三极管共射极放大电路-实验报告
实验三晶体管共射极单管放大器
实验三 晶体管共射极单管放大器一、实验目的1.学会放大器静态工作点的调试方法, 分析静态工作点对放大器性能的影响2.掌握放大器电压放大倍数A V 、输入电阻Ri 、输出电阻RO 及最大不失真输出电压的测试方法。
3.熟悉常用电子仪器及模拟电路实验仪的使用方法。
二、实验原理晶体管单级放大电路有三种基本接法, 即共射电路、共集电路、共基电路。
三种基本接法的特点分别为:1.共射电路既能放大电流又能放大电压, 输入电阻在三种电路中居中, 输出电阻大, 频带较窄;常做为低频电压放大电路的单元电路。
2.共集电路只能放大电流不能放大电压,是三种接法中输入电阻最大、输出电阻最小的电路,具有电压跟随的特点。
常用于电压放大电路的输入级和输出级,在功率放大电路中也常采用射极输出的形式。
3.共基电路只能放大电压不能放大电流,输入电阻小,电压放大倍数和输出电阻与共射电路相当,但频率特性是三种接法中最好的电路,常用于宽频带放大器。
放大电路的主要性能指标有:放大倍数、输入电阻、输出电阻、通频带等。
而保证基本放大电路处于线性工作状态(不产生非线性失真)的必要条件是设置合适的静态工作点Q, Q 点不但影响电路输出是否失真, 而且直接影响放大器的动态参数。
本实验所采用的放大电路为电阻分压式工作点稳定的单管放大电路(图3-1)。
它的偏置电路采用RB1和RB2组成分压电路, 因此基极电位UB 几乎仅决定于RB1与RB2对VCC 的分压, 而与环境温度的变化无关;同时三极管的发射极中接有电阻RE, 它将输出电流IC 的变化引回到输入回路来影响输入量UBE, 以达到稳定静态工作点的目的。
当放大器的输入端加入输入信号ui 后, 在放大器的输出端便可以得到一个与ui 相位相反, 幅值被放大了的输出信号uO, 从而实现了电压放大。
图3-1电路的静态工作点可用下式估算:CC2B 1B 1B B R +R R ≈U V I E =C EBEB I ≈R U U -U CE =V CC -(R C +R E )而电压放大倍数、输入电阻、输出电阻分别为:A V =- beLC r R //R βbe 2B 1B i r //R //R =RC O R ≈R 注意: 测量放大器的静态工作点时, 应在输入信号ui=0的条件下进行。
三极管放大电路实验结论
三极管放大电路实验结论三极管放大电路实验结论在电子学中,三极管是一种重要的电子元件,常用于放大电路中。
三极管放大电路的实验是电子学教学中的基础实验之一。
通过该实验,我们可以深入了解三极管的工作原理以及其在放大电路中的应用。
本次实验中,我们使用了一种常见的三极管放大电路——共射极放大电路。
该电路由三极管、输入电阻、输出电阻、耦合电容等元件组成。
实验中,我们通过改变输入信号的幅度和频率,观察输出信号的变化,从而得出以下结论。
首先,三极管放大电路具有放大功能。
当输入信号的幅度较小时,输出信号的幅度也较小,但是随着输入信号幅度的增大,输出信号的幅度也随之增大,呈线性关系。
这表明三极管放大电路能够将输入信号放大到更大的幅度,实现信号的放大功能。
其次,三极管放大电路具有频率选择性。
在实验中,我们改变了输入信号的频率,观察到输出信号的变化。
当输入信号的频率较低时,输出信号的幅度较大;而当输入信号的频率超过一定范围时,输出信号的幅度会显著减小。
这说明三极管放大电路对于不同频率的输入信号有不同的放大效果,具有一定的频率选择性。
此外,三极管放大电路还具有非线性失真现象。
在实验中,我们观察到当输入信号的幅度较大时,输出信号会出现失真现象,即输出信号的波形发生畸变。
这是由于三极管工作在非线性区域时,引起了非线性失真。
因此,在实际应用中,我们需要注意控制输入信号的幅度,避免出现过大的失真。
此外,在本次实验中我们还发现了一些其他现象。
例如,当输入信号的幅度较小时,输出信号存在一定的噪声;而当输入信号的频率较高时,输出信号存在一定的畸变。
这些现象可能与实验条件、元件参数等因素有关,需要进一步研究和分析。
综上所述,通过本次三极管放大电路实验,我们深入了解了三极管的工作原理以及其在放大电路中的应用。
我们得出了三极管放大电路具有放大功能、频率选择性和非线性失真等特点的结论。
这些结论对于我们理解和应用三极管放大电路具有重要意义,并为进一步研究和应用提供了基础。
共射极放大电路实验报告
共射极放大电路实验报告共射极放大电路实验报告引言:共射极放大电路是一种常见的电子电路,广泛应用于放大信号的场合。
本实验旨在通过搭建共射极放大电路并对其进行实验验证,深入理解其原理与特性。
一、实验目的本次实验的主要目的是:1. 理解共射极放大电路的基本原理;2. 学会搭建并调试共射极放大电路;3. 测量并分析共射极放大电路的放大倍数、输入阻抗和输出阻抗等特性。
二、实验器材与原理1. 实验器材:(1)信号发生器(2)二极管(3)电阻、电容等元件(4)示波器(5)万用表2. 原理:共射极放大电路是一种三极管放大电路,其基本原理是利用三极管的放大作用,将输入信号放大后输出。
在共射极放大电路中,输入信号通过电容耦合方式进入基极,通过电阻与发射极相连,并通过电阻与负载电阻相连,输出信号从负载电阻中取出。
1. 搭建电路:按照实验原理,按照电路图搭建共射极放大电路。
注意连接正确,避免短路和接反等问题。
2. 调试电路:将信号发生器的输出端与输入端相连,设置合适的频率和幅度。
通过示波器观察输出信号的波形,并调整电路参数,使得输出波形达到最佳状态。
3. 测量电路特性:使用万用表测量电路中各个元件的电压和电流值,记录并计算输入阻抗、输出阻抗和放大倍数等特性参数。
四、实验结果与分析在实验中,我们搭建了共射极放大电路,并成功调试出了较好的输出波形。
通过测量和计算,得到了以下结果:1. 输入阻抗:根据测量数据,我们计算得到共射极放大电路的输入阻抗为XXX。
2. 输出阻抗:根据测量数据,我们计算得到共射极放大电路的输出阻抗为XXX。
3. 放大倍数:通过测量输入信号和输出信号的幅度,我们计算得到共射极放大电路的放大倍数为XXX。
通过对实验结果的分析,我们可以看出共射极放大电路具有较高的放大倍数和较低的输出阻抗,适用于需要放大信号的应用场合。
通过本次实验,我们深入了解了共射极放大电路的原理与特性,并成功搭建了该电路并进行了调试。
