2013年全国高校自主招生数学模拟试卷八张阳阳
2013年全国高校自主招生数学模拟试卷及答案
2013年全国高校自主招生数学模拟试卷一 参考答案一、选择题(本题满分36分,每小题6分)1. 如图,在正四棱锥P −ABCD 中,∠APC =60°,则二面角A −PB −C 的平面角的余弦值为( B ) A.71 B. 71-C.21 D. 21-解:如图,在侧面PAB 内,作AM ⊥PB ,垂足为M 。
连结CM 、AC ,则∠AMC 为二面角A −PB −C 的平面角。
不妨设AB =2,则22==AC PA ,斜高为7,故2272⋅=⨯AM ,由此得27==AM CM 。
在△AMC 中,由余弦定理得712cos 222-=⋅⋅-+=∠CM AM AC CM AM AMC 。
2. 设实数a 使得不等式|2x −a |+|3x −2a |≥a 2对任意实数x 恒成立,则满足条件的a 所组成的集合是( A)A. ]31,31[-B. ]21,21[-C. ]31,41[- D. [−3,3] 解:令a x 32=,则有31||≤a ,排除B 、D 。
由对称性排除C ,从而只有A 正确。
一般地,对k ∈R ,令ka x 21=,则原不等式为2|||34|||23|1|||a k a k a ≥-⋅+-⋅,由此易知原不等式等价于|34|23|1|||-+-≤k k a ,对任意的k ∈R 成立。
由于⎪⎪⎪⎩⎪⎪⎪⎨⎧<-<≤-≥-=-+-125334121134325|34|23|1|k k k k k k k k ,所以31|}34|23|1{|min R =-+-∈k k k ,从而上述不等式等价于31||≤a 。
3. 将号码分别为1、2、…、9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同。
甲从袋中摸出一个球,其号码为a ,放回后,乙从此袋中再摸出一个球,其号码为b 。
则使不等式a −2b +10>0成立的事件发生的概率等于( D ) A.8152 B.8159 C.8160 D.8161 解:甲、乙二人每人摸出一个小球都有9种不同的结果,故基本事件总数为92=81个。
2013年全国高校自主招生数学模拟试卷1
解:曲线方程为+=1,直线方程为y=ax+b.
由直线图形,可知A、C中的a<0,A图的b>0,C图的b<0,与A、C中曲线为椭圆矛盾.
由直线图形,可知B、D中的a>0,b<0,则曲线为焦点在x轴上的双曲线,故选B.
在每一位(从第一位到第n-1位)小数上,数字0与1各出现2n-2次.第n位则1出现2n-1次.
∴Sn=2n-20.11…1+2n-210-n.
∴==.
三、(本题满分20分)
13.设≤x≤5,证明不等式
2++<2.
解:x+1≥0,2x-3≥0,15-3x≥0.≤x≤5.
由平均不等式≤≤.
∴2++=+++≤2.
而MN上任一异于P的点Q,都有OQ+QA=OQ+QA>OA.故点Q在椭圆C外.即折痕上所有的点都在椭圆C上及C外.
反之,对于椭圆C上或外的一点S,以S为圆心,SA为半径作圆,交⊙O于A,则S在AA的垂直平分线上,从而S在某条折痕上.
最后证明所作⊙S与⊙O必相交.
1当S在⊙O外时,由于A在⊙O内,故⊙S与⊙O必相交;
MN=-1.EM=,故EN2=3-(-1)2=2.∴EN=.所求圆柱的高=2+.
12.设Mn={(十进制)n位纯小数0.|ai只取0或1(i=1,2,…,n-1),an=1},Tn是Mn中元素的个数,Sn是Mn中所有元素的和,则=.
解:由于a1,a2,…,an-1中的每一个都可以取0与1两个数,Tn=2n-1.
2当S在⊙O内时(例如在⊙O内,但在椭圆C外或其上的点S),取过S的半径OD,则由点S在椭圆C外,故OS+SA≥R(椭圆的长轴).即SA≥SD.于是D在⊙S内或上,即⊙S与⊙O必有交点.
2013年全国高校自主招生数学模拟试卷一
2013年全国高校自主招生数学模拟试卷一命题人:南昌二中 高三(01)班 张阳阳一、选择题(本题满分36分,每小题6分) 1. 如图,在正四棱锥P −ABCD 中,∠APC =60°,则二面角A −PB −C 的平面角的余弦值为( ) A. 71B. 71-C. 21D. 21-2. 设实数a 使得不等式|2x −a |+|3x −2a |≥a 2对任意实数x 恒成立,则满足条件的a 所组成的集合是( )A. ]31,31[- B. ]21,21[- C. ]31,41[- D. [−3,3]3. 将号码分别为1、2、…、9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同。
甲从袋中摸出一个球,其号码为a ,放回后,乙从此袋中再摸出一个球,其号码为b 。
则使不等式a −2b +10>0成立的事件发生的概率等于( ) A.8152 B.8159 C.8160 D.8161 4. 设函数f (x )=3sin x +2cos x +1。
若实数a 、b 、c 使得af (x )+bf (x−c )=1对任意实数x 恒成立,则acb cos 的值等于( ) A. 21-B. 21C. −1D. 15. 设圆O 1和圆O 2是两个定圆,动圆P 与这两个定圆都相切,则圆P 的圆心轨迹不可能是( )6. 已知A 与B 是集合{1,2,3,…,100}的两个子集,满足:A 与B 的元素个数相同,且为A ∩B 空集。
若n ∈A 时总有2n +2∈B ,则集合A ∪B 的元素个数最多为( ) A. 62 B. 66 C. 68 D. 74 二、填空题(本题满分54分,每小题9分)7. 在平面直角坐标系内,有四个定点A (−3,0),B (1,−1),C (0,3),D (−1,3)及一个动点P ,则|PA |+|PB |+|PC |+|PD |的最小值为__________。
8. 在△ABC 和△AEF 中,B 是EF 的中点,AB =EF =1,BC =6,33=CA ,若2=⋅+⋅,则与的夹角的余弦值等于________。
2013年全国高校自主招生数学模拟试卷八
2013年全国高校自主招生数学模拟试卷八命题人:南昌二中 高三(01)班 张阳阳一、选择题(36分,每小题6分)本题共有6小题,每题均给出(A )、(B )、(C )、(D )四个结论,其中有且仅有一个是正确的.请将正确答案的代表字母填在题后的括号内.每小题选对得6分;不选、选错或选出的代表字母超过一个(不论是否写在括号内),一律得0分.1.已知a 为给定的实数,那么集合M ={x | x 2-3x -a 2+2=0,x ∈R}的子集的个数为(A ) 1 (B ) 2 (C ) 4 (D ) 不确定【答】( C )【解】 方程x 2-3x -a 2+2=0的根的判别式Δ=1+4a 2>0,方程有两个不相等的实数根.由M 有2个元素,得集合M 有22=4个子集.2. 命题1 长方体中,必存在到各顶点距离相等的点;命题2 长方体中,必存在到各棱距离相等的点; 命题3 长方体中,必存在到各面距离相等的点. 以上三个命题中正确的有(A ) 0个 (B ) 1个 (C ) 2个 (D ) 3个【答】( B )【解】 只有命题1对. 3.在四个函数y =sin|x |,y =cos|x |,y =|ctg x |,y =lg|sin x |中以π为周期、在(0,2π)上单调递增的偶函数是 (A )y =sin|x |(B )y =cos|x | (C )y =|ctg x |(D )y =lg|sin x |【答】( D)【解】 y =sin|x |不是周期函数.y =cos|x |=cos x 以2π为周期.y =|ctg x |在(0,2π)上单调递减.只有y =lg|sin x |满足全部条件.4.如果满足∠ABC =60°,AC =12, BC =k 的△ABC 恰有一个,那么k 的取值范围是(A ) k =38 (B )0<k ≤12 (C ) k ≥12 (D ) 0<k ≤12或k =38【答】( D)【解】 根据题设,△ABC共有两类如图.易得k =38或0<k ≤12.本题也可用特殊值法,排除(A )、(B )、(C ).12kCB A60°12kABC60°5.若10002)1(x x ++的展开式为200020002210xa x a x a a ++++ ,则19989630a a a a a +++++ 的值为(A )3333(B ) 6663(C ) 9993(D ) 20013【答】( C)【解】 令x =1可得10003=20003210a a a a a +++++ ; 令x =ω可得0=20002000332210ωωωωa a a a a +++++ ;(其中i 2321+-=ω,则3ω=1且2ω+ω+1=0)令x =2ω可得0=400020006342210ωωωωa a a a a +++++ .以上三式相加可得10003=3(19989630a a a a a +++++ ).所以19989630a a a a a +++++ =9993.6.已知6枝玫瑰与3枝康乃馨的价格之和大于24元,而4枝玫瑰与5枝康乃馨的价格之和小于22元,则2枝玫瑰的价格和3枝康乃馨的价格比较结果是().(A )2枝玫瑰价格高 (B )3枝康乃馨价格高 (C )价格相同 (D )不确定【答】( A )【解】 设玫瑰与康乃馨的单价分别为x 、y 元/枝.则6x +3y >24,4x +5y <22.令6x +3y =a >24,4x +5y =b <22,解出x =)35(181b a -,y =)23(91a b -.所以2x -3y =)22122411(91)1211(91⨯-⨯>-b a =0,即2x >3y . 也可以根据二元一次不等式所表示的区域来研究.二、填空题(54分,每小题9分)7.椭圆θρcos 21-=的短轴长等于332. 【解】 .31)(,1)0(=-==+=c a c a πρρ故3331,32=⇒==b c a .从而3322=b .8.若复数z 1,z 2满足| z 1|=2,| z 2|=3,3z 1-2z 2=i -23,则z 1·z 2=i 13721330+-. 【解】由3z 1-2z 2=2111222131z z z z z z ⋅⋅-⋅⋅=)32(611221z z z z -可得=+-⨯-=--=--=i iz z z z z z z z z z 223632)23(632)23(61221122121i 13721330+-.本题也可设三角形式进行运算.9.正方体ABCD —A 1B 1C 1D 1的棱长为1,则直线A 1C 1与BD 1的距离是66. 【解】 作正方体的截面BB 1D 1D ,则A 1C 1⊥面BB 1D 1D .设A 1C 1与B 1D 1交于点O ,在面BB 1D 1D 内作OH ⊥BD 1,H 为垂足,则OH 为A 1C 1与BD 1的公垂线.显然OH 等于直角三角形BB 1D 1斜边上高的一半,即OH =66. 10. 不等式232log 121>+x 的解集为),4()2,1()1,0(72+∞ .【解】232l o g 121>+x等价于232log 121>+x 或232log 121-<+x . 即21log 121->x 或27log 11-<x. 此时2log 21-<x 或0log 21>x 或0log 7221<<-x .∴解为x >4或0<x <1 或 1<x <722. 即解集为),4()2,1()1,0(72+∞ .11.函数232+-+=x x x y 的值域为),2[)23,1[+∞ .【解】232+-+=x x x y ⇒0232≥-=+-x y x x .两边平方得2)32(2-=-y x y ,从而23≠y 且3222--=y y x .由03222≥---=-y y y x y ⇒231032232<≤⇒≥-+-y y y y 或2≥y .1111 HODC B AD CBA任取2≥y ,令3222--=y y x ,易知2≥x ,于是0232≥+-x x 且232+-+=x x x y .任取231<≤y ,同样令3222--=y y x ,易知1≤x ,于是0232≥+-x x 且232+-+=x x x y .因此,所求函数的值域为),2[)23,1[+∞ .12. 在一个正六边形的六个区域栽种观赏植物(如图),要求同一块中种同一种植物,相邻的两块种不同的植物.现有4种不同的植物可供选择,则有 732 种栽种方案. 【解】考虑A 、C 、E 种同一种植物,此时共有4×3×3×3=108种方法.考虑A 、C 、E 种二种植物,此时共有3×4×3×3×2×2=432种方法. 考虑A 、C 、E 种三种植物,此时共有P 43×2×2×2=192种方法. 故总计有108+432+192=732种方法.三、解答题(本题满分60分,每小题20分)13.设{a n }为等差数列,{b n }为等比数列,且b 1=a 12,b 2=a 22,b 3=a 32(a 1<a 2) ,又12)(lim 21+=++++∞→n n b b b .试求{a n }的首项与公差.【解】 设所求公差为d ,∵a 1<a 2,∴d >0.由此得 a 12(a 1+2d )2=(a 1+d )4 化简得2a 12+4a 1d +d 2=0解得d =(22±-) a 1.………………………………………………………………5分 而22±-<0,故a 1<0.若d =(22--) a 1,则22122)12(+==a a q ;若d =(22+-)a 1,则22122)12(-==a a q ;…………………………………………10分但12)(lim 21+=++++∞→n n b b b 存在,故|q |<1.于是2)12(+=q 不可能.AB C DEF从而2)12)(222(12)12(121221=+-=⇒+=--a a .所以a 1=2-,d =(22+-) a 1=(22+-)(2-)=222-.……………………20分14.设曲线C 1:1222=+y ax (a 为正常数)与C 2:y 2=2(x +m ) 在x 轴上方仅有一个公共点P .