2019-2020学年七年级数学下册 8.2 消元—二元一次方程组的解法导学案3(新版)新人教版.doc
人教版七年级数学下册教案:8.2.消元-用加减法解二元一次方程组
-理解消元的概念及其在解二元一次方程组中的应用;
-掌握通过加减法对二元一次方程组进行消元的具体步骤;
-学会运用加减消元法求解二元一次方程组,并能够正确验证结果;
-能够将实际问题转化为二元一次方程组,运用加减消元法解决问题。
举例说明:
(1)对于方程组:
\[
\begin{cases}
2x + 3y = 8 \\
在学生小组讨论的过程中,我也注意到有些小组在讨论时偏离了主题,这可能是因为他们对讨论的主题理解不够深入。为了改善这一点,我计划在今后的教学中,加强对学生讨论方向的引导,确保他们的讨论能够紧扣主题,提高讨论的效率。
-在验证解时,确保代入原方程组中的每个方程都满足,以避免漏解或多解。
举例说明:
(1)对于方程组:
\[
\begin{cases}
5x + 3y = 16 \\
3x - 5y = 23
\end{cases}
\]
学生可能会难以确定如何消去变量,需要指导他们通过乘以适当的数来调整系数,如将第一个方程乘以3,第二个方程乘以5,得到:
x - y = 2
\end{cases}
\]
然后应用加减消元法求解。
2.教学难点
-理解消元的本质,即如何通过变换使方程组中的某个变量的系数相同或互为相反数;
-在进行加减消元时,正确选择相加或相减的方程,避免计算错误;
-在消元过程中,注意保持等式两边的平衡,避免出现计算错误;
-对于系数不是整数倍的方程组,如何通过乘以适当的数使得系数相同或互为相反数;
人教版七年级数学下册教案:8.2.消元-用加减法解二元一次方程组
一、教学内容
人教版七年级数学下册教案:8.2.消元-用加减法解二元一次方程组
人教版数学七年级下册8.2-消元——二元一次方程组的解法(第1课时)
复习回顾:
判断下列各方程是否为二元一次方程:
① 2x32y√
② 1 1×
x y
③ 6ab 3ab× ④ x y y 2×
x
⑤ 2R2r6√
复习回顾:
判断下列各方程组是否为二元一次方程组:
√ ①
2x y
3
y
4
z
3 7
×
x
3y
7
0.
解方程组即可得出x,y的值.
【答案】 -3 —130
巩固提高:
4、若方程 5x2m n4y3m 2n9是关于 x, y的二
元一次方程,求m , n的值.
解:根据题意得
2m n 1, 3m 2n 1.
解得 m 3 , n 1 . 77
巩固提高:
5、下列是用代入法解方程组
②
m
m
n
8
1
③3ab 4 Nhomakorabeaa
5
8
1
9
×
√ ⑤
5 p
p q
q 1
8 2
④
m m 2
1 2n
4n
9 5
×
复习回顾:
用含x的式子表示 y :
(1)x2y30 (2)2x5y21
y x3 2
y 2x 21 5
(3)0.5xy7
y0.5x7
知识新授:
今有鸡兔同笼 上有三十五头 下有九十四足 问鸡兔各几头
x y 3 ①
【例2】解方程组
3
x
8
y
14
②
分析:方程①中x的系数是1,用含y的式子表示x,比较简便.
