2021年高三数学模拟试卷(15)(含解析)新人教A版
山西省太原市2021届高三数学一模试题文含解析
![山西省太原市2021届高三数学一模试题文含解析](https://img.taocdn.com/s3/m/b6e7d1aead02de80d5d840ae.png)
山西省太原市2021届高三数学一模试题文(含解析)一、选择题(每小题5分).1.已知全集U={1,2,3,4,5},A={2,3},B={1,3,5},则A∪(∁U B)=()A.{2,3,4} B.{2} C.{1,5} D.{1,3,4,5} 2.已知复数z满足z•(1﹣i)=2i(其中i为虚数单位),则z的值为()A.﹣1﹣i B.﹣1+i C.1﹣i D.1+i3.公元前6世纪,古希腊毕达哥拉斯学派在研究正五边形和正十边形的作图时,发现了黄金分割数,其近似值为0.618,这是一个伟大的发现,这一数值也表示为a=2sin18°,若a2+b=4,则=()A.B.2 C.D.44.函数y=cos(sin x)的图象大致是()A.B.C.D.5.在区间[﹣1,1]上任取一个实数k,则使得直线y=kx与圆(x﹣2)2+y2=1有公共点的概率是()A.B.C.D.6.已知,为单位向量,且满足|﹣|=,则|2+|=()A.B.C.D.27.已知{a n}是各项均为正数的等比数列,其前n项和为S n,且{S n}是等差数列,则下列结论错误的是()A.{a n+S n}是等差数列B.{a n•S n}是等比数列C.{a n2}是等差数列D.{}是等比数列8.已知实数x,y满足,则z=的取值范围是()A.(﹣∞,1]∪(2,4] B.[1,2)∪(2,4]C.[1,2)∪[4,+∞)D.(﹣∞,1]∪[4,+∞)9.已知a=4ln3π,b=3ln4π,c=4lnπ3,则下列结论正确的是()A.b<c<a B.c<b<a C.b<a<c D.a<b<c10.已知正四面体ABCD的棱长为4,点E在棱AB上,且BE=3AE,过E作四面体ABCD外接球的截面,则所作截面面积的最小值为()A.B.3πC.D.11.已知过抛物线y2=2px(p>0)的焦点F()的直线与该抛物线相交于A,B两点,若△AOF的面积与△BOF(O为坐标原点)的面积之比是2,则|AB|=()A.B.C.D.12.已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<)的图象关于x=﹣对称,且f()=0,将f(x)的图象向右平移个单位长度得到函数g(x)的图象,则下列结论正确的是()A.φ=B.若g(x)是奇函数,则ω的最小值为1C.若f(x)在[]上单调递增,则ω∈(0,]D.若g(x)是周期最大的偶函数,则f(x)在[0,]上单调递增二、填空题(每小题5分).13.函数f(x)=(x﹣1)e x的图象在点(0,f(0))处的切线方程为.14.某公司初级、中级和高级职称的职工人数恰好组成一个公比为q的等比数列,现采用分层抽样从全体职工中随机抽取130人进行一项活动,已知被抽取的高级职工人数为10,则被抽取的初级职工的人数为.15.已知a,b,c分别是△ABC的内角A,B,C所对的边,3c sin A=4b sin C,cos C=,点D 在线段AB上,且BD=2DA,若△ABC的面积为2,则a=,CD=.16.已知椭圆C:=1(a>b>0)的左焦点是点F,过原点倾斜角为的直线l与椭圆C相交于M,N两点,若∠MFN=,则椭圆C的离心率是.三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,毎个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.已知数列{a n}的前n项和为S n,数列{b n}满足b n=a n+a n+1(n∈N*),再从下面条件①与②中任选一个作为已知条件,完成以下问题:(Ⅰ)证明:{b n}是等比数列;(Ⅱ)求数列{nb n}的前n项和T n.条件①:a1=,4S n+2a n+1=3n+1(n∈N*);条件②:a1=a2=,a n+2=a n+2×3n(n∈N*).18.某地区为了实现产业的转型发展,利用当地旅游资源丰富多样的特点,决定大力发展旅游产业,一方面对现有旅游资源进行升级改造,另一方面不断提高旅游服务水平.为此该地区旅游部门,对所推出的报团游和自助游项目进行了深人调查,如表是该部门从去年某月到该地区旅游的游客中,随机抽取的100位游客的满意度调查表.满意度老年人中年人青年人报团游自助游报团游自助游报团游自助游满意12 1 18 4 15 6一般 2 1 6 4 4 12不满意 1 1 6 2 3 2 (Ⅰ)由表中的数据分析,老年人、中年人和青年人这三种人群中,哪一类人群更倾向于选择报团游?(Ⅱ)为了提高服务水平,该旅游部门要从上述样本里满意度为“不满意”的自助游游客中,随机抽取2人征集改造建议,求这2人中有老年人的概率.(Ⅲ)若你朋友要到该地区旅游,根据表中的数据,你会建议他选择哪种旅游项目?19.如图,在三棱锥P﹣ABC中,△PAB是正三角形,G是△PAB的重心,D,E,H分别是PA,BC,PC的中点,点F在BC上,且BF=3FC.(Ⅰ)求证:平面DFH∥平面PGE;(Ⅱ)若PB⊥AC,AB=AC=2,BC=2,求三棱锥P﹣DEG的体积.20.已知函数f(x)=cos x+x sin x.(Ⅰ)讨论f(x)在[﹣2π,2π]上的单调性;(Ⅱ)求函数g(x)=f(x)﹣x2﹣1零点的个数.21.已知椭圆C:+=1(a>b>0)的左、右焦点分别是F1、F2,其离心率e=,点P 是椭圆C上一动点,△PF1F2内切圆面积的最大值为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)直线PF1,PF2与椭圆C分别相交于点A,B,求证:+为定值.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.作答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,曲线C1的参数方程为(t为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为cos()=0.(Ⅰ)求曲线C1的普通方程和C2的直角坐标方程;(Ⅱ)已知点P(3,),曲线C1与C2相交于A,B两个不同点,求||PA|﹣|PB||的值.[选修4-5:不等式选讲]23.已知函数f(x)=|x+|+|x﹣m|(m>0).(Ⅰ)当m=1时,求函数f(x)的最小值;(Ⅱ)若存在x∈(0,1),使得不等式f(x)≤3成立,求实数m的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U={1,2,3,4,5},A={2,3},B={1,3,5},则A∪(∁U B)=()A.{2,3,4} B.{2} C.{1,5} D.{1,3,4,5} 解:全集U={1,2,3,4,5},A={2,3},B={1,3,5},所以∁U B={2,4},所以A∪(∁U B)={2,3,4}.故选:A.2.已知复数z满足z•(1﹣i)=2i(其中i为虚数单位),则z的值为()A.﹣1﹣i B.﹣1+i C.1﹣i D.1+i解:∵复数z满足z•(1﹣i)=2i,∴z====﹣1+i,故选:B.3.公元前6世纪,古希腊毕达哥拉斯学派在研究正五边形和正十边形的作图时,发现了黄金分割数,其近似值为0.618,这是一个伟大的发现,这一数值也表示为a=2sin18°,若a2+b=4,则=()A.B.2 C.D.4解:∵a=2sin18°,若a2+b=4,∴b=4﹣a2=4﹣4sin218°=4(1﹣sin218°)=4cos218°,∴===2.故选:B.4.函数y=cos(sin x)的图象大致是()A.B.C.D.解:∵f(﹣x)=cos(sin(﹣x))=cos(sin x)=f(x),∴函数f(x)为偶函数,∵﹣1≤sin x≤1,∴﹣+2kπ≤x≤+2kπ,∴y=cos(sin x)在x=2kπ时有最大值,且y>0,故选:B.5.在区间[﹣1,1]上任取一个实数k,则使得直线y=kx与圆(x﹣2)2+y2=1有公共点的概率是()A.B.C.D.解:圆(x﹣2)2+y2=1的圆心为(2,0),半径为1.要使直线y=kx与圆(x﹣2)2+y2=1有公共点,则圆心到直线y=kx的距离≤1,解得:﹣≤k≤.在区间[﹣1,1]中随机取一个实数k,则事件“直线y=kx与圆(x﹣2)2+y2=1有公共点”发生的概率为:=.故选:C.6.已知,为单位向量,且满足|﹣|=,则|2+|=()A.B.C.D.2解:,为单位向量,且满足|﹣|=,可得=2,解得=0,所以|2+|==.故选:C.7.已知{a n}是各项均为正数的等比数列,其前n项和为S n,且{S n}是等差数列,则下列结论错误的是()A.{a n+S n}是等差数列B.{a n•S n}是等比数列C.{a n2}是等差数列D.{}是等比数列解:由{S n}是等差数列,可得:2(a1+a2)=a1+a1+a2+a3,∴a2=a3,∵{a n}是各项均为正数的等比数列,∴a2=a2q,可得q=1.∴a n=a1>0,∴a n+S n=(n+1)a1,∴数列{a n+S n}是等差数列,因此A正确.=,∴{a n2}是常数列,为等差数列,因此C正确.=a1>0,∴{}是等比数列,因此D正确.a n S n=n,∴{a n•S n}不是等比数列,因此B不正确.故选:B.8.已知实数x,y满足,则z=的取值范围是()A.(﹣∞,1]∪(2,4] B.[1,2)∪(2,4]C.[1,2)∪[4,+∞)D.(﹣∞,1]∪[4,+∞)解:由约束条件作出可行域如图,联立,解得A(3,1),由图可知,B(1,0),z==2+,其几何意义为可行域内的动点与定点(2,﹣1)连线的斜率加2.由图可知,,,∴z=的取值范围是(﹣∞,1]∪[4,+∞).故选:D.9.已知a=4ln3π,b=3ln4π,c=4lnπ3,则下列结论正确的是()A.b<c<a B.c<b<a C.b<a<c D.a<b<c解:∵a=4ln3π,b=3ln4π,c=4lnπ3,∴=,=,=,设f(x)=(x>0),则f′(x)=,令f′(x)=0,则x=e,当x∈(0,e),f(x)在(0,e)上递增,当x∈(e,+∞),f(x)在(e,+∞)递减,∵4>π>3>e,∴f(4)<f(π)<f(3),即<<,∴a>c>b.故选:A.10.已知正四面体ABCD的棱长为4,点E在棱AB上,且BE=3AE,过E作四面体ABCD外接球的截面,则所作截面面积的最小值为()A.B.3πC.D.解:如图,正四面体ABCD的棱长为4,则正方体的棱长为,正四面体ABCD的外接球即正方体的外接球,其半径为2R=,R=,cos∠OAB=,∵OA=R=,AE=AB=,∴=3,则截面圆的半径r=,∴截面面积的最小值为S=πr2=3π.故选:B.11.已知过抛物线y2=2px(p>0)的焦点F()的直线与该抛物线相交于A,B两点,若△AOF的面积与△BOF(O为坐标原点)的面积之比是2,则|AB|=()A.B.C.D.解:由焦点的坐标可得=,所以p=1,所以抛物线的方程为:y2=2x,设直线AB的方程为:x=my+,设A(x1,y1),B(x2,y2),设A在x轴上方,设m>0,联立整理可得:y2﹣2my﹣1=0,y1+y2=2m①,y1y2=﹣1②,由题意==2,可得y1=﹣2y2,代入①②可得:8m2=1,解得:m=,将m的值代入①可得y1+y2=,x1+x2=m(y1+y2)+1=,由抛物线的性质可得|AB|=x1+x2+p=+1=,故选:A.12.已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<)的图象关于x=﹣对称,且f()=0,将f(x)的图象向右平移个单位长度得到函数g(x)的图象,则下列结论正确的是()A.φ=B.若g(x)是奇函数,则ω的最小值为1C.若f(x)在[]上单调递增,则ω∈(0,]D.若g(x)是周期最大的偶函数,则f(x)在[0,]上单调递增解:由于函数f(x)=sin(ωx+φ)(ω>0,0<φ<)的图象关于x=﹣对称,∴ω×(﹣)+φ=kπ+,k∈Z,①.∵f()=0,∴ω×+φ=kπ,k∈Z,②.将代入①②,无解,故A错,将f(x)的图象向右平移个单位长度得到函数g(x)=sin(ωx﹣+φ)的图象,则g(x)的图象关于y轴对称,故g(x)为偶函数,故B错;∵由题意,﹣(﹣)=()T,k1=0,1,2,…,∴ω=1+2k1,则ω≥1,C选项错,故选:D.二、填空题:本大题共4小题,每小题5分,共20分.试题中包含两空的,答对第一空的给3分,全部答对的给5分.13.函数f(x)=(x﹣1)e x的图象在点(0,f(0))处的切线方程为y=﹣1 .解:由题意可得f'(x)=xe x,则f'(0)=0.因为f(0)=﹣1,所以所求切线方程为y+1=0,即y=﹣1.故答案为:y=﹣1.14.某公司初级、中级和高级职称的职工人数恰好组成一个公比为q的等比数列,现采用分层抽样从全体职工中随机抽取130人进行一项活动,已知被抽取的高级职工人数为10,则被抽取的初级职工的人数为90 .解:根据题意知,抽取的样本中初级、中级和高级职称的人数也组成一个公比为q的等比数列,且a3=10,S3=130,所以,消去a1,解得q=,或q=﹣(不合题意,舍去),当q=时,a1=90,即被抽取的初级职工的人数为90.故答案为:90.15.已知a,b,c分别是△ABC的内角A,B,C所对的边,3c sin A=4b sin C,cos C=,点D 在线段AB上,且BD=2DA,若△ABC的面积为2,则a= 4 ,CD=.解:由正弦定理及3c sin A=4b sin C得3ac=4bc,故a=,由余弦定理得cos C===,整理得b=c,因为cos C=,所以sin C=,因为△ABC的面积S===2,所以b=3,c=3,a=4,因为BD=2DA,所以,即,整理得,==4+=,故CD=.故答案为:4,.16.已知椭圆C:=1(a>b>0)的左焦点是点F,过原点倾斜角为的直线l与椭圆C相交于M,N两点,若∠MFN=,则椭圆C的离心率是.解:设右焦点为F',由题意可得直线l的方程为:y=,设M(x0,y0),N(﹣x0,﹣y0),连接MF',NF',因为∠MFN=,所以四边形FMF'N为平行四边形,则∠FMF'=,而S△MFF'=b2tan=b2=•cy0,(焦三角形面积公式S=b2tan,θ为焦顶角),所以可得y0=,代入直线l的方程可得:x0=,将M的坐标代入椭圆的方程可得:+=1,整理可得:4a4﹣14a2c2+c4=0,即e4﹣14e2+4=0,解得:e2=7±3,由椭圆的离心率e∈(0,1),所以e==,故答案为:.三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,毎个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.已知数列{a n}的前n项和为S n,数列{b n}满足b n=a n+a n+1(n∈N*),再从下面条件①与②中任选一个作为已知条件,完成以下问题:(Ⅰ)证明:{b n}是等比数列;(Ⅱ)求数列{nb n}的前n项和T n.条件①:a1=,4S n+2a n+1=3n+1(n∈N*);条件②:a1=a2=,a n+2=a n+2×3n(n∈N*).解:选条件①:a1=,4S n+2a n+1=3n+1(n∈N*);(Ⅰ)证明:当n=1时,4S1+2a2=32,因为S1=a1=,所以a2=,所以b1=a1+a2=3,当n≥1时,4S n+2a n+1=3n+1,①4S n+1+2a n+2=3n+2,②②﹣①可得a n+2+a n+1=3n+1,即b n=a n+a n+1=3n(n∈N*),则{b n}是首项、公比均为3的等比数列;(Ⅱ)由(Ⅰ)可得b n=3n(n∈N*),所以T n=1•3+2•32+3•33+…+n•3n,3T n=1•32+2•33+3•34+…+n•3n+1,两式相减可得﹣2T n=3+32+33+…+3n﹣n•3n+1=﹣n•3n+1,化简可得T n=[(2n﹣1)•3n+1].选条件②:a1=a2=,a n+2=a n+2×3n(n∈N*).(Ⅰ)证明:由a n+2=a n+2×3n(n∈N*),可得a n+2+a n+1=a n+a n+1+2×3n,因为b n=a n+a n+1,所以b n+1=b n+2×3n,则b n+1﹣3n+1=b n﹣3n,所以b n﹣3n=b1﹣3=a1+a2﹣3=0,所以b n=3n(n∈N*),则{b n}是首项、公比均为3的等比数列;(Ⅱ)由(Ⅰ)可得b n=3n(n∈N*),所以T n=1•3+2•32+3•33+…+n•3n,3T n=1•32+2•33+3•34+…+n•3n+1,两式相减可得﹣2T n=3+32+33+…+3n﹣n•3n+1=﹣n•3n+1,化简可得T n=[(2n﹣1)•3n+1].18.某地区为了实现产业的转型发展,利用当地旅游资源丰富多样的特点,决定大力发展旅游产业,一方面对现有旅游资源进行升级改造,另一方面不断提高旅游服务水平.为此该地区旅游部门,对所推出的报团游和自助游项目进行了深人调查,如表是该部门从去年某月到该地区旅游的游客中,随机抽取的100位游客的满意度调查表.满意度老年人中年人青年人报团游自助游报团游自助游报团游自助游满意12 1 18 4 15 6一般 2 1 6 4 4 12不满意 1 1 6 2 3 2 (Ⅰ)由表中的数据分析,老年人、中年人和青年人这三种人群中,哪一类人群更倾向于选择报团游?(Ⅱ)为了提高服务水平,该旅游部门要从上述样本里满意度为“不满意”的自助游游客中,随机抽取2人征集改造建议,求这2人中有老年人的概率.(Ⅲ)若你朋友要到该地区旅游,根据表中的数据,你会建议他选择哪种旅游项目?解:(Ⅰ)由表中数据可得老年人、中年人和青年人选择报团游的频率分别为:P1==,P2=,P3=,∵P1>P2>P3,∴老年人更倾向于选择报团游.(Ⅱ)由题意得满意度为“不满意”的自助游人群中,老年人有1人,记为a,中年人有2人,记为b,c,青年人有2人,记为d,e,从中随机先取2人,基本事件共10个,分别为:(a,b),(a,c),(a,d),(a,e),(b,c),(b,d),(b,e),(c,d),(c,e),(d,e),其中这2人中有老年人包含的基本事件有4个,分别为:(a,b),(a,c),(a,d),(a,e),∴这2人中有老年人的概率为P==.(Ⅲ)根据表中的数据,得到:报团游的满意率为P4==,自助游的满意率为P5==,∵P4>P5,∴建议他选择报团游.19.如图,在三棱锥P﹣ABC中,△PAB是正三角形,G是△PAB的重心,D,E,H分别是PA,BC,PC的中点,点F在BC上,且BF=3FC.(Ⅰ)求证:平面DFH∥平面PGE;(Ⅱ)若PB⊥AC,AB=AC=2,BC=2,求三棱锥P﹣DEG的体积.解:(Ⅰ)证明:连结BG,由题意可得BG与GD共线,且BG=2GD,∵E是BC的中点,BF=3FC,∴F是CE的中点,∴,∴GE∥DF,GE⊂平面PGE;DF⊄平面PGE;∴DF∥平面PGE,∵H是PC的中点,∴FH∥PE,PE⊂平面PGE,FH⊄平面PGE;∴FH∥平面PGE,∵DF∩FH=F,DF⊂平面DEF,FH⊂平面DEF,∴平面DFH∥平面PGE;(Ⅱ)∵AB=AC=2,BC=,∴AB2+AC2=8=BC2,∴AB⊥AC,∵PB⊥AC,AB∩PB=B,∴AC⊥平面PAB,∵△PAB是正三角形,∴S△PAB==,∴V P﹣DEG=V E﹣PDG=====.20.已知函数f(x)=cos x+x sin x.(Ⅰ)讨论f(x)在[﹣2π,2π]上的单调性;(Ⅱ)求函数g(x)=f(x)﹣x2﹣1零点的个数.解:(Ⅰ)因为f(﹣x)=cos(﹣x)﹣x sin(﹣x)=cos x+x sin x=f(x),x∈R,所以f(x)是R上的偶函数,也是[﹣2π,2π]上的偶函数,当x∈[0,2π]时,f′(x)=x cos x,令f′(x)≥0,则0≤x≤或≤x≤2π,令f′(x)<0,则<x<,所以f(x)在[0,]和[,2π]上单调递增,在(,)上单调递减,因为f(x)是偶函数,所以f(x)在[﹣2π,﹣]和[﹣,0]上单调递减,在(﹣,﹣)上单调递增.综上所述,f(x)在[﹣2π,﹣]、[﹣,0]和(,)上单调递减,在(﹣,﹣)、[0,]和[,2π]上单调递增.(Ⅱ)由(Ⅰ)得g(﹣x)=f(﹣x)﹣(﹣x)2﹣1=g(x),所以g(x)是R上的偶函数,(1)当x∈[0,2π]时,g′(x)=x(cos x﹣),令g′(x)>0,则0<x<或<x<2π,令g′(x)<0,则<x<,所以g(x)在[0,]和[,2π]上单调递增,在(,)上单调递减,因为g()>g(0)=0,g()=×(﹣)﹣()2﹣<0,g(2π)=﹣π2<0,所以g(x)在(0,)上有一个零点,所以g(x)在[0,2π]上有两个零点;(2)当x∈(2π,+∞)时,g(x)=cos x+x sin x﹣x2﹣1≤x﹣x2<0,所以g(x)在(2π,+∞)上没有零点.由(1)(2)及g(x)是偶函数可得g(x)在R上有三个零点.21.已知椭圆C:+=1(a>b>0)的左、右焦点分别是F1、F2,其离心率e=,点P 是椭圆C上一动点,△PF1F2内切圆面积的最大值为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)直线PF1,PF2与椭圆C分别相交于点A,B,求证:+为定值.解:(Ⅰ)设△PF1F2内切圆的半径为r,则,∴r==,∴当△PF1F2的面积最大时,△PF1F2内切圆的半径r最大,显然当点P为椭圆的上顶点或下顶点时,△PF1F2的面积最大,最大值为=bc,∴r的最大值为,即=,由,解得:,∴椭圆C的标准方程为:.(Ⅱ)设P(x0,y0),A(x1,y1),B(x2,y2),①当y0≠0时,设直线PF1,PF2的直线方程分别为x=m1y﹣1,x=m2y+1,由得:,∴,∵x0=m1y0﹣1,∴,∴,同理,由可得,∴=﹣﹣=,②当y0=0时,直线PF1,PF2与x轴重合,易得:=3+=,综上所述,+为定值.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.作答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,曲线C1的参数方程为(t为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为cos()=0.(Ⅰ)求曲线C1的普通方程和C2的直角坐标方程;(Ⅱ)已知点P(3,),曲线C1与C2相交于A,B两个不同点,求||PA|﹣|PB||的值.解:(Ⅰ)曲线C1的参数方程为(t为参数),整理得,转换为普通方程为;曲线C2的极坐标方程为cos()=0,根据,转换为直角坐标方程为;(Ⅱ)把直线转换为(t为参数),代入,得到:,所以,,所以=.[选修4-5:不等式选讲]23.已知函数f(x)=|x+|+|x﹣m|(m>0).(Ⅰ)当m=1时,求函数f(x)的最小值;(Ⅱ)若存在x∈(0,1),使得不等式f(x)≤3成立,求实数m的取值范围.解:(Ⅰ)当m=1时,f(x)=|x+2|+|x﹣1|,∵|x+2|+|x﹣1|≥|(x+2)﹣(x﹣1)|=3,故当且仅当(x+2)(x﹣1)≤0,即当﹣2≤x≤1时,f(x)取最小值3;(Ⅱ)由题意得存在x∈(0,1)使得x++|x﹣m|≤3,(1)当m≥1时,x++|x﹣m|≤3等价于+m≤3,解得:1≤m≤2;(2)当0<m<1时,令g(x)=x++|x﹣m|,0<x<m时,g(x)=+m,m≤x<1时,g(x)=2x+﹣m,故g(x)min=+m,故+m≤3,故1≤m≤2,与0<m<1矛盾,此时m无解,综上:实数m的取值范围是[1,2].附:什么样的考试心态最好大部分学生都不敢掉以轻心,因此会出现很多过度焦虑。
2022届高三数学(人教A版文)复习习题:第一章 集合与常用逻辑用语 课时规范练2 Word版含答案
![2022届高三数学(人教A版文)复习习题:第一章 集合与常用逻辑用语 课时规范练2 Word版含答案](https://img.taocdn.com/s3/m/3e0d91ea5ff7ba0d4a7302768e9951e79b8969f2.png)
课时规范练2不等关系及简洁不等式的解法基础巩固组1.(2021安徽合肥模拟)已知a,b∈R,下列命题正确的是()A.若a>b,则|a|>|b|B.若a>b,则C.若|a|>b,则a2>b2D.若a>|b|,则a2>b22.已知集合A={x|(1-x)(1+x)≥0},集合B={y|y=2x,x<0},则A∩B=()A.(-1,1]B.[-1,1]C.(0,1)D.[-1,+∞)3.若集合A={x|ax2-ax+1<0}=⌀,则实数a的取值范围是()A.{a|0<a<4}B.{a|0≤a<4}C.{a|0<a≤4}D.{a|0≤a≤4}4.(2021贵州贵阳测试)下列命题正确的是()A.若a>b,c>d,则ac>bdB.若ac>bc,则a>bC.若,则a<bD.若a>b,c>d,则a-c>b-d5.(2021重庆一中调研,文5)若a>1>b>-1,则下列不等式恒成立的是()A.a>b2B.C.D.a2>2b6.不等式<0的解集为()A.{x|1<x<2}B.{x|x<2,且x≠1}C.{x|-1<x<2,且x≠1}D.{x|x<-1或1<x<2}7.若不等式mx2+2mx-4<2x2+4x对任意x都成立,则实数m的取值范围是()A.(-2,2]B.(-2,2)C.(-∞,-2)∪[2,+∞)D.(-∞,2]〚导学号24190850〛8.(2021陕西西安模拟)已知存在实数a满足ab2>a>ab,则实数b 的取值范围是.9.已知关于x的不等式ax2+bx+a<0(ab>0)的解集是空集,则a2+b2-2b的取值范围是.10.已知a∈R,关于x的不等式ax2+(1-2a)x-2>0的解集有下列四种说法:①原不等式的解集不行能为⌀;②若a=0,则原不等式的解集为(2,+∞);③若a<-,则原不等式的解集为;④若a>0,则原不等式的解集为∪(2,+∞).其中正确的个数为. 11.对任意x∈[-1,1],函数f(x)=x2+(k-4)x+4-2k的值恒大于零,则k的取值范围是.综合提升组12.(2021吉林长春模拟)若<0,则在下列不等式:①;②|a|+b>0;③a->b-;④ln a2>ln b2中,正确的不等式是()A.①④B.②③C.①③D.②④13.若关于x的不等式f(x)=ax2-x-c>0的解集为{x|-2<x<1},则函数y=f(-x)的图象为()14.(2021河南郑州月考)已知实数x,y满足0<xy<4,且0<2x+2y<4+xy,则x,y的取值范围是()A.x>2,且y>2B.x<2,且y<2C.0<x<2,且0<y<2D.x>2,且0<y<2〚导学号24190851〛15.(2021江西九江模拟)若关于x的不等式x2-4x-2-a>0在区间(1,4)内有解,则实数a的取值范围是.创新应用组16.(2021辽宁大连模拟)已知函数f(x)=(ax-1)(x+b),假如不等式f(x)>0的解集是(-1,3),那么不等式f(-2x)<0的解集是()A.B.C.D.〚导学号24190852〛17.(2021湖北襄阳高三1月调研,文15)已知f(x)=若对任意x∈[t,t+2],不等式f(x+t)≥2f(x)恒成立,则t 的取值范围是.〚导学号24190853〛课时规范练2不等关系及简洁不等式的解法1.D当a=1,b=-2时,A不正确,B不正确,C不正确;对于D,a>|b|≥0,则a2>b2,故选D.2.C由题意得A={x|-1≤x≤1}=[-1,1],B={y|0<y<1}=(0,1),所以A∩B=(0,1),故选C.3.D由题意知当a=0时,满足条件.当a≠0时,由集合A={x|ax2-ax+1<0}=⌀,可知得0<a≤4.综上,可知0≤a≤4.4.C取a=2,b=1,c=-1,d=-2,可知A错误;当c<0时,ac>bc⇒a<b,∴B错误;∵,∴c≠0,又c2>0,∴a<b,C正确;取a=c=2,b=d=1,可知D错误.5.A对于A,∵-1<b<1,∴0≤b2<1.∵a>1,∴a>b2,故A正确;对于B,若a=2,b=,此时满足a>1>b>-1,但,故B错误;对于C,若a=2,b=-,此时满足a>1>b>-1,但,故C错误;对于D,若a=,b=,此时满足a>1>b>-1,但a2<2b,故D错误.6.D由于不等式<0等价于(x+1)·(x-1)(x-2)<0,所以该不等式的解集是{x|x<-1或1<x<2}.故选D.7.A原不等式等价于(m-2)x2+2(m-2)x-4<0,当m=2时,对任意x不等式都成立;当m-2<0时,Δ=4(m-2)2+16(m-2)<0,∴-2<m<2.综上,得m∈(-2,2].8.(-∞,-1)∵ab2>a>ab,∴a≠0.当a>0时,有b2>1>b,即解得b<-1;当a<0时,有b2<1<b,即无解.综上可得b<-1.9. ∵不等式ax2+bx+a<0(ab>0)的解集是空集,∴a>0,b>0,且Δ=b2-4a2≤0.∴b2≤4a2.∴a2+b2-2b≥+b2-2b=≥-.∴a2+b2-2b的取值范围是.10.3原不等式等价于(ax+1)(x-2)>0.当a=0时,不等式化为x-2>0,得x>2.当a≠0时,方程(ax+1)(x-2)=0的两根分别是2和-,若a<-,解不等式得-<x<2;若a=-,不等式的解集为⌀;若-<a<0,解不等式得2<x<-;若a>0,解不等式得x<-或x>2.故①不正确,②③④正确.11.(-∞,1)函数f(x)=x2+(k-4)x+4-2k的图象的对称轴方程为x=-.当<-1,即k>6时,f(x)的值恒大于零等价于f(-1)=1+(k-4)×(-1)+4-2k>0,解得k<3,故k不存在;当-1≤≤1,即2≤k≤6时,f(x)的值恒大于零等价于f+4-2k>0,即k2<0,故k不存在;当>1,即k<2时,f(x)的值恒大于零等价于f(1)=1+(k-4)+4-2k>0,即k<1.综上可知,当k<1时,对任意x∈[-1,1],函数f(x)=x2+(k-4)x+4-2k的值恒大于零.12.C由于<0,故可取a=-1,b=-2.由于|a|+b=1-2=-1<0,所以②错误;由于ln a2=ln(-1)2=0,ln b2=ln(-2)2=ln 4>0,所以④错误.综上所述,②④错误,故选C.13.B(方法一)由根与系数的关系知=-2+1,-=-2,解得a=-1,c=-2.所以f(x)=-x2-x+2.所以f(-x)=-x2+x+2=-(x+1)(x-2),图象开口向下,与x轴的交点为(-1,0),(2,0),故选B.(方法二)由题意可画出函数f(x)的大致图象,如图.又由于y=f(x)的图象与y=f(-x)的图象关于y轴对称,所以y=f(-x)的图象如图.14.C由题意得由2x+2y-4-xy=(x-2)(2-y)<0,得又xy<4,可得故选C.15.(-∞,-2)不等式x2-4x-2-a>0在区间(1,4)内有解等价于a<(x2-4x-2)max.令g(x)=x2-4x-2,x∈(1,4),∴g(x)<g(4)= -2,∴a<-2.16.A由f(x)>0的解集为(-1,3),易知f(x)<0的解集为(-∞,-1)∪(3,+∞),故由f(-2x)<0得-2x<-1或-2x>3,∴x>或x<-.17.[,+∞)(方法一)∵对任意x∈[t,t+2],不等式f(x+t)≥2f(x)恒成立,∴f(t+t)=f(2t)≥2f(t).当t<0时,f(2t)=-4t2≥2f(t)=-2t2,这不行能,故t≥0.∵当x∈[t,t+2]时,有x+t≥2t≥0,x≥t≥0,∴当x∈[t,t+2]时,不等式f(x+t)≥2f(x),即(x+t)2≥2x2,∴x+t≥x,∴t≥(-1)x对于x∈[t,t+2]恒成立.∴t≥(-1)(t+2),解得t≥.(方法二)当x<0时,f(x)=-x2单调递增,当x≥0时,f(x)=x2单调递增,∴f(x)=在R上单调递增,且满足2f(x)=f(x),∵不等式f(x+t)≥2f(x)=f(x)在[t,t+2]恒成立,∴x+t≥x在[t,t+2]上恒成立,即t≥(-1)x在x∈[t,t+2]恒成立,∴t≥(-1)(t+2),解得t≥,故答案为[,+∞).。
【优化方案】2021-2021学年高中数学 第一章 计数原理章末综合检测 新人教A版选修2-3(1)
![【优化方案】2021-2021学年高中数学 第一章 计数原理章末综合检测 新人教A版选修2-3(1)](https://img.taocdn.com/s3/m/b4f8c81d5e0e7cd184254b35eefdc8d376ee14a2.png)
