相遇与追及

合集下载

相遇与追及问题

相遇与追及问题
⑴ 两个运动物体一般同地不同时(或同时不同地)出发作同向运动,在后面的,行进速度要快些,在前面的,行进速度要慢些.
⑵ 在一定时间内,后面的追上前面的.
共同点:⑴ 是否同时出发
⑵ 是否同地出发
⑶ 方向:同向、背向、相向
⑷ 方法:画图
3.简单的相遇与追及问题各自解题时的入手点及需要注意的地方
1.相遇问题:与速度和、路程和有关
【巩固】甲、乙两车同时从A,B两地相向而行,它们相遇时距A,B两地中心处8千米,已知甲车速度是乙车的1.2倍,求A,B两地的距离。
【巩固】甲乙二人同时分别自A、B两地出发相向而行,相遇之地距A、B中点300米,已知甲每分钟行100米,乙每分钟行70米,求A地至B地的距离.
4.行程间的倍比关系
【例 8】甲、乙两车分别同时从 、 两地相对开出,第一次在离 地95千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离 地25千米处相遇.求 、 两地间的距离.
5.王新从教室去图书馆还书,如果每分钟走70米,能在图书馆闭馆前2分钟到达,如果每分钟走50米,就要超过闭馆时间2分钟,求教室到图书馆的路程有多远?
6.甲、乙两车分别同时从 、 两地相对开出,第一次在离 地 千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离 地 千米处相遇.求 、 两地间的距离?
⑴ 是否同时出发
⑵ 是否有返回条件
⑶ 是否和中点有关:判断相遇点位置
⑷ 是否是多次返回:按倍数关系走。
⑸ 一般条件下,入手点从"和"入手,但当条件与"差"有关时,就从差入手,再分析出时间,由此再得所需结果
2.追及问题:与速度差、路程差有关
⑴ 速度差与路程差的本质含义
⑵ 是否同时出发,是否同地出发。

高中物理相遇和追及问题(完整版)

高中物理相遇和追及问题(完整版)

高中物理相遇和追及问题(完整版)相遇追及问题一、考点、热点回顾追及问题分为速度小者追速度大者和速度大者追速度小者两种情况。

1.速度小者追速度大者类型:匀加速追匀速图象说明:① t=t 以前,后面物体与前面物体间距离增大② t=t 时,两物体相距最远为x+Δx匀速追匀减速③ t=t 以后,后面物体与前面物体间距离减小④能追及且只能相遇一次匀加速追匀减速2.速度大者追速度小者类型:匀减速追匀速开始追及时,后面物体与前面物体间的距离在减小,当两物体速度相等时,即 t=t0 时刻:①若Δx=x0,则恰能追及,两物体只能相遇一次,这也是避免相撞的临界条件②若Δx<x0,则不能追及,此时两物体最小距离为 x0-Δx③若Δx>x0,则相遇两次,设 t1 时刻Δx1=x0,两物体第一次相遇,则 t2 时刻两物体第二次相遇匀减速追匀加速注意:① Δx 是开始追及以后,后面物体因速度大而比前面物体多运动的位移;② x 是开始追及以前两物体之间的距离;③ t2-t1=t-t2;④ v1 是前面物体的速度,v2 是后面物体的速度。