8.2消元——二元一次方程组的解法(第2课时)学案(魏庄中学七年级下)【新课标人教版】
8.2消元——二元一次方程组的解法(第2课时)魏庄中学 刘杰【学习目标】1. 能熟练运用代入消元法解二元一次方程组,并会列二元一次方程组解简单的实际问题.2. 灵活掌握代入法解二元一次方程组的技巧. 【重点难点】重点:熟练用代入法解二元一次方程组及列二元一次方程组解简单应用题. 难点:找应用题中满足的条件 【学前准备】1.已知二元一次方程3x+21y –1=0,用含y 的代数式表示x ,则x =_________;当y =-2时,x =___ ____.2.若方程组⎩⎨⎧=-=+137by ax by ax 的解是⎩⎨⎧-=-=12y x ,则a =_ _,b = _ .3.小红有5分和2分的硬币共20枚,共6角7分,设5分硬币有x 枚,2分硬币有y 枚,则可列方程组为 .4.用代入法解下列方程组⑴ 10325u v u v +=⎧⎨-=⎩ ⑵ ⎩⎨⎧=+=-173262y x y x【课中探究】 1.七年级(3)班在上体育课时,进行投篮比赛,体育老师做好记录,并统计了在规定时间内投进n 个球的人数分布情况,体育委员在看统计表时,不慎将墨水沾到表格上(如下表).同时,已知进球3个和3个以上的人平均每人投进3.5个球;进球4个和4•个以下的人平均每人投进2.5个球,你能把表格中投进3个球和投进4个球对应的人数补上吗?2.为了保护环境,某校环保小组成员收集废电池,第一天收集1号电池4节,5号电池5节,总重量为460克,第二天收集1号电池2节,5号电池3节,总重量为240克,试问1•号电池和5号电池每节分别重多少克?分析:如果1号电池和5号电池每节分别重x 克,y 克,则4克1号电池和5节5•号电池总重量为 克,2节1号电池和3节5号电池总重量为 克. 请同学们独立完成,写出解答过程解:设1号电池每节重x 克,5号电池每节重y 克,根据题意可得【尝试应用】 1.方程组125x y x y -=⎧⎨+=⎩的解是( )A .12x y =-⎧⎨=⎩ B .21x y =⎧⎨=-⎩ C .12x y =⎧⎨=⎩ D .21x y =⎧⎨=⎩2.用代入法解方程组 ①⎩⎨⎧=-=+1126723t u t u ②⎩⎨⎧=--=-3435x 2y x y3.师傅对徒弟说“我像你这样大时,你才4岁,将来当你像我这样大时,我已经是52岁的人了”.问这位师傅与徒弟现在的年龄各是多少岁? 【学习体会】1.这节课,我学到的知识、方法、思想有哪些?2.这节课,我的疑惑是哪些? 【当堂达标】 1.二元一次方程组32325x y x y -=⎧⎨+=⎩的解是( )A .3217 (23)122x x x x B C D y y y y =⎧⎧===⎧⎧⎪⎪⎨⎨⎨⎨==-=⎩⎩⎪⎪=⎩⎩2.已知32111x x y y ==-⎧⎧⎨⎨==⎩⎩和都是ax+by=7的解,则a=_______,b=______. 3.解方程组(1)257320x y x y -=⎧⎨-=⎩ (2)⎩⎨⎧=-=+15234932y x y x4.王大伯承包了25亩土地,•今年春季改种茄子和西红柿两种大棚蔬菜,•用去了44000元,其中种茄子每亩用了1700元,获纯利2400元,种西红柿每亩用了1800元,•获纯利2600元,问王大伯一共获纯利多少元?。
8.2 消元——二元一次方程组的解法
例4 用加减法解方程组 3x + 5y = 5, ①
3x - 4y =23. 解: -②,得 ① ② 9y = -18.
解这个方程得, y= - 2. 把 y = - 2 代入 ① , 得 3x + 5 × ( - 2 ) = 5 解得 x = 5 所以这个方程组的解是 x = 5 y = -2
例5 用加减法解方程组
6.若方程 (a2-9)x2+(2-4a)x+(a+4)y+
±3 3a-5=0 是二元一次方程,则a的值为__.
7.已知5a3xb2x-y和-9a8-yb7是同类项,则2xy=____. -6
x+y = 3 2 x - y = -1
mx - ny = -4 nx + my = 7
8.若方程组
与
方程组
例1 用代入法解方程组
3x - y= 7 ① 5x -6y= 3 ② 解:由①,得 把③代入②,得 解这个方程,得 y=3x-7 x=3 ③
5x-6(3x-7) =3
把x=3代入③,得
所以这个方程组的解是
y=2ห้องสมุดไป่ตู้
x=3
y=2
例2 用代入法解方程组 7x-2y = 10 ① 5x +4y = 18 ② 解:由①,得 y=
上述方程的另一种解法是:
x-y=50
x+y=90
①
②
①+②得:(x-y)+(x+y)=50+90,
则有 2x=50+90 所以 x=70
或者:
②-①得 :(x+y) -(x-y)=90-50, 则有 2y=40 所以 y=20
8.2.2 加减消元法
两个二元一次方程中同一未知数的系数 相反或相等时,把两个方程两边分别相加 (或相减)消去一个未知数,把二元一次方 程组转化为一元一次方程,这种方法叫做加 减消元法,简称加减法.