实验结果表明,共射极放大电路具有较高的放大倍数和较低的输出阻抗,具有重要的应用价值。
模拟实验三---三极管以及放大电路实验--2014
模拟实验三三极管及其放大电路实验的参考资料请根据给的资料书写自己的预习报告,完成电路的预设方案、测量值的理论计算部分。
本次主要实验内容之一是:射极偏置CE电路的测量,包括:CS9013的β值测量,电压放大倍数的测量(区分有无Ce两种情况),输入、输出电阻,失真的记录(要求记录当时对应的Q的参数值),幅频特性的测试f H。
本次主要内容之二是:积分电路、微分电路的实验,参看实验二的要求。
以下是参考资料:一.实验目的1.对晶体三极管(3DG6、CS9013)、场效应管(3DJ6G)进行实物识别,了解它们的命名方法和主要技术指标。
2.学习用数字万用表、模拟万用表对三极管的三极区分以及β值进行测试的方法。
3.三极管(如: CS9013)的β值的测试。
4.研究静态工作点对放大电路动态性能的影响。
5.学习放大电路动态参数(电压放大倍数、输入电阻、输出电阻、最大不失真输出电压)的测量方法。
6. 调节射极偏置CE电路相关参数,用示波器观测输出波形,对饱和失真和截止失真的情况进行研究。
7.用Multisim软件完成对射极偏置CE电路性能的分析,学习放大电路静态工作点的测试及调整方法,观察测定电路参数变化对放大电路的静态工作点、电压放大倍数及输出电压波形的影响。
二.知识要点1.半导体三极管半导体三极管是组成放大电路的核心器件,是集成电路的组成元件,在电路中主要用于电流放大、开关控制或与其他元器件组成特殊电路等。
半导体三极管的种类较多,按制造材料不同有硅管、锗管、砷化镓管、磷化镓管等;按极性不同有NPN 型和PNP型;按工作频率不同有低频管、高频管及超高频管等;按用途不同有普通管、高频管、开关管、复合管等。
其功耗大于1W的属于大功率管,小于1W的属于小功率管。
半导体三极管的参数主要有电流放大倍数β、极间反向电流I CEO、极限参数(如最高工作电压V CEM、集电极最大工作电流I CM、最高结温T jM、集电极最大功耗P CM)以及频率特性参数等。
共射极放大电路实验报告
一、实验目的1.掌握放大电路静态工作点的测量和调试方法;2.掌握放大电路交流放大倍数、输入电阻、输出电阻的测量方法;3.研究静态工作点对输出波形的影响和负载对放大倍数的影响; 二、实验原理共发射极电路是放大电路三种基本组态之一,放大电路处于线性工作状态的必要条件是设置合适的静态工作点Q ,工作点的设置直接影响放大器的性能。
若Q 点选得太高,会引起饱和失真;若选得太低,会产生截止失真。
本实验采用基极分压式偏置电路,各指标的表达式为: 电压放大倍数 ()c L v beR R A r β-=, 输入电阻be b b i r R R R 21=,输出电阻o c R R =, 实验电路图如下:图5-1 实验电路1.静态工作点测试原理实验中,如果测得U CEQ <0.5V ,说明三极管已饱和;如果测得U CEQ ≈V CC ,则说明三极管已截止。
工作点偏高或者偏低,都会引起波形失真,如图5-2所示。
对于线性放大电路,这两种工作点都是不可取的,必须进行参数调整。
一般情况下,调整静态工作点,就是调整电路中的偏置电阻R b 的大小。
减小R b ,工作点升高;增大R b ,工作点降低,从而使U CEQ 达到合适的值。
为了获得最大不失真输出电压,静态工作点应选在输出特性曲线上交流负载线的中点。
图5-2 静态工作点设置不当引起的失真波形2. 动态指标测试原理放大器的动态指标的测试是在有合适的静态工作点时,保证放大电路处于线性工作状态下进行的。
动态指标包括电压放大倍数、输入电阻、输出电阻等(1)电压放大倍数v A 测量原理电压放大倍数的测量实质上是对输入电压u i 与输出电压u o 的有效值U i 和U o 的测量。
将所测出的U i 和U o 值代入下式,则得到的电压放大倍数为 ov iU A U =(2)输入电阻、输出电阻测量原理放大器的输入电阻i R 是向放大器输入端看进去的等效电阻,定义为输入电压i U 和输入电流i I 之比,即 ii iU R I =测量i R 的方法很多,本实验采用的测量方法称为换算法,测量电路如图5-3所示。
放大效应实验报告
一、实验目的1. 了解放大效应的基本原理,掌握放大电路的设计与调试方法。
2. 熟悉放大电路中三极管、运放等关键元件的特性。
3. 学会测量放大电路的静态工作点、电压放大倍数、输入阻抗、输出阻抗等参数。
二、实验原理放大效应是指电路中输入信号通过放大器后,输出信号幅度增大的现象。
放大电路通常由三极管、运放等元件组成。
本实验采用共射极放大电路,通过调整电路参数,实现信号放大。
三、实验仪器1. 双踪示波器2. 函数信号发生器3. 数字万用表4. 实验电路板5. 电阻、电容、三极管等电子元件四、实验内容1. 共射极放大电路的搭建与调试(1)搭建电路:按照电路图连接三极管、电阻、电容等元件,搭建共射极放大电路。
(2)调试电路:调整基极偏置电阻,使三极管工作在放大状态。
调整集电极电阻,使输出信号幅度合适。
2. 测量放大电路的静态工作点(1)使用数字万用表测量三极管基极、发射极、集电极的电压。
(2)计算静态工作点Q点:Q点电压Uq = Ube + Uce。
3. 测量放大电路的电压放大倍数(1)输入信号:使用函数信号发生器输出一定频率和幅度的正弦波信号。
(2)观察输出信号:使用示波器观察放大电路输出端的信号波形。
(3)计算电压放大倍数:A = Uo / Ui,其中Uo为输出信号幅度,Ui为输入信号幅度。
4. 测量放大电路的输入阻抗(1)输入阻抗测量电路:在放大电路输入端串联一个已知电阻R1。
(2)测量输入端电压:使用数字万用表测量输入端电压Uin。
(3)计算输入阻抗:Ri = R1 (Ui / Uin)。
5. 测量放大电路的输出阻抗(1)输出阻抗测量电路:在放大电路输出端串联一个已知电阻R2。
(2)测量输出端电压:使用数字万用表测量输出端电压Uo。
(3)计算输出阻抗:Ro = R2 (Uo / Ui)。
五、实验结果与分析1. 共射极放大电路的搭建与调试:成功搭建了共射极放大电路,调整了电路参数,实现了信号放大。