⑴ 求实数m 的取值范围(用a 表示);⑵ O 为原点,若C 1与x 轴的负半轴交于点A ,当0<a <21时,试求ΔOAP 的面积的最大值(用a 表示).⑴ 【解】 由⎪⎩⎪⎨⎧+==+)(2,12222m x y y a x 消去y 得,x 2+2a 2x +2a 2m -a 2=0. ①设f (x )= x 2+2a 2x +2a 2m -a 2,问题⑴转化为方程①在x ∈(-a ,a )上有唯一解或等根.只须讨论以下三种情况:1︒ Δ=0得 m =212+a .此时 x p = -a 2,当且仅当-a <-a 2<a ,即0<a <1时适合; 2︒ f (a )·f (-a )<0当且仅当–a <m <a ;3︒ f (-a )=0得m =a .此时 x p =a -2a 2,当且仅当-a < a -2a 2<a ,即0<a <1时适合.f (a )=0得m =-a ,此时 x p =-a -2a 2,由于-a -2a 2<-a ,从而m ≠-a .综上可知,当0<a <1时,m =212+a 或-a <m ≤a ;当a ≥1时,-a <m <a .……………………………………………………10分 ⑵ 【解】 ΔOAP 的面积S =21ay p . ∵0<a <21,故-a <m ≤a 时,a m a a a <-++-<21022,由唯一性得x p =m a a a 2122-++-.显然当m =a 时,x p 取值最小.由于x p >0,从而221ax y p p -=取值最大,此时y p =22a a -,∴S =a 2a a -.当m =212+a 时,x p =-a 2,y p =21a -,此时S =21a 21a -.下面比较a 2a a -与21a 21a -的大小: 令a 2a a -=21a 21a -,得a =31.故当0<a ≤31时 , 2121)1(a a a a a -≤-.此时S max =2121a a -.当31<a <21时,2121)1(a a a a a ->-.此时S max = a 2a a -.……………20分15.用电阻值分别为a 1、a 2、a 3、a 4、a 5 、a 6 (a 1>a 2>a 3>a 4>a 5>a 6) 的电阻组装成一个如图的组件,在组装中应如何选取电阻,才能使该组件总电阻值最小?证明你的结论.【解】 设6个电阻的组件(如图3)的总电阻为R FG .当R i =a i ,i =3,4,5,6,R 1,R 2是a 1,a 2的任意排列时,R FG 最小.…………………………………………5分证明如下1°设当两个电阻R 1,R 2并联时,所得组件阻值为R :则21111R R R +=.故交换二电阻的位置,不改变R 值,且当R 1或R 2变小时,R 也减小,因此不妨取R 1>R 2.2°设3个电阻的组件(如图1)的总电阻为R AB :2132312132121R R R R R R R R R R R RR R AB+++=++=. 显然R 1+R 2越大,R AB 越小,所以为使R AB 最小必须取R 3为所取三个电阻中阻值最小的一个.3°设4个电阻的组件(如图2)的总电阻为R CD :43243142142324131214111R R R R R R R R R R R R R R R R R R R R R R AB CD ++++++=+=.图1图2若记∑≤<≤=411j i jiRR S ,∑≤<<≤=412k j i kjiRR R S .则S 1、S 2为定值.于是4313212R R S R R R S R CD --=.只有当R 3R 4最小,R 1R 2R 3最大时,R CD 最小,故应取R 4<R 3,R 3<R 2,R 3<R 1,即得总电阻的阻值最小.……………………………………………………………………15分4°对于图3,把由R 1、R 2、R 3组成的组件用等效电阻R AB 代替.要使R FG 最小,由3°必需使R 6<R 5;且由1°,应使R CE 最小.由2°知要使R CE 最小,必需使R 5< R 4,且应使R CD 最小.而由3°,要使R CD 最小,应使R 4< R 3 < R 2且R 4< R 3 < R 1.这就说明,要证结论成立………………………………………………………20分E G图3。
2013届高三数学全国高校自主招生模拟试卷(带答案)
2013届高三数学全国高校自主招生模拟试卷(带答案)2013年全国高校自主招生数学模拟试卷四一、选择题(本题满分36分,每小题6分)1.已知△ABC,若对任意t∈R,→BA-t→BC≥→AC,则△ABC一定为A.锐角三角形B.钝角三角形C.直角三角形D.答案不确定2.设logx(2x2+x-1)>logx2-1,则x的取值范围为A.12<x<1B.x>12且x≠1C.x>1D.0<x<13.已知集合A={x|5x-a≤0},B={x|6x-b>0},a,b∈N,且A∩B∩N ={2,3,4},则整数对(a,b)的个数为A.20B.25C.30D.424.在直三棱柱A1B1C1-ABC中,∠BAC=π2,AB=AC=AA1=1.已知G与E分别为A1B1和CC1的中点,D与F分别为线段AC和AB上的动点(不包括端点).若GD⊥EF,则线段DF的长度的取值范围为A.15,1)B.15,2)C.1,2)D.15,2)5.设f(x)=x3+log2(x+x2+1),则对任意实数a,b,a+b≥0是f(a)+f(b)≥0的A.充分必要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件6.数码a1,a2,a3,…,a2006中有奇数个9的2007位十进制数-2a1a2…a2006的个数为A.12(102006+82006)B.12(102006-82006)C.102006+82006D.102006-82006二、填空题(本题满分54分,每小题9分)7.设f(x)=sin4x-sinxcosx+cos4x,则f(x)的值域是.8.若对一切θ∈R,复数z=(a+cosθ)+(2a-sinθ)i的模不超过2,则实数a的取值范围为.9.已知椭圆x216+y24=1的左右焦点分别为F1与F2,点P在直线l:x-3y+8+23=0上.当∠F1PF2取最大值时,比|PF1||PF2|的值为.10.底面半径为1cm的圆柱形容器里放有四个半径为12cm的实心铁球,四个球两两相切,其中底层两球与容器底面相切.现往容器里注水,使水面恰好浸没所有铁球,则需要注水cm3.11.方程(x2006+1)(1+x2+x4+…+x2004)=2006x2005的实数解的个数为.12.袋内有8个白球和2个红球,每次从中随机取出一个球,然后放回1个白球,则第4次恰好取完所有红球的概率为.三、解答题(本题满分60分,每小题20分)13.给定整数n≥2,设M0(x0,y0)是抛物线y2=nx-1与直线y=x的一个交点.试证明对任意正整数m,必存在整数k≥2,使(x0m,y0m)为抛物线y2=kx-1与直线y=x的一个交点.14.将2006表示成5个正整数x1,x2,x3,x4,x5之和.记S=1≤i <j≤5Σxixj.问:⑴当x1,x2,x3,x4,x5取何值时,S取到最大值;⑵进一步地,对任意1≤i,j≤5有xi-xj≤2,当x1,x2,x3,x4,x5取何值时,S取到最小值.说明理由.15.设f(x)=x2+a.记f1(x)=f(x),fn(x)=f(fn-1(x)),n=1,2,3,…,M={a∈R|对所有正整数n,fn(0)≤2}.证明,M=-2,14].2013年全国高校自主招生数学模拟试卷四参考答案一、选择题(本题满分36分,每小题6分)答C.解:令∠ABC=α,过A作AD⊥BC于D,由→BA-t→BC≥→AC,推出→BA2-2t→BA•→BC+t2→BC2≥→AC2,令t=→BA•→BC→BC2,代入上式,得→BA2-2→BA2cos2α+→BA2cos2α≥→AC2,即→BA2sin2α≥→AC2,也即→BAsinα≥→AC.从而有→AD≥→AC.由此可得∠ACB=π2.答B.解:因为x>0,x≠12x2+x-1>0,解得x>12且x≠1.由logx(2x2+x -1)>logx2-1,+x2-x)><x<1,2x3+x2-x<2或x>1,2x3+x2-x>2.解得0<x<1或x>1.所以x的取值范围为x>12且x≠1.答C.解:5x-;6x-b>>b6.要使A∩B∩N={2,3,4},则1≤b6<2,4≤a5<5,即6≤b<12,20≤a<25.所以数对(a,b)共有C61C51=30个.答A.解:建立直角坐标系,以A为坐标原点,AB为x轴,AC为y轴,AA1为z轴,则F(t1,0,0)(0<t1<1),E(0,1,12),G(12,0,1),D(0,t2,0)(0<t2<1).所以→EF=(t1,-1,-12),→GD=(-12,t2,-1).因为GD⊥EF,所以t1+2t2=1,由此推出0<t2<12.又→DF=(t1,-t2,0),→DF=t12+t22=5t22-4t2+1=5(t2-25)2+15,从而有15≤→DF<1.答A.解:显然f(x)=x3+log2(x+x2+1)为奇函数,且单调递增.于是若a+b≥0,则a≥-b,有f(a)≥f(-b),即f(a)≥-f(b),从而有f(a)+f(b)≥0.反之,若f(a)+f(b)≥0,则f(a)≥-f(b)=f(-b),推出a≥-b,即a+b≥0.答B.解:出现奇数个9的十进制数个数有A=C2006192005+C2006392003+…+C200620059.又由于(9+1)2006=k=0Σ2006C2006k92006-k以及(9-1)2006=k=0Σ2006C2006k(-1)k92006-k从而得A=C2006192005+C2006392003+…+C200620059=12(102006-82006).填0,98].解:f(x)=sin4x-sinxcosx+cos4x=1-12sin2x-12sin22x.令t=sin2x,则f(x)=g(t)=1-12t-12t2=98-12(t+12)2.因此-1≤t≤1ming(t)=g(1)=0,-1≤t≤1maxg(t)=g(-12)=98.故,f(x)∈0,98].填-55,55].解:依题意,得+cosθ)2+(2a--2sinθ)≤3-5a2.-25asin(θ-φ)≤3-5a2(φ=arcsin55)对任意实数θ成立.-,故a的取值范围为-55,55].填3-1..解:由平面几何知,要使∠F1PF2最大,则过F1,F2,P三点的圆必定和直线l相切于点P.直线l交x轴于A(-8-23,0),则∠APF1=∠AF2P,即∆APF1∽∆AF2P,即|PF1||PF2|=|AP||AF2|⑴又由圆幂定理,|AP|2=|AF1|•|AF2|⑵而F1(-23,0),F2(23,0),A(-8-23,0),从而有|AF1|=8,|AF2|=8+43.代入⑴,⑵得,|PF1||PF2|=|AF1||AF2|=88+43=4-23=3-1.填(13+22)π.解:设四个实心铁球的球心为O1,O2,O3,O4,其中O1,O2为下层两球的球心,A,B,C,D分别为四个球心在底面的射影.则ABCD是一个边长为22的正方形。
2013年全国高校自主招生数学模拟试卷
2013年全国高校自主招生数学模拟试卷命题人:南昌二中 高三(01)班 张阳阳一、选择题(本题满分36分,每小题6分)1.已知△ABC ,若对任意t ∈R ,||→BA -t →BC ≥||→AC ,则△ABC 一定为A .锐角三角形B .钝角三角形C .直角三角形D .答案不确定 2.设log x (2x 2+x -1)>log x 2-1,则x 的取值范围为A .12<x <1B .x >12且x ≠1 C . x >1 D . 0<x <13.已知集合A ={x |5x -a ≤0},B ={x |6x -b >0},a ,b ∈N ,且A ∩B ∩N ={2,3,4},则整数对(a ,b )的个数为A .20B .25C .30D .42 4.在直三棱柱A 1B 1C 1-ABC 中,∠BAC =π2,AB =AC =AA 1=1.已知G 与E 分别为A 1B 1和CC 1的中点,D 与F 分别为线段AC 和AB 上的动点(不包括端点).若GD ⊥EF ,则线段DF 的长度的取值范围为A .[15,1)B .[15,2)C .[1,2)D .[15,2)5.设f (x )=x 3+log 2(x +x 2+1),则对任意实数a ,b ,a +b ≥0是f (a )+f (b )≥0的A . 充分必要条件B . 充分而不必要条件C . 必要而不充分条件D . 既不充分也不必要条件 6.数码a 1,a 2,a 3,…,a 2006中有奇数个9的2007位十进制数-2a 1a 2…a 2006的个数为A .12(102006+82006)B .12(102006-82006) C .102006+82006 D .102006-82006二、填空题(本题满分54分,每小题9分)7. 设f (x )=sin 4x -sin x cos x +cos 4x ,则f (x )的值域是 .8. 若对一切θ∈R ,复数z =(a +cos θ)+(2a -sin θ)i 的模不超过2,则实数a 的取值范围为 .9.已知椭圆x 216+y 24=1的左右焦点分别为F 1与F 2,点P 在直线l :x -3y +8+23=0上.当∠F 1PF 2取最大值时,比|PF 1||PF 2|的值为 .10.底面半径为1cm 的圆柱形容器里放有四个半径为12cm 的实心铁球,四个球两两相切,其中底层两球与容器底面相切. 现往容器里注水,使水面恰好浸没所有铁球,则需要注水 cm 3.11.方程(x 2006+1)(1+x 2+x 4+…+x 2004)=2006x 2005的实数解的个数为 . 12. 袋内有8个白球和2个红球,每次从中随机取出一个球,然后放回1个白球,则第4次恰好取完所有红球的概率为 .三、解答题(本题满分60分,每小题20分)13. 给定整数n ≥2,设M 0(x 0,y 0)是抛物线y 2=nx -1与直线y =x 的一个交点. 