《8.2消元——解二元一次方程组》第1课时教案
《8.2消元——解二元一次方程组》第1课时教案《《8.2消元——解二元一次方程组》第1课时教案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!一、内容及内容解析:1.内容:“用代入法解二元一次方程组”是人教实验版教科书七年级下册第八章第二节的第一课时.2.内容解析:本节内容是在学习了一元一次方程的基础上的进一步深入,本节对比根据题意列出的二元一次方程组和一元一次方程,发现把方程组中一个方程变形为用含一个未知数的式子表示另一个未知数后,将它代入方程组中的另一个方程,原来的二元一次方程组就转化为一元一次方程.这种转化对解二元一次方程很重要,它的基本思路是“将未知数的个数由多化少,逐一解决”的消元思想. 通过代入法,减少了未知数的个数,使多元方程最终转化为一元方程,达到消元的目的.在提出消元思想后,又归纳得出代入法的基本步骤,既渗透了算法中程序化的思想,又有助于培养学生良好的学习习惯,提高思考的深度.基于此,本节课的教学重点是:会用代入消元法解简单的二元一次方程组,能体会“代入法”解二元一次方程组的基本思路是“消元“.二、目标及目标解析:1.目标(1).会运用代入消元法解二元一次方程组.(2).理解代入消元法的基本思想体现的“化未知为已知”的化归思想方法.2.目标解析达成目标(1)的标志是:学生掌握代入消元法解二元一次方程组的一般步骤,并能正确的求出二元一次方程组的解.培养学生的分析能力,能迅速在所给的二元一次方程组中,选择一个系数较简单的方程进行变形.达成目标(2)的标志是:学生通过探索,逐步发现解方程的基本思想是“消元”,化二元一次方程组为一元一次方程.通过代入消元,使学生初步理解把未知转化为已知和复杂问题转化为简单问题的思想方法.三、问题诊断分析:1、教学时,应结合具体的例子指出这里解二元一次方程组的关键在于消元,即把“二元”转化为“一元”.我们是通过等量代换的方法,消去一个未知数,从而求得原方程组的解.2、用代入法解二元一次方程组时,学生选择哪一个方程进行变形,容易出现不一样的选择.因此,教师讲解例题时要注意由简到繁,由易到难,逐步加深,而且要特别强调解方程组时应努力使变形后的方程比较简单和代入后化简比较容易.这样不仅可以迅速解方程,而且可以减少错误.基于此,本节的教学难点是:灵活运用代入法解二元一次方程组.四、教学过程设计:1.创设情境,复习导入二元一次方程组:有___个未知数,含有每个未知数的项的次数都是____,并且一共有____个方程的方程组.二元一次方程的解:使二元一次方程两边的值相等的______________.二元一次方程组的解:二元一次方程组的两个方程的________.2.探究新知问题:篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队为了争取较好名次,想在全部22场比赛中得到40分,那么这个队胜负场数应分别是多少?问题一:你会用一元一次方程解决这个问题吗?解:设胜x场,则有:.问题二:你会用二元一次方程组解决这个问题吗?解:设胜x场,负y场,则问题三:怎样求得二元一次方程组的解呢?(设计意图:这题说明要想求出两个未知数的值,必须先知道其中一个未知数的值.这为用代入法解二元一次方程组打下基础:即消去一个未知数的值,转化为一元一次方程去解。
8.2消元法解二元一次方程组——第一课时(代入法)
把x=20000代入 ③ 得:y=50000 y 50000
答:这些消毒液应该分装20000大瓶和50000小瓶。
5x 2 y ② 100 5x 250y 22500000
①
整体代入法 解:把①代入②, 得 100×2y+250y=22500000 解得 y=50000 把y=50000代入① ,得 x=20000
1、什么叫二元一次方程?二元一次方程组?二元一次方程组的解? 2、检验二元一次方程组的解的方法是怎样的? 3、下列方程中是二元一次方程的有( B ) A.xy-7=1 B.2x-1=3y+1 C.4x-5y=3x-5y
D.2x+3x+4y=6 9 5 4、二元一次方程3X-5Y=9中,当X=0时,Y的值为_______ 5、已知二元一次方程2X+3Y+5=0 ⑴用X表示Y ⑵用Y表示X
2X 5 Y 3
3Y 5 X 2
回顾与思考
篮球联赛中每场比赛都要分出胜负,每队胜一 场得2分,负一场得1分.如果某队为了争取较好 名次,想在全部22场比赛中得40分,那么这个队 胜、负场数应分别是多少? 解:设胜x场,负y场; 解:设胜x场,则有: x y 22 ① 2 x (22 x) 40 ③ 2 x y 40 ②
注意:检验方程组的解
x = 2, 用大括号括起来 注意:方程组解 的书写形式 y =-1.