二、相遇问题相遇问题分为同向运动的两物体的相遇问题和相向运动的物体的相遇问题。

解此类问题的思路:1.根据追赶和被追赶的两个物体的运动性质,列出两个物体的位移方程,并注意两物体运动时间之间的关系。

2.通过对运动过程的分析,画出简单的图示,找出两物体的运动位移间的关系式。

追及的主要条件是两个物体在追上时位置坐标相同。

3.寻找问题中隐含的临界条件。

例如速度小者加速追赶速度大者,在两物体速度相等时有最大距离;速度大者减速追赶速度小者,在两物体速度相等时有最小距离,等等。

利用这些临界条件常能简化解题过程。

4.求解此类问题的方法,除了根据追及的主要条件和临界条件解联立方程外,还可以利用二次函数求极值,应用图象法和相对运动知识求解。

相遇问题的分析思路:相遇问题分为追及相遇和相向运动相遇两种情形,其主要条件是两物体在相遇处的位置坐标相同。

(完整版)相遇问题与追及问题

(完整版)相遇问题与追及问题

相遇与追及问题一、学习目标1.理解相遇与追及的运动模型,掌握相遇与追及这两种情况下路程、时间、速度这三个基本量之间的关系.会利用这个关系来解决一些简单的行程问题.2.体会数形结合的数学思想方法.二、主要内容1.行程问题的基本数量关系式:路程二时间X速度;速度二路程F时间;时间二路程F速度.2.相遇问题的数量关系式:相遇路程二相遇时间X速度和;速度和二相遇路程F相遇时间;相遇时间二相遇路程F速度和.3.追及问题的数量关系式:追及距离二追及时间X速度差;速度差二追及距离F追及时间;追及时间二追及距离F速度差.4.能熟练运用路程、时间、速度这三个基本量的关系,结合图形分析,解决一些简单的行程问题.三、例题选讲例1两辆汽车同时分别从相距500千米的A,B两地出发,相向而行,速度分别为每小时40千米和每小时60千米.求几小时后两车相遇.例2甲车在乙车前200千米,同时出发,速度分别为每小时40千米与60千米.问多少小时后,乙车追上甲车.例3一辆公共汽车和一辆小轿车同时从相距598千米的两地相向而行.公共汽车每小时行40千米,小轿车每小时行52千米,问几小时后两车相距138千米?例4甲、乙两辆汽车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米,两车在离中点32千米处相遇.求东、西两地相距多少千米?例6一辆卡车和一辆摩托车同时从A、B两地相对开出,两车在途中距A地60千米处第一次相遇•然后,两车继续前进,卡车到达B地,摩托车到达A地后都立即返回,两车又在途中距B地30千米处第二次相遇.求A、B两地相距多少千米?例7甲、乙、丙三人进行100米赛跑•当甲到达终点时,乙离终点还有20米,丙离终点还有40米.如果甲、乙、丙赛跑的速度都不变,那么当乙到达终点时,丙离终点还有多远?例8小明步行上学,每分行75米,小明离家12分后,爸爸骑单车去追,每分行375米.问爸爸出发多少分后能追上小明?例9解放军某部快艇追击敌舰,追到A岛时,敌舰已逃离该岛15分钟,已测出敌舰每分钟行驶1000米,解放军快艇每分钟行驶1360米,在距离敌舰600米处可开炮射击.问解放军快艇从A岛出发经过多少分钟就可以开炮射击敌舰?例10甲、乙两人在环形跑道上以各自的不变速度跑步,如果两人同时从同地相背而行乙跑4分钟后两人第一次相遇,已知甲跑一周需6分钟,那么乙跑一周需要多少分钟?例11两名运动员在湖周围环形道上练习长跑,甲每分跑250米,乙每分跑200米,两人同时从两地同向出发,经过45分甲追上乙,如果两人同时同地反向出发,经过多少分两人相遇?例12甲、乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米,如果她们同时分别从直路两端点出发,跑了6分,那么,这段时间内,两人共迎面相遇了多少次?巩固练习:1、甲、乙两站相距980千米,两列火车由两站相对开出,快车每小时行50千米,慢车每小时行多少千米,两车经10小时能相遇?2、甲车每小时行60千米,1小时后,乙车紧紧追赶,速度为每小时80千米,几小时后乙车可追上甲车?3、早晨6时,有一列货车和一列客车同时从相距360千米的甲、乙两城相对开出,中途相遇,这期间,货车停车一次60分钟,客车停车两次各30分钟,已知货车每小时行42千米,客车每小时行78千米,问两车在几点钟相遇?4、东、西两镇相距240千米,一辆客车从上午8时从东镇开往西镇,一辆货车在上午9时从西镇开往东镇,到正午12点,两车恰好在两镇间的中点相遇,如果两车都从上午8时由两地相向开出,速度不变,到上午10时,两车还相距多少千米?5、骑单车从甲地到乙地,以每小时10千米的速度行进,下午1点到,以每小时15千米的速度行进,上午11点到.如果希望中午12点到,那么应以怎样的速度行进呢?6、某人由甲地去乙地,如果他从甲地先骑摩托车行了12小时,再换骑自行车行9小时,恰好到达乙地.如果他从甲地先骑自行车行了21小时,再换骑摩托车行8小时,也恰好到达乙地.问:全程骑摩托车需要多少小时才能到达乙地?7、兄妹两人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米,哥哥到校门口时,发现忘了带课本,立即沿原路返回去取,行至离校门口180米处与妹妹相遇,他们家离学校多少米?8、兄妹两人在周长300米的圆形水池边玩.从同一地点同时背向饶水池而行.哥哥每分钟走13米,妹妹每分钟走12米.他们第5次相遇时,哥哥共走了多长的路?课后作业:1.甲以每小时4千米的速度步行去学校,乙比甲晚4小时骑自行车从同一地点出发去追甲,乙每小时行12千米,乙多少小时可追上甲?2.小张从家到公园,原打算每分钟走50米,为了提早10分钟到,他把速度加快,每分钟走75米.小张家到公园有多少米?3.父亲和儿子都在某厂工作,他们从家里出发步行到工厂,父亲用40分钟,儿子用30分钟.如果父亲比儿子早5分钟离家,问儿子用多少分钟可赶上父亲?4.解放军某部小分队,以每小时6千米的速度到某地执行任务,途中休息30分后继续前进,在出发5.5小时后,通讯员骑摩托车以56千米的速度追赶他们。

追及和相遇问题

追及和相遇问题

例3:一辆轿车违章超车,以108km/h的速度驶入 左侧逆行道时,猛然发现正前方80m处一辆卡车 正以72km/h的速度迎面驶来,两车司机同时刹 车,刹车加速度大小都是10m/s2,两司机的的反 应时间(即司机发现险情到实施刹车所经历的时 间)都是△t,试问△t是何数值 ,才能保证两车不相 撞?
例 4:一辆轿车的最大速度为30m/s,要想从静止开 始用4分钟追上前面1000m处以25m/s匀速同向 行驶的货车,轿车至少要以多大的加速度起速运动的物体甲追 赶同方向匀加速运动的物体乙。(v甲﹥ v0乙)
v甲 S0 v0乙 a
A、当v乙= v甲时:S甲=S0+S乙,甲恰好追上乙 B、当v乙= v甲时: S甲<S0+S乙,甲永远追不上乙, 此时两者有最小间距⊿Smin C、当v乙< v甲时: S甲>S0+S乙,甲追上了乙,由 乙作匀加速运动,以后v乙> v甲,则乙还有一次 追 上甲的机会,其间两者速度相等时两者距离 v 有一个较大值。 v
追及和相遇问题
追及问题:追和被追的两物体同向运动,往 往当两者速度相等是能否追上或者两者距离有最 大值、最小值的临界条件。追及问题常见情形有 三种: ①同时同地出发:初速为零的匀加速直线运动物体 甲追匀速运动的物体乙:一定能追上,当v甲= v乙 时,两者之间有△xmax v(m/s) v0甲=0 v0乙 a o 甲
(2)相遇问题:相遇问题分为追及相遇和相向相 遇问题,上面三种常见问题属于追及相遇问题, 至于相向相遇问题,我们通过例题来进行说明, 本节课重点解决追及相遇问题。 对于追及相遇问题我们解题过程中要弄清 物体的运动过程,挖掘题中隐含的临界条件,在 解题方法上常常用到解析法、数学法、图象法、 相对运动法等等。
例1:火车以速度v1匀速行驶,司机发现前方同轨 道上相距S处有另一火车沿同方向以速度v2(对 地,且v1> v2)做匀速运动,司机立即以加速度 大小为a紧急刹车,要使两车不相撞, a应满足 什么条件?

高一物理专题:追及与相遇问题

高一物理专题:追及与相遇问题

专题追及与相遇问题一、追及问题1、追及与相遇的实质两物体能否在同一时刻到达同一位置。

2、两大关系:时间关系、位移关系。

3、巧用一个条件:两者速度相等;它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。

4、三种常见情形种:⑴初速度比较小(包括为零)的匀加速运动的物体甲追赶同方向的匀速运动的物体乙,一定能追上。

a、追上前,当两者速度相等时有最大距离;b、当两者位移相等时,即后者追上前者。

⑵匀减速运动的物体追赶同向的匀速运动的物体时,存在一个能否追上的问题。

判断方法是:假定速度相等,从位置关系判断。

解决问题时要注意二者是否同时出发,是否从同一地点出发。

a、当两者速度相等时,若追者位移仍小于被追者,则永远追不上,此时两者间有最小距离;b、若两者速度相等时,两者的位移也相等,则恰能追上,也是两者避免碰撞的临界条件;c、若两者速度相等时,追者位移大于被追者,说明在两者速度相等前就已经追上;在计算追上的时间时,设其位移相等来计算,计算的结果为两个值,这两个值都有意义。

即两者位移相等时,追者速度仍大于被追者的速度,被追者还有一次追上追者的机会,其间速度相等时两者间距离有一个较大值。

⑶匀速运动的物体甲追赶同向匀加速运动的物体乙,情形跟⑵类似。

匀速运动的物体甲追赶同向匀减速运动的物体乙,情形跟⑴类似;被追赶的物体做匀减速运动,一定要注意追上前该物体是否已经停止运动。

5、解追及与相遇问题的思路(1)根据对两物体的运动过程分析,画出物体运动示意图(2)根据两物体的运动性质,(巧用“速度相等”这一条件)分别列出两个物体的位移方程,注意要将两物体的运动时间的关系反映在方程中(3)由运动示意图找出两物体位移间的关联方程(4)联立方程求解6、注意:⑴要抓住一个条件,两个关系:一个条件是两物体的速度满足的临界条件,如两物体距离最大、最小,恰好追上或恰好追不上等。