试证明对任意正整数m ,必存在整数k ≥2,使(x 0m ,y 0m )为抛物线y 2=kx -1与直线y =x 的一个交点.14.将2006表示成5个正整数x 1,x 2,x 3,x 4,x 5之和.记S =1≤i <j ≤5Σx i x j .问:⑴ 当x 1,x 2,x 3,x 4,x 5取何值时,S 取到最大值;⑵ 进一步地,对任意1≤i ,j ≤5有||x i -x j ≤2,当x 1,x 2,x 3,x 4,x 5取何值时,S 取到最小值.说明理由.15.设 f (x )=x 2+a . 记f 1(x )=f (x ),f n (x )=f (f n -1(x )),n =1,2,3,…,M ={a ∈R |对所有正整数n ,||f n (0)≤2}.证明,M =[-2,14].2013年全国高校自主招生数学模拟试卷四参考答案一、选择题(本题满分36分,每小题6分)答C .解:令∠ABC =α,过A 作AD ⊥BC 于D ,由||→BA -t →BC ≥||→AC ,推出||→BA 2-2t →BA · →BC +t 2||→BC 2≥||→AC 2,令t =→BA · →BC ||→BC2,代入上式,得||→BA 2-2||→BA 2cos 2α+||→BA 2cos 2α≥||→AC 2,即 ||→BA 2sin 2α≥||→AC 2,也即||→BA sin α≥||→AC .从而有||→AD ≥||→AC .由此可得∠ACB =π2.答B .解:因为⎩⎨⎧x >0,x ≠12x 2+x -1>0,解得x >12且x ≠1.由log x (2x 2+x -1)>log x 2-1,⇒ log x (2x 3+x 2-x )>log x 2⎩⎨⎧0<x <1,2x 3+x 2-x <2或⎩⎨⎧x >1,2x 3+x 2-x >2.解得0<x <1或x >1. 所以x 的取值范围为x >12且x ≠1.答C . 解:5x -a ≤0x ≤a5;6x -b >0x >b6.要使A ∩B ∩N ={2,3,4},则 ⎩⎨⎧1≤b6<2,4≤a 5<5,即⎩⎨⎧6≤b <12,20≤a <25.所以数对(a ,b )共有C 61C 51=30个. 答A .解:建立直角坐标系,以A 为坐标原点,AB 为x 轴,AC 为y 轴,AA 1为z 轴,则F (t 1,0,0)(0<t 1<1),E (0,1,12),G (12,0,1),D (0,t 2,0)(0<t 2<1).所以→EF =(t 1,-1,-12),→GD =(-12,t 2,-1).因为GD ⊥EF ,所以t 1+2t 2=1,由此推出0<t 2<12.又→DF =(t 1,-t 2,0),||→DF =t 12+t 22=5t 22-4t 2+1=5(t 2-25)2+15,从而有15≤||→DF <1.答A .解:显然f (x )=x 3+log 2(x +x 2+1)为奇函数,且单调递增.于是若a +b ≥0,则a ≥-b ,有f (a )≥f (-b ),即f (a )≥-f (b ),从而有f (a )+f (b )≥0. 反之,若f (a )+f (b )≥0,则f (a )≥-f (b )=f (-b ),推出a ≥-b ,即a +b ≥0. 答B .解:出现奇数个9的十进制数个数有A =C 20061 92005+C 20063 92003+…+C 200620059.又由于(9+1)2006=k =0Σ2006C 2006k 92006-k以及(9-1)2006=k =0Σ2006C 2006k(-1)k 92006-k 从而得A =C 20061 92005+C 20063 92003+…+C 200620059=12(102006-82006). 填[0,98].解:f (x )=sin 4x -sin x cos x +cos 4x =1-12sin2x -12sin 22x .令t =sin2x ,则f (x )=g (t )=1-12t -12t 2=98-12(t +12)2.因此-1≤t ≤1min g (t )=g (1)=0,-1≤t ≤1max g (t )=g (-12)=98. 故,f (x )∈[0,98].填[-55,55].解:依题意,得|z |≤2(a +cos θ)2+(2a -sin θ)2≤42a (cos θ-2sin θ)≤3-5a 2. -25a sin(θ-φ)≤3-5a 2(φ=arcsin 55)对任意实数θ成立. 25|a |≤3-5a 2|a |≤55,故 a 的取值范围为[-55,55]. 填3-1..解:由平面几何知,要使∠F 1PF 2最大,则过F 1,F 2,P 三点的圆必定和直线l 相切于点P .直线l 交x 轴于A (-8-23,0),则∠APF 1=∠AF 2P ,即∆APF 1∽∆AF 2P ,即|PF 1||PF 2|=|AP ||AF 2|⑴ 又由圆幂定理,|AP |2=|AF 1|·|AF 2|⑵而F 1(-23,0),F 2(23,0),A (-8-23,0),从而有|AF 1|=8,|AF 2|=8+43. 代入⑴,⑵得,|PF 1||PF 2|=|AF 1||AF 2|=88+43=4-23=3-1.填(13+22)π. 解:设四个实心铁球的球心为O 1,O 2,O 3,O 4,其中O 1,O 2为下层两球的球心,A ,B ,C ,D 分别为四个球心在底面的射影.则ABCD 是一个边长为22的正方形。
2013高校自主招生仿真模拟试题及答案2(word)
数学模拟试题(第二套)一、选择题1. 设0>a ,复数4)(i a +的实部为8-,则其虚部为( ) A. 34 B. 24 C. 38 D.282. 在正四棱锥ABCD P -中,M ,N 分别为PB ,PD 的中点,且侧面与底面所成二面角的正切为2,则异面直线AM 与CN 所成角的余弦为( ) A.61 B. 31 C.32 D.433. 椭圆1422=+y x的内接三角形的面积的最大值为( )A. 3B.49 C.223 D.2334. 在ABC ∆中,c b a 3=+,则C B A sin sin sin 的最大值为( )A. 817 B. 924 C.91 D.812325. 从3个2分和10个5分的钱币中取出一些,共可得到( )种面值.A. 42B. 43C. 44D. 45 6. 在ABC ∆中,在AB 上取点1C 使得AB AC 311=,在BC 上取点1A 使得BC BA 311=,在CA 上取点1B 使得CA CB 311=,1BB 与1CC 交于点2A ,1CC 与1AA 交于点2B ,1AA 与1BB 交于点2C ,则=∆∆ABCC B A S S 222( )A. 31 B.51 C.71 D.917. 5条直线最多把平面分成( )部分A. 13B. 14C. 15D.168. AB 为过抛物线x y 42=焦点F 的弦,O 为坐标原点,且150=∠OFA , C 为抛物线准线与x 轴的交点,则ACB ∠的正切值为( )A. 31B. 32C. 34D. 19. 正方形ABCD 和正方形CDFE 有两个公共顶点C ,D ,他们的位置可用矩阵⎥⎦⎤⎢⎣⎡F DBE C A 来表示,变换S 将正方形ABCD 逆时针旋转90,即将ABDC 分别移到BDCA 的位置.变换T 将正方形CDFE 逆时针旋转 90,即将CDFE 分别移到DFEC 的位置.则下列将各顶点从原来的位置变为⎥⎦⎤⎢⎣⎡D EFC B A 的最短的变换序列是( ) A. ST T S T 323 B. T TS STS 22 C. 22TS STS D. T TS TS 22 10. 一个圆柱形试杯,杯底的厚度不计,空杯时重心在离杯底52处,盛满水时水的重量等于试杯的重量,则当装水的高度与试杯的高度之比为( )时重心最低. A. 2 B. 553 C. 12- D.1553-二、解答题11. 在ABC ∆中,2c ab =.求证: 60≤∠C .12. 长度为2的线段AB 的端点在抛物线2x y =上滑动.求其中点P 的轨迹方程.13. 己知a ,b ,c 为正数.求证:1222≥+++++ba c ac b cb a .14. 1P ,2P 为抛物线x y 42=上任意两点,过两点的切线交点为Q .求证:F P F P QF 212⋅=.15. 数列{}n a 满足k k k a a a =+++122,n S 为前n 项之和. (1)若k k k a a b +=+1,求证:{}n b 为等比数列,并求公比q . (2)若11=b ,且n n S S ∞→=lim 存在,求1a 及S .答 案一、选择题二、i a a a a i a )44()16()(3244-++-=+,81624-=+-a a ,09624=+-a a ,32=a ,3=a ,虚部38443=-a a . 答案: C三、解法一:设底面边长为2,则由侧面与底面所成二面角的正切为2,得高为2.以底面的中心O 为原点,OP 为z 轴建立空间直角坐标系,则)0,1,1(-A ,)0,1,1(B ,)0,1,1(-C ,)0,1,1(--D ,)2,0,0(P ,则)22,21,21(M ,)22,21,21(--N ,)22,23,21(-=AM ,)22,23,21(-=CN .设所成的角为θ,则32||||||cos =⋅=CN AM CN AM θ. 答案: C解法二:设底西边长为2,则由侧面与底面所成二面角的正切为2,得高为2.我们平移AM 与CN 在一起.设AD 的中点为E ,PN 的中点为G .于是AM EF //,CN FG // 因为2===AB PB PA ,所以3===CN AM EF ,2321==CN FG .在DEG ∆中,而1=DE ,23=DG ,3π=∠EDG .由余弦定理,求出27=EG .所以在DEG ∆中,由余弦定理求出32cos =∠EFG . 答案: C解法三:另一种方法平移AM 与CN 在一起,即点C 移到点A .设点N 移到点Q ,则10=MQ ,在AMQ ∆中,由余弦定理求出32cos =∠EFG . 答案: C四、将椭圆沿x 轴压缩一半,我们知道圆内接正三角形面积最大,433'''=∆C B A S ,从而椭圆的内接三角形的面积2332'''==∆∆C B A ABC S S . 答案: D五、利用正弦定理将边的关系转化为角的关系,)sin(3sin 3sin sin B A C B A +==+,2cos2sin32cos2sinB A B A B A B A ++=-+,2cos32cosB A B A +=-.而312cos≤+B A所以97)cos(-≤+B A ,97cos ≥C .CC C C C B A B A C B A 2sin 41sin 21sin )cos 1(21sin )]cos()[cos(21sin sin sin +=+≤+--=因为97cos ≥C ,924sin ≤C ,812562sin ≤C ,所以2813228114292sin sin sin =+≤C B A . 答案: D六、从1分到56分中不能得到的有1,3,8,l3,…,48,53,55,从3到53是公差为5的等差数列,所以共43种. 答案: B 七、作11//CC D A ,则3111==BCBA BC BD ,而AB BC 321=,故AB BD 92=,AB AB AB D C 9492321=-=,所以3411221==AC D C AB B A ,7312=AA AB .类似的方法可求出71121=AA C A ,于是1AA 上的三条线段之比1:3:3.同样,可得1BB ,1CC 上的三条线段之比也都是1:3:3.832143222212221222=⋅=⋅=∆∆C B B A B A C B S S CB AC B A ,74121121==∆∆AA B A S S C AA C B A ,3211==∆∆BCC A S S ABCC AA ,所以71327483222=⋅⋅=∆∆ABCC B A S S . 答案: D八、解略. 答案: D九、解法一:焦点)0,1(F ,)0,1(-C ,AB 方程)1(33-=x y .与抛物线方程x y 42=联立,解得)324,347(++A ,)432,347(--B ,于是21=CA k ,21-=CB k ,341tan =+-=∠CBCA CB CA k k k k ACB . 答案: C解法二:如图,利用抛物线的定义,将原题转化为:在直角梯形ABCD 中, 30=∠BAD ,DA EF //,2=EF ,AD AF =,BC BF =,求AEB ∠.21tan tan ===∠=∠AFGF ADDE EAD AEF .类似的,有21tan tan =∠=∠EBC BEF ,AEF BEF AEF AEB ∠=∠+∠=∠2,342tan tan =∠=∠AEF AEB . 答案: C十、经检验A 、B 都能实现所要求的变换,但A 较短. 答案: A十一、设试杯的高为1,重量为1,重心最低时在水面上,设这时的高度为h ,则h h h h ⋅+=⋅+⋅)1(5212,05422=-+h h ,1553-=h . 答案: D7.解答题11. 利用正弦定理,将条件中边的关系化为角的关系,C B A 2sin sin sin =,C B A B A 2sin 2)cos()cos(=+--,C C B A 2sin 2cos )cos(=+-,02)cos(cos cos 22=--++B A C C .而1)cos(≤-B A ,所以01cos cos 22≥-+C C ,0)1cos 2)(1(cos ≥-+C C ,21cos ≥C , 60≤∠C .12. 设),(00y x P ,),(11y x A ,),(22y x B ,AB 的斜率为k ,则AB 的方程为)(00x x k y y -=-,代入抛物线方程,得0002=-+-y kx kx x .k x x =+21,而P 是AB的中点,02x k =.再代入,得02202002=-+-y x x x x ,2000x y x x -±=,200212||x y x x -=-. 