实数--汇总

合集下载

初中数学知识点汇总

初中数学知识点汇总

初中数学知识点总结第一章:实数及代数式第一节:实数倒数:①定义:如果两个数的乘积为1.那么这两个数互为倒数.相反数:如果两个数的和为0.那么这两个数互为相反数.绝对值:正数的绝对值是它的本身,0的绝对值是它的本身,负数的绝对值是它的相反数。

科学记数法:N=na10⨯(1≤a<10,n是整数)。

当N是大于1的数时,n=N的整数位数减去1。

当N是小于1的数时,n=N的第一个有效数字前0的个数。

有效数字:在一个近似数中,从左边第一个不是0的数字起,到精确到的位数止,这中间所有的数字都叫这个近似数字的有效数字。

如:0.004015,有效数字是4,0,1,5.一共四个.又如:0.00401500,有效数字是4,0,1,5,0,0,一共六个.第二节:代数式运算符号把数或表示数的字母连结而成的式子,叫做代数式。

单独的一个数或字母也是代数式。

有根a、22a b+。

整式和分式统称为有理式。

必用公式:2222)(bababa+±=±(a+b)(a-b)=22ba-2a=a;)0()(2≥=aaa;baab⋅=(a≥0,b≥0);baba=(a≥0,b>0)同底数幂相乘:ma·n a=nma+;②同底数幂相除:m a÷n a=nma-;③幂的乘方:nma)(=mna;④积的乘方:nab)(=n a n b;⑤分式乘方:nnnbaba=)(第二章:方程组及其应用实数无理数(无限不循环小数)有理数正分数负分数正整数负整数(有限或无限循环小数)整数分数正无理数负无理数实数正数一、解方程的依据—等式性质1.a=b ←→a+c=b+c 2.a=b ←→ac=bc (c ≠0)二、解法1.一元一次方程的解法:去分母→去括号→移项→合并同类项→系数化成1→解。

2.二元一次方程组的解法:⑴基本思想:“消元”⑵方法:①代入法 ②加减法一元二次方程:⑴配方法(注意步骤和推导求根公式)(2)公式法:)04(24222,1≥--±-=ac b aac b b x (3)因式分解法(特征:左边=0)十字相乘法: 十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。