专题研究:
x-y=3 3x-8y=14
① ②
说明 : 用y表示x x-y=3 x = y+3
(2)对于方程②你能用含 y的式子表示x吗?试试看:
问题1:(1)对于方程①你 能用含x的式子表示y吗? 试试看:
七年级下册数学《8.2.2消元二元一次方程组的解法》说课稿
七年级下册数学《8.2.2消元二元一次方程组的解法》说课稿我说课的内容是人教版初中数学七年级下册第八章第二节二元一次方程组的解法第二课时加减消元法。
我主要从教材分析、教法、学法、教学过程四个方面向大家汇报我对这节课的认识和理解。
一、说教材分析1、教材的地位和作用二元一次方程组是初中数学的重点内容之一,是一元一次方程知识的延续和提高,又是学习其他数学知识的基础。
本节课是在学生学习了代入法解二元一次方程组的基础上,继续学习另一种消元的方法---加减消元,它是学生系统学习二元一次方程组知识的前提和基础。
通过加减来达到消元的目的,让学生从中充分体会化未知为已知的转化过程,理解并掌握解二元一次方程组的最常用的基本方法,为以后函数等知识的学习打下基础.2、教学目标通过对新课程标准的研究与学习,结合我校学生的实际情况,我把本节课的三维教学目标确定如下:(一)知识与技能目标:会用加减消元法解简单的二元一次方程组。
理解加减消元法的基本思想,体会化未知为已知的化归思想方法。
(二)过程与方法目标:通过经历加减消元法解方程组,让学生体会消元思想的应用,经过引导、讨论和交流让学生理解根据加减消元法解二元一次方程组的一般步骤。
(三)情感态度及价值观:通过交流、合作、讨论获取成功体验,感受加减消元法的应用价值,激发学生的学习兴趣,培养学生养成认真倾听他人发言的习惯和勇于克服困难的意志。
3、教学重点、难点:大家都知道,数学的思想与方法才是数学的精髓,是联系各类数学知识的纽带,所以我将本节课的重点和难点确定如下:重点:用加减法解二元一次方程组。
难点:灵活运用加减消元法的技巧,把“二元”转化为“一元”二、说教法结合七年级学生的年龄特征和认知特点,在教学中我主要采用诱思探究的启发式教学达到师生互动三、说学法本节课的教学我始终把学生作为学习的主人,不断激发他们的学习兴趣,引导学生在自主探究、合作交流、小组竞赛相结合的学习方式下获得成功的体验。
人教版数学七年级下册8.2消元—解二元一次方程组代入消元法教学设计
(5)拓展提高:引导学生思考代入消元法的局限性,探讨其他解题方法,提高学生的思维品质。
3.教学评价:
(1)关注学生的学习过程,从学生的课堂表现、作业完成情况等方面,全面评价学生的学习效果。
(2)注重学生个体差异,针对不同学生的学习需求,给予有针对性的评价和指导。
(3)组织小组合作学习,让学生在讨论交流中,相互启发,共同解决难题。
2.教学过程:
(1)导入:通过回顾已学的二元一次方程组知识,为新课的学习做好铺垫。
(2)新课导入:以实际问题为背景,引导学生建立二元一次方程组,进而引出代入消元法。
(3)新课讲解:详细讲解代入消元法的步骤,结合具体例子进行演示,让学生体会代入消元法的解题过程。
3.评价反馈:对学生的练习成果进行评价,鼓励他们继续努力,提高解题能力。
(五)总结归纳
在这一阶段,我将带领学生进行以下总结归纳:
1.回顾本节课所学内容:让学生明确代入消元法的概念、步骤和应用。
2.强调代入消元法的注意事项:提醒学生在解题过程中应注意选择合适的方程进行代入,简化计算过程。
3.拓展思维:引导学生思考代入消元法的局限性,探讨其他解题方法,提高学生的思维品质。
2.演示代入消元法的解题过程:以导入新课中的问题为例,逐步演示代入消元法的解题过程,让学生理解并掌握该方法。
3.解释代入消元法的选择原则:告诉学生,在选择代入消元法时,应优先选择方程中未知数系数较小的那个方程进行求解,这样可以简化计算过程。
(三)学生小组讨论
在这一阶段,我将组织学生进行小组讨论:
1.分组讨论:将学生分成若干小组,让他们共同探讨代入消元法的解题过程和注意事项。
8.2消元__二元一次方程组的解法(加减法)学案
课题8.2消元---二元一次方程组的解法年级:七年级 备课人:娄婷婷 课型:新授 课时:新课标:掌握加减消元法,能解二元一次方程组。
一、指导思想与理论依据涉及求多个未知数的问题是普遍存在的,而方程组是解决这些问题的有力工具。
本章在学生对一元一次方程已有认识的基础上,对二元一次方程组进行讨论,并在二元一次方程组的基础上,学习讨论三元一次方程组及解法。
由此为今后进一步学习不等式组以及二次函数奠定基础。
本章主要内容包括:利用二元一次方程组分析与解决实际问题,二元一次方程组及其相关概念,消元思想和代入法、加减法解二元一次方程组以及三元一次方程组解法举例。