2. 静态工作点测量:测得三极管基极电压为0.7V,发射极电压为0.7V,集电极电压为2.8V,计算得Q点电压为3.5V。
晶体管共射极放大电路实验报告
晶体管共射极放大电路实验报告实验目的:1.了解晶体管共射极放大电路的基本原理。
2.熟悉晶体管共射极放大电路的实验操作和测量方法。
3.掌握晶体管共射极放大电路的参数测量和计算方法。
实验仪器和材料:1.功率放大器实验箱。
2.变压器。
3.各种被测元件(晶体管、电阻等)。
4.示波器。
5.万用电表。
实验原理:晶体管共射极放大电路是一种三极管放大电路,由三个基本元件组成:B1(输入器),Q1(放大器)和B2(输出器)。
输入信号通过B1输入到基极,晶体管的发射极作为电流输入端,通过Q1的集电极放大后,再输出到B2、其中,B1和B2是用于匹配输入、输出电路的部分,Q1是负责放大信号的部分。
实验步骤:1.搭建晶体管共射极放大电路。
2.给电路施加电源,调节电源电压为合适的值。
3.使用万用表测量和记录电流值、电压值等相关信息。
4.使用示波器观察输出信号波形,并测量信号的频率和幅度。
5.记录实验中发现的问题和解决办法。
实验数据:1. 输入电压:Vin = 1V。
2. 输出电压:Vout = 10V。
3. 输入电流:Iin = 10mA。
4. 输出电流:Iout = 100mA。
5. 输入阻抗:Zin = Vin / Iin。
6. 输出阻抗:Zout = Vout / Iout。
7. 放大倍数:A = Vout / Vin。
结果分析:根据实验数据计算得到的输入阻抗、输出阻抗和放大倍数等参数,可用于评价晶体管共射极放大电路的性能。
同时,通过观察输出信号波形,可以判断电路是否正常工作,是否满足实验要求。
实验总结:通过本次实验,我们学习了晶体管共射极放大电路的基本原理和搭建方法。
并且通过测量和计算,了解了该电路的输入阻抗、输出阻抗和放大倍数等参数。
同时,通过观察输出信号波形,我们可以判断电路是否正常工作。
通过本次实验,我们进一步加深了对晶体管放大电路的理解,提高了实验操作和测量方法的熟练度。
模电实验报告(新)
实验目的掌握共射放大电路的静态工作点(Q )、电压放大倍数(A u )的测试方法。
观测电路参数变化对放大电路的静态工作点、电压放大倍数及输出波形的影响。
实验仪器与元器件直流稳压电源 信号发生器 交直流毫伏毫安表6502型示波器单管放大电路模块实验内容及步骤熟悉实验面板上各元件的位置。
按图示电路 接线,基极接入 R b2,集电极接入 R 尸2k Q ,发射极接 入旁路电容C e,负载电阻R L = 8(开路)检查接线无误后,将直流电源输出的 到实验板上,并校准12V O1. 测量静态工作点、卄将电路的输入端对地短路。
调节P , 保持R p 不变。
分别测量U B 、U E 的值,并将测量结果记入表2-3-1中。
2. 测量电压放大倍数 A u去掉输入端对地短路线。
从电路输入端送入U i = 5mV (有效值)、f = 1kHz 的正弦波信号,当示波器观察 的输出波形为放大的、不失真的正弦波时 ,测量输出电压U 。
的值,并将测量结果及波形记入表2-3-2中。
关闭电源开关。
3. 观测电路参数变化对电路的 Q 点、A u 及输出波形的影响 (1) R c 变化:R c = 3k Q, R L = 8, R p 保持不变。
专业实验名称 实验类型同组人实验三单管共射放大电路 验证型年 月指导教师任文霞(任课教师)批阅教师-O+咯O12V 电压加使 U C = 9V ,3DS6Q单管放大电路去掉输入信号,测量 U c 、U B 和U E 的值,将测量结果记入表 2-3-1中。
电路的输入端接入 U i = 5mV 、f =1kHz 正弦波信号,测量输出电压 U o 的值,用示波器观察输出信号的波形,将结果记入表关闭电源开关。
(2) R L 变化:改变R c = 2k Q, R L = 2k Q, R p 保持不变。
重复3. (1)中的测量步骤,并将测量结果及波形记入表关闭电源开关4. 观测静态工作点设置不合适时对电路输出波形的影响(1) R c = 2k Q, R L =S ,将R p 调至最小值。
三极管放大电路和分析报告
微变等效条件
研究的对象仅仅是变化量 信号的变化范围很小
第四章 放大电路的基本原理
一、简化的 h 参数微变等效电路
(一) 三极管的微变等效电路 1. 输入电路 晶体管的输入特性曲线 Q 点附近的工作段 近似地看成直线 可认为 uBE 与 iB 成正比
iB Q
iB
uBE
O
uBE
图 14(a)
MOS)输出电流ID受输入电场UGS的控制。
2、输出受输入控制,输入信号的微小变化都能 在输出端有较大变换。
3、输出信号的能量由另一个电源提供。
第四章 放大电路的基本原理
4.2.2 单管共发射极放大电路
4.2.2.1 单管共发射极放大电路的组成
VT:NPN 型三极管,为放大元件;
VCC:为输出信号提供能量; RC:当 iC 通过 Rc,将 电流的变化转化为集电极
2.4 放大电路的基本分析方法
基本分析方法两种 图解法 微变等效电路法
静态分析:电路中未施加输入信号,仅存在偏置电 路直流作用时的电路工作状态,如输入、输出回路 的电流及电压
动态分析:当外加交流输入信号时,电路中存在直 流、交流信号并存状态时的电路状态,如放大倍数、 输入电阻、输出电阻、通频带、最大输出功率等。
基本分析思路:先静态,后动态
第四章 放大电路的基本原理
4.4 放大电路的基本分析方法
静态工作点:当外加输入信号为零时,在直流电源VCC的作 用下,三极管的基极回路及集电极回路均存在直流电流及 直流电压,这些值在三极管输入、输出特性曲线上对应一 个点,该点称静态工作点。
电路中电抗原件及电源的特点:电容对直流信号的阻抗无 穷大,可以认为开路,但对交流信号,阻抗为1/wc,当电容 足够大,可认为短路;电感对直流信号的阻抗很小,可认 为短路,而对交流信号,感抗大小为wL; 对理想电压源,由 于电压变化为零,在交流通路中相当于短路;对理想电流 源,由于电流变化为0,故在交流通路中相当于开路。
共射共集放大电路实验报告(共5篇)
共射共集放大电路实验报告(共5篇)一、实验目的学习共射共集放大电路的基本原理,掌握共射、共集级的放大作用和特点,熟悉放大电路的设计和调节方法。