【优化方案】2021-2021学年高中数学 第一章 计数原理章末综合检测 新人教A 版选修2-3(时刻:100分钟;总分值:120分)一、选择题(本大题共10小题,在每题给出的四个选项中,只有一项为哪一项符合题目要求的)1.假设A 3m =6C 4m ,那么m 等于( )A .9B .8C .7D .6解析:选C.由m (m -1)(m -2)=6·m m -1m -2m -34×3×2×1,解得m =7.2.(1-x )10展开式中x 3项的系数为( ) A .-720 B .720 C .120D .-120解析:选D.由T r +1=C r 10(-x )r =(-1)r C r 10x r ,r =3,因此系数为(-1)3C 310=-120.3.编号为一、二、3、4、五、六、7的七盏路灯,晚上历时只亮三盏灯,且任意两盏亮灯不相邻,那么不同的开灯方案有( )A .60种B .20种C .10种D .8种解析:选C.四盏熄灭的灯产生的5个空位中放入3盏亮灯,即C 35=10.4.某汽车生产厂家预备推出10款不同的轿车参加车展,但主办方只能为该厂提供6个展位,每一个展位摆放一辆车,而且甲、乙两款车不能摆放在1号展位,那么该厂家参展轿车的不同摆放方案的种类为( )A .C 210A 48B .C 19A 59 C .C 18A 59D .C 18A 58解析:选C.考查分步乘法计数原理和排列数公式,在1号位汽车选择的种数为C 18,其余位置的排列数为A 59,故种数为C 18A 59,应选C.5.(2-x)8展开式中不含x4项的系数的和为( ) A.-1 B.0C.1 D.2解析:选B.(2-x)8展开式的通项为T r+1=C r8·28-r·(-x)r=C r8·28-r·(-1)r·x r2.由r 2=4得r=8.∴展开式中x4项的系数为C88=1.又(2-x)8展开式中各项系数和为(2-1)8=1,∴展开式中不含x4项的系数的和为0.6.把五个标号为1到5的小球全数放入标号为1到4的四个盒子中,不准有空盒且任意一个小球都不能放入标有相同标号的盒子中,那么不同的放法有( )A.36种B.45种C.54种D.96种解析:选A.先把5号球放入任意一个盒子中有4种放法,再把剩下的四个球放入盒子中,依照4的“错位数”是9,得不同的放法有4×9=36种.7.咱们把列位数字之和为6的四位数称为“六合数”(如2 013是“六合数”),那么“六合数”中首位为2的“六合数”共有( )A.18个B.15个C.12个D.9个解析:选B.依题意,那个四位数的百位数、十位数、个位数之和为4.由4、0、0组成3个数别离为400、040、004;由3、一、0组成6个数别离为310、30一、130、103、013、031;由二、二、0组成3个数别离为220、20二、022;由二、一、1组成3个数别离为21一、12一、112.共计:3+6+3+3=15个.8.已知等差数列{a n}的通项公式为a n=3n-5,那么(1+x)5+(1+x)6+(1+x)7的展开式中含x4项的系数是该数列的( )A.第9项B.第10项C.第19项D.第20项解析:选D.∵(1+x)5+(1+x)6+(1+x)7展开式中含x4项的系数是C45·11+C46·12+C47·13=5+15+35=55,∴由3n-5=55得n=20,应选D.9.记者要为5名志愿者和他们帮忙的2位老人拍照,要求排成一排,2位老人相邻但不排在两头,不同的排法共有( )A.1440种B.960种C.720种D.480种解析:选B.将5名志愿者全排列为A55,因2位老人相邻且不排在两头,故将2位老人看成一个整体插在5名志愿者之间形成的4个空内,为A14,再让2位老人全排列为A22,故不同的排法总数为A55A14A22=960.10.假设(x+2+m)9=a0+a1(x+1)+a2(x+1)2+…+a9(x+1)9,且(a0+a2+…+a8)2-(a1+a3+…+a9)2=39,那么实数m的值为( )A.1或-3 B.-1或3C.1 D.-3解析:选A.令x=0,取得a0+a1+a2+…+a9=(2+m)9,令x=-2,取得a0-a1+a2-a3+…-a9=m9,因此有(2+m)9m9=39,即m2+2m=3,解得m=1或-3.二、填空题(本大题共5小题,把答案填在题中横线上)11.男、女学生共有8人,从男生当选取2人,从女生当选取1人,共有30种不同的选法,其中女生有________人.解析:设女生有x人,那么C28-x·C1x=30,即8-x7-x2·x=30,解得x=2或3.答案:2或312.假设(3x+1)n(n∈N*) 的展开式中各项系数的和是256,那么展开式中x2项的系数是________.解析:令x=1,得(3+1)n=256,解得n=4,(3x+1)4的展开式中x2项的系数为C24×32=54. 答案:5413.5个人排成一排,要求甲、乙两人之间至少有一人,那么不同的排法有________种.解析:甲、乙两人之间至少有一人,确实是甲、乙两人不相邻,那么有A 33·A 24=72种不同的排法.答案:7214.航空母舰“辽宁舰”将进行一次编队配置科学实验,要求2艘解决型核潜艇一前一后,2艘驱逐舰和2艘护卫舰排列左、右,同侧不能都是同种舰艇,那么舰艇分派方案的方式数是________.解析:先将2艘驱逐舰和2艘护卫舰平均分成两组,再排有C 12C 12A 22A 22种方式,然后排两艘解决型核潜艇有A 22种方式,故舰艇分派方案的方式数为C 12C 12A 22A 22A 22=32.答案:3215.在⎝⎛⎭⎪⎫x 2-13x n 的展开式中,只有第5项的二项式系数最大,那么展开式中常数项为________.解析:由题意知n =8,通项为T r +1=(-1)r ·C r 8·⎝ ⎛⎭⎪⎫128-r ·x 8-43r, 令8-43r =0,得r =6,故常数项为第7项,且T 7=(-1)6·⎝ ⎛⎭⎪⎫122·C 68=7. 答案:7三、解答题(此题共5小题,解许诺写出文字说明、证明进程或演算步骤)16.从编号为1,2,…,9的9个球中任取4个球,使它们的编号之和为奇数,再把这4个球排成一排,共有多少种不同的排法?解:知足条件的4个球的编号有两类取法:①一奇三偶排法数为C 15C 34A 44; ②三奇一偶排法数为C 35C 14A 44.故共有C 15C 34A 44+C 35C 14A 44=1 440种不同的排法.17.已知(1+2x )n 的展开式中,某一项的系数是它前一项系数的2倍,是它后一项的系数的56,求该展开式中二项式系数最大的项.解:第r +1项系数为C r n 2r ,第r 项系数为C r -1n 2r -1, 第r +2项系数为C r +1n 2r +1,依题意得 ⎩⎪⎨⎪⎧C r n 2r =2C r -1n2r -1C r n 2r =56C r+1n 2r +1,整理得⎩⎪⎨⎪⎧C r n =C r -1nC r n =53C r +1n ,即⎩⎪⎨⎪⎧2r =n +15n -r =3r +1,求得:n =7.故二项式系数最大的项是第4项和第5项.T 4=C 37(2x )3=280x32,T 5=C 47(2x )4=560x 2.18.已知(2x i +1x2)n ,i 是虚数单位,x >0,n ∈N *.(1)若是展开式中的倒数第3项的系数是-180,求n 的值; (2)对(1)中的n ,求展开式中系数为正实数的项.解:(1)由已知,得C n -2n (2i)2=-180,即4C 2n=180, 因此n 2-n -90=0,又n ∈N *,解得n =10. (2)(2x i +1x2)10展开式的通项为T k +1=C k 10(2x i)10-k x -2k =C k 10(2i)10-k x 5-52k . 因为系数为正实数,且k ∈{0,1,2,…,10},因此k =2,6,10. 因此所求的项为T 3=11 520,T 7=3 360x -10,T11=x-20.19.已知集合A={x|1<log2x<3,x∈N*},B={4,5,6,7,8}.(1)从A∪B中掏出3个不同的元素组成三位数,那么能够组成多少个?(2)从集合A中掏出1个元素,从集合B中掏出3个元素,能够组成多少个无重复数字且比4 000大的自然数?解:由1<log 2x <3,得2<x <8,又x ∈N *,因此x 为3,4,5,6,7,即A ={3,4,5,6,7},因此A ∪B ={3,4,5,6,7,8}.(1)从A ∪B 中掏出3个不同的元素,能够组成A 36=120个三位数. (2)假设从集合A 中取元素3,那么3不能作千位上的数字,有C 35·C 13·A 33=180个知足题意的自然数;假设不从集合A 中取元素3,那么有C 14C 34A 44=384个知足题意的自然数.因此,知足题意的自然数共有180+384=564个.20.7名师生站成一排照相留念,其中教师1人,男生4人,女生2人,在以下情形下,各有不同站法多少种?(1)两名女生必需相邻而站; (2)4名男生互不相邻;(3)假设4名男生身高都不等,按从高到低的顺序站; (4)教师不站中间,女生不站两头.解:(1)两名女生站在一路有站法A 22种,视为一种元素与其余5人全排,有A 66种排法.故有不同站法A 22·A 66=1 440种.(2)先站教师和女生,有站法A 33种,再在教师和女生站位的距离(含两头)处插入男生,每空一人,有插入方式A 44种.故共有不同站法A 33·A 44=144种. (3)7人全排列中,4名男生不考虑身高顺序的站法有A 44种,而由高到低有从左到右,或从右到左的不同.故共有不同站法2·A 77A 44=420种.(4)中间和两头是特殊位置,可如下分类求解:①教师站两头之一,另一端由男生站,有A 12·A 14·A 55种站法,②两头全由男生站,教师站除两头和正中间的另外4个位置之一,有A 24·A 14·A 44种站法.故共有不同站法2 112种.。
2021-2022学年高中数学 1 空间向量与立体几何章末综合测评新人教A版选择性必修第一册
![2021-2022学年高中数学 1 空间向量与立体几何章末综合测评新人教A版选择性必修第一册](https://img.taocdn.com/s3/m/a560edb9312b3169a551a498.png)
2021-2022学年高中数学1 空间向量与立体几何章末综合测评新人教A版选择性必修第一册年级:姓名:章末综合测评(一) 空间向量与立体几何(满分:150分 时间:120分钟)一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知a =(-3,2,5),b =(1,5,-1),则a ·(a +3b )=( ) A .(0,34,10) B .(-3,19,7) C .44D .23C [a +3b =(-3,2,5)+3(1,5,-1)=(0,17,2),则a ·(a +3b )=(-3,2,5)·(0,17,2)=0+34+10=44.]2.设l 1的方向向量为a =(1,2,-2),l 2的方向向量为b =(-2,3,m ),若l 1⊥l 2,则m 等于( )A .1B .2C .12D .3B [若l 1⊥l 2,则a ⊥b ,∴a ·b =0, ∴1×(-2)+2×3+(-2m )=0,解得m =2.]3.在空间四边形ABCD 中,若向量AB →=(-3,5,2),CD →=(-7,-1,-4),点E ,F 分别为线段BC ,AD 的中点,则EF →的坐标为( )A .(2,3,3)B .(-2,-3,-3)C .(5,-2,1)D .(-5,2,-1)B [取AC 中点M ,连接ME ,MF (图略),则ME →=12AB →=⎝ ⎛⎭⎪⎫-32,52,1,MF →=12CD →=⎝ ⎛⎭⎪⎫-72,-12,-2,所以EF →=MF →-ME →=(-2,-3,-3),故选B .]4.如图所示,在平行六面体ABCD A 1B 1C 1D 1中,点E 为上底面对角线A 1C 1的中点,若BE →=AA 1→+xAB →+yAD →,则( )A .x =-12,y =12B .x =12,y =-12C .x =-12,y =-12D .x =12,y =12A [BE →=BA →+AA 1→+A 1E →=-AB →+AA 1→+12(A 1B 1→+A 1D 1→)=-AB →+AA 1→+12AB →+12AD →=-12AB →+AA 1→+12AD →,∴x =-12,y =12.]5.已知A (2,-5,1),B (2,-4,2),C (1,-4,1),则AB →与AC →的夹角为( ) A .30° B .60° C .45°D .90°B [由题意得AB →=(0,1,1),AC →=(-1,1,0),cos 〈AB →,AC →〉=AB →·AC →|AB →||AC →|=12×2=12,所以AB →与AC →的夹角为60°.] 6.已知二面角αl β的大小为π3,m ,n 为异面直线,且m ⊥α,n ⊥β,则m ,n 所成的角为( )A .π6B .π3C .π2D .2π3B [设m ,n 的方向向量分别为m ,n .由m ⊥α,n ⊥β知m ,n 分别是平面α,β的法向量.∵|cos〈m ,n 〉|=cos π3=12,∴〈m ,n 〉=π3或2π3.但由于两异面直线所成的角的范围为⎝⎛⎦⎥⎤0,π2,故异面直线m ,n 所成的角为π3.]7.如图,在棱长为a 的正方体ABCD A 1B 1C 1D 1中,P 为A 1D 1的中点,Q 为A 1B 1上任意一点,E ,F 为CD 上两个动点,且EF 的长为定值,则点Q 到平面PEF 的距离( )A .等于55a B .和EF 的长度有关 C .等于23a D .和点Q 的位置有关A [取B 1C 1的中点G ,连接PG ,CG ,DP ,则PG ∥CD ,所以点Q 到平面PEF 的距离即点Q 到平面PGCD 的距离,与EF 的长度无关,B 错.又A 1B 1∥平面PGCD ,所以点A 1到平面PGCD 的距离即点Q 到平面PGCD 的距离,即点Q 到平面PEF 的距离,与点Q 的位置无关,D 错.如图,以点D 为原点,建立空间直角坐标系,则C (0,a ,0),D (0,0,0),A 1(a ,0,a ),P ⎝ ⎛⎭⎪⎫a 2,0,a ,∴DC →=(0,a ,0),DA 1→=(a ,0,a ),DP →=⎝ ⎛⎭⎪⎫a 2,0,a , 设n =(x ,y ,z )是平面PGCD 的法向量, 则由⎩⎪⎨⎪⎧n ·DP →=0,n ·DC →=0,得⎩⎪⎨⎪⎧a2x +az =0,ay =0,令z =1,则x =-2,y =0,所以n =(-2,0,1)是平面PGCD 的一个法向量. 设点Q 到平面PEF 的距离为d ,则d =⎪⎪⎪⎪⎪⎪DA 1→·n |n |=⎪⎪⎪⎪⎪⎪-2a +a 5=5a 5,A 对,C 错.故选A .]8.如图所示,ABCD A 1B 1C 1D 1是棱长为6的正方体,E ,F 分别是棱AB ,BC 上的动点,且AE =BF .当A 1,E ,F ,C 1四点共面时,平面A 1DE 与平面C 1DF 所成夹角的余弦值为( )A .22 B .12C .15D .265B [以D 为原点,DA 、DC 、DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,易知当E (6,3,0),F (3,6,0)时,A 1,E ,F ,C 1共面,设平面A 1DE 的法向量为n 1=(a ,b ,c ),依题意得⎩⎪⎨⎪⎧DE →·n 1=6a +3b =0,DA 1→·n 1=6a +6c =0,可取n 1=(-1,2,1),同理可得平面C 1DF 的一个法向量为n 2=(2,-1,1), 故平面A 1DE 与平面C 1DF 的夹角的余弦值为|n 1·n 2||n 1||n 2|=12.故选B .]二、选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分)9.已知正方体ABCD A 1B 1C 1D 1的中心为O ,则下列结论中正确的有( ) A .OA →+OD →与OB 1→+OC 1→是一对相反向量 B .OB →-OC →与OA 1→-OD 1→是一对相反向量C .OA →+OB →+OC →+OD →与OA 1→+OB 1→+OC 1→+OD 1→是一对相反向量 D .OA 1→-OA →与OC →-OC 1→是一对相反向量ACD [∵O 为正方体的中心,∴OA →=-OC 1→,OD →=-OB 1→,故OA →+OD →=-(OB 1→+OC 1→),同理可得OB →+OC →=-(OA 1→+OD 1→),故OA →+OB →+OC →+OD →=-(OA 1→+OB 1→+OC 1→+OD 1→),∴AC 正确;∵OB →-OC →=CB →,OA 1→-OD 1→=D 1A 1→,∴OB →-OC →与OA 1→-OD 1→是两个相等的向量,∴B 不正确;∵OA 1→-OA →=AA 1→,OC →-OC 1→=C 1C →=-AA 1→,∴OA 1→-OA →=-(OC →-OC 1→),∴D 正确.]10.在以下选项中,不正确的命题有( ) A .|a |-|b |=|a +b |是a ,b 共线的充要条件 B .若a ∥b ,则存在唯一的实数λ,使a =λbC .对空间任意一点O 和不共线的三点A ,B ,C ,若OP →=2OA →-2OB →-OC →,则P ,A ,B ,C 四点共面D .若{a ,b ,c }为空间的一个基底,则{a +b ,b +c ,c +a }构成空间的另一个基底ABC [A .|a |-|b |=|a +b |⇒a 与b 共线,但a 与b 共线时|a |-|b |=|a +b |不一定成立,故不正确;B .b 需为非零向量,故不正确;C .因为2-2-1≠1,由共面向量定理知,不正确;D .由基底的定义知正确.]11.下列说法正确的是( )A .直线l 的方向向量a =(1,-1,2),直线m 的方向向量b =⎝ ⎛⎭⎪⎫2,1,-12,则l与m 垂直B .直线l 的方向向量a =(0,1,-1),平面α的法向量n =(1,-1,-1),则l ⊥αC .平面α,β的法向量分别为n 1=(0,1,3),n 2=(1,0,2),则α∥βD .平面α经过三点A (1,0,-1),B (0,1,0),C (-1,2,0),向量n =(1,u ,t )是平面α的法向量,则u +t =1AD [对于A ,∵a =(1,-1,2),b =⎝⎛⎭⎪⎫2,1,-12,∴a ·b =1×2+(-1)×1+2×⎝ ⎛⎭⎪⎫-12=0,∴a ⊥b ,∴直线l 与m 垂直,A 正确.对于B ,∵a =(0,1,-1),n =(1,-1,-1),∴a ·n =0×1+1×(-1)+(-1)×(-1)=0,∴a ⊥n ,∴l ∥α或l ⊂α,B 错误.对于C ,∵n 1=(0,1,3),n 2=(1,0,2),∴n 1与n 2不共线,∴α∥β不成立,C 错误.对于D ,由于A (1,0,-1),B (0,1,0),C (-1,2,0),则AB →=(-1,1,1),BC →=(-1,1,0),又向量n =(1,u ,t )是平面α的法向量,∴⎩⎪⎨⎪⎧n ·AB →=0,n ·BC →=0,即⎩⎨⎧-1+u +t =0,-1+u =0,则u +t =1,D 正确.]12.如图(1)是一副直角三角板的示意图.现将两三角板拼成直二面角,得到四面体ABCD ,如图(2)所示,则下列结论中正确的是( )A .BD →·AC →=0B .平面BCD 的法向量与平面ACD 的法向量垂直C .异面直线BC 与AD 所成的角为60° D .直线DC 与平面ABC 所成的角为30°AD [以B 为坐标原点,分别以BD →,BC →的方向为x 轴,y 轴的正方向建立空间直角坐标系,如图所示.设BD =2,则B (0,0,0),D (2,0,0),C (0,23,0),A (0,3,3),∴BD →=(2,0,0),AC →=(0,3,-3),BC →=(0,23,0),AD →=(2,-3,-3),DC →=(-2,23,0).∴BD →·AC →=(2,0,0)·(0,3,-3)=0,A 正确;易得平面BCD 的一个法向量为n 1=(0,0,3),平面ACD 的一个法向量为n 2=(3,1,1),n 1·n 2≠0,B 错误;|cos 〈BC →,AD →〉|=⎪⎪⎪⎪⎪⎪⎪⎪BC →·AD →|BC →||AD →|=|0,23,0·2,-3,-3|23×10=310≠12,C 错误;易得平面ABC 的一个法向量为BD →=(2,0,0),设直线DC 与平面ABC 所成的角为θ,则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪DC →·BD →|DC →|·|BD →|=44×2=12,故D 正确.]三、填空题(本题共4小题,每小题5分,共20分.把答案填在题中的横线上) 13.已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC ,BP →=(x -1,y ,-3),且BP →⊥平面ABC ,则BP →=________.⎝⎛⎭⎪⎫337,-157,-3 [∵AB →⊥BC →,∴AB →·BC →=0,∴3+5-2z =0,∴z =4. ∵BP →=(x -1,y ,-3),且BP →⊥平面ABC , ∴⎩⎪⎨⎪⎧BP →·AB →=0,BP →·BC →=0,即⎩⎨⎧x -1+5y +6=0,3x -3+y -12=0,解得⎩⎪⎨⎪⎧x =407,y =-157.故BP →=⎝⎛⎭⎪⎫337,-157,-3.] 14.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 共面,则λ=________.657[易知a 与b 不共线,由共面向量定理可知,要使a ,b ,c 共面,则必存在实数x ,y ,使得c =x a +y b ,即⎩⎨⎧2x -y =7,-x +4y =5,3x -2y =λ,解得⎩⎪⎨⎪⎧x =337,y =177,λ=657.]15.已知A (0,0,-x ),B (1,2,2),C (x ,2,2)三点,点M 在平面ABC 内,O 是平面ABC 外一点,且OM →=xOA →+2xOB →+4OC →,则x =________,AB →与AC →的夹角为________.(本题第一空2分,第二空3分)-1π3[由A ,B ,C ,M 四点共面可知x +2x +4=1,∴x =-1. ∴A (0,0,1),C (-1,2,2),∴AB →=(1,2,1),AC →=(-1,2,1), ∴cos〈AB →,AC →〉=AB →·AC →|AB →||AC →|=12,即AB →与AC →的夹角为π3.]16.如图,等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D 的余弦值为33,M ,N 分别是AC ,BC 的中点,则EM ,AN 所成角的余弦值为________.16[如图所示,过点C 作CO ⊥平面ABDE ,垂足为O ,取AB 的中点F ,连接CF ,OF ,OA ,OB ,则∠CFO 为二面角C AB D 的平面角,所以cos∠CFO =33. 设AB =1,则CF =32,OF =12,OC =22,所以O 为正方形ABDE 的中心.如图建立空间直角坐标系,则E ⎝ ⎛⎭⎪⎫0,-22,0,A ⎝ ⎛⎭⎪⎫22,0,0,M ⎝ ⎛⎭⎪⎫24,0,24,N ⎝⎛⎭⎪⎫0,24,24,所以EM →=⎝ ⎛⎭⎪⎫24,22,24,AN →=⎝ ⎛⎭⎪⎫-22,24,24,所以cos 〈EM →,AN →〉=EM →·AN →|EM →||AN →|=16.]四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知空间三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →.(1)若|c |=3,且c ∥BC →,求向量c ; (2)求向量a 与向量b 的夹角的余弦值;(3)若k a +b 与k a -2b 互相垂直,求实数k 的值. [解] (1)∵c ∥BC →,∴存在实数m ,使得c =mBC →=m (-2,-1,2)=(-2m ,-m ,2m ). ∵|c |=3, ∴-2m2+-m2+2m2=3|m |=3,∴m =±1.∴c =(-2,-1,2)或c=(2,1,-2).(2)∵a =(1,1,0),b =(-1,0,2),∴a·b =(1,1,0)·(-1,0,2)=-1.又∵|a |=12+12+02=2,|b |=-12+02+22=5,∴cos 〈a ,b 〉=a·b |a ||b |=-110=-1010, 即向量a 与向量b 的夹角的余弦值为-1010. (3)∵k a +b =(k -1,k ,2),k a -2b =(k +2,k ,-4),∴(k -1,k ,2)·(k +2,k ,-4)=(k -1)(k +2)+k 2-8=0,∴k =2或k =-52.∴当k a +b 与k a -2b 互相垂直时,实数k 的值为2或-52.18.(本小题满分12分)如图,在直三棱柱ABC A 1B 1C 1中,∠ABC =90°,BC =2,CC 1=4,点E 在线段BB 1上,且EB 1=1,D ,F ,G 分别为CC 1,C 1B 1,C 1A 1的中点.(1)求证:B 1D ⊥平面ABD ; (2)求证:平面EGF ∥平面ABD .[解] 如图,以B 为坐标原点,BA ,BC ,BB 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系Bxyz ,则B (0,0,0),D (0,2,2),B 1(0,0,4).(1)设BA =a ,则A (a ,0,0).所以BA →=(a ,0,0),BD →=(0,2,2),B 1D →=(0,2,-2). 所以B 1D →·BA →=0,B 1D →·BD →=0+4-4=0.所以B 1D ⊥BA ,B 1D ⊥BD . 又BA ∩BD =B , 所以B 1D ⊥平面ABD .(2)由题意及(1),知E (0,0,3),G ⎝ ⎛⎭⎪⎫a 2,1,4,F (0,1,4),所以EG →=⎝ ⎛⎭⎪⎫a2,1,1,EF→=(0,1,1).所以B 1D →·EG →=0+2-2=0,B 1D →·EF →=0+2-2=0. 所以B 1D ⊥EG ,B 1D ⊥EF . 又EG ∩EF =E , 所以B 1D ⊥平面EGF . 由(1),知B 1D ⊥平面ABD , 故平面EGF ∥平面ABD .19.(本小题满分12分)如图,已知四边形ABCD 为矩形,四边形ABEF 为直角梯形,FA ⊥AB ,AD =AF =FE =1,AB =2,AD ⊥BE .(1)求证:BE ⊥DE ;(2)求点F 到平面CBE 的距离.[解] ∵四边形ABCD 为矩形,∴AD ⊥AB , 又AD ⊥BE ,AB ∩BE =B , ∴AD ⊥平面ABEF , 又AD ⊂平面ABCD , ∴平面ABCD ⊥平面ABEF .∵FA ⊥AB ,平面ABCD ∩平面ABEF =AB , ∴FA ⊥平面ABCD .∴FA ⊥AD . (1)证明:如图,建立空间直角坐标系,则B (0,2,0),C (1,2,0),D (1,0,0),E (0,1,1),F (0,0,1), ∴BE →=(0,-1,1),DE →=(-1,1,1), ∴BE →·DE →=0×(-1)+(-1)×1+1×1=0, ∴BE →⊥DE →,∴BE ⊥DE .(2)由(1)得BC →=(1,0,0),BE →=(0,-1,1),FE →=(0,1,0), 设n =(x ,y ,z )是平面CBE 的法向量,则由 ⎩⎪⎨⎪⎧n ·BC →=0,n ·BE →=0,得⎩⎨⎧x =0,-y +z =0,令y =1,得z =1,∴n =(0,1,1)是平面CBE 的一个法向量. 设点F 到平面CBE 的距离为d , 则d =⎪⎪⎪⎪⎪⎪FE →·n |n |=12=22.∴点F 到平面CBE 的距离为22. 20.(本小题满分12分)如图,在直三棱柱A 1B 1C 1ABC 中,AC ⊥AB ,AC =AB =4,AA 1=6,点E ,F 分别为CA 1,AB 的中点.(1)证明:EF ∥平面BCC 1B 1;(2)求B 1F 与平面AEF 所成角的正弦值.[解] (1)证明:如图,连接EC 1,BC 1,因为三棱柱A 1B 1C 1ABC 为直三棱柱,所以E 为AC 1的中点.又因为F 为AB 的中点,所以EF ∥BC 1.又EF ⊄平面BCC 1B 1,BC 1⊂平面BCC 1B 1,所以EF ∥平面BCC 1B 1.(2)以A 1为原点,A 1C 1,A 1B 1,A 1A 所在直线分别为x 、y 、z 轴,建立如图所示的空间直角坐标系A 1xyz ,则A (0,0,6),B 1(0,4,0),E (2,0,3),F (0,2,6), 所以B 1F →=(0,-2,6),AE →=(2,0,-3),AF →=(0,2,0), 设平面AEF 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AE →=2x -3z =0,n ·AF →=2y =0,令x =3,得n =(3,0,2),记B 1F 与平面AEF 所成角为θ,则sin θ=|cos 〈B 1F →,n 〉|=|B 1F →·n ||B 1F →|·|n |=313065.21.(本小题满分12分)如图所示的几何体中,BE ⊥BC ,EA ⊥AC ,BC =2,AC =22,∠ACB =45°,AD ∥BC ,BC =2AD .(1)求证:AE ⊥平面ABCD ;(2)若∠ABE =60°,点F 在EC 上,且满足EF =2FC ,求平面FAD 与平面ADC 的夹角的余弦值.[解] (1)证明:在△ABC 中,BC =2,AC =22,∠ACB =45°,由余弦定理可得AB 2=BC 2+AC 2-2×BC ×AC ×cos 45°=4,所以AB =2(负值舍去),因为AC 2=AB 2+BC 2,所以△ABC 是直角三角形,AB ⊥BC . 又BE ⊥BC ,AB ∩BE =B , 所以BC ⊥平面ABE .因为AE ⊂平面ABE ,所以BC ⊥AE , 因为EA ⊥AC ,AC ∩BC =C , 所以AE ⊥平面ABCD .(2)由题易得EB =2AB =4,由(1)知,BC ⊥平面ABE ,所以平面BEC ⊥平面ABE ,如图,以B 为原点,过点B 且垂直于平面BEC 的直线为z 轴,BE ,BC 所在直线分别为x ,y 轴,建立空间直角坐标系Bxyz ,则C (0,2,0),E (4,0,0),A (1,0,3),D (1,1,3),因为EF =2FC ,所以F ⎝ ⎛⎭⎪⎫43,43,0,易知AD →=(0,1,0),AF →=⎝ ⎛⎭⎪⎫13,43,-3,设平面FAD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧AD →·n =0,AF →·n =0,即⎩⎪⎨⎪⎧y =0,13x +43y -3z =0,令z =3,则x =9,所以n =(9,0,3).由(1)知EA ⊥平面ABCD ,所以EA →=(-3,0,3)为平面ABCD 的一个法向量. 设平面FAD 与平面ADC 的夹角为α, 则cos α=|EA →·n ||EA →|·|n |=2423×221=277,所以平面FAD 与平面ADC 的夹角的余弦值为277.22.(本小题满分12分)如图,在四棱锥P ABCD 中,底面ABCD 是边长为2的菱形,∠DAB =60°,∠ADP =90°,平面ADP ⊥平面ABCD ,F 为棱PD 的中点.(1)在棱AB 上是否存在一点E ,使得AF ∥平面PCE ?并说明理由;(2)当二面角D FC B 的余弦值为14时,求直线PB 与平面ABCD 所成的角.[解] (1)在棱AB 上存在点E ,使得AF ∥平面PCE ,且E 为棱AB 的中点. 理由如下:如图,取PC 的中点Q ,连接EQ ,FQ , 由题意得,FQ ∥DC 且FQ =12CD ,因为AE ∥CD 且AE =12CD ,所以AE ∥FQ 且AE =FQ .所以四边形AEQF 为平行四边形. 所以AF ∥EQ .又EQ ⊂平面PCE ,AF ⊄平面PCE ,所以AF ∥平面PCE .(2)连接BD ,DE .由题意知△ABD 为正三角形,所以ED ⊥AB ,即ED ⊥CD , 又∠ADP =90°,所以PD ⊥AD ,且平面ADP ⊥平面ABCD ,平面ADP ∩平面ABCD =AD ,所以PD ⊥平面ABCD ,故以D 为坐标原点建立如图所示的空间直角坐标系,设FD =a ,则由题意知F (0,0,a ),C (0,2,0),B (3,1,0),则FC →=(0,2,-a ),CB →=(3,-1,0), 设平面FBC 的法向量为m =(x ,y ,z ). 则⎩⎪⎨⎪⎧m ·FC →=2y -az =0,m ·CB →=3x -y =0,令x =1,则y =3,z =23a,所以m =⎝⎛⎭⎪⎫1,3,23a ,易知平面DFC 的一个法向量n =(1,0,0), 因为二面角D FC B 的余弦值为14,所以|cos 〈m ,n 〉|=|m·n ||m ||n |=14,即14+12a2=14,解得a =1(负值舍去). 因为PD ⊥平面ABCD ,所以PB 在平面ABCD 内的射影为BD , 所以∠PBD 为直线PB 与平面ABCD 所成的角, 由题意知在Rt△PBD 中,tan∠PBD =PD BD =2FDBD=1,所以∠PBD =45°,所以直线PB 与平面ABCD 所成的角为45°.。
河南省洛阳市高三数学“一练”试题 理(含解析)新人教A版
![河南省洛阳市高三数学“一练”试题 理(含解析)新人教A版](https://img.taocdn.com/s3/m/29bab9fdf71fb7360b4c2e3f5727a5e9856a27d7.png)
河南省洛阳市高三“一练”数学试卷(理科)参考答案与试题解析一、选择题:本题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)(•洛阳模拟)设复数z=﹣1﹣i(i为虚数单位),z 的共轭复数为=()A.B.2C.D.1考点:复数代数形式的乘除运算;复数求模.专题:计算题.分析:给出z=﹣1﹣i ,则,代入整理后直接求模.解答:解:由z=﹣1﹣i ,则,所以=.故选A.点评:本题考查了复数代数形式的乘除运算,考查了复数的模,考查了学生的运算能力,此题是基础题.2.(5分)(•洛阳模拟)已知集合,则满足条件A⊆C⊆B的集合C的个数为()A.1B.2C.4D.8考点:集合的包含关系判断及应用;其他不等式的解法.专题:不等式的解法及应用.分析:通过解分式不等式求出好A,无理不等式求出集合B,通过满足条件A⊆C⊆B的集合C的个数即可.解答:解:∵={1,2}={0,1,2,3,4},因为A⊆C⊆B,所以C中元素个数至少有1,2;至多为:0,1,2,3,4;所以集合C的个数为{0,3,4}子集的个数:23=8.故选D.点评:本题考查分式不等式与无理不等式的求法,集合的子集的求解,考查计算能力,转化思想.3.(5分)(•洛阳模拟)如果函数y=3sin(2x﹣φ)(φ>0)的图象关于直线对称,则φ的最小值为()A.B.C.D.考点:正弦函数的对称性.专题:计算题;三角函数的图像与性质.分析:根据正弦函数图象对称轴方程的公式,建立关于φ的等式,化简可得﹣φ=+kπ(k∈Z),取k=﹣1得φ=,即为正数φ的最小值.解答:解:∵函数y=3sin(2x ﹣φ)的图象关于直线对称,∴当x=时,函数达到最大或最小值由此可得:2﹣φ=+kπ(k∈Z)∴﹣φ=+kπ(k∈Z),取k=﹣1,得φ=因此,φ的最小值为故选:C点评:本题给出三角函数图象的一条对称轴方程,求参数φ的最小值,着重考查了三角函数和图象与性质和正弦函数图象的对称性等知识,属于基础题.4.(5分)(•揭阳一模)如图,阅读程序框图,任意输入一次x(0≤x≤1)与y(0≤y≤1),则能输出数对(x,y)的概率为()A.B.C.D.考点:几何概型.专题:计算题.分析:据程序框图得到事件“能输出数对(x,y)”满足的条件,求出所有基本事件构成的区域面积;利用定积分求出事件A构成的区域面积,据几何概型求出事件的概率.解答:解:是几何概型所有的基本事件Ω=设能输出数对(x,y)为事件A,则A=S(Ω)=1S(A)=∫01x2dx==故选A点评:本题考查程序框图与概率结合,由程序框图得到事件满足的条件、考查利用定积分求曲边图象的面积;利用几何概型概率公式求出事件的概率.5.(5分)(•洛阳模拟)若函数为常数)在定义域内为奇函数,则k的值为()A.1B.﹣1 C.±1D.0考点:函数奇偶性的判断.专题:计算题;函数的性质及应用.分析:由奇函数定义知f(﹣x)=﹣f(x)恒成立,进行化简整理即可求得k值.解答:解:因为f(x)为定义域内的奇函数,所以f(﹣x)=﹣f(x),即=﹣,所以(2﹣x﹣k•2x)(2x+k•2﹣x)=﹣(2x﹣k•2﹣x)(2﹣x+k•2x),所以2﹣x•2x+k•2﹣2x﹣k•22x﹣k2•2x•2﹣x=﹣2x•2﹣x﹣k•22x+•k•2﹣2x+k2•2﹣x•2x,即1﹣k2=﹣1+k2,解得k=±1,故选C.点评:本题考查函数的奇偶性,考查指数幂的运算法则,考查学生的运算能力,属中档题.6.(5分)(•洛阳模拟)在△ABC中,D为BC 边上的点,的最大值为()A.1B.C.D.考点:基本不等式.专题:计算题.分析:在△ABC中,D为BC边的点,由D,B,C三点共线可知λ+μ=1,(λ、μ>0),利用基本不等式即可求得λμ的最大值.解答:解:∵在△ABC中,D为BC边的点,∴D,B,C三点共线且D在B,C之间,∴λ+μ=1,(λ>0,μ>0)∴λμ≤==(当且仅当λ=μ时取“=”).∴λμ的最大值为.故选D.点评:本题考查基本不等式,求得λ+μ=1,(λ>0,μ>0)是关键,属于中档题.7.(5分)(•洛阳模拟)如图是某几何体的三视图,则该几何体的体积为()A.64+32πB.64+64πC.256+64πD.256+128π考点:由三视图求面积、体积.专题:计算题.分析:由三视图可知:该几何体是由上下两部分组成的,上面是一个圆柱,底面直径为8,高为4;下面是一个长宽高分别为8,8,4的长方体.据此即可计算出.解答:解:由三视图可知:该几何体是由上下两部分组成的,上面是一个圆柱,底面直径为8,高为4;下面是一个长宽高分别为8,8,4的长方体.∴该几何体的体积V=8×8×4+π×42×4=256+64π.故选C.点评:由三视图正确恢复原几何体是解题的关键.8.(5分)(•洛阳模拟)已知F是抛物线y2=4x的焦点,过点F1的直线与抛物线交于A,B两点,且|AF|=3|BF|,则线段AB的中点到该抛物线准线的距离为()A.B.C.D.10考点:抛物线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:根据抛物线的方程求出准线方程,利用抛物线的定义即条件,求出A,B的中点横坐标,即可求出线段AB的中点到抛物线准线的距离.解答:解:抛物线y2=4x的焦点坐标为(1,0),准线方程为x=﹣1设A(x1,y1),B(x2,y2),则∵|AF|=3|BF|,∴x1+1=3(x2+1),∴x1=3x2+2∵|y1|=3|y2|,∴x1=9x2,∴x1=3,x2=∴线段AB 的中点到该抛物线准线的距离为[(x1+1)+(x2+1)]=故选B.点评:本题考查解决抛物线上的点到焦点的距离问题,利用抛物线的定义将到焦点的距离转化为到准线的距离是关键.9.(5分)(•洛阳模拟)函数的最大值为()A.2B.3C.D.考点:二倍角的余弦;两角和与差的正弦函数;正弦函数的单调性.专题:计算题.分析:函数解析式第一项利用二倍角的余弦函数公式化简,整理后利用两角和与差的正弦函数公式化为一个角的正弦函数,由正弦函数的值域,即可确定出f(x)的最大值.解答:解:f(x)=1﹣cos (+2x )﹣cos2x=1+(sin2x ﹣cos2x)=1+2sin(2x ﹣),∵≤x≤,∴≤2x﹣≤,∵≤sin(2x ﹣)≤1,即2≤1+2sin(2x ﹣)≤3,则f(x)的最大值为3.故选B点评:此题考查了二倍角的余弦函数公式,两角和与差的正弦函数公式,以及正弦函数的定义域与值域,熟练掌握公式是解本题的关键.10.(5分)(•洛阳模拟)已知三棱锥S﹣ABC的所有顶点都在球O的球面上,SA⊥平面ABC ,,AB=1,AC=2,∠BAC=60°,则球O的表面积为()A.4πB.12πC.16πD.64π考点:球的体积和表面积.专题:计算题;空间位置关系与距离.分析:由三棱锥S﹣ABC的所有顶点都在球O的球面上,SA⊥平面ABC ,,AB=1,AC=2,∠BAC=60°,知BC=,∠ABC=90°.故△ABC截球O所得的圆O′的半径r==1,由此能求出球O的半径,从而能求出球O的表面积.解答:解:如图,三棱锥S﹣ABC的所有顶点都在球O的球面上,∵SA⊥平面ABC ,,AB=1,AC=2,∠BAC=60°,∴BC==,∴∠ABC=90°.∴△ABC截球O所得的圆O′的半径r==1,∴球O的半径R==2,∴球O的表面积S=4πR2=16π.故选C..点评:本题考查球的表面积的求法,合理地作出图形,数形结合求出球半径,是解题时要关键.11.(5分)(•洛阳模拟)已知的两个零点,则()A.B.1<x1x2<e C.1<x1x2<10 D.e<x1x2<10考点:函数的零点.专题:函数的性质及应用.分析:若的两个零点,则x1,x2是函数y=e﹣x和y=|lnx|的图象交点的横坐标,在同一个坐标系中,画函数y=e﹣x和y=|lnx|的图象,利用对数函数的性质,可判断出x1x2的范围.