故2412||1||20020212=-⋅+=-+=x y x x x k AB ,1)14)((20200=+-x x y ,所以P 的轨迹方程为1)14)((22=+-x x y ,即14122++=x x y .13. 用A ,B ,C 表示三个分母,则 924AC B a -+=,924BA C b -+=,924CB A c -+=即要证9242424≥-++-++-+C CB A B B AC A A C B . 因为15444≥+++++C B A BAC AC B ,即15)(4)(≥+++++CB BA AC CA B C A B ,而由公式33abc c b a ≥++,得3≥++C A B C A B,3≥++C B BA AC,从而得证.14. 证法一:设),(111y x P ,),(222y x P ,),(00y x Q ,则F P 1的方程)(211x x y y +=,即22211y x y y +=,F P 2的方程22222y x y y +=.联立,得4210y y x =,2210y y y +=.于是4116)2()14()1(2221222122122120202y y y y y y y y y x QF+++=++-=+-=F P F P x x x x x x 21212121)1)(1(1⋅=++=+++=证法二:设准线为l ,作l Q P ⊥11,l Q P ⊥22,则F P Q P 111=,F P Q P 222=,Q P 1平分F P Q 11∠,Q P 2平分F P Q 22∠,则Q P 1,Q P 2分别为1FQ ,2FQ 的垂直平分线,即Q 是21Q FQ ∆的外心.因此本题可以转化为,在ABC ∆中,外心为Q ,AC 的垂直平分线1QP 交AB 的垂线1AP 于点1P ,BC 的垂直平分线2QP 交AB 的垂线2BP 于点2P ,求证212BP AP CQ⋅=.证明过程如下:设AC 的中点为D ,在D AP 1Rt ∆中,Ab DAP AD AP sin 2sin 11=∠=.同理Ba BP sin 22=.故2221sin 2sin 2sin 2sin 2CQ R BbA aBaA bBP AP ==⋅=⋅=⋅.15. (1)由题意得k k k k a a a a +=++++112)(2,即k k b b 211=+,21=q .三、由])21(1[32)(22112221112-----=-⋅⋅⋅+--=k k k b a b b b a a ,111232lim b a a k k -=-∞→;1121112212])21(1[32)(a b a b b b a k k k ---⋅=--⋅⋅⋅+-=--,11232lim a b a k k -=∞→. 因为S 存在,032lim lim lim 11212=-===∞→-∞→∞→b a a a a k k k k k k ,则323211==b a .所以11232311212)]41(1[34)(-------+=+⋅⋅⋅+++=k k k k k a b b b a S .故])41(1[3412312kk k b b b S --=+⋅⋅⋅++=-,34lim lim lim 212====∞→-∞→∞→k k k k k k S S S S .。
2013年全国高校自主招生数学模拟试卷五
5.设三位数 n=¯¯¯ abc,若以 a,b,c 为三条边长可以构成一个等腰(含等边)三角形,则这样的三 位数 n 有( ) A.45 个 B.81 个 C.165 个 D.216 个 6.顶点为 P 的圆锥的轴截面是等腰直角三角形,A 是底面圆周上的点,B 是底面 圆内的点,O 为底面圆圆心,AB⊥OB,垂足为 B,OH⊥PB,垂足为 H,且 PA=4,C 为 PA 的 中 点 , 则 当 三 棱 锥 O - HPC 的 体 积 最 大 时 , OB 的 长 为 ( ) 5 A. 3 2 5 B. 3 6 C. 3 2 6 D. 3
4 14.在平面直角坐标系 xOy 中,给定三点 A(0, ),B(-1,0),C(1,0),点 P 到直线 BC 的距 3 离是该点到直线 AB、AC 距离的等比中项. ⑴ 求点 P 的轨迹方程; ⑵ 若直线 L 经过ABC 的内心(设为 D),且与 P 点轨迹恰好有 3 个公共点,求 L 的斜率 k 的取 值范围.
6
B.
12
5 或 12
5 C. 或 6 12
的 (
2.已知 M={(x,y)|x2+2y2=3},N={(x,y)|y=mx+b}.若对于所有的 m∈R,均有 M∩N,则 b 取 值 范 围 是 ) A.[- 6 6 , ] 2 2 B.(- 6 6 , ) 2 2 2 3 2 3 C.(- , ] 3 3 2 3 2 3 D.[- , ] 3.不 3 3
; 3 . 3
2 2 1 2 1 ∴ AA12=A1M2+MN2+NA2-2A1M·NAcos,12= + + -2 cos,cos= . 3 3 3 3 2 =60. 10.设 p 是给定的奇质数,正整数 k 使得 k2-pk也是一个正整数,则 k= 2 p2 1 2 2 p 解:设 k -pk=n,则(k- ) -n = ,(2k-p+2n)(2k-p-2n)=p2,k= (p+1)2. 2 4 4 1 11. 已知数列 a0, a1, a2, „, an, „满足关系式(3-an+1)(6+an)=18, 且 a0=3, 则∑ 的值是 a i=0 i 1
2013年全国高校自主招生数学模拟试卷二
2013年全国高校自主招生数学模拟试卷二命题人:南昌二中 高三(01)班 张阳阳一、填空题(64分)1.设集合},,,{4321a a a a A =,若A 中所有三元子集的三个元素之和组成的集合为}8,5,3,1{-=B ,则集合=A .2.函数11)(2-+=x x x f 的值域为 .3.设b a ,为正实数,2211≤+ba ,32)(4)(ab b a =-,则=b a log .4.如果)cos (sin 7sin cos 3355θθθθ-<-,)2,0[πθ∈,那么θ的取值范围是 . 5.现安排7名同学去参加5个运动项目,要求甲、乙两同学不能参加同一个项目,每个项目都有人参加,每人只参加一个项目,则满足上述要求的不同安排方案数为 .(用数字作答)6.在四面体ABCD 中,已知︒=∠=∠=∠60CDA BDC ADB ,3==BD AD ,2=CD ,则四面体ABCD 的外接球的半径为 .7.直线012=--y x 与抛物线x y 42=交于B A ,两点,C 为抛物线上的一点,︒=∠90ACB ,则点C 的坐标为 .8.已知=n a C ())95,,2,1(2162003200=⎪⎪⎭⎫⎝⎛⋅⋅-n nnn ,则数列}{n a 中整数项的个数为 . 二、解答题(56分)9.(16分)设函数|)1lg(|)(+=x x f ,实数)(,b a b a <满足)21()(++-=b b f a f ,2lg 4)21610(=++b a f ,求b a ,的值.10.(20分)已知数列}{n a 满足:∈-=t t a (321R 且)1±≠t ,121)1(2)32(11-+--+-=++nn n n n n t a t t a t a ∈n (N )*. (1)求数列}{n a 的通项公式;(2)若0>t ,试比较1+n a 与n a 的大小.11.(20分)作斜率为31的直线l 与椭圆C :143622=+y x 交于B A ,两点(如图所示),且)2,23(P 在直线l 的左上方.(1)证明:△PAB 的内切圆的圆心在一条定直线上;(2)若︒=∠60APB ,求△PAB 的面积.2013年全国高校自主招生数学模拟试卷二参考答案1.{3,0,2,6}-. 提示:显然,在A 的所有三元子集中,每个元素均出现了3次,所以15853)1()(34321=+++-=+++a a a a ,故54321=+++a a a a ,于是集合A 的四个元素分别为5-(-1)=6,5-3=2,5-5=0,5-8=-3,因此,集合}6,2,0,3{-=A .2.(,(1,)-∞+∞. 提示:设22,tan πθπθ<<-=x ,且4πθ≠,则)4sin(21cos sin 11tan cos 1)(πθθθθθ-=-=-=x f .设)4sin(2πθ-=u ,则12<≤-u ,且0≠u ,所以 ),1(]22,(1)(+∞--∞∈= u x f .3.-1. 提示:由2211≤+ba ,得ab b a 22≤+.又 23322)(8)(24)(44)(4)(ab ab ab ab ab b a ab b a =⋅⋅≥+=-+=+,即ab b a 22≥+. ①于是ab b a 22=+. ②再由不等式①中等号成立的条件,得1=ab .与②联立解得⎪⎩⎪⎨⎧+=-=,12,12b a 或⎪⎩⎪⎨⎧-=+=,12,12b a故1log -=b a .4.⎪⎭⎫⎝⎛45,4ππ. 提示:不等式 )cos (sin 7sin cos 3355θθθθ-<-等价于θθθθ5353cos 71cos sin 71sin +>+.又5371)(x x x f +=是),(+∞-∞上的增函数,所以θθcos sin >,故 ∈+<<+k k k (45242ππθππZ ).因为)2,0[πθ∈,所以θ的取值范围是⎪⎭⎫⎝⎛45,4ππ. 5.15000. 提示:由题设条件可知,满足条件的方案有两种情形:(1)有一个项目有3人参加,共有3600!5!51537=⋅-⋅C C 种方案;(2)有两个项目各有2人参加,共有11400!5!5)(21252527=⋅-⋅⋅C C C 种方案; 所以满足题设要求的方案数为15000114003600=+.6. 提示:设四面体ABCD 的外接球球心为O ,则O 在过△ABD 的外心N 且垂直于平面ABD 的垂线上.由题设知,△ABD 是正三角形,则点N 为△ABD 的中心.设M P ,分别为CD AB ,的中点,则N 在DP 上,且DP ON ⊥,CD OM ⊥.因为︒=∠=∠=∠60ADB CDB CDA ,设CD 与平面ABD 所成角为θ,可求得32s i n ,31c o s ==θθ.在△DMN 中,33233232,121=⋅⋅=⋅===DP DN CD DM .由余弦定理得231312)3(1222=⋅⋅⋅-+=MN ,故2=MN .四边形DMON 的外接圆的直径3322sin ===θMN OD .故球O 的半径3=R .7.)2,1(-或)6,9(-.提示: 设)2,(),,(),,(22211t t C y x B y x A ,由⎩⎨⎧==--,4,0122x y y x 得 0482=--y y ,则821=+y y ,421-=⋅y y .又12,122211+=+=y x y x ,所以182)(22121=++=+y y x x , 11)(24212121=+++⋅=⋅y y y y x x . 因为︒=∠90ACB ,所以0=⋅CB CA ,即有0)2)(2())((212212=--+--y t y t x t x t ,即0)(24)(21212212214=⋅++-+⋅++-y y t y y t x x t x x t ,A BC DOP MN即03161424=---t t t ,即0)14)(34(22=--++t t t t .显然0142≠--t t ,否则01222=-⋅-t t ,则点C 在直线012=--y x 上,从而点C 与点A 或点B 重合.所以0342=++t t ,解得3,121-=-=t t .故所求点C 的坐标为)2,1(-或)6,9(-.8.15. 提示:=n a C65400320020023n n n--⋅⋅.要使)951(≤≤n a n 为整数,必有65400,3200nn --均为整数,从而4|6+n . 当=n 2,8,14,20,26,32,38,44,50,56,62,68,74,80时,3200n -和65400n-均为非负整数,所以n a 为整数,共有14个.当86=n 时,=86a C 5388620023-⋅⋅,在C !114!86!20086200⋅=中,!200中因数2的个数为1972200220022002200220022002200765432=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡, 同理可计算得!86中因数2的个数为82,!114中因数2的个数为110,所以C 86200中因数2的个数为511082197=--,故86a 是整数.当92=n 时,=92a C 10369220023-⋅⋅,在C !108!92!20092200⋅=中,同样可求得!92中因数2的个数为88,!108中因数2的个数为105,故C 86200中因数2的个数为410588197=--,故92a 不是整数.因此,整数项的个数为15114=+.9.因为)21()(++-=b b f a f ,所以 |)2lg(||)21lg(||)121lg(||)1lg(|+=+=+++-=+b b b b a , 所以21+=+b a 或1)2)(1(=++b a ,又因为b a <,所以21+≠+b a ,所以1)2)(1(=++b a .又由|)1lg(|)(+=a a f 有意义知10+<a ,从而2110+<+<+<b b a ,于是2110+<<+<b a .所以1210)2(6)2(6)1(101)21610(>+++=+++=+++b b b a b a . 从而]210)2(6lg[|]210)2(6lg[|)21610(+++=+++=++b b b b b a f . 又2lg 4)21610(=++b a f ,所以2lg 4]210)2(6lg[=+++b b , 故16210)2(6=+++b b .解得31-=b 或1-=b (舍去). 把31-=b 代入1)2)(1(=++b a 解得52-=a .所以 52-=a ,31-=b .10.