二、实验原理共射放大器是以晶体三极管为放大元件,以共射的方式运行的放大电路。
它的信号输入在集-发极之间,输出在集-基极之间。
共射电路的输入电阻较低,输出电阻较高,放大系数较大。
但它的频率特性差,相位反向和输出幅度变化比较大。
共射、共集级的组合可以形成共射共集放大电路,由于两级的互补性,可以克服它们各自的缺点,达到比较理想的放大效果。
在实际应用中,经常用共射共集级组成放大电路,用于通过各种接口将信号处理后送到外围设备,并隔离载波。
共射共集放大电路的放大系数较大,输入输出阻抗均低,相位差小,具有广泛的应用。
三、实验步骤1.检查实验装置,准备好实验用品,并按照电路图连接电路。
2.接通电源,调节稳压电源直至设定值。
3.打开测量仪器,调整电位器,使输入端电压到达工作点。
4.调整电位器,使输出端交流信号最大。
5.更改输入信号,测量输出信号幅度的变化,记录测量结果。
6.重复操作5,并更改电源电压和电阻值,记录实验结果。
7.实验结束后,关闭电源,拆除实验装置,清理现场。
四、实验结果与分析1.实验中电路连接正确,电源电压、电阻值选择合适,实验过程稳定。
2.实验结果表明,当输入信号发生变化时,输出信号幅度随之变化。
同时,当电源电压或电阻值发生变化时,放大电路的增益也会发生变化。
3.对于共射放大器,输入阻抗低,输出阻抗高,放大系数大,但是频率特性差相位反向。
对于共集放大器,输入输出阻抗均低,放大系数小,但具有良好的频率特性和相位不反向等特点。
4.当通电电压较是3V时,测量到的输入电压为2.1V,输出电压为6V,增益约2.9倍。
输出波形为正弦波。
5.整个实验过程中,注意电源电压不要过高或过低,否则会影响实验结果。
同时,要注意接线正确,切勿操作不当以免损坏实验装置。
五、实验总结通过本次实验,掌握了共射共集放大电路的基本原理和调节方法。
放大电路的实验实训报告
一、实验目的1. 熟悉放大电路的基本组成和原理。
2. 掌握放大电路静态工作点的调试方法。
3. 学习放大电路动态性能的测试方法。
4. 了解放大电路频率响应的特性。
5. 熟悉常用电子仪器的使用方法。
二、实验原理放大电路是模拟电子技术中的基础,它通过三极管等电子器件对输入信号进行放大,输出一个与输入信号相位相反、幅度放大的信号。
本实验主要研究共射极放大电路,其基本原理如下:1. 共射极放大电路:输入信号加在基极与发射极之间,输出信号从集电极取出。
2. 静态工作点:放大电路在没有输入信号时的工作状态,通常通过调整偏置电阻来设置。
3. 动态性能:放大电路在有输入信号时的性能,包括电压放大倍数、输入电阻、输出电阻等。
4. 频率响应:放大电路对不同频率信号的放大能力,受电路元件和三极管频率特性的影响。
三、实验仪器与材料1. 模拟电路实验箱2. 函数信号发生器3. 双踪示波器4. 交流毫伏表5. 万用电表6. 连接线若干四、实验内容与步骤1. 搭建共射极放大电路:根据实验原理图,搭建共射极放大电路,包括三极管、电阻、电容等元件。
2. 调试静态工作点:调整偏置电阻,使放大电路达到合适的静态工作点,通常通过观察集电极电流和集电极电压的变化来实现。
3. 测试动态性能:- 输入不同频率和幅度的信号,观察输出信号的幅度和相位变化。
- 测量电压放大倍数、输入电阻、输出电阻等参数。
4. 测试频率响应:- 改变输入信号的频率,观察输出信号的幅度变化。
- 绘制频率响应曲线。
五、实验结果与分析1. 静态工作点调试:通过调整偏置电阻,使放大电路达到合适的静态工作点,集电极电流和集电极电压满足设计要求。
2. 动态性能测试:- 电压放大倍数:根据输入信号和输出信号的幅度比值计算得出,符合理论预期。
- 输入电阻:根据输入信号和基极电流的比值计算得出,符合理论预期。
- 输出电阻:根据输出信号和集电极电流的比值计算得出,符合理论预期。
3. 频率响应测试:- 频率响应曲线:随着输入信号频率的增加,输出信号的幅度逐渐减小,符合理论预期。
模电实验2三极管共射极放大电路
• 实验目的 • 三极管共射极放大电路的原理 • 实验设备和材料 • 实验步骤和操作 • 实验结果与分析 • 实验总结与思考
01
实验目的
掌握三极管共射极放大电路的工作原理
了解三极管的结构和特性,包括 电流放大作用、输入输出特性等。
理解共射极放大电路的基本工作 原理,包括信号的输入、放大和
通过实验,我更加深入地理解了三极管共射极放大电路的工作原理,包括输入信号的放大 和输出信号的反馈等。
掌握了电路的搭建和调试技巧
在实验过程中,我学会了如何搭建和调试三极管共射极放大电路,了解了电路中各个元件 的作用和相互关系。
提高了实践操作能力
通过实际操作,我提高了对电子电路实验的操作能力,包括仪器的使用、数据的测量和处 理等。
THANKS
感谢观看
对实验中遇到的问题和解决方案的思考
问题1
输入信号过大导致三极管工作点 饱和。
解决方案
调整输入信号的大小,选择合适 的工作点。
问题2
输出信号失真。
解决方案
采用多次测量求平均值的方法, 提高测量精度。
问题3
测量数据误差较大。
解决方案
调整反馈电阻和偏置电阻,改善 电路的线性度和稳定性。
对未来学习和实践的建议和展望
输出信号电压:100mV 放大倍数:100倍
数据分析与解释
放大倍数
实验得到的放大倍数为100倍,与理论值相符,说明三极管共射 极放大电路的放大能力正常。
输入阻抗和输出阻抗
实验测得的输入阻抗和输出阻抗均为1kΩ,表明电路的输入输出 匹配良好。
信号失真
实验中观察到的输出信号未出现明显失真,表明电路的性能稳定。
功率放大电路实验报告
功率放大电路实验报告实验背景功率放大电路是电子技术中常见的一种电路,其主要作用是将输入的低功率信号放大成为输出的高功率信号,常用于音频放大器、射频功率放大器等应用中。
本实验旨在通过实际搭建和测试功率放大电路,了解其工作原理和性能特点。
实验目的1.理解功率放大电路的基本原理;2.学会使用常见的放大器电路搭建和测试方法;3.掌握调整放大器工作点和增益的技巧;4.分析并优化功率放大电路的性能。
实验器材与元件1.信号发生器;2.电压测量仪;3.电流测量仪;4.多用途表;5.功放集成电路;6.电阻、电容等基本电子元件。
实验原理功率放大电路常用的基本结构有共射极型、共基极型和共集电极型三种,其中共射极型最为常见。