数学知识点总结 实数

数学知识点总结 实数

数学知识点总结实数数学是一门关于数量,结构,空间和变化等概念的科学。

它在我们的生活中随处可见,从日常的购物和金融交易到科学研究和工程设计,数学都扮演着不可或缺的角色。

在这篇文章中,我们将总结一些基础的数学知识点,包括整数,分数,代数,几何和统计学等。

整数整数是自然数(包括正整数和零)与其相反数(负整数)的集合。

整数之间的运算包括加法,减法,乘法和除法。

整数被广泛应用于计算,代数和统计学等领域。

分数分数是指由分子和分母组成的有理数,表示为一个整数除以另一个整数。

分数在日常生活中被广泛应用,例如在食谱和药物剂量中。

在数学中,分数用于表示两个整数之间的比率,以及解决各种问题,如比较大小,加减乘除等。

代数代数是数学的一个重要分支,研究数学结构和运算规则。

代数中的基本概念包括变量,方程,函数和图形等。

代数被广泛应用于科学,工程和经济等领域,例如用于求解未知数的方程,建立数学模型和分析数据等。

几何几何是研究空间,形状,大小和相对位置的数学学科。

在几何中,我们学习关于点,线,面,多边形,圆,角,距离,相似性和对称性等概念。

几何在建筑,设计,地图制作和天文观测等领域有重要应用。

统计学统计学是研究数据收集,分析和解释的科学。

统计学的基本概念包括数据类型,样本和总体,平均值,方差,概率和推断等。

统计学被广泛应用于调查研究,风险评估,市场分析和政策制定等方面。

总结数学是一门重要的学科,它不仅帮助我们理解世界的运作规律,也为我们提供了解决问题的方法和工具。

通过学习数学,我们可以提高逻辑思维能力,培养分析和解决问题的能力,这对我们的个人和职业发展都具有重要意义。

因此,我们应该重视数学学习,不断积累数学知识,提高数学水平,以应对日常生活和工作中的各种挑战。

初中数学中考考点汇总

初中数学中考考点汇总

第一章 实数考点一.实数的概念及分类 (3分)1.实数的分类正有理数有理数 零 有限小数和无穷轮回小数 实数 负有理数 正无理数无理数 无穷不轮回小数 负无理数 2.无理数在懂得无理数时,要抓住“无穷不轮回”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等; (2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等;…等;(4)某些三角函数,如sin60o等考点二.实数的倒数.相反数和绝对值 (3分)1.相反数实数与它的相反数时一对数(只有符号不合的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,假如a 与b 互为相反数,则有a+b=0,a=—b,反之亦成立.2.绝对值一个数的绝对值就是暗示这个数的点与原点的距离,|a|≥0.零的绝对值时它本身,也可算作它的相反数,若|a|=a,则a ≥0;若|a|=-a,则a ≤0.正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小.3.倒数假如a 与b 互为倒数,则有ab=1,反之亦成立.倒数等于本身的数是1和-1.零没有倒数.考点三.平方根.算数平方根和立方根 (3—10分)1.平方根假如一个数的平方等于a,那么这个数就叫做a 的平方根(或二次方跟). 一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根.正数a 的平方根记做“a ±”. 2.算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”. 正数和零的算术平方根都只有一个,零的算术平方根是零.a (a ≥0) 0≥a ==a a 2 ;留意a 的双重非负性:-a (a <0) a ≥03.立方根假如一个数的立方等于a,那么这个数就叫做a 的立方根(或a 的三次方根).一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零. 留意:33a a -=-,这解释三次根号内的负号可以移到根号外面. 考点四.科学记数法和近似数 (3—6分)1.有用数字一个近似数四舍五入到哪一位,就说它准确到哪一位,这时,从左边第一个不是零的数字起到右边准确的数位止的所稀有字,都叫做这个数的有用数字.2.科学记数法把一个数写做na 10⨯±的情势,个中101<≤a ,n 是整数,这种记数法叫做科学记数法.考点五.实数大小的比较 (3分)1.数轴划定了原点.正偏向和单位长度的直线叫做数轴(画数轴时,要留意上述划定的三要素缺一不成).解题时要真正控制数形联合的思惟,懂得实数与数轴的点是一一对应的,并能灵巧应用.2.实数大小比较的几种经常应用办法(1)数轴比较:在数轴上暗示的两个数,右边的数总比左边的数大. (2)求差比较:设a.b 是实数,(3)求商比较法:设 a.b 是两正实数,;1;1;1b a b ab a b a b a b a <⇔<=⇔=>⇔>(4)绝对值比较法:设a.b 是两负实数,则b a b a <⇔>.(5)平办法:设a.b 是两负实数,则b a b a <⇔>22. 考点六.实数的运算 (做题的基本,分值相当大)1.加法交流律 a b b a +=+2.加法联合律 )()(c b a c b a ++=++3.乘法交流律 ba ab =4.乘法联合律 )()(bc a c ab =5.乘法对加法的分派律 ac ab c b a +=+)(6.实数的运算次序先算乘方,再算乘除,最后算加减,假如有括号,就先算括号里面的.第二章 代数式考点一.整式的有关概念 (3分) 1.代数式用运算符号把数或暗示数的字母衔接而成的式子叫做代数式.单独的一个数或一个字母也是代数式.2.单项式只含稀有字与字母的积的代数式叫做单项式.留意:单项式是由系数.字母.字母的指数构成的,个中系数不克不及用带分数暗示,如b a 2314-,这种暗示就是错误的,应写成ba 2313-.一个单项式中,所有字母的指数的和叫做这个单项式的次数.如c b a 235-是6次单项式. 考点二.多项式 (11分) 1.多项式几个单项式的和叫做多项式.个中每个单项式叫做这个多项式的项.多项式中不含字母的项叫做常数项.多项式中次数最高的项的次数,叫做这个多项式的次数.单项式和多项式统称整式.用数值代替代数式中的字母,按照代数式指明的运算,盘算出成果,叫做代数式的值.留意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入.(2)求代数式的值,有时求不出其字母的值,须要应用技能,“整体”代入.2.同类项所有字母雷同,并且雷同字母的指数也分离雷同的项叫做同类项.几个常数项也是同类项.3.去括号轨则(1)括号前是“+”,把括号和它前面的“+”号一路去失落,括号里各项都不变号.(2)括号前是“﹣”,把括号和它前面的“﹣”号一路去失落,括号里各项都变号.4.整式的运算轨则整式的加减法:(1)去括号;(2)归并同类项.整式的乘法:),(都是正整数n m a a a n m n m +=• 整式的除法:)0,,(≠=÷-a n m a a a n m n m 都是正整数 留意:(1)单项式乘单项式的成果仍然是单项式.(2)单项式与多项式相乘,成果是一个多项式,其项数与因式中多项式的项数雷同.(3)盘算时要留意符号问题,多项式的每一项都包含它前面的符号,同时还要留意单项式的符号.(4)多项式与多项式相乘的睁开式中,有同类项的要归并同类项. (5)公式中的字母可以暗示数,也可以暗示单项式或多项式. (6)),0(1);0(10为正整数p a a a a a p p ≠=≠=-(7)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加,单项式除以多项式是不克不及这么盘算的. 考点三.因式分化 (11分)1.因式分化把一个多项式化成几个整式的积的情势,叫做把这个多项式因式分化,也叫做把这个多项式分化因式.2.因式分化的经常应用办法(1)提公因式法:)(c b a ac ab +=+(2)应用公式法:))((22b a b a b a -+=- (3)分组分化法:))(()()(d c b a d c b d c a bd bc ad ac ++=+++=+++(4)十字相乘法:))(()(2q a p a pq a q p a ++=+++3.因式分化的一般步调:(1)假如多项式的各项有公因式,那么先提取公因式.(2)在各项提出公因式今后或各项没有公因式的情形下,不雅察多项式的项数:2项式可以测验测验应用公式法分化因式;3项式可以测验测验应用公式法.十字相乘法分化因式;4项式及4项式以上的可以测验测验分组分化法分化因式(3)分化因式必须分化到每一个因式都不克不及再分化为止. 考点四.分式 (8~10分)1.分式的概念一般地,用A.B 暗示两个整式,A ÷B就可以暗示成B A的情势,假如B 中含有字母,式子B A就叫做分式.个中,A叫做分式的分子,B 叫做分式的分母.分式和整式通称为有理式.2.分式的性质(1)分式的基赋性质:分式的分子和分母都乘以(或除以)统一个不等于零的整式,分式的值不变.(2)分式的变号轨则:分式的分子.分母与分式本身的符号,转变个中任何两个,分式的值不变. 3.分式的运算轨则考点五.二次根式 (初中数学基本,分值很大)1.二次根式式子)0(≥a a 叫做二次根式,二次根式必须知足:含有二次根号“”;被开方数a 必须长短负数.2.最简二次根式若二次根式知足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式,如许的二次根式叫做最简二次根式.化二次根式为最简二次根式的办法和步调:(1)假如被开方数是分数(包含小数)或分式,先应用商的算数平方根的性质把它写成分式的情势,然后应用分母有理化进行化简.(2)假如被开方数是整数或整式,先将他们分化因数或因式,然后把能开得尽方的因数或因式开出来.3.同类二次根式几个二次根式化成最简二次根式今后,假如被开方数雷同,这几个二次根式叫做同类二次根式.4.二次根式的性质(1))0()(2≥=a a a (2)==a a 2(3))0,0(≥≥•=b a b a ab(4))0,0(≥≥=b a b ab a5.二次根式混杂运算二次根式的混杂运算与实数中的运算次序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去括号).第三章 方程(组)考点一.一元一次方程的概念 (6分)1.方程含有未知数的等式叫做方程. 2.方程的解能使方程双方相等的未知数的值叫做方程的解. 3.等式的性质(1)等式的双方都加上(或减去)统一个数或统一个整式,所得成果仍是等式.(2)等式的双方都乘以(或除以)统一个数(除数不克不及是零),所得成果仍是等式.4.一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,个中方程)为未知数,(0a x 0≠=+b ax 叫做一元一次方程的尺度情势,a 是未知数x 的系数,b 是常数项.考点二.一元二次方程 (6分)1.一元二次方程含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程.2.一元二次方程的一般情势 )0(02≠=++a c bx ax ,它的特点是:等式左边十一个关于未知数x 的二次多项式,等式右边是零,个中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项.考点三.一元二次方程的解法 (10分)1.直接开平办法应用平方根的界说直接开平方求一元二次方程的解的办法叫做直接开平办法.直接开平办法实用于解形如b a x =+2)(的一元二次方程.依据平方根的界说可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根.2.配办法配办法是一种重要的数学办法,它不但在解一元二次方程上有所应用,并且在数学的其他范畴也有着普遍的应用.配办法的理论依据是完整平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x,并用x 代替,则有222)(2b x b bx x ±=+±.3.公式法公式法是用求根公式解一元二次方程的解的办法,它是解一元二次方程的一般办法.一元二次方程)0(02≠=++a c bx ax 的求根公式:4.因式分化法因式分化法就是应用因式分化的手腕,求出方程的解的办法,这种办法简略易行,是解一元二次方程最经常应用的办法.考点四.一元二次方程根的判别式 (3分)根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通经常应用“∆”来暗示,即ac b 42-=∆考点五.一元二次方程根与系数的关系 (3分)假如方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么a b x x -=+21,a cx x =21.也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商.考点六.分式方程 (8分)1.分式方程分母里含有未知数的方程叫做分式方程. 2.分式方程的一般办法解分式方程的思惟是将“分式方程”转化为“整式方程”.它的一般解法是:(1)去分母,方程双方都乘以最简公分母 (2)解所得的整式方程(3)验根:将所得的根代入最简公分母,若等于零,就是增根,应当舍去;若不等于零,就是原方程的根.3.分式方程的特别解法 换元法:换元法是中学数学中的一个重要的数学思惟,其应用异常普遍,当分式方程具有某种特别情势,一般的去分母不轻易解决时,可斟酌用换元法. 考点七.二元一次方程组 (8~10分)1.二元一次方程含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程,它的一般情势是(2.