(1)由原式变形得112)1)(1(211--++-=++n n n n n t a a t a ,则2111)1(212)1(21111+-+-+=-++=-+++n n n n n n n n n t a t a t a a t a . 记n n n b t a =-+11,则221+=+n n n b b b ,21221111=--=-+=t t t a b . 又211,211111=+=+b b b n n ,从而有 221)1(111n n b b n =⋅-+=, 故 n t a n n 211=-+,于是有 1)1(2--=nt a n n .(2)n t n t a a n n n n )1(21)1(211--+-=-++ [])1)(1()1()1()1(211--++++-+++++-=n n n t t n t t t n n n t[][])()()1()1()1(2)1()1()1(211---++-+-+-=+++-+-=n n n n n n t t t t t n n t t t nt n n t[]132212)1()1()1()1(2-----++++++++++-=n n n n n t t t t t t n n t , 显然在)1(0≠>t t 时恒有01>-+n n a a ,故n n a a >+1.11.(1)设直线l :m x y +=31,),(),,(2211y x B y x A . 将m x y +=31代入143622=+y x 中,化简整理得03696222=-++m mx x .于是有2369,322121-=-=+m x x m x x ,232,2322211--=--=x y k x y k PB PA . 则PA PB k k +==,上式中,分子)23)(231()23)(231(1221--++--+=x m x x m x)2(26))(22(322121--+-+=m x x m x x )2(26)3)(22(2369322----+-⋅=m m m m 0122626312322=+-+--=m m m m ,从而,0=+PB PA k k .又P 在直线l 的左上方,因此,APB ∠的角平分线是平行于y 轴的直线,所以△PAB 的内切圆的圆心在直线23=x 上.(2)若︒=∠60APB 时,结合(1)的结论可知3,3-==PB PA k k . 直线PA 的方程为:)23(32-=-x y ,代入143622=+y x 中,消去y 得0)3313(18)331(69142=-+-+x x .它的两根分别是1x 和23,所以14)3313(18231-=⋅x ,即14)3313(231-=x .所以7)133(23|23|)3(1||12+=-⋅+=x PA .同理可求得7)133(23||-=PB .所以1||||sin 6021249PAB S PA PB ∆=⋅⋅⋅︒==。
2013高校自主招生数学仿真模拟试题及答案1
数学模拟试题(第一套)一、选择题1.在ABC ∆中, 120=∠C ,12=+b a ,C ∠的角平分线为CD ,则CD 的最大值为()A. 12+B. 12-C. 13+D. 13-2.正四棱锥ABCD P -底面边长和侧面棱长均为10,PC 上一点Q ,2=CQ ,则从A 沿正四棱锥表面到Q 的最短路径长位于区间( )内.A. )13,12(B. )14,13(C. )15,14(D. )16,15(3.设0>a ,复数5)(i a +的虚部为-4,则其实部为( )A. 4B. -4C. 1D.-14.在ABC ∆中,c b a 4=+,则B A cos cos +的最大值为( )A. 61B. 31C. 21D. 325.长为4的线段AB 的两个端点在抛物线x x y +=2上,则其中点P 到x 轴的最短距离为( )A. 2B.23 C. 1 D.216.有A ,B ,C 三个景点,假设在一段时间内,它们之间的游客流向具有这样的规律:每经过一定时间A 景点的游客会到B 景点,B 景点的游客会到C 景点,而C 景点的游客会有三分之一到A 景点,三分之一到B 景点,其余三分之一留在原地,则经过一段时间达到平衡状态时,A ,B ,C 三个景点的游客数量之比为( )A. 1:1:1B. 3:2:1C. 2:2:1D. 3:2:2 7.半径为1的圆内接正八边形,其中内三角形的最大面积为( ) A. 2 B. 1 C.221+ D.238.一块豆腐一刀切成2块,2刀4块,那么连续5刀最多切成( )块 A. 25 B. 27 C. 30 D. 329.一个封闭的圆台状容器,壁厚忽略不计,里面装有水,正立时水面高占容器高1/4,在瓶壁齐水面处做个记号,倒立时水面仍齐刚才的记号.则圆台下底与上底半径之比为( )A.56692- B.3111692- C.56692+ D.511692+10.设σ是坐标平面按逆时针方向绕原点做角度为52π的旋转,τ表示坐标平面关于直线x y =的反射.用τσ表示变换的复合,先做τ,再做σ,用kσ表示连续k 次σ的变换,则=τστστσσ357( )A. στB. τσC.τσ2D. 2τσ二、解答题11.正四面体ABCD 的棱长为4,BD 的中点为P ,CD 上一点E ,1=CE .求点P 到平面ABE 的距离.12.数列{}n a 满足k k k a a a 2312+=++,n S 为前n 项之和. (1)若k k k a a b -=+1,求证: {}n b 为等比数列,并求公比q ; (2)若31=a ,且n n S S ∞→=lim 存在,求1b 及S .13.在锐角ABC ∆中,c b a 32=+,求角C 的最大值.14.已知a ,b ,c 为正数,求证:c b a bcabca++≥++22215.在ABC ∆中,22=++c b a ,求三角形面积的最大值.答 案1.选择题1. ABC BCD ACD S S S ∆∆∆=+,C ab C a CD C b CD sin 212sin212sin21=⋅+⋅,ba ab C ba ab CD +=+=2cos2.令t bb b ba ab =--=+122,则0)1(22=++-t b t b .因为210<<b ,1210<+<t ,11<<-t ,08)3(8)1(22≥--=-+=∆t t t ,223+≥t (舍去)或223-≤t ,即223-≤CD ,12-≤CD . 答案:B2. 有两种可能最短的路径:①绕过底面,路径长为3201849)310(22+=++;②绕过侧面,路径长为244)35()2510(22=+-+.相比,前者较短,位于)15,14(之间.答案 C3. i a a a a a i a )1105()510()(24355+-++-=+.由4110524-=+-a a ,得01224=+-a a ,12=a ,1=a ,则实部451035-=+-a a a .答案: B4. 利用正弦定理:将边的关系转化为角的关系,)sin(4sin 4sin sin B A C B A +==+,2cos2sin42cos2sinB A B A B A B A ++=-+,2cos42cosB A B A +=-.两边同乘以2cos2BA -,得)c o s (c o s 4)c o s (1B A B A +=-+,而1)c o s (≤-B A ,21cos cos ≤+B A .答案: C5. 抛物线方程可换为412-=x y ,准线为21-=y ,要使点P 到x 轴的距离最短,就是A ,B 到准线的距离之和最短,所以AB 经过焦点A ,B 到准线的距离之和为4,点P 到准线的距离为2,到x 轴的距离为23. 答案: B6. 设到达平衡状态时,A ,B ,C 三个景点的游客数量分别为x ,y ,z ,则3z x =,3z x y +=,3z y z +=,所以3:2:1::=z y x . 答案: B7. 证明面积最大时,顶点在正八边形的边上.当其中两个顶点固定时,第三个顶点在正八边形的顶点时面积较大,从而三角形的三个顶点都在正八边形的顶点上.连接外接圆的圆心到三角形的三个顶点,得到三个圆心角分别为 90, 135, 135,从而面积为212135sin 21135sin 2190sin 21+=++, 答案: C8. 3刀8块,4刀15块,5刀27块. 答案: C9. 由已知水的体积占容器体积的一半.将容器侧面延长,上方得到一个圆锥,设下底半径比上底半径长x 倍.(上方圆锥体积)+(以下底为底的圆锥体积)= 2(以水面为底的圆锥体积),而三个圆锥的高之比为)1(:)431(:1x x ++,所以333)431(2)1(1x x +=++,0)48125(2=--x x x ,56692+=x ,所以圆台下底与上底半径之比为5116921+=+x答案: D10. 解法一:把一个向量),(y x =α,经过τστστσσ357变换后进行检验即知. 答案: B解法二:⋅⋅⋅====3322τσστσσστστ,且15=σ,所以σττσστστσστσσστστστσσ===422334357))()((. 答案: B 解法三:τστσστσσστσττσστστστσσ====103737357. 答案: BB. 解答题11. 先求D 到面ABE 的距离,取AB 的中点F ,考虑CDF ∆,32==DF CF ,31cos =∠CDF ,32sin =∠CDF .连接EF .由余弦定理,得DE EF ==3.作EF DH ⊥,易证DH 为点D 到面ABE 的距离,CDF DF DFE DF DH ∠=∠⋅=sin sin22=.取BE 的中点Q ,连接PQ ,则DE PQ //,DE PQ 21=,所以点P 到面ABE 的距离为点D 到面ABE 的距离的一半,为2.12. (1)由k k k a a a 2312+=++转化为k k k k a a a a 22)(3112+-=-+++,)(32112k k k k a a a a --=-+++,即k k b b 321-=+.故{}n b 为等比数列,公比32-=q .(2)qqb a b b a a nn n --+=+⋅⋅⋅++=+1111111,1115331lim b qb a a n n +=-+=∞→,而n n S ∞→li m 存在,0533lim 1=+=∞→b a n n ,则51-=b .1lim +∞→=n n S S)]()([lim 11111n n b b a b a a +⋅⋅⋅+++⋅⋅⋅+++=∞→)]2()1[(lim 21n n n nb b b a n +⋅⋅⋅++-+=∞→)2(lim 21n n nb b b +⋅⋅⋅++-=∞→)21(lim 51-∞→+⋅⋅⋅++=n n nqq设)1|(|1)(32<-=⋅⋅⋅++=x xx x x x x f .由2')1(1)(x x f -=,得259)1(1)(2'=-=q q f .故59)(5'==q f S .十三、设t C =cos ,将它与a c b 23-=一起代入0cos 2222=--+c C ab b a ,得08)126()54(22=++-+c ac t a t ,由0)54(84)126(2≥+⋅-+=∆t t ,得92102-≥t 或92102+-≤t (舍去),所以C ∠的最大值92102arccos-.十四、利用柯西不等式,得 22222222)()())((c b a b bca abc cac b a bcabca++=⋅+⋅+⋅≥++++,则c b a bcabca++≥++222十五、首先证明当ABC S ∆取最大值时,b a =.假设b a ≠,找一点D ,使得2b a BD AD +==.考虑以A ,B 为焦点,长轴长为b a +的椭圆,可知ABD ∆的高大于ABC ∆的高,所以ABC ABD S S ∆∆>,即ABC S ∆未取到最大值.当b a =时,1=+c a ,取AB 的中点D ,则ADC ∆为直角三角形,2222)2()1(2)2(22c c c c a c DC AD S S ADC ABC --=-=⋅==∆∆23448341cc c +-=令234483c c c y +-=,则08241223'=+-=c c c y ,02632=+-c c ,311+=c (舍去)或311-,此时3326132)311(4148342-=-⨯=+-=∆c c c S ABC .。
(全国版)2013年普通高等学校招生全国统一考试高三数学模拟组合试卷08 文