其中,以方程组为工具分析问题、解决含有多个未知数的问题既是本章的重点,又是难点。
使学生经历建立二(三)元一次方程组这种数学模型并应用它们解决实际问题的过程,体会方程组的特点和作用,掌握运用方程组解决问题的一般方法,提高分析问题、解决问题的能力,增强创新精神和应用数学的意识,是本章的中心任务。
由于含有两(三)个以及多个未知数的实际问题中数量关系比较多,在某些问题中数量关系比较隐蔽,所以列方程组表示问题中的数量关系通常是教学中的难点。
二、教学背景(一)学生情况分析七年级学生由于才进入初中,绝大部分同学都能跟上现有的进度,上课发言尚积极,个别同学表现的还比较出色,但也有部分同学的理解能力和接受能力不尽人意,学习成绩极不理想。
从课堂上看,他们的注意力不能长时间集中,很容易分心,作业和试卷上的错误比较多,对于老师的问题一问三不知,在今后的教学过程中对这些孩子要特别注意。
部分学生有主动学习的行为,深得老师赞赏。
比较喜欢上数学课,学习热情也很高,并喜欢与老师友好相处,同学之间、师生之间常在一起交流学习体会,表现欲较强。
但仍有少部分学生学习懒散、学习习惯差,如:粗心大意、书写不认真,不愿思考问题,上课开小差,依赖老师讲解,依赖同学的帮助,作业喜欢与同学对题。
(二)教学方式与教学手段抓住七年级学生表现欲强的特征,多让学生自主学习与小组合作学习相结合,老师起点拨作用,把课堂还给学生。
8.2消元——二元一次方程组的解法(第1课时)学案(魏庄中学七年级下)【新课标人教版】
8.2消元——二元一次方程组的解法(第1课时)魏庄中学 刘杰 【学习目标】1. 掌握代入消元法解二元一次方程组的步骤2. 能够熟练运用代入法解二元一次方程组【重点难点】重点:熟练运用代入法解二元一次方程组难点:如何用代入法将“二元”转化为“一元”的消元过程【学前准备】1. 在二元一次方程-12x+3y=2中,当x=4时,y=_______;当y=-1时,x=______.2. 已知方程2x+3y -4=0,用含x 的代数式表示y 为:y=_______;用含y 的代数式表示x 为:x=________.3.已知方程x -2y =8,用含x 的式子表示y ,则y =_________________,用含y 的式子表示x ,则x =________________.4. 设第一个数是第二个数的2倍,第一个数与第二个数的2倍之和为20,求这个数?【课中探究】鸡兔同笼问题:今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何? 方法一:解设有x 只鸡,则有)35(x -只兔子.根据题意得:方法二:解设有x 只鸡,有y 只兔,根据题意得:上面的方程和方程组有什么联系?能否讲方程组转化为方程⑴、由x + y=35 可得y =⑵、把2x +4y =94中的 y 换成35-x 就化为一元一次方程 总结:将未知数的个数由多化少、逐一解决的想法是消元思想二元一次方程组中一个方程的一个未知数用含另一未知数的式子表示出来,再代入另一方程的方法是代入消元法.【尝试应用】1.你能把下列方程写成用含x 的式子表示y 的形式吗?⑴ 2x -y =3⑵ 3x +y -1=02.例题:用代入法解方程组⎩⎨⎧=-=-14833y x y x 3.你能选择合适的未知数进行代换,解出下列各题吗?(1)⎩⎨⎧=+=+1737y x y x (2)⎩⎨⎧=-=-322872x y y x 4.用代入法解下列方程组:(1)⎩⎨⎧=+-=;823,32y x x y (2)⎩⎨⎧=+=-.243,52y x y x【学习体会】1.通过本节课的学习,你认为代入法解二元一次方程组的关键是什么.2. 用代入消元法解二元一次方程组的步骤【当堂达标】1.在方程427x y -=中,如果用含有x 的式子表示y ,则y =_____.2.在二元一次方程2()15x y x y ++=-中,当3y =时,x =_____.3.学校的篮球数比排球数的2倍少3个,篮球数与排球数的比是3:2,求这两种各有多少个?若设篮球有x 个,排球有y 个,则依题意得到的方程组是_____.4.解方程组:(1)25437x y x y +=⎧⎨+=⎩,; (2)74321432x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩,.5.列方程组解答将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;•若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?。