两个关系是时间关系和位移关系,通过画草图找两物体的位移关系是解题的突破口。

追及与相遇问题(详解)

追及与相遇问题(详解)

追及与相遇问题两物体在同一直线上追及、相遇或避免碰撞问题中的条件是:两物体能否同时到达空间某位置。

因此应分别对两物体进行研究,列出位移方程,然后利用时间关系、速度关系、位移关系求解。

一、追及问题1、追及问题的特征及处理方法:“追及”主要条件是:两个物体在追赶过程中处在同一位置,常见的情形有三种:⑴初速度比较小(包括为零)的匀加速运动的物体甲追赶同方向的匀速运动的物体乙,一定能追上。

a、追上前,当两者速度相等时有最大距离;b、当两者位移相等时,即后者追上前者。

⑵匀减速运动的物体追赶同向的匀速运动的物体时,存在一个能否追上的问题。

判断方法是:假定速度相等,从位置关系判断。

解决问题时要注意二者是否同时出发,是否从同一地点出发。

a、当两者速度相等时,若追者位移仍小于被追者,则永远追不上,此时两者间有最小距离;b、若两者速度相等时,两者的位移也相等,则恰能追上,也是两者避免碰撞的临界条件;c、若两者速度相等时,追者位移大于被追者,说明在两者速度相等前就已经追上;在计算追上的时间时,设其位移相等来计算,计算的结果为两个值,这两个值都有意义。

即两者位移相等时,追者速度仍大于被追者的速度,被追者还有一次追上追者的机会,其间速度相等时两者间距离有一个较大值。

⑶匀速运动的物体甲追赶同向匀加速运动的物体乙,情形跟⑵类似。

匀速运动的物体甲追赶同向匀减速运动的物体乙,情形跟⑴类似;被追赶的物体做匀减速运动,一定要注意追上前该物体是否已经停止运动。

2、分析追及问题的注意点:⑴要抓住一个条件,两个关系:一个条件是两物体的速度满足的临界条件,如两物体距离最大、最小,恰好追上或恰好追不上等。

两个关系是时间关系和位移关系,通过画草图找两物体的位移关系是解题的突破口。

⑵若被追赶的物体做匀减速运动,一定要注意追上前该物体是否已经停止运动。

⑶仔细审题,充分挖掘题目中的隐含条件,同时注意v t 图象的应用。

二、相遇⑴同向运动的两物体的相遇问题即追及问题,分析同上。

相遇与追及

相遇与追及

知识点详解一、相遇甲从A 地到B 地,乙从B 地到A 地,然后两人在途中相遇,实质上是甲和乙一起走了A,B 之间这段路程,如果两人同时出发,那么相遇路程=甲走的路程+乙走的路程=甲的速度×相遇时间+乙的速度×相遇时间=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间.一般地,相遇问题的关系式为:速度和×相遇时间=路程和,即=t S V 和和二、追及有两个人同时行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他.这就产生了“追及问题”.实质上,要算走得快的人在某一段时间内,比走得慢的人多走的路程,也就是要计算两人走的路程之差(追及路程).如果设甲走得快,乙走得慢,在相同的时间(追及时间)内:追及路程=甲走的路程-乙走的路程=甲的速度×追及时间-乙的速度×追及时间=(甲的速度-乙的速度)×追及时间=速度差×追及时间.一般地,追击问题有这样的数量关系:追及路程=速度差×追及时间,即=t S V 差差三、在研究追及和相遇问题时,一般都隐含以下两种条件:(1)在整个被研究的运动过程中,2个物体所运行的时间相同(2)在整个运行过程中,2个物体所走的是同一路径。

⨯⎧⎪÷⎨⎪÷⎩÷⎧⎪⨯⎨⎪÷⎩总路程=速度和相遇时间相遇问题速度和=总路程相遇时间相遇时间=总路程速度和追及时间=追及路程速度差追及问题追及路程=速度差追及时间速度差=追及路程追及时间例题详解例题讲解:(简单的相遇追及问题)【例1】一列快车和一列慢车同时从甲乙两地相向而行,慢车每小时行50千米,快车比慢车快20%,经过2.5小时,两车相遇,请问甲乙两地相距多少千米?【练习1】甲、乙二人分别从A、B两地同时出发,如果两人同向而行,甲26分钟赶上乙;如果两人相向而行,6分钟可相遇,又已知乙每分钟行50米,求A、B两地的距离。

追及和相遇问题

追及和相遇问题

例2 在水平直轨道上有两列火车 A和 B相距s, A车在后面 做初速度为 v 0 、加速度大小为 2 a的匀减速直线运动,而 B车 同时做初速度为零、加速度大小为 a 的匀加速直线运动,两 车运动方向相同.要使两车不相撞, A车的初速度 v 0 应满足 什么条件? 【解析】 解法一 取 A 车开始刹车位置处为位移参考 点,有: 1 s A = v0 t - · 2at2 12 2 sB=s+ at 2 在两车恰好要接触而又不相撞的t时刻有: sA=sB,v0-2at=at v0 1 v0 2 v0 2 即v0· -a· ( ) =s+ a· ( ) 3a 2 3a 3a 解得:v0= 6as 故v0< 6as 时,两车不相撞.
2.两辆游戏赛车 a 、 b在两条平行的直车道上行驶. t= 0时 两车都在同一计时线处,此时比赛开始.它们在比赛中的v-t图 象如图所示.关于两车的运动情况, 下列说法正确的是( )
CD
A.两辆车在前10 s内,b车在前,a车在后,距离越来越大 B.a车先追上b车,后b车又追上a车 C . a 车与 b 车间的距离先增大后减小再增大,但 a 车始终 没有追上b车 D . a 车先做匀加速直线运动,后做匀减速直线运动,再做 匀速直线运动,b车做匀速直线运动
3.一步行者以 6.0 m/s 的速度跑去追赶被红灯阻停的公 交车, 在跑到距汽车 25 m 处时, 绿灯亮了, 汽车以 1.0 m/s2 的加速度匀加速启动前进,则 ( )
A.人能追上公共汽车,追赶过程中人跑了 36 m B.人不能追上公共汽车,人、车最近距离为 7 m C .人能追上公共汽车,追上车前人共跑了 43 m D.人不能追上公共汽车,且车开动后,人车距离越来越远
答案:B
4 .一辆值勤的警车停在公路边,当警员发现从他旁边 以 10 m/s 的速度匀速行驶的货车严重超载时,决定前去追 赶.经过5.5 s后警车发动起来,并以2.5 m/s2的加速度做匀加 速运动,但警车的行驶速度必须控制在90 km/h以内.问: (1)警车在追赶货车的过程中,两车间的最大距离是多少? (2)警车发动后要多长时间才能追上货车? 【解析】解法一 (1)警车在追赶货车的过程中,当两车 的速度相等时,它们之间的距离最大.设警车发动后经过 t 1 时间两车的速度相等,则: 10 t 1 = s= 4 s 2 .5 s货=(5.5+4)×10 m=95 m 1 1 s警= at12= ×2.5×42 m=20 m 2 2 所以两车间的最大距离Δs=s货-s警=75 m.