解答:解:若的两个零点,则x1,x2是函数y=e﹣x和y=|lnx|的图象交点的横坐标在同一个坐标系中,画函数y=e﹣x和y=|lnx|的图象如下图所示:由图可得即﹣1<ln(x1•x2)<1即又∵﹣lnx1>lnx2∴ln(x1•x2)<0∴x1•x2<1综上故选A点评:本题考查的知识点是函数的零点,对数函数的图象和性质,其中画出函数的图象,并利用数形结合的办法进行解答是关键.12.(5分)(•洛阳模拟)设F1,F2分别为双曲线的左右焦点,过F1引圆x2+y2=9的切线F1P交双曲线的右支于点P,T为切点,M为线段F1P的中点,O为坐标原点,则|MO|﹣|MT|等于()A.4B.3C.2D.1考点:两点间的距离公式;双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:由双曲线方程,算出c==5,根据三角形中位线定理和圆的切线的性质,并结合双曲线的定义可得|MO|﹣|MT|=4﹣a=1,得到本题答案.解答:解:∵MO是△PF1F2的中位线,∴|MO|=|PF2|,|MT|=|PF1|﹣|F1T|,根据双曲线的方程得:a=3,b=4,c==5,∴|OF1|=5,∵PF1是圆x2+y2=9的切线,|OT|=3,∴Rt△OTF1中,|FT|==4,∴|MO|﹣|MT|=|=|PF2|﹣(|PF1|﹣|F1T|)=|F1T|﹣(|PF1|﹣|PF2|)=4﹣a=1故选:D点评:本题给出双曲线与圆的方程,求|MO|﹣|MT|的值,着重考查了双曲线的简单性质、三角形中位线定理和直线与圆的位置关系等知识,属于中档题.二、填空题;本题共4小题,每小题5分,共20分.13.(5分)(•洛阳模拟)设变量x,y 满足约束条件:.则目标函数z=2x+3y 的最小值为7 .考点:简单线性规划.专题:数形结合.分析:先根据条件画出可行域,设z=2x+3y,再利用几何意义求最值,将最小值转化为y轴上的截距,只需求出直线z=2x+3y,过可行域内的点B(1,1)时的最小值,从而得到z最小值即可.解答:解:设变量x、y满足约束条件,在坐标系中画出可行域△ABC,A(2,1),B(4,5),C(1,2),当直线过A(2,1)时,目标函数z=2x+3y的最小,最小值为7.故答案为:7.点评:借助于平面区域特性,用几何方法处理代数问题,体现了数形结合思想、化归思想.线性规划中的最优解,通常是利用平移直线法确定.14.(5分)(•洛阳模拟)曲线处的切线方程为x+y﹣2=0 .考点:利用导数研究曲线上某点切线方程.专题:计算题;导数的概念及应用.分析:由y=,知,由此能求出曲线处的切线方程.解答:解:∵y=,∴,∴曲线处的切线方程的斜率k=y′|x=0=﹣1,∴曲线处的切线方程为y﹣2=﹣x,即x+y﹣2=0.故答案为:x+y﹣2=0.点评:本题考查曲线方程在某点处的切线方程的求法,解题时要认真审题,仔细解答,注意导数的几何意义的灵活运用.15.(5分)(•洛阳模拟)的展开式中各项系数之和为729,则该展开式中x2的系数为160 .考点:二项式系数的性质.专题:计算题;概率与统计.分析:由的展开式中各项系数之和为729,知3n=729,解得n=6.再由(2x+)6的通项公式为T r+1==,能求出该展开式中x2的系数.解答:解:∵的展开式中各项系数之和为729,令x=1,得3n=729,解得n=6.∵(2x+)6的通项公式为T r+1==,由6﹣=2,得r=3.∴该展开式中x2的系数为=8×=160.故答案为:160.点评:本题考查二项式系数的性质的应用,解题时要认真审题,仔细解答,注意等价转化思想的合理运用.16.(5分)(•洛阳模拟)在△ABC中,角A,B,C的对边分别为a,b,c,2bcosB=acosC+ccosA,且b2=3ac,则角A 的大小为或.考点:正弦定理.专题:解三角形.分析:由条件利用正弦定理、诱导公式可得sin2B=sin(A+C),得B=60°,A+C=120°.又b2=3ac,即sin2B=3sinAsinC,利用积化和差公式求得cos(A﹣C)=0,得A﹣C=±90°,由此可得A的大小.解答:解:△ABC中,∵2bcosB=acosC+c•cosA,由正弦定理可得2sinBcosB=sinAcosC+sinC•cosA,∴sin2B=sin(A+C).得2B=A+C (如果2B=180°﹣(A+C),结合A+B+C=180°易得B=0°,不合题意).A+B+C=180°=3B,得B=60°,A+C=120°.又b2=3ac,故 sin2B=3sinAsinC,∴=3sinAsinC=3×[cos(A﹣C)﹣cos(A+C)]=(cos(A﹣C)+),解得 cos(A﹣C)=0,故A﹣C=±90°,结合A+C=120°,易得 A=,或A=.故答案为A=,或A=点评:本题主要考查正弦定理、诱导公式、积化和差公式的应用,已知三角函数值求角的大小,属于中档题.三、解答题:本大题共8小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(12分)(•洛阳模拟)设数列{a n}满足:a1+2a2+3a3+…+na n=2n(n∈N*).(1)求数列{a n}的通项公式;(2)设b n=n2a n,求数列{b n}的前n项和S n.考点:数列递推式;数列的求和.专题:计算题.分析:(1)根据题意,可得a1+2a 2+3a3++(n﹣1)a n﹣1=2n﹣1,两者相减,可得数列{a n}的通项公式.(2)根据题意,求出b n的通项公式,继而求出数列{b n}的前n项和S n.解答:解:(1)∵a1+2a2+3a3+…+na n=2n①,∴n≥2时,a1+2a2+3a3+…+(n﹣1)a n﹣1=2n﹣1②①﹣②得na n=2n﹣1,a n=(n≥2),在①中令n=1得a1=2,∴a n=(2)∵b n=.则当n=1时,S1=2∴当n≥2时,S n=2+2×2+3×22+…+n×2n﹣1则2S n=4+2×22+3×23+…+(n﹣1)•2n﹣1+n•2n相减得S n=n•2n﹣(2+22+23+…+2n﹣1)=(n﹣1)2n+2(n≥2)又S1=2,符合S n的形式,∴S n=(n﹣1)•2n+2(n∈N*)点评:此题主要考查数列通项公式的求解和相关计算.18.(12分)(•洛阳模拟)如图,在四棱锥P﹣ABCD中,平面PAB⊥平面ABCD,AD∥BC,∠ABC=90°,PA=PB=3,BC=1,AB=2,AD=3,O是AB的中点.(1)证明:CD⊥平面POC;(2)求二面角C﹣PD﹣O的余弦值的大小.考点:用空间向量求平面间的夹角;直线与平面垂直的判定;二面角的平面角及求法.专题:空间位置关系与距离;空间向量及应用.分析:(1)利用侧面PAB⊥底面ABCD,可证PO⊥底面ABCD,从而可证PO⊥CD,利用勾股定理,可证OC⊥CD,从而利用线面垂直的判定,可得CD⊥平面POC;(2)建立坐标系,确定平面OPD、平面PCD的一个法向量,利用向量的夹角公式,可求二面角O﹣PD ﹣C的余弦值;解答:证明:(1)∵PA=PB=,O为AB中点,∴PO⊥AB∵侧面PAB⊥底面ABCD,PO⊂侧面PAB,侧面PAB∩底面ABCD=AB,∴PO⊥底面ABCD∵CD⊂底面ABCD,∴PO⊥CD在Rt△OBC中,OC2=OB2+BC2=2在Rt△OAD中,OD2=OA2+AD2=10在直角梯形ABCD中,CD2=AB2+(AD﹣BC)2=8∴OC2+CD2=OD2,∴△ODC是以∠OCD为直角的直角三角形,∴OC⊥CD∵OC,OP是平面POC内的两条相交直线∴CD⊥平面POC…(6分)解:(2)如图建立空间直角坐标系O﹣xyz,则P(0,0,2),D(﹣1,3,0),C(1,1,0)∴=(0,0,2),=(﹣1,3,0),=(﹣1,﹣1,2),=(﹣2,2,0)假设平面OPD 的一个法向量为=(x,y,z),平面PCD 的法向量为=(a,b,c),则由可得,令x=3,得y=1,z=0,则=(3,1,0),由可得,令a=2,得b=2,c=,即=(2,2,)∴cos<,>===故二面角O﹣PD﹣C 的余弦值为.…(12分)点评:本题考查线面垂直,考查面面角,考查向量方法解决空间角问题,正确运用线面垂直的判定是关键.19.(12分)(•洛阳模拟)随着建设资源节约型、环境友好型社会的宣传与实践,低碳绿色的出行方式越来越受到追捧,全国各地兴起了建设公共自行车租赁系统的热潮,据不完全统计,已有北京、株洲、杭州、太原、苏州、深圳等城市建设成公共自行车租赁系统,某市公共自行车实行60分钟内免费租用,60分钟以上至120分钟(含),收取1元租车服务费,120分钟以上至180分钟(含),收取2元租车服务费,超过180分钟以上的时间,按每小时3元计费(不足一小时的按一小时计),租车费用实行分段合计.现有甲,乙两人相互到租车点租车上班(各租一车一次),设甲,乙不超过1小时还车的概率分别为小时以上且不超过2小时还车的概率分别为小时以上且不超过3小时还车的概率分别为,两人租车时间均不会超过4小时.(1)求甲、乙两人所付租车费用相同的概率.(2)设甲一周内有四天(每天租车一次)均租车上班,X表示一周内租车费用不超过2元的次数,求X的分布列与数学期望.考点:离散型随机变量及其分布列;离散型随机变量的期望与方差.专题:计算题.分析:(1)甲、乙两人租车费用相同包括0,1,3,6元,然后利用互斥事件的概率公式分别求出相应的概率,最后求和可求出所求;(2)X的取值可能为0,1,2,3,4,然后利用二项分布的概率公式分别求出相应的概率,列出分布列,最后利用数学期望公式解之即可.解答:解:(1)甲、乙两人租车费用相同包括0,1,3,6元两人都付0元的概率为P1=×=两人都付1元的概率为P2=×=两人都付3元的概率为P3=×=两人都付6元的概率为P4=(1﹣﹣﹣)×(1﹣﹣﹣)=×=则甲,乙两人所付租车费用相同的概率为P=P1+P2+P3+P4=(2)依题意,甲某每天租车费用不超过2元的概率为P=+=则P(X=0)=××=,P(X=1)==P(X=2)==,P(X=3)==P(X=4)==∴X的分布列为X 0 1 2 3 4PX的数学期望为E(X )=1×+2×+3×+4×=3点评:本题主要考查了事件、互斥事件的概率,以及离散型随机变量的分布列和数学期望,同时考查了运算求解的能力,属于中档题.20.(12分)(•洛阳模拟)在平面直角坐标系中xOy中,O为坐标原点,A(﹣2,0),B(2,0),点P为动点,且直线AP与直线BP 的斜率之积为.(1)求动点P的轨迹C的方程;(2)过点D(1,0)的直线l交轨迹C于不同的两点M,N,△MON的面积是否存在最大值?若存在,求出△MON 的面积的最大值及相应的直线方程;若不存在,请说明理由.考点:轨迹方程;直线与圆锥曲线的关系.专题:圆锥曲线的定义、性质与方程.分析:(1)设P点坐标为(x,y)根据直线AP与直线BP 的斜率之积为,代入斜率公式,整理可得动点P的轨迹C的方程;(2)设出交点M,N的坐标及直线l的方程为x=ny+1,联立方程根据韦达定理求出y1+y2,y1•y2的值,根据弦长公式求出MN长,求出△MON的面积的表达式,分析出对应函数的单调性,可得答案.解答:解:设P点的坐标为(x,y)∵A(﹣2,0),B(2,0),直线AP与直线BP 的斜率之积为.∴•=(x≠±2)整理得P 点的轨迹方程为(x≠±2)(2)设直线l的方程为x=ny+1联立方程x=ny+1与(x≠±2)得(3n2+4)y2+6ny﹣9=0设M(x1,y1),N(x2,y2),则y1+y2=,y1•y2=△MON的面积S=•|OP|•|y1﹣y2|====令t=,则t≥1,且y=3t+在[1,+∞)是单调递增∴当t=1时,y=3t+取最小值4此时S 取最大值此时直线的方程为x=1点评:本题考查的知识点是轨迹方程,直线与圆锥曲线的关系,熟练掌握设而不求,联立方程,韦达定理,弦长公式等一系列处理直线与圆锥曲线关系的方法和技巧是解答的关键.21.(12分)(•洛阳模拟)已知函数.(1)当a=2时,求函数f(x)的单调区间;(2)若对任意的,求实数m的取值范围.考点:利用导数研究函数的单调性;导数在最大值、最小值问题中的应用.专题:导数的综合应用.分析:(1)当a=2时,求出f(x),在定义域内解不等式f′(x)>0,f′(x)<0即可;(2)对任意的a∈(1,2),当x0∈[1,2]时,都有f(x0)>m(1﹣a2),等价于f(x0)min>m(1﹣a2),用导数可求f(x0)min,构造函数g(a)=f(x0)min﹣m(1﹣a2)(1<a<2),问题转化为g(a)min>0(1<a<2),分类讨论可求出m的取值范围.解答:解:(1)当a=2时,f(x)=,定义域为(﹣,+∞).f′(x)=2x﹣2+=2x﹣2+=.由f′(x)>0,得,或x >;由f′(x)<0,得0<x <.所以函数f(x )的单调递增区间为(,0),(,+∞),单调递减区间为(0,).(2)y=f(x )的定义域为(﹣,+∞).f′(x)=2x﹣a+=2x﹣a+==.当1<a<2时,﹣1==<0,即,所以当1<x<2时,f′(x)>0,f(x)在[1,2]上单调递增,所以f(x)在[1,2]上的最小值为f(1)=1﹣a+ln ().依题意,对任意的a∈(1,2),当x0∈[1,2]时,都有f(x0)>m(1﹣a2),即可转化为对任意的a∈(1,2),1﹣a+ln ()﹣m(1﹣a2)>0恒成立.设g(a)=1﹣a+ln ()﹣m(1﹣a2)(1<a<2).则g′(a)=﹣1++2ma==,①当m≤0时,2ma﹣(1﹣2m)<0,且>0,所以g′(a)<0,所以g(a)在(1,2)上单调递减,且g(1)=0,则g(a)<0,与g(a)>0矛盾.②当m>0时,g′(a)=,若,则g′(a)<0,g(a)在(1,2)上单调递减,且g(1)=0,g(a)<0,与g(a)>0矛盾;若1<<2,则g(a)在(1,)上单调递减,在(,2)上单调递增,且g(1)=0,g(a)<g(1)=0,与g(a)>0矛盾;若,则g(a)在(1,2)上单调递增,且g(1)=0,则恒有g(a)>g(1)=0,所以,解得m,所以m的取值范围为[,+∞).点评:本题考查综合运用导数求函数的单调区间、最值及函数恒成立问题,考查学生综合运用知识分析问题解决问题的能力,考查分类讨论思想的运用.22.(10分)(•洛阳模拟)选修4﹣1:几何证明选讲如图,已知PE切⊙O于点E,割线PBA交⊙O于A,B两点,∠APE的平分线和AE,BE分别交于点C,D.求证:(1)CE=DE;(2).考点:与圆有关的比例线段;相似三角形的性质.专题:选作题.分析:(1)由弦切角定理是,及PC为∠APE的平分线,可证得∠ECD=∠EDC,进而证得CE=DE (2)先由AA证明出△PBC∽△ECD,进而证得△PBC∽△PEC,可由相似三角形对应边成比例得到结论.解答:解:(1)PE切圆O于点E∴∠A=∠BEP∵PC平分∠APE,∴∠A+∠CPA=∠BEP+∠DPE∵∠ECD=∠A+∠CPA,∠EDC=∠BEP+∠DPE∴∠ECD=∠EDC,∴EC=ED(2)∵∠PDB=∠EDC,∠EDC=∠ECD∴∠PDB=∠PCE∵∠BPD=∠EPC∴△PDB∽△PEC∴=同理△PDE∽△PCA∴=∴=∵DE=CE∴点评:本题考查的往右点是与圆相关的比例线段,相似三角形的性质,熟练掌握弦切角定理及相似三角形的判定及性质是解答的关键.23.(•洛阳模拟)选修4﹣4:坐标系与参数方程在直角坐标系xOy中,直线l经过点P(﹣1,0),其倾斜角为α,以原点O为极点,以x轴非负半轴为极轴,与直角坐标系xOy取相同的长度单位,建立极坐标系.设曲线C的极坐标方程为ρ2﹣6ρcosθ+5=0.(1)若直线l与曲线C有公共点,求α的取值范围;(2)设M(x,y)为曲线C上任意一点,求x+y的取值范围.考点:直线与圆的位置关系;简单曲线的极坐标方程.专题:计算题;直线与圆.分析:(1)先根据极坐标与直角坐标互化的公式,算出曲线C的直角坐标方程,再结合直线l 的参数方程:,联解得到关于参数t的二次方程,运用根的判别式列式并解之,即可得到角α的取值范围;(2)由(1)可得曲线C的参数方程,从而得到x+y=3+2sin (θ+),最后结合正弦函数的值域,即可得到x+y的取值范围.解答:解:(1)将曲线ρ2﹣6ρcosθ+5=0化成直角坐标方程,得圆C:x2+y2﹣6x+5=0直线l 的参数方程为(t为参数)将其代入圆C方程,得(﹣1+tcosα)2+(tsinα)2﹣6tsinα+5=0整理,得t2﹣8tcosα+12=0∵直线l与圆C有公共点,∴△≥0,即64cos2α﹣48≥0,可得cosα≤﹣或cosα≥∵α为直线的倾斜角,得α∈[0,π)∴α的取值范围为[0,]∪[,π)(2)由圆C:x2+y2﹣6x+5=0化成参数方程,得(θ为参数)∵M(x,y)为曲线C上任意一点,∴x+y=3+2cosθ+2sinθ=3+2sin (θ+)∵sin(θ+)∈[﹣1,1]∴2sin (θ+)∈[﹣2,2],可得x+y的取值范围是[3﹣2,3+2].点评:本题给出直线与圆的极坐标方程,要求我们将其化成直角坐标方程并研究直线与圆位置关系.着重考查了直角坐标与极坐标的互化、简单曲线的极坐标方程和直线与圆的位置关系等知识,属于中档题.24.(•洛阳模拟)选修4﹣5:不等式选讲设函数f(x)=|x+1|+|x﹣4|﹣a.(1)当a=1时,求函数f(x)的最小值;(2)若对任意的实数x恒成立,求实数a的取值范围.考点:函数恒成立问题;分段函数的解析式求法及其图象的作法.专题:函数的性质及应用.分析:(1)当a=1时,利用绝对值不等式的性质即可求得最小值;(2)⇔|x+1|+|x﹣4|﹣1≥a+⇔a+≤4,对a进行分类讨论可求a的取值范围.解答:解:(1)当a=1时,f(x)=|x+1|+|x﹣4|﹣1≥|(x+1)﹣(x﹣4)|﹣1=5﹣1=4.所以函数f(x)的最小值为4.(2)对任意的实数x恒成立⇔|x+1|+|x﹣4|﹣1≥a+对任意的实数x恒成立⇔a+≤4对任意实数x恒成立.当a<0时,上式显然成立;当a>0时,a+≥2=4,当且仅当a=即a=2时上式取等号,此时a+≤4成立.综上,实数a的取值范围为(﹣∞,0)∪{2}.点评:本题考查绝对值函数、基本不等式以及恒成立问题,考查分类讨论思想,恒成立问题一般转化为函数最值问题解决,.四、附加题(满分0分,不计入总分)25.(•洛阳模拟)有小于1的n(n≥2)个正数x1,x2,x3,…,x n,且x1+x2+x3+…+x n=1.求证:.考点:不等式的证明.专题:证明题;不等式的解法及应用.分析:由x1,x2,x3,…,x n均为小于1的正数,可得,由均值定理及放缩法,证得成立.解答:证明:∵x1,x2,x3,…,x n均为小于1的正数,∴∴>≥又∵≤=∴≥n∴>n2≥22=4即>4点评:本题考查的知识点是不等式的证明,熟练掌握均值定理及放缩法是解答的关键.。
安徽省亳州市蒙城县第二中学2020-2021学年高三数学文模拟试卷含解析
![安徽省亳州市蒙城县第二中学2020-2021学年高三数学文模拟试卷含解析](https://img.taocdn.com/s3/m/11186ffefbb069dc5022aaea998fcc22bcd1432b.png)
安徽省亳州市蒙城县第二中学2020-2021学年高三数学文模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知曲线与双曲线的渐近线相切,则此双曲线的焦距等于()A. B. C.4 D.参考答案:D2. 在复平面内,复数(是虚数单位)对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限参考答案:A3. 已知为实数,命题甲:,命题乙:,则甲是乙的()条件(A)充分不必要(B)必要不充分(C)充要(D)非充分非必要参考答案:B略4. 已知集合,则= ()A.B.C.D.参考答案:D略5. 执行如图所示的程序框图,输出的有序实数对为A.(8,2)B.(8,3)C.(16,3)D.(16,4)参考答案:D6. 给出如下四个命题:①e>2②ln2>③π2<3π④<,正确的命题的个数为()A.1 B.2 C.3 D.4参考答案:D【考点】不等式比较大小.【分析】①利用分析法和构造函数,利用导数和函数的最值得关系即可判断,②根据对数的运算性质即可判断,③利用中间量即可判断,④两边取对数即可判断.【解答】解:①要证e>2,只要证>ln2,即2>eln2,设f(x)=elnx﹣x,x>0,∴f′(x)=﹣1=,当0<x<e时,f′(x)>0,函数单调递增,当x>e时,f′(x)<0,函数单调递减,∴f(x)<f(e)=elne﹣e=0,∴f(2)=eln2﹣2<0,即2>eln2,∴e>2,因此正确②∵3ln2=ln8>ln2.82>lne2=2.∴ln2>,因此正确,③π2<42=16,3π>33=27,因此π2<3π,③正确,④∵2π<π2,∴<,④正确;正确的命题的个数为4个,故选:D.【点评】本题考查了不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.7. (06年全国卷Ⅱ理)( )(A)(B)(C)(D)参考答案:答案:A解析: 故选A8. 已知某几何体的三视图如下,则该几何体体积为()A.4+ B.4+ C.4+D.4+参考答案:A 该几何体是一个圆柱与一个长方体的组成,其中重叠了一部分,所以该几何体的体积为.故选A.9. 已知S n是数列{a n}的前n项和,且,则()A. 20B. 25C. 30D. 35参考答案:D【分析】先由得到数列是等差数列,再根据,即可求出结果.【详解】因为是数列的前项和,且,所以,因此数列是公差为的等差数列,又,所以,因此.故选D【点睛】本题主要考查等差数列的性质、以及等差数列的前项和,熟记等差数列的性质以及前项和公式即可,属于常考题型.10. 定义在R上的函数y=f(x)是减函数,且函数y=f(x﹣1)的图象关于(1,0)成中心对称,若s,t满足不等式f(s2﹣2s)≤﹣f(2t﹣t2).则当1≤s≤4时,的取值范围是( ) A.B.C.D.参考答案:C【考点】奇偶性与单调性的综合;函数解析式的求解及常用方法.【专题】计算题;综合题;压轴题.【分析】首先由由f(x﹣1)的图象关于(1,0)中心对称知f(x)的图象关于(0,0)中心对称,根据奇函数定义与减函数性质得出s与t的关系式,然后利用不等式的基本性质即可求得结果.【解答】解析:由f(x﹣1)的图象相当于f(x)的图象向右平移了一个单位又由f(x﹣1)的图象关于(1,0)中心对称知f(x)的图象关于(0,0)中心对称,即函数f (x )为奇函数 得f (s 2﹣2s )≤f(t 2﹣2t ),从而t 2﹣2t≤s 2﹣2s ,化简得(t ﹣s )(t+s ﹣2)≤0, 又1≤s≤4, 故2﹣s≤t≤s,从而,而,故.故选C .【点评】题综合考查函数的奇偶性、单调性知识;同时考查由最大值、最小值求取值范围的策略,以及运算能力,属中档题.二、 填空题:本大题共7小题,每小题4分,共28分 11. 两圆相交于两点A(1,3)和B (m,-1),两圆圆心都在直线上,则__参考答案: 312. ___________ .参考答案:13. 正三棱锥P -ABC 高为2,侧棱与底面所成角为45°,则点A 到侧面PBC 的距离是 . 参考答案:14. 已知向量,,若,其中,则.参考答案:15.一个四棱锥的三视图如图所示,那么这个四棱锥最长棱的棱长为__________.参考答案:将该四棱锥放在正方体中,, ,故该四棱锥中最长棱长为.16. 已知抛物线y 2=2x 的焦点是F ,点P 是抛物线上的动点,又有点A (3,2).则|PA |+|PF |的最小值是 ,取最小值时P 点的坐标 .参考答案:,抛物线的准线为。
人教新课标A版 高中数学必修4 第一章三角函数 1.5 函数y=sin(wx+φ) 同步测试A卷
![人教新课标A版 高中数学必修4 第一章三角函数 1.5 函数y=sin(wx+φ) 同步测试A卷](https://img.taocdn.com/s3/m/1fea3e50b90d6c85ed3ac658.png)
人教新课标A版高中数学必修4 第一章三角函数 1.5 函数y=sin(wx+φ) 同步测试A卷姓名:________ 班级:________ 成绩:________一、单选题 (共15题;共30分)1. (2分) (2018高三上·黑龙江期中) 函数(其中)的图象如图所示,为了得到的图象,则只要将的图象()A . 向右平移个单位长度B . 向右平移个单位长度C . 向左平移个单位长度D . 向左平移个单位长度2. (2分)把函数的图象向右平移个单位,再把所得图象上各点的横坐标伸长到原来的2倍,则所得图象对应的函数解析式是()A .B .C .D .3. (2分) (2019高三上·临沂期中) 函数(其中)的图象如图所示,为了得到的图象,只需将图象()A . 向右平移个单位长度B . 向左平移个单位长度C . 向右平移个单位长度D . 向左平移个单位长度4. (2分)用“五点法”作y=2sin2x的图象是,首先描出的五个点的横坐标是()A . 0,,π,,2πB . 0,,,,πC . 0,π,2π,3π,4πD . 0,,,,5. (2分) (2020高三上·兴宁期末) 由的图象向左平移个单位,再把所得图象上所有点的横坐标伸长到原来的2倍后,所得图象对应的函数解析式为()A .B .C .D .6. (2分)函数在一个周期内的图象如图所示,则此函数的解析式是()A .B .C .D .7. (2分)要得到函数y=cos(2x+1)的图象,只需将函数y=cos2x的图象()A . 向左平移1个单位B . 向右平移1个单位C . 向左平移个单位D . 向右平移个单位8. (2分)已知函数f(x)=cos2x与g(x)=cosωx(ω>0)的图象在同一直角坐标系中对称轴相同,则ω的值为()A . 4B . 2C . 1D .9. (2分) (2017高一下·禅城期中) 三角函数y=sin(﹣2x)+cos2x的振幅和最小正周期分别为()A . ,B . ,πC . ,D . ,π10. (2分) (2016高一下·岳阳期中) 若函数y=sin(ωx+φ)(ω>0)的部分图象如图,则ω=()A . 5B . 4C . 3D . 211. (2分)用“五点法”作函数y=cos2x,x∈R的图象时,首先应描出的五个点的横坐标是()A . 0,,π,,2πB . 0,,,,πC . 0,π,2π,3π,4πD . 0,,,,12. (2分) (2016高三上·红桥期中) 函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<)的部分图象如图所示,则ω,φ的值分别是()A . 2,﹣B . 2,﹣C . 4,﹣D . 4,13. (2分)函数在区间上单调递减,且函数值从1减小到-1,那么此函数图象与y轴交点的纵坐标为()A .B .C .D .14. (2分)(2017·合肥模拟) 已知函数f(x)=Asin(ωx+ )﹣1(A>0,ω>0)的部分图象如图,则对于区间[0,π]内的任意实数x1 , x2 , f(x1)﹣f(x2)的最大值为()A . 2B . 3C . 4D . 615. (2分)(2020·海南模拟) 将函数的图象向左平移个单位长度后得到曲线,再将上所有点的横坐标伸长到原来的倍得到曲线,则的解析式为()A .B .C .D .二、填空题 (共5题;共5分)16. (1分)已知ω>0,0<φ<π,直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,则φ=________17. (1分)(2016·杭州模拟) 函数y=sin(ωx+φ)(x∈R,ω>0,0≤φ<2π)的部分图象如图,则函数表达式为________;若将该函数向左平移1个单位,再保持纵坐标不变,横坐标缩短为原来的倍得到函数g (x)=________.18. (1分) (2015高三上·河西期中) 已知角φ的终边经过点P(1,﹣2),函数f(x)=sin(ωx+φ)(ω>0)图象的相邻两条对称轴之间的距离等于,则 =________.19. (1分)(2016·新课标Ⅲ卷理) 函数y=sinx﹣ cosx的图象可由函数y=sinx+ cosx的图象至少向右平移________个单位长度得到.20. (1分) (2017高一上·安庆期末) 已知函数f(x)=sin(ωx+φ+ )(ω>0,0<φ≤ )的部分图象如图所示,则φ的值为________.三、解答题 (共5题;共25分)21. (5分) (2019高一上·郁南月考) 已知曲线y=Asin(ωx+φ)(A>0,ω>0)上的一个最高点的坐标为(,)此点与相邻最低点之间的曲线与x轴交于点(,0)且φ∈(- ,)(1)求曲线的函数表达式;(2)用“五点法”画出函数在[0,2 ]上的图象.22. (5分) (2020高一上·武汉期末) 已知函数 .(1)用五点法画出该函数在区间的简图;(2)结合所画图象,指出函数在上的单调区间.23. (5分)已知函数y=sin(2x+ )+1.(1)用“五点法”画出函数的草图;(2)函数图象可由y=sinx的图象怎样变换得到?24. (5分) (2019高一下·蛟河月考) 函数的一段图像过点,如图所示.(1)求在区间上的最值;(2)若 ,求的值.25. (5分)(2017·黑龙江模拟) 某同学将“五点法”画函数f(x)=Asin(wx+φ)(w>0,|φ|<)在某一个时期内的图象时,列表并填入部分数据,如下表:wx+φ0π2πxAsin(wx+φ)05﹣50(1)请将上述数据补充完整,填写在答题卡上相应位置,并直接写出函数f(x)的解析式;(2)将y=f(x)图象上所有点向左平移个单位长度,得到y=g(x)图象,求y=g(x)的图象离原点O 最近的对称中心.参考答案一、单选题 (共15题;共30分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、二、填空题 (共5题;共5分)16-1、17-1、18-1、19-1、20-1、三、解答题 (共5题;共25分)21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、。
人人教A版数学高三等比数列精选试卷练习(含答案)2
![人人教A版数学高三等比数列精选试卷练习(含答案)2](https://img.taocdn.com/s3/m/8bbf0e6d4afe04a1b171de70.png)
人人教A 版数学高三等比数列精选试卷练习(含答案) 学校:___________姓名:___________班级:___________考号:___________一、单选题1.在等比数列{}n a 中,332a =,392S =,则1a =( ) A .32或6 B .3 C .32或3 D .6 2.若数列{a n }满足:a 1=1,2a n +1=2a n +1(n ∈N*),则a 1与a 5的等比中项为( )A .±2B .2C .D 3.等比数列{}n a 中,39a =,51a =,则6a 的值为( )A .13B .13- C .13± D .194.公比不为1的等比数列{}n a 的前n 项和为n S ,若1a ,3a ,2a 成等差数列,2mS ,3S ,4S 成等比数列,则m =( )A .78B .85 C .1 D .955.正项等比数列{}n a 中,153759216a a a a a a ++=,且5a 与9a 的等差中项为4,则{}n a 的公比是 ( )A .1B .2C .2D 6.已知一个等比数列项数是偶数,其偶数项之和是奇数项之和的3倍,则这个数列的公比为( )A .2B .3C .4D .6 7.已知等比数列{}n a ,若1231a a a ⋅⋅=,7894a a a ⋅⋅=,则129a a a ⋅=L ( ) A .4 B .6 C .8 D .8± 8.在等比数列{}n a 中,24681,4a a a a +=+=,则2a =( )A .2B .4C .12D .13 9.已知等比数列{}n a 满足114a =,()35441a a a =-,则2a =( )A .2B .1C .12D .1810.已知()f x 是定义在R 上不恒为0的函数,且对任意,a b ∈R ,有()()()f a b a f b b f a ⋅=⋅+⋅成立,()22f =,令()2n n a f =,()22n n n f b =则有( )A .{}n a 为等差数列B .{}n a 为等比数列C .{}n b 为等差数列D .{}n b 为等比数列 11.在等比数列{}n a 中,227a =,13q =-,则5a =( ) A .3- B .3 C .1- D .112.已知正项数列{}n a ,若点()4log n na ,在函数()3f x x =-的图像上,则()2357log a a a =( )A .12B .13C .14D .16 13.已知等比数列{}n a 中,141,8a a =-=,该数列的公比为A .2B .-2C .2±D .314.在正项等比数列{}n a 中,4a ,46a 为方程210090x x -+=的两根,则102540a a a ⋅⋅=( )A .9B .27C .64D .8115.已知数列{}n a 是等比数列,若2678492ma a a a a ⋅=-⋅,且公比2)q ∈,则实数m 的取值范围是()A .(2,6)B .(2,5)C .(3,6)D .(3,5) 16.已知等比数列{}n a ,若1472a a +=,232a a ⋅=-,则公比q =( ) A .-2 B .12- C .-2或12- D .-8或18- 17.在等比数列{}n a 中,34a =,516a =,则9a 等于( )A .256B .-256C .128D .-128 18.在正项等比数列{n a }中,274a a =,则212228log log log a a a +++…= A .2 B .4 C .6 D .819.已知数列{}n a 的前n 项和1n n S a =-(0a ≠),那么{}n a ( )A .一定是等差数列B .一定是等比数列C .或者是等差数列,或者是等比数列D .既不可能是等差数列,也不可能是等比数列20.等比数列{a n }中,a 4=2,a 7=5,则数列{lg a n }的前10项和等于( ) A .2B .lg 50C .5D .10二、解答题21.在我们的教材必修一中有这样一个问题,假设你有一笔资金,现有三种投资方案供你选择,这三种方案的回报如下:方案一:每天回报40元;方案二:第一天回报10元,以后每天比前一天多回报10元;方案三:第一天回报0.4元,以后每天的回报比前一天翻一番.记三种方案第n 天的回报分别为n a ,n b ,n c .(1)根据数列的定义判断数列{}n a ,{}n b ,{}n c 的类型,并据此写出三个数列的通项公式;(2)小王准备做一个为期十天的短期投资,他应该选择哪一种投资方案?并说明理由. 22.设数列{}n a 的前n 项和为n S ,若对于任意的正整数n ,总存在正整数m ,使得n m S a =,则称{}n a 是“H 数列”.(1)若数列{}n a 的前n 项和为*2()n n S n =∈N ,证明:{}n a 是“H 数列”.(2)设{}n a 是等差数列,其首项11a =,公差0d <,若{}n a 是“H 数列”,求d 的值.23.已知数列{}n a 中,13a =,132n n n a a ++=⋅,*n N ∈.(1)证明:数列{}2n n a -是等比数列,并求数列{}na 的通项公式; (2)在数列{}n a 中,是否存在连续三项成等差数列?若存在,求出所有符合条件的项;若不存在,请说明理由;(3)若1r s <<且r ,s ∈*N ,求证:使得1a ,r a ,s a 成等差数列的点列(),r s 在某一直线上.24. 由a n 与S n 的关系求通项公式(1)已知数列{}n a 的前n 项和为n S ,且23722n S n n =-()*n N ∈,求数列{}n a 的通项公式;(2)已知正项数列{}n a 的前n 项和n S 满足2(1)4n n a S +=(*n N ∈).求数列{}n a 的通项公式;(3)已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,求S n(4)已知正项数列{}n a 中,11a =,22a =,前n 项和为n S ,且满足211111142n n n n n n n S S S S S S S +--++-+=-(*2,n n N ≥∈).求数列{}n a 的通项公式; (5)设数列{a n }的前n 项积为T n ,且T n +2a n =2(n ∈N *).数列1n T ⎧⎫⎨⎬⎩⎭是等差数列;求数列{}n a 的通项公式; 25.已知数列{}n a 为等比数列,且0n a >,数列{}n b 满足2log n n b a =,若14b =,23b =. (1)求数列{}n a 的通项公式;(2)设数列{}n b m +前n 项和为n S ,若当且仅当5n =时,n S 取得最大值,求实数m 的取值范围.26.已知公比为q 的等比数列{}()*n a n N∈中,22a =,前三项的和为7.(1)求数列{}n a 的通项公式;(2)若01q <<,设数列{}n b 满足12n n b a a a =⋅L L ,n *∈N ,求使01n b <<的n 的最小值.27.