二元一次方程的解使二元一次方程阁下双方的值相等的一对未知数的值,叫做二元一次方程的一个解.3.二元一次方程组两个(或两个以上)二元一次方程合在一路,就构成了一个二元一次方程组.4二元一次方程组的解使二元一次方程组的两个方程阁下双方的值都相等的两个未知数的值,叫做二元一次方程组的解.5.二元一次朴直组的解法(1)代入法(2)加减法6.三元一次方程把含有三个未知数,并且含有未知数的项的次数都是1的整式方程.7.三元一次方程组由三个(或三个以上)一次方程构成,并且含有三个未知数的方程组,叫做三元一次方程组.第四章不等式(组)考点一.不等式的概念(3分)1.不等式用不等号暗示不等关系的式子,叫做不等式.2.不等式的解集对于一个含有未知数的不等式,任何一个合适这个不等式的未知数的值,都叫做这个不等式的解.对于一个含有未知数的不等式,它的所有解的聚集叫做这个不等式的解的聚集,简称这个不等式的解集.求不等式的解集的进程,叫做解不等式.3.用数轴暗示不等式的办法考点二.不等式基赋性质(3~5分)1.不等式双方都加上(或减去)统一个数或统一个整式,不等号的偏向不变.2.不等式双方都乘以(或除以)统一个正数,不等号的偏向不变.3.不等式双方都乘以(或除以)统一个负数,不等号的偏向转变.测验题型:考点三.一元一次不等式(6~8分)1.一元一次不等式的概念一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的双方都是整式,如许的不等式叫做一元一次不等式.2.一元一次不等式的解法解一元一次不等式的一般步调:(1)去分母(2)去括号(3)移项(4)归并同类项(5)将x项的系数化为1考点四.一元一次不等式组(8分)1.一元一次不等式组的概念几个一元一次不等式合在一路,就构成了一个一元一次不等式组.几个一元一次不等式的解集的公共部分,叫做它们所构成的一元一次不等式组的解集.求不等式组的解集的进程,叫做解不等式组.当任何数x 都不克不及使不等式同时成立,我们就说这个不等式组无解或其解为空集.2.一元一次不等式组的解法(1)分离求出不等式组中各个不等式的解集(2)应用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集.第五章 统计初步与概率初步考点一.平均数 (3分) 1.平均数的概念(1)平均数:一般地,假如有n 个数,,,,21n x x x 那么,)(121n x x x n x +++=叫做这n 个数的平均数,x 读作“x 拔”.(2)加权平均数:假如n 个数中,1x 消失1f 次,2x 消失2f 次,…,k x 消失kf 次(这里n f f f k =++ 21),那么,依据平均数的界说,这n 个数的平均数可以暗示为nf x f x f x x kk ++=2211,如许求得的平均数x 叫做加权平均数,个中kf f f ,,,21 叫做权.2.平均数的盘算办法 (1)界说法当所给数据,,,,21n x x x 比较疏散时,一般选用界说公式:)(121n x x x n x +++=(2)加权平均数法:当所给数据反复消失时,一般选用加权平均数公式:nf x f x f x x kk ++=2211,个中n f f f k =++ 21.(3)新数据法:当所给数据都在某一常数a 的高低摇动时,一般选用简化公式:a x x +='. 个中,常数a 平日取接近这组数据平均数的较“整”的数,a x x -=11',ax x -=22',…,a x x n n -='.)'''(1'21n x x x nx +++=是新数据的平均数(平日把,,,,21n x x x 叫做原数据,,',,','21n x x x 叫做新数据).考点二.统计学中的几个根本概念 (4分) 1.总体所有考核对象的全部叫做总体. 2.个别总体中每一个考核对象叫做个别. 3.样本从总体中所抽取的一部分个别叫做总体的一个样本. 4.样本容量样本中个别的数量叫做样本容量. 5.样本平均数样本中所有个别的平均数叫做样本平均数.6.总体平均数总体中所有个别的平均数叫做总体平均数,在统计中,通经常应用样本平均数估量总体平均数.考点三.众数.中位数 (3~5分) 1.众数在一组数据中,消失次数最多的数据叫做这组数据的众数. 2.中位数将一组数据按大小依次分列,把处在最中央地位的一个数据(或最中央两个数据的平均数)叫做这组数据的中位数. 考点四.方差 (3分) 1.方差的概念在一组数据,,,,21n x x x 中,各数据与它们的平均数x 的差的平方的平均数,叫做这组数据的方差.通经常应用“2s ”暗示,即2.方差的盘算(1)根本公式:(2)简化盘算公式(Ⅰ):也可写成2222212)][(1xx x x n s n -+++=此公式的记忆办法是:方差等于原数据平方的平均数减去平均数的平方.(3)简化盘算公式(Ⅱ):当一组数据中的数据较大时,可以按照简化平均数的盘算办法,将每个数据同时减去一个与它们的平均数接近的常数a,得到一组新数据a x x -=11',a x x -=22',…,a x x n n -=',那么,2222212')]'''[(1x x x x n s n-+++=此公式的记忆办法是:方差等于新数据平方的平均数减去新数据平均数的平方.(4)新数据法:原数据,,,,21n x x x 的方差与新数据a x x -=11',a x x -=22',…,a x x n n -='的方差相等,也就是说,依据方差的根本公式,求得,',,','21n x x x 的方差就等于原数据的方差.3.尺度差方差的算数平方根叫做这组数据的尺度差,用“s ”暗示,即 考点五.频率散布 (6分) 1.频率散布的意义在很多问题中,只知道平均数和方差还不敷,还须要知道样本中数据在各个小规模所占的比例的大小,这就须要研讨若何对一组数据进行整顿,以便得到它的频率散布.2.研讨频率散布的一般步调及有关概念(1)研讨样本的频率散布的一般步调是: ①盘算极差(最大值与最小值的差) ②决议组距与组数 ③决议分点④列频率散布表⑤画频率散布直方图(2)频率散布的有关概念①极差:最大值与最小值的差②频数:落在各个小组内的数据的个数③频率:每一小组的频数与数据总数(样本容量n )的比值叫做这一小组的频率.考点六.肯定事宜和随机事宜 (3分) 1.肯定事宜必定产生的事宜:在必定的前提下反复进行实验时,在每次实验中必定会产生的事宜.不成能产生的事宜:有的事宜在每次实验中都不会产生,如许的事宜叫做不成能的事宜.2.随机事宜:在必定前提下,可能产生也可能不放声的事宜,称为随机事宜. 考点七.随机事宜产生的可能性 (3分)一般地,随机事宜产生的可能性是有大小的,不合的随机事宜产生的可能性的大小有可能不合.对随机事宜产生的可能性的大小,我们应用反复实验所获取必定的经验数据可以猜测它们产活力遇的大小.要评判一些游戏规矩对介入游戏者是否公正,就是看它们产生的可能性是否一样.所谓断定事宜可能性是否雷同,就是要看各事宜产生的可能性的大小是否一样,用数据来解释问题. 考点八.概率的意义与暗示办法 (5~6分) 1.概率的意义一般地,在大量反复实验中,假如事宜A 产生的频率mn会稳固在某个常数p 邻近,那么这个常数p 就叫做事宜A 的概率.2.事宜和概率的暗示办法一般地,事宜用英文大写字母A,B,C,…,暗示事宜A 的概率p,可记为P (A )=P考点九.肯定事宜和随机事宜的概率之间的关系 (3分) 1.肯定事宜概率(1)当A 是必定产生的事宜时,P (A )=1 (2)当A 是不成能产生的事宜时,P (A )=0 2.肯定事宜和随机事宜的概率之间的关系事宜产生的可能性越来越小0 1概率的值 不成能产生 必定产生事宜产生的可能性越来越大考点十.古典概型 (3分) 1.古典概型的界说某个实验若具有:①在一次实验中,可能消失的构造有有限多个;②在一次实验中,各类成果产生的可能性相等.我们把具有这两个特色的实验称为古典概型.2.古典概型的概率的求法一般地,假如在一次实验中,有n种可能的成果,并且它们产生的可能性都相m等,事宜A包含个中的m中成果,那么事宜A产生的概率为P(A)=n考点十一.列表法求概率(10分)1.列表法用列出表格的办法来剖析和求解某些事宜的概率的办法叫做列表法.2.列表法的应用处合当一次实验要设计两个身分, 并且可能消失的成果数量较多时,为不重不漏地列出所有可能的成果,平日采取列表法.考点十二.树状图法求概率(10分)1.树状图法就是经由过程列树状图列出某事宜的所有可能的成果,求出其概率的办法叫做树状图法.2.应用树状图法求概率的前提当一次实验要设计三个或更多的身分时,用列表法就不便利了,为了不重不漏地列出所有可能的成果,平日采取树状图法求概率.考点十三.应用频率估量概率(8分)1.应用频率估量概率在同样前提下,做大量的反复实验,应用一个随机事宜产生的频率逐渐稳固到某个常数,可以估量这个事宜产生的概率.2.在统计学中,经常应用较为简略的实验办法代替现实操纵中庞杂的实验来完成概率估量,如许的实验称为模仿实验.3.随机数在随机事宜中,须要用大量反复实验产生一串随机的数据来开展统计工作.把这些随机产生的数据称为随机数.第六章一次函数与反比例函数考点一.平面直角坐标系(3分)1.平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就构成了平面直角坐标系.个中,程度的数轴叫做x轴或横轴,取向右为正偏向;铅直的数轴叫做y轴或纵轴,取向上为正偏向;两轴的交点O(即公共的原点)叫做直角坐标系的原点;树立了直角坐标系的平面,叫做坐标平面.为了便于描写坐标平面内点的地位,把坐标平面被x轴和y轴朋分而成的四个部分,分离叫做第一象限.第二象限.第三象限.第四象限.留意:x轴和y轴上的点,不属于任何象限.2.点的坐标的概念点的坐标用(a,b)暗示,其次序是横坐标在前,纵坐标在后,中央有“,”离a 时,开,横.纵坐标的地位不克不及颠倒.平面内点的坐标是有序实数对,当b (a,b)和(b,a)是两个不合点的坐标.考点二.不合地位的点的坐标的特点 (3分) 1.各象限内点的坐标的特点点P(x,y)在第一象限0,0>>⇔y x点P(x,y)在第二象限0,0><⇔y x 点P(x,y)在第三象限0,0<<⇔y x 点P(x,y)在第四象限0,0<>⇔y x 2.坐标轴上的点的特点点P(x,y)在x 轴上0=⇔y ,x 为随意率性实数 点P(x,y)在y 轴上0=⇔x ,y 为随意率性实数点P(x,y)既在x 轴上,又在y 轴上⇔x,y 同时为零,即点P 坐标为(0,0) 3.两条坐标轴夹角等分线上点的坐标的特点点P(x,y)在第一.三象限夹角等分线上⇔x 与y 相等点P(x,y)在第二.四象限夹角等分线上⇔x 与y 互为相反数 4.和坐标轴平行的直线上点的坐标的特点位于平行于x 轴的直线上的各点的纵坐标雷同. 位于平行于y 轴的直线上的各点的横坐标雷同. 5.关于x 轴.y 轴或远点对称的点的坐标的特点点P 与点p ’关于x 轴对称⇔横坐标相等,纵坐标互为相反数 点P 与点p ’关于y 轴对称⇔纵坐标相等,横坐标互为相反数 点P 与点p ’关于原点对称⇔横.纵坐标均互为相反数 6.点到坐标轴及原点的距离点P(x,y)到坐标轴及原点的距离: (1)点P(x,y)到x 轴的距离等于y (2)点P(x,y)到y 轴的距离等于x(3)点P(x,y)到原点的距离等于22y x +考点三.函数及其相干概念 (3~8分) 1.变量与常量在某一变更进程中,可以取不合数值的量叫做变量,数值保持不变的量叫做常量.一般地,在某一变更进程中有两个变量x 与y,假如对于x 的每一个值,y 都有独一肯定的值与它对应,那么就说x 是自变量,y 是x 的函数.2.函数解析式用来暗示函数关系的数学式子叫做函数解析式或函数关系式. 使函数有意义的自变量的取值的全部,叫做自变量的取值规模. 3.函数的三种暗示法及其优缺陷 (1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式暗示,这种暗示法叫做解析法.(2)列表法把自变量x 的一系列值和函数y 的对应值列成一个表来暗示函数关系,这种暗示法叫做列表法.(3)图像法用图像暗示函数关系的办法叫做图像法. 4.由函数解析式画其图像的一般步调(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出响应的点(3)连线:按照自变量由小到大的次序,把所描各点用腻滑的曲线衔接起来.考点四.正比例函数和一次函数 (3~10分) 1.正比例函数和一次函数的概念一般地,假如b kx y +=(k,b 是常数,k ≠0),那么y 叫做x 的一次函数.特别地,当一次函数b kx y +=中的b 为0时,kx y =(k 为常数,k ≠0).这时,y 叫做x 的正比例函数.2.一次函数的图像所有一次函数的图像都是一条直线3.一次函数.正比例函数图像的重要特点:一次函数b kx y +=的图像是经由点(0,b )的直线;正比例函数kx y =的图像是经由原点(0,0)的直线.k 的符号 b 的符号函数图像图像特点k>0b>0图像经由一.二.三象限,y 随x 的增大而增大.b<0图像经由一.三.四象限,y 随x 的增大而增大.K<0b>0图像经由一.二.四象限,y 随x 的增大而减小b<0图像经由二.三.四象限,y 随x 的增大而减小.注:当b=0,正比例函数是一次函数的特例.4.一般地,(1)当k>0时,,y 随x 的增大而增大; (2)当k<0时,图像经由第二.四象限,y 随x 的增大而减小. 5.一次函数的性质一般地,一次函数b kx y +=有下列性质: (1)当k>0时,y 随x 的增大而增大 (2)当k<0时,y 随x 的增大而减小 6.正比例函数和一次函数解析式的肯定肯定一个正比例函数,就是要肯定正比例函数界说式kx y =(k ≠0)中的常数k.肯定一个一次函数,须要肯定一次函数界说式b kx y +=(k ≠0)中的常数k 和。