行程问题之相遇问题和追及问题

行程问题之相遇问题和追及问题

行程问题之相遇问题和追及问题知识简析:行程问题是反映物体匀速运动状况的应用题,它研究的是物体运动速度、时间和路程三者之间的关系。

基本数量关系式为:路程=速度×时间;路程÷时间=速度;路程÷速度=时间行程问题根据运动物体的个数可分为:一个物体的运动、两个物体的运动或三个物体的运动。

这里主要研究两个物体的运动,根据两个物体运动的方向,可分为:相遇问题(相向运动)、追及问题(同向运动)、相离问题(相背运动)三种情况。

两个物体运动时,运动的方向与运动的速度有着很大关系,当两个物体相向运动或相背运动时,以两个运动物体速度的和作为运动速度(简称速度和),当两个物体同向运动时,追击的速度就变为了两个运动物体速度的差(简称速度差)。

一、相遇问题。

两个物体在同一直线或环形路线上,同时或不同时由两地出发相向而行,在途中相遇,此类行程问题被称为相遇问题。

两个物体同时或不同时从同一地点出发,相背而行,此类行程问题被称为相离问题。

相离问题就相当于相遇问题的逆过程,这两类问题解题方法相同。

常用数量关系式为:甲的路程+乙的路程=相遇(或相离)路程速度和×相遇(或相离)时间=相遇(或相离)路程相遇(或相离)路程÷速度和=相遇(或相离)时间相遇(或相离)路程÷相遇(或相离)时间=速度和二、追及问题。

两物体在同一直线或环形路线上运动,速度慢的在前,速度快的在后,经过一段时间,速度快的追上速度慢的,此类问题通常被称为追及问题。

常用数量关系式为:路程差=追及者所行路程-被追者所行路程追及时间×速度差=路程差追及时间=路程差÷速度差速度差=路程差÷追及时间相遇问题例1、甲、乙两辆汽车分别以不同的速度同时从A、B两地相对而行,途中相遇,相遇点距A地60千米。

相遇后两车以原速前进,到底目的地后,两车立即返回,在途中又第二次相遇,这时距A地40千米。

问第一次相遇点距B地多少千米?练习一:1、甲、乙两人分别从两地同时相向而行,8小时后可以相遇。

物理必修1追及和相遇问题详细讲解

物理必修1追及和相遇问题详细讲解

《追及与相遇问题》一、相遇指两物体分别从相距x0的两地运动到同一位置,它们相遇的条件是特点是:两物体运动的距离之差等于x0,分析时要注意:⑴、两物体是否同时开始运动,两物体运动至相遇时,运动时间可建立一个方程;⑵、两物体各做什么形式的运动;⑶、由两者的时间关系,根据两者的运动形式,建立运动速度和运动距离两个方程的方程。

然后再看题中是否还能建立其它限制类方程。

最后解方程,作必要分析。

二、追及指两物体同向运动而达到同一位置。

找出两者的时间关系、位移关系是解决追及问题的关键,同时追及物与被追及物的速度恰好相等时临界条件,往往是解决问题的重要条件:(1)类型一:一定能追上类特点:①追击者的速度最终能超过被追击者的速度。

②追上之前有最大距离发生在两者速度相等时。

【例1】1999年5月11日《北京晚报》报道了一青年接住一个从15层楼窗口落下的孩子的事迹。

设每层楼高是2.8m,这位青年所在的地方离高楼的水平距离为12m,这位青年以6m/s的速度匀速冲到楼窗口下方,请你估算出他要接住小孩至多允许他有的反应时间(反应时间指人从发现情况到采取相应行动经过的时间)。

(g取10m/s2)【例2】一辆汽车在十字路口等绿灯,当绿灯亮时汽车以3m/s2的加速度开使行驶,恰在这时一辆自行车在汽车前方相距18m的地方以6m/s的速度匀速行驶,则何时相距最远?最远间距是多少?何时相遇?相遇时汽车速度是多大?(2)、类型二:不一定能追上类特点:①被追击者的速度最终能超过追击者的速度。

②两者速度相等时如果还没有追上,则追不上,且有最小距离。

【例3】一辆汽车在十字路口等绿灯,当绿灯亮时汽车以3m/s2的加速度开使行驶,恰在这时一辆自行车在汽车后方相距20m的地方以6m/s的速度匀速行驶,则自行车能否追上汽车?若追不上,两车间的最小间距是多少?【同步作业】1一辆汽车在十字路口等候绿灯.当绿灯亮时汽车以a=2m/s2的加速度开始行驶,恰在这时一辆自行车以v 自=10m/s 的速度匀速驶来,从后面超过汽车.问:(1)汽车从路口启动后,在追上自行车之前经过多长时间两者相距最远?最远距离是多少?(2)经多长时间汽车追上自行车?此时汽车离路口多远?汽车的速度是大?2、在一条平直的公路上,乙车以10m/s 的速度匀速行驶,甲车在乙车的后面作初速度为15m/s ,加速度大小为0.5m/s 2的匀减速运动,则两车初始距离L 满足什么条件时可以使(1)两车不相遇;(2)两车只相遇一次;(3)两车能相遇两次(设两车相遇时互不影响各自的运动)。

追及与相遇问题

追及与相遇问题
追及与相遇问题 1.相遇:若同一时刻,两物体处于同一位置,则说两物
体在该时刻相遇。
2.追及:(1)若追及过程中,前者速度小于后者速度,
两物体距离越来越近; (2)若追及过程中,前者速度大于后者速度, 两物体距离越来越近。 (3)若后者能追上前者,则速度一定不小于前 者。
3.临界:速度相等时是物体距离极大值或极小值的时
例2、A火车以v1=20m/s速度匀速行驶,司机发现
前方同轨道上相距100m处有另一列火车B正以 v2=10m/s速度匀速行驶,A车立即做加速度大小为 a的匀减速直线运动。要使两车不相撞,a应满足 什么条件?
例3、A、B两车在平直的公路上分别以v1=10 m/s和v2=20 m/s的速度匀速行驶,两车相距 10m处,从该时刻起,前方的B车以2m/s2的 恒定加速度开始刹车,求A车何时追上B车?
例4、甲、乙两汽车在一条平直的单行道上乙前甲
后同向匀速行驶.甲、乙两车的速度分别为v1=40 m/s和v2=20 m/s ,当两车距离接近到250 m时两车 同时刹车,已知两车刹车时的加速度大小分别为 a1=1 m/s2和a2=1/3 m/s2问甲车是 Nhomakorabea会撞上乙车?
刻———速度相等往往是追及过程中两物体能 否相遇的临界条件。
追及与相遇问题
解题思路 1.分析相互追及的两物体运动情况,画出运动示意图;
2.由运动示意图找出两物体位移关系;
3.根据位移关系由位移公式列方程求解或利用速度时间图 像求解。
例1、一辆汽车在十字路口等候绿灯,当绿灯亮时
汽车以3m/s2的加速度开始加速行驶,恰在这时一 辆自行车以6m/s的速度匀速驶来,从后边超过汽 车。试求:汽车从路口开动后,在追上自行车之前 经过多长时间两车相距最远?此时距离是多少?汽 车在第几秒追上自行车?

