 在 C 上且直线 PA2 的斜率范围是- 2,-1,
那么直线 PA1 斜率的取值范围是( )
A.
1 2
,
3 4
B.83 ,
3 4
C.12 , 1
D.
3 4
,
1
小结
教材 P41 页例 3 如图(4),设点 A, B 的坐标分别为(5,0), (5,0) .直线 AM, BM 的相交于点 M,且它们的斜率之积是- 4 ,求点 M 的轨迹方程.
9
椭圆的又一种生成方式:
类比教材 P55 页探究 如图(5),设点 A, B 的坐标分别为(5,0), (5,0) .
椭圆方程及 其性质
椭圆的性质
椭圆方程及 其性质
求离心率
证明问题, 综合性问题
求离心率, 求a,b的值