mba数学基础知识点整理汇总-整洁无水印

mba数学基础知识点整理汇总-整洁无水印

第一章:实 数一、数的分类:0⎧⎧⎧⎫⎪⎪⎬⎪⎨⎪⎭⎪⎪⎪⎪⎨⎪⎩⎨⎪⎧⎪⎪⎨⎪⎪⎩⎩⎪⎪⎩正整数自然数整数有理数负整数实数正分数分数负分数无理数(无限不循环小数)二、质数:大于1的正整数,如果除了1和自身,没有其他约数的数就称为质数或素数,否则就称为合数。

则:最小的质数为2,最小的合数为4,1既不是质数也不是合数。

常见的质数:2、3、5、7、11、13、17、19、21、23、29等。

三、奇数偶数运算性质:奇数±奇数=偶数, 奇数±偶数=奇数, 偶数±偶数=偶数; 奇数×奇数=奇数, 奇数×偶数=偶数, 偶数×偶数=偶数。

四、正整数除法中的商数与余数:设正整数n 被正整数除的商数为,余数为r ,则可以表示为 :m s n ms r=+(和为自然数,).特例,能被整除是指s r 0r m ≤<n m 0r =. 性质:能被2整除的数:个位数字为0,2,4,6,8能被3整除的数:各位数字之和必能被3整除能被4整除的数:末两位(个位和十位)数字必能被4整除 能被5整除的数:个位数字为0或5能被6整除的数:同时满足能被2和3整除的条件 能被10整除的数:个位数字为0五、绝对值定义:实数a 的绝对值定义为:,(0)||,(0)a a a a a ≥⎧=⎨−<⎩【性质】(1)0x ≥,0x x +≥,0x x −≥.(2)x x =⇔0x ≥; ⇔0x ≤.(3)x x >⇔0x <;x x >−⇔0x >.(4)三角不等式:||||x y −≤x y x y +≤+;x x =−00特别的:a 、||||||x y x y xy +=+⇒≥b 、|| ||||x y x y xy −=+⇒≤c 、x y x y +≤−⇔0xy ≤.d 、||x a ≤()的解为0a >a x a −≤≤;||x a >的解为x a <−或x a >.e 、||x b a −≤()的解为0a >b a x a b −≤≤+;||x b a −>的解为x b a <−或x a b>+六、算术平均值:给定n 个数,,…,,称1a 2a n a 1211nn i i a a a a a n n=++⋅⋅⋅+==∑为这个数的算术平均值。

中考数学试卷题目分类汇总

中考数学试卷题目分类汇总

一、选择题1. 数与代数- 实数的运算- 代数式的化简- 分式的运算- 根据方程求未知数- 解不等式及不等式组- 函数的性质与应用2. 几何与图形- 直线、射线、线段的概念及性质- 角的概念及性质- 平行线、相交线、垂直线的判定- 四边形、多边形的概念及性质- 圆的概念及性质- 三角形的概念及性质,如三角形全等、相似3. 统计与概率- 数据的收集、整理、描述- 平均数、中位数、众数的计算- 概率的基本概念及计算- 事件的相互关系及概率的运算二、填空题1. 数与代数- 实数的性质及运算- 代数式的化简及求值 - 分式的化简及运算- 根据方程求未知数- 解不等式及不等式组2. 几何与图形- 几何图形的性质及判定 - 几何图形的变换- 几何问题的解决方法 - 圆的相关计算3. 统计与概率- 数据的描述及分析- 概率的计算与应用三、解答题1. 数与代数- 复杂方程的求解- 函数问题及实际应用 - 代数问题的综合应用 - 函数与几何的结合问题2. 几何与图形- 几何图形的证明- 几何问题的解决方法 - 几何图形的应用- 几何问题的综合应用3. 统计与概率- 统计数据的分析及处理- 概率的计算与应用- 统计与概率的实际问题四、实验题1. 数与代数- 使用计算器进行计算- 利用计算机软件进行数据处理2. 几何与图形- 利用计算机软件绘制几何图形- 利用计算机软件进行几何问题的探究3. 统计与概率- 利用计算机软件进行数据分析- 利用计算机软件进行概率问题的探究五、应用题1. 数与代数- 生活、生产、科技等领域的实际问题 - 经济、金融、物理等领域的实际问题2. 几何与图形- 建筑设计、城市规划等领域的实际问题 - 物理实验、天文观测等领域的实际问题3. 统计与概率- 社会调查、市场分析等领域的实际问题- 医学研究、生物统计等领域的实际问题总结:中考数学试卷题目分类汇总涵盖了数与代数、几何与图形、统计与概率三个主要模块,旨在考查学生对数学知识的掌握程度、应用能力及创新思维。

【汇总】初中数学专项练习《实数》100道计算题包含答案

【汇总】初中数学专项练习《实数》100道计算题包含答案

初中数学专项练习《实数》100道计算题包含答案一、解答题(共100题)1、计算:| -2|+2cos45°- + .2、已知2a﹣1的平方根是±3,3a+b+9的立方根是3,求2(a+b)的平方根.3、已知且与互为相反数,求的平方根.4、如图,在正方形ABCD中,AB=4,AE=2,DF=1,请你判定△BEF的形状,并说明理由.5、一个正数的两个平方根为和,是的立方根,的小数部分是,求的平方根.6、如图:已知点A、B表示两个实数﹣、,请在数轴上描出它们大致的位置,用字母标示出来;O为原点,求出O、A两点间的距离.求出A、B两点间的距离.7、填表:相反数等于它本身绝对值等于它本身倒数等于它本身平方等于它本身立方等于它本身平方根等于它本身算术平方根等于它本身立方根等于它本身最大的负整数绝对值最小的数8、已知2a-1的平方根是±3,b-1的立方根是2,求a-b的值.9、求下列各式中的x值.(1)25x2﹣196=0(2)(2x﹣1)3=8.10、若|x|=7,y2=9,且x>y,求x+y值11、在数轴上表示下列各数,并用“<”连接起来。

