正弦函数的图像学案
正弦函数图像教案

正弦函数图像教案第一章:正弦函数的定义与性质1.1 教学目标了解正弦函数的定义与基本性质学会用图像表示正弦函数掌握正弦函数的周期性与对称性1.2 教学内容正弦函数的定义:正弦函数是直角三角形中的一个角的正弦值,用符号sin 表示正弦函数的图像:正弦函数的图像是一条波浪形的曲线,称为正弦波正弦函数的周期性:正弦函数的图像每隔一个周期就会重复一次,周期为2π正弦函数的对称性:正弦函数是奇函数,具有轴对称和中心对称的性质1.3 教学活动引入正弦函数的定义,通过实际问题引入正弦函数的图像利用图形计算器或者软件绘制正弦函数的图像,观察其波浪形的特征引导学生通过观察图像,发现正弦函数的周期性和对称性进行小组讨论,让学生分享自己的观察和发现,进行互动交流1.4 作业与评估布置一些有关正弦函数定义与性质的练习题,让学生进行巩固练习对学生的作业进行评估,了解学生对正弦函数定义与性质的理解程度第二章:正弦函数的图像2.1 教学目标学会绘制正弦函数的图像了解正弦函数图像的各个部分掌握正弦函数图像的平移与伸缩变换2.2 教学内容正弦函数图像的绘制:通过图形计算器或者软件,绘制正弦函数的图像正弦函数图像的各个部分:包括最大值、最小值、零点和周期正弦函数图像的平移与伸缩变换:通过改变函数中的参数,实现图像的平移与伸缩2.3 教学活动利用图形计算器或者软件,引导学生自己绘制正弦函数的图像引导学生观察正弦函数图像的各个部分,理解其含义讲解正弦函数图像的平移与伸缩变换,通过实际操作进行演示进行小组讨论,让学生分享自己的绘制经验和发现,进行互动交流2.4 作业与评估布置一些有关正弦函数图像的练习题,让学生进行巩固练习对学生的作业进行评估,了解学生对正弦函数图像的理解程度第三章:正弦函数的应用3.1 教学目标学会应用正弦函数解决实际问题了解正弦函数在生活中的应用场景掌握正弦函数在数学、物理等领域的应用方法3.2 教学内容正弦函数的实际问题:通过实际问题引入正弦函数的应用正弦函数的应用场景:包括波动、振动、音乐等正弦函数在其他领域的应用:包括数学、物理、工程等3.3 教学活动引入正弦函数的实际问题,引导学生运用正弦函数解决通过实例讲解正弦函数在生活中的应用场景,让学生了解其应用广泛性讲解正弦函数在其他领域的应用方法,引导学生进行思考与探索进行小组讨论,让学生分享自己的应用经验和发现,进行互动交流3.4 作业与评估布置一些有关正弦函数应用的练习题,让学生进行巩固练习对学生的作业进行评估,了解学生对正弦函数应用的理解程度第四章:正弦函数图像的综合分析4.1 教学目标学会综合分析正弦函数图像掌握正弦函数图像的变换规律了解正弦函数图像在实际问题中的应用4.2 教学内容正弦函数图像的变换规律:包括平移、伸缩、反转等正弦函数图像在实际问题中的应用:通过实例分析正弦函数图像的实际意义综合分析正弦函数图像:通过观察图像,得出正弦函数的性质和规律4.3 教学活动引导学生通过观察正弦函数图像,发现图像的变换规律利用实例讲解正弦函数图像在实际问题中的应用,引导学生进行思考与探索进行小组讨论,让学生分享自己的分析和发现,进行互动交流4.4 作业与评估布置一些有关正弦函数图像综合分析的练习题,让学生进行巩固练习对学生的作业进行评估,了解学生对正弦函数图像综合分析的理解程度5.1 教学目标了解正弦函数图像在各个领域的应用探索正弦函数图像的拓展问题5.2 教学内容正弦函数图像的拓展问题:探索正弦函数图像在其他领域的应用和拓展问题5.3 