在等比数列{}n a 中,公比(0,1)q ∈,且满足42a =,232637225a a a a a ++=. (1)求数列{}n a 的通项公式;(2)设2log n n b a =,数列{}n b 的前n 项和为n S ,当312123n S S S S n +++⋯+取最大值时,求n 的值.28.已知数列{},{}n n a b 满足{}1,2n n n n a a b b +-=+为等比数列,且12a =,24a =,310a =.(1)试判断列{}n b 是否为等比数列,并说明理由;(2)求n a .29.等比数列{}n a 中,已知142,16a a ==.(1)求数列{}n a 的通项公式n a ;(2)若35,a a 分别是等差数列{}n b 的第4项和第16项,求数列{}n b 的通项公式及前n 项和n S .30.已知数列{}n a 是递增的等比数列,且14239,8.a a a a +==(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设n S 为数列{}n a 的前n 项和,11n n n n a b S S ++=,求数列{}n b 的前n 项和n T . 31.已知数列{}{},n n a b 满足:1112,,2n n n n a a n b a n b ++=+-==.(1)证明数列{}n b 是等比数列,并求数列{}n b 的通项;(2)求数列{}n a 的前n 项和n S .32.已知数列{}n a 满足11a =,且11123n n a a +=+,*n N ∈. (1)求证:23n a ⎧⎫-⎨⎬⎩⎭是等比数列;(2)求数列{}n a 的通项公式.33.已知等差数列{}n a 满足1210a a +=,432a a -=.(1)求{}n a 的通项公式;(2)设等比数列{}n b 满足2337,b a b a ==.若6k b a =,求k 的值.34.已知等差数列{}n a 的前n 项和为n S ,各项为正的等比数列{}n b 的前n 项和为n T ,11a =-,11b =,222a b +=.(1)若335a b +=,求{}n b 的通项公式;(2)若321T =,求3S三、填空题35.设数列{}n a 的前n 项和为n S ,若24S =,121n n a S +=+,*n N ∈,则{}n a 的通项公式为________.36.数列{}n a 满足()211122,3,1n n n n n a a a a n a -+--+==+L ,21a =,33a =,则7a =________.37.已知等比数列{}n a 满足114a =,()35441a a a =-,则2a =________. 38.已知实数()abc a b c <<,,三个数成等比数列,它们的和是21,积是64,那么这个数列的公比q =_____.39.已知等比数列{}n a 及等差数列{}n b ,其中10b =,公差0d ≠.将这两个数列的对应项相加,得一新数列1,1,2,L ,则等比数列{}n a 的前10项之和为________. 40.已知数列{}n a 是公差不为0的等差数列,11a =,且125,,a a a 成等比数列,那么数列{}n a 的前10项和10S 等于________.41.在如图的表格中,每格填上一个数字后,使每一横行成等差数列,每一纵行成等比数列,所有公比相等,则a b c ++值为42.已知等比数列{}n a 的前n 项和为n S ,且372S =,6632S =,则7a =__________. 43.已知等比数列{}n a 的首项为1a ,前n 项和为n S ,若数列{}12n S a -为等比数列,则32a a =____.44.已知等比数列{}n a 中,若451a a =,8916a a =,则67a a =_____.45.已知数列{}n a 是公差不为0的等差数列,11a =,且249112a a a --+,,成等比数列,则{}n a 的前9项和9S =_______.46.公比为2的等比数列{}n a 的各项都是正数,且31116a a ⋅=,则6a 的值为___________ 47.数列{}n a 是等比数列,21a =-,64a =-,则4a 的值是________. 48.在等比数列{}n a 中,11a =,公比2q =,若64n a =,则n 的值为 . 49.已知1,a ,b ,c ,4成等比数列,则b =______.50.各项都不为零的等差数列{}n a (*N n ∈)满足22810230a a a -+=,数列{}n b 是等比数列,且88a b =,则4911b b b =________.参考答案1.A2.C3.C4.D5.D6.B7.D 8.D9.C10.C11.C12.A13.B14.B15.C16.C17.A18.D19.C20.C21.(1){}n a 为常数列;{}n b 为等差数列;{}n c 是等比数列;40n a =,1100.42n n n b n c -==⨯,(2)应该选择方案二,详见解析22.(1)见解析在(2)1d =-23.(1)详见解析;(2),,成等差数列;(3)详见解析.24.(1) 35n a n =-;(2) 21n a n =-;(3) 132n n S -⎛⎫= ⎪⎝⎭; (4) 1,12,2n n a n =⎧=⎨≥⎩(5) 12n n a n +=+ 25.(1)52n n a -=;(2)()0,126.(1)12n n a -=或32n n a -=;(2)6.27.(1)52n n a -=(2)n 的值为8或928.(1)数列{}n b 不是等比数列.见解析(2)+122n n a n =-29.(1)n n a 2=;(2)2622n n -30.(Ⅰ)12n n a -=(Ⅱ)112221n n ++-- 31.(1)见证明;(2)n S 21222n n n ++=-- 32.(1)见解析;(2)1211332n n a -⎛⎫=+⋅ ⎪⎝⎭33.(1)22n a n =+;(2)63 34.(1)12n n b -=, (2)36s =- 35.13-=n n a 36.6337.1238.439.102340.10041.27242.32. 43.12 44.445.11746.247.2-48.749.250.8。
高三数学3月质量检测试题含解析 试题
![高三数学3月质量检测试题含解析 试题](https://img.taocdn.com/s3/m/ac2c8b78a36925c52cc58bd63186bceb19e8edc8.png)
卜人入州八九几市潮王学校一中2021届高三数学3月质量检测试题〔含解析〕一、单项选择题:此题一共8小题,每一小题5分,一共40分.在每一小题给出的四个选项里面,只有一项符合题目要求.{}|2,0xA y y x -==<,集合12|B x y x ⎧⎫==⎨⎬⎩⎭,那么A B ⋂=〔〕A.[)1,+∞B.()1,+∞C.()0,+∞D.[)0,+∞【答案】B 【解析】 因为,,所以A B ⋂=()1,+∞.应选B.2.设()()()2i 3i 35i x y +-=++(i 为虚数单位〕,其中,x y 是实数,那么i x y +等于() A.5 13 C.22 D.2【答案】A 【解析】 由()()()2i 3i 35i x y +-=++,得()()632i 35i x x y ++-=++,∴63325x x y +=⎧⎨-=+⎩,解得34x y =-⎧⎨=⎩,∴i 34i 5x y +=-+=.应选A .3.已设,a b 都是正数,那么“33a b log log <〞是“333a b >>〞的〔〕 A.充分不必要条件 B.必要不充分条件 C.充分且必要条件 D.既不充分也不必要条件【答案】B 【解析】 【分析】由33a b log log <和333a b >>分别求出a ,b 的关系,然后利用必要条件、充分条件及充分必要条件的判断方法得答案.【详解】由33a b log log <,得01b a <<<或者01a b <<<或者1a b >>, 由333a b >>,得1a b >>,“33a b log log <〞是“333a b >>〞的必要不充分条件.应选:B .【点睛】此题主要考察了必要条件、充分条件及充分必要条件的判断方法,考察了不等式的性质,属于中档题.4.甲、乙、丙三位同学获得某项竞赛活动的前三名,但详细名次未知.3人作出如下预测:甲说:我不是第三名;乙说:我是第三名;丙说:我不是第一名.假设甲、乙、丙3人的预测结果有且只有一个正确,由此判断获得第三名的是 A.甲 B.乙C.丙D.无法预测【答案】A 【解析】 【分析】假设甲的预测正确,那么乙、丙的预测错误,推出矛盾!假设乙的预测正确,甲、丙的预测错误,推出矛盾!假设丙的预测正确,甲、乙的预测错误,可推出三个人的名次.【详解】假设甲的预测正确,乙、丙的预测错误,那么丙是第一名,甲不是第三名,那么甲是第二名,乙是第三名,矛盾!假设乙的预测正确,甲、丙的预测错误,那么乙是第三名,甲的预测错误,那么甲是第三名,矛盾! 假设丙的预测正确,那么甲、乙的预测错误,那么甲是第三名,乙不是第三名,丙是第一名,那么乙是第二名.因此,第三名是甲,应选A .【点睛】此题考察合情推理,突出假设法在推理中的应用,通过不断试错来推出结论,考察推理分析才能,属于中等题.5.九章算术是我国古代数学名著,其中有这样一个问题:“今有宛田,下周三十步,径十六步,问为田几何?〞意思说:现有扇形田,弧长三十步,直径十六步,问面积多少?书中给出计算方法:以径乘周,四而一,即扇形的面积等于直径乘以弧长再除以4.在此问题中,扇形的圆心角的弧度数是〔〕A.415B.158C.154D.120【答案】C 【解析】 【分析】由题意,根据给出计算方法:扇形的面积等于直径乘以弧长再除以4,再由扇形的弧长公式列出方程,即可求解.【详解】由题意,根据给出计算方法:以径乘周,四而一,即扇形的面积等于直径乘以弧长再除以4, 再由扇形的弧长公式,可得扇形的圆心角301584l r α===〔弧度〕,应选C. 【点睛】此题主要考察了扇形的弧长公式的实际应用问题,其中解答中认真审题,正确理解题意,合理利用扇形的弧长公式求解是解答的关键,着重考察了分析问题和解答问题的才能,属于根底题.6.假设22nx ⎫⎪⎭的展开式中只有第六项的二项式系数最大,那么展开式中的常数项是〔〕A.210B.180C.160D.175【答案】B 【解析】【分析】根据题意,得出二项式的指数n 的值,再利用展开式的通项公式求出常数项是多少.【详解】解:22nx ⎫⎪⎭展开式中只有第六项的二项式系数最大,∴展开式中一共有11项,n =10;∴展开式的通项公式为551021101022()(1)2rr rr r r rr T C C x x--+=⋅-=-⋅⋅令5502r-=,得2r ,∴常数项是2221102180T C +=⋅=,应选B .【点睛】此题考察了二项式定理的应用问题,也考察了逻辑推理与运算才能,是根底题目.7.泉城上矗立着的“泉标〞,成为泉城的标志和象征.为了测量“泉标〞高度,某同学在“泉标〞的正西方向的点A 处测得“泉标〞顶端的仰角为45°,沿点A 向北偏东30°前进100m 到达点B ,在点B 处测得“泉标〞顶端的仰角为30°,那么“泉标〞的高度为〔〕 A.50m B.100mC.120mD.150m【答案】A 【解析】 【分析】先设DC =x ,然后在△ABC 中,利用余弦定理可得2221)10021002x x =+-⨯⨯⨯,再求解即可. 【详解】解:根据题意,作出图形如下列图: 所以AB =100,∠BAC =60°,∠DBC =30°,设DC =x ,所以AC =x ,BC =,在△ABC 中,利用余弦定理的应用得2221)10021002x x =+-⨯⨯⨯, 得25050000x x -=+,又0x>,解得50x =, 应选:A【点睛】此题考察了余弦定理的应用,重点考察了运算才能,属根底题. 8.函数()f x 满足(2)(2)6f x f x -++=,31()2x g x x -=-,且()f x 与()g x 的图像交点为()11,x y ,()22,x y ,…,()88,x y ,那么128128x x x y y y +++++++的值是()A.20B.24C.36D.40【答案】D 【解析】 【分析】 根据条件判断()f x 和()g x 都关于()2,3中心对称,由此求得128128x x x y y y +++++++的值.【详解】由于()f x 满足(2)(2)6f x f x -++=,当0x =时,()23f =,所以()f x 关于()2,3中心对称.由于()325315()3222x x g x x x x -+-===+---,所以()g x 关于()2,3中心对称.故()f x 和()g x 都关于()2,3中心对称.所以()f x 与()g x 的图像交点()11,x y ,()22,x y ,…,()88,x y ,两两关于()2,3对称.所以128128x x x y y y +++++++828340=⨯+⨯=.应选D.【点睛】本小题主要考察函数图像的对称性,考察化归与转化的数学思想方法,属于根底题.二、多项选择题:此题一共4小题,联盟每一小题5分,一共20分.在每一小题给出的选项里面,有多项符合题目要求.全部选对的得5分,局部选对的得3分,有选错的得0分.9.某颗人造地球卫星的运行轨道是以地球的中心F 为一个焦点的椭圆,如下列图,它的近地点A 〔离地面最近的点〕距地面m 千米,远地点B 〔离地面最远的点〕距地面n 千米,并且F A B 、、三点在同一直线上,地球半径约为R 千米,设该椭圈的长轴长、短轴长、焦距分别为222a b c 、、,那么〔〕A.a c m R -=+B.a c n R +=+C.2a m n=+D.b =【答案】ABD 【解析】 【分析】根据条件数形结合可知m a c Rn a c R =--⎧⎨=+-⎩,然后变形后,逐一分析选项,得到正确答案.【详解】因为地球的中心是椭圆的一个焦点,并且根据图象可得m a c Rn a c R=--⎧⎨=+-⎩,〔*〕a c m R ∴-=+,故A 正确; a c n R +=+,故B 正确;〔*〕两式相加22m n a R +=-,可得22a m n R =++,故C 不正确;由〔*〕可得m R a c n R a c+=-⎧⎨+=+⎩,两式相乘可得()()22m R n R a c ++=-222a c b -=,()()2b m R n R b ∴=++⇒=,故D 正确.应选ABD【点睛】此题考察圆锥曲线的实际应用问题,意在考察抽象,概括,化简和计算才能,此题的关键是写出近地点和远地点的方程,然后变形化简.10.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以1A ,2A 和3A 表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件,那么以下结论中正确的选项是〔〕A.()25P B =B.()15|11PB A =C.事件B 与事件1A 互相HYD.1A ,2A ,3A 是两两互斥的事件【答案】BD 【解析】 【分析】 由题意1A ,2A ,3A 是两两互斥的事件,由条件概率公式求出1(|)P B A ,()()()()123P B P B A P B A P B A =⋅+⋅+⋅对照四个选项判断即可.【详解】由题意1A ,2A ,3A 是两两互斥的事件,12351213(),(),()10210510P A P A P A =====, ()11115()52111()112|P P BA P A B A ⨯===,故B 正确;()()()()123552434910111011101122P B P B A P B A P B A =⋅+⋅+⋅=⨯+⨯+⨯=,故A ,C 不正确;1A ,2A ,3A 是两两互斥的事件,故D 正确.应选:BD .【点睛】此题考察了互斥事件和条件概率,考察了学生实际应用,转化划归,数学运算的才能,属于中档题.11.点P 是双曲线E :221169x y -=的右支上一点,1F ,2F 为双曲线E 的左、右焦点,12PF F ∆的面积为20,那么以下说法正确的选项是〔〕A.点P 的横坐标为203 B.12PF F ∆的周长为803C.12F PF ∠小于3π D.12PF F ∆的内切圆半径为34【答案】ABC 【解析】 【分析】设12F PF ∆的内心为I ,连接22IP IF IF 、、,设()P m n ,,利用12PF F ∆的面积为20,可求得P 点坐标;12PF F ∆的周长为2121|+|||||F P F F F P +,借助P 点坐标,可得解;利用1PF k ,2PF k 可求得12tan F PF ,可研究12F PF ∠范围;()12121212PF FS r PF PF F F ∆=++可求得内切圆半径r .【详解】设12F PF ∆的内心为I ,连接22IP IF IF 、、,双曲线E :221169x y -=中的4a =,3b =,5c =,不妨设()Pm n ,,0m >,0n >,由12PF F ∆的面积为20,可得1215202F F n cn n ===,即4n =, 由2161169m -=,可得203m =,故A 符合题意; 由2043P ⎛⎫⎪⎝⎭,,且()150F -,,()250F ,, 可得11235PFk =,2125PF k =,那么(121212360535tan 012123191535F PF -==∈⨯+⨯,那么123F PF π<∠,故C 符合题意;由12371350333PF PF +==+=,那么12PF F ∆的周长为50801033+=,故B 符合题意; 设12PF F ∆的内切圆半径为r ,可得()12121211422r PF PF F F F F ++=⋅⋅, 可得80403r =,解得32r =,故D 不符合题意.应选:ABC .【点睛】此题考察了双曲线的性质综合,考察了学生综合分析,转化化归,数学运算的才能,属于中档题. 12.正四棱柱1111ABCD A B C D -的底面边长为2,侧棱11AA =,P 为上底面1111D C B A 上的动点,给出以下四个结论中正确结论为〔〕A.假设3PD =,那么满足条件的P 点有且只有一个B.假设PD=P 的轨迹是一段圆弧C.假设PD ∥平面1ACB ,那么DP 长的最小值为2D.假设PD ∥平面1ACB ,且PD=,那么平面BDP 截正四棱柱1111ABCD A B C D -的外接球所得平面图形的面积为94π【答案】ABD 【解析】 【分析】假设3PD =,由于P 与1B 重合时3PD =,此时P 点唯一;()13PD =,,那么1PD =即点P 的轨迹是一段圆弧;当P 为11A C 中点时,DP 有最小值为=C ;平面BDP 截正四棱柱1111ABCD A B C D -的外接球所得平面图形为外接球的大圆,其半径为32=,可得D . 【详解】如图: ∵正四棱柱1111ABCD A B C D -的底面边长为2,∴11B D =11AA =,∴13DB==,那么P 与1B 重合时3PD =,此时P 点唯一,故A 正确;∵()13PD ,,11DD =,那么1PD =P 的轨迹是一段圆弧,故B 正确;连接1DA ,1DC ,可得平面11//A DC 平面1ACB ,那么当P 为11A C 中点时,DP 有最小值为=,故C 错误;由C 知,平面BDP 即为平面11BDD B ,平面BDP 截正四棱柱1111ABCD A B C D -的外接球所得平面32=,面积为94π,故D 正确.应选:ABD .【点睛】此题考察了立体几何综合,考察了学生空间想象,逻辑推理,转化划归,数学运算的才能,属于较难题.三、填空题:此题一共4小题,每一小题5分,一共20分. 13.向量(1,1)ax =+,(,2)b x =,假设满足a b ,且方向一样,那么x =__________.【答案】1 【解析】 【分析】由向量平行坐标表示计算.注意验证两向量方向是否一样. 【详解】∵ab ,∴(1)20x x +-=,解得1x =或者2x =-,1x =时,(1,2),(1,2)a b ==满足题意,2x =-时,(1,1),(2,2)a b =-=-,方向相反,不合题意,舍去.∴1x =. 故答案为:1.【点睛】此题考察向量平行的坐标运算,解题时要注意验证方向一样这个条件,否那么会出错.14.m 是2与8的等比中项,那么圆锥曲线221yx m-=的离心率是_____.2【解析】 【分析】由m 是2与8的等比中项算出4m =±,再分两种情况计算圆锥曲线221yx m-=的离心率即可.【详解】由m 是2与8的等比中项有22816m ,故4m =±.当4m =时圆锥曲线方程2214y x -=,为焦点在x 轴的双曲线,其中1,a c ==此时离心率e =当4m =-时圆锥曲线方程2214y x +=,,为焦点在y 轴的椭圆,其中2,a c ==此时离心率e =2【点睛】此题主要考察椭圆与双曲线方程运用,属于根底题型. 15.对于函数()f x ,假设在定义域内存在实数0x 满足()()00f x f x -=-,那么称函数()f x 为“倒戈函数〞.设()321x f x m =+-〔m R ∈,且0m ≠〕是定义在[﹣1,1]上的“倒戈函数〞,那么实数m的取值范围是_____.【答案】103⎡⎫-⎪⎢⎣⎭, 【解析】 【分析】()()00f x f x -=-即004332x x m -=--+,构造函数00332x x y -=--+,[]011x ∈-,,利用换元法求函数值域,即得解. 【详解】∵()321x f x m =+-是定义在[﹣1,1]上的“倒戈函数,∴存在[]011x ∈-,满足()()00f x f x -=-,∴00321321x x m m -+-=--+,∴004332x x m -=--+,构造函数00332x x y -=--+,[]011x ∈-,,令03x t =,133t ⎡⎤∈⎢⎥⎣⎦,, 12y t t =--+,403y ⎡⎤∈-⎢⎥⎣⎦,, ∴4403m -≤<, ∴103m -≤<,故答案为:103⎡⎫-⎪⎢⎣⎭,. 【点睛】此题考察了函数综合,考察了学生,综合分析,转化划归,数学运算的才能,属于较难题.16.函数(),()f x x g x x ωω=,其中0>ω,,,A B C 是这两个函数图像的交点,且不一共线.①当1ω=时,ABC ∆面积的最小值为___________;②假设存在ABC ∆是等腰直角三角形,那么ω的最小值为__________. 【答案】(1).2π(2).2π【解析】 【分析】①利用函数的图象和性质的应用求出三角形的底和高,进一步求出三角形的面积; ②利用等腰直角三角形的性质的应用求出ω的最小值.【详解】函数(),()f x x g x x ωω==,其中0>ω,,,A B C 是这两个函数图象的交点,当1ω=时,(),()f x x g x x ωω==.所以函数的交点间的间隔为一个周期2π,高为2=. 所以:()121122ABC S ππ∆⋅⋅+==. 如下列图:①当1ω=时,ABC ∆面积的最小值为2π;②假设存在ABC ∆是等腰直角三角形,利用直角三角形斜边的中线等于斜边的一半,那么2222πω⎭⋅=,解得ω的最小值为 2π. 故答案为:2π, 2π.【点睛】此题主要考察了三角函数的图象和性质的应用,主要考察学生的运算才能和转换才能及思维才能,属于根底题型.四、解答题:本大题一一共6小题,一共70分.解容许写出必要的文字说明、证明过程或者演算步骤. 17.数列{}n a 满足:123a a a +++()1312nn a +=- 〔1〕求{}n a 的通项公式;〔2〕假设数列{}n b 满足3n na bn a =,求{}n b 的前n 项和nT.【答案】〔1〕13-=n n a ;〔2〕13211()()443nn n T .【解析】 【分析】〔1〕利用2n ≥时,1n n n a S S -=-求解;检验11a =成立即可求解〔2〕由3n n a b na =,得11(1)()3nnb n ,利用错位相减求和即可【详解】〔1〕令123S n n a a a a1n =时,11a =2n ≥时,113nnn na S S ,11a =满足所以13-=n n a ; 〔2〕由3n n a b na =,11(1)()3n nb n12n n T b b b 2112()3311(1)()3n n ①23111()2()333n T 11(2)()3n n 1(1)()3n n ②①-②得【点睛】此题考察利用前n 项和求通项公式,考察错位相减求和,准确利用前n 项和求出通项公式是关键,是中档题18.在锐角ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .sinsin 3b A a B π⎛⎫=+ ⎪⎝⎭.〔1〕求角B 的大小; 〔2〕求ca的取值范围 【答案】〔1〕3B π=;〔2〕1,22⎛⎫⎪⎝⎭【解析】【分析】〔1〕根据正弦定理边化角,与两角和的正弦公式求得B 的值;〔2〕根据正弦定理边化角,再利用同角的三角函数关系结合角的范围求得取值范围.【详解】〔1〕由sinsin 3b A a B π⎛⎫=+ ⎪⎝⎭,根据正弦定理,有sin sinsin sin 3B A A B π⎛⎫=+ ⎪⎝⎭即有1sin sin sin 32π⎛⎫=+=+ ⎪⎝⎭BB B B那么有tan B=0B π<<,所以,3B π=〔2〕由〔1〕,3B π=,那么23A C π+=,又ABC ∆为锐角三角形,所以,02A π<<且2032A <-<ππ, 所以62A ππ<<,于是tan3>A那么21sin sin sin 13222sin sin sin 2π⎛⎫-+ ⎪⎝⎭====+<A A A c C a A A A又112tan 22+>A所以,c a 的取值范围是1,22⎛⎫ ⎪⎝⎭【点睛】此题主要考察了正弦定理、同角的三角函数关系以及两角和差的正弦公式,正确求得角的范围是解题的关键.19.如图,三棱柱111ABC A B C -中,CA CB =,145BAA ∠=︒,平面11AA C C ⊥平面11AA B B .〔1〕求证:1AA BC ⊥;〔2〕假设12BB ==,直线BC 与平面11ABB A 所成角为45︒,D 为1CC 的中点,求二面角111B A D C --的余弦值.【答案】〔1〕见解析〔2〕2【解析】 【分析】〔1〕过点C 作CO ⊥AA 1,那么CO ⊥平面AA 1B 1B ,CO ⊥OB ,推导出Rt△AOC ≌Rt△BOC ,从而AA 1⊥OB ,再由AA 1⊥CO ,得AA 1⊥平面BOC ,由此能证明AA 1⊥BC .〔2〕以O 为坐标原点,OA ,OB ,OC 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,利用向量法能求出二面角B 1﹣A 1D ﹣C 1的余弦值. 【详解】〔1〕过点C 作1CO AA ⊥,垂足为O ,因为平面11AA C C ⊥平面11AA B B ,所以CO ⊥平面11AA B B ,故CO OB ⊥,又因为CA CB =,CO CO =,90COA COB ∠=∠=︒, 所以Rt AOC Rt BOC ∆≅∆,故OA OB =,因为145A AB ∠=︒,所以1AA OB ⊥,又因为1AA CO ⊥,所以1AA ⊥平面BOC ,故1AA BC ⊥.〔2〕以O 为坐标原点,OA ,OB ,OC 所在直线为x ,y ,z 轴,建立空间直角坐标系O xyz -,因为CO ⊥平面11AA B B ,所以CBO ∠是直线BC 与平面11AA B B 所成角,故45CBO ∠=︒,所以AB =1AO BO CO ===,()1,0,0A ,()0,1,0B ,()0,0,1C ,()11,0,0A -,()12,1,0B -,()1,0,1D -,设平面11A B D 的法向量为()111,,n x y z =,那么1100n A D n B D ⎧⋅=⎪⎨⋅=⎪⎩,所以111100z x y z =⎧⎨-+=⎩, 令11x =,得()1,1,0n =,因为OB ⊥平面11AAC C ,所以OB 为平面11AC D 的一条法向量,()0,1,0OB =, 2cos ,2n OB n OB n OB⋅==⋅,所以二面角111B A D C --.【点睛】此题考察线线垂直的证明,考察二面角的余弦值的求法,考察空间中线线、线面、面面间的位置关系等根底知识,考察运算求解才能,考察数形结合思想,是中档题.20.为进步城居民生活幸福感,某城公交公司大力确保公交车的准点率,减少居民乘车候车时间是为此,该公司对某站台乘客的候车时间是进展统计乘客候车时间是受公交车准点率、交通拥堵情况、节假日人流量增大等情况影响在公交车准点率正常、交通拥堵情况正常、非节假日的情况下,乘客候车时间是随机变量X满足正态分布()2,Nμσ在公交车准点率正常、交通拥堵情况正常、非节假日的情况下,调查了大量乘客的候车时间是,经过统计得到如图频率分布直方图.〔1〕在直方图各组中,以该组区间的中点值代表该组中的各个值,试估计2,μσ的值;〔2〕在统计学中,发生概率低于千分之三的事件叫小概率事件,一般认为,在正常情况下,一次试验中,小概率事件是不能发生的在交通拥堵情况正常、非节假日的某天,随机调查了该站的10名乘客的候车时间是,发现其中有3名乘客候车时间是超过15分钟,试判断该天公交车准点率是否正常,说明理由.5.16≈≈≈,76340.84130.2898,0.84130.3546,0.15870.0040,0.15870.0006≈≈≈≈,()0.6826P X μσμσ-<<+=,(22)0.9544P X μσμσ-<<+=,(33)0.9973P X μσμσ-<<+=〕【答案】〔1〕10μ=,219.2σ=〔2〕准点率正常,详见解析【解析】 【分析】〔1〕由频率分布直方图结合均值和方差公式可求出μ和σ;〔2〕由正态分布求得(14.38)P x >再根据n 次HY 重复试验中事件发生k 次的概率公式求有3名乘客候车时间是超过15分钟的概率从而得出结论.【详解】〔1〕0.120.260.4100.2140.11810μ=⨯+⨯+⨯+⨯+⨯=,〔2〕10 4.3814.38μσ+=+=,设3名乘客候车时间是超过15分钟的事件为A ,1()(14.38)0.15872p X P x μσμσ--<<+>==,33710()(0.1587)(0.8413)0.1390.003P A C =≈>,准点率正常【点睛】考察正态分布,考察数学建模,数据分析,数学运算的数学素养. 21.椭圆2:2(0)C y px p =>,点F 为抛物线的焦点,焦点F 到直线3x-4y+3=0的间隔为d 1,焦点F 到抛物线C 的准线的间隔为d 2,且1235d d =. (1)抛物线C 的HY 方程;(2)假设在x 轴上存在点M ,过点M 的直线l 分别与抛物线C 相交于P 、Q 两点,且2211PMQM+为定值,求点M 的坐标. 【答案】〔1〕24y x =;〔2〕()2,0M 【解析】 【分析】〔1〕根据点到直线的间隔公式以及抛物线的性质可求得1d 和2d ,再结合1235d d =解出p 即可得抛物线的方程;〔2〕设点M 的坐标为(),0t ,设点P ,Q 的坐标分别为()11,x y ,()22,x y ,设直线l 的方程为x my t=+,与抛物线方程联立可得PM,QM,把根与系数的关系代入可得()2222211221t m m t PMQM++=+,由其为定值可得2t =,即得结果.代入同理可得结论.【详解】〔1〕由题意知,焦点F 的坐标为,02p ⎛⎫ ⎪⎝⎭,那么133362510pp d ++==,2d p =, 又363105p p +=,解得:2p =.故抛物线C 的HY 方程为24y x =. 〔2〕设点M 的坐标为(),0t ,设点P ,Q 的坐标分别为()11,x y ,()22,x y ,显然直线ll 的方程为x my t =+.联立方程2,4,x my t y x =+⎧⎨=⎩消去x ,并整理得2440y my t --=, 那么()2160mt ∆=+>且124y y m +=,124y y t .由1PM ==,2QM ==.有()()()221222222222212121111111y y m ym ym y y PMQM ++=+=+++.假设2211PMQM +为定值,必有2t =.所以当2211PMQM+为定值时,点M 的坐标为()2,0.【点睛】此题考察了抛物线的HY 方程及其性质、一元二次方程的根与系数的关系、定点问题,考察了推理才能与计算才能,属于中档题. 22.函数()()20f x lnx ax x a =--+≥.()1讨论函数()f x 的极值点的个数;()2假设函数()f x 有两个极值点1x ,2x ,证明:()()12322f x f x ln +>-.【答案】(1)见解析(2)见解析 【解析】 【分析】()1先求出函数的导函数,通过讨论a 的范围确定导函数的符号,从而得出函数的单调区间,进而判断函数极值点个数;()2由()1可知当且仅当10,8a ⎛⎫∈ ⎪⎝⎭时()f x 有极小值1x 和极大值2x ,且1x ,2x 是方程的两个正根,那么1212x x a +=,121.2x x a=根据函数()2f x lnx ax x =--+表示出()()121214f x f x lna ln a +=+++,令()1214g a lna ln a=+++,通过对()g a 求导即可证明结论. 【详解】解:()1函数()()20f x lnx ax x a =--+≥,()()2212121210ax x ax x f x ax x x x x-+-+-∴=--+>=-'=,0x > 0a ≥,∴当0a=时,()1x f x x'-=,0x >, 当()0,1x ∈时,()0f x '<,()f x 单调递减; 当()1,x ∈+∞时,()0f x '>,()f x 单调递增;∴当1x =时,()f x 有极小值;当18a≥时,0≤,故()0f x '≤, ()f x ∴在()0,+∞上单调递减,故此时()f x 无极值;当108a <<时,0>,方程()0f x '=有两个不等的正根1x ,2x .可得1x =2x=那么当10,4x a ⎛⎫∈ ⎪ ⎪⎝⎭及14x a ⎛⎫+∈+∞ ⎪ ⎪⎝⎭时, ()0f x '<,()f x 单调递减;当1144x a a ⎛⎫-∈ ⎪ ⎪⎝⎭时,()0f x '>;()f x 单调递增; ()f x ∴在1x x =处有极小值,在2x x =处有极大值.综上所述:当0a=时,()f x 有1个极值点;当18a ≥时,()f x 没有极值点; 当108a <<时,()f x 有2个极值点. ()2由()1可知当且仅当10,8a ⎛⎫∈ ⎪⎝⎭时()f x 有极小值点1x 和极大值点2x ,且1x ,2x 是方程的两个正根, 那么1212x x a +=,1212x x a=. ()()()(()()2121212121211[)2ln 212144f x f x x x a x x x x lnx lnx a lna ln a a ⎤∴+=+-+--+=++=+++⎦;令()1214g a lna ln a=+++, 108a <<;()24104a g x a -'=<, ()g a ∴在10,8⎛⎫ ⎪⎝⎭上单调递减,故()13228g a g ln ⎛⎫>=- ⎪⎝⎭, ()()12322f x f x ln ∴+>-.【点睛】此题考察了利用导数研究函数的单调性和极值,注意分类讨论思想的运用,属于难题.。
高中数学第一章计数原理章末检测新人教A版选修2-3(2021年整理)
![高中数学第一章计数原理章末检测新人教A版选修2-3(2021年整理)](https://img.taocdn.com/s3/m/28c7a50f26fff705cd170ac6.png)
2017-2018学年高中数学第一章计数原理章末检测新人教A版选修2-3 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018学年高中数学第一章计数原理章末检测新人教A版选修2-3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018学年高中数学第一章计数原理章末检测新人教A版选修2-3的全部内容。
第一章计数原理章末检测时间:120分钟满分: 150分一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法有( )A.24种B.18种C.12种D.6种解析:因为黄瓜必须种植,在余下的3种蔬菜品种中再选出两种进行排列,共有C2,3A错误!=18种.故选B。
答案:B2.若A3,n=12C错误!,则n等于()A.8 B.5或6C.3或4 D.4解析:A3n=n(n-1)(n-2),C错误!=错误!n(n-1),∴n(n-1)(n-2)=6n(n-1),又n∈N*,且n≥3,解得n=8.答案:A3.关于(a-b)10的说法,错误的是( )A.展开式中的二项式系数之和为1 024B.展开式中第6项的二项式系数最大C.展开式中第5项和第7项的二项式系数最大D.展开式中第6项的系数最小解析:由二项式系数的性质知,二项式系数之和为210=1 024,故A正确;当n为偶数时,二项式系数最大的项是中间一项,故B正确,C错误;D也是正确的,因为展开式中第6项的系数是负数且其绝对值最大,所以是系数中最小的.答案:C4.某铁路所有车站共发行132种普通客票,则这段铁路共有车站数是()A.8 B.122017-2018学年高中数学第一章计数原理章末检测新人教A版选修2-3C.16 D.24解析:∵A错误!=n(n-1)=132,∴n=12(n=-11舍去).故选B。