(完整版)高中物理相遇和追及问题(完整版)

(完整版)高中物理相遇和追及问题(完整版)

相遇追及问题一、考点、热点回顾一、追及问题1.速度小者追速度大者类型图象说明匀加速追匀速①t=t0以前,后面物体与前面物体间距离增大②t=t0时,两物体相距最远为x0+Δx③t=t0以后,后面物体与前面物体间距离减小匀速追匀减速④能追及且只能相遇一次匀加速追匀减速2.速度大者追速度小者度大者追速度小者匀减速追匀速开始追及时,后面物体与前面物体间的距离在减小,当两物体速度相等时,即t=t0时刻:①若Δx=x0,则恰能追及,两物体只能相遇一次,这也是避免相撞的临界条件匀速追匀加速②若Δx<x0,则不能追及,此时两物体最小距离为x0-Δx③若Δx>x0,则相遇两次,设t1时刻Δx1=x0,两物体第一次相遇,则t2时刻两物体第二次相遇匀减速追匀加速①表中的Δx是开始追及以后,后面物体因速度大而比前面物体多运动的位移;②x0是开始追及以前两物体之间的距离;③t2-t0=t0-t1;④v1是前面物体的速度,v2是后面物体的速度.二、相遇问题这一类:同向运动的两物体的相遇问题,即追及问题.第二类:相向运动的物体,当各自移动的位移大小之和等于开始时两物体的距离时相遇.解此类问题首先应注意先画示意图,标明数值及物理量;然后注意当被追赶的物体做匀减速运动时,还要注意该物体是否停止运动了.求解追及问题的分析思路(1)根据追赶和被追赶的两个物体的运动性质,列出两个物体的位移方程,并注意两物体运动时间之间的关系.(2)通过对运动过程的分析,画出简单的图示,找出两物体的运动位移间的关系式.追及的主要条件是两个物体在追上时位置坐标相同.(3)寻找问题中隐含的临界条件.例如速度小者加速追赶速度大者,在两物体速度相等时有最大距离;速度大者减速追赶速度小者,在两物体速度相等时有最小距离,等等.利用这些临界条件常能简化解题过程.(4)求解此类问题的方法,除了以上所述根据追及的主要条件和临界条件解联立方程外,还有利用二次函数求极值,及应用图象法和相对运动知识求解.相遇问题相遇问题的分析思路:相遇问题分为追及相遇和相向运动相遇两种情形,其主要条件是两物体在相遇处的位置坐标相同.(1)列出两物体运动的位移方程、注意两个物体运动时间之间的关系. (2)利用两物体相遇时必处在同一位置,寻找两物体位移间的关系. (3)寻找问题中隐含的临界条件.(4)与追及中的解题方法相同.二、典型例题【例1】物体A 、B 同时从同一地点,沿同一方向运动,A 以10m/s 的速度匀速前进,B 以2m/s 2的加速度从静止开始做匀加速直线运动,求A 、B 再次相遇前两物体间的最大距离. 【解析一】 物理分析法A 做 υA =10 m/s 的匀速直线运动,B 做初速度为零、加速度a =2 m/s 2的匀加速直线运动.根据题意,开始一小段时间内,A 的速度大于B 的速度,它们间的距离逐渐变大,当B 的速度加速到大于A 的速度后,它们间的距离又逐渐变小;A 、B 间距离有最大值的临界条件是υA =υB . ① 设两物体经历时间t 相距最远,则υA =at ② 把已知数据代入①②两式联立得t =5 s 在时间t 内,A 、B 两物体前进的距离分别为 s A =υA t =10×5 m=50 ms B =12at 2=12×2×52m =25 mA 、B 再次相遇前两物体间的最大距离为 Δs m =s A -s B =50 m -25 m =25 m 【解析二】 相对运动法因为本题求解的是A 、B 间的最大距离,所以可利用相对运动求解.选B 为参考系,则A 相对B 的初速度、末速度、加速度分别是υ0=10 m/s 、υt =υA -υB =0、a =-2 m/s 2. 根据υt 2-υ0=2as .有0-102=2×(-2)×s AB 解得A、B 间的最大距离为s AB =25 m . 【解析三】 极值法物体A 、B 的位移随时间变化规律分别是s A =10t ,s B =12at 2=12×2×t 2 =t 5.则A 、B 间的距离Δs =10t -t 2,可见,Δs 有最大值,且最大值为Δs m =4×(-1)×0-1024×(-1) m =25 m【解析四】 图象法根据题意作出A 、B 两物体的υ-t 图象,如图1-5-1所示.由图可知,A 、B 再次相遇前它们之间距离有最大值的临界条件是υA =υB ,得t 1=5 s . A 、B 间距离的最大值数值上等于ΔOυA P 的面积,即Δs m =12×5×10 m=25 m .【答案】25 m【点拨】相遇问题的常用方法(1)物理分析法:抓好“两物体能否同时到达空间某位置”这一关键,按(解法一)中的思路分析.(2)相对运动法:巧妙地选取参考系,然后找两物体的运动关系.(3)极值法:设相遇时间为t ,根据条件列方程,得到关于t 的一元二次方程,用判别式进行讨论,若△>0,即有两个解,说明可以相遇两次;若△=0,说明刚好追上或相碰;若△<0,说明追不上或不能相碰.(4)图象法:将两者的速度时间图象在同一个坐标系中画出,然后利用图象求解. 拓展如图1-5-2所示是甲、乙两物体从同一地点,沿同一方向做直线运动的υ-t 图象,由图象可以看出 ( 〕A .这两个物体两次相遇的时刻分别是1s 末和4s 末B .这两个物体两次相遇的时刻分别是2s 末和6s 末C .两物体相距最远的时刻是2s 末D .4s 末以后甲在乙的前面【解析】从图象可知两图线相交点1s 末和4s 末是两物速度相等时刻,从0→2s,乙追赶甲到2s 末追上,从2s 开始是甲去追乙,在4s 末两物相距最远,到6s 末追上乙.故选B . 【答案】B【实战演练1】(2011·新课标全国卷)甲乙两辆汽车都从静止出发做加速直线运动,加速度方向一直不变。