, , , , , 。

12、把下列各实数填在相应的大括号内,﹣|﹣3|,,0,,﹣3. ,,1﹣,1.1010010001…(两个1之间依次多1个0)整数{…};分数{…};无理数{…}.13、计算:(﹣3)0﹣+|1﹣|+×+(+)﹣1.14、己知:2m+2的平方根是±4;3m+n的立方根是-1,求:2m-n的算术平方根15、一个正数x的平方根是3a﹣4和1﹣6a,求x的值.16、求下列式中的x的值:3(2x+1)2=27.17、解下列方程:(1)(x+5)2+16=80(2)﹣2(7﹣x)3=250.18、已知25x2﹣144=0,且x是正数,求代数式的值.19、规定一种新的运算a△b=ab﹣a+1,如3△4=3×4﹣3+1,请比较与的大小.20、若5a+1和a﹣19是数m的平方根,求m的值.21、已知的平方根是,的立方根是2,是的整数部分,求的值..22、若5a+1和a﹣19是数m的平方根.求a和m的值.23、已知2a-7的平方根是±5,2a+b-1的算术平方根是4,求- +b的值.24、把下列各数填在相应的集合内:100,﹣0.82,﹣30 ,3.14,﹣2,0,﹣2011,﹣3.1 ,,﹣,2.010010001…,正分数集合:{ …}整数集合:{ …}负有理数集合:{ …}非正整数集合;{ …}无理数集合:{ …}.25、+3﹣5.26、已知a、b是有理数且满足:a是-8的立方根,=5,求a2+2b的值.27、求下列各式中x的值.(1)9x2﹣4=0(2)(1﹣2x)3=﹣1.28、(1)已知:(x+1)2﹣9=0,求x的值;(2)已知a﹣3的平方根为±3,求5a+4的立方根.29、计算:(﹣)﹣2﹣|﹣1+|+2sin60°+(π﹣4)0.30、计算:()﹣2﹣(π﹣3.14)0+﹣|2﹣|.31、已知和互为相反数,且x-y+4的平方根是它本身,求x、y 的值.32、在数轴上表示下列各数:0,﹣2.5,3 ,﹣2,+5,1 ,并用“<”号连接。

人教版七年级实数、方程组、不等式计算题汇总

人教版七年级实数、方程组、不等式计算题汇总

第六章《实数》计算题1.计算:(1)||+|﹣1|﹣|3|(2)﹣++.2.计算:﹣|2﹣|﹣.3.(1)计算:++(2)(x﹣1)2=.4.计算:﹣32+|﹣3|+.5.计算+|3﹣|+﹣.6.计算:+|﹣2|++(﹣1)2015.7.计算:(﹣1)2015++|1﹣|﹣.8.解方程(1)5x3=﹣40(2)4(x﹣1)2=9.9.求下列各式中x的值:①4x2=25②27(x﹣1)3﹣8=0.10.求下列各式中的x(1)4x2=81;(2)(2x+10)3=﹣27.11.求下列各式中x的值(1)(x+1)2﹣3=0;(2)3x3+4=﹣20.12.计算(1)+()2+(2)+﹣|1﹣| 13.计算题:.14.计算(1)+﹣;(2)+|﹣1|﹣(+1).15..16.计算:(1)(﹣)2﹣﹣+﹣|﹣6|(2)|1﹣|+|﹣|+|﹣2|.(3)4(x+3)2﹣16=0(4)27(x﹣3)3=﹣8.17.把下列各数分别填在相应的括号内:,﹣3,0,,0.3,,﹣1.732,,,||,,,,0.1010010001…整数{ };分数;{ };正数{ };负数{ };有理数{ };无理数{ }.18.将下列各数填入相应的集合内.﹣7,0.32,,0,,,,π,0.1010010001…①有理数集合{…}②无理数集合{…}③负实数集合{…}.19.把下列各数按要求填入相应的大括号里:﹣10,4.5,﹣,0,﹣(﹣3),2.10010001…,42,﹣2π,整数集合:{ };分数集合:{ };自然数集合:{ };正有理数集合:{ }.20.把下列各数分别填入相应的大括号﹣5,|﹣|,0,﹣3.14,,﹣12,0.1010010001…,+1.5,﹣30%,﹣(﹣6),﹣正有理数集合:{ …}非正整数集合:{ …}负分数集合:{ …}无理数集合:{ …}.21.将下列各数填入相应的集合中.﹣7,0,,﹣22,﹣2.55555…,3.01,+9,4.020020002…,+10%,﹣2π.无理数集合:{ };负有理数集合:{ };正分数集合:{ };非负整数集合:{ }.22.把下列各数分别填在相应的集合里:﹣1,,0.3,0,﹣1.7,21,﹣2,1.01001,+6,π(1)整数集合{…}(2)正分数集合{…}(3)无理数集合{…} 第八章《二元一次方程组》计算题1.解方程组:.2.解方程组.3.用指定的方法解下列方程组:(1)(代入法)(2)(加减法)4.计算:(1)计算:+﹣|1﹣|;(2)解方程组.5.解下列方程组:(1)(2).6.(1)计算:﹣|﹣|++(2)解方程组:.7.解方程组.8.解方程组:9.解方程组.10.解方程组.11.解方程组:.12.解方程组:(1)(2)(用加减法解).13.解方程组:(1)(2).14.解方程(组):(1)2﹣=(2).15.解方程组:.16.解方程组:.17.用适当方法解下列方程组.(1)(2).18.解方程组:(1)(2).19.解方程组(1)(2).20.解下列方程组(1)(2).21.解下列方程组:(1)(2).22.解方程组(1);(2).23.(1)(2).24..25.解下列方程组(1)(2).第九章《一元一次不等式》计算题1.解下列不等式,并把它的解集在数轴上表示出来.4﹣2(x﹣3)≥4(x+1)2.解不等式,并把解集在数轴上表示出来:2(x+1)>x.3.解不等式﹣1≤,并把解集在数轴上表示出来.4.解不等式组:.5.解不等式组,并把解集在数轴上表示出来.6.解不等式组:.7.解不等式组:.8.解不等式组并将解集在数轴上表示出来.9.解不等式组:,并把它的解集在数轴上表示出来.10.解不等式组:并在数轴上表示解集.11.解不等式组:12.解不等式组:.13.解不等式组:.14.解不等式组:.15.解不等式≥4,并将其解集在数轴上表示出来.16.解不等式﹣≥﹣1(把解集在数轴上表示出来)17.解不等式:x﹣<2x+.18.解不等式组并把其解集在数轴上表示出来.19.解不等式组:.20.解不等式组,并在数轴上将解集表示出来.21.(1)解不等式:<x+2;(2)解不等式组:.22.(1)计算(2)解方程组(3)解不等式组并把它的解集在数轴上表示出来.23.求不等式组的所有整数解.24.解不等式2x﹣7<5﹣2x.25.解不等式:>1﹣.26.解不等式5x+15>0,并将解集在数轴上表示出来.27.解不等式,并把解集表示在数轴上..28.求不等式2x﹣3≥x的解集.29.解下列不等式(组),并把解集表示在数轴上.(1)(2).30.解下列不等式组,并把不等式组的解集表示在数轴上(1).(2).31.解下列不等式(组):(1)≥﹣1;(2).32.解不等式(组)并在数轴上表示解集(1)(x+2)(x﹣2)+5>(x﹣5)(x+1)(2).33.解不等式(组)(1)3(1﹣x)<2(x+9);(2).34.解不等式(组)(1)﹣1<(2).35.解下列不等式(组),并把解集在数轴上表示出来.(1)3(1﹣x)﹣2(4﹣2x)≤0(2).36.解不等式(组),并把解集在数轴上表示出来.(1)5(x﹣1)>6x﹣10(2).37.求的自然数解.38.解不等式:.39.解下列不等式,并把解集在数轴上表示出来:(1)3(x+2)﹣8≥1﹣2(x﹣1);(2)﹣1>.40.解不等式组:.。

第十二章-实数-七年级(下)-知识点汇总-沪教版

第十二章-实数-七年级(下)-知识点汇总-沪教版

第十二章实数12.1实数的概念1、有理数和无理数统称为实数。

2、实数按如下方式分类:正有理数有理数零有限小数或无限循环小数负有理数实数正无理数无理数无限不循环小数负无理数3、实数和数轴上的点一一对应,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点表示一个实数。

4、正数大于零,负数小于零,正数大于负数。

5、两个正数,绝对值大的数较大,两个负数,绝对值大的数反而小。

6、无理数:无限不循环小数叫做无理数,有理数和无理数统称为实数。

12.2平方根和开平方1、如果一个数的平方等于a,那么这个数叫做a的平方根,也就做二次方根。

2、求一个数a的平方根的运算叫做开平方,a叫做被开方数。

3、3.一个正数a的平方根有两个,它们互为相反数。

零的平方根是零;负数没有平方根。

4、正数a的两个平方根可以用“± ”表示,其中表示a的正的平方根(又叫算术平方根),读作“根号a”;表示a的负平方根,读作“负根号a”。

零的平方根记作√0,√0 = 0(1)当a>0时,(a)²=a,(a)²=a(2)当a≥0时,2a=a当a≤0时,2a=-a12.3 立方根和开立方1、如果一个数的立方等于a,那么这个数叫做a的立方根,用“ ”表示,读作“三次根号a”。

中的a 叫做被开方数,“3”叫做根指数。

2、求一个数ɑ的立方根的运算叫做开立方。

3、正数的立方是一个正数,负数的立方是一个负数,零的立方等于零,所以正数的立方根是一个正数,负数的立方根是一个负数,零的立方根是零。

4、任意一个实数都有立方根,而且只有一个立方根。

12.4 n次方根1、如果一个数的n次方(n是大于1的整数)等于a,那么这个数叫做a的n次方根,当n为奇数时,这个数为a的奇次方根;当n为偶数时,这个数为ɑ的偶次方根2、求一个数a的n次方跟的运算叫做开n次方,a叫做被开方数,n叫做根指数。