下面以共射极型功放为例,简要介绍其工作原理。
共射极型功率放大电路是一种三极管放大电路,其基本结构如下:共射极型放大电路其中,V1为输入信号源,R1为偏置电阻,Q1为放大管,RL为负载电阻。
通过调整偏置电阻R1和对输入信号进行放大,控制输出信号的幅度和功率。
共射极型功放的特点: - 输入阻抗较高,对于输入信号源的驱动能力强; - 输出阻抗较低,对负载的驱动能力强; - 可以实现较大的电压放大倍数。
实验步骤1.按照电路图搭建共射极型功率放大电路;2.将信号源连接到输入端,负载连接到输出端;3.检查电路连接是否正确,确认没有短路或接触不良的情况;4.打开电源,给放大电路供电;5.调整信号源的频率和幅度,观察输出信号波形;6.使用多用途表测量输入和输出信号的电压、电流,并记录数据;7.根据测得的数据,计算功率放大倍数和效率。
实验数据与结果分析在实际搭建和测试的过程中,我们得到了如下数据: | 输入电压 | 输出电压 | 输入功率 | 输出功率 | 放大倍数 | 效率 | | ——– | ——– | ——– | ——– | ——– | —- | | 1V | 10V | 0.1W | 1W | 10 | 90% | | 2V | 20V | 0.2W | 4W | 20 | 80% |通过上述数据,我们可以得出以下结论: 1. 输入信号的幅度与输出信号的幅度成正比,放大倍数与输入信号的幅度相关;2. 输出功率随着输入功率的增大而增大,放大器的效率会受到一定影响;3. 在工作点会影响功率放大器的放大倍数和效率,适当调整工作点可以获得更好的性能。
实验三三极管放大电路实验
实验三三极管放大电路实验一、实验目的1.学习测量和调整放大器的静态工作点;2.学习测量电压放大倍数;3.了解共射极放大器的参数变化对静态工作点、放大倍数及输出波形的影响。
二、实验与原理电路图单管交流放大实验电路如图6-1所示。
图6-1 三极管放大电路实验电路图1.由三极管组成的放大电路为了获得最大不失真输出信号,必须合理设置静态工作点。
如果静态工作点太高或太低,或输入信号过大,都会使输出波形产生非线性失真。
对于小信号放大器,工作点都选择在交流负载线的中点附近,一般采用改变偏置电阻R B的方法来调节静态工作点。
2.电压放大倍数A u是指放大电路正常(即不失真)工作时对输入信号的放大能力,即A u=U o/U i,式中,Uo、Ui为输出和输入电压的有效值,可以用晶体管毫伏表测量。
三、仪器设备1.直流稳压电源2.晶体管毫伏表3.万用表4.信号发生器5.示波器四、实验内容与步骤1.先将直流稳压电源得输出调至+12V(以万用表测量的值为准),然后关掉电源。
用导线将电源输出接到实验电路板上,并按图6-1接好实验电路(R C=2kΩ),检查无误后接通电源。
2.三极管放大电路的静态研究(1)调节R w使放大器的集电极电位U E =2V左右,然后分别测出U B、U C,再计算出U BE、U CE、I C的大小(已知β=90)。
(2)左右调节R w,分别观察表格6-1中各量的变化趋势,并记录。
表6-13.三极管放大电路的动态研究(1)重新调节静态工作点U E =2V左右。
(2)使信号发生器输出1kHz、10mV的正弦波信号,接到放大器的输入端,将放大器的输出(R L=∞)信号接至示波器上观察输出波形,若不失真,测出u i和u o的大小,计算出电压放大倍数,并与估算值相比较。
(3)在输出波形不失真的情况下,按表6-2中给定的条件,测量并记录输出电压u o,计算电压放大倍数。
与预习结果相比较。
表6-2*4.调出放大器的最大输出幅度:在上述条件下,接上2kΩ负载电阻,调节R B使不失真时的输出电压最大(这里是指在Q点可调的情况下,电路所能达到的最大不失真输出幅度)。
实验二 BJT共射极电压放大电路的分析
fL
1
10
100
fH
1000
典型幅频 特性曲线
Av Av0 0.707Av0
fL
fH
f
改变信号频率
观察波形
保持 vi为5mV
(四)常见故障的分析方法
(1)实验器件故障的判别
电位器好坏的判别
万用表作为测量电阻使用
探头线好坏的判别
探头线好坏的判别
(2)电路故障点的判别
共地(接地)
电源端
电路的设计分析
参见教材 P 59 – 62页
(三)实验内容
1、静态工作点的测量
调整RW,使静态集电极电流ICQ=2mA,测量静态时晶体 管集电极-发射极之间电压VCEQ 。
ICQ(mA)
2mA
VCEQ(V)
调节
ICQ
不加入任何信号 用直流电压表 测量VCEQ
IEQ
ICQ的确定:根据ICQ= IEQ,测量RE直流电压间接确定
加入正弦信号
观察波形不能失真
用交流毫伏表观察, Vi=5mV
数据表格:
静态工作点电流ICQ/mA
保持输入信号Vi/mV VS/mV 测量值 VO/V VO′/V AV (有负载 时) 由测量 数据 计算值 A’V (空载 时)
1.5
5
2
5
2.5
5 要弄清楚 各个参量 的含义
Ri/kΩ
RO/kΩ
其中:
为直流工作点信号, 要用万用表测
为交流信号, 用示波器测峰峰值
ICQ(mA)
VOP-P (V)
加大信号幅度
调节
观察波形
用电压表间接 测量ICQ
三极管共射极放大电路实验报告
实验报告课程名称: 电路与模拟电子技术实验 指导老师: 张冶沁 成绩:__________________ 实验名称: 三极管共射极放大电路 实验类型: 电路实验 同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得一、实验目的和要求1.学习共射放大电路的设计方法与调试技术;2.掌握放大器静态工作点的测量与调整方法,了解在不同偏置条件下静态工作点对放大器性能的影响;3.学习放大电路的电压放大倍数、输入电阻、输出电阻及频率特性等性能指标的测试方法;4.了解静态工作点与输出波形失真的关系,掌握最大不失真输出电压的测量方法;5.进一步熟悉示波器、函数信号发生器的使用。
二、实验内容和原理1.静态工作点的调整与测量2.测量电压放大倍数3.测量最大不失真输出电压4.测量输入电阻5.测量输出电阻6.测量上限频率和下限频率7.研究静态工作点对输出波形的影响三、主要仪器设备示波器、信号发生器、万用表 共射电路实验板四、操作方法和实验步骤1.静态工作点的测量和调试 实验步骤:(1)按所设计的放大器的元件连接电路,根据电路原理图仔细检查电路的完整性。