人教版数学七年级下册8.2《消元-解二元一次方程组(代入消元法)》教案
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“代入消元法在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
a)理解代入消元法的步骤:选择一个方程解出一个变量,然后将其代入另一个方程中,从而得到一个一元一次方程,最后求解得到两个变量的值。
-举例:解方程组2x + 3y = 5和x - y = 1,先从第二个方程解出x = y + 1,然后代入第一个方程得到2(y + 1) + 3y = 5。
b)学会判断何时使用代入消元法:当一个方程已经解出了某个变量的值,或者方程中某个变量的系数为1或-1时,适合使用代入消元法。
-举例:如果问题涉及到两个人共同完成一项工作,需要根据两人的工作效率和时间来构建方程组。
d)难点4:理解代入消元法与其他消元方法的区别
-学生需要理解代入消元法与加减消元法的区别,以及何时使用哪种方法更有效。
-举例:对于方程组x + y = 3和2x - y = 1,使用加减消元法更为简便。
四、教学流程
人教版数学七年级下册8.2《消元-解二元一次方程组(代入消元法)》教案
一、教学内容
人教版数学七年级下册8.2《消元-解二元一次方程组(代入消元法)》教案:
1.理解代入消元法的概念及原理;
2.学会运用代入消元法解二元一次方程组;
3.能够根据具体问题,选择合适的消元方法求解;
4.掌握代入消元法在不同类型二元一次方程组中的应用。
8.2.2消元——二元一次方程组的解法
3X+5y +2x - 5y=10 5x+0y =10 5x=10
3x 5y 21 2 x 5 y -11
解:由①+②得: 5x=10
① ②
x=2
把x=2代入①,得
y=3
x 3 所以原方程组的解是 y 2
参考小丽的思路,怎样解 下面的二元一次方程组呢?
分析:
二.选择题
6x+7y=-19①
1. 用加减法解方程组
6x-5y=17②
应用( B )
A.①-②消去y B.①-②消去x B. ②- ①消去常数项 D. 以上都不对
3x+2y=13
2.方程组
3x-2y=5
消去y后所得的方程是(B )
A.6x=8 B.6x=18 C.6x=5 D.x=18
三、指出下列方程组求解过程 中有错误步骤,并给予订正: 7x-4y=4 ①
基本思路: 加减消元: 二元
一元
主要步骤: 变形 加减 求解 写解
同一个未知数的系 数相同或互为相反数
消去一个元 求出两个未知数的值 写出方程组的解
2. 二元一次方程组解法有 代入法、加减法 .
探索与思考
ax by 2 3、在解方程组 cx 3 y 5
x 1 时,小张正确的解是 ,小李由于看错 y 2
x 1 所以原方程组的解是 y 1
把y =2代入①, 解得: x=3
对于当方程组中两方 程不具备上述特点时, 必须用等式性质来改 变方程组中方程的形 式,即得到与原方程 组同解的且某未知数 系数的绝对值相等的 新的方程组,从而为 加减消元法解方程组 创造条件.
小结 :
1.加减消元法解方程组基本思路是什么? 主要步骤有哪些?
初中数学 8.2 消元——二元一次方程组的解法⑸学案
8. 2消元——二元一次方程组的解法⑸学案学习目标1.进一步体会消元思想,熟练地解二元一次方程组.2.能根据方程组的未知数的系数特征,灵活运用代入法或加减法解方程组.3.体会整体方法轻松解题.重点灵活运用代入法或加减法解方程组。
活动1基础知识复习(自主完成,组内评价)1.解二元一次方程组的基本思想是_________,即将“二元一次方程组”转化为“一元一次方程”.2.在二元一次方程组中,由一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解.这种方法叫做___________,简称_________ .3.两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边相加或相减,就能消去这个未知数,得到一个一元一次方程.这种方法叫做_______________,简称___________.4.解方程组⑴5110,9110.x yy x-=⎧⎨-=⎩⑵()()()315,5135.x yy x-=+⎧⎪⎨-=+⎪⎩活动2灵活运用代入法或加减法解方程组体会整体方法(独立完成下列问题,然后组内交流,说说你的思路,看谁的方法简捷)1.