高三数学模拟试卷(23)(含解析)新人教A版-新人教A版高三全册数学试题
![高三数学模拟试卷(23)(含解析)新人教A版-新人教A版高三全册数学试题](https://img.taocdn.com/s3/m/a3ffa32ae3bd960590c69ec3d5bbfd0a7956d54a.png)
某某省某某市X家港市梁丰高级中学2015届高考数学模拟试卷(23)一.填空题:(本大题共14小题,每小题5分,计70分)1.复数的虚部是__________.2.已知集合M={a,0},N={x|2x2﹣3x<0,x∈Z},如果M∩N≠∅,则a=__________.3.已知,,则=__________.4.设等比数列{a n}的各项均为正数,其前n项和为S n.若a1=1,a3=4,S k=63,则k=__________.5.△ABC 中,“A=”是“sinA=”的__________条件(从“充分不必要”,“必要不充分”,“充要”,“既不充分也不必要”中选出符合题意的一个填空).6.设m,n是两条不同的直线,α,β是两个不同的平面,则下列正确命题的序号是__________.①若m∥n,m⊥β,则n⊥β;②若m∥n,m∥β,则n∥β;③若m∥α,m∥β,则α∥β;④若n⊥α,n⊥β,则α⊥β.7.根据如图所示的伪代码,最后输出的S的值为__________.8.已知正方形ABCD的边长为1,点E是AB边上的动点,则的最大值为__________.9.已知Ω={(x,y)|x+y<6,x>0,y>0},A={(x,y)|x<4,y>0,x﹣2y>0},若向区域Ω上随机投掷一点P,则点P落入区域A的概率为__________.10.函数的部分图象如图所示,则将y=f(x)的图象向右平移单位后,得到的图象解析式为__________.11.已知0<y<x<π,且tanxtany=2,,则x﹣y=__________.12.求“方程()x+()x=1的解”有如下解题思路:设f(x)=()x+()x,则f(x)在R上单调递减,且f(2)=1,所以原方程有唯一解x=2.类比上述解题思路,方程x6+x2=(x+2)3+(x+2)的解集为__________.13.设等比数列{a n}的前n项和为S n(n∈N*).若S3,S9,S6成等差数列,则的值是__________.14.在平面直角坐标系xOy中,已知点A是椭圆上的一个动点,点P在线段OA的延长线上,且,则点P横坐标的最大值为__________.二.解答题:(本大题共6小题,计90分)15.已知命题:“∃x∈{x|﹣1<x<1},使等式x2﹣x﹣m=0成立”是真命题,(1)某某数m的取值集合M;(2)设不等式(x﹣a)(x+a﹣2)<0的解集为N,若x∈N是x∈M的必要条件,求a的取值X围.16.已知函数f(x)=2.(1)求f(x)的最小正周期;(2)在△ABC中,a,b,c分别是∠A、∠B、∠C的对边,若f(A)=4,b=1,△ABC的面积为,求a的值.17.如图,在三棱锥P﹣ABC中,PC⊥平面ABC,△ABC为正三角形,D、E、F分别是BC,PB,CA的中点.(1)证明平面PBF⊥平面PAC;(2)判断AE是否平行于平面PFD,并说明理由;(3)若PC=AB=2,求三棱锥P﹣DEF的体积.18.如图所示,直立在地面上的两根钢管AB和CD,AB=10m,CD=3m,现用钢丝绳对这两根钢管进行加固,有两种方法:(1)如图(1)设两根钢管相距1m,在AB上取一点E,以C为支点将钢丝绳拉直并固定在地面的F处,形成一个直线型的加固(图中虚线所示).则BE多长时钢丝绳最短?(2)如图(2)设两根钢管相距3m,在AB上取一点E,以C为支点将钢丝绳拉直并固定在地面的F 处,再将钢丝绳依次固定在D处、B处和E处,形成一个三角形型的加固(图中虚线所示).则BE 多长时钢丝绳最短?19.设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别为F1、F2,线段OF1、OF2的中点分别为B1、B2,且△AB1B2是面积为4的直角三角形.过B1作直线l交椭圆于P、Q两点.(1)求该椭圆的标准方程;(2)若PB2⊥QB2,求直线l的方程;(3)设直线l与圆O:x2+y2=8相交于M、N两点,令|MN|的长度为t,若t∈[4,],求△B2PQ的面积S的取值X围.20.已知数列{a n}满足a n+1+a n=4n﹣3(n∈N*).(1)若数列{a n}是等差数列,求a1的值;(2)当a1=2时,求数列{a n}的前n项和S n;(3)若对任意n∈N*,都有≥5成立,求a1的取值X围.三、附加题(共4小题,满分0分)21.已知矩阵A=,向量=.求向量,使得A2a=b.22.选修4﹣4:坐标系与参数方程在直角坐标系xOy中,已知曲线C的参数方程是(θ是参数),若以O为极点,x轴的正半轴为极轴,取与直角坐标系中相同的单位长度,建立极坐标系,求曲线C的极坐标方程.23.如图(1),等腰直角三角形ABC的底边AB=4,点D在线段AC上,DE⊥AB于E,现将△ADE 沿DE折起到△PDE的位置(如图(2)).(Ⅰ)求证:PB⊥DE;(Ⅱ)若PE⊥BE,直线PD与平面PBC所成的角为30°,求PE长.24.附加题:在十字路口的路边,有人在促销木糖醇口香糖,只听喇叭里喊道:木糖醇口香糖,10元钱三瓶,有8种口味供你选择(其中有一种为草莓口味).小明一看,只见一大堆瓶装口香糖堆在一起(假设各种口味的口香糖均超过3瓶,且每瓶价值均相同).(1)小明花10元钱买三瓶,请问小明共有多少种选择的可能性?(2)小明花10元钱买三瓶,售货员随便拿三瓶给小明,请列出有小明喜欢的草莓味口香糖瓶数ξ的分布列,并计算其数学期望.某某省某某市X家港市梁丰高级中学2015届高考数学模拟试卷(23)一.填空题:(本大题共14小题,每小题5分,计70分)1.复数的虚部是.考点:复数代数形式的乘除运算;复数的基本概念.专题:计算题.分析:根据复数的除法法则计算即可.解答:解:==,所以复数的虚部是.故答案为:.点评:本题考查复数代数形式的乘除运算、复数的基本概念,属基础题.2.已知集合M={a,0},N={x|2x2﹣3x<0,x∈Z},如果M∩N≠∅,则a=1.考点:一元二次不等式的解法.专题:计算题;不等式的解法及应用.分析:求解二次不等式化简集合N,然后由交集的运算可得a的值.解答:解:由N={x|2x2﹣3x<0,x∈Z}={x|0<x<,x∈Z}={1},又M={a,0}且M∩N≠∅,所以a=1.故答案为1.点评:本题考查了一元二次不等式的解法,考查了交集及其运算,是基础题.3.已知,,则=﹣.考点:两角和与差的正切函数.分析:所求式子利用诱导公式化简,将sinα算出并求出tanα带入可求出值.解答:∵∴sinα==﹣即tanα=∴tan()==﹣故答案为:﹣点评:考查了两角和公式的应用,属于基础题.4.设等比数列{a n}的各项均为正数,其前n项和为S n.若a1=1,a3=4,S k=63,则k=6.考点:等比数列的前n项和;等比数列的通项公式.专题:计算题;等差数列与等比数列.分析:先由已知的项可求等比数列的公比,然后代入等比数列的求和公式即可求解k解答:解:由等比数列的通项公式可得,=4又∵a n>0∴q>0∴q=2∵S k=63,∴∴2k=64∴k=6故答案为:6点评:本题主要考查了等比数列的通项公式及求和公式的简单应用,属于基础试题5.△ABC 中,“A=”是“sinA=”的充分不必要条件(从“充分不必要”,“必要不充分”,“充要”,“既不充分也不必要”中选出符合题意的一个填空).考点:必要条件、充分条件与充要条件的判断.专题:三角函数的求值.分析:根据A=可以判断sinA=,得到前者可以推出后者,举出一个反例来说明后者不一定推出前者,得到前者是后者的充分不必要条件.解答:解:若A=,根据三角函数的特殊值知sinA=,即前者可以推出后者,当sinA=,比如sin=,显然A=,不成立.得到前者不能推出后者,∴综上可知前者是后者的充分不必要条件,故答案为:充分不必要点评:本题考查充分条件、必要条件与充要条件的定义,正弦函数的值,本题解题的关键是通过举反例来说明某个命题不正确,这是一种简单有效的方法,本题是一个基础题.6.设m,n是两条不同的直线,α,β是两个不同的平面,则下列正确命题的序号是①.①若m∥n,m⊥β,则n⊥β;②若m∥n,m∥β,则n∥β;③若m∥α,m∥β,则α∥β;④若n⊥α,n⊥β,则α⊥β.考点:命题的真假判断与应用;平面与平面之间的位置关系.专题:空间位置关系与距离.分析:对每一选择支进行逐一判定,不正确的只需取出反例,正确的证明一下即可.解答:解:对于①,根据线面垂直的判定定理,如果两平行直线中的一条垂直于一个平面,那么另一条也垂直于这个平面.可知该命题正确;对于②,根据线面平行的判定定理可知少条件:“n不在平面β内”,故不正确;对于③,若m∥α,m∥β,则α∥β或α与β相交.可知该命题不正确;对于④,根据面面平行的判定定理可知“α∥β”,故不正确.故答案为:①.点评:本题主要考查了平面与平面之间的位置关系,以及空间中直线与平面之间的位置关系,考查空间想象能力和推理论证能力,属于基础题.7.根据如图所示的伪代码,最后输出的S的值为145.考点:伪代码.专题:图表型.分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出满足条件S=1+4+7+10+13+…+28时,S的值.解答:解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出满足条件S=1+4+7+10+13+…+28值.∵S=1+4+7+10+13+…+28=145,故输出的S值为145.故答案为:145.点评:本题考查的知识点是伪代码,其中根据已知分析出循环的循环变量的初值,终值及步长,是解答的关键.8.已知正方形ABCD的边长为1,点E是AB边上的动点,则的最大值为1.考点:平面向量数量积的运算.专题:平面向量及应用.分析:建系,由向量数量积的坐标运算公式,可得得=x,结合点E在线段AB上运动,可得到x的最大值为1,即为所求的最大值.解答:解:以AB、AD所在直线为x轴、y轴,建立坐标系如图可得A(0,0),B(1,0),C(1,1),D(0,1)设E(x,0),其中0≤x≤1∵=(x,﹣1),=(1,0),∴=x•1+(﹣1)•0=x,∵点E是AB边上的动点,即0≤x≤1,∴x的最大值为1,即的最大值为1故答案为:1点评:本题考查向量数量积的最大值,建立坐标系是解决问题的关键,属中档题.9.已知Ω={(x,y)|x+y<6,x>0,y>0},A={(x,y)|x<4,y>0,x﹣2y>0},若向区域Ω上随机投掷一点P,则点P落入区域A的概率为.考点:几何概型.专题:计算题.分析:根据二元一次不等式组表示的平面区域的原理,分别作出集合Ω和集合A对应的平面区域,得到它们都直角三角形,计算出这两个直角三角形的面积后,再利用几何概型的概率公式进行计算即可.解答:解:区域Ω={(x,y)|x+y<6,x>0,y>0},表示的图形是第一象限位于直线x+y=6的下方部分,如图的红色三角形的内部,它的面积S=;再观察集合A={(x,y)|x<4,y>0,x﹣2y>0},表示的图形在直线x﹣2y=0下方,直线x=4的左边并且在x轴的上方,如图的黄色小三角形内部可以计算出它的面积为S1==4根据几何概率的公式,得向区域Ω上随机投一点P,P落入区域A的概率为P=故答案为:点评:本题主要考查了二元一次不等式组表示的平面区域和几何概率模型,准确画作相应的平面区域,熟练地运用面积比求相应的概率,是解决本题的关键,属于中档题.10.函数的部分图象如图所示,则将y=f(x)的图象向右平移单位后,得到的图象解析式为y=sin(2x﹣).考点:由y=Asin(ωx+φ)的部分图象确定其解析式.专题:计算题;三角函数的图像与性质.分析:由图知,A=1,T=π,可求ω,再由ω+φ=可求得φ,从而可得y=f(x)的解析式,利用y=Asin(ωx+φ)的图象变换及可求得答案.解答:解:由图知,A=1,T=π,∴T=π,ω==2,又×2+φ=+2kπ(k∈Z),∴φ=2kπ+(k∈Z),又|φ|<,∴φ=;∴y=f(x)的解析式为y=sin(2x+),∴将y=f(x)的图象向右平移单位后得y=sin[2(x﹣)+]=sin(2x﹣).故答案为:y=sin(2x﹣).点评:本题考查y=Asin(ωx+φ)的部分图象确定函数解析式,考查函数y=Asin(ωx+φ)的图象变换,考查识图与运算能力,属于中档题.11.已知0<y<x<π,且tanxtany=2,,则x﹣y=.考点:两角和与差的余弦函数.专题:计算题;三角函数的求值.分析:由题意可得cosxcosy=,进而可得cos(x﹣y)=cosxcosy+sinxsiny=,由余弦函数可知x﹣y的值.解答:解:由题意可得tanxtany==2,解得cosxcosy=,故cos(x﹣y)=cosxcosy+sinxsiny=故x﹣y=2kπ±,k∈Z,又0<y<x<π,所以0<x﹣y<π.所以x﹣y=故答案为:点评:本题考查同角三角函数的基本关系,以及两角和与差的余弦函数,属基础题.12.求“方程()x+()x=1的解”有如下解题思路:设f(x)=()x+()x,则f(x)在R上单调递减,且f(2)=1,所以原方程有唯一解x=2.类比上述解题思路,方程x6+x2=(x+2)3+(x+2)的解集为{﹣1,2}.考点:类比推理.专题:规律型.分析:类比求“方程()x+()x=1的解的解题思路,设f(x)=x3+x,利用导数研究f(x)在R上单调递增,从而根据原方程可得x2=x+2,解之即得方程x6+x2=(x+2)3+(x+2)的解集.解答:解:类比上述解题思路,设f(x)=x3+x,由于f′(x)=3x2+1≥0,则f(x)在R 上单调递增,由x6+x2=(x+2)3+(x+2)即(x2)3+x2=(x+2)3+(x+2),∴x2=x+2,解之得,x=﹣1或x=2.所以方程x6+x2=(x+2)3+(x+2)的解集为{﹣1,2}.故答案为:{﹣1,2}.点评:本题主要考查了类比推理,考查了导数与单调性的关系,函数单调性的应用,属于中档题.13.设等比数列{a n}的前n项和为S n(n∈N*).若S3,S9,S6成等差数列,则的值是.考点:等差数列与等比数列的综合.专题:等差数列与等比数列.分析:设等比数列{a n}的公比为q、首项是a1,根据公比q与1的关系进行分类,由等比数列的前n项和公式化简求值,再由等比数列的通项公式化简所求的式子即可.解答:解:设等比数列{a n}的公比为q、首项是a1,当q=1时,有S3=3a1、S9=9a1、S6=a1,不满足S3,S9,S6成等差数列;当q≠1时,因为S3,S9,S6成等差数列,所以2×=+,化简得2q6﹣q3﹣1=0,解得q3=或q3=1(舍去),则===,故答案为:.点评:本题考查等比数列的前n项和公式、通项公式,分类讨论思想,使用等比数列的前n 项和公式时需要对公比与1的关系进行讨论.14.在平面直角坐标系xOy中,已知点A是椭圆上的一个动点,点P在线段OA 的延长线上,且,则点P横坐标的最大值为15.考点:椭圆的简单性质;平面向量数量积的运算.专题:计算题;圆锥曲线的定义、性质与方程.分析:根据向量共线定理设,结合题意算出.设A(x,y)、P(m,n),由向量的坐标运算公式,化简得m=λx=,再利用基本不等式求最值,可得当A点横坐标为时,P点横坐标的最大值为15.解答:解:∵点P在线段OA的延长线上,∴设(λ>1),由得,可得.设A(x,y),P(m,n),则可得m=λx====,为了研究点P横坐标m的最大值,根据A点在椭圆上,设x∈(0,5),可得≥2=,∴m=≤=15,由此可得:当且仅当,即A点横坐标x=时,P点横坐标的最大值为15.故答案为:15点评:本题已知椭圆上的动点满足的条件,求点P横坐标的最大值.着重考查了向量的数量积及其运算性质、向量的坐标运算公式、基本不等式与椭圆的简单几何性质等知识,属于中档题.二.解答题:(本大题共6小题,计90分)15.已知命题:“∃x∈{x|﹣1<x<1},使等式x2﹣x﹣m=0成立”是真命题,(1)某某数m的取值集合M;(2)设不等式(x﹣a)(x+a﹣2)<0的解集为N,若x∈N是x∈M的必要条件,求a的取值X围.考点:复合命题的真假;必要条件、充分条件与充要条件的判断;一元二次不等式的解法.专题:计算题.分析:(1)利用参数分离法将m用x表示,结合二次函数的性质求出m的取值X围,从而可求集合M;(2)若x∈N是x∈M的必要条件,则M⊆N分类讨论①当a>2﹣a即a>1时,N={x|2﹣a <x<a},②当a<2﹣a即a<1时,N={x|a<x<2﹣a},③当a=2﹣a即a=1时,N=φ三种情况进行求解解答:解:(1)由x2﹣x﹣m=0可得m=x2﹣x=∵﹣1<x<1∴M={m|}(2)若x∈N是x∈M的必要条件,则M⊆N①当a>2﹣a即a>1时,N={x|2﹣a<x<a},则即②当a<2﹣a即a<1时,N={x|a<x<2﹣a},则即③当a=2﹣a即a=1时,N=φ,此时不满足条件综上可得点评:本题主要考查了二次函数在闭区间上的值域的求解,集合之间包含关系的应用,体现了分类讨论思想的应用.16.已知函数f(x)=2.(1)求f(x)的最小正周期;(2)在△ABC中,a,b,c分别是∠A、∠B、∠C的对边,若f(A)=4,b=1,△ABC的面积为,求a的值.考点:两角和与差的正弦函数;诱导公式的作用;三角函数的周期性及其求法.专题:解三角形.分析:(1)根据诱导公式和二倍角公式、两角和的正弦公式对解析式化简,再由周期公式求f(x)的最小正周期;(2)把条件代入f(x)的解析式化简,再由A的X围和正弦值求A,结合三角形面积公式条件和余弦定理求出边a.解答:解:(1)f(x)=2==sin2x+(1+cos2x)+2=sin2x+cos2x)+3=2sin(2x+)+3∴T==π.(2)由f(A)=4得2sin(2A+)+3=4,∴sin(2A+)=,又∵A为△ABC的内角,∴<2A+<,∴2A+=,A=.由S△ABC=,得bcsinA=×1×c×=,c=2.由余弦定理得a2=b2+c2﹣2bccosA=1+4﹣2×=3,∴a=.点评:本题考查了三角恒等变换、正弦函数的性质的应用,以及余弦定理的综合应用,关键是正确对解析式进行化简,属于中档题.17.如图,在三棱锥P﹣ABC中,PC⊥平面ABC,△ABC为正三角形,D、E、F分别是BC,PB,CA的中点.(1)证明平面PBF⊥平面PAC;(2)判断AE是否平行于平面PFD,并说明理由;(3)若PC=AB=2,求三棱锥P﹣DEF的体积.考点:平面与平面垂直的判定;棱柱、棱锥、棱台的体积;直线与平面垂直的判定.专题:综合题.分析:(1)先根据PC⊥平面ABC,BF⊂平面ABC得到PC⊥BF;再结合BF⊥AC即可得到BF⊥平面PAC,进而证明结论;(2)先假设AE∥平面PFD,借助于假设证得平面ABE∥平面PFD,与P∈平面PFD,P∈平面ABE相矛盾,即可说明结论;(3)直接根据D,E,F分别为BC,PB,CA的中点,把所求体积进行转化;转化为V P﹣BDF即可求出结论.解答:解:(1)∵PC⊥平面ABC,BF⊂平面ABC.∴PC⊥BF.由条件得BF⊥AC,PC∩AC=C.∴BF⊥平面PAC,BF⊂平面PBF,∴平面PBF⊥平面PAC.(2):AE不平行于平面PFD.反证法:假设AE∥平面PFD,∵AB∥FD,FD⊂平面PFD.∴AB∥平面PFD.∵AE∩AB=A,∴平面ABE∥平面PFD.∵P∈平面PFD,P∈平面ABE.矛盾.则假设不成立,所以:AE不平行于平面PFD(3)∵D,E,F分别为BC,PB,CA的中点.∴V P﹣DEF=V C﹣DEF=V E﹣DFC=V E﹣BDF=V P﹣BDF=××S△BDF•PC=××S△ABC•PC=××××2×2××2=.点评:本题主要考查平面与平面垂直的判定以及棱锥体积的求法.棱锥体积的求法常用转化思想,变为易求的几何体的体积,考查计算能力.18.如图所示,直立在地面上的两根钢管AB和CD,AB=10m,CD=3m,现用钢丝绳对这两根钢管进行加固,有两种方法:(1)如图(1)设两根钢管相距1m,在AB上取一点E,以C为支点将钢丝绳拉直并固定在地面的F处,形成一个直线型的加固(图中虚线所示).则BE多长时钢丝绳最短?(2)如图(2)设两根钢管相距3m,在AB上取一点E,以C为支点将钢丝绳拉直并固定在地面的F 处,再将钢丝绳依次固定在D处、B处和E处,形成一个三角形型的加固(图中虚线所示).则BE 多长时钢丝绳最短?考点:利用导数求闭区间上函数的最值;根据实际问题选择函数类型.专题:应用题;函数的性质及应用;导数的综合应用.分析:设钢丝绳长为ym,∠CFD=θ,(1)(其中0<θ<θ0,tanθ0=7),求导,由导数的正负确定函数的单调性,从而求最值;(2)(其中0<θ<θ0,),求导,由导数的正负确定函数的单调性,从而求最值.解答:解:(1)设钢丝绳长为ym,∠CFD=θ,则(其中0<θ<θ0,tanθ0=7),,易知为(0,θ0)上的增函数,且当tanθ=时,y′=0;故在(0,θ0)上先减后增,故当时,即时,y min=8;(2)设钢丝绳长为ym,∠CFD=θ,则(其中0<θ<θ0,),,令y'=0得sinθ=cosθ,当时,即时,;答:按方法(1),米时,钢丝绳最短;按方法(2),米时,钢丝绳最短.点评:本题考查了函数在实际问题中的应用,同时考查了导数的综合应用,属于中档题.19.设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别为F1、F2,线段OF1、OF2的中点分别为B1、B2,且△AB1B2是面积为4的直角三角形.过B1作直线l交椭圆于P、Q两点.(1)求该椭圆的标准方程;(2)若PB2⊥QB2,求直线l的方程;(3)设直线l与圆O:x2+y2=8相交于M、N两点,令|MN|的长度为t,若t∈[4,],求△B2PQ的面积S的取值X围.考点:直线与圆锥曲线的综合问题;椭圆的标准方程.专题:圆锥曲线中的最值与X围问题.分析:(1)设所求椭圆的标准方程为,右焦点为F2(c,0).已知△AB1B2是直角三角形,又|AB1|=|AB2|,故∠B1AB2=90°,可得c=2b,在Rt△AB1B2中,,从而a2=b2+c2=20.即可得到椭圆的方程.(2)由(1)得B1(﹣2,0),可设直线l的方程为x=my﹣2,代入椭圆的方程,得到根与系数的关系,利用PB2⊥QB2,⇔,即可得到m.(3)当斜率不存在时,直线l:x=﹣2,此时|MN|=4,,当斜率存在时,设直线l:y=k(x+2),利用点到直线的距离公式可得圆心O到直线l的距离,可得t=,得k的取值X围;把直线l的方程代入椭圆的方程点到根与系数的关系,代入|B1B2|×|y1﹣y2|,再通过换元,利用二次函数的单调性即可得出S的取值X围.解答:解:(1)设所求椭圆的标准方程为,右焦点为F2(c,0).因△AB1B2是直角三角形,又|AB1|=|AB2|,故∠B1AB2=90°,得c=2b,在Rt△AB1B2中,,从而a2=b2+c2=20.因此所求椭圆的标准方程为:.(2)由(1)得B1(﹣2,0),可设直线l的方程为x=my﹣2,代入椭圆的方程.化为(5+m2)y2﹣4my﹣16=0.设P(x1,y1)、Q(x2,y2),则,,又,B2P⊥B2Q,所以=(m2+1)y1y2﹣4m(y1+y2)+16===0,∴m2=4,解得m=±2;所以满足条件的直线有两条,其方程分别为:x+2y+2=0和x﹣2y+2=0.(3)当斜率不存在时,直线l:x=﹣2,此时|MN|=4,,当斜率存在时,设直线l:y=k(x+2),则圆心O到直线l的距离,因此t=,得,联立方程组:得(1+5k2)y2﹣4ky﹣16k2=0,由韦达定理知,,所以,因此.设,所以,所以,综上所述:△B2PQ的面积.点评:本题综合考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立得到根与系数的关系、弦长公式、三角形的面积计算公式、点到直线的距离公式、二次函数的单调性等基础知识与基本技能,考查了推理能力、计算能力.20.已知数列{a n}满足a n+1+a n=4n﹣3(n∈N*).(1)若数列{a n}是等差数列,求a1的值;(2)当a1=2时,求数列{a n}的前n项和S n;(3)若对任意n∈N*,都有≥5成立,求a1的取值X围.考点:数列与不等式的综合;等差数列的通项公式;等差数列的前n项和.专题:综合题;压轴题.分析:(1)由等差数列的定义,若数列{a n}是等差数列,则a n=a1+(n﹣1)d,a n+1=a1+nd.结合a n+1+a n=4n﹣3,得即可解得首项a1的值;(2)由a n+1+a n=4n﹣3(n∈N*),用n+1代n得a n+2+a n+1=4n+1(n∈N*).两式相减,得a n+2﹣a n=4.从而得出数列{a2n﹣1}是首项为a1,公差为4的等差数列.进一步得到数列{a2n}是首项为a2,公差为4的等差数列.下面对n进行分类讨论:①当n为奇数时,②当n为偶数时,分别求和即可;(3)由(2)知,a n=(k∈Z).①当n为奇数时,②当n为偶数时,分别解得a1的取值X围,最后综上所述,即可得到a1的取值X围.解答:解:(1)若数列{a n}是等差数列,则a n=a1+(n﹣1)d,a n+1=a1+nd.由a n+1+a n=4n﹣3,得(a1+nd)+[a1+(n﹣1)d]=4n﹣3,即2d=4,2a1﹣d=﹣3,解得d=2,a1=.(2)由a n+1+a n=4n﹣3(n∈N*),得a n+2+a n+1=4n+1(n∈N*).两式相减,得a n+2﹣a n=4.所以数列{a2n﹣1}是首项为a1,公差为4的等差数列.数列{a2n}是首项为a2,公差为4的等差数列.由a2+a1=1,a1=2,得a2=﹣1.所以a n=(k∈Z).①当n为奇数时,a n=2n,a n+1=2n﹣3.S n=a1+a2+a3+…+a n=(a1+a2)+(a3+a4)+…+(a n﹣2+a n﹣1)+a n=1+9+…+(4n﹣11)+2n=+2n=.②当n为偶数时,S n=a1+a2+a3+…+a n=(a1+a2)+(a3+a4)+…+(a n﹣1+a n)═1+9+…+(4n﹣7)=.所以S n=(k∈Z).(3)由(2)知,a n=(k∈Z).①当n为奇数时,a n=2n﹣2+a1,a n+1=2n﹣1﹣a1.由≥5,得a12﹣a1≥﹣4n2+16n﹣10.令f(n)=﹣4n2+16n﹣10=﹣4(n﹣2)2+6.当n=1或n=3时,f(n)max=2,所以a12﹣a1≥2.解得a1≥2或a1≤﹣1.②当n为偶数时,a n=2n﹣3﹣a1,a n+1=2n+a1.由≥5,得a12+3a1≥﹣4n2+16n﹣12.令g(n)=﹣4n2+16n﹣12=﹣4(n﹣2)2+4.当n=2时,g(n)max=4,所以a12+3a1≥4.解得a1≥1或a1≤﹣4.综上所述,a1的取值X围是(﹣∞,﹣4]∪[2,+∞).点评:本小题主要考查等差数列的通项公式、等差数列的前n项和、不等式的解法、数列与不等式的综合等基础知识,考查运算求解能力,考查化归与转化思想.属于压轴题.三、附加题(共4小题,满分0分)21.已知矩阵A=,向量=.求向量,使得A2a=b.考点:矩阵与向量乘法的意义.专题:计算题;矩阵和变换.分析:先计算A2==,再利用矩阵的乘法求向量.解答:解:∵矩阵A=,∴A2==,设=,由A2=得=,即,解得,所以=.点评:本题考查矩阵与向量乘法的意义,考查学生的计算能力,比较基础.22.选修4﹣4:坐标系与参数方程在直角坐标系xOy中,已知曲线C的参数方程是(θ是参数),若以O为极点,x轴的正半轴为极轴,取与直角坐标系中相同的单位长度,建立极坐标系,求曲线C的极坐标方程.考点:简单曲线的极坐标方程;圆的参数方程.专题:计算题.分析:先求出曲线C的普通方程,再利用x=ρcosθ,y=ρsinθ代换求得极坐标方程.解答:解:由得,两式平方后相加得x2+(y﹣1)2=1,…∴曲线C是以(0,1)为圆心,半径等于的圆.令x=ρcosθ,y=ρsinθ,代入并整理得ρ=2sinθ.即曲线C的极坐标方程是ρ=2sinθ.…点评:本题主要考查极坐标方程、参数方程及直角坐标方程的转化.普通方程化为极坐标方程关键是利用公式x=ρcosθ,y=ρsinθ,ρ=.23.如图(1),等腰直角三角形ABC的底边AB=4,点D在线段AC上,DE⊥AB于E,现将△ADE 沿DE折起到△PDE的位置(如图(2)).(Ⅰ)求证:PB⊥DE;(Ⅱ)若PE⊥BE,直线PD与平面PBC所成的角为30°,求PE长.考点:用空间向量求直线与平面的夹角;直线与平面垂直的判定;直线与平面所成的角.专题:计算题;空间角.分析:(I)根据翻折后DE仍然与BE、PE垂直,结合线面垂直的判定定理可得DE⊥平面PEB,再由线面垂直的性质可得PB⊥DE;(II)分别以DE、BE、PE所在直线为x轴、y轴、z轴,建立如图所示空间直角坐标系.设PE=a,可得点B、D、C、P关于a的坐标形式,从而得到向量、坐标,利用垂直向量数量积为0的方法建立方程组,解出平面PCD的一个法向量为=(1,1,),由PD与平面PBC所成的角为30°和向量的坐标,建立关于参数a的方程,解之即可得到线段PE 的长.解答:解:(Ⅰ)∵DE⊥AB,∴DE⊥BE,DE⊥PE,….∵BE∩PE=E,∴DE⊥平面PEB,又∵PB⊂平面PEB,∴BP⊥DE;….(Ⅱ)∵PE⊥BE,PE⊥DE,DE⊥BE,∴分别以DE、BE、PE所在直线为x轴、y轴、z轴建立空间直角坐标系(如图),…设PE=a,则B(0,4﹣a,0),D(a,0,0),C(2,2﹣a,0),P(0,0,a),…可得,,…设面PBC的法向量,∴令y=1,可得x=1,z=因此是面PBC的一个法向量,…∵,PD与平面PBC所成角为30°,…∴,即,…解之得:a=,或a=4(舍),因此可得PE的长为.…点评:本题给出平面图形的翻折,求证线面垂直并在已知线面角的情况下求线段PE的长,着重考查了线面垂直的判定与性质和利用空间向量研究直线与平面所成角的求法等知识,属于中档题.24.附加题:在十字路口的路边,有人在促销木糖醇口香糖,只听喇叭里喊道:木糖醇口香糖,10元钱三瓶,有8种口味供你选择(其中有一种为草莓口味).小明一看,只见一大堆瓶装口香糖堆在一起(假设各种口味的口香糖均超过3瓶,且每瓶价值均相同).(1)小明花10元钱买三瓶,请问小明共有多少种选择的可能性?(2)小明花10元钱买三瓶,售货员随便拿三瓶给小明,请列出有小明喜欢的草莓味口香糖瓶数ξ的分布列,并计算其数学期望.考点:离散型随机变量的期望与方差;离散型随机变量及其分布列;计数原理的应用.专题:计算题.分析:(1)若小明买的三瓶口味均不同,有C83=56种;若其中两瓶口味一样,有C81C71=56种;若三瓶口味一样,有8种.由此能求出小明共有几种选择.(2)ξ的取值为0,1,2,3.=;=;;.由此能求出ξ的分布列和数学期望.解答:解:(1)若小明买的三瓶口味均不同,有C83=56种;若其中两瓶口味一样,有C81C71=56种;若三瓶口味一样,有8种.所以小明共有56+56+8=120种选择.(2)ξ的取值为0,1,2,3.=;=;;.所以ξ的分布列为ξ0 1 2 3P其数学期望.点评:本题考查离散型随机变量的分布列和数学期望,考查学生的运算能力,考查学生探究研究问题的能力,解题时要认真审题,理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,体现了化归的重要思想.。
高三数学模拟试卷(12)(含解析)新人教A版-新人教A版高三全册数学试题
![高三数学模拟试卷(12)(含解析)新人教A版-新人教A版高三全册数学试题](https://img.taocdn.com/s3/m/a4874045326c1eb91a37f111f18583d049640fad.png)