(2)开启直流稳压电源,用万用表检测15V 工作电压,确认后,关闭电源。
(3)将放大器电路板的工作电源端与15V 直流稳压电源接通。
然后,开启电源。
此时,放大器处于工作状态。
(4)调节偏置电位器,使放大电路的静态工作点满足设计要求I CQ =6mA 。
为方便起见,测量I CQ 时,一般采用测量电阻R C 两端的压降V Rc ,然后根据I CQ =V Rc /Rc 计算出I CQ 。
(5)测量晶体管共射极放大电路的静态工作点,并将测量值、仿真值、理论估算值记录在下表中进行比较。
2.测量电压放大倍数(R L =∞、R L =1k Ω)专业: 姓名:学号: 日期: 地点:学生序号6实验步骤:(1)从函数信号发生器输出1kHz的正弦波,加到电路板上的Us端。
三极管放大实验报告
(一)、实验目的1.对晶体三极管进行实物识别,了解它们的命名方法和主要技术指标;2.学习放大电路动态参数(电压放大倍数等)的测量方法;3.调节电路相关参数,用示波器观测输出波形,对饱和失真失真的情况进行研究;4.通过实验进一步熟悉三极管的使用方法及放大电路的研究方法。
(二)、实验原理一、三极管1. 三极管基本知识三极管,是一种电流控制电流的半导体器件·其作用是把微弱信号放大成辐值较大的电信号,也用作无触点开关。
三极管的分类方式很多,按照材料可分为硅管和锗管;按照结构可分为NPN和PNP;按照功能可分为开关管、功率管、达林顿管、光敏管等;按照功率可分为小功率管、中功率管和大功率管;按照工作频率可分为低频管、高频管和超频管;按照安装方式可分为插件三极管和贴片三极管。
三极管是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。
三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把整块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,根据排列方式的不同可将三极管分为PNP和NPN两种。
从三个区引出相应的电极,分别为基极b发射极e和集电极c。
发射区和基区之间的PN 结叫发射结,集电区和基区之间的PN结叫集电极。
基区很薄,而发射区较厚,杂质浓度大。
两种不同类型三极管的表示方式如图1所示,PNP型三极管发射区"发射"的是空穴,其移动方向与电流方向一致,故发射极箭头向里;NPN型三极管发射区"发射"的是自由电子,其移动方向与电流方向相反,故发射极箭头向外。
发射极箭头指向也是PN结在正向电压下的导通方向。
图1 不同类型三极管表示方式2.三极管放大原理(1)发射区向基区发射电子电源Ub经过电阻Rb加在发射结上,发射结正偏,发射区的多数载流子(自由电子)不断地越过发射结进入基区,形成发射极电流Ie。
同时基区多数载流子也向发射区扩散,但由于多数载流子浓度远低于发射区载流子浓度,可以不考虑这个电流,因此可以认为发射结主要是电子流。
共射放大电路实验报告
共射放大电路实验报告实验报告课程名称:电子电路设计实验 指导老师:李锡华,叶险峰,施红军成绩:________ 实验名称:晶体管共射放大电路分析 实验类型:设计实验 同组学生姓名:一、实验目的1、学习晶体管放大电路的设计方法,2、掌握放大电路静态工作点的调整和测量方法,了解放大器的非线性失真。
3、掌握放大电路电压增益、输入电阻、输出电阻、通频带等主要性能指标的测量方法。
4、理解射极电阻和旁路电容在负反馈中所起的作用及对放大电路性能的影响。
5、学习晶体管放大电路元件参数选取方法,掌握单级放大器设计的一般原则。
二、实验任务与要求1.设计一个阻容耦合单级放大电路已知条件:=+10V cc V , 5.1L R k =Ω,10,600i SV mV R ==Ω性能指标要求:30L f Hz <,对频率为1kHz 的正弦信号15/,7.5v iA V V R k >>Ω2.设计要求(1)写出详细设计过程并进行验算 (2)用软件进行仿真 3.电路安装、调整与测量自己编写调试步骤,自己设计数据记录表格4.写出设计性实验报告三、实验方案设计与实验参数计算共射放大电路(一).电路电阻求解过程(β=100)(没有设置上课要求的160的原因是因为电路其他参数要求和讲义作业要求基本一样,为了显示区别,将β改为100进行设计):(1)考虑噪声系数,高频小型号晶体管工作电流一般设定在1mA 以下,取I c =1mA (2)为使Q 点稳定,取25BBCC VV =,即4V, (3)0.7 3.3BB EEV R k I -≈=Ω,恰为电阻标称值(4)212124:3:2CCBB R V V VR RR R ==+∴=取R 2为R i 下限值的3倍可满足输入电阻的要求,即R 2=22.5k ,R 1=33.75k ;112110=0.1,60,40cc B B V VIR I mA R K R K IR -===Ω=Ω由 综上:取标称值R1=51k ,R2=33k (5) 25T T eE CV V r I I =≈=Ω(6)从输入电阻角度考虑:,取(获得4V 足够大的正负信号摆幅)得:从电压增益的角度考虑:>15V/V,取得:;为(二).电路频率特性(1) 电容与低频截止频率取;(三).参数指标验算过程由已确定的参数:=+10V cc V , 5.1L R k =Ω,10,600i S V mV R ==Ω,计算得:,所有参数符合指标.四、实验步骤与过程(一).实验电路仿真:1. 代入参数的实验电路2.直流工作点Q:2.1仿真类型与参数设置:选择时域瞬态分析(Time domain),由于交流小信号的频率为1kHZ, 设置仿真时间为2个周期,0-2ms,扫描步长为0.02ms,精度足够 2.2图像处理:将交流小信号源断开,分别观察IC,VCE,VBE,VC,的波形, 利用标尺(toggle cursor)得到仿真值为:IC=0.892V,VCE=2.38V,VBE=0.622V,VC=5.45V3.交流参数分析:3.1仿真类型与参数设置:选择频域分析(AC SWEEP),要将电压源由给定频率的VSIN源换成可供频率扫描的V AC,幅值设定为10mV;为得到完整频域特性,扫描频率选择对数扫描,从1HZ到100MHZ,采样点设置为10, 3.2图像处理(其他图像略去,只摘取需要用到标尺工具的复杂图像)(1).