3、实数a的奇次方根有且只有一个,用“n a”表示,其中被开方数a是任意一个实数,根指数n是大于1的奇数。

高一数学第一章知识点汇总

高一数学第一章知识点汇总

高一数学第一章知识点汇总数学是一门重要的学科,具有广泛的应用价值。

在高中的学习过程中,数学作为一门基础课程,有助于培养学生的逻辑思维和解决问题的能力。

高一数学的第一章主要围绕数与代数展开,以下是本章的知识点汇总:1. 实数与集合论- 实数:实数是一种既包括有理数又包括无理数的数集。

有理数包括整数、分数和循环小数,而无理数如π和√2。

实数是按照大小顺序排列的。

- 集合论:集合是一组元素的集合,可以用列表或特定符号表示。

常见符号有大括号{}和“元素属于”符号∈。

2. 数与式- 数:数是数学中的基本概念,分为整数、有理数和实数等。

数可以用来计数和度量。

- 数的分类:数分为自然数、整数、有理数和实数等。

不同类型的数具有不同的性质和运算规则。

- 表达式:由数、字母和运算符号组成的式子称为表达式。

表达式可以进行运算得到一个数值。

3. 一元一次方程与不等式- 一元一次方程:方程是含有未知数的等式,一元一次方程是指方程中只有一个未知数,并且未知数的最高次数为1。

解一元一次方程可以采用等式的性质和运算规则。

- 一元一次不等式:不等式是包含了不相等关系的式子,一元一次不等式是指不等式中只有一个未知数,并且未知数的最高次数为1。

解一元一次不等式可以根据不等式的性质和运算规则来确定多个解区间。

4. 二元一次方程与不等式- 二元一次方程组:方程组是含有多个未知数的方程集合,二元一次方程组是指方程组中只有两个未知数,并且未知数的最高次数为1。

解二元一次方程组可以采用代入法或消元法等方法。

- 二元一次不等式组:不等式组是含有多个不等式的式子集合,二元一次不等式组是指不等式组中只有两个未知数,并且未知数的最高次数为1。

解二元一次不等式组可以根据不等式的性质和运算规则来确定多个解区间。

5. 平方根与解析几何- 平方根:平方根是指一个数的平方等于给定数的非负实数解。

平方根分为正平方根和负平方根。

- 解析几何:解析几何是利用代数和数学分析方法研究几何问题的一种方法。

专题01实数(共43题)【解析版】--2023年中考数学真题专题讲解汇总

专题01实数(共43题)【解析版】--2023年中考数学真题专题讲解汇总

专题01实数(共43题)--2023年中考数学专题训练一、单选题1.(2022年云南省中考数学真题)中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.若零上10℃记作+10℃,则零下10℃可记作()A.10℃B.0℃C.-10℃D.-20℃【答案】C【解析】【分析】零上温度记为正,则零下温度就记为负,则可得出结论.【详解】解:若零上10°C记作+10°C,则零下10°C可记作:−10°C.故选:C.【点睛】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.2.(2022年四川省凉山州中考数学真题)−2022的相反数是()A.2022B.−2022C.−12022D.12022【答案】A【解析】【分析】根据相反数的意义即只有符号不同的两个数互为相反数,即可解答.【详解】解:﹣2022的相反数是2022,故选:A.【点睛】本题考查了相反数,熟练掌握相反数的意义是解题的关键.3.(2022年浙江省舟山市中考数学真题)若收入3元记为+3,则支出2元记为()A.1B.-1C.2D.-2【答案】D【解析】【分析】根据正负数的意义可得收入为正,收入多少就记多少即可.【详解】解:∵收入3元记为+3,∴支出2元记为-2.故选:D【点睛】本题考查正、负数的意义;在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.4.(2022年安徽省中考数学真题)下列为负数的是()A.−2B.3C.0D.−5【答案】D【解析】【分析】根据正负数的意义分析即可;【详解】解:A、−2=2B、3是正数,故该选项不符合题意;C、0不是负数,故该选项不符合题意;D、-5<0是负数,故该选项符合题意.故选D.【点睛】本题考查正负数的概念和意义,熟练掌握绝对值、算术平方根和正负数的意义是解决本题的关键.5.(2022年四川省南充市中考数学试卷)下列计算结果为5的是()A.−(+5)B.+(−5)C.−(−5)D.−|−5|【答案】C【解析】【分析】根据去括号法则及绝对值化简依次计算判断即可.【详解】解:A、-(+5)=-5,不符合题意;B、+(-5)=-5,不符合题意;C、-(-5)=5,符合题意;D、−−5=−5,不符合题意;故选:C.【点睛】题目主要考查去括号法则及化简绝对值,熟练掌握去括号法则是解题关键.6.(2022年甘肃省中考第三次数学模拟测试题)2的相反数是()A.−12B.12C.2D.−2【答案】D【解析】【分析】直接根据相反数的定义解答即可.【详解】解:2的相反数是﹣2.故选:D【点睛】此题考查的是相反数,熟练掌握相反数的定义是解题的关键.7.(2022年云南省中考数学真题)赤道长约为40000000m,用科学记数法可以把数字40000000表示为()A.4×107B.40×106C.400×105D.4000×103【答案】A【解析】【分析】根据科学记数法“把一个大于10的数表示成×10的形式(其中a是整数数位只有一位的数,即a大于或等于1且小于10,n是正整数)”进行解答即可得.【详解】解:40000000=4×107,【点睛】本题考查了科学记数法,解题的关键是掌握科学记数法表示形式中a与n的确定.8.(2022年浙江省舟山市中考数学真题)根据有关部门测算,2022年春节假期7天,全国国内旅游出游251000000人次.数据251000000用科学记数法表示为()A.2.51×108B.2.51×107C.25.1×107D.0.251×109【答案】A【解析】【分析】绝对值大于1的数可以用科学记数法表示,一般形式为a×10n,为正整数,且比原数的整数位数少1,据此可以解答.【详解】解:251000000=2.51×108.故选:A【点睛】本题考查用科学记数法表示较大的数,熟练掌握科学记数法表示较大的数一般形式为×10,其中1≤<10,是正整数,正确确定的值和的值是解题的关键.9.(2022年江苏省连云港市中考数学真题)2021年12月9日,“天宫课堂”正式开课,我国航天员在中国空间站首次进行太空授课,本次授课结束时,网络在线观看人数累计超过14600000人次.把“14600000”用科学记数法表示为()A.0.146×108B.1.46×107C.14.6×106D.146×105【答案】B【解析】【分析】科学记数法的表现形式为×10的形式,其中1≤<10,n为整数,确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n是正数,当原数绝对值小于1时n是负数;由此进行求解即可得到答案.【详解】解:14600000=1.46×107.【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的具体要求.10.(2022年四川省达州市中考数学真题)2022年5月19日,达州金垭机场正式通航.金亚机场位于达州高新区,占地总面积2940亩,概算投资约为26.62亿元.数据26.62亿元用科学记数法表示为()A.2.662×108元B.0.2662×109元C.2.662×109元D.26.62×1010元【答案】C【解析】【分析】用科学记数法表示较大的数时,一般形式为×10,其中1≤|U<10,为整数.【详解】解:26.62亿=2662000000=2.662×109.故选C.【点睛】本题考查了科学记数法,科学记数法的表示形式为×10的形式,其中1≤|U<10,为整数.确定的值时,要看把原来的数,变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值≥10时,是正数;当原数的绝对值<1时,是负数,确定与的值是解题的关键.11.(2022年浙江省金华市中考数学真题)体现我国先进核电技术的“华龙一号”,年发电能力相当于减少二氧化碳排放16320000吨,数16320000用科学记数法表示为()A.1632×104B.1.632×107C.1.632×106D.16.32×105【答案】B【解析】【分析】在用科学记数法表示的大于10的数时,×10的形式中a的取值范围必须是1≤<10,10的指数比原来的整数位数少1.【详解】解:数16320000用科学记数法表示为1.632×107.故选:B.【点睛】本题考查科学记数法,对于一个写成用科学记数法写出的数,则看数的最末一位在原数中所在数位,其中a 是整数数位只有一位的数,10的指数比原来的整数位数少1.12.(2022年安徽省中考数学真题)据统计,2021年我省出版期刊杂志总印数3400万册,其中3400万用科学记数法表示为()A.3.4×108B.0.34×108C.3.4×107D.34×106【答案】C【解析】【分析】将3400万写成34000000,保留1位整数,写成×10(1≤<10)的形式即可,n为正整数.【详解】解:3400万=34000000,保留1位整数为3.4,小数点向左移动7位,因此34000000=3.4×107,故选:C.【点睛】本题考查科学记数法的表示方法,熟练掌握×10(1≤|U<10)中a的取值范围和n的取值方法是解题的关键.13.(2022年四川省凉山州中考数学真题)我州今年报名参加初中学业水平暨高中阶段学校招生考试的总人数为80917)A.8.0917×106B.8.0917×105C.8.0917×104D.8.0917×103【答案】C【解析】【分析】根据科学记数法的定义即可得.【详解】解:科学记数法:将一个数表示成×10的形式,其中1≤<10,为整数,这种记数的方法叫做科学记数法,则80917=8.0917×104,故选:C.【点睛】本题考查了科学记数法,熟记科学记数法的定义(将一个数表示成×10的形式,其中1≤<10,为整数,这种记数的方法叫做科学记数法)是解题关键.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.14.(2022年四川省成都市中考数学真题)2022年5月17日,工业和信息化部负责人在“2022世界电信和信息社会日”大会上宣布,我国目前已建成5G基站近160万个,成为全球首个基于独立组网模式规模建设5G网络的国家.将数据160万用科学记数法表示为()A.1.6×102B.1.6×105C.1.6×106D.1.6×107【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是非负数;当原数的绝对值<1时,n是负数.【详解】解答:解:160万=1600000=1.6×106,故选:C.【点睛】a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.(2022年四川省泸州市中考数学真题)2022年5月,四川省发展和改革委员会下达了保障性安居工程2022年第一批中央预算内投资计划,泸州市获得75500000元中央预算内资金支持,将75500000用科学记数法表示为()A.7.55×106B.75.5×106C.7.55×107D.75.5×107【答案】C【解析】【分析】科学记数法表示较大的数形式为a×10n的形式,其中1≤|a|<10,n为整数,10的指数n比原来的整数位数少1.75500000=7.55×107故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.16.(2022年山东省滨州市中考数学真题)某市冬季中的一天,中午12时的气温是−3℃,经过6小时气温下降了7℃,那么当天18时的气温是()A.10℃B.−10℃C.4℃D.−4℃【答案】B【解析】【分析】根据有理数减法计算−3−7=−10℃即可.【详解】解:∵中午12时的气温是−3℃,经过6小时气温下降了7℃,∴当天18时的气温是−3−7=−10℃.故选B.【点睛】本题考查有理数的减法,掌握有理数的减法法则是解题关键.17.(2022年四川省遂宁市中考数学真题)2022年4月16日,神舟十三号飞船脱离天宫空间站后成功返回地面,总共飞行里程约198000公里.数据198000用科学计数法表示为()A.198×103B.1.98×104C.1.98×105D.1.98×106【答案】C【解析】【分析】用科学记数法表示较大的数时,一般形式为×10,其中1≤|U<10,为整数.【详解】解:198000=1.98×105.故选:C.本题考查了科学记数法,科学记数法的表示形式为×10的形式,其中1≤|U<10,为整数.确定的值时,要看把原来的数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值≥10时,是正数;当原数的绝对值<1时,是负数,确定与的值是解题的关键.18.(2022年浙江省衢州市柯城区九年级第二次模拟考试数学试题)-3的倒数是()A.3B.-3C.13D.−13【答案】D【解析】【分析】根据倒数的定义,即可计算出结果.【详解】解:-3的倒数是−13;故选:D【点睛】本题考查了倒数的定义:乘积是1的两数互为倒数.19.(2022年四川省自贡市中考数学试题)自贡市江姐故里红色教育基地自去年底开放以来,截止今年5月,共接待游客180000余人;人数180000用科学记数法表示为()A.1.8×104B.18×104C.1.8×105D.1.8×106【答案】C【解析】【分析】用移动小数点的方法确定a值,根据整数位数减一原则确定n值,最后写成×10的形式即可.【详解】∵180000=1.8×105,故选C.【点睛】本题考查了科学记数法表示大数,熟练掌握把小数点在左边第一个非零数字的后面确定a,运用整数位数减去1确定n值是解题的关键.20.(2022年四川省自贡市中考数学试题)下列运算正确的是()A.−12=−2B.323−2=1C.6÷3=2D.−=0【答案】B【解析】【分析】根据乘方运算,平方差公式,同底数幂的除法法则,零指数幂的运算法则进行运算即可.【详解】A.−12=1,故A错误;B.3+23−2=32−22=1,故B正确;C.633,故C错误;D.−=1,故D错误.故选:B.【点睛】本题主要考查了整式的运算和实数的运算,熟练掌握平方差公式,同底数幂的除法法则,零指数幂的运算法则,是解题的关键.21.(2022年山东省淄博市高青县中考二模数学试题)−2的倒数是()A.2B.12C.−2D.−12【答案】D【解析】【分析】根据倒数的定义求解即可.【详解】解:-2的倒数是−12,故D正确.故选:D.【点睛】本题主要考查了倒数的定义,熟练掌握乘积为1的两个数互为倒数,是解题的关键.22.(2022年四川省达州市中考数学真题)下列四个数中,最小的数是()A.0B.-2C.1D.2【答案】B【解析】【分析】根据实数的大小比较即可求解.【详解】解:∵−2<0<1<2,∴最小的数是−2,故选B.【点睛】本题考查了实数的大小比较,掌握实数的大小比较是解题的关键.23.(2022年浙江省舟山市中考数学真题)估计6的值在()A.4和5之间B.3和4之间C.2和3之间D.1和2之间【答案】C【解析】【分析】【详解】∵4<6<9∴2<6<3故选:C.【点睛】本题主要考查了无理数的估算能力,要求掌握无理数的基本估算技能,灵活应用.“夹逼法”是估算的一般方法,也是常用方法.24.(2022年浙江省金华市中考数学真题)在−2,12,3,2中,是无理数的是()A.−2B.12C.3D.2【答案】C【解析】【分析】根据无理数的定义判断即可;【详解】解:∵-2,12,2是有理数,3是无理数,故选:C.【点睛】本题考查了无理数的定义:无限不循环小数叫做无理数,如开方开不尽的数的方根、π.25.(2022年四川省凉山州中考数学真题)化简:(−2)2=()A.±2B.-2C.4D.2【答案】D【解析】【分析】先计算(-2)2=4,再求算术平方根即可.【详解】解:−22=4=2,故选:D.【点睛】本题考查算术平方根,熟练掌握算术平方根的定义是解题的关键.26.(2022年山东省滨州市中考数学真题)下列计算结果,正确的是()A.(2)3=5B.8=32C.38=2D.cos30°=12【答案】C【解析】【分析】根据幂的乘方、算术平方根的计算、立方根的化简和特殊角的三角函数值逐一进行计算即可.【详解】解:A、(2)3=2×3=6,该选项错误;B、8=2×2×2=22,该选项错误;C、38=32×2×2=2,该选项正确;D、cos30°=故选:C.【点睛】本题考查了幂的乘方、算术平方根的计算、立方根的化简和特殊角的三角函数值,熟练掌握运算法则是解题的关键.27.(2022年四川省泸州市中考数学真题)与2+15最接近的整数是()A.4B.5C.6D.7【答案】C【解析】【分析】估算无理数的大小即可得出答案.【详解】解:∵12.25<15<16,∴3.5<15<4,∴5.5<2+15<6,∴最接近的整数是6,故选:C.【点睛】本题考查了估算无理数的大小,无理数的估算常用夹逼法,用有理数夹逼无理数是解题的关键.28.(2022年四川省泸州市中考数学真题)−4=()A.−2B.−12C.12D.2【答案】A【解析】【分析】根据算术平方根的定义可求.【详解】解:−4=-2,【点睛】本题考查了算术平方根的定义,要注意正确区分平方根与算术平方根,解题的关键是掌握算术平方根的定义.29.(2022年重庆市中考数学试卷A卷)估计3×(23+5)的值应在()A.10和11之间B.9和10之间C.8和9之间D.7和8之间【答案】B【解析】【分析】先化简3×(23+5)=6+15,利用9<15<16,从而判定即可.【详解】3×(23+5)=6+15,∵9<15<16,∴3<15<4,∴9<6+15<10,故选:B.【点睛】30.(2022年重庆市中考数学真题(B卷))估计54−4的值在()A.6到7之间B.5到6之间C.4到5之间D.3到4之间【答案】D【解析】【分析】根据49<54<64,得到7<54<8,进而得到3<54−4<4,即可得到答案.【详解】解:∵49<54<64,∴7<54<8,∴3<54−4<4,即54−4的值在3到4之间,故选:D.此题考查了无理数的估算,正确掌握无理数的估算方法是解题的关键.二、填空题31.(2022年重庆市中考数学试卷A卷)计算:−4+3−0=_________.【答案】5【解析】【分析】根据绝对值和零指数幂进行计算即可.【详解】解:−4+3−0=4+1=5,故答案为:5.【点睛】本题考查了绝对值和零指数幂的计算,熟练掌握定义是解题的关键.32.(2022年四川省南充市中考数学试卷)比较大小:2−2_______________30.(选填>,=,<)【答案】<【解析】【分析】先计算2−2=14,30=1,然后比较大小即可.【详解】解:2−2=14,30=1,∵14<1,∴2−2<30,故答案为:<.【点睛】本题主要考查有理数的大小比较,负整数指数幂的运算,零次幂的运算,熟练掌握运算法则是解题关键.33.(2022年重庆市中考数学真题(B卷))|−2|+(3−5)0=_________.【答案】3【解析】先计算绝对值和零指数幂,再进行计算即可求解.【详解】解:|−2|+(3−5)0=2+1=3故答案为:3.【点睛】本题考查了实数的运算,解答此题的关键是要掌握负数的绝对值等于它的相反数,任何不为0的数的0次幂都等于1.34.(2022年四川省凉山州中考数学真题)计算:-12+|-2023|=_______.【答案】2022【解析】【分析】先计算有理数的乘方、化简绝对值,再计算加法即可得.【详解】解:原式=−1+2023=2022,故答案为:2022.【点睛】本题考查了含乘方的有理数混合运算,熟练掌握有理数的运算法则是解题关键.三、解答题35.(2022年四川省泸州市中考数学真题)计算:30+2−1+2cos45°−−【答案】2【解析】【分析】根据零指数幂、负整数指数幂、特殊角三角函数、绝对值的性质化简即可.【详解】原式=1+12+2−12=2.本题考查了实数的运算,熟练掌握运算法则是解题的关键.36.(2022年浙江省丽水市中考数学真题)计算:9−(−2022)0+2−1.【答案】52【解析】【分析】根据求一个数的算术平方根、零指数和负整数指数幂的运算法则进行运算,即可求得.【详解】解:9−(−2022)0+2−1=3−1+12=52.【点睛】本题考查了求一个数的算术平方根、零指数和负整数指数幂的运算法则,熟练掌握和运用各运算法则是解决本题的关键.37.(2022年江苏省连云港市中考数学真题)计算:(−10)×−−16+20220.【答案】2【解析】【分析】根据有理数的乘法,二次根式的性质,零指数的计算法则求解即可.【详解】解:原式=5−4+1=2.【点睛】本题主要考查了有理数的乘法,二次根式的性质,零指数,熟知相关计算法则是解题的关键.38.(2022年四川省达州市中考数学真题)计算:(−1)2022+|−2|−−2tan45°.【答案】0【解析】先计算乘方和去绝对值符号,并把特殊角三角函数值代入,再计算乘法,最后计算加减即可求解.【详解】解:原式=1+2-1-2×1=1+2-1-2=0.【点睛】本题考查实数的混合运算,熟练掌握零指数幂的运算、熟记特殊角的三角函数值是解题的关键.39.(2022年浙江省金华市中考数学真题)计算:(−2022)0−2tan45°+|−2|+9.【答案】4【解析】【分析】根据零指数幂,正切三角函数值,绝对值的化简,算术平方根的定义计算求值即可;【详解】解:原式=1−2×1+2+3=1−2+2+3=4;【点睛】本题考查了实数的混合运算,掌握特殊角的三角函数值是解题关键.40.(2022−16+−22.【答案】1【解析】【分析】原式运用零指数幂,二次根式的化简,乘方的意义分别计算即可得到结果.【详解】−16+−22=1−4+4=1故答案为:1【点睛】本题主要考查了实数的运算,熟练掌握零指数幂,二次根式的化简和乘方的意义是解本题的关键.41.(2022−9+3tan30°+2.(2)解不等式组:3(+2)≥2+5 ①2−1<K23 ②.【答案】(1)1;(2)−1≤<2【解析】【分析】(1)本题涉及负整数指数幂、特殊角的三角函数值、绝对值、二次根式化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.(2)分别解出两个不等式的解集再求其公共解.【详解】解:(19+3tan30°+2=2−3+3+2−3=−1+3+2−3=1.(2)3(+2)≥2+5 ①2−1<K23 ②不等式①的解集是x≥-1;不等式②的解集是x<2;所以原不等式组的解集是-1≤x<2.【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型,解决此类题目的关键是熟练掌握负整数指数幂、特殊角的三角函数值、绝对值、二次根式等考点的运算.求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.42.(2022年四川省德阳市中考数学真题)计算:12+3.14−0−3tan60°+1−+−2−2.【答案】14【解析】【分析】根据二次根式的化简,零指数幂的定义,特殊角的三角函数值,绝对值的性质以及负整数指数幂的运算法则分别化简后再进行实数的加减法运算.【详解】解:12+(3.14−p0−3tan60°+1−+(−2)−2=23+1−33+3−1+14=14.【点睛】此题考查实数的运算法则,正确掌握二次根式的化简,零指数幂的定义,特殊角的三角函数值,绝对值的性质以及负整数指数幂的运算法则是解题的关键.43.(2022年重庆市中考数学真题(B卷))对于一个各数位上的数字均不为0的三位自然数N,若N能被它的各数位上的数字之和m整除,则称N是m的“和倍数”.例如:∵247÷(2+4+7)=247÷13=19,∴247是13的“和倍数”.又如:∵214÷(2+1+4)=2147=30⋯⋯4,∴214不是“和倍数”.(1)判断357,441是否是“和倍数”?说明理由;(2)三位数A是12的“和倍数”,a,b,c分别是数A其中一个数位上的数字,且>>.在a,b,c中任选两个组成两位数,其中最大的两位数记为op,最小的两位数记为op,若op+op16为整数,求出满足条件的所有数A.【答案】(1)357不是15“和倍数”,441是9的“和倍数”;理由见解析(2)数A可能为732或372或516或156【解析】【分析】(1)根据题目中给出的“和倍数”定义进行判断即可;(2)先根据三位数A是12的“和倍数”得出++=12,根据>>,是最大的两位数,是最小的两位数,得出+=10+2+10,op+op16=(k为整数),结合++=12得出=15−2,根据已知条件得出1<<6,从而得出=3或=5,然后进行分类讨论即可得出答案.(1)解:∵357÷3+5+7=357÷15=23⋅⋅⋅⋅⋅⋅12,∴357不是15“和倍数”;∵441÷4+4+1=441÷9=49,∴441是9的“和倍数”.(2)∵三位数A是12的“和倍数”,∴++=12,∵>>,∴在a,b,c中任选两个组成两位数,其中最大的两位数=10+,最小的两位数=10+,∴+=10++10+=10+2+10,∵op+op16为整数,设op+op16=(k为整数),则10r2r1016=,整理得:5+5+=8,根据++=12得:+=12−,∵>>,∴12−>,解得<6,∵“和倍数”是各数位上的数字均不为0的三位自然数,∴>>>0,∴>1,∴1<<6,把+=12−代入5+5+=8得:512−+=8,整理得:=15−2,∵1<<6,k为整数,∴=3或=5,当=3时,+=12−3=9,∵>>>0,∴>3,0<<3,∴=7,=3,=2,或=8,=3,=1,要使三位数A是12的“和倍数”,数A必须是一个偶数,当=7,=3,=2时,组成的三位数为732或372,∵732÷12=61,∴732是12的“和倍数”,∵372÷12=31,∴372是12的“和倍数”;当=8,=3,=1时,组成的三位数为318或138,∵318÷12=26⋅⋅⋅⋅⋅⋅6,∴318不是12的“和倍数”,∵138÷12=11⋅⋅⋅⋅⋅⋅6,∴138不是12的“和倍数”;当=5时,+=12−5=7,∵>>>0,∴5<<7,∴=6,=5,=1,组成的三位数为516或156,∵516÷12=43,∴516是12的“和倍数”,∵156÷12=13,∴156是12的“和倍数”;综上分析可知,数A可能为732或372或516或156.【点睛】本题主要考查了新定义类问题,数的整除性,列代数式,利用数位上的数字特征和数据的整除性,是解题的关键,分类讨论是解答本题的重要方法,本题有一定的难度.。