某某省某某市X家港市梁丰高级中学2015届高考数学模拟试卷(12)一、填空题(共14小题,每小题3分,满分41分)1.设集合M={x|x2﹣x﹣2≤0},N={y|y=x2,﹣1≤x≤2},则M∩N=__________.2.函数的定义域是__________.3.已知幂函数y=f(x)的图象过点,则=__________.4.已知函数f(x)=ax2+(b﹣3)x+3,x∈[2a﹣3,4﹣a]是偶函数,则a+b=__________.5.若存在实数x∈[1,2]满足2x2﹣ax+2>0,则实数a的取值X围是__________.6.设函数f(x)=,则函数g(x)=f(x)﹣x的零点的个数为__________.7.若函数y=的定义域为R,则实数m的取值X围是__________.8.已知函数f(x)为R上的奇函数,当x≥0时,f(x)=x(x+1).若f(a)=﹣2,则实数a=__________.9.定义min{a,b,c}为a,b,c中的最小值,设f(x)=min{2x+4,x2+1,5﹣3x},则f (x)的最大值是__________.10.=__________.11.已知a,b为正实数,函数f(x)=ax3+bx+2x在[0,1]上的最大值为4,则f(x)在[﹣1,0]上的最小值为__________.12.已知函数若f(2﹣a2)>f(a),则实数a的取值X围是__________.13.若实数a,b,c满足lg(10a+10b)=a+b,lg(10a+10b+10c)=a+b+c,则c的最大值是__________.14.已知函数当t∈[0,1]时,f(f(t))∈[0,1],则实数t的取值X围是__________.二、解答题(共3小题,满分20分)15.已知集合A={x|(x﹣2)(x﹣3a﹣1)<0},y=lg的定义域为集合B.(1)若A=B,某某数a;(2)是否存在实数a使得A∩B=φ,若存在,则求出实数a的值,若不存在,说明理由.16.已知函数f(x)=,其中b∈R.(Ⅰ)求f(x)的单调区间;(Ⅱ)设b>0.若∃x∈[,],使f(x)≥1,求b的取值X围.17.某市近郊有一块大约500m×500m的接近正方形的荒地,地方政府准备在此建一个综合性休闲广场,首先要建设如图所示的一个矩形场地,其中总面积为3000平方米,其中阴影部分为通道,通道宽度为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为S平方米.(1)分别用x表示y和S的函数关系式,并给出定义域;(2)怎样设计能使S取得最大值,并求出最大值.某某省某某市X家港市梁丰高级中学2015届高考数学模拟试卷(12)一、填空题(共14小题,每小题3分,满分41分)1.设集合M={x|x2﹣x﹣2≤0},N={y|y=x2,﹣1≤x≤2},则M∩N=[0,2].考点:交集及其运算.专题:集合.分析:先求出x2﹣x﹣2≤0的解集M,由二次函数的性质求出集合N,再由交集的运算求出M∩N.解答:解:由x2﹣x﹣2≤0得,﹣1≤x≤2,则集合M=[﹣1,2],因为y=x2,﹣1≤x≤2,所以0≤y≤4,则N=[0,4],所以M∩N=[0,2],故答案为[0,2].点评:本题考查交集及其运算,以及一元二次不等式、一元二次函数的性质,属于基础题.2.函数的定义域是{x|x>﹣1且x≠1}.考点:函数的定义域及其求法.专题:计算题.分析:欲求此函数的定义域,可由x+1>0,且1﹣x≠0,解出x的取值X围,最终得出答案.解答:解:∵x+1>0,且1﹣x≠0,∴x>﹣1且x≠1,故答案为:{x|x>﹣1且x≠1}.点评:本题考查的是求定义域时要注意对数函数的真数大于0,并且分母不能是0的问题.3.已知幂函数y=f(x)的图象过点,则=2.考点:幂函数的性质.专题:函数的性质及应用.分析::设幂函数y=f(x)的解析式为 f(x)=xα,根据幂函数y=f(x)的图象过点求出α的值,可得函数的解析式,从而求得的值.解答:解:设幂函数y=f(x)的解析式为 f(x)=xα,由幂函数y=f(x)的图象过点可得=3α,∴α=﹣,∴f(x)=,∴==2,故答案为 2.点评:本题主要考查幂函数的定义,用待定系数法求函数的解析式,求函数的值,属于基础题.4.已知函数f(x)=ax2+(b﹣3)x+3,x∈[2a﹣3,4﹣a]是偶函数,则a+b=2.考点:二次函数的性质.专题:函数的性质及应用.分析:偶函数定义域关于原点对称,且f(﹣x)=f(x),由此即可求出a,b.解答:解:因为偶函数的定义域关于原点对称,所以2a﹣3+4﹣a=0,解得a=﹣1.由f(x)为偶函数,得f(﹣x)=f(x),即ax2﹣(b﹣3)x+3=ax2+(b﹣3)x+3,2(b﹣3)x=0,所以b=3.所以a+b=3﹣1=2.故答案为:2.点评:偶函数的定义域关于原点对称,f(﹣x)=f(x)恒成立,对于函数的奇偶性问题,往往从定义上考虑.5.若存在实数x∈[1,2]满足2x2﹣ax+2>0,则实数a的取值X围是(﹣∞,5).考点:特称命题.专题:不等式的解法及应用.分析:构造函数f(x)=2x2﹣ax+2,若存在实数x∈[1,2]满足2x2﹣ax+2>0,则f(1)>0,或f(2)>0,进而可得实数a的取值X围解答:解:令f(x)=2x2﹣ax+2若存在实数x∈[1,2]满足2x2﹣ax+2>0,则f(1)>0,或f(2)>0即4﹣a>0,或10﹣2a>0,即a<4,或a<5故a<5即实数a的取值X围是(﹣∞,5)故答案为:(﹣∞,5)点评:本题考查的知识点是特称命题,其中构造函数,将存在性问题(特称命题),转化为不等式问题是解答的关键.6.设函数f(x)=,则函数g(x)=f(x)﹣x的零点的个数为2.考点:根的存在性及根的个数判断.专题:计算题.分析:函数g(x)=f(x)﹣x的零点的个数即函数y=f(x)的图象与直线y=x的交点个数,数形结合可得答案.解答:解:函数g(x)=f(x)﹣x的零点的个数即函数y=f(x)的图象与直线y=x的交点个数,如图所示:由于函数y=f(x)的图象与直线y=x只有2个交点,故答案为 2.点评:本题主要考查方程的根的存在性及个数判断,抽象函数的应用,体现了转化与数形结合的数学思想,属于中档题.7.若函数y=的定义域为R,则实数m的取值X围是[0,12).考点:函数的定义域及其求法.专题:函数的性质及应用.分析:根据函数成立的条件,即可求出结论.解答:解:∵y=的定义域为R,∴不等式mx2+mx+3≠0,若m=0,则3≠0成立,若m≠0,则等价为判别式△=m2﹣12m<0,解得0<m<12,综上0≤m<12,故答案为:[0,12)点评:本题主要考查函数定义域的求解,要求熟练掌握常见函数成立的条件以及一元二次不等式的求解.8.已知函数f(x)为R上的奇函数,当x≥0时,f(x)=x(x+1).若f(a)=﹣2,则实数a=﹣1.考点:函数奇偶性的性质.专题:计算题.分析:由题设知,当x≥0时,f(x)不可能为负,故应求出x<0时的解析式,代入f(a)=﹣2,求a的值.解答:解:令x<0,则﹣x>0,所以f(﹣x)=﹣x(1﹣x),又f(x)为奇函数,所以当x<0时有f(x)=x(1﹣x),令f(a)=a(1﹣a)=﹣2,得a2﹣a﹣2=0,解得a=﹣1或a=2(舍去).故应埴﹣1点评:本题考点是函数奇偶性的运用,用奇偶性这一性质求对称区间上的解析式,这是函数奇偶性的一个重要应用.9.定义min{a,b,c}为a,b,c中的最小值,设f(x)=min{2x+4,x2+1,5﹣3x},则f (x)的最大值是2.考点:函数的值域.专题:新定义.分析:根据min{a,b,c}的意义,画出函数图象,观察最大值的位置,通过求函数值,可得答案.解答:解:画出y=2x+4,y=x2+1,y=5﹣3x的图象,观察图象可知,当x≤﹣1时,f(x)=2x+4,当﹣1≤x≤1时,f(x)=x2+1,当x>1时,f(x)=5﹣3x,f(x)的最大值在x=±1时取得为2,故答案为:2点评:本题考查函数的图象函数的图象、函数最值问题,利用数形结合可以很容易的得到最大值.10.=.考点:对数的运算性质.专题:计算题.分析:利用对数的运算性质,直接化简表达式,求出它的值.解答:解:==﹣故答案为:﹣点评:本题主要考查函数值的求法,以及对数的运算,11.已知a,b为正实数,函数f(x)=ax3+bx+2x在[0,1]上的最大值为4,则f(x)在[﹣1,0]上的最小值为﹣.考点:利用导数求闭区间上函数的最值.专题:计算题.分析:由a,b为正实数,知函数f(x)=ax3+bx+2x是增函数,故f(x)在[0,1]上的最大值f(1)=a+b+2=4,所以a+b=2.由此能求出f(x)在[﹣1,0]上的最小值.解答:解:∵a,b为正实数,函数f(x)=ax3+bx+2x,∴f(x)在R上是增函数,∴f(x)在[0,1]上的最大值f(1)=a+b+2=4,∴a+b=2.∴f(x)在[﹣1,0]上的最小值f(﹣1)=﹣(a+b)+2﹣1=﹣2+=﹣.∴f(x)在[﹣1,0]上的最小值是﹣.故答案为:﹣.点评:本题考查函数的单调性的应用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.12.已知函数若f(2﹣a2)>f(a),则实数a的取值X围是(﹣2,1).考点:其他不等式的解法.专题:计算题;转化思想.分析:先得到函数在定义域上是增函数,再由函数单调性定义求解.解答:解:易知函数在定义域上是增函数∴f(2﹣a2)>f(a),可转化为:2﹣a2>a解得:﹣2<a<1∴实数a的取值X围是(﹣2,1)故答案为:(﹣2,1)点评:本题主要考查函数的单调性定义在解不等式中的应用,一般来讲,抽象函数不等式,多数用单调性定义或数形结合法求解.13.若实数a,b,c满足lg(10a+10b)=a+b,lg(10a+10b+10c)=a+b+c,则c的最大值是lg.考点:其他不等式的解法;对数的运算性质.专题:计算题;函数的性质及应用;不等式的解法及应用.分析:运用对数和指数的关系,及基本不等式,可得10a+b≥2,即10a+b≥4,当且仅当a=b,取等号.对第二个等式,求出10c,再化简代入,分子常数化,即可得到c的最大值.解答:解:lg(10a+10b)=a+b,即为10a+b=10a+10b,而10a+10b≥2=2,即有10a+b≥2,即10a+b≥4,当且仅当a=b,取等号.lg(10a+10b+10c)=a+b+c,即为10a+b+c=10a+10b+10c,即10c===1+≤1+=.则c≤lg.当且仅当a=b,c取得最大值lg.故答案为:.点评:本题考查对数与指数的互化,考查指数的运算性质,以及基本不等式的运用,考查运算能力,属于中档题.14.已知函数当t∈[0,1]时,f(f(t))∈[0,1],则实数t的取值X围是.考点:函数与方程的综合运用.专题:计算题;不等式的解法及应用.分析:通过t的X围,求出f(t)的表达式,判断f(t)的X围,然后代入已知函数,通过函数的值域求出t的X围即可.解答:解:因为t∈[0,1],所以f(t)=3t∈[1,3],又函数,所以f(f(t)=,因为f(f(t))∈[0,1],所以解得:,又t∈[0,1],所以实数t的取值X围.故答案为:.点评:本题考查函数一方程的综合应用,指数与对数不等式的解法,函数的定义域与函数的值域,函数值的求法,考查计算能力.二、解答题(共3小题,满分20分)15.已知集合A={x|(x﹣2)(x﹣3a﹣1)<0},y=lg的定义域为集合B.(1)若A=B,某某数a;(2)是否存在实数a使得A∩B=φ,若存在,则求出实数a的值,若不存在,说明理由.考点:函数的定义域及其求法;交集及其运算.专题:函数的性质及应用;集合.分析:(1)由集合B非空得出a≠1,对3a+1与2的大小比较,可分①当时,②当时,③当时3种情况,利用A=B求得a的值;(2)仍分第(1)问的三种情况,化简集合A,再由条件A∩B=φ求得a的X围.解答:解:(1)由于函数的定义域是非空数集,故a≠1.①当时,A=(2,3a+1),B=(2a,a2+1),由A=B可得:,方程组无解;②当时,A=φ,A=B不可能;③当时,A=(3a+1,2),B=(2a,a2+1),由A=B可得:,∴a=﹣1.(2)①当时,A=(2,3a+1),B=(2a,a2+1),由A∩B=φ可得3a+1≤2a或a2+1≤2,又,则;②当时,A=φ,则A∩B=φ,符合题意;③当时,A=(3a+1,2),B=(2a,a2+1),由A∩B=φ可得2≤2a或a2+1≤3a+1,又,则.∴当a∈[0,1)时,A∩B=φ..点评:本题主要考查函数的定义域的求法,同时考查集合与集合之间的关系,对于含有字母的函数定义域的求法,通常要讨论.16.已知函数f(x)=,其中b∈R.(Ⅰ)求f(x)的单调区间;(Ⅱ)设b>0.若∃x∈[,],使f(x)≥1,求b的取值X围.考点:利用导数研究函数的单调性;利用导数求闭区间上函数的最值.专题:导数的综合应用.分析:(Ⅰ)分情况讨论:①当b=0时,②当b>0时,③当b<0时,然后利用导数即可求得单调区间;(Ⅱ)f(x)≥1等价于b≤﹣x2+x,g(x)=﹣x2+x,则“∃x∈[,],使得b≤﹣x2+x”等价于b小于等于g(x)在区间[,]上的最大值.解答:解:(Ⅰ)①当b=0时,f(x)=.故f(x)的单调减区间为(﹣∞,0),(0,+∞);无单调增区间.②当b>0时,f′(x)=.令f′(x)=0,得x1=,x2=﹣.f(x)和f′(x)的情况如下:x (﹣∞,﹣)﹣(﹣,)(,+∞)f′(x)﹣0 + 0 ﹣f(x)↘↗↘故f(x)的单调减区间为(﹣∞,﹣),(,+∞);单调增区间为(﹣,).③当b<0时,f(x)的定义域为D={x∈R|x≠±}.因为f′(x)=<0在D上恒成立,故f(x)的单调减区间为(﹣∞,﹣),(﹣,),(,+∞);无单调增区间.(Ⅱ)解:因为b>0,x∈[,],所以f(x)≥1等价于b≤﹣x2+x,其中x∈[,].设g(x)=﹣x2+x,g(x)在区间[,]上的最大值为g()=.则“∃x∈[,],使得b≤﹣x2+x”等价于b≤.所以b的取值X围是(0,].点评:本题考查利用导数研究函数的单调性、函数恒成立及函数在区间上的最值问题,考查学生综合运用所学知识分析问题解决问题的能力.17.某市近郊有一块大约500m×500m的接近正方形的荒地,地方政府准备在此建一个综合性休闲广场,首先要建设如图所示的一个矩形场地,其中总面积为3000平方米,其中阴影部分为通道,通道宽度为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为S平方米.(1)分别用x表示y和S的函数关系式,并给出定义域;(2)怎样设计能使S取得最大值,并求出最大值.考点:函数模型的选择与应用.专题:应用题;压轴题.分析:(1)总面积为xy=3000,且2a+6=y,则y=,(其中6<x<500),从而运动场占地面积为S=(x﹣4)a+(x﹣6)a,代入整理即得;(2)由(1)知,占地面积S=3030﹣6x﹣=3030﹣(6x+),由基本不等式可得函数的最大值,以及对应的x的值.解答:解:(1)由已知xy=3000,∴,其定义域是(6,500).S=(x﹣4)a+(x﹣6)a=(2x﹣10)a,∵2a+6=y,∴,∴,其定义域是(6,500).(2),当且仅当,即x=50∈(6,500)时,上述不等式等号成立,此时,x=50,y=60,S max=2430.答:设计x=50m,y=60m时,运动场地面积最大,最大值为2430平方米.点评:本题以实际问题为载体,考查函数模型的构建,考查应用基本不等式求函数最值,构建函数关系式是关键,属于中档题.。
2020_2021学年新教材高中数学2.1.1不等关系与比较大小课时素养评价(含解析)新人教A版必修第一册
![2020_2021学年新教材高中数学2.1.1不等关系与比较大小课时素养评价(含解析)新人教A版必修第一册](https://img.taocdn.com/s3/m/002952e7fe4733687e21aada.png)
不等关系与比较大小(15分钟30分)1.下列选项正确的是( )A.a与b的差不是正数用不等式表示为a-b<0B.a的绝对值不超过3用不等式表示为a≤3C.(x-3)2<(x-2)(x-4)D.x2+y2+1>2(x+y-1)【解析】选D.a与b的差不是正数用不等式表示为a-b≤0;a的绝对值不超过3用不等式表示为|a|≤3;(x-3)2-(x-2)(x-4)=1>0,所以(x-3)2>(x-2)(x-4);x2+y2+1-2(x+y-1)=(x-1)2+(y-1)2+1>0,所以x2+y2+1>2(x+y-1).2.(x+5)(x+7)与(x+6)2的大小关系为_______.【解析】因为(x+5)(x+7)-(x+6)2=x2+12x+35-(x2+12x+36)=-1<0.所以(x+5)(x+7)<(x+6)2.答案:(x+5)(x+7)<(x+6)23.已知x≠0,则(x2+1)2与x4+x2+1的大小关系为_______.【解析】因为(x2+1)2-(x4+x2+1)=(x4+2x2+1)-(x4+x2+1)=x4+2x2+1-x4-x2-1=x2,又x≠0,所以x2>0,所以(x2+1)2-(x4+x2+1)>0,故(x2+1)2>x4+x2+1.答案:(x2+1)2>x4+x2+14.为了全面贯彻党的教育方针,落实“立德树人”的根本任务,切实改变边远地区孩子上学难的问题,某市政府准备投资1 800万元兴办一所中学.经调查,班级数量以20至30个为宜,每个初、高中班硬件配置分别需要28万元与58万元,该学校的规模(初、高中班级数量)所满足的条件是___________.【解析】设该校有初中班x个,高中班y个,则有:答案:5.为了庆祝我们伟大祖国70周年华诞,某市世纪公园推出优惠活动.票价降低到每人5元;且一次购票满30张,每张再少收1元.某班有27人去世纪公园游玩,当班长王小华准备好了零钱到售票处买票时,爱动脑筋的李敏喊住了王小华,提议买30张票.但有的同学不明白,明明我们只有27个人,买30张票,岂不是“浪费”吗?那么,李敏的提议对不对呢?是不是真的浪费?谈谈你们的看法.【解析】如果买27张票要花27×5=135(元),如果买30张票要花30×(5-1)=120(元),通过比较,135>120,所以27人买30张票不是浪费,反而还节省15元呢.(20分钟40分)一、单选题(每小题5分,共15分)1.设x<a<0,则下列不等式一定成立的是( )A.x2<ax<a2B.x2>ax>a2C.x2<a2<axD.x2>a2>ax【解析】选B.因为x2-ax=x(x-a)>0,所以x2>ax.又ax-a2=a(x-a)>0,所以ax>a2,所以x2>ax>a2.【光速解题】选B.本题可以利用特殊值法解答,由题意,可以令x=-2,a=-1,则x2=4,ax=2,a2=1,直接得出答案.2.“>1”的一个充分不必要条件是( )A.x>yB.x>y>0C.x<yD.y<x<0【解题指南】如果p是q的充分不必要条件,那么p⇒q,而q⇒/ p.【解析】选B.当x>y>0时,必有>1,而>1⇔>0⇔x>y>0或x<y<0.所以x>y>0是>1的充分不必要条件.3.有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:m2)分别为x,y,z,且x<y<z,三种颜色涂料的粉刷费用(单位:元/m2)分别为a,b,c,且a<b<c.在不同的方案中,最低的总费用(单位:元)是( )A.ax+by+czB.az+by+cxC.ay+bz+cxD.ay+bx+cz【解析】选B.方法一:因为x<y<z,a<b<c,所以ax+by+cz-(az+by+cx)=a(x-z)+c(z-x)=(x-z)(a-c)>0,故ax+by+cz>az+by+cx;同理,ay+bz+cx-(ay+bx+cz)=b(z-x)+c(x-z)=(x-z)(c-b)<0,故ay+bz+cx<ay+bx+cz.又az+by+cx-(ay+bz+cx)=a(z-y)+b(y-z)=(a-b)(z-y)<0,故az+by+cx<ay+bz+cx.综上可得,最低的总费用为az+by+cx.方法二(特殊值法):若x=1,y=2,z=3,a=1,b=2,c=3,则ax+by+cz=14,az+by+cx=10,ay+bz+cx=11,ay+bx+cz=13.由此可知最低的总费用是az+by+cx.二、多选题(共5分,全部选对得5分,选对但不全的得3分,有选错的得0分)4.已知三个不等式:①ab>0,②>,③bc>ad,则下列结论正确的是( )A.①③⇒②B.①②⇒③C.②③⇒①D.B选项错误【解析】选ABC.不等式②作等价变形>⇔>0,由ab>0,bc>ad,可得②成立,即①③⇒②;若ab>0,>0,则bc>ad,故①②⇒③;若bc>ad,>0,则ab>0,故②③⇒①.三、填空题(每小题5分,共10分)5.若x∈R,则与的大小关系为_______.【解析】因为-==≤0.所以≤.答案:≤6.一辆汽车原来每天行驶x km,如果这辆汽车每天行驶的路程比原来多19 km,那么在8天内它的行程就超过2 200 km,写成不等式为_______;如果它每天行驶的路程比原来少12 km,那么它原来行驶8天的路程就得花9天多的时间,用不等式表示为_______.【解析】(1)原来每天行驶x km,现在每天行驶(x+19)km.则不等关系“在8天内的行程超过2 200 km”,写成不等式为8(x+19)>2 200.(2)若每天行驶(x-12)km,则不等关系“原来行驶8天的路程就得花9天多的时间”用不等式表示为>9.答案:8(x+19)>2 200 >9四、解答题7.(10分)(1)已知a>b>c>0,试比较与的大小.(2)比较2x2+5x+3与x2+4x+2的大小.【解析】(1)-====.因为a>b>c>0,所以a-b>0,ab>0,a+b-c>0.所以>0,即>.(2)(2x2+5x+3)-(x2+4x+2)=x2+x+1=+. 因为≥0,所以+≥>0,所以(2x2+5x+3)-(x2+4x+2)>0,所以2x2+5x+3>x2+4x+2.。
高三数学第三次月考试题含解析 试题
![高三数学第三次月考试题含解析 试题](https://img.taocdn.com/s3/m/c16276d0185f312b3169a45177232f60ddcce7d4.png)
卜人入州八九几市潮王学校四中2021届高三数学第三次月考试题〔含解析〕一、选择题:本大题一一共12个小题,每一小题5分,一共60分.在每一小题给出的四个选项里面,只有一项为哪一项哪一项符合题目要求的.1.〔〕A. B. C. D.【答案】A【解析】由,应选A.2.设集合为,,那么〔〕A. B. C. D.【答案】B【解析】由可得,,为不能被整除的数,为整数,又分母一样,故,应选B.3.焦点在轴上的双曲线的渐近线方程为,那么该双曲线的离心率为〔〕A. B. C.或者 D.2或者【答案】A【解析】因为焦点在轴上的双曲线的渐近线方程为,所以,应选A.4.一支田径队有男运发动40人,女运发动30人,要从全体运发动中抽取一个容量为28的样本来研究一个与性别有关的指标,那么抽取的男运发动人数为〔〕A.20B.18C.16D.12【答案】C【解析】因为田径队男运发动,女运发动人,所以这支田径队一共有人,用分层抽样的方法从该队的全体运发动中抽取一个容量为的样本,所以每个个体被抽到的概率是,因为田径队有男运发动人,所以男运发动要抽取人,应选C.5.等差数列中,是函数的两个零点,那么的前9项和等于〔〕A.-18B.9C.18D.36【答案】C【解析】等差数列中,是函数两个零点,的前项和,,应选C...................6.,那么〔〕A.0B.1C.32D.-1【答案】A【解析】由二项展开式的通项公式,可知都小于.那么.在原二项展开式中令,可得.故此题答案选.7.以下图所示中,为某次考试三个评阅人对同一道题的HY评分,,,时,等于〔〕A.11B.10C.7D.8【答案】D【解析】当,时,不满足,,故此时输入的值,并判断,假设满足条件,此时,解得,这与与条件矛盾,假设不满足条件,此时,解得,此时不成立,符合题意,综上所述,,应选D.【方法点睛】此题主要考察程序框图的循环构造流程图,属于中档题.解决程序框图问题时一定注意以下几点:(1)不要混淆处理框和输入框;(2)注意区分程序框图是条件分支构造还是循环构造;(3)注意区分当型循环构造和直到型循环构造;(4)处理循环构造的问题时一定要正确控制循环次数;(5)要注意各个框的顺序,〔6〕在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到到达输出条件即可.8.的面积为12,假设,那么的面积为〔〕A.4B.5C.6D.7【答案】C【解析】设,以为邻边作平行四边形,连接那么,,,,所以可得的面积为,应选C.9.,,,,从这四个数中任取一个数使函数有极值点的概率为〔〕A. B. C. D.1【答案】B【解析】对求导得假设函数有极值点,那么有2个不相等的实数根,故,解得,而满足条件的有2个,分别是,故满足条件的概率应选:B.【点睛】此题考察了函数的单调性、极值问题,考察导数的应用以及对数、指数的性质,解题时准确理解题意是解题的关键.10.三棱锥的底面是边长为1的正三角形,其正视图与俯视图如以下图,且满足那么其外接球的外表积为〔〕A. B. C. D.【答案】B【解析】试题分析:由题可知,O为△ABC的重心,△ABC外接圆的半径为,且三棱锥的高为1.故∴球==,应选D考点: 三棱锥外接球的半径 球的外表积公式11.为抛物线的焦点,过作两条夹角为的直线,交抛物线于两点,交抛物线于两点,那么的最大值为〔〕A. B. C. D.【答案】D【解析】设直线的倾斜角为,那么的倾斜角为,由过焦点的弦长公式,可得,,所以可得,的最大值为,应选D.12.,函数对任意有成立,与的图象有个交点为,…,,那么〔〕A. B. C. D.【答案】D【解析】化简,的图象关于对称,由可得,可得的图象也关于对称,因此与的图象的个交点为,…,,也关于对称,所以,,设,那么,两式相加可,同理可得,,应选D.【方法点睛】此题主要考函数的对称性、函数的图象与性质、倒序相加法求和以及数学的转化与划归思想.属于难题.转化与划归思想解决高中数学问题的一种重要思想方法,是数学四种重要的数学思想之一,尤其在解决知识点较多以及知识跨度较大的问题发挥着奇特成效,大大进步理解题才能与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准打破点.以便将问题转化为我们所熟悉的知识领域,进而顺利解答,希望同学们可以纯熟掌握并应用于解题当中.解答此题的关键是将等式与解析式转化为对称问题,将对称问题转化为倒序相加求和.二、填空题〔每一小题5分,总分值是20分,将答案填在答题纸上〕13.__________.【答案】1【解析】由,故答案为.14.在中,三顶点,,,点在内部及边界运动,那么最大值为__________.【答案】【解析】画出符合题意的的平面区域如图:〔阴影局部〕,由得,平移直线,由平移可知当直线,经过时,直线的截距最小,此时获得最大值,代入,即的最大值是,故答案为.【方法点晴】此题主要考察线性规划中利用可行域求目的函数的最值,属简单题.求目的函数最值的一般步骤是“一画、二移、三求〞:〔1〕作出可行域〔一定要注意是实线还是虚线〕;〔2〕找到目的函数对应的最优解对应点〔在可行域内平移变形后的目的函数,最先通过或者最后通过的顶点就是最优解〕;〔3〕将最优解坐标代入目的函数求出最值.15.假设半径为1的球与的二面角的两个半平面切于两点,那么两切点间的球面间隔〔即经过两点的大圆的劣弧长〕是__________.【答案】【解析】画出图形,如图,在四边形中,是球的大圆的切线,,,两切点间的球面间隔是弧,故答案为.16.在数1和2之间插入个正数,使得这个数构成递增等比数列,将这个数的乘积记为,令,,______.【答案】【解析】设在数和之间插入个正数,使得这个数构成递增等比数列为,那么,即为此等比数列的公比,,,由,又,,,,故答案为.三、解答题〔本大题一一共6小题,一共70分.解容许写出文字说明、证明过程或者演算步骤.〕17.不是直角三角形,它的三个角所对的边分别为,.〔1〕求证:;〔2〕假设,求面积的最大值.【答案】〔1〕见解析;〔2〕48【解析】试题分析:〔1〕由,根据正弦定理及两角和的正弦公式化简可得,因为不是直角三角形,所以,由正弦定理可得;〔2〕视为定点,求出满足条件下的轨迹为一个圆,圆心在直上,当上升到离直线最远时面积最大.试题解析:〔1〕由,根据正弦定理可得,,因为不是直角三角形,所以,由正弦定理可得;〔2〕方法一:b=2a.c=12,余弦定理用a表示cosC,表示出sinC,进而用a表示出,求出该函数的最大值.(最费力的做法)方法二:视A.B为定点,求出满足b=2a条件下C的轨迹为一个圆,圆心在直线AB上,当C上升到离直线AB最远时面积最大。
2021届高三新高考数学人教A版一轮复习教学案:第六章第1节 数列的概念与简单表示法(含解析)
![2021届高三新高考数学人教A版一轮复习教学案:第六章第1节 数列的概念与简单表示法(含解析)](https://img.taocdn.com/s3/m/813f0c8a26fff705cc170a7d.png)
第1节数列的概念与简单表示法考试要求 1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式);2.了解数列是自变量为正整数的一类特殊函数.知识梳理1.数列的定义按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项.2.数列的分类分类标准类型满足条件3.数列的表示法数列有三种表示法,它们分别是列表法、图象法和解析法. 4.数列的通项公式(1)通项公式:如果数列{a n }的第n 项a n 与序号n 之间的关系可以用一个式子a n =f (n )来表示,那么这个公式叫做这个数列的通项公式.(2)递推公式:如果已知数列{a n }的第1项(或前几项),且从第二项(或某一项)开始的任一项a n 与它的前一项a n -1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式. [常用结论与微点提醒]1.数列的最大(小)项,可以用⎩⎨⎧a n ≥a n -1,a n ≥a n +1(n ≥2,n ∈N *)⎝ ⎛⎭⎪⎫⎩⎨⎧a n ≤a n -1,a n ≤a n +1(n ≥2,n ∈N *)求,也可以转化为函数的最值问题或利用数形结合求解.2.数列是按一定“次序”排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数”的排列顺序有关.3.易混项与项数的概念,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号.诊 断 自 测1.判断下列结论正误(在括号内打“√”或“×”)(1)相同的一组数按不同顺序排列时都表示同一个数列.()(2)1,1,1,1,…,不能构成一个数列.()(3)任何一个数列不是递增数列,就是递减数列.()(4)如果数列{a n}的前n项和为S n,则对任意n∈N*,都有a n+1=S n+1-S n.() 解析(1)数列:1,2,3和数列:3,2,1是不同的数列.(2)数列中的数是可以重复的,可以构成数列.(3)数列可以是常数列或摆动数列.答案(1)×(2)×(3)×(4)√2.(老教材必修5P33T4改编)在数列{a n }中,a 1=1,a n =1+(-1)na n -1(n ≥2),则a 5等于( ) A.32B.53C.85D.23解析 a 2=1+(-1)2a 1=2,a 3=1+(-1)3a 2=12, a 4=1+(-1)4a 3=3,a 5=1+(-1)5a 4=23. 答案 D3.(老教材必修5P33T5改编)根据下面的图形及相应的点数,写出点数构成的数列的一个通项公式a n =________.…解析 由a 1=1=5×1-4,a 2=6=5×2-4,a 3=11=5×3-4,…,归纳a n =5n -4. 答案 5n -44.(2020·北京朝阳区月考)数列0,1,0,-1,0,1,0,-1,…的一个通项公式a n 等于( ) A.(-1)n +12B.cos n π2C.cos n +12πD.cos n +22π解析 令n =1,2,3,…,逐一验证四个选项,易得D 正确. 答案 D5.(2019·郑州一模)设数列{a n }的前n 项和为S n ,且S n =a 1(4n -1)3,若a 4=32,则a 1=________.解析 由题意,得a 4=S 4-S 3=32. 即255a 13-63a 13=32,解得a 1=12.答案 126.(2020·成都诊断)数列{a n }中,a n =-n 2+11n (n ∈N *),则此数列最大项的值是________.解析 a n =-n 2+11n =-⎝ ⎛⎭⎪⎫n -1122+1214,∵n ∈N *,∴当n =5或n =6时,a n 取最大值30. 答案 30考点一 由a n 与S n 的关系求通项【例1】 (1)(2019·广州质检)已知数列{a n }的前n 项和S n =2n 2-3n ,则a n =________. (2)(2020·西安模拟)已知数列{a n }的前n 项和为S n ,且a 1=1,S n =13a n +1-1,则数列{a n }的通项公式为________. 解析 (1)a 1=S 1=2-3=-1,当n ≥2时,a n =S n -S n -1=(2n 2-3n )-[2(n -1)2-3(n -1)]=4n -5, 由于a 1也适合此等式,∴a n =4n -5.(2)由a 1=1,S n =13a n +1-1可得a 1=13a 2-1=1,解得a 2=6,当n ≥2时,S n -1=13a n -1,又S n =13a n +1-1,两式相减可得a n =S n -S n -1=13a n +1-13a n ,即a n +1=4a n (n ≥2),则a n =6·4n -2,又a 1=1不符合上式, 所以a n =⎩⎪⎨⎪⎧1,n =1,6·4n -2,n ≥2.答案 (1)4n -5 (2)a n =⎩⎨⎧1,n =1,6·4n -2,n ≥2规律方法 数列的通项a n 与前n 项和S n 的关系是a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.①当n =1时,a 1若适合S n -S n -1,则n =1的情况可并入n ≥2时的通项a n ;②当n =1时,a 1若不适合S n -S n -1,则用分段函数的形式表示.【训练1】 (1)设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n ,则a n =________. (2)(2018·全国Ⅰ卷)记S n 为数列{a n }的前n 项和.若S n =2a n +1,则S 6=________. 解析 (1)因为a 1+3a 2+…+(2n -1)a n =2n , 故当n ≥2时,a 1+3a 2+…+(2n -3)a n -1=2(n -1). 两式相减得(2n -1)a n =2, 所以a n =22n -1(n ≥2).又由题设可得a 1=2,满足上式, 从而{a n }的通项公式为a n =22n -1(n ∈N *).(2)由S n =2a n +1,得a 1=2a 1+1,所以a 1=-1. 当n ≥2时,a n =S n -S n -1=2a n +1-(2a n -1+1), 得a n =2a n -1.∴数列{a n }是首项为-1,公比为2的等比数列. ∴S 6=a 1(1-q 6)1-q =-(1-26)1-2=-63.答案 (1)22n -1(n ∈N *) (2)-63考点二 由数列的递推关系求通项 多维探究角度1 累加法——形如a n +1-a n =f (n ),求a n【例2-1】 在数列{a n }中,a 1=2,a n +1=a n +ln ⎝ ⎛⎭⎪⎫1+1n ,则a n 等于( )A.2+ln nB.2+(n -1)ln nC.2+n ln nD.1+n +ln n解析 因为a n +1-a n =ln n +1n =ln(n +1)-ln n , 所以a 2-a 1=ln 2-ln 1,a 3-a 2=ln 3-ln 2, a 4-a 3=ln 4-ln 3, ……a n -a n -1=ln n -ln(n -1)(n ≥2).把以上各式分别相加得a n -a 1=ln n -ln 1, 则a n =2+ln n (n ≥2),且a 1=2也适合, 因此a n =2+ln n (n ∈N *). 答案 A角度2 累乘法——形如a n +1a n=f (n ),求a n【例2-2】 若a 1=1,na n -1=(n +1)a n (n ≥2),则数列{a n }的通项公式a n =________.解析 由na n -1=(n +1)a n (n ≥2),得a na n -1=nn +1(n ≥2).所以a n =a n a n -1·a n -1a n -2·a n -2a n -3·…·a 3a 2·a 2a 1·a 1=n n +1·n -1n ·n -2n -1·…·34·23·1=2n +1(n ≥2),又a 1也满足上式,所以a n =2n +1.答案2n +1角度3 构造法——形如a n +1=Aa n +B (A ≠0且A ≠1,B ≠0),求a n【例2-3】 (2020·青岛模拟)已知数列{a n }满足a 1=1,a n +1=3a n +2(n ∈N *),则数列{a n }的通项公式为________.解析 由a n +1=3a n +2,得a n +1+1=3(a n +1), ∴数列{a n +1}是首项为2,公比为3的等比数列, ∴a n +1=2·3n -1,∴a n =2·3n -1-1. 答案 a n =2·3n -1-1角度4 取倒数法——形如a n +1=Aa n Ba n +C(A ,B ,C 为常数),求a n【例2-4】 已知数列{a n }中,a 1=1,a n +1=2a na n +2(n ∈N *),则数列{a n }的通项公式为________.解析 因为a n +1=2a n a n +2,a 1=1,所以a n ≠0,所以1a n +1=1a n +12,即1a n +1-1a n=12.又a 1=1,则1a 1=1,所以⎩⎨⎧⎭⎬⎫1a n 是以1为首项,12为公差的等差数列.所以1a n =1a 1+(n-1)×12=n 2+12.所以a n =2n +1.答案 a n =2n +1规律方法 由数列的递推关系求通项公式的常用方法(1)已知a 1,且a n -a n -1=f (n ),可用“累加法”求a n . (2)已知a 1(a 1≠0),且a na n -1=f (n ),可用“累乘法”求a n . (3)已知a 1,且a n +1=qa n +b ,则a n +1+k =q (a n +k )(其中k 可用待定系数法确定),可转化为{a n +k }为等比数列.(4)形如a n +1=Aa n Ba n +C (A ,B ,C 为常数)的数列,将其变形为1a n +1=C A ·1a n +BA,①若A =C ,则⎩⎨⎧⎭⎬⎫1a n 是等差数列,且公差为B A ,②若A ≠C ,则采用待定系数法构造新数列求解.【训练2】 (1)(角度1)在数列{a n }中,若a 1=3,a n +1=a n +1n (n +1),则通项公式a n =________.(2)(角度2)已知a 1=2,a n +1=2n a n ,则数列{a n }的通项公式a n =________. (3)(角度3)已知数列{a n }中,a 1=3,且点P n (a n ,a n +1)(n ∈N *)在直线4x -y +1=0上,则数列{a n }的通项公式a n =________.(4)(角度4)已知数列{a n }满足a 1=1,a n +1=a na n +2(n ∈N *),则数列{a n }的通项公式a n =________.解析 (1)原递推公式可化为a n +1=a n +1n -1n +1,则a 2=a 1+1-12,a 3=a 2+12-13,a 4=a 3+13-14,…,a n -1=a n -2+1n -2-1n -1,a n =a n -1+1n -1-1n ,累计相加得,a n =a 1+1-1n ,又n =1时也适合,故a n =4-1n .(2)∵a n +1=2na n ,∴a n +1a n =2n ,当n ≥2时,a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1=2n -1·2n -2·…·2·2=2n 2-n +22.又a 1=2也符合上式,∴a n =2n 2-n +22.(3)因为点P n (a n ,a n +1)(n ∈N *)在直线4x -y +1=0上, 所以4a n -a n +1+1=0.所以a n +1+13=4⎝ ⎛⎭⎪⎫a n +13.因为a 1=3,所以a 1+13=103.故数列⎩⎨⎧⎭⎬⎫a n +13是首项为103,公比为4的等比数列.所以a n +13=103×4n -1,故数列{a n }的通项公式为a n =103×4n -1-13.(4)由a n +1=a n a n +2,得1a n +1=1+2a n ,所以1a n +1+1=2⎝ ⎛⎭⎪⎫1a n +1,故⎩⎨⎧⎭⎬⎫1a n +1是首项为1a1+1=2,公比为2的等比数列,则1a n +1=2n ,则a n =12n -1.答案 (1)4-1n (2)2n 2-n +22(3)103×4n -1-13(4)12n -1考点三 数列的性质【例3】 (1)(2019·宜春期末)已知函数f (x )=⎩⎪⎨⎪⎧x +12,x ≤12,2x -1,12<x <1,x -1,x ≥1,若数列{a n}满足a 1=73,a n +1=f (a n )(n ∈N *),则a 2 019=( ) A.73B.43C.56D.13(2)(2020·衡水中学一调)已知数列{a n }的前n 项和S n =⎩⎨⎧2n -1,n ≤4,-n 2+(m -1)n ,n ≥5.若a 5是{a n }中的最大值,则实数m 的取值范围是________.解析 (1)由题意,知a 2=f ⎝ ⎛⎭⎪⎫73=43,a 3=f ⎝ ⎛⎭⎪⎫43=13,a 4=f ⎝ ⎛⎭⎪⎫13=56,a 5=f ⎝ ⎛⎭⎪⎫56=23,a 6=f ⎝ ⎛⎭⎪⎫23=13,a 7=f ⎝ ⎛⎭⎪⎫13=56,……,故数列{a n }从第三项起构成周期数列,且周期为3,故a 2 019=a 3=13.故选D.