追及和相遇问题

追及和相遇问题
在这段时间里,人、车的位移分别为:
x人=v人t=6×6=36m
x车=at′2/2=1×62/2=18m
△x=x0+x车-x人=25+18-36=7m
结论:速度大者减速追赶速度小者,追上前在两 个物体速度相等时,有最小距离.即必须在此之前
追上,否则就不能追上.
解析:作汽车与人的运动草图如下图甲和v-t图象如下图乙所 示.因v-t图象不能看出物体运动的初位置,故在图乙中标上两 物体的前、后.由图乙可知:在0~6 s时间内后面的人速度大, 运动得快;前面的汽车运动得慢.即0~6 s内两者间距越来越 近.因而速度相等时两者的位置关系,是判断人能否追上汽车
临界条件。
若无解,则不能追上。
代入数据并整理得:t2-12t+50=0 △=b2-4ac=122-4×50×1=-56<0
所以,人追不上车。
在刚开始追车时,由于人的速度大于车的速度, 因此人车间的距离逐渐减小;当车速大于人的 速度时,人车间的距离逐渐增大。因此,当人 车速度相等时,两者间距离最小。
at′= v人 t′=6s
的两个关系:
1.两个物体运动的时间关系; 2.两个物体相遇时必须处于同一位置。
即:两个物体的位移关系
③匀减速直线运动的物体追赶同向匀速(或匀加速)直线运动的 物体时,恰好追上(或恰好追不上)的临界条件为:即追尾时, 追及者速度等于被追及者速度.当追及者速度大于被追及者速度,
例题3:经检测汽车A的制动性能:以标准速度20m/s 在平直公路上行使时,制动后40s停下来。现A在平直 公路上以20m/s的速度行使发现前方180m处有一货车 B以6m/s的速度同向匀速行使,司机立即制动,能否
∵△x=x1-x2=v自t - at(2/2位移关系)

追及和相遇问题

追及和相遇问题

△x
x
v自t
1 2
at 2
6t
3 2
t2
x自
当t
6 2 (
3)
2s时
xm
62 4( 3)
6m
2
2
那么,汽车经过多少时间能追上自行车?此时汽车的速度是多
大?汽车运动的位移又是多大?
x
6T
3 2
T
2
0 x汽
T 4s
1 aT 2=24m 2
v汽
aT
12m /
s
方法四:相对运动法
选自行车为参照物,则从开始运动到两车相距最远这段过程中,
v自T
1 2
aT 2
T 2v自 4s a
v汽 aT 12m / s
x汽
1 2
aT 2=24m
方法二:图象法
解:画出自行车和汽车的速度-时间图线,自行车的位移x自等于 其图线与时间轴围成的矩形的面积,而汽车的位移x汽则等于其 图线与时间轴围成的三角形的面积。两车之间的距离则等于图
中矩形的面积与三角形面积的差,不难看出,当t=t0时矩形与三 角形的面积之差最大。
x汽
△x
x自
方法一:公式法
当汽车的速度与自行车的速度
x汽
相等时,两车之间的距离最大。设
经时间t两车之间的距离最大。则
△x
v汽 at v自
t v自 6 s 2s
x自
xm
x自
a
x汽
3
v自t
1 2
at 2
6 2m
1 2
3 22 m
6m
那么,汽车经过多少时间能追上自行车?此时汽车的速度是
多大?汽车运动的位移又是多大?

相遇与追及问题

相遇与追及问题

相遇与追及知识框架一、相遇甲从A地到B地,乙从B地到A地,然后两人在途中相遇,实质上是甲和乙一起走了儿8之间这段路程,如果两人同时出发,那么甲乙甲乙・・・・・A 3 A B0时刻唯每出发时向t后相遇相遇路程=甲走的路程+乙走的路程=甲的速度X相遇时间+乙的速度X相遇时间=(甲的速度+乙的速度)X相遇时间=速度和X相遇时间.一般地,相遇问题的关系式为:速度和X相遇时间二路程和,即S和二v n t二、追及有两个人同时行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他. 这就产生了“追及问题”.实质上,要算走得快的人在某一段时间内,比走得慢的人多走的路程,也就是要计算两人走的路程之差(追及路程).如果设甲走得快,乙走得慢,在相同的时间(追及时间)内:追及路程=甲走的路程-乙走的路程=甲的速度X追及时间-乙的速度X追及时间=(甲的速度-乙的速度)X追及时间=速度差X追及时间.一般地,追击问题有这样的数量关系:追及路程二速度差X追及时间,即S差=Qt例如:假设甲乙两人站在100米的跑道上,甲位于起点(0米)处,乙位于中间5米处,经过时间t后甲乙同时到达终点,甲乙的速度分别为、和y乙,那么我们可以看到经过时间t后,甲比乙多跑了5米,或者可以说,在时间t内甲的路程比乙的路程多5米,甲用了时间1追了乙5米甲甲乙乙«--- •----------------------- » ・・。

米 5米10。

米100三、相遇和追及在研究追及和相遇问题时,一般都隐含以下两种条件:(1)在整个被研究的运动过程中,2个物体所运行的时间相同(2)在整个运行过程中,2个物体所走的是同一路径。

Page 1 of 11例题精讲【例1】一辆客车与一辆货车同时从甲、乙两个城市相对开出,客车每小时行46千米,货车每小时行48千米。

3.5小时两车相遇。

甲、乙两个城市的路程是多少千米?【考点】行程问题 【难度】☆☆ 【题型】解答【解析】本题是简单的相遇问题,根据相遇路程等于速度和乘以相遇时间得到甲乙两地路程为:(46+48)X3.5=94X3.5=329 (千米).【答案】329千米【巩固】聪聪和明明同时从各自的家相对出发,明明每分钟走20米,聪聪骑着脚踏车每分钟比明明快42米,经过20分钟后两人相遇,你知道聪聪家和明明家的距离吗?【考点】行程问题 【难度】☆☆ 【题型】解答【解析】方法一:由题意知聪聪的速度是:20 + 42 = 62 (米/分),两家的距离=明明走过的路程+聪聪走 过的路程=20x 20 + 62x 20 = 400 +1240 = 1640 (米),请教师画图帮助学生理解分析.注意利用乘法分配律的反向应用就可以得到公式:S 和=v 和t .对于刚刚学习奥数的孩子, 注意引导他们认识、理解及应用公式.方法二:直接利用公式:S 和=v 和t =(20 + 62)x 20 = 1640 (米). 【答案】1640米【例2】A 、B 两地相距90米,包子从A 地到B 地需要30秒,菠萝从B 地到A 地需要15秒,现在包子和菠萝从A 、B 两地同时相对而行,相遇时包子与B 地的距离是多少米?【考点】行程问题 【难度】☆☆ 【题型】解答【解析】包子的速度:90 ・ 30 = 3 (米/秒),菠萝的速度:90 ・15 = 6 (米/秒),相遇的时间: 90 + (3 + 6) =10 (秒),包子距B 地的距离:90 — 3x 10 = 60 (米).【答案】包子距B 地的距离是60米【巩固】两地间的路程有255千米,两辆汽车同时从两地相对开出,甲车每小时行45千米,乙车每小时 行40千米。