教学活动利用实例讲解正弦函数图像在各个领域的应用,引导学生进行思考与探索提出正弦函数图像的拓展问题,引导学生进行思考与讨论5.4 作业与评估第六章:正弦函数图像的绘制与应用6.1 教学目标学会使用图形计算器或者软件绘制正弦函数图像能够应用正弦函数图像解决实际问题6.2 教学内容正弦函数图像的绘制:学习如何使用图形计算器或者软件绘制正弦函数图像正弦函数图像的应用:通过实际问题,学习如何利用正弦函数图像解决问题6.3 教学活动讲解如何使用图形计算器或者软件绘制正弦函数图像,并进行演示学生分组进行实验,自行绘制正弦函数图像,并尝试解决实际问题6.4 作业与评估布置一些有关正弦函数图像绘制与应用的练习题,让学生进行巩固练习对学生的作业进行评估,了解学生对正弦函数图像绘制与应用的理解程度第七章:正弦函数图像的变换7.1 教学目标学会正弦函数图像的平移、伸缩和反转等变换方法能够理解和应用这些变换方法解决实际问题7.2 教学内容正弦函数图像的平移:学习如何通过改变函数中的参数实现图像的平移正弦函数图像的伸缩:学习如何通过改变函数中的参数实现图像的伸缩正弦函数图像的反转:学习如何通过改变函数中的参数实现图像的反转7.3 教学活动讲解正弦函数图像的平移、伸缩和反转等变换方法,并进行演示学生分组进行实验,尝试对正弦函数图像进行各种变换,并解决实际问题7.4 作业与评估布置一些有关正弦函数图像变换的练习题,让学生进行巩固练习对学生的作业进行评估,了解学生对正弦函数图像变换的理解程度第八章:正弦函数图像在实际问题中的应用8.1 教学目标学会如何将正弦函数图像应用于实际问题中能够利用正弦函数图像解决实际问题8.2 教学内容正弦函数图像在物理中的应用:例如振动、波动等正弦函数图像在工程中的应用:例如信号处理、电路设计等正弦函数图像在数学中的应用:例如证明、分析等8.3 教学活动讲解正弦函数图像在实际问题中的应用,并进行演示学生分组进行实验,尝试利用正弦函数图像解决实际问题8.4 作业与评估布置一些有关正弦函数图像在实际问题中应用的练习题,让学生进行巩固练习对学生的作业进行评估,了解学生对正弦函数图像在实际问题中应用的理解程度第九章:正弦函数图像的进一步探索9.1 教学目标学会如何探索正弦函数图像的更深层次的性质和规律能够利用这些性质和规律解决更复杂的问题9.2 教学内容正弦函数图像的周期性:学习正弦函数图像的周期性及其应用正弦函数图像的对称性:学习正弦函数图像的对称性及其应用正弦函数图像的奇偶性:学习正弦函数图像的奇偶性及其应用9.3 教学活动讲解正弦函数图像的周期性、对称性和奇偶性等更深层次的性质和规律,并进行演示学生分组进行实验,尝试探索正弦函数图像的重点和难点解析1. 正弦函数的定义与性质重点:正弦函数的定义与基本性质的理解难点:正弦函数的周期性与对称性的深入理解2. 正弦函数的图像重点:正弦函数图像的绘制与观察难点:正弦函数图像的平移与伸缩变换的掌握3. 正弦函数的应用重点:正弦函数在实际问题中的应用场景的发现难点:正弦函数在数学、物理等领域的应用方法的探索4. 正弦函数图像的综合分析重点:正弦函数图像的综合分析方法的掌握难点:正弦函数图像的变换规律的应用难点:正弦函数图像在各个领域的应用的拓展6. 正弦函数图像的绘制与应用重点:图形计算器或者软件的使用方法难点:正弦函数图像在实际问题中的应用7. 正弦函数图像的变换重点:正弦函数图像的平移、伸缩和反转等变换方法的掌握难点:变换方法在实际问题中的应用8. 