电压增益:观察V2(RL)/V1(RS)的频域波形,用标尺得出1Khz时的电压增益为17.607;在直流分析中,设置y轴变量为max(V2(RL))/max(V1(RS),利用标尺得到电压增益为178.55mv/9.993mv=17.87;(2).上下限截止频率与通频带:同样是上面的频域增益波形,利用orcad自带的信号处理函数可以得到:Fl=26.24877HZ,FH=1.99MHZ,由于FL相对较小,通频带近似为FH(3).输入电阻:观察V(VS+)/I(C1)的频域波形,利用标尺可得,当信号源的频率为1Khz时,输入电阻Ri=7.6816kΩ4.数据处理与误差分析IC VCE VBE VC AV FL RI理论计算值0.917 2.210.7 5.32320.24268.305电子仿真结果0.892 2.380.622 5.4517.8926.257.6816相对误差0.0272630.0769230.0238590.1161070.0096150.075063计算可得除VCE 外直流工作点的相对误差约为2.5%,而频幅特性相对误差约为10%,较大;直流工作状态的误差主要是由于将VCE 直接认定为0.7V 导致的,而交流特性是由三极管直流工作点决定的,且计算时忽略了电容对电路产生的影响,且忽略厄利效应,所以会有至少3类误差的叠加,导致误差较大.(二).实际电路测试:1.测试原理:(注释:由于事先不知道实际测试电路所用三极管放大倍数只有160的,而我设计是用100的,所以在测试时无法利用我的设计方案,采用了另一个设计方案,附在报告最后.)1.静态工作点:(1)按元件参数安装、连接电路(2)不加输入信号,调节R C 两端的电压使IC 符合设计值 (3)测量放大电路的静态工作点,并和理论值相比较2.电压增益:(1)保持静态工作点不变,利用示波器观察输入信号波形,调节信号源,使输出信号为频率1kHz,幅值30MV 的正弦波.(2)输入、输出波形用双踪显示观察,指出它们的相位关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程名称: 电路与模拟电子技术实验 指导老师:实验名称: 三极管共射极放大电路 实验类型: 电路实验 同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得一、实验目的和要求1.学习共射放大电路的设计方法与调试技术;2.掌握放大器静态工作点的测量与调整方法,了解在不同偏置条件下静态工作点对放大器性能的影响;3.学习放大电路的电压放大倍数、输入电阻、输出电阻及频率特性等性能指标的测试方法;4.了解静态工作点与输出波形失真的关系,掌握最大不失真输出电压的测量方法;5.进一步熟悉示波器、函数信号发生器的使用。
二、实验内容和原理1.静态工作点的调整与测量2.测量电压放大倍数3.测量最大不失真输出电压4.测量输入电阻5.测量输出电阻6.测量上限频率和下限频率7.研究静态工作点对输出波形的影响三、主要仪器设备示波器、信号发生器、万用表 共射电路实验板四、操作方法和实验步骤1.静态工作点的测量和调试 实验步骤:(1)按所设计的放大器的元件连接电路,根据电路原理图仔细检查电路的完整性。
(2)开启直流稳压电源,用万用表检测15V 工作电压,确认后,关闭电源。
(3)将放大器电路板的工作电源端与15V 直流稳压电源接通。
然后,开启电源。
此时,放大器处于工作状态。
(4)调节偏置电位器,使放大电路的静态工作点满足设计要求I CQ =6mA 。
为方便起见,测量I CQ 时,一般采用测量电阻R C 两端的压降V Rc ,然后根据I CQ =V Rc /Rc 计算出I CQ 。
(5)测量晶体管共射极放大电路的静态工作点,并将测量值、仿真值、理论估算值记录在下表中进行比较。
2.测量电压放大倍数(R L =∞、R L =1k Ω) 实验步骤:(1)从函数信号发生器输出1kHz 的正弦波,加到电路板上的Us 端。
(2)用示波器检查放大电路输出端是否有放大的正弦波且无失真。
(3)用示波器测量输入Ui 电压,调节函数信号发生器幅度,使电路输入Ui= 10mV(有效值)。
(4)负载开路,用示波器测出输出电压Uo 有效值,求出开路放大倍数。
(5)负载接上1k Ω,再次测Uo ,求出带载放大倍数。
3.测量最大不失真输出电压(R L =∞、R L =1k Ω)(1)负载开路,逐渐增大输入信号幅度,直至输出刚出现失真。
(2)用示波器测出此时的输出电压有效值,即为最大不失真输出电压Vomax 。
(3)负载接上1k Ω,再次测Vomax 。
4.测量输入电阻Ri(R L =1k Ω)测量原理:放大电路的输入电阻可用电阻分压法来测量,图中R为已知阻值的外接电阻,分别测出Vs和Vi,则实验步骤:(1)从函数信号发生器输出正弦波,加到电路板上的Us端。
(2)用示波器测出Us 和Ui电压。
(3)求出输入电阻。
5.测量输出电阻R O测量原理:放大电路的输出电阻可用增益改变法来测量,保持信号源幅度不变,分别测出负载开路时的输出电压V O'和带上负载R L后的输出电压V O,则实验步骤:(1)从函数信号发生器输出正弦波(幅度和频率?),加到共射放大电路的输入端。
(2)断开负载,用示波器测出输出电压V o'。
(3)接上负载,用示波器测出输出电压Vo。
(4)计算输出电阻Ro6. 测量上限频率和下限频率(R L=∞、R L=1 kΩ)1)从函数信号发生器输出1kHz的正弦波,加到放大电路输入端。
2)用交流毫伏表测输出电压,调节输入信号幅度,使输出Vo=1V。
(取1V有什么好处?)3)保持输入信号幅度不变,降低信号频率,使输出幅度下降至0.707V o时(用什么测?)得到下限频率f L。
4)保持输入信号幅度不变,增大信号频率,使输出幅度下降至0.707 V o时得到上限频率f H7. 研究静态工作点对输出波形的影响( R L=∞)1)负载开路,输入1kHz、幅度合适的正弦信号,用示波器监视输出电压。
2)调节电位器R Wb,使静态电流I CQ增大到足够大,测量并记录集电极静态电流。
(I CQ用什么测?如何测?)3)逐渐增大输入信号,使输出波形出现明显的失真。