【步步高】(全国版)2013届高三数学 名校强化模拟测试卷08 文第I 卷一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.【改编题】若集合A ={-1,0,1},B ={y |y =cosx ,x ∈A },则A ∩B = A .{0} B .{1} C .{0,1} D .{-1,0,1}3. 【河南省三门峡市2013届高三第一次大练习】i 是虚数单位,1233ii+等于 A.13412i + B.33i + C.33i - D. 13412i -3. 【2013届安徽省示范高中高三9月模底考试】样本中共有5个个体,其中四个值分别为0,1,2,3,第五个值丢失,但该样本的平均值为1,则样本方差为=( ) A 、305 B 、65C 、2D 、24. 【2013云南省第一次高中毕业生统一检测复习】抛物线22x y =的焦点坐标是 (A )1(,0)2 (B )1(0,)2(C )(1,0) (D )(0,1)5. 【2012年河南郑州高中毕业年级第一次质量预测】若实数yx z x y x y x y x 230001,+=⎪⎩⎪⎨⎧≤≥+≥+-则满足的最小值是A .0 B. 1 C. 3 D. 9 【答案】B【解析】可行域如图,可知B(0,1),O(0,0),由1=011(),=022x y A x y -+⎧-⎨+⎩,,显然当目标函数2z x y '=+过点O 是取得最小值为0,故23x y z +=的最小值为1.6. 【原创题】右图所示的是根据输入的x 值计算y 的值的程序框图,若x 依次取数列)(162*∈⎭⎬⎫⎩⎨⎧+N n n n 中的项,则所得y 值的最小值为A.16B.8C.4D.32 【答案】16 【解析】2*1616,8(48,n n N n n x n n+∈=+≥==≥当时,“”成立),即由程序框图可知,当x=8是运行=2y x ,故此时y 值的最小值为16.7. 【广东省珠海市2013届高三9月摸底一模考试】如图是某几何体的三视图,则此几何体的体积是 A .36 B .108 C .72 D .180 【答案】B【解析】由三视图可知,该几何体是一个有正四棱柱和上面的一个正四棱锥,其体积为1662+663=108.3⨯⨯⨯⨯⨯ 8. .【2013年河南省开封市高考数学一模试卷】已知直线ax ﹣by ﹣2=0与曲线y=x 3在点P (1,1)处的切线互相垂xyBA O-1x-y+1=0x+y=0x+2y=0直,则为( ) A .B .C .D .9. 【山东省日照市2012届高三下学期5月份模拟训练】要得到函数)42cos(3π-=x y 的图象,可以将函数x y 2sin 3=的图象(A )沿x 轴向左平移8π个单位 (B )沿x 向右平移8π个单位 (C )沿x 轴向左平移4π个单位 (D )沿x 向右平移4π个单位10. 【山东省泰安市2012届高三第一次模拟考试】F 1、F 2为双曲线C :12222=-by a x (a >0,b >0)的焦点,A 、B 分别为双曲线的左、右顶点,以F 1F 2为直径的圆与双曲线的渐近线在第一象限的交点为M ,且满足∠MAB=30°,则该双曲线的离心率为( ) A212 B 213 C 193 D 19211. 【原创题】如图,平面四边形ABCD 中,1===CD AD AB ,CDBD BD ⊥=,2,将其沿对角线BD 折成四面体BCD A -',使平面⊥BD A '平面BCD ,若四面体BCD A -'顶点在同一个球面上,则该球的体积为A. π23B. π3C. π32D. π212. 【2013年临沂市高三教学质量检测考试】已知函数()f x 满足(1)()f x f x +=-,且()f x 是偶函数,当[0,1]x ∈时,2()f x x =,若在区间[1,3]-内,函数()()g x f x kx k =--有4个零点,则实数k 的取值范围是(A) (0,)+∞ (B) 1(0,]2 (C) 1(0,]4 (D) 11[,]43【答案】CDCBA 'D CB A第11题【解析】由)()1(x f x f -=+得,)()2(x f x f =+,所以函数)(x f 为周期为2的周期函数,又因为函数)(x f 为偶函数,有)()()1(x f x f x f -=--=+-,所以有)1()1(+=+-x f x f ,所以函数)(x f 关于1=x 对称,令0)1()()(=+-=x k x f x g ,得函数)1()(+=x k x f ,令函数)1(+=x k y ,做出函数)(x f 和函数)1(+=x k y 的图象,如图:当直线)1(+=x k y 必须过点)1,3(C 时有4个交点,此时直线)1(+=x k y 的斜率为41)1(301=---=k ,要使函数)1()()(+-=x k x f x g 有四个零点,则直线的斜率410≤<k ,选C.第Ⅱ卷共2页,须用黑色墨水签字笔在答题卡上书写作答,在试题卷上作答,答案无效。
高考数学测试卷全国高校自主招生数学模拟试卷8
2013年全国高校自主招生数学模拟试卷八一、选择题(36分,每小题6分)本题共有6小题,每题均给出(A )、(B )、(C )、(D )四个结论,其中有且仅有一个是正确嘚.请将正确答案嘚代表字母填在题后嘚括号内.每小题选对得6分;不选、选错或选出嘚代表字母超过一个(不论是否写在括号内),一律得0分.1.已知a 为给定嘚实数,那么集合M={x| x 2-3x-a 2+2=0,x ∈R}嘚子集嘚个数为(A )1(B )2(C ) 4(D ) 不确定【答】( C )【解】 方程x 2-3x-a 2+2=0嘚根嘚判别式Δ=1+4a 2>0,方程有两个不相等嘚实数根.由M 有2个元素,得集合M 有22=4个子集.2. 命题1 长方体中,必存在到各顶点距离相等嘚点;命题2 长方体中,必存在到各棱距离相等嘚点; 命题3 长方体中,必存在到各面距离相等嘚点. 以上三个命题中正确嘚有(A ) 0个 (B ) 1个 (C ) 2个 (D ) 3个 【答】( B)【解】 只有命题1对.3.在四个函数y=sin|x|,y=cos|x|,y=|ctgx|,y=lg|sinx|中以π为周期、在(0,2π)上单调递增嘚偶函数是(A )y=sin|x|(B )y=cos|x| (C )y=|ctgx|(D )y=lg|sinx|【答】( D )【解】 y=sin|x|不是周期函数.y=cos|x|=cosx 以2π为周期.y=|ctgx|在(0,2π)上单调递减.只有y=lg|sinx|满足全部条件.4.如果满足∠ABC=60°,AC=12, BC=k 嘚△ABC 恰有一个,那么k 嘚取值范围是(A ) k=38 (B )0<k ≤12 (C ) k ≥12 (D ) 0<k ≤12或k=38 【答】( D )【解】 根据题设,△ABC共有两类如图.易得k=38或0<k ≤12.本题也可用特殊值法,排除(A )、(B )、(C ). 5.若10002)1(x x ++嘚展开式为200020002210x a x a x a a ++++ ,则19989630a a a a a +++++ 嘚值为(A )3333(B ) 6663(C ) 9993(D ) 20013【答】( C )【解】 令x=1可得10003=20003210a a a a a +++++ ;令x=ω可得0=20002000332210ωωωωa a a a a +++++ ;(其中i 2321+-=ω,则3ω=1且2ω+ω+1=0)令x=2ω可得0=400020006342210ωωωωa a a a a +++++ .以上三式相加可得10003=3(19989630a a a a a +++++ ).所以19989630a a a a a +++++ =9993.6.已知6枝玫瑰与3枝康乃馨嘚价格之和大于24元,而4枝玫瑰与5枝康乃馨嘚价格之和小于22元,则2枝玫瑰嘚价格和3枝康乃馨嘚价格比较结果是().12kCBA 60°12kABC60°(A )2枝玫瑰价格高 (B )3枝康乃馨价格高 (C )价格相同 (D )不确定 【答】( A)【解】 设玫瑰与康乃馨嘚单价分别为x 、y 元/枝.则6x+3y>24,4x+5y<22.令6x+3y=a>24,4x+5y=b<22,解出x=)35(181b a -,y=)23(91a b -.所以2x-3y=)22122411(91)1211(91⨯-⨯>-b a =0,即2x>3y . 也可以根据二元一次不等式所表示嘚区域来研究.二、填空题(54分,每小题9分) 7.椭圆θρcos 21-=嘚短轴长等于332.【解】 .31)(,1)0(=-==+=c a c a πρρ故3331,32=⇒==b c a .从而3322=b .8.若复数z 1,z 2满足| z 1|=2,| z 2|=3,3z 1-2z 2=i -23,则z 1·z 2=i 13721330+-. 【解】由3z 1-2z 2=2111222131z z z z z z ⋅⋅-⋅⋅=)32(611221z z z z -可得=+-⨯-=--=--=i iz z z z z z z z z z 2323632)23(632)23(61221122121i 13721330+-.本题也可设三角形式进行运算.9.正方体ABCD —A 1B 1C 1D 1嘚棱长为1,则直线A 1C 1与BD 1嘚距离是66. 【解】 作正方体嘚截面BB 1D 1D ,则A 1C 1⊥面BB 1D 1D .设A 1C 1与B 1D 1交于点O ,在面BB 1D 1D 内作OH ⊥BD 1,H为垂足,则OH 为A 1C 1与BD 1嘚公垂线.显然OH 等于直角三角形BB 1D 1斜边上高嘚一半,即OH=66.10. 不等式232log 121>+x 嘚解集为),4()2,1()1,0(72+∞ . 1111HODC B ADCBA【解】232log 121>+x 等价于232log 121>+x 或232log 121-<+x . 即21log 121->x 或27log 121-<x. 此时2log 21-<x 或0log 21>x 或0log 7221<<-x .∴解为x >4或0<x<1 或 1<x<722. 即解集为),4()2,1()1,0(72+∞ .11.函数232+-+=x x x y 嘚值域为),2[)23,1[+∞ .【解】232+-+=x x x y ⇒0232≥-=+-x y x x .两边平方得2)32(2-=-y x y ,从而23≠y 且3222--=y y x .由03222≥---=-y y y x y ⇒231032232<≤⇒≥-+-y y y y 或2≥y . 任取2≥y ,令3222--=y y x ,易知2≥x ,于是0232≥+-x x 且232+-+=x x x y .任取231<≤y ,同样令3222--=y y x ,易知1≤x ,于是0232≥+-x x 且232+-+=x x x y .因此,所求函数嘚值域为),2[)23,1[+∞ .12. 在一个正六边形嘚六个区域栽种观赏植物(如图),要求同一块中种同一种植物,相邻嘚两块种不同嘚植物.现有4种不同嘚植物可供选择,则有 732 种栽种方案. 【解】考虑A 、C 、E 种同一种植物,此时共有4×3×3×3=108种方法.考虑A 、C 、E 种二种植物,此时共有3×4×3×3×2×2=432种方法. 考虑A 、C 、E 种三种植物,此时共有P 43×2×2×2=192种方法. 故总计有108+432+192=732种方法.AB C DEF三、解答题(本题满分60分,每小题20分)13.设{a n }为等差数列,{b n }为等比数列,且b 1=a 12,b 2=a 22,b 3=a 32(a 1<a 2) ,又12)(lim 21+=++++∞→n n b b b .试求{a n }嘚首项与公差.【解】 设所求公差为d ,∵a 1<a 2,∴d>0.由此得 a 12(a 1+2d)2=(a 1+d)4 化简得2a 12+4a 1d+d 2=0解得d=(22±-) a 1.………………………………………………………………5分 而22±-<0,故a 1<0.若d=(22--) a 1,则22122)12(+==a a q ;若d=(22+-)a 1,则22122)12(-==a a q ;…………………………………………10分但12)(lim 21+=++++∞→n n b b b 存在,故|q|<1.于是2)12(+=q 不可能.从而2)12)(222(12)12(121221=+-=⇒+=--a a .所以a 1=2-,d=(22+-) a 1=(22+-)(2-)=222-.……………………20分14.设曲线C 1:1222=+y ax (a 为正常数)与C 2:y 2=2(x+m ) 在x 轴上方仅有一个公共点P .⑴ 求实数m 嘚取值范围(用a 表示);⑵ O 为原点,若C 1与x 轴嘚负半轴交于点A ,当0<a<21时,试求ΔOAP 嘚面积嘚最大值(用a 表示).⑴ 【解】 由⎪⎩⎪⎨⎧+==+)(2,12222m x y y a x 消去y 得,x 2+2a 2x+2a 2m-a 2=0. ①设f(x)= x 2+2a 2x+2a 2m-a 2,问题⑴转化为方程①在x ∈(-a ,a)上有唯一解或等根.只须讨论以下三种情况:1︒ Δ=0得 m=212+a .此时 x p = -a 2,当且仅当-a<-a 2<a ,即0<a<1时适合;2︒ f(a )·f(-a)<0当且仅当–a<m<a ;3︒ f(-a)=0得m=a .此时 x p =a-2a 2,当且仅当-a< a-2a 2<a ,即0<a<1时适合.f(a)=0得m=-a ,此时 x p =-a-2a 2,由于-a-2a 2<-a ,从而m ≠-a .综上可知,当0<a<1时,m=212+a 或-a<m ≤a ;当a ≥1时,-a<m<a.……………………………………………………10分 ⑵ 【解】 ΔOAP 嘚面积S=21ay p . ∵0<a<21,故-a<m ≤a 时,a m a a a <-++-<21022,由唯一性得x p =m a a a 2122-++-.显然当m=a 时,x p 取值最小.由于x p >0,从而221a x y p p -=取值最大,此时y p =22a a -,∴S=a 2a a -.当m=212+a 时,x p =-a 2,y p =21a -,此时S=21a 21a -.下面比较a 2a a -与21a 21a -嘚大小: 令a 2a a -=21a 21a -,得a=31.故当0<a ≤31时 , 2121)1(a a a a a -≤-.此时S max =2121a a -.当31<a<21时,2121)1(a a a a a ->-.此时S max = a 2a a -.……………20分15.用电阻值分别为a 1、a 2、a 3、a 4、a 5 、a 6 (a 1>a 2>a 3>a 4>a 5>a 6) 嘚电阻组装成一个如图嘚组件,在组装中应如何选取电阻,才能使该组件总电阻值最小?证明你嘚结论.【解】 设6个电阻嘚组件(如图3)嘚总电阻为R FG .当R i =a i ,i=3,4,5,6,R 1,R 2是a 1,a 2嘚任意排列时,R FG 最小.…………………………………………5分证明如下1°设当两个电阻R 1,R 2并联时,所得组件阻值为R :则21111R R R +=.故交换二电阻嘚位置,不改变R 值,且当R 1或R 2变小时,R 也减小,因此不妨取R 1>R 2.2°设3个电阻嘚组件(如图1)嘚总电阻为R AB :2132********1R R R R R R R R R R R R R R AB +++=++=.显然R 1+R 2越大,R AB 越小,所以为使R AB 最小必须取R 3为所取三个电阻中阻值最小嘚一个.3°设4个电阻嘚组件(如图2)嘚总电阻为R CD : 43243142142324131214111R R R R R R R R R R R R R R R R R R R R R R AB CD ++++++=+=.若记∑≤<≤=411j i jiRR S ,∑≤<<≤=412k j i kjiRR R S .则S 1、S 2为定值.于是4313212R R S R R R S R CD --=.只有当R 3R 4最小,R 1R 2R 3最大时,R CD 最小,故应取R 4<R 3,R 3<R 2,R 3<R 1,即得总电阻嘚阻值最小.……………………………………………………………………15分4°对于图3,把由R 1、R 2、R 3组成嘚组件用等效电阻R AB 代替.要使R FG 最小,由3°必需使R 6<R 5;且由1°,应使R CE 最小.由2°知要使R CE 最小,必需使R 5< R 4,且应使R CD 最小.而由3°,要使R CD 最小,应使R 4< R 3 < R 2且R 4< R 3 < R 1.这就说明,要证结论成立………………………………………………………20分图1BAR 1R 3R 2图2DCR 3R 4R 1R 2 E GR1AR2R4R6R3R5BCDF G图3。