高一数学复习知识点总结汇总

高一数学复习知识点总结汇总

高一数学复习知识点总结汇总1. 实数1.1 实数的概念和表示实数是数学中最基本的概念之一,包括有理数和无理数。

实数可以用分数或小数表示,其中有理数可以表示为分数或小数,而无理数则仅能表示为小数形式。

1.2 实数的运算实数具有四则运算的性质,即加法、减法、乘法和除法。

实数的四则运算遵守通常的运算规则和先后顺序,并满足乘法分配律和交换律、加法分配律和交换律、乘法和加法的结合律以及乘法和加法的交换律。

1.3 实数的集合实数可以被划分为三个集合,即自然数集合、整数集合和有理数集合。

自然数集合是一个非负整数的集合;整数集合包括所有实数(正数、负数和0);有理数集合由有理数和无理数组成。

1.4 实数的属性实数具有许多重要的属性,包括有序性、无限性、连续性和密度。

有序性表示每个实数都有一个确定的大小;无限性表示实数集合是无穷大的;连续性表示实数集合中没有间断点;密度表示实数集合中有无限多个有理数和无理数。

2. 函数2.1 函数的概念和图像函数是指由一个集合中的元素到另一集合中元素的一种映射关系,通常用f(x)来表示。

函数图像是一种表示函数关系的可视化形式,通常是一个由点构成的图形。

2.2 函数的性质函数有许多重要的性质,包括单调性、奇偶性、周期性和连续性。

单调性表示函数的图像不断上升或下降;奇偶性表示函数是否对称;周期性表示函数图像是否在特定时间间隔内重复;连续性表示函数是否在一段区间内一直存在。

2.3 函数的图像与方程函数图像和方程有密切的关系。

根据函数图像可以确定函数的方程,而方程也可以确定函数的图像。

对于一些特殊的函数(例如一次函数、二次函数和三次函数),方程和函数图像有一些特定的形式和关系。

2.4 函数的应用函数在许多实际问题中具有重要的应用,例如在统计学、物理学、经济学和工程学等领域。

函数可以用来描述现实世界中的变化规律,从而为实际问题提供解决方法。

3. 解方程3.1 一元一次方程一元一次方程是一种只含有一个未知数的一次方程。

中职数学基础知识汇总

中职数学基础知识汇总

中职数学基础知识汇总
1.数的概念与运算
-自然数、整数、有理数、实数、复数的概念
-绝对值与相反数
-加法、减法、乘法、除法的运算规则
-分数的概念及其运算
-百分数的概念及其运算
-计算器的使用技巧和注意事项
-排列组合与与因式分解的相关知识
2.代数与函数
-代数表达式的概念与运算
-方程与不等式的解法
-一次函数、二次函数、指数函数、对数函数的概念与性质-函数的图像与性质
-函数的运算与复合函数
-线性方程组的解法与应用
3.几何与变换
-二维平面几何与三维空间几何的基本概念和性质
-各种角的概念和性质
-平行线与垂直线的判定与性质
-直线与曲线的交点与距离的计算
-图形的相似性、共面性、平行性与垂直性的判定-三角形、四边形、多边形的性质与计算
-圆的概念与运算
-平面坐标系与直角坐标系的应用
4.概率与统计
-随机事件与概率的概念
-概率的加法与乘法公式
-排列与组合的计算
-随机变量与概率分布的概念
-均值、中位数、众数的概念与计算
-统计调查与数据处理的方法
-统计图表的制作与解读。

初中知识汇总——实数与数列篇

初中知识汇总——实数与数列篇

初中知识汇总——实数与数列篇实数与数列是初中数学中的重要内容,通过学习实数与数列,可以帮助学生建立起扎实的数学基础,为将来更深入的学习打下坚实的基础。

本文将从实数和数列两个方面进行介绍与总结。

实数是数学中最基础且最重要的一个概念。

实数包括有理数和无理数。

有理数包括整数、分数和整数部分为零的小数。

而无理数则不能表示为有理数的比值。

实数的特点在于它们可以在数轴上对应一个唯一的点。

实数的运算包括加法、减法、乘法和除法。

这些运算与我们平时在生活中所使用的运算是类似的,只是在数学中我们需要遵循一些规则。

加法和乘法满足交换律、结合律和分配律,而减法和除法则有一些特殊的性质。

理解实数运算的规则对于解决各种数学问题具有重要意义。

实数的大小可以通过比较大小符号来判断。

比如,对于两个实数a和b,若a大于b,则记作a>b;若a小于b,则记作a<b;若a等于b,则记作a=b。

了解实数的大小关系有助于进行元素排序、不等式求解等数学问题的解决。

数列是一系列按照一定规律排列的数的集合。

数列可以通过通项公式来表示,通项公式表明了数列中的每一项与项数之间的关系。

根据通项公式,我们可以计算数列的任意一项,也可以计算数列的前n项之和。

数列的求和有时被称为数列的部分和。

常见的数列包括等差数列和等比数列。

等差数列的每一项与前一项之间的差是恒定的,等比数列的每一项与前一项之间的比是恒定的。

等差数列和等比数列的通项公式可以用来计算数列的任意一项,而部分和的公式则可以用来求和。

数列的应用非常广泛。

在自然科学中,数列可以用来描述物理量随时间的变化规律;在经济学中,数列可以用来描述投资回报的变化规律;在计算机科学中,数列可以用来描述计算机算法的时间复杂度等。

因此,熟练掌握数列的概念和相关计算方法对于学生的综合素养提升有着重要作用。

实数与数列是初中数学中的基础内容,通过对实数与数列的学习,学生可以更好地理解数学的思维方式和逻辑推理方法。

实数知识点汇总及经典

实数知识点汇总及经典

第二章 实数一、 平方根、立方根1..算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么正数x 叫做a 的算术平方根,记作a 。

0的算术平方根为0;从定义可知,只有当a ≥0时,a 才有算术平方根。

2.平方根:一般地,如果一个数x 的平方根等于a ,即x 2=a ,那么数x 就叫做a 的平方根。

正数有两个平方根〔一正一负〕它们互为相反数;0只有一个平方根,就是它本身;负数没有平方根。

3.正数的立方根是正数;0的立方根是0;负数的立方根是负数。

4. (1)())0,0(0,0>≥=≥≥=⨯b a b a b a b a ab b a〔2〕假设b 3=a ,那么b 叫做a 的立方根。

〔3(0)(0).a a a a a ≥⎧==⎨-<⎩ 二、实数1.实数的分类〔1〕按实数的定义分类:2、实数的运算〔1〕有理数的运算定律在实数范围内都适用,其中常用的运算定律有加法交换律、乘法交换律、加法结合律、乘法分配律、乘法结合律。

〔2〕在实数范围内进展运算的顺序:先算乘方、开方,再算乘除,最后算加减。

运算中有括号的,先算括号内的,同一级运算从左到右依次进展。

3、实数的大小比拟常用方法:数轴表示法、作差法、平方法、估值法。

〔1〕在数轴上表示两个数的点,右边的点表示的数大,左边的点表示的数小。

〔2〕正数大于零,负数小于零;两个正数,绝对值大的较大;两个负数,绝对值大的较小。

〔3〕设a,b是任意两实数,假设a-b>0,那么a>b;假设a-b=0,那么a=b;假设a-b<0,那么a<b。

4、数轴〔1〕规定了原点、正方向与单位长度的直线叫做数轴。

〔2〕数轴的三要素为原点、正方向与单位长度。

数轴上的点与实数一一对应。

所有的有理数都可以用数轴上的点表示,但数轴上的点所表示的不都是有理数。

5、相反数、倒数、绝对值〔1〕、只有符号不同的两个实数,其中一个叫做另一个的相反数。

初二数学上册知识点汇总(最新版)

初二数学上册知识点汇总(最新版)

初二数学(上册)知识点总结知识提纲第一章 勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 2、勾股定理的逆定理(直角三角形的判定条件)如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形,且最长边所对的角是直角。

3、勾股数:满足222c b a =+的三个正整数,称为勾股数。

第二章 实 数一、实数的概念及分类1、实数的分类 正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。

在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数值,如sin60o 等 二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。

2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。

(|a|≥0)。

零的绝对值是它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。

3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

5、估算三、平方根、算术平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。

实数和整数

实数和整数

整数和实数复习知识汇总整数一、整数(一)整数1、整数的定义:整数是正整数、零、负整数的统称。

扩展定义:两个整数的和、差、积任然是整数。

正整数整数零负整数2、整除的定义:设a,b是任意两个整数,其中b≠0,如果存在一个整数q,使得等式a=bq成立,则称为b整除a或者a被b整除,记作b丨a,此时我们把b叫做a的约数(因数),把a 叫做b的倍数。

3、整除的性质:(1)如果c丨b,b丨a,则c丨a;(2)如果c丨b,b丨a,则c丨(a+b);(3)如果c丨b,b丨a,则对任意的整数m,n,有c丨(m a+nb)。