已知27,28x yx y+=⎧⎨+=⎩那么x y-值是( )A.1 B.0 C.-1D.2变化上题中如何求x y+的值.2.解方程组⑴23(2)1,2 3.a a ba b-+=⎧⎨+=⎩⑵231763172357x yx y+=⎧⎨+=⎩在充分讨论与交流后小结:活动3 能力提升(自主完成以下各题)1. 若324,25,a b a b +=-=则5a b +=______.2. 已知方程组43,322,x y x y +=⎧⎨+=⎩则x y -的值是( )A .1B .-1C .0D .2 3. 已知关于x 、y 的二元一次方程组2,351x y m x y m +=⎧⎨+=-⎩的解x 与y 的差为7,则m 的值等于( )A .-2B .-1C .0D .-1或-24. 解方程组⑴35()232()4x x y y x y ++=⎧⎨-+=⎩ ⑵5,23 1.23x y x y x y x y +-⎧+=-⎪⎪⎨+-⎪-=-⎪⎩拓展延伸甲、乙、丙三种商品,若买甲4件,乙5件,丙2件,共用6 9元;若买甲5件,乙6件,丙1件,共用84元.问买甲2件,乙3件,丙4件,共需要多少元?答案:活动11.消元2.代入消元法,代入法3.加减消元法,加减法4.⑴25,15.x y =⎧⎨=⎩⑵5,7.x y =⎧⎨=⎩ 活动2 1.C ,5x y += 2.⑴5,1.a b =⎧⎨=-⎩⑵2,1.x y =⎧⎨=⎩ 小结:对第1题不必求出方程组的解再代入求值,可直接由①-②即得 1.x y -=- ①+②得3315,x y +=从而 5.x y +=对第2题的⑴可直接将②整体代入①得:2331a -⨯=,对第2题的⑵,①+②得4040120,3,x y x y +=+=①-②得666, 1.x y x y -=-= 灵活运用代入法或加减法解方程组可以事半功倍.活动31.9 提示两式相加2.A 提示 两式相减1.10 3.A 提示 ②×3-①×8 得53x y m -=--,537,2.m m --==-4.⑴1,2.x y =-⎧⎨=⎩⑵6,0.x y =-⎧⎨=⎩拓展延伸解:设甲、乙、丙的单价分别为x 、y 、z ,根据题意,得⎩⎨⎧=++=++846569254z y x z y x )2() 1( ⑴×3-⑴×2 得 39432=++z y x 答:买甲2件,乙3件,丙4件,共需要3 9元.。
8.2消元——解二元一次方程组(2)导学案
8.2消元——解二元一次方程组(2)学习目标:1、理解加减消元法的含义。
2、掌握用加减法解二元一次方程组。
3、使学生理解加减消元法所体现的“化未知为已知”的化归思想方法;学习重点:用“加减法“解二元一次方程组学习难点:用“加减法“解二元一次方程组学习过程自主学习:昨日点滴1.用代入法解二元一次方程组的基本思想是什么?2.用代入法解下列方程组: ⎩⎨⎧=--=+752132y x y x 合作探究:一、课本P94:思考我们知道,对于方程组x+y=10 2x+y=16 这个方程组的两个方程中,y 的系数有什么关系?•利用这种关系你能发现新的消元方法吗?y 的系数相等;用②-①可消去未知数y ,得( ) 解得x=( )把x=( )代入①得y=( )。
显然,由①-②也能消去未知数y. 二、思考:联系上面的解法,想一想应怎样解方程组3x+10y=2.8 15x-10y=8 这两个方程中未知数y 的系数互为相反数,•因此由①+②可消去未知数y ,从而求出未知数x 的值。
我们看到,把两个二元一次方程的两边分别相加减,可以达到“消元”的目的。
归纳: 当两个二元一次方程中同一未知数的系数 或 时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做 ,简称加减法。
三、完成课本P95例3用加减法解方程组34165633x y x y +=⎧⎨-=⎩(1)根据方程组中各未知数系数的特点,能直接用加减法求解吗?①② ①②(2)若要求未知数x 的系数相同,两个方程应分别作怎样变化?若要求未知数y 的系数互为相反数,又怎么办?试一试,能否对方程变形,使得两个方程中某个未知数的系数相反或相同。
(3)求出方程组的解解:①×3,得 ③②×2,得 ④③+④,得x=把x= 代入①,得y=所以,这个方程组的解是想一想:本题如果用加减法消去x 该怎么办?练一练:1.用加减法解下列方程组:(1)⎩⎨⎧=+=6232y -x y x (2)⎩⎨⎧=-=-1062165y x y x(3)⎩⎨⎧=+=-52382b a b a (4)⎩⎨⎧=--=+1843532y x y x2.完成课后练习P96第1题课堂小结:这节课你收获了什么?。