(2)因为S n =⎩⎪⎨⎪⎧2n -1,n ≤4,-n 2+(m -1)n ,n ≥5,所以当2≤n ≤4时,a n =S n -S n -1=2n -1; 当n =1时,a 1=S 1=1也满足上式; 当n ≥6时,a n =S n -S n -1=-2n +m , 当n =5时,a 5=S 5-S 4=5m -45, 综上,a n =⎩⎪⎨⎪⎧2n -1,n ≤4,5m -45,n =5,-2n +m ,n ≥6,因为a 5是{a n }中的最大值,所以有5m -45≥8且5m -45≥-12+m ,解得m ≥535. 答案 (1)D (2)⎣⎢⎡⎭⎪⎫535,+∞规律方法 1.在数学命题中,以数列为载体,常考查周期性、单调性.2.(1)研究数列的周期性,常由条件求出数列的前几项,确定周期性,进而利用周期性求值.(2)数列的单调性只需判定a n 与a n +1的大小,常用比差或比商法进行判断. 【训练3】 (1)已知数列{a n }满足a n +1=11-a n,若a 1=12,则a 2 021=( )A.-1B.12 C.1 D.2(2)已知等差数列{a n }的公差d <0,且a 21=a 211,则数列{a n }的前n 项和S n 项取得最大值时,项数n 的值为( ) A.5B.6C.5或6D.6或7解析 (1)由a 1=12,a n +1=11-a n 得a 2=2,a 3=-1,a 4=12,a 5=2,…,可知数列{a n }是以3为周期的数列,因此a 2 021=a 3×673+2=a 2=2.(2)由a 21=a 211,可得(a 1+a 11)(a 1-a 11)=0,因为d <0,所以a 1-a 11≠0,所以a 1+a 11=0, 又2a 6=a 1+a 11,所以a 6=0. 因为d <0,所以{a n }是递减数列,所以a 1>a 2>…>a 5>a 6=0>a 7>a 8>…,显然前5项和或前6项和最大,故选C. 答案 (1)D (2)CA 级 基础巩固一、选择题1.已知数列的前4项为2,0,2,0,则依此归纳该数列的通项不可能是( ) A.a n =(-1)n -1+1B.a n =⎩⎨⎧2,n 为奇数,0,n 为偶数C.a n =2sin n π2D.a n =cos(n -1)π+1解析 对n =1,2,3,4进行验证,a n =2sin n π2不合题意. 答案 C2.已知数列{a n }满足:任意m ,n ∈N *,都有a n ·a m =a n +m ,且a 1=12,那么a 5=( ) A.132B.116C.14D.12解析 由题意,得a 2=a 1a 1=14,a 3=a 1·a 2=18,则a 5=a 3·a 2=132. 答案 A3.(2020·江西重点中学盟校联考)在数列{a n }中,a 1=-14,a n =1-1a n -1(n ≥2,n ∈N *),则a 2 019的值为( ) A.-14B.5C.45D.54解析 在数列{a n }中,a 1=-14,a n =1-1a n -1(n ≥2,n ∈N *),所以a 2=1-1-14=5,a 3=1-15=45,a 4=1-145=-14,所以{a n }是以3为周期的周期数列,所以a 2 019=a 673×3=a 3=45.答案 C4.已知数列{a n }的前n 项和为S n ,且a 1=2,a n +1=S n +1(n ∈N *),则S 5=( ) A.31B.42C.37D.47解析 由题意,得S n +1-S n =S n +1(n ∈N *),∴S n +1+1=2(S n +1)(n ∈N *),故数列{S n +1}为等比数列,其首项为3,公比为2,则S 5+1=3×24,所以S 5=47. 答案 D5.(2020·兰州重点高中联考)已知数列{a n }的首项a 1=35,且满足a n -a n -1=2n -1(n ∈N *,n ≥2),则a nn 的最小值为( ) A.234B.595C.353D.12解析 数列{a n }的首项a 1=35,且满足a n -a n -1=2n -1(n ∈N *,n ≥2),可得a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=34+(1+3+5+…+2n -1)=34+12n (1+2n -1)=34+n 2(n ≥2),当n =1时,a 1=35符合上式,故a n =34+n 2(n ∈N *),则a nn =n +34n ≥234,等号成立时n =34n ,解得n =34,n 不为正整数,由于n 为正整数,所以n =5时,5+345=595;n =6时,6+346=353<595.则a n n 的最小值为353,故选C. 答案 C 二、填空题6.已知S n =3n +2n +1,则a n =________________. 解析 因为当n =1时,a 1=S 1=6; 当n ≥2时,a n =S n -S n -1=(3n +2n +1)-[3n -1+2(n -1)+1] =2·3n -1+2,由于a 1不适合此式,所以a n =⎩⎪⎨⎪⎧6,n =1,2·3n -1+2,n ≥2.答案 ⎩⎨⎧6,n =1,2·3n -1+2,n ≥27.(2019·汕头一模)已知数列{a n }的前n 项和为S n ,已知a 1=1,a 2=2,且a n +2=3S n -S n +1+3(n ∈N *),则S 10=________________. 解析 因为a n +2=3S n -S n +1+3, 所以S n +2-S n +1=3S n -S n +1+3,整理得S n +2=3S n +3,即S n +2+32=3⎝ ⎛⎭⎪⎫S n +32,又S 2=a 1+a 2=3,所以S 10+32=S 10+32S 8+32·S 8+32S 6+32·S 6+32S 4+32·S 4+32S 2+32·⎝ ⎛⎭⎪⎫S 2+32,即S 10=S 10+32S 8+32·S 8+32S 6+32·S 6+32S 4+32·S 4+32S 2+32·⎝ ⎛⎭⎪⎫S 2+32-32=363. 答案 3638.(2020·河北省级示范性高中联考)数列{a n }满足a 1=3,且对于任意的n ∈N *都有a n +1-a n =n +2,则a 39=________. 解析 因为a n +1-a n =n +2,所以a 2-a 1=3,a 3-a 2=4,a 4-a 3=5,……, a n -a n -1=n +1(n ≥2),上面(n -1)个式子左右两边分别相加 得a n -a 1=(n +4)(n -1)2(n ≥2),即a n =(n +1)(n +2)2(n ≥2),当n =1时,a 1=3适合上式,所以a n =(n +1)(n +2)2,n ∈N *,所以a 39=820.答案 820 三、解答题9.已知各项都为正数的数列{a n }满足a 1=1,a 2n -(2a n +1-1)·a n -2a n +1=0. (1)求a 2,a 3; (2)求{a n }的通项公式.解 (1)由题意得a 2=12,a 3=14. (2)由a 2n -(2a n +1-1)a n -2a n +1=0得 2a n +1(a n +1)=a n (a n +1).因为{a n }的各项都为正数,所以a n +1a n=12.故{a n }是首项为1,公比为12的等比数列,因此a n =12n -1.10.设数列{a n }的前n 项和为S n .已知a 1=a (a ≠3),a n +1=S n +3n ,n ∈N *,设b n =S n -3n .(1)求数列{b n }的通项公式;(2)若a n +1≥a n ,n ∈N *,求a 的取值范围. 解 (1)依题意,S n +1-S n =a n +1=S n +3n , 即S n +1=2S n +3n ,由此得S n +1-3n +1=2(S n -3n ), 即b n +1=2b n ,又b 1=S 1-3=a -3,所以数列{b n }的通项公式为b n =(a -3)2n -1,n ∈N *. (2)由(1)知S n =3n +(a -3)2n -1,n ∈N *, 于是,当n ≥2时,a n =S n -S n -1=3n +(a -3)2n -1-3n -1-(a -3)2n -2 =2×3n -1+(a -3)2n -2, a n +1-a n =4×3n -1+(a -3)2n -2=2n -2⎣⎢⎡⎦⎥⎤12⎝ ⎛⎭⎪⎫32n -2+a -3, 当n ≥2时,a n +1≥a n ⇒12⎝ ⎛⎭⎪⎫32n -2+a -3≥0⇒a ≥-9.又a 2=a 1+3>a 1.综上,a 的取值范围是[-9,3)∪(3,+∞).B 级 能力提升11.(2019·晋中高考适应性调研)“中国剩余定理”又称“孙子定理”.1852年,英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得到的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1至2 020这2 020个数中,能被3除余1且被7除余1的数按从小到大的顺序排成一列,构成数列{a n },则此数列共有( ) A.98项B.97项C.96项D.95项解析 能被3除余1且被7除余1的数就只能是被21除余1的数,故a n =21n -20,由1≤a n ≤2 020得1≤n ≤97321,又n ∈N *,故此数列共有97项.答案 B12.(2020·邵东月考)已知数列{a n }的通项为a n =2n +3(n ∈N *),数列{b n }的前n 项和为S n =3n 2+7n2(n ∈N *),若这两个数列的公共项顺次构成一个新数列{c n },则满足c n <2 020的n 的最大整数值为( ) A.338B.337C.336D.335解析 对于{b n },当n =1时,b 1=S 1=5,当n ≥2时,b n =S n -S n -1=3n 2+7n2-3(n -1)2+7(n -1)2=3n +2,它和数列{a n }的公共项构成的新数列{c n }是首项为5,公差为6的等差数列,则c n =6n -1,令c n <2 020,可得n <33656,因为n ∈N *,所以n 的最大值为336. 答案 C13.(2020·合肥联考)已知数列{a n },a 1=2,S n 为数列{a n }的前n 项和,且对任意n ≥2,都有2a n a n S n -S 2n=1,则{a n }的通项公式为________________.解析 n ≥2时,由2a n a n S n -S 2n =1⇒2(S n -S n -1)(S n -S n -1)S n -S 2n =2(S n -S n -1)-S n -1S n =1⇒1S n -1S n -1=12.又1S 1=1a 1=12,∴⎩⎨⎧⎭⎬⎫1S n 是以12为首项,12为公差的等差数列. ∴1S n =n 2,∴S n =2n ,当n ≥2时,a n =S n -S n -1=2n -2n -1=-2n (n -1),当n =1时,a 1=2,所以a n =⎩⎪⎨⎪⎧2,n =1,-2n (n -1),n ≥2. 答案 a n =⎩⎪⎨⎪⎧2,n =1,-2n (n -1),n ≥2 14.已知数列{a n }中,a n =1+1a +2(n -1)(n ∈N *,a ∈R 且a ≠0).(1)若a =-7,求数列{a n }中的最大项和最小项的值; (2)若对任意的n ∈N *,都有a n ≤a 6成立,求a 的取值范围.解 (1)∵a n =1+1a +2(n -1)(n ∈N *,a ∈R ,且a ≠0),又a =-7,∴a n =1+12n -9(n ∈N *).结合函数f (x )=1+12x -9的单调性,可知1>a 1>a 2>a 3>a 4,a 5>a 6>a 7>…>a n >1(n ∈N *).∴数列{a n }中的最大项为a 5=2,最小项为a 4=0. (2)a n =1+1a +2(n -1)=1+12n -2-a2,已知对任意的n ∈N *,都有a n ≤a 6成立, 结合函数f (x )=1+12x -2-a 2的单调性,可知5<2-a2<6,即-10<a <-8. 即a 的取值范围是(-10,-8).C 级 创新猜想15.(新背景题)(2019·福州二模)一元线性同余方程组问题最早可见于中国南北朝时期(公元5世纪)的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”问题,原文如下:有物不知数,三三数之剩二,五五数之剩三,问物几何?即一个整数除以三余二,除以五余三,求这个整数.设这个整数为a ,当a ∈[2,2 019]时,符合条件的a 共有________个.解析 法一 由题设a =3m +2=5n +3,m ,n ∈N , 则3m =5n +1,m ,n ∈N ,当m =5k 时,n 不存在;当m =5k +1时,n 不存在; 当m =5k +2时,n =3k +1,满足题意; 当m =5k +3时,n 不存在; 当m =5k +4时,n 不存在.其中k ∈N .故2≤a=15k+8≤2 019,解得-615≤k≤2 011 15,则k=0,1,2,…,134,共135个.即符合条件的a共有135个,故答案为135.法二一个整数除以三余二,这个整数可以为2,5,8,11,14,17,20,23,26,29,32,35,38,…,一个整数除以五余三,这个整数可以为3,8,13,18,23,28,33,38,…,则同时除以三余二、除以五余三的整数为8,23,38,…,构成首项为8,公差为15的等差数列,通项公式为a n=8+15(n-1)=15n-7,由15n-7≤2 019得15n≤2 026,n≤135 115,因为n∈N*,所以n=1,2,3,…,135,共有135个.答案135。
2021年福建省福州市市闽侯第三中学高三数学理模拟试题含解析
![2021年福建省福州市市闽侯第三中学高三数学理模拟试题含解析](https://img.taocdn.com/s3/m/7e0ea1df250c844769eae009581b6bd97f19bc29.png)
2020-2021学年福建省福州市市闽侯第三中学高三数学理模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 我校在高二年级开设选修课,其中数学选修课开设三个班,选课结束后,有5名同学要求改修数学,但每班至多可再接收2名同学,那么不同的分配方案有()A.45种 B.90种 C.150种 D.180种参考答案:B略2. 设复数z满足,则|z|=A.B.2 C.D.参考答案:D3. 若圆锥的内切球与外接球的球心重合,且内切球的半径为,则圆锥的体积为A. B. C. D.参考答案:C【知识点】几何体的结构,旋转组合体的性质.G1解析:根据题意得,圆锥的轴截面是等边三角形,其内切圆半径为1,则高为3,所以此三角形边长为,所以圆锥的体积为: ,故选C.【思路点拨】由已知得此组合体的结构:圆锥的轴截面是等边三角形,其内切圆半径为1,由此得圆锥的体积.4. 若复数满足(为虚数单位),则复数的模A. B. C. D. 参考答案:A5. 若函数 (0<x<2)的图象上任意点处切线的倾斜角为,则的最小值是 ( )(A)(B)(C) (D)参考答案:D略6. 执行如图所示的算法,则输出的结果是()A.1 B.C.D.2参考答案:A考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的n,M,S的值,当S=1时,满足条件S∈Q,退出循环,输出S的值为1.解答:解:模拟执行程序框图,可得S=0,n=2n=3,M=,S=不满足条件S∈Q,n=4,M=,S=+不满足条件S∈Q,n=5,M=,S=++=1满足条件S∈Q,退出循环,输出S的值为1.故选:A.点评:本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,属于基础题7. 已知且,则下列不等式中成立的是()A 、B、C、D、参考答案:D略8. 设集合A={x|lg(10﹣x2)>0},集合B={x|2x<},则A∩B=()A.(﹣3,1)B.(﹣1,3)C.(﹣3,﹣1)D.(1,3)参考答案:C【考点】交集及其运算.【分析】求出A与B中不等式的解集分别确定出A与B,找出两集合的交集即可.【解答】解:由A中lg(10﹣x2)>0=lg1,得到10﹣x2>1,解得:﹣3<x<3,即A=(﹣3,3),由B中不等式变形得:2x<=2﹣1,得到x<﹣1,即B=(﹣∞,﹣1),则A∩B=(﹣3,﹣1),故选:C.9. 某程序框图如图所示,则该程序运行后输出的值是()A.0 B.﹣1 C.﹣2 D.﹣8参考答案:B【考点】EF:程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,循环可得结论.【解答】解:模拟程序的运行,可得:i=0,x=1,y=1,不满足条件i>3,y=2,x=﹣1,i=1,不满足条件i>3,y=1,x=﹣2,i=2,不满足条件i>3,y=﹣1,x=﹣1,i=3,不满足条件i>3,y=﹣2,x=1,i=4,满足条件i>3,退出循环,输出x+y的值为﹣1.故选:B.10. 下列函数中,在其定义域内既是奇函数又是减函数的是()A. B. C. D.参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11. 如图,在四面体中,点,,分别在棱,,上,且平面平面,为内一点,记三棱锥的体积为,设,对于函数,则下列结论正确的是__________.①当时,函数取到最大值;②函数在上是减函数;③函数的图像关于直线对称;④不存在,使得(其中为四面体的体积).参考答案:①②④设四面体的底面积为,高为,则. ∵平面平面,∴.又∵,∴,∴,设的高为,则,得. ∴,.,令,得,当时,,是增函数.当时,,是减函数.当时,取得最大值,,故不存在,使得.综上所述,结论正确的是①②④.12. 已知是这7个数据的中位数,且这四个数据的平均数为1,则的最小值为▲.参考答案:略13. 某次测量发现一组数据(x i ,y i )具有较强的相关性,并计算得=x+1,其中数据(1,y 0)因书写不清,只记得y 0是[0,3]任意一个值,则该数据对应的残差的绝对值不大于1的概率为 .(残差=真实值﹣预测值)参考答案:【考点】回归分析.【专题】计算题;概率与统计.【分析】求出预测值,再求出该数据对应的残差的绝对值不大于1时y 0的取值范围,用几何概型解答.【解答】解:由题意,其预估值为1+1=2, 该数据对应的残差的绝对值不大于1时,1≤y 0≤3, 其概率可由几何概型求得,即该数据对应的残差的绝对值不大于1的概率P==.故答案为:.【点评】本题考查了几何概型的概率公式,属于基础题.14. 若函数导函数为,则函数的单调递减区间是______.参考答案:(-1,3)略15. 设f(x)是定义在R上的以3为周期的奇函数,若f(1)>1,f(2)=,则实数a的取值范围是________.参考答案:(-1,)f(x+3)=f(x),f(-x)=-f(x),得f(2)=f(2-3)=f(-1)=-f(1),又f(1)>1,所以f(2)<-1,即16. 以坐标原点O为圆心,且与直线x+y+2=0相切的圆方程是,圆O与圆x2+y2﹣2y﹣3=0的位置关系是.参考答案:x2+y2=2;相交.【考点】圆的切线方程.【分析】由坐标原点为所求圆的圆心,且所求圆与已知直线垂直,利用点到直线的距离公式求出原点到已知直线的距离d,根据直线与圆相切时圆心到直线的距离等于圆的半径,即可得到所求圆的半径r,根据圆心和半径写出所求圆的方程即可;由两圆的圆心距为1,介于半径差与和之间,可得两圆相交.【解答】解:∵原点为所求圆的圆心,且所求圆与直线x+y+2=0相切,∴所求圆的半径r=d==,则所求圆的方程为x2+y2=2.x2+y2﹣2y﹣3=0的圆心为(0,1),半径为2,两圆的圆心距为1,介于半径差与和之间,两圆相交.故答案为:x2+y2=2;相交.17. 若对任意的实数,有,则的值为____________________.参考答案:-8略三、解答题:本大题共5小题,共72分。
2025届新高三数学开学摸底考试卷02(新高考通用)(含解析)
![2025届新高三数学开学摸底考试卷02(新高考通用)(含解析)](https://img.taocdn.com/s3/m/51ae47af7d1cfad6195f312b3169a4517723e5f1.png)
2025届新高三开学摸底考试卷02(新高考通用)数学•全解全析(考试时间:120分钟 试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共58分)一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合,,则( )A .B .C .或D .A .B .{}2|670M x x x =--<{2,1,0,1,2,3}N =--M N ⋃={27}x x -<<∣{27}xx -≤<∣{17xx -≤<∣}2x =-{2,1,0,1,2,3}--()721213π+选对的得6分,部分选对的得部分分,有选错的得0分.三、填空题:本题共3小题,每小题5分,共15分。
(1)请写出一个的值使得(2)若二面角大小为λBC P BC A --2025届新高三开学摸底考试卷02(新高考通用)数学•全解全析(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共58分)一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合,,则( )A .B .C .或D .{}2|670M x x x =--<{2,1,0,1,2,3}N =--M N ⋃={27}x x -<<∣{27}xx -≤<∣{17xx -≤<∣}2x =-{2,1,0,1,2,3}--A .B .【答案】C【解析】由题意可知:圆锥的母线长为所以这个陀螺的表面积是要使()721213π+π()[sin 2sin ,0,f x x x x =+∈故选:C.8.函数是定义在R 上的偶函数,且,若,,则( )A .4B .2C .1D .0【答案】B【解析】因为,且是定义在R 上的偶函数,所以,令,则,所以,即,所以函数的周期为2,所以.故选:B.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.李明每天7:00从家里出发去学校,有时坐公交车,有时骑自行车.他各记录了50次坐公交车和骑自行车所花的时间,经数据分析得到:坐公交车平均用时30分钟,样本方差为36;自行车平均用时34分钟,样本方差为4.假设坐公交车用时X 和骑自行车用时Y 都服从正态分布,则( )A .P (X >32)>P (Y >32)B .P (X ≤36)=P (Y ≤36)C .李明计划7:34前到校,应选择坐公交车D .李明计划7:40前到校,应选择骑自行车【答案】BCD【解析】A.由条件可知,,根据对称性可知,故A错误;B., ,所以,故B 正确;C. =,所以,故C 正确;D. ,,所以,故D 正确.故选:BCD10.已知函数,则下列说法正确的有( )A .f (x )无最大值B .f (x )有唯一零点C .f (x )在(0,+∞)单调递增D .f (0)为f (x )的一个极小值【答案】ACD()f x ()()11f x f x +=-[]0,1x ∈()2xf x =()2023f =()()11f x f x +=-()f x ()()11f x f x +=-1t x =-1x t =+(2)()f t f t +=()(2)f x f x =+()f x ()(101121)(12023)2f f f =⨯+==()230,6X N :()234,2Y N ~()()320.532P Y P X >>>>()()36P X P X μσ≤=≤+()()36P Y P Y μσ≤=≤+()()3636P X P Y ≤=≤()340.5P X ≤>()34P Y ≤()()3434P X P Y ≤>≤()()()40422P X P X P X μσ≤<<=<+()()403P Y P Y μσ≤=≤+()()4040P X P Y ≤<≤()()()1e 1xf x x x =+--三、填空题:本题共3小题,每小题5分,共15分。
专题15 集合的概念(解析版)-2021年初升高数学无忧衔接(人教A版2019)
![专题15 集合的概念(解析版)-2021年初升高数学无忧衔接(人教A版2019)](https://img.taocdn.com/s3/m/b731401b172ded630a1cb6e2.png)
专题15 集合的概念1、通过实例,了解集合的含义2、理解元素与集合的“属于”关系3、针对具体问题,能在自然语言、图形语言的基础上,用符号语言(列举法、描述法)刻画集合.高中必备知识点1:集合的概念(1)含义:一般地,我们把所研究对象统称为元素,把一些元素组成的总体叫做集合(简称为集).(2)集合相等:只要构成两个集合的元素是一样的,即这两个集合中的元素完全相同,就称这两个集合相等. [知识点拨] 集合中的元素必须满足如下性质:(1)确定性:指的是作为一个集合中的元素,必须是确定的,即一个集合一旦确定,某一个元素属于或不属于这个集合是确定的,要么是该集合中的元素,要么不是,二者必居其一.(2)互异性:集合中的元素必须是互异的,就是说,对于一个给定的集合,它的任何两个元素都是不同的. (3)无序性:集合中的元素是没有顺序的,比如集合{1,2,3}与{2,3,1}表示同一集合.高中必备知识点2:元素与集合的关系关系 概念记法 读法 属于如果a 是集合A 中的元素,就说a 属于集合Aa ∈Aa 属于集合A不属于 如果a 不是集合A 中的元素,就说a 不属于集合Aa ∉A a 不属于集合A[知识点拨] 符号“∈”和“∉”只能用于元素与集合之间,并且这两个符号的左边是元素,右边是集合,具有方向性,左右两边不能互换.高中必备知识点3:集合的表示法学习目标知识精讲(1)自然语言表示法:用文字语言形式来表示集合的方法.例如:小于3的实数组成的集合.(2)字母表示法:用一个大写拉丁字母表示集合,如A,B,C等,用小写拉丁字母表示元素,如a,b,c等.常用数集的表示:名称非负整数集(自然数集)正整数集整数集有理数集实数集符号N N*或N+Z Q R(3)列举法:把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.(4)描述法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.这种用集合所含元素的共同特征表示集合的方法叫做描述法.高中必会题型1:集合与元素的含义1.下列各对象的全体,可以构成集合的是___(填序号)①高一数学课本中的难题;②与1非常接近的全体实数;②高一年级视力比较好的同学;④高一年级中身高超过1.70米的同学【答案】④因为①②③所表示的研究对象不能确定,所以不能构成集合,而④符合集合的概念.故答案为:④2.集合中元素的三大特征是________.【答案】确定性、互异性、无序性一定范围内,确定的、不同的对象组成的全体,称为一个集合,组成集合的这些对象就是集合的元素,它具有确定性、互异性、无序性.故答案为:确定性、互异性、无序性.3.判断(正确的打“√”,错误的打“×”)(1)山东新坐标书业有限公司的优秀员工可以组成集合.(______)(2)分别由元素0,1,2和2,0,1组成的两个集合是相等的.(______)典例剖析(3)由-1,1,1组成的集合中有3个元素.(______)【答案】× √ ×(1)因为“优秀”没有明确的标准,其不满足集合中元素的确定性,所以不能构成集合.(2)根据集合相等的定义知,两个集合相等.(3)因为集合中的元素要满足互异性,所以由-1,1,1组成的集合有2个元素-1,1.故答案为:(1)×;(2)√;(3)×.4.下列每组对象能构成一个集合是________(填序号).(1)某校2019年在校的所有高个子同学;(2)不超过20的非负数;(3)帅哥;(4)平面直角坐标系内第一象限的一些点;(5.【答案】(2)(1)“高个子”没有明确的标准,因此(1)不能构成集合.(2)任给一个实数x,可以明确地判断是不是“不超过20的非负数”,故“不超过20的非负数”能构成集合;(3)“帅哥”没有一个明确的标准,因此不能构成集合;(4)“一些点”无明确的标准,因此不能构成集合;(5”不明确精确到什么程度,所以不能构成集合.故答案为:(2)5.下列说法中能构成集合的是________(填序号).①2019年参加江苏高考的所有学生;②2019年江苏高考数学试题中的所有难题;③美丽的花;④与无理数 无限接近的数.【答案】①因为未规定“难”的标准,所以②不能构成集合;同理“美丽”、“无限接近”都没有规定标准,所以③④不能构成集合;由于①中的对象具备确定性、互异性,所以①能构成集合. 故答案为:①本题主要考查集合的概念,属于简单题.高中必会题型2:元素与集合的关系1.用符号“∈”或“∉”填空(1)0______N , N , N(2)12-_____,Q π______Q(3{}|,,x x a a Q b Q =+∈∈ 【答案】∈ ∉ ∈ ∈ ∉ ∈(1)0是自然数,则0N ∈N 4=N ; (2)12-是有理数,则12Q -∈;π不是有理数,则Q π∉;(3==)1101∈{}|,,x x a a Q b Q =∈∈故答案为:(1)∈,∉,∈;(2)∈,∉;(3)∈.2.给定集合A ,若对于任意,a b A ∈,有a b A +∈且a b A -∈,则称集合A 为闭集合,给出如下四个结论:①集合{4,2,0,2,4}A =--为闭集合;②正整数集是闭集合;③无理数集是闭集合;④集合{|3,}A x x k k ==∈Z 为闭集合.其中正确的是_________.(填序号)【答案】④①中取4,4a b =-=,则8a b A -=-∉,故①不成立;②中取1,3a b ==,此时2a b -=-,不是正整数,故②不成立;③中取11a b ==2a b +=,不是无理数,故③不成立;④中取()()11223,3a k k b k k =∈=∈Z Z ,则()()12123,3a b k k A a b k k A +=+∈-=-∈,故④成立. 故答案为:④3.集合A 中的元素y 满足y ∈N 且y =-x 2+1,若t ∈A ,则t 的值为________. 【答案】0或1因为2,11y N y x ∈=-+≤,所以y =0或y =1, 所以A ={0,1},又t ∈A ,得到t =0或1; 故答案为:0,1.4.集合A 中含有三个元素2,4,6,若a ∈A ,且6-a ∈A ,那么a =________. 【答案】2或4若a =2,则6-2=4∈A ;若a =4,则6-4=2∈A ;若a =6,则6-6=0∉A . 故a =2或4. 故答案为:2或4 5.用适当的符号填空:∅ _____ 0; 0 _____ ∅; ∅______ {}∅; 0______{}∅【答案】 ∉ ∈或 ≠∅0; 0 ∉∅; ∅{}∈∅或∅{}∅;{}∅故答案为:,∉,∈或,≠高中必会题型3:集合中元素特性的简单应用1.已知2{1,0,}x x ∈,求实数x 的值. 【答案】1- 因为2{1,0,}x x ∈所以21x =或20=x 或2x x = 解得1x =±或0x =由集合元素的互异性可知0x ≠且1x ≠ 所以,1x =-2.设A 是由一些实数构成的集合,若a ∈A ,则11a- ∈A ,且1∈A , (1)若3∈A ,求A . (2)证明:若a ∈A ,则11A a-∈. 【答案】(1)123,,23A ⎧⎫=-⎨⎬⎩⎭;(2)证明见解析. (1)因为3∈A ,所以11132A =-∈-, 所以12131()2A=∈--, 所以13213A=∈-, 所以123,,23A ⎧⎫=-⎨⎬⎩⎭. (2)因为a ∈A ,所以11A a ∈-, 所以1111111a Aa a a-==-∈---. 3.已知集合A 中含有两个元素a -3和2a -1. (1)若-3是集合A 中的元素,试求实数a 的值;(2)-5能否为集合A 中的元素?若能,试求出该集合中的所有元素;若不能,请说明理由. 【答案】(1)实数a 的值为0或-1;(2)-5不能为集合A 中的元素;答案见解析. (1)因为-3是集合A 中的元素, 所以-3=a -3或-3=2a -1. 解得0a =或1a =-,当a =0时,此时集合A 含有两个元素-3,-1,符合要求; 当a =-1时,此时集合A 中含有两个元素-4,-3,符合要求.综上所述,满足题意的实数a 的值为0或-1.(2)若-5为集合A 中的元素,则a -3=-5,或2a -1=-5.当a -3=-5时,解得a =-2,此时2a -1=2×(-2)-1=-5,显然不满足集合中元素的互异性; 当2a -1=-5时,解得a =-2,此时a -3=-5,显然不满足集合中元素的互异性. 综上,-5不能为集合A 中的元素.4.集合A 中共有3个元素-4,2a -1,a 2,集合B 中也共有3个元素9,a -5,1-a ,现知9∈A 且集合B 中再没有其他元素属于A ,能否根据上述条件求出实数a 的值?若能,则求出a 的值,若不能,则说明理由. 【答案】存在,a =-3. ∵9∈A ,∴2a -1=9或a 2=9,若2a -1=9,则a =5,此时A 中的元素为-4,9,25;B 中的元素为9,0,-4, 显然-4∈A 且-4∈B ,与已知矛盾,故舍去.若a 2=9,则a =±3,当a =3时,A 中的元素为-4,5,9;B 中的元素为9,-2,-2, B 中有两个-2,与集合中元素的互异性矛盾,故舍去.当a =-3时,A 中的元素为-4,-7,9;B 中的元素为9,-8,4,符合题意. 综上所述,满足条件的a 存在,且a =-3.5.已知{}20,1,1a a a ∈--,求a 的值.【答案】1a =- 由已知条件得:若a =0,则集合为{0,﹣1,﹣1},不满足集合元素的互异性,∴a ≠0; 若a ﹣1=0,a =1,则集合为{1,0,0},显然a ≠1;若a 2﹣1=0则a =±1,由上面知a =1不符合条件;a =﹣1时,集合为{﹣1,﹣2,0}; ∴a =﹣1.高中必会题型4:列举法表示集合1.用列举法表示下列集合: (1)大于1且小于6的整数;(2){}(1)(2)0A x x x =-+=; (3){}3213B x Z x =∈-<-<.【答案】(1){}2,3,4,5;(2){}1,2A =-;(3){}0,1B = 解:用列举法表示下列集合(1)大于1且小于6的整数,{}2,3,4,5; (2){|(1)(2)0}A x x x =-+=;所以{}1,2A =- (3){|3213}B x Z x =∈-<-<,由3213x -<-<解得12x -<<,x ∈Z ,故表示为{}0,1B =, 2.用列举法表示下列集合:(1)满足-2≤x ≤2且x ∈Z 的元素组成的集合A ; (2)方程(x -2)2(x -3)=0的解组成的集合M ;(3)方程组281x y x y +=⎧⎨-=⎩的解组成的集合B ;(4)15的正约数组成的集合N .【答案】(1) {-2,-1,0,1,2}(2) M ={2,3}(3) B ={(x ,y )|(3,2)} (4) N ={1,3,5,15} (1)22,x x ≤≤∈Z -,2,1,0,1,2x ∴=--,{}2,1,0,1,2A =--;(2)解方程()()2230x x --=2∴和3是方程的根,{}2,3M ∴=;(3)解方程组281x y x y +=⎧⎨-=⎩得32x y =⎧⎨=⎩()(){},3,2B x y ∴=;(4)15的正约数有1,3,5,15四个数字,{}1,3,5,15N ∴=.3.用列举法表示下列集合(1)由大于3且小于10的所有整数组成的集合 (2)方程290x 的所有实数解组成的集合【答案】(1){}4,5,6,7,8,9;(2){}3,3-.(1)由大于3且小于10的所有整数组成的集合为{}4,5,6,7,8,9; (2)解方程290x 得3x =±,所以方程290x 的所有实数解组成的集合为{}3,3-.4.用列举法表示方程220x x --=的解集为______________. 【答案】{1,2}-由220x x --=得1x =-或2x =, 所以方程220x x --=的解集为{1,2}-. 故答案为:{1,2}-5.已知P ={a ,b },又P 的所有子集组成集合Q ,用列举法表示Q ,则Q =_________. 【答案】{∅,{a },{b },{a ,b }}由P ={a ,b }的子集为:∅,{a },{b },{a ,b }; 即集合Q ={∅,{a },{b },{a ,b }}. 故答案为:{∅,{a },{b },{a ,b }}高中必会题型5:描述法表示集合1.用描述法表示下列集合:(1)抛物线y =x 2﹣2x +2的点组成的集合; (2)使216y x x =+-有意义的实数x 的集合.【答案】(1)(){}2,|22x y y x x =-+;(2)21|6x y x x ⎧⎫=⎨⎬+-⎩⎭. (1)抛物线y =x 2﹣2x +2的点组成的集合:(){}2,|22x y y xx =-+(2)使216y x x =+-有意义的实数x 的集合:21|6x y x x ⎧⎫=⎨⎬+-⎩⎭. 