2013年全国高校自主招生数学模拟试卷二
2013年全国高校自主招生数学模拟试卷二命题人:南昌二中 高三(01)班 张阳阳一、填空题(64分)1.设集合},,,{4321a a a a A =,若A 中所有三元子集的三个元素之和组成的集合为}8,5,3,1{-=B ,则集合=A .2.函数11)(2-+=x x x f 的值域为 .3.设b a ,为正实数,2211≤+ba ,32)(4)(ab b a =-,则=b a log .4.如果)cos (sin 7sin cos 3355θθθθ-<-,)2,0[πθ∈,那么θ的取值范围是 . 5.现安排7名同学去参加5个运动项目,要求甲、乙两同学不能参加同一个项目,每个项目都有人参加,每人只参加一个项目,则满足上述要求的不同安排方案数为 .(用数字作答)6.在四面体ABCD 中,已知︒=∠=∠=∠60CDA BDC ADB ,3==BD AD ,2=CD ,则四面体ABCD 的外接球的半径为 .7.直线012=--y x 与抛物线x y 42=交于B A ,两点,C 为抛物线上的一点,︒=∠90ACB ,则点C 的坐标为 .8.已知=n a C ())95,,2,1(2162003200 =⎪⎪⎭⎫⎝⎛⋅⋅-n nnn ,则数列}{n a 中整数项的个数为 . 二、解答题(56分)9.(16分)设函数|)1lg(|)(+=x x f ,实数)(,b a b a <满足)21()(++-=b b f a f ,2lg 4)21610(=++b a f ,求b a ,的值.10.(20分)已知数列}{n a 满足:∈-=t t a (321R 且)1±≠t ,121)1(2)32(11-+--+-=++nn n n n n t a t t a t a ∈n (N )*. (1)求数列}{n a 的通项公式;(2)若0>t ,试比较1+n a 与n a 的大小.11.(20分)作斜率为31的直线l 与椭圆C :143622=+y x 交于B A ,两点(如图所示),且)2,23(P 在直线l 的左上方.(1)证明:△PAB 的内切圆的圆心在一条定直线上; (2)若︒=∠60APB ,求△PAB 的面积.2013年全国高校自主招生数学模拟试卷二参考答案1.{3,0,2,6}-. 提示:显然,在A 的所有三元子集中,每个元素均出现了3次,所以15853)1()(34321=+++-=+++a a a a ,故54321=+++a a a a ,于是集合A 的四个元素分别为5-(-1)=6,5-3=2,5-5=0,5-8=-3,因此,集合}6,2,0,3{-=A .2.(,](1,)2-∞-+∞ . 提示:设22,tan πθπθ<<-=x ,且4πθ≠,则)4sin(21cos sin 11tan cos 1)(πθθθθθ-=-=-=x f .设)4sin(2πθ-=u ,则12<≤-u ,且0≠u ,所以 ),1(]22,(1)(+∞--∞∈= u x f .3.-1. 提示:由2211≤+ba ,得ab b a 22≤+.又 23322)(8)(24)(44)(4)(ab ab ab ab ab b a ab b a =⋅⋅≥+=-+=+,即ab b a 22≥+. ①于是ab b a 22=+. ②再由不等式①中等号成立的条件,得1=ab .与②联立解得⎪⎩⎪⎨⎧+=-=,12,12b a 或⎪⎩⎪⎨⎧-=+=,12,12b a故1log -=b a .4.⎪⎭⎫⎝⎛45,4ππ. 提示:不等式 )cos (sin 7sin cos 3355θθθθ-<-等价于θθθθ5353cos 71cos sin 71sin +>+.又5371)(x x x f +=是),(+∞-∞上的增函数,所以θθcos sin >,故 ∈+<<+k k k (45242ππθππZ ). 因为)2,0[πθ∈,所以θ的取值范围是⎪⎭⎫⎝⎛45,4ππ. 5.15000. 提示:由题设条件可知,满足条件的方案有两种情形:(1)有一个项目有3人参加,共有3600!5!51537=⋅-⋅C C 种方案;(2)有两个项目各有2人参加,共有11400!5!5)(21252527=⋅-⋅⋅C C C 种方案;所以满足题设要求的方案数为15000114003600=+.6提示:设四面体ABCD 的外接球球心为O ,则O 在过△ABD 的外心N 且垂直于平面ABD 的垂线上.由题设知,△ABD 是正三角形,则点N 为△ABD 的中心.设M P ,分别为CD AB ,的中点,则N 在DP 上,且DP ON ⊥,CD OM ⊥.因为︒=∠=∠=∠60ADB CDB CDA ,设CD 与平面ABD 所成角为θ,可求得32sin ,31cos ==θθ.在△DMN 中,33233232,121=⋅⋅=⋅===DP DN CD DM .由余弦定理得231312)3(1222=⋅⋅⋅-+=MN ,故2=MN .四边形DMON 的外接圆的直径3322sin ===θMNOD .故球O 的半径3=R .7.)2,1(-或)6,9(-.提示: 设)2,(),,(),,(22211t t C y x B y x A ,由⎩⎨⎧==--,4,0122x y y x 得 0482=--y y ,则821=+y y ,421-=⋅y y .又12,122211+=+=y x y x ,所以182)(22121=++=+y y x x , 11)(24212121=+++⋅=⋅y y y y x x .A BC DOP MN因为︒=∠90ACB ,所以0=⋅,即有0)2)(2())((212212=--+--y t y t x t x t ,即0)(24)(21212212214=⋅++-+⋅++-y y t y y t x x t x x t ,即03161424=---t t t ,即0)14)(34(22=--++t t t t .显然0142≠--t t ,否则01222=-⋅-t t ,则点C 在直线012=--y x 上,从而点C 与点A 或点B 重合.所以0342=++t t ,解得3,121-=-=t t .故所求点C 的坐标为)2,1(-或)6,9(-.8.15. 提示:=n a C 65400320020023nnn--⋅⋅.要使)951(≤≤n a n 为整数,必有65400,3200nn --均为整数,从而4|6+n . 当=n 2,8,14,20,26,32,38,44,50,56,62,68,74,80时,3200n -和65400n-均为非负整数,所以n a 为整数,共有14个.当86=n 时,=86a C 5388620023-⋅⋅,在C !114!86!20086200⋅=中,!200中因数2的个数为1972200220022002200220022002200765432=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡, 同理可计算得!86中因数2的个数为82,!114中因数2的个数为110,所以C 86200中因数2的个数为511082197=--,故86a 是整数.当92=n 时,=92a C 10369220023-⋅⋅,在C !108!92!20092200⋅=中,同样可求得!92中因数2的个数为88,!108中因数2的个数为105,故C 86200中因数2的个数为410588197=--,故92a 不是整数. 因此,整数项的个数为15114=+.9.因为)21()(++-=b b f a f ,所以 |)2lg(||)21lg(||)121lg(||)1lg(|+=+=+++-=+b b b b a ,所以21+=+b a 或1)2)(1(=++b a ,又因为b a <,所以21+≠+b a ,所以1)2)(1(=++b a .又由|)1lg(|)(+=a a f 有意义知10+<a ,从而2110+<+<+<b b a ,于是2110+<<+<b a .所以1210)2(6)2(6)1(101)21610(>+++=+++=+++b b b a b a . 从而]210)2(6lg[|]210)2(6lg[|)21610(+++=+++=++b b b b b a f . 又2lg 4)21610(=++b a f ,所以2lg 4]210)2(6lg[=+++b b , 故16210)2(6=+++b b .解得31-=b 或1-=b (舍去). 把31-=b 代入1)2)(1(=++b a 解得52-=a . 所以 52-=a ,31-=b .10.(1)由原式变形得112)1)(1(211--++-=++n n n n n t a a t a ,则2111)1(212)1(21111+-+-+=-++=-+++n n n n n n n n n t a t a t a a t a . 记n nn b t a =-+11,则221+=+n n n b b b ,21221111=--=-+=t t t a b . 又211,211111=+=+b b b n n ,从而有 221)1(111n n b b n =⋅-+=, 故 n t a n n 211=-+,于是有 1)1(2--=nt a n n .(2)nt n t a a n n n n )1(21)1(211--+-=-++[])1)(1()1()1()1(211--++++-+++++-=n n n t t n t t t n n n t[][])()()1()1()1(2)1()1()1(211---++-+-+-=+++-+-=n n n n n n t t t t t n n t t t nt n n t[]132212)1()1()1()1(2-----++++++++++-=n n n n n t t t t t t n n t , 显然在)1(0≠>t t 时恒有01>-+n n a a ,故n n a a >+1.11.(1)设直线l :m x y +=31,),(),,(2211y x B y x A . 将m x y +=31代入143622=+y x 中,化简整理得03696222=-++m mx x .于是有2369,322121-=-=+m x x m x x ,232,2322211--=--=x y k x y k PB PA . 则PA PB k k +==,上式中,分子)23)(231()23)(231(1221--++--+=x m x x m x)2(26))(22(322121--+-+=m x x m x x )2(26)3)(22(2369322----+-⋅=m m m m 0122626312322=+-+--=m m m m ,从而,0=+PB PA k k .又P 在直线l 的左上方,因此,APB ∠的角平分线是平行于y 轴的直线,所以△PAB 的内切圆的圆心在直线23=x 上.(2)若︒=∠60APB 时,结合(1)的结论可知3,3-==PB PA k k . 直线PA 的方程为:)23(32-=-x y ,代入143622=+y x 中,消去y 得0)3313(18)331(69142=-+-+x x .它的两根分别是1x 和23,所以14)3313(18231-=⋅x ,即14)3313(231-=x .所以7)133(23|23|)3(1||12+=-⋅+=x PA .同理可求得7)133(23||-=PB .所以1||||sin 60212PAB S PA PB ∆=⋅⋅⋅︒==。
2013年全国高校自主招生数学模拟试卷十三
取CD中点G,则AG⊥CD,EG⊥CD,故∠AGE是二面角A—CD—E的平面角.由BD⊥AC,作平面BDF⊥棱AC交AC于F,则∠BFD为二面角B—AC—D的平面角.
AG=EG=,BF=DF=,AE=2=2.
由cos∠AGE=cos∠BFD,得=.
解:只要考虑|AP|最长与最短时所在线段扫过的面积即可.
设P(1+cosθ,θ),
则|AP|2=22+(1+cosθ)2-2·2(1+cosθ)cosθ=-3cos2θ-2cosθ+5
=-3(cosθ+)2+≤.且显然|AP|2能取遍[0,]内的一切值,故所求面积=π.
4.已知将给定的两个全等的正三棱锥的底面粘在一起,恰得到一个所有二面角都相等的六面体,并且该六面体的最短棱的长为2,则最远的两顶点间的距离是________。
(A) 1 (B) 2 (C) 3 (D) 4
二、填空题(本题满分54分,每小题9分)
1.集合{x|-1≤log10<-,x∈N*}的真子集的个数是.
2.复平面上,非零复数z1,z2在以i为圆心,1为半径的圆上,·z2的实部为零,z1的辐角主值为,则z2=_______.
3.曲线C的极坐标方程是ρ=1+cosθ,点A的极坐标是(2,0),曲线C在它所在的平面内绕A旋转一周,则它扫过的图形的面积是_______.