七年级数学下册8.2消元—二元一次方程组的解法(代入消元法)教案新人教版
初一数学教学设计消元——二元一次方程组的解法(代入消元法)教学设计思路在前面已经学过一元一次方程的解法,求二元一次方程组的解关键是化二元方程为一元方程,故在求解过程中始终应抓住消元的思想方法。
讲解时以学生为主体,创设恰当的问题情境和铺设合适的台阶,尽可能激发学生通过自己的观察、比较、思考和归纳概括,发现和总结出消元化归的思想方法。
知识目标通过探索,领会并总结解二元一次方程组的方法。
根据方程组的情况,能恰当地应用“代入消元法”解方程组;会借助二元一次方程组解简单的实际问题;提高逻辑思维能力、计算能力、解决实际问题的能力。
能力目标通过大量练习来学习和巩固这种解二元一次方程组的方法。
情感目标体会解二元一次方程组中的“消元” 思想,即通过消元把解二元一次方程组转化成解两个一元一次方程。
由此感受“划归”思想的广泛应用。
教学重点难点疑点及解决办法重点是用代入法解二元一次方程组。
难点是代入法的灵活运用,并能正确地选择恰当方法(代入法)解二元一次方程组。
疑点是如何“消元”,把“二元”转化为“一元”。
解决办法是一方面复习用一个未知量表示另一个未知量的方法,另一方面学会选择用一个系数较简单的方程进行变形。
教学方法:引导发现法,谈话讨论法,练习法,尝试指导法课时安排: 1 课时。
教具学具准备:电脑或投影仪。
教学过程教 师 活动学生活动(一)创设情境,激趣导入在 8.1 中我们已经看到,直接设两个未知数( 设胜 x 场,负 yx y 22看图,分析已知条2x y40表示本章引言中场 ) ,可以列方程组件问题的数量关系。
如果只设一个未知数 ( 设胜 x 场 ) , 思考 这个问题也可以用一元一次方程________________________[1] 来解。
师生互动分析: [1]2x + (22 - x)=40 。
列式解答观察思考,同 上面的二元一次方程组和一元一次方程有什么关系?[2]桌交流 [2] 通过观察对照,可以发现,把方程组中第一个方程变形后代入第二个方程,二元一次方程组就转化为一元一次方 总结程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年七年级数学下册 8.2 消元—二元一次方程组的解法导学案3(新版)新人教版 【学习目标】根据实际问题列出二元一次方程组,并用代入法求出二元一次方程组的解
【学习重点】:根据实际问题列出二元一次方程组,并用代入法求出二元一次方程组的解
【学习难点】:列二元一次方程组时等量关系的寻找
【学习过程】
一、 复习 (1) 用代入法解二元一次方程的基本思想有是什么?
(2)用代入法解下列方程组
25,28.(2)y x x y -= (1) ⎧⎨+=⎩ ⑵25,(1)328.(2)x y x y +=⎧⎨+=⎩
二、 合作探究
例1:根据市场调查,某种消毒液的大瓶装(500 g )和小瓶装(250 g )两种的销售数量(按瓶计算)比为2:5。
某厂每天生产这种消毒液22.5吨,这些消毒液应该分装大小两种各多少瓶?
分析:关键找两个等量关系
(1)大瓶数:小瓶数= (2)大瓶所装消毒液+小瓶所装消毒液= 解:设这些消毒液应该分装 个大瓶和 个小瓶,根据题意,得
答:
归纳:列二元一次方程组解决实际问题的主要步骤:
(1) 弄清题意,找出 个等量关系 (2)设未知数( 个)
(3)根据等量关系,列出方程组 (4)作答
解题关键:找出两个等量关系
三、 课堂练习
1、48支队520名运动员参加篮球、排球比赛,其中每支篮球队10人,每支排球队12人,每名运动员只能参加一项比赛。
篮球、排球队各有多少只参赛?
分析:找两个等量关系:(1) + =48
(2) 人数+ 人数=总人数( )
2、张翔从学校出发骑自行车去县城,中途因道路施工步行一段路,1.5 h 后到达县城。
他骑车的平均速度是15千米/小时,步行的平均速度是5千米/小时,路程全长20千米。
他骑车和步行各用了多少时间?
分析:找两个等量关系:(1) + = 总时间( 小时)
(2) + = 总路程( 千米)
解:
四、 达标检测
1、 某班去看演出,甲种票每张24元,乙种票每张18元,如果35名学生购票恰好用去750元,甲乙两种票各买了多少张?
分析:等量关系(1) (2)
2、小方、小程两人相距6千米,两人同时出发相向而行,1小时相遇;同时出发同向而行,小方3小时可追上小程。
两人的平均速度各是多少?
分析:等量关系(1)
(2)
五、课堂小结:今天你学到了什么?。