相遇和追及问题

相遇和追及问题

相遇追及专题一、相遇追及问题的处理方法1、两个关系:两物体运动的时间与位移关系是解题的关键!位移关系一般如下:①相遇问题:210S S S += (S 0是初态时两物体的间距)②追及问题:前车后车S S S +=02、一个条件:速度相等是判断追及问题中能否追上、距离最大、最小的临界条件3、追及问题的分析思路(1)根据追赶和被追赶的两个物体的运动性质,列出两个物体的位移方程,并注意两物体运动时间之间的关系.(2)通过对运动过程的分析,画出简单的图示,找出两物体的运动位移间的关系式.追及的主要条件是两个物体在追上时位置坐标相同.(3)寻找问题中隐含的临界条件,例如速度小者加速追赶速度大者,在两物体速度相等时有最大距离;速度大者减速追赶速度小者,在两物体速度相等时有最小距离,等等.利用这些临界条件常能简化解题过程.(4)求解此类问题的方法,除了以上所述根据追及的主要条件和临界条件解联立方程外,还有利用二次函数求极值,及应用图象法和相对运动知识求解.4、相遇问题的分析思路相遇问题分为追及相遇和相向运动相遇两种情形,其主要条件是两物体在相遇处的位置坐标相同.(1)列出两物体运动的位移方程,注意两个物体运动时间之间的关系.(2)利用两物体相遇时必处在同一位置,寻找两物体位移间的关系.(3)寻找问题中隐含的临界条件.(4)与追及中的解题方法相同一、相遇和追及例1. A 火车以v 1=20m/s 速度匀速行驶,司机发现前方同轨道上相距100m 处有另一列火车B 正以v 2=10m/s 速度匀速行驶,A 车立即做加速度大小为a 的匀减速直线运动。

要使两车不相撞,a 应满足什么条件? 解析:(公式法)两车恰好不相撞的条件是两车速度相同时相遇。

由A 、B 速度关系: 21v at v =-由A 、B 位移关系: 022121x t v at t v +=- 2220221/5.0/1002)1020(2)(s m s m x v v a =⨯-=-=2/5.0s m a >∴ 例2.一辆汽车在十字路口等候绿灯,当绿灯亮时汽车以3m/s 2的加速度开始加速行驶,恰在这时一辆自行车以6m/s 的速度匀速驶来,从后边超过汽车。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相遇与追及例1.甲、乙二人分别从A、B两地同时出发,相向而行,出发时他们的速度比是3:2,他们相遇后,甲的速度提高了20%,乙的速度提高了30%,这样,当甲到达B地时,乙离A地还有14千米,那么,A、B两地间的距离是多少千米?[答疑编号0518400101]【答案】45【解答】图示:设出发时甲的速度为“3”,则乙的速度为“2”.相遇后,甲的速度为3×(1+20%)=,乙的速度为2×(1+30%)=.此时甲乙的速度比为:=18:13.那么,当甲由相遇点到达B时,走了如图所示的2段路程,相同时间内,乙走2×=,还剩下3-=段,由此知,图上的每一小段长为14÷=9(千米).则全程为9×5=45(千米).基础知识:1)相遇问题:两人在同一直线上行进,且行进的方向正对着对方(相向而行),则两人在中间某个地点相遇。

常用关系:相遇路程=速度和′相遇时间前提条件:时间相同(同时出发)2)追及问题:两人在同一直线上行进,且行进的方向相同(同向而行),如果后面的人速度更快一些,则他会在某个地点追上前面的人。

常用关系:追及路程=速度差′追及时间前提条件:时间相同(同时出发)例2.从A城到B城,甲要走2小时,乙要走1小时40分钟,若甲比乙先行10分钟,那么乙出发后多少分钟追上甲?[答疑编号0518400102]【答案】50【解答】甲走完全程用2小时,即120分钟,乙走完全程需1小时40分钟,即100分钟。

将A城到B城的路程设为单位“1”,则甲、乙的速度分别为和。

追及路程即为甲10分钟所走的路程:,追及时间为:分钟。

例3.自行车队出发12分钟后,小张骑摩托车开始追,在距离出发点9千米处追上.小张立刻返回到出发点并且再次追赶自行车队,在距离出发点18千米处再次追上,那么自行车队每分钟前进多少米?[答疑编号0518400103]【答案】500【解答】因为两次追上的地点分别距离出发点为9千米和18千米,所以小张在两次相遇之间一共走了9+18=27千米.同时自行车队前进了18-9=9千米,因此小张的速度是自行车队的27÷9=3倍.于是小张骑摩托车开始追自行车队的时候,自行车队应该距离出发点9-9÷3=6千米,而这时车队已经出发了12分钟,所以车队的速度是6000÷12=500米/分钟.总结:在多人或多段行程问题中,我们要善于根据图示,发现可作为突破口的行程路段。

这类行程路段要么有同一个人的三量(路程、速度、时间)之二是已知的,要么有两个人的对应量是已知的。

例4.从甲市到乙市有一条公路,它分成三段.在第一段上,汽车速度是每小时40千米;在第二段上,汽车速度是每小时90千米;在第三段上,汽车速度是每小时50千米.已知第一段公路的长恰好是第三段的2倍.现在两辆汽车分别从甲、乙两市同时出发,相向而行,1小时20分后,在第二段的三分之一处相遇,那么甲乙两市相距多少千米?[答疑编号0518400104]【答案】185【解答】图示:如图1,记两辆汽车在B点相遇,并设汽车走完第三段公路(即从乙到C)所用时间为单位1.由于在第一段和第三段公路上汽车的速度比是40:50,而第一段公路的长是第三段的2倍,所以走完第一段公路的时间是个单位.那么当从甲市出发的汽车走完第一段公路到达A时,另一辆汽车已经在第二段公路上行驶了1.5个时间单位.因为两辆汽车在第二段公路上的速度相等,所以这时那辆汽车必然已经走了第二段公路的,因此从这时到两车相遇又经过了1.5个时间单位.这样从两车出发到相遇,一共是2.5+1.5=4个时间单位,所以每个时间单位是小时,那么甲乙两市之间的距离是千米.例5.小明从家去学校,出门一段时间后,爸爸发现小明未带铅笔盒,便骑车去追他.两人相遇之后爸爸立即回家,小明继续向学校走.爸爸到家后又发现小明未带作业本,拿着本再骑车去追他,而小明到校后也发现未带作业本,于是跑步回家去拿,与爸爸在途中相遇.已知两次的相遇点重合,相遇之间相差8分钟,且爸爸骑车的速度和小明跑步的速度分别是小明步行速度的4倍和3倍.那么小明步行从家到学校需要多少分钟?[答疑编号0518400105]【答案】22【解答】依题意,小明跑步从学校到相遇点的速度是他步行从相遇点到学校速度的3倍,所以在这段路程上,步行所用的时间是跑步的3倍,即步行了分钟.爸爸在相遇点与家之间往返一次需要8分钟,单程要分钟,因此从家到相遇点小明步行要分钟.从而小明步行去学校的时间为分钟.总结:图示法是分析复杂行程问题的重要方法。