2013年全国高校自主招生数学模拟试卷十三
命题人:南昌二中高三(01)班张阳阳
一、选择题(本题满分36分,每题6分)
1.把圆x2+(y-1)2=1与椭圆9x2+(y+1)2=9的公共点,用线段连接起来所得到的图形为( )
2013年自主招生数学试题及答案
2013年自主招生数学试题一.选择题:(本大题共12个小题,每个4分,共48分,将所选答案填涂在机读卡上) 1、下列因式分解中,结果正确的是( )A.2322()x y y y x y -=-B.424(2)(x x x x -=+C.211(1)x x x x x--=--D.21(2)(1)(3)a a a --=--2、“已知二次函数2y ax bx c =++的图像如图所示,试判断a b c ++与 0的大小.”一同学是这样回答的:“由图像可知:当1x =时0y <, 所以0a b c ++<.”他这种说明问题的方式体现的数学思想方法叫 做( )A.换元法B.配方法C.数形结合法D.分类讨论法 3、已知实数x 满足22114x x x x ++-=,则1x x-的值是( )A.-2B.1C.-1或2D.-2或14、若直线21y x =-与反比例函数k y x =的图像交于点(2,)P a ,则反比例函数ky x=的图像还必过点( )A. (-1,6)B.(1,-6)C.(-2,-3)D.(2,12)5、现规定一种新的运算:“*”:*()m nm n m n -=+,那么51*22=( )A.54B.5C.3D.96、一副三角板,如图所示叠放在一起,则AOB COD ∠+∠=( )A.180°B.150°C.160°D.170°7、某中学对2005年、2006年、2007年该校住校人数统计时发现,2006年比2005年增加20%,2007年比2006年减少20%,那么2007年比2005年( )A.不增不减B.增加4%C.减少4%D.减少2%8、一半径为8的圆中,圆心角θ为锐角,且θ=,则角θ所对的弦长等于( )A.8B.10C. D.169、一支长为13cm 的金属筷子(粗细忽略不计),放入一个长、宽、高分别是4cm 、3cm 、16cm 的长方体水槽中,那么水槽至少要放进( )深的水才能完全淹没筷子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年全国高校自主招生数学模拟试卷八 命题人:南昌二中 高三(01)班 张阳阳一、选择题(36分,每小题6分)本题共有6小题,每题均给出(A )、(B )、(C )、(D )四个结论,其中有且仅有一个是正确的.请将正确答案的代表字母填在题后的括号内.每小题选对得6分;不选、选错或选出的代表字母超过一个(不论是否写在括号内),一律得0分.1.已知a 为给定的实数,那么集合M ={x | x 2-3x -a 2+2=0,x ∈R}的子集的个数为(A )1(B )2 (C ) 4(D ) 不确定【答】( C)【解】 方程x 2-3x -a 2+2=0的根的判别式Δ=1+4a 2>0,方程有两个不相等的实数根.由M 有2个元素,得集合M 有22=4个子集.2. 命题1 长方体中,必存在到各顶点距离相等的点;命题2 长方体中,必存在到各棱距离相等的点;命题3 长方体中,必存在到各面距离相等的点. 以上三个命题中正确的有(A ) 0个 (B ) 1个 (C ) 2个 (D ) 3个【答】( B)【解】 只有命题1对.3.在四个函数y =sin|x |,y =cos|x |,y =|ctg x |,y =lg|sin x |中以π为周期、在(0,2π)上单调递增的偶函数是 (A )y =sin|x | (B )y =cos|x | (C )y =|ctg x |(D )y =lg|sin x |【答】( D)【解】 y =sin|x |不是周期函数.y =cos|x |=cos x 以2π为周期.y =|ctg x |在(0,2π)上单调递减.只有y =lg|sin x |满足全部条件.4.如果满足∠ABC =60°,AC =12, BC =k 的△ABC 恰有一个,那么k 的取值范围是(A ) k =38 (B )0<k ≤12 (C ) k ≥12 (D ) 0<k ≤12或k =38【答】( D)【解】 根据题设,△ABC 共有两类如图.易得k =38或0<k ≤12.本题也可用特殊值法,排除(A )、(B )、(C ). 5.若10002)1(x x ++的展开式为200020002210x a x a x a a ++++ ,12kCBA60°12kABC60°则19989630a a a a a +++++ 的值为(A )3333 (B ) 6663 (C ) 9993 (D ) 20013【答】( C)【解】 令x =1可得10003=20003210a a a a a +++++ ; 令x =ω可得0=20002000332210ωωωωa a a a a +++++ ;(其中i 2321+-=ω,则3ω=1且2ω+ω+1=0)令x =2ω可得0=400020006342210ωωωωa a a a a +++++ .以上三式相加可得10003=3(19989630a a a a a +++++ ). 所以19989630a a a a a +++++ =9993.6.已知6枝玫瑰与3枝康乃馨的价格之和大于24元,而4枝玫瑰与5枝康乃馨的价格之和小于22元,则2枝玫瑰的价格和3枝康乃馨的价格比较结果是(). (A )2枝玫瑰价格高 (B )3枝康乃馨价格高 (C )价格相同 (D )不确定【答】( A)【解】 设玫瑰与康乃馨的单价分别为x 、y 元/枝.则6x +3y >24,4x +5y <22.令6x +3y =a >24,4x +5y =b <22,解出x =)35(181b a -,y =)23(91a b -.所以2x -3y =)22122411(91)1211(91⨯-⨯>-b a =0,即2x >3y .也可以根据二元一次不等式所表示的区域来研究.二、填空题(54分,每小题9分) 7.椭圆θρcos 21-=的短轴长等于332.【解】 .31)(,1)0(=-==+=c a c a πρρ故3331,32=⇒==b c a .从而3322=b .8.若复数z 1,z 2满足| z 1|=2,| z 2|=3,3z 1-2z 2=i -23,则z 1·z 2=i 13721330+-.【解】由3z 1-2z 2=2111222131z z z z z z ⋅⋅-⋅⋅=)32(611221z z z z -可得=+-⨯-=--=--=iiz z z z z z z z z z 2323632)23(632)23(61221122121i13721330+-.本题也可设三角形式进行运算.9.正方体ABCD —A 1B 1C 1D 1的棱长为1,则直线A 1C 1与BD 1的距离是66.【解】 作正方体的截面BB 1D 1D ,则A 1C 1⊥面BB 1D 1D .设A 1C 1与B 1D 1交于点O ,在面BB 1D 1D 内作OH ⊥BD 1,H 为垂足,则OH 为A 1C 1与BD 1的公垂线.显然OH 等于直角三角形BB 1D 1斜边上高的一半,即OH =66.10. 不等式232log121>+x的解集为),4()2,1()1,0(72+∞ .【解】232l o g 121>+x等价于232log 121>+x 或232log 121-<+x . 即21log121->x或27log121-<x.此时2log21-<x 或0log21>x 或0log7221<<-x .∴解为x >4或0<x <1 或 1<x <722. 即解集为),4()2,1()1,0(72+∞ . 11.函数232+-+=x x x y 的值域为),2[)23,1[+∞ .【解】232+-+=x x x y ⇒0232≥-=+-x y x x .两边平方得2)32(2-=-y x y ,从而23≠y 且3222--=y y x .由03222≥---=-y y y x y ⇒231032232<≤⇒≥-+-y y y y 或2≥y .任取2≥y ,令3222--=y y x ,易知2≥x ,于是0232≥+-x x 且232+-+=x x x y .任取231<≤y ,同样令3222--=y y x ,易知1≤x ,于是0232≥+-x x 且232+-+=x x x y .1111 HODCBA D CBAAB C DEF因此,所求函数的值域为),2[)23,1[+∞ .12. 在一个正六边形的六个区域栽种观赏植物(如图),要求同一块中种同一种植物,相邻的两块种不同的植物.现有4种不同的植物可供选择,则有 732 种栽种方案. 【解】考虑A 、C 、E 种同一种植物,此时共有4×3×3×3=108种方法.考虑A 、C 、E 种二种植物,此时共有3×4×3×3×2×2=432种方法. 考虑A 、C 、E 种三种植物,此时共有P 43×2×2×2=192种方法. 故总计有108+432+192=732种方法.三、解答题(本题满分60分,每小题20分)13.设{a n }为等差数列,{b n }为等比数列,且b 1=a 12,b 2=a 22,b 3=a 32(a 1<a 2) ,又12)(lim 21+=++++∞→n n b b b .试求{a n }的首项与公差.【解】 设所求公差为d ,∵a 1<a 2,∴d >0.由此得 a 12(a 1+2d )2=(a 1+d )4 化简得2a 12+4a 1d +d 2=0 解得d =(22±-) a 1.………………………………………………………………5分而22±-<0,故a 1<0.若d =(22--) a 1,则22122)12(+==a a q ;若d =(22+-)a 1,则22122)12(-==aa q ;…………………………………………10分但12)(lim 21+=++++∞→n n b b b 存在,故|q |<1.于是2)12(+=q 不可能.从而2)12)(222(12)12(121221=+-=⇒+=--a a .所以a 1=2-,d =(22+-) a 1=(22+-)(2-)=222-.……………………20分14.设曲线C 1:1222=+y ax (a 为正常数)与C 2:y 2=2(x +m ) 在x 轴上方仅有一个公共点P .⑴ 求实数m 的取值范围(用a 表示);⑵ O 为原点,若C 1与x 轴的负半轴交于点A ,当0<a <21时,试求ΔOAP 的面积的最大值(用a 表示).⑴ 【解】 由⎪⎩⎪⎨⎧+==+)(2,12222m x y y a x 消去y 得,x 2+2a 2x +2a 2m -a 2=0. ①设f (x )= x 2+2a 2x +2a 2m -a 2,问题⑴转化为方程①在x ∈(-a ,a )上有唯一解或等根.只须讨论以下三种情况:1︒ Δ=0得 m =212+a .此时 x p = -a 2,当且仅当-a <-a 2<a ,即0<a <1时适合;2︒ f (a )·f (-a )<0当且仅当–a <m <a ;3︒ f (-a )=0得m =a .此时 x p =a -2a 2,当且仅当-a < a -2a 2<a ,即0<a <1时适合.f (a )=0得m =-a ,此时 x p =-a -2a 2,由于-a -2a 2<-a ,从而m ≠-a . 综上可知,当0<a <1时,m =212+a 或-a <m ≤a ;当a ≥1时,-a <m <a .……………………………………………………10分 ⑵ 【解】 ΔOAP 的面积S =21ay p .∵0<a <21,故-a <m ≤a 时,a m a a a <-++-<21022,由唯一性得x p =m a a a 2122-++-.显然当m =a 时,x p 取值最小.由于x p >0,从而221ax y p p -=取值最大,此时y p =22a a -,∴S =a 2a a -. 当m =212+a 时,x p =-a 2,y p =21a -,此时S =21a 21a-.下面比较a 2a a -与21a 21a -的大小:令a 2a a -=21a 21a -,得a =31.故当0<a ≤31时 , 2121)1(aa a a a -≤-.此时S max =2121aa-.当31<a <21时,2121)1(aa a a a ->-.此时S max = a 2a a -.……………20分15.用电阻值分别为a 1、a 2、a 3、a 4、a 5 、a 6 (a 1>a 2>a 3>a 4>a 5>a 6) 的电阻组装成一个如图的组件,在组装中应如何选取电阻,才能使该组件总电阻值最小?证明你的结论.【解】 设6个电阻的组件(如图3)的总电阻为R FG .当R i =a i ,i =3,4,5,6,R 1,R 2是a 1,a 2的任意排列时,R FG 最小.…………………………………………5分证明如下1°设当两个电阻R 1,R 2并联时,所得组件阻值为R :则21111R R R +=.故交换二电阻的位置,不改变R 值,且当R 1或R 2变小时,R 也减小,因此不妨取R 1>R 2.2°设3个电阻的组件(如图1)的总电阻为R AB :2132312132121R R R R R R R R R R R R R R AB +++=++=.显然R 1+R 2越大,R AB 越小,所以为使R AB 最小必须取R 3为所取三个电阻中阻值最小的一个.3°设4个电阻的组件(如图2)的总电阻为R CD :43243142142324131214111R R R R R R R R R R R R R R R R R R R R R R ABCD++++++=+=.若记∑≤<≤=411j i jiRR S ,∑≤<<≤=412k j i k jiR RR S .则S 1、S 2为定值.于是4313212R R S R R R S R CD --=.只有当R 3R 4最小,R 1R 2R 3最大时,R CD 最小,故应取R 4<R 3,R 3<R 2,R 3<R 1,即得总电阻的阻值最小.……………………………………………………………………15分4°对于图3,把由R 1、R 2、R 3组成的组件用等效电阻R AB 代替.要使R FG 最小,由3°必需使R 6<R 5;且由1°,应使R CE 最小.由2°知要使R CE 最小,必需使R 5< R 4,且应使R CD 最小.而由3°,要使R CD 最小,应使R 4< R 3 < R 2且R 4< R 3 < R 1.这就说明,要证结论成立………………………………………………………20分图 1BAR 1 R 3R 2图2DCR 3R 4R 1R 2E G图3R 1 A R 2 R 4R 6R 3R 5B CD F GE。