(二)余数1、带余数除法的定义:设a、b是任意两个整数,其中b≠0,如果对任意的整数q,均不满足a=bq,则b不整除a。

设a、b是两个整数,其中b>0,若存在整数q和r,使得a=bq+r(0≤r<b)成立,而且q和r都是唯一的,则q叫做a被b除所得的不完全商,r叫做a被b除所得的余数。

【注】由整除的定义及带余除法的定义可知,若b>0,则b丨a的充分必要条件是带余除法中余数r=0。

2、带余除法的性质:如果a=bq+r,那么b整除a-r,记作b丨(a-r)。

二、奇数和偶数1、定义:凡是能被2整除的数叫偶数,不能被2整除的叫奇数。

因为偶数是2的倍数,我们通常用2k来表示偶数,用2k+1来表示奇数,这里k是整数。

2、奇数与偶数的运算关系(1)奇数±奇数=偶数,偶数±偶数=偶数,奇数±偶数=奇数,偶数±奇数=奇数。

(2)奇数×奇数=奇数,奇数×偶数=偶数,偶数×偶数=偶数,奇数不可能被偶数整除。

三、质数与合数1、定义一个大于1的自然数,如果它的正因数只有1和它本身,则称这个数是质数(或者素数)。

一个大于1的自然数如果除了1和它本身,还有其他正因数,则称这个数是合数(或复合数)。

由定义可知,除了最小质数2是偶数外,其余的质数都是奇数。

2、性质(1)若p是质数,a是任意一个整数,则要么a能被p整除(p丨a),要么p和a互质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.1 平方根基础训练 一、填空题1.一个正数有 个平方根,0有 个平方根,负数 平方根.2.169的算术平方根是 ,它的平方根是 . 3.16的算术平方根是 ,平方根是 . 4.一个数的平方等于49,则这个数是 . 5. 7的平方根是 。

6.一个负数的平方等于81,则这个负数是 .7.如果一个数的算术平方根是5,则这个数是 ,它的平方根是 8. 若一个数的绝对值5,则这个数为__________。

9.若有意义,则。

10.满足35x -<<的整数x 是____。

二、选择题1.下列说法正确的个数是 ( )①∵36.0)6.0(-2= ∴-0.6是0.36的一个平方根 ②∵0.82=0.64 ∴0.64的平方根是0.8③∵169432=)(- ∴43169=- ④∵2552=)(±∴525±±= A 1个 B 2个 C 3个 D 4个2.下列各式中,正确的是 ( )2222A 22B 39C 93D 1313±.(-)=- .(-)=.(-)= .(-)=3.下列各式没有意义的是( )A 、5-B 、()32- C 、0 D 、4-4.若,则( )。

(A )-0.7 (B )±0.7 (C )0.7 (D )0.49 5.用数学式子表示“169的平方根是43±”应是 ( )93939393A B C D 164164164164±±±.= .= .= .-=- 12.数a 在数轴上的位置如图所示,下列各数中,有平方根的是( ) A 、a B 、-a C 、a 2- D 、a 313.前10个正整数的算术平方根中,是有理数的共有( )A 、1个B 、2个C 、3个D 、4个 三、解答题14.快速的判断下列各数有没有平方根?如果有,求出它的算术平方根,如果没有,请说明理由。

(1)16 (2)0.0081 (3) )(-25 (4)-0.4915.口算:(1)121 (2)256±(3)169- (4)259-①169100-②361371-± ③12522+± ④()1342-- (1)x 2 -12149 = 0探究创新1、 正方形的面积变为原来的25倍,那么它的周长变为原来的 倍2、五块同样大小的正方形木板,总面积是11.25平方米,求木板每边的长3、依次连接4×4方格各条边中点,得到一个正方形,如图阴影部分,求这个正方形的面积和边长。

4.甲同学用如下图示方法作出了C 点,表示数13,在△OA B 中,∠OAB =90°,OA =2,AB =3,且点O 、A 、C 在同一数轴上,OB =OC . (1)请说明甲同学这样做的理由:a1-6 -5 -4 -3 -2 -1 O 1 2 3 4 5 6 BAC(2)仿照甲同学的做法,在如下所给数轴上描出表示-29的点A.5.实数a、b、c在数轴上的对应点如图所示:化简:| a-b | -| c-a | + | b-c |.6.一个正数x的平方根是2a-3与5-a,则a是多少?7.已知:22x-4+4-x+1x y y=x-2、为实数,,求3x+4y的值。

-6 -5 -4 -3 -2 -1 O 1 2 3 4 5 63.2实数一、填空题1.在 262262226.4,9,4.0,81,8,2,31,14.3---∙π.)个之间依次多两个216( (72)(72)-+,57-中:属于有理数的有 属于无理数的有属于正实数的有 属于负实数的有2.比较大小:53,2π1.5 3.23-的相反数地 ,绝对值是 .4.写出两个无理数,使它们的和为有理数 ;写出两个无理数,使它们的积为有理数 .5.在数轴上,到原点距离为5个单位的点表示的数是 . 二、选择题1.下列说法正确是 ( )A.不存在最小的实数B.有理数是有限小数C.无限小数都是无理数D.带根号的数都是无理数 2.下列说法中,正确的是 ( )A.4,3,2都是无理数B.无理数包括正无理数、负无理数和零C.实数分为正实数和负实数两类D.绝对值最小的实数是0 3.和数轴上的点一一对应的是( )A.整数B.有理数C.无理数D.实数 4.下列说法中,正确的是( )A .数轴上的点表示的都是有理数 B.无理数不能比较大小 C.无理数没有倒数及相反数 D.实数与数轴上的点是一一对应的 5.两个实数在数轴上的对应点和原点的距离相等,则这两个数( )A 、一定相等B 、一定不相等C 、相等或互为相反数D 、以上都不对 6.满足大于π-而小于π的整数有( )A 、3个B 、4个C 、6个D 、7个 7.下列说法中正确的是( )A 、实数a -是负数B 、实数a -的相反数是aC 、a -一定是正数D 、实数a -的绝对值是a8.如果一个圆的半径是有理数,那么这个圆的周长,面积分别属于( )A、有理数、有理数B、有理数、无理数C、无理数、有理数D、无理数、无理数三、解答题1. 化简:(保留准确值)2.在数轴表示下列各数,并把它们按从小到大的顺序排列,用“>”连接:-3.0,-2,25,0,3.143、已知长方形的长与宽为比3:2,面积为36cm2,求长方形的长与宽。

4、利用4×4方格,作出面积为10平方厘米的正方形,然后在数轴上表示实数1010与-。

3.3立方根一、填空题1.因为 的立方是-64,所以-64的立方根是 ,即=364- 2.-1的立方根是 ,0的立方根是 ,833的立方根是 . 3.计算:=--327 ,()=-338 ,()383-= .4.3827的绝对值为 ,相反数为 ,倒数为 。

5.若()233-=a ,则a = ,若33-=x ,则x = 6.x 是2)9(-的平方根,y 是64的立方根,则x +y 的值为 二、选择题1.一个正数的算术平方根与立方根是同一个数,则这个数是( ) A.1 B.0或1 C.-1或1 D.1,0或-12.若一个数的平方根是8±,则这个数的立方根是 ( ) A 、4 B 、4± C 、2 D 、2± 3. 下列说法中正确的是 ( )A.512的立方根是8,记作85123=;B.负数没有立方根C.一个数的立方根与平方根同号D.如果一个数有立方根,那么它一定有平方根 4.下列各式中,正确的是( )A.39=--B.283-=C.21813±= D.3273-=- 5.下列运算正确的是 ( )A.3333--=-;B.3333=-C.3333-=-D.3333-=-6.,则的值是( )(A ) (B ) (C ) (D )7. 下列说法中正确的是 ( )A.一个正数的平方根和立方根都只有一个;B.零的平方根和立方根是零C.1的平方根与立方根都等于它本身;D.一个数的立方根与其自身相等的数只有-1三、解答题1.口算:求下列个数的立方跟:(1)-0.008 (2)()12005- (3)64611(1)33001.0833+ (2)3216- (3)3327102112561--- (1)38515 (2)33)2(-(3) ()36π(4)38144-+(2)()3199x +=探索创新1、实数b a ,在数轴上的对应点的位置如图所示,则33b 和a 大小关系为( ) A 、33b >a B 、33b <a C 、33b ≥a D 、33b ≤a2、如果一个球的体积为原来的8倍,那么它的半径为原来的多少倍?如果一个球的体积变为原来的27倍,那么它的半径变为原来的多少倍?如果球的体积变为原来的1000倍呢?变为原来的几倍呢?(球的体积公式为r V 334π=)。

3、一个正方体木块的体积是125cm 3,现将它锯成8块同样大小的正方体小木块,求每个小正方体木块的表面积。

4、一个正方体A 的体积是棱长为9cm 的正方体B 的体积的271,则A 的棱长是多少厘米?ab-13.5 实数的运算一、填空题1.计算12)21()2(--÷--0)121(-=__________. 7.若0)61(62=++-y x ,则(xy )2005=__________.二、选择题1.下列说法正确的有 ( )①任何实数的平方根有两个,且它们互为相反数 ②无理数就是带根号的数 ③数轴上所有的点都表示实数 ④负数没有立方根 A.1个 B.2个 C.3个 D.4个 2.在实数范围内,下列判断正确的是 ( )A.若b a b a ==,则B.若b a b a ==,则22C.若b a b a ==,则2)( D.若b a b a ==,则333.不小于2154的最小整数是 ( ) A.4 B.10 C.9 D.84.若2)2,22+=+x x 则(的平方根是 ( ) A.16 B.±16 C.±4 D.±2 5.已知x a =,下列计算正确的是 ( )A.x a 10100-=B.x a 10100=C.x a 10100±=D. x a 10100=6. 已知0<x <1,那么在2,,1,x x xx 中最大的数是 ( ) A.x B.2x C.x D.x17.已知x 、y 为实数,43+x +y 2-6y +9=0,则xy 的值是( )A. 4B. -4C.49 D.49- 8.若实数a,b 在数轴上的位置如图所示,则化简ba b a a b a ---+)()(2的结果是( )A.aB.a+bC.bD.-b 9.计算:(精确到0.01) (1)6321⨯+ (2)26.331203÷-⨯(3)227818⨯÷ (4)15215⨯三、解答题1.34-的整数部分为a ,小数部分为b ,求ab的值.(保留3个有效数字)2.已知a 是5的整数部分, b 是5的小数部分, 求2(5)a b -的值.3.已知21a -的平方根是3±,4是31a b +-的算术平方根,求2a b +的值.4.已知322+-+-=x x y ,求x y 的平方根5.已知x 、y 都是实数,且422+-+-=x x y ,求x y 的平方根6.若2m-4与3m-1是同一个数的平方根,则m 的值是( ) A .-3 B .1 C .-3或1 D .-1 7.已知实数 a 、b 在数轴上的位置如图所示:试化简:(a -b)2-|a +b |8.若(2x +3)2和y +2互为相反数,求 x -y 的值。

9、已知321x -与323-y 互为相反数,求yx21+的值。

b a10、已知9x -与|5|y +互为相反数,求x y +的平方根;11、如果A 的平方根是2x -1与3x -4,求A 的值?12、如果一个数的平方根是3+a 和152-a ,求这个数。

相关文档
最新文档