例6.甲、乙两辆小汽车分别以每小时90千米和每小时60千米的速度从A地、B地出发相向而行,在此之前有一辆货车从A地出发向B地方向行驶.乙车在途中先与货车相遇,此时甲车距离它们有100千米;之后乙车与甲车相遇,此时货车与它们相距70千米.而当甲车追上货车时,它们已经经过B地又行驶了20千米.(1)货车每小时行驶多少千米?(2)甲、乙两地相距多少千米?[答疑编号0518400106]【答案】(1)45 (2)300【解答】(1)从第一次相遇到第二次相遇所用的时间是:小时,在这一过程中,乙车行驶的路程为:千米,这说明货车在这一过程中行驶的路程为:千米,因此货车的速度是:千米/小时。

(2)从第二次相遇到甲车追上货车的时间为:小时,这说明第二次相遇点到B地的距离是:千米,这也是甲乙两车出发到相遇时,乙车所走的路程,由两车的速度之比可得两车的总路程(即A、B两地的距离):千米。

例1.A、B两地相距4800米,甲住A地,乙和丙住在B地.有一天他们同时出发,乙、丙向A地前进,而甲向B地前进.甲和乙相遇后,乙立刻反身行进,10分钟后又与丙相遇.第二天他们又是同时出发,只是甲行进的方向与第一天相反,但三人的速度没有改变,乙追上甲后又立刻返身行进,结果20分钟后与丙相遇.已知甲每分钟走40米,求丙的速度.[答疑编号0518400201]【答案】60米/分【解答】由已知,第一天甲、乙相遇时乙、丙的距离是两人每分钟所走路程和的10倍,而第二天甲、乙追及时乙、丙的距离是两人每分钟所走路程和的20倍,因此第二天甲、乙追及时,乙、丙的距离是第一天的2倍.由于乙、丙的距离是乙、丙的速度差与甲、乙相遇所需时间的乘积,所以第二天甲、乙相遇所需时间是第一天的2倍.由于第二天甲、乙追及所需的时间=AB的距离÷甲和乙的速度差,而第一天甲、乙相遇所需的时间=AB的距离÷甲和乙的速度和,因此甲、乙的速度和是甲、乙的速度差的2倍.由于甲、乙的速度和是甲的速度的2倍加上两人速度差,因此甲速度的2倍等于甲、乙速度差,由此知乙的速度是甲的3倍,即乙每分钟走40×3=120米.在第一天中,甲、乙相遇用了4800÷(120+40)=30分钟,又乙返回10分钟后与丙相遇,因此乙、丙速度和是乙丙速度差的3倍,从而丙的速度为每分钟120×(3-1)÷(3+1)=60米.即丙每分钟走60米.例2.A、B、C、O四个小镇之间的道路分布如图所示,其中A、O两镇相距20千米,B、O两镇相距30千米.某天甲、乙二人同时从B出发,甲到达O镇后再向A镇走,到达A镇后又立刻返回,而乙到达O镇后直接向C镇行进.丙从C镇与甲、乙两人同时出发,在距离O镇15千米处与乙相遇.当丙到达O镇后又向A镇前行,在与O镇相距6千米的地方与甲相遇.已知甲、乙的速度比为8:9,求O、C两镇之间的距离.[答疑编号0518400202]【答案】50千米【解答】当乙和丙相遇时,乙已经走了30+15=45千米.由于甲乙两人的速度比是8∶9,因此这时甲已经走了45×8÷9=40千米.当甲和丙相遇时,甲已经走了30+20×2-6=64千米,因此两次相遇之间的时间是全部时间的.而丙在两次相遇之间走的路程是15+6=21千米,说明在与甲相遇前他一共走了千米,所以OC之间的距离是56-6=50千米.例3.在商场里并排安装有两个速度、长度都一样的自动扶梯,一个向上开,另一个向下开.小明和小强分别同时登上向上的和向下的扶梯.若小明还以一定的速度向上走,则两人经过60秒相遇;若小强也用同样的速度向下走,则两人只需要40秒即可相遇.现在如果他们都站在扶梯上不动,那么两人相遇需要多少秒?[答疑编号0518400203]【答案】120【解答】设电梯的长度为“1”,则有电梯速度的2倍加一人的速度为,电梯速度的2倍加两人的速度为,则人的速度为,因此电梯速度的2倍为,若两人都不动,则最后相遇时间为秒.例4.江上有甲、乙两码头,相距15千米,甲码头在乙码头的上游.一艘货船和一艘游船同时从甲码头和乙码头出发向下游行驶,5小时后货船追上游船;又行驶了1小时,货船上有一物品落入江中(该物品可以浮在水面上),6分钟后被货船上的人发现了,便掉转船头去找,找到时恰好又和游船相遇.问游船在静水中的速度为每小时多少千米?[答疑编号0518400204]【答案】15【解答】此题可以分为几个阶段来考虑.第一个阶段是一个追及问题.在货船追上游船的过程中,两者的追及距离是15千米,共用了5小时,故两者的速度差是15÷5=3千米.由于两者都是顺水航行,故在静水中两者的速度差也是3千米.在紧接着的1个小时中,货船开始领先游船,两者最后相距3×1=3千米.这时货船上的东西落入水中,6分钟后货船上的人才发现.此时货轮离落在水中的东西的距离已经是货轮的静水速度×(千米)。

从此时算起,到货轮和落入水中的物体相遇,又是一个相遇问题,两者的速度之和刚好等于货轮的静水速度,所以这段时间是货轮的静水速度×÷货轮的静水速度=小时.按题意,此时也刚好遇上追上来的游船.货船开始回追物体开始时,货船和游船刚好相距3+3×=千米,两者到相遇共用了小时。

故两者的速度和是每小时÷=33千米,这与它们两在静水中的速度和相等.又已知在静水中货船比游船每小时快3千米,故游船的速度为每小时(33-3)÷2=15千米.。

相关文档
最新文档