2.用描述法表示下列集合: (1)被3除余1的正整数的集合. (2)坐标平面内第一象限内的点的集合. (3)大于4的所有偶数.【答案】(1){|31,}x x n n N =+∈;(2){(,)|0,0}x y x y >>;(3){|2,3,}x x n n n Z =≥∈. (1)因为集合中的元素除以3余数为1,所以集合表示为:{|31,}x x n n N =+∈;(2)第一象限内的点,其横坐标、纵坐标均大于0,所以集合表示为:{(,)|0,0}x y x y >>; (3)大于4的所有偶数都是正整数,所以集合表示为:{|2,3,}x x n n n Z =≥∈. 3.用描述法表示下列集合(1)小于10的所有有理数组成集合A ; (2)所有奇数组成集合B ;(3)平面α内,到定点O 的距离等于定长r 的所有点组成集合C .【答案】(1){}10A x Q x =∈<;(2){}21,B x x n n N ==-∈;(3){}C M MO r α=∈=. (1)小于10的所有有理数组成集合{}10A x Q x =∈<; (2)所有奇数组成集合{}21,B x x n n Z ==-∈;(3)平面α内,到定点O 的距离等于定长r 的所有点组成集合{}C M MO r α=∈=. 4.用描述法表示图中阴影部分的点构成的集合为________.【答案】{(x ,y )|0≤x ≤2且0≤y ≤1}【解析】由题意得,图中的阴影部分构成的集合是点集,则{(,)|02x y x ≤≤且01}y ≤≤.故答案为{(,)|02x y x ≤≤且01}y ≤≤.5.用描述法表示被4除余3的正整数集合:______.【答案】{x |x =4n +3,n ∈N }设该数为x ,则该数x 满足x =4n +3,n ∈N ;∴所求的正整数集合为{x |x =4n +3,n ∈N }.故答案为:{x |x =4n +3,n ∈N }.高中必会题型6:集合表示的综合问题1.(1)用描述法表示下图中阴影部分(含边界)的点构成的集合;(2)用列举法表示集合A ={x ∈N |910x-∈N }.【答案】(1){(x ,y )|-1≤x ≤3,0≤y ≤3};(2)A ={1,7,9}.解:(1)阴影部分的点P (x ,y )的横坐标x 的取值范围为-1≤x ≤3,纵坐标y 的取值范围为0≤y ≤3. 故阴影部分的点构成的集合为{(x ,y )|-1≤x ≤3,0≤y ≤3}.(2)因为x ∈N ,910x -∈N ,当x =1时,910x -=1; 当x =7时,910x-=3; 当x =9时,910x-=9. 所以A ={1,7,9}.2.把下列集合用另一种方法表示出来:(1){2,4,6,8,10};(2){|37}x N x ∈<<;【答案】(1){|2,x x k k Z =∈且15k ≤≤};(2){4,5,6}.(1)因为集合中的元素都是偶数,所以{2,4,6,8,10}={|2,x x k k Z =∈且15k ≤≤};(2){|37}x N x ∈<<={4,5,6}.3.若集合A ={x ∈28160kx x -+=}中只有一个元素,试求实数k 的值,并用列举法表示集合A .【答案】实数k 的值为0或1,当0k =时,{}2A =;当1k =,{}4A =解:由集合A ={x ∣28160kx x -+=}中只有一个元素,即方程28160kx x -+=只有一个解,①当0k =时,方程为8160x -+=,解得2x =,即{}2A =;②当0k ≠时,方程28160kx x -+=只有一个解,则2(8)4160k ∆=--⨯⨯=,即1k =, 即方程为28160x x -+=,解得4x =,即{}4A =,综合①②可得:实数k 的值为0或1,当0k =时,{}2A =;当1k =,{}4A =.4.已知集合{|A x x =为小于6的正整数},{|B x x =为小于10的素数},集合{|C x x 为24和36的正公因数}.(1)试用列举法表示集合{|M x x A =∈且}x C ∈;(2)试用列举法表示集合{|N x x B =∈且}x C ∉.【答案】(1) {1,2,3,4};(2){5,7}.由题意{}1,2,3,4,5A =,{}2,3,5,7B =,{}1,2,3,4,6,12C =.(1){}1,2,3,4M A C =⋂=.(2).{|M x x B =∈且}x C ∉{}N∴=5,75.用适当的方法表示下列集合:(1)大于2且小于5的有理数组成的集合.(2)24的正因数组成的集合.(3)自然数的平方组成的集合.(4)由0,1,2这三个数字抽出一部分或全部数字(没有重复)所组成的自然数组成的集合.【答案】(1)答案见解析;(2)答案见解析;(3)答案见解析;(4)答案见解析.(1)用描述法表示为{x|2<x<5且x∈Q}.(2)用列举法表示为{1,2,3,4,6,8,12,24}.(3)用描述法表示为{x|x=n2,n∈N}.(4)用列举法表示为{0,1,2,10,12,20,21,102,120,210,201}.对点精练1.若由a2,2019a组成的集合M中有两个元素,则a的取值可以是()A.0B.2019C.1D.0或2019【答案】C若集合M中有两个元素,则a2≠2 019a.即a≠0且a≠2 019.故选:C.2.下面有四个语句:①集合N*中最小的数是0;②-a∈N,则a∈N;③a∈N,b∈N,则a+b的最小值是2;④x2+1=2x的解集中含有两个元素.其中说法正确的个数是()A.0B.1C.2D.3【答案】A因为N*是不含0的自然数,所以①错误;取a=2,则-2∉N,2∉N,所以②错误;对于③,当a =b =0时,a +b 取得最小值是0,而不是2,所以③错误;对于④,解集中只含有元素1,故④错误.故选:A3.(){}2414M x R k x k =∈+≤+,对任意的k ∈R ,总有( ) A .2,0M M ∉∉B .2,0M M ∈∈C .2,0M M ∈∉D .2,0M M ∉∈【答案】B 解:将0x =代入得440k +≥显然成立,故0M ∈将2x =代入不等式得42422k k +≥+,即()22110k +≥﹣ ,显然成立,∴2M ∈; 所以2,0M M ∈∈故选:B .4.若集合{}|2020A x N x =∈,a = ) A .{}a A ⊆B .a A ⊆C .{}a A ∈D .a A ∉ 【答案】D因为{}|2020A x N x=∈,所以A 中元素全是整数,因为a =a A ∉,故选:D .5.若集合A ={(1,2),(3,4)},则集合A 中元素的个数是( )A .1B .2C .3D .4 【答案】B【解析】集合A ={(1,2),(3,4)}中有两个元素,(1,2)和(3,4)故选B.6.现有以下说法,其中正确的是①接近于0的数的全体构成一个集合;②正方体的全体构成一个集合;③未来世界的高科技产品构成一个集合;④不大于3的所有自然数构成一个集合.A .①②B .②③C .③④D .②④ 【答案】D在①中,接近于0的标准不明确,不满足集合中元素的确定性,不能构成一个集合,故①错误;在②中,正方体的全体能构成一个集合,故②正确;在③中,未来世界的高科技产品不能构成一个集合,高科技的标准不明确,不满足集合中元素的确定性,故③错误;在④中,不大于3的所有自然数能构成一个集合,故④正确.故选D .7.下列集合中不同于另外三个集合的是( )A .{x |x =1}B .{x |x ﹣1=0}C .{x =1}D .{1} 【答案】C通过观察得到:A ,B ,D 中的集合元素都是实数,而C 中集合的元素不是实数,是等式x =1; ∴C 中的集合不同于另外3个集合.故选:C8.下列说法中正确的是( )A .班上爱好足球的同学,可以组成集合B .方程x (x ﹣2)2=0的解集是{2,0,2}C .集合{1,2,3,4}是有限集D .集合{x |x 2+5x +6=0}与集合{x 2+5x +6=0}是含有相同元素的集合【答案】C班上爱好足球的同学是不确定的,所以构不成集合,选项A 不正确;方程x (x ﹣2)2=0的所有解的集合可表示为{2,0,2},由集合中元素的互异性知,选项B 不正确; 集合{1,2,3,4}中有4个元素,所以集合{1,2,3,4}是有限集,选项C 正确;集合{x 2+5x +6=0}是列举法,表示一个方程的集合,{x|x2+5x+6=0}表示的是方程的解集,是两个不同的集合,选项D 不正确.故选:C .9.设,R a b ∈,集合{1,,}0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭,则b a -等于( )A .1-B .1C .2-D .2 【答案】D两个集合相等,则集合中的元素相同,0a ≠ ,所以0a b +=,则1b a=-,那么1b =,和1a =-, 所以2b a -=.故选:D10.已知集合{10}A x x =,a =a 与集合A 的关系是( ) A .a A ∈B .a A ∉C .a A =D .{}a A ∈【答案】A解:{|10}A x x =,224a +=,10a <,a A ∴∈,故选:A .11.用()d A 表示集合A 中的元素个数,若集合()(){}2210A x x ax x ax =--+=,{}0,1B =,且()()1d A d B -=.设实数a 的所有可能取值构成集合M ,则()d M =( )A .3B .2C .1D .4 【答案】A由题意,()()1d A d B -=,()2d B =,可得()d A 的值为1或3,若()1d A =,则20x ax -=仅有一根,必为0,此时a =0,则22110x ax x -+=+=无根,符合题意 若()3d A =,若20x ax -=仅有一根,必为0,此时a =0,则22110x ax x -+=+=无根,不合题意,故20x ax -=有二根,一根是0,另一根是a ,所以210x ax -+=必仅有一根,所以2Δ40a =-=,解得2a =±,此时210x ax -+=的根为1或1-,符合题意,综上,实数a 的所有可能取值构成集合{0,2,2}M =-,故()3d M =.故选:A .12.已知集合A 满足条件:若a∈A,则1a 1-a +∈A,那么集合A 中所有元素的乘积为( ) A .-1B .1C .0D .±1【答案】B由题意,当a A ∈时,11a A a+∈-, 令11a a a +=-代入11a a +-,则1111111a a A a a a ++-=-∈+--, 则111111a a A a a --=∈++,则111111a a a A a a -++=∈--+, 即111,,,11a a A a a a a +-⎧⎫=-⎨⎬-+⎩⎭,所以111111a a a a a a +-⋅⋅-=-+,故选B. 13.(){,|02x y x ≤≤,02y ≤<,x ,}y N ∈中共有__个元素.【答案】6(){,|02x y x ≤≤,02y ≤<,x ,}{(0,0)y N ∈=,(0,1),(1,0),(1,1),(2,0),}(2,1), 故集合中共有6个元素.故答案为:6.14.已知集合A 是由a ﹣2,2a 2+5a ,12三个元素组成的,且﹣3∈A ,求a =________.【答案】32- 解:由﹣3∈A ,可得﹣3=a ﹣2,或﹣3=2a 2+5a ,由﹣3=a ﹣2,解得a =﹣1,经过验证a =﹣1不满足条件,舍去.由﹣3=2a 2+5a ,解得a =﹣1或32-,经过验证:a =﹣1不满足条件,舍去. ∴a =32-. 故答案为:﹣32. 15.用列举法表示集合8,6A x x x ⎧⎫=∈∈⎨⎬-⎩⎭Z N :______. 【答案】{}5,4,2,2-∵x ∈Z ,86x∈-N ,∴{}61,2,4,8x -∈.此时{}5,4,2,2x ∈-,即{}5,4,2,2A =-. 16.设a ,b ∈R ,若集合{1,,}0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭,则20202020a b +=_______.【答案】2 由{1,,}0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭易知0a ≠,1a ≠ 由两个集合相等定义可知若10b a b =⎧⎨+=⎩,得1a =-,经验证,符合题意; 若01b a a b +=⎧=⎪⎨⎪⎩,由于0a ≠,则方程组无解综上可知,1a =-,1b =,故2020202020202020(1)12a b +=-+=.故答案为:217.用适当方法表示下列集合:(1)从1,2,3这三个数字中抽出一部分或全部数字(没有重复)所组成的自然数的集合; (2y ﹣2|=0的解集;(3)由二次函数y =3x 2+1图象上所有点组成的集合.【答案】(1){1,2,3,12,13,21,31,23,32,123,132,213,231,321,312};(2)1,22⎧⎫⎛⎫-⎨⎬ ⎪⎝⎭⎩⎭;(3){(x ,y )|y =3x 2+1,x ∈R }.解:(1)当从1,2,3这三个数字中抽出1个数字时,自然数为1,2,3;当抽出2个数字时,可组成自然数12,21,13,31,23,32;当抽出3个数字时,可组成自然数123,132,213,231,321,312.由于元素个数有限,故用列举法表示为{1,2,3,12,13,21,31,23,32,123,132,213,231,321,312}.(2)由算术平方根及绝对值的意义,可知:21020x y +=⎧⎨-=⎩,解得122x y ⎧=-⎪⎨⎪=⎩, 因此该方程的解集为{(﹣12,2)}. (3)首先此集合应是点集,是二次函数y =3x 2+1图象上的所有点,故用描述法可表示为{(x ,y )|y =3x 2+1,x ∈R }.18.求数集2{1,,}x x x -中的元素x 应满足的条件.【答案】x ≠由于实数集合2{1,,}A x x x =-,则实数x 满足:1x ≠且21x x -≠且2x x x -≠,解得x ≠,所以x 满足的条件是x ≠. 19.已知1∈{x |x 2+px ﹣3=0},求p 的值与集合中的所有元素.【答案】p =2;集合中的所有元素为:﹣3,1.解:∵x =1是集合{x |x 2+px ﹣3=0}中的元素,∴当x =1时,x 2+px ﹣3=0,故p =2;当p =2时,集合{x |x 2+px ﹣3=0}={x |x 2+2x ﹣3=0}={﹣3,1}.综上所述,p =2,集合中的所有元素为:﹣3,1.20.已知集合{}2320,,A x ax x x R a R =-+=∈∈. (1)若A 是空集,求a 的取值范围;(2)若A 中只有一个元素,求a 的值,并求集合A ;(3)若A 中至多有一个元素,求a 的取值范围【答案】(1)9,8⎛⎫+∞ ⎪⎝⎭;(2)当0a =时,23A ⎧⎫=⎨⎬⎩⎭;当98a =时,43A ⎧⎫=⎨⎬⎩⎭;(3){}90,8⎡⎫⋃+∞⎪⎢⎣⎭. (1)若A 是空集,则方程ax 2﹣3x +2=0无解此时0,a ≠ ∆=9-8a <0即a 98>所以a 的取值范围为9,8⎛⎫+∞ ⎪⎝⎭(2)若A 中只有一个元素则方程ax 2﹣3x +2=0有且只有一个实根当a =0时方程为一元一次方程,满足条件当a ≠0,此时∆=9﹣8a =0,解得:a 98=∴a =0或a 98=当0a =时,23A ⎧⎫=⎨⎬⎩⎭;当98a =时,43A ⎧⎫=⎨⎬⎩⎭(3)若A 中至多只有一个元素,则A 为空集,或有且只有一个元素由(1),(2)得满足条件的a 的取值范围是{}90,8⎡⎫⋃+∞⎪⎢⎣⎭.21.下列三个集合:①{x |y =x 2+1};②{y |y =x 2+1};③{(x ,y )|y =x 2+1}.(1)它们是不是相同的集合?(2)它们各自的含义是什么?【答案】(1)它们是不相同的集合.(2)见解析【解析】(1)它们是不相同的集合.(2)集合①是函数y =x 2+1的自变量x 所允许的值组成的集合.因为x 可以取任意实数,所以{x|y =x 2+1}=R.集合②是函数y =x 2+1的所有函数值y 组成的集合.由二次函数图像知y≥1,所以{y|y =x 2+1}={y|y≥1}. 集合③是函数y =x 2+1图像上所有点的坐标组成的集合.22.已知集合A 含有两个元素a -3和2a -1,a∈R.(1)若-3∈A ,试求实数a 的值;(2)若a∈A ,试求实数a 的值.【答案】(1)0或-1; (2)1 .(1)因为-3∈A ,所以-3=a -3或-3=2a -1.若-3=a -3,则a =0.此时集合A 含有两个元素-3,-1,符合题意.若-3=2a -1,则a =-1.此时集合A 含有两个元素-4,-3,符合题意.综上所述,满足题意的实数a 的值为0或-1.(2)因为a ∈A ,所以a =a -3或a =2a -1.当a=a-3时,有0=-3,不成立;当a=2a-1时,有a=1,此时A中有两个元素-2,1,符合题意.综上所述,满足题意的实数a的值为1.。
高三数学第十五次考试试题 理含解析 试题
![高三数学第十五次考试试题 理含解析 试题](https://img.taocdn.com/s3/m/422c9608974bcf84b9d528ea81c758f5f61f2920.png)
一中2021年春期高三第15次考试数学试题〔理科〕创作人:历恰面日期:2020年1月1日第一卷〔一共60分〕一、选择题:本大题一一共12个小题,每一小题5分,一共60分.在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的.,,那么〔〕A. B. C. D.【答案】B【解析】分析:先化简集合,,利用交集定义能求出详解:那么应选点睛:此题主要考察了集合的交集及其运算,利用指数、对数求出不等式解集得到集合,继而求出交集。
是虚数单位〕,那么复数在平面内对应〔〕A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】试题分析:,对应点在第四象限,选D.考点:复数几何意义【名师点睛】此题重点考察复数的根本运算和复数的概念,属于基此题.首先对于复数的四那么运算,要实在掌握其运算技巧和常规思路,如. 其次要熟悉复数相关根本概念,如复数的实部为、虚部为、模为、对应点为,一共轭为假命题...的是〔〕A. 随机变量,假设,那么;B. 在三角形中,是的充要条件;C. 向量,,那么在的方向上的投影为2;D. 命题“或者为真命题〞是命题“为真命题且为假命题〞的必要不充分条件。
【答案】B【解析】【分析】根据正态分布的特征可判断A;根据正弦定理和三角形的性质可判断B;根据向量投影的定义可判断C;根据必要不充分条件的概念,可判断D.【详解】对于A,根据正态分布的对称性可得:假设,那么,故A正确;对于B,三角形中,大角对大边,大边对大角;所以假设那么,由正弦定理得;反之,也成立,故B正确;对于C,因为,,所以在的方向上的投影为,故C错误;对于D,假设“或者为真命题〞,那么,至少一个为真,不能推出“为真命题且为假命题〞;反之,假设“为真命题且为假命题〞那么“或者为真命题〞,能推出,故D正确;应选C【点睛】此题主要考察命题真假的判断,熟记相关知识点,逐项判断即可,属于根底题型.的图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数的图象,那么〔〕A. 的图象关于直线对称B. 的最小正周期为C. 的图象关于点对称D. 在单调递增【答案】D【解析】【分析】根据三角函数的平移变化规律,求解f〔x〕的解析式,结合三角函数的性质判断各选项即可.【详解】函数y=sin2x的图象上各点的横坐标伸长到原来的2倍,可得:y=sinx,即f〔x〕=sinx.根据正弦函数的图象及性质:可知:对称轴x=,∴A不对.周期T=2π,∴B不对.对称中心坐标为:〔kπ,0〕,∴C不对.单调递增区间为[],k∈Z,∴f〔x〕在单调递增.应选:D.【点睛】此题主要考察利用y=Asin〔ωx+φ〕的图象特征,平移变化的规律和性质的应用.属于根底题.5.我国古代数学名著?九章算术?里有一道关于玉石的问题:“今有玉方一寸,重七两;石方一寸,重六两.今有石方三寸,中有玉,并重十一斤〔两〕.问玉、石重各几何?〞如下图的程序框图反映了对此题的一个求解算法,运行该程序框图,那么输出的,分别为〔〕A. ,B. ,C. ,D. ,【答案】C【解析】执行程序框图,;;;,完毕循环,输出的分别为,应选C.【方法点睛】此题主要考察程序框图的循环构造流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支构造还是循环构造;(3) 注意区分当型循环构造和直到型循环构造;(4) 处理循环构造的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,〔6〕在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到到达输出条件即可.的公差为2,且是与的等比中项,那么该数列的前项和取最小值时,那么的值是〔〕A. 7B. 6C. 5D. 4【答案】B【解析】以为变量,得,,那么,所以最小,故,应选B.的图象大致是〔〕A. B.C. D.【答案】D【解析】【分析】利用奇偶性排除B,利用极值点及单调性排除A、C,即可得结论.【详解】∵,∴函数为偶函数,排除B,又x>0时,y=2xlnx,y′=2(1+lnx)=0时,x=,即函数在〔0,〕单减,在〔〕单增,排除A、C,应选D.【点睛】此题考察了函数图象的判断,考察了利用导数研究函数的极值、单调性及函数性质的应用,属于中档题.,满足时,目的函数的最大值等于5,那么实数的值是〔〕A. 2B. 3C. 4D. 5【答案】B【解析】由知故所求目的区域为如图,目的函数时,将向上平移得到最优点为B或者C,假设B为最优点,那么目的函数为,因为将向上平移最优点应该为C,这将产生矛盾,假设C为最优点,代入符合题意,选B.9.,那么〔〕A. 9B. 36C. 84D. 243 【答案】B【解析】【分析】等价变形为,然后利用二项式定理将其拆开,求出含有的项,便可得到。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年高三数学模拟试卷(15)(含解析)新人教A版一、填空题(共14小题,每小题3分,满分42分)1.已知集合A={﹣1,1,3,5},B={x|x2﹣4<0,x∈R},则A∩B=__________.2.“存在x∈R,x2+2>0”的否定是__________.3.已知向量夹角为45°,且,则=__________.4.函数的单调递增区间是__________.5.已知﹣1<x+y<4且2<x﹣y<3,则z=2x﹣3y的取值范围是__________.(答案用区间表示)6.设α∈(π,2π),若,则的值为__________.7.若S n为等比数列{a n}的前n项的和,8a2+a5=0,则=__________.8.若正实数a,b,c满足:3a﹣2b+c=0,则的最大值为__________.9.已知函数f(x)的导函数为f′(x),若f(x)=f′()sinx+cosx,则f′()=__________.10.在等比数列{a n}中,若a1=,a4=﹣4,则|a1|+|a2|+…+|a6|=__________.11.设正实数x,y,z满足x+2y+z=1,则的最小值为__________.12.等比数列{a n}中,a1=2,a8=4,函数f(x)=x(x﹣a1)(x﹣a2)…(x﹣a8),则f′(0)=__________.13.已知函数f(x)=xsinx,x∈R,则f(),f(1),f()的大小关系为__________14.定义在[1,+∞)上的函数f(x)满足:①f(2x)=2f(x);②当x∈[2,4]时,f(x)=1﹣|x﹣3|,则集合{x|f(x)=f(36)}中的最小元素是__________.二、解答题(共3小题,满分0分)15.设集合M={x|x2+2(1﹣a)x+3﹣a≤0,x∈R},M⊆[0,3],求实数a的取值范围.16.在△ABC中,角A、B、C的对边分别为a、b、c.已知a+b=13,c=7,且4sin2﹣cos2C=,(1)求角C的大小;(2)求△ABC的内切圆面积.17.设数列{a n},{b n}满足a1=b1=6,a2=b2=4,a3=b3=3,且数列{a n+1﹣a n}(n∈N+)是等差数列,数列{b n﹣2}(n∈N+)是等比数列.(1)求数列{a n}和{b n}的通项公式;(2)是否存在k∈N+,使,若存在,求出k,若不存在,说明理由.江苏省苏州市张家港市梁丰高级中学xx届高考数学模拟试卷(15)一、填空题(共14小题,每小题3分,满分42分)1.已知集合A={﹣1,1,3,5},B={x|x2﹣4<0,x∈R},则A∩B={﹣1,1}.考点:交集及其运算.专题:计算题.分析:集合A与集合B的公共部分构成集合A∩B,由此利用集合A={﹣1,1,3,5},B={x|x2﹣4<0,x∈R},能求出A∩B.解答:解:集合A={﹣1,1,3,5},B={x|x2﹣4<0,x∈R}={x|﹣2<x<2,x∈R},∴A∩B={﹣1,1}.故答案为:{﹣1,1}.点评:本题考查集合的交集的求法,是基础题.解题时要认真审题,仔细解答,注意不等式性质的合理运用.2.“存在x∈R,x2+2>0”的否定是任意x∈R,x2+2≤0.考点:命题的否定;特称命题.专题:应用题.分析:根据全称命题的否定为特称命题可知对原命题进行否定时,要对量词及命题的结论都进行否定解答:解:根据特称命题的否定为全称命题可知,存在x∈R,x2+2>0的否定为:任意x∈R,x2+2≤0故答案为:任意x∈R,x2+2≤0点评:本题主要考查了全称命题的否定为特称命题,对命题进行否定时,要对原命题进行否定时,要对量词及命题的结论都进行否定3.已知向量夹角为45°,且,则=3.考点:平面向量数量积的运算;平面向量数量积的坐标表示、模、夹角.专题:计算题;压轴题.分析:由已知可得,=,代入|2|====可求解答:解:∵,=1∴=∴|2|====解得故答案为:3点评:本题主要考查了向量的数量积定义的应用,向量的数量积性质||=是求解向量的模常用的方法4.函数的单调递增区间是(﹣∞,2).考点:对数函数的单调性与特殊点;二次函数的性质.专题:计算题.分析:欲求得函数的单调递增区间,由于f(t)=是减函数,故要求内层函数t=x2﹣6x+8是减函数时,原函数才为增函数.问题转化为求t=x2﹣6x+8的单调减区间,但要注意要保证t>0.解答:解:根据题意,函数分解成两部分:f(t)=外层函数,t=x2﹣6x+8是内层函数.根据复合函数的单调性,可得函数y=log单调减函数,则函数单调递增区间就是函数t=x2﹣6x+8单调递减区间(﹣∞,3),由x2﹣6x+8>0可得x>4或x<2,则可得函数的单调递增区间(﹣∞,2)故答案为(﹣∞,2).点评:本小题主要考查对数函数单调性的应用、二次函数单调性的应用、不等式的解法等基础知识,考查运算求解能力与转化思想.属于基础题.5.已知﹣1<x+y<4且2<x﹣y<3,则z=2x﹣3y的取值范围是(3,8).(答案用区间表示)考点:简单线性规划的应用.专题:计算题;压轴题;数形结合.分析:本题考查的知识点是线性规划,处理的思路为:根据已知的约束条件画出满足约束条件的可行域,再用角点法,求出目标函数的最大值和最小值,再根据最值给出目标函数的取值范围.解答:解:画出不等式组表示的可行域如下图示:在可行域内平移直线z=2x﹣3y,当直线经过x﹣y=2与x+y=4的交点A(3,1)时,目标函数有最小值z=2×3﹣3×1=3;当直线经过x+y=﹣1与x﹣y=3的交点B(1,﹣2)时,目标函数有最大值z=2×1+3×2=8.z=2x﹣3y的取值范围是(3,8).故答案为:(3,8).点评:用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.6.设α∈(π,2π),若,则的值为.考点:二倍角的余弦;两角和与差的正切函数.专题:三角函数的求值.分析:利用两角和差的正切公式求得tanα=5﹣8,再利用同角三角函数的基本关系求得sin2α 和cos2α 的值,再由=coscos2α+sinsin2α,运算求得结果.解答:解:∵==,∴tanα=5﹣8.再由sin2α===,cos2α===,可得=coscos2α+sinsin2α=,故答案为.点评:本题主要考查两角和差的正切公式、余弦公式、同角三角函数的基本关系的应用,属于中档题.7.若S n为等比数列{a n}的前n项的和,8a2+a5=0,则=﹣7.考点:等比数列的性质.专题:计算题.分析:根据已知的等式变形,利用等比数列的性质求出q3的值,然后分别根据等比数列的通项公式及前n项和公式,即可求出结果.解答:解:由8a2+a5=0,得到 =q3=﹣8===﹣7故答案为:﹣7.点评:此题考查学生掌握等比数列的性质,灵活运用等比数列的通项公式及前n项和公式化简求值,是一道基础题.8.若正实数a,b,c满足:3a﹣2b+c=0,则的最大值为.考点:基本不等式.专题:计算题.分析:根据题意,由3a﹣2b+c=0可得3a+c=2b,将其代入,消去b可得t=,结合基本不等式的性质可得3+的最小值,由分式的性质可得的最大值,即可得答案.解答:解:根据题意,设t=,由3a﹣2b+c=0可得3a+c=2b,则t====;又由3+≥2,则t≤=,即的最大值为;故答案为.点评:本题考查基本不等式的运用,关键将3a﹣2b+c=0变形为3a+c=2b,进而运用换元法对分析.9.已知函数f(x)的导函数为f′(x),若f(x)=f′()sinx+cosx,则f′()=﹣.考点:导数的运算.专题:导数的概念及应用.分析:求函数的导数,然后代入即可.解答:解:函数的f(x)的导数f′(x)=f′()cosx﹣sinx,令x=,则f′()=f′()cos﹣sin=f′()﹣,即f′()=﹣,则f′()=﹣,故答案为:﹣点评:本题主要考查导数的计算,要求熟练掌握常见函数的导数公式.10.在等比数列{a n}中,若a1=,a4=﹣4,则|a1|+|a2|+…+|a6|=.考点:数列的求和;等比数列的通项公式.专题:计算题.分析:根据a1=,a4=﹣4求出公比q然后再根据等比数列的通项公式求出每一项再代入即可求出|a1|+|a2|+…+|a6|的值.解答:解:设等比数列{a n}的公比为q∵a1=,a4=﹣4∴=﹣4∴q=﹣2∵∴a2=﹣1,a3=2,a4=﹣4,a5=8,a6=﹣16∴|a1|+|a2|+…+|a6|=+1+2+4+8+16=故答案为点评:本题主要考查了数列的求和,属常考题,较易.解题的关键是求出等比数列{a n}的公比为q!11.设正实数x,y,z满足x+2y+z=1,则的最小值为7.考点:平均值不等式.专题:不等式的解法及应用.分析:把式子中的1换成已知条件(x+y)+(y+z)=1,化简后再利用基本不等式即可.解答:解:∵正实数x,y,z满足x+2y+z=1,∴==1+=7,当且仅当,x+y+y+z=1,即,时,取等号.∴则的最小值为7.故答案为7.点评:适当变形应用基本不等式是解题的关键.12.等比数列{a n}中,a1=2,a8=4,函数f(x)=x(x﹣a1)(x﹣a2)…(x﹣a8),则f′(0)=4096.考点:等比数列的通项公式;导数的运算.专题:计算题.分析:通过f'(0)推出表达式,利用等比数列的性质求出表达式的值即可.解答:解:因为函数f(x)=x(x﹣a1)(x﹣a2)…(x﹣a8),f′(x)=(x﹣a1)(x﹣a2)…(x﹣a8)+x[(x﹣a1)(x﹣a2)…(x﹣a8)′]则f'(0)=a1•a2…a8==84=4096.故答案为:4096.点评:本题考查等比数列的性质,函数的导数的应用,考查分析问题解决问题的能力.13.已知函数f(x)=xsinx,x∈R,则f(),f(1),f()的大小关系为f()>f(1)>f()考点:正弦函数的单调性;函数单调性的性质.分析:判断函数f(x)=xsinx是偶函数,推出f()=f(),利用导数说明函数在[0,]时,得y′>0,函数是增函数,从而判断三者的大小.解答:解:因为y=xsinx,是偶函数,f()=f(),又x∈[0,]时,得y′=sinx+xcosx >0,所以此时函数是增函数,所以f()<f(1)<f()故答案为:f()>f(1)>f().点评:本题是基础题,考查正弦函数的单调性,奇偶性,导数的应用,考查计算能力,导数大于0,函数是增函数,是解题的关键.14.定义在[1,+∞)上的函数f(x)满足:①f(2x)=2f(x);②当x∈[2,4]时,f(x)=1﹣|x﹣3|,则集合{x|f(x)=f(36)}中的最小元素是12.考点:函数迭代;带绝对值的函数.专题:规律型.分析:由已知可得分段函数f(x)的解析式,进而求出极值点坐标,所以f(x)在[2,4],[4,8],[8,16]…上的最大值依次为1,2,4…,即最大值构成一个以2为公比的等比数列,由此可得结论.解答:解:当2n﹣1≤x≤2n(n∈N*)时,∵函数f(x)满足:①f(2x)=2f(x);②当x∈[2,4]时,f(x)=1﹣|x﹣3|,∴n≥2时,f(x)=2n﹣1×f()=2n﹣1×[1﹣|﹣3|]由函数解析式知,当﹣3=0时,函数取得极大值2n﹣1,∴极大值点坐标为(3×2n﹣2,2n﹣1)∴f(x)在[2,4],[4,8],[8,16]…上的最大值依次为1,2,4…,即最大值构成一个以2为公比的等比数列,∵,∴f(x)=4时x的最小值是12;故答案为:12点评:本题考查的知识点是函数的极值,其中根据已知分析出分段函数f(x)的解析式,进而求出函数的极值点坐标,是解答本题的关键.二、解答题(共3小题,满分0分)15.设集合M={x|x2+2(1﹣a)x+3﹣a≤0,x∈R},M⊆[0,3],求实数a的取值范围.考点:集合的包含关系判断及应用.专题:集合.分析:当M⊆[0,3],通过f(0)≥0,且f(3)≥0,以及对应的二次函数的对称轴的范围,即可求实数a的取值范围.解答:解:设y=x2+2(1﹣a)x+3﹣a,其开口向上,那么满足y=x2+2(1﹣a)x+3﹣a≤0的x的取值,即为使二次函数的图象在x轴下方的x的取值范围,也就是二次函数与x轴交点之间的部分,当M包含于[0,3]时,二次函数与x轴两交点之间的部分,或M为空集,应包含于区间[0,3]之间,即两交点都在[0,3]之间,可知 f(0)≥0,f(3)≥0,且0≤a﹣1≤3f(0)=3﹣a≥0,a≤3f(3)=9+6(1﹣a)+(3﹣a)=18﹣7a≥0,a≤,0≤a﹣1≤3⇒1≤a≤4综上1≤a≤.点评:本题是中档题,考查集合的运算,构造法与函数的零点与方程的根的知识,考查计算能力,转化思想.16.在△ABC中,角A、B、C的对边分别为a、b、c.已知a+b=13,c=7,且4sin2﹣cos2C=,(1)求角C的大小;(2)求△ABC的内切圆面积.考点:余弦定理;二倍角的正弦;二倍角的余弦.专题:解三角形.分析:(1)根据二倍角公式进行化简,即可求角C的大小;(2)求出△ABC的内切圆的半径即可求面积.解答:解:(1)由4sin2﹣cos2C=,得4×,即2+cosC﹣cos2C=,即4cos2C﹣4cosC+1=0,解得cosC=,即.(2)由,a+b=13,c=7,得49=a2+b2﹣2abcos=a2+b2﹣ab=(a+b)2﹣3ab=169﹣3ab,即ab=40,解得a=5,b=8或a=8或b=5,则三角形的面积S==,则△ABC的内切圆的半径r===,则△ABC的内切圆面积S=π•r2=3π点评:本题主要考查解三角形的应用,利用余弦定理以及三角形的面积公式是解决本题的关键.17.设数列{a n},{b n}满足a1=b1=6,a2=b2=4,a3=b3=3,且数列{a n+1﹣a n}(n∈N+)是等差数列,数列{b n﹣2}(n∈N+)是等比数列.(1)求数列{a n}和{b n}的通项公式;(2)是否存在k∈N+,使,若存在,求出k,若不存在,说明理由.考点:等差数列与等比数列的综合;等差数列的通项公式;等比数列的通项公式.专题:计算题.分析:(1)先求出等差数列的公差,再利用a n+1﹣a n=(a2﹣a1)+(n﹣1)×1=n﹣3,表示出a n=a1+(a2﹣a1)+(a3﹣a1)+…+(a n﹣a n﹣1)即可求出数列{a n}的通项公式;同样先求出等比数列的公比,再利用即可求{b n}的通项公式;(2)先求出f(k)=a k﹣b k的表达式,并找到其单调区间的分界点,求出其函数值的范围即可得出结论.解答:解:(1)由已知a2﹣a1=﹣2,a3﹣a2=﹣1得公差d=﹣1﹣(﹣2)=1所以a n+1﹣a n=(a2﹣a1)+(n﹣1)×1=n﹣3故a n=a1+(a2﹣a1)+(a3﹣a2)+…+(a n﹣a n﹣1)=6+(﹣2)+(﹣1)+0+…+(n﹣4)==由已知b1﹣2=4,b2﹣2=2所以公比所以.故(2)设f(k)=a k﹣b k==所以当k≥4时,f(k)是增函数.又,所以当k≥4时,而f(1)=f(2)=f(3)=0,所以不存在k,使.点评:本题主要考查等差数列与等比数列的基础知识及其应用.是对基础知识的综合考查,属于中档题目.R\40444 9DFC 鷼 31875 7C83 粃33215 81BF 膿l39466 9A2A 騪V31429 7AC5 竅 24454 5F86 徆d。