记录此时的示波器波形,测量刚出现失真时的最大不失真输出电压。
4)减小输入信号,使电路回到正常的放大状态(输出电压无失真)。
5)调节电位器R Wb,使静态I CQ下降到足够小,测量并记录集电极静态电流。
6)逐渐增大输入信号,使输出波形出现明显的失真。
记录此时的示波器波形,测量刚出现失真时的最大不失真输出电压。
五、实验数据记录和处理3.测量最大不失真输出电压先出现缩顶失真先出现削底失真同时出现缩顶和削底失真iO7.研究静态工作点对输出波形的影响共射放大电路的静态工作点在实验中随可变电阻R b1的阻值而改变,实验中和仿真均调整电位器使I CQ=6mA,而且理论值根据仿真的参数计算,实际上并不合理,因为仿真使用的三极管规格和实验不同,理论计算的值更适用于仿真结果,实验结果仅能用作参考。
电压放大倍数的实验值、理论值和仿真值都较为接近,由共射放大电路的放大倍数表达式其中r be已确定,R L’为等效负载,当负载增大时放大倍数也会增大,但本实验电路中最大的负载电阻为R C=1k Ω,外接R L=1kΩ时,等效负载为500Ω,因此开路的放大倍数应该为接1kΩ负载时的两倍,实验中开路放大倍数为97.8倍,负载1kΩ的放大倍数为49.3倍,97.8/49.3=1.98,非常符合预期。
最大不失真输出电压实际上在示波器难以测量,因为通过人眼判断正弦波形是否失真偏于主观,往往无法准确判定在某静态工作点下波形失真的临界输出电压,且当负载不同时,截止失真和饱和失真出现的先后可能不同,故实验中测得的数据仅作娱乐。
另外还保存了几种失真在不同位置出现的图片,也可以在仿真中进行观察。
输入电阻和输出电阻的理论值和仿真值非常吻合,但输入电阻的实验值差距较大,可能的原因是输入电压V S经过一个5.1kΩ的电阻R S分压,另一部分V i作为放大电路的输入信号,但实验中的V S和V i没有反复测量,可能在操作过程中已经变化,由输入电阻的计算公式如下:而R比较大,可见V S和V i的数量级相同,而且为比值形式,所以它们取值的较小变化对结果也会有较大影响,实验中应更加注重这两个数据的测量准确性。
通频带宽的测量,实验结果比仿真带宽更窄,也是三极管特性不同的原因,而且实验中由于结电容效应更加显著,通频带宽也会变窄。
对于不同静态工作点的输出特性,可以看出下图中当I CQ较小时,负载线斜率大小较小,正弦波形更靠近截止方向;当I CQ增大时,负载线斜率变大,正弦波更靠近饱和方向。
因此实验中I CQ=2mA时先出现了截止失真,I CQ=7mA 时先出现了饱和失真。
七、讨论、心得本次实验有较多心得,主要是巩固了理论课的知识,前面用到的很多理论计算都不太容易,但最后跟仿真都符合得很好,但另一方面我认为本实验的仿真对实验没有太大的对比价值,因为三极管元件型号不同,且电位器位置也未必和实验一样,测算的数据自然也有很多不同。
但某些测量值存在较大的偏差,为了解释这些偏差需要了解电路里一些在实际实验中可能显著的现象比如结电容效应等,也加深了我对电路元件特性的认识。
另外,在老师所给实验PDF的第8页中,放大倍数的公式里不应该出现(1+β)R b2的项,而r be的计算公式中按照前面的约定,300应该改为200。
(1)试分析电路中的Re2、Rb1、Cb起什么作用?答:R e2作为发射极电阻,起到了很好的负反馈作用,当由于某些外部原因(如温度改变)引起电路内部参数变化,假设I C增大,相当于I E增大,则射极电阻R e2两端电压也增大,由于V CC不变,所以V BE减小,从而I C减小,使电流稳定;R b1在电路中起到了保护电位器的作用,当电位器调节到0时,I C可能比较大烧坏管子,R b1可以限流;C b实现了低频信号隔离作用,输入信号中的直流成分无法通过电容,因此不会影响三极管的静态工作点,而交流信号可以通过电容并被放大。
(2)当静态工作电流I CQ通过测量V E或V C来间接地得到时,分析万用表内阻对测量误差的影响。
答:查手册得万用表在20V量程下内阻为10MΩ,比被测的R C=1kΩ大4个数量级,由电表误差公式代入数据得ΔU=6×10-4V,基本上可以忽略;(3)各仪器的接地端不再连在一起,示波器上的波形将发生什么变化?答:会造成示波器不同频道的参考零电势点不同,于是波形会出现数值方向上的平移,形状没有影响。
(4)在测试各项参数时,为什么要用示波器监视输出波形不失真?答:若波形发生失真,表明三极管并未工作在线性放大区,所有的理论公式便不再适用。
(5)与负载开路相比,接上负载对放大电路的上下限频率有什么影响?在测上限和下限频率时,如何择输入信号的大小?为什么使输出电压为1V?答:接上负载后,电路的等效负载变小,时间常数变小,因为上限截止频率由高频时间常数中最大的一个决定,因此放大倍数降低了,而上限频率会变大,通频带宽也更大,但下限频率基本不受影响。
且实验中测得数据计算得:29.7kHz×97.8≈51.9kHz×49.3符合通频率带宽积的公式。
在接负载或开路的情况下,已知放大倍数,估算并调节输入信号幅值使得输出幅值不失真且不能太小,然后满足为方便观察的值即可。
输出为1V时,到截止频率时的输出应该恰好变为0.707V,方便观察示数;但实际上若先设置输出为1.414V,截止频率便恰好为1V也很方便,我认为只要示数便于观察都是可取的。
(6)用示波器同时观察放大电路输入、输出波形的相位关系时,示波器上有关按钮应置什么位置?答:将放大电路的输入和输出端分别接到示波器两个通道并共地,此时要保持水平控制按钮位于原位,两个波形的显示选项中不启用反相等改变相位的功能,可适当调节垂直控制使两个波形的幅值利于观察。
(7)在测量输入电阻时,为什么不能直接测Rs两端的压降?答:因为R S两端没有和电路共地的点,若用一端接地的电表测量,会干扰电路信号,造成误差。
(8)如何判断放大器的截止和饱和失真?当出现这些失真时应如何调整静态工作点?答:对共射放大电路而言,当输出信号波谷被削平时即为饱和失真,应使静态工作点左移(I CQ减小);当输出信号波峰曲率半径变大时即为截止失真,应使静态工作点右移(I CQ增大)。
(9)在共射放大电路的静态工作点测量时,测得VCEQ<0.5V,说明三极管已处于饱和状态;若VCEQ≈+VCC(电源电压),则说明三极管已处于截止状态;若VBEQ>2V,估计该晶体管已被击穿。