正弦函数图像在实际问题中的应用重点:实际问题中正弦函数图像的应用方法的发现难点:复杂实际问题的解决9. 正弦函数图像的进一步探索重点:正弦函数图像的更深层次的性质和规律的探索难点:性质和规律在更复杂问题中的运用本文主要分析了正弦函数图像的教学内容,从正弦函数的定义与性质,到正弦函数的图像,再到正弦函数的应用,是正弦函数图像的综合分析,接着是正弦函数图像的绘制与应用,之后是正弦函数图像的变换,再之后是正弦函数图像在实际问题中的应用,是正弦函数图像的进一步探索。
正弦函数图像教案

正弦函数图像教案第一章:正弦函数的定义与性质1.1 教学目标了解正弦函数的定义掌握正弦函数的性质1.2 教学内容正弦函数的定义:正弦函数是直角三角形中的锐角对边与斜边的比值,用符号sin 表示。
正弦函数的性质:正弦函数是周期函数,周期为2π;正弦函数的值域在[-1,1]之间;正弦函数在对称轴上对称。
1.3 教学活动教师通过实物或图形展示正弦函数的定义。
学生通过例题掌握正弦函数的性质。
教师引导学生进行小组讨论,探索正弦函数的其他性质。
1.4 作业与评估布置练习题,让学生巩固正弦函数的定义与性质。
在下一节课前进行小测验,评估学生对正弦函数的理解程度。
第二章:正弦函数图像的绘制2.1 教学目标学会绘制正弦函数的图像2.2 教学内容学习正弦函数图像的特点:振幅、周期、相位、对称性学习使用函数图像绘制工具绘制正弦函数图像2.3 教学活动教师演示如何使用函数图像绘制工具绘制正弦函数图像。
学生跟随教师的步骤,自行绘制正弦函数图像。
教师引导学生观察图像的特点,并与正弦函数的性质进行联系。
2.4 作业与评估布置练习题,让学生绘制其他函数的图像。
在下一节课前进行小测验,评估学生对绘制正弦函数图像的掌握程度。
第三章:正弦函数图像的应用3.1 教学目标学会使用正弦函数图像解决实际问题3.2 教学内容学习如何通过正弦函数图像找到函数的极值点学习如何通过正弦函数图像解决周期性问题3.3 教学活动教师通过示例讲解如何使用正弦函数图像找到极值点。
学生尝试解决实际问题,例如计算正弦函数在特定区间内的值。
教师引导学生讨论解决过程中遇到的问题,并提供帮助。
3.4 作业与评估布置练习题,让学生应用正弦函数图像解决实际问题。
在下一节课前进行小测验,评估学生对正弦函数图像应用的掌握程度。
第四章:正弦函数图像的综合应用4.1 教学目标能够综合运用正弦函数图像解决复杂的实际问题4.2 教学内容学习如何综合运用正弦函数图像解决多个变量的问题学习如何利用正弦函数图像进行优化问题4.3 教学活动教师通过示例讲解如何综合运用正弦函数图像解决复杂问题。
正弦函数的图像与性质教案

正弦函数的图像与性质教案教学目标:1. 了解正弦函数的定义和图像特点。
2. 掌握正弦函数的周期性和对称性。
3. 理解正弦函数的增减性和奇偶性。
4. 能够应用正弦函数的性质解决实际问题。
教学内容:第一章:正弦函数的定义与图像1.1 正弦函数的定义1.2 正弦函数的图像第二章:正弦函数的周期性2.1 周期性的定义2.2 周期性的图像表现第三章:正弦函数的对称性3.1 对称性的定义3.2 对称性的图像表现第四章:正弦函数的增减性4.1 增减性的定义4.2 增减性的图像表现第五章:正弦函数的奇偶性5.1 奇偶性的定义5.2 奇偶性的图像表现教学步骤:第一章:正弦函数的定义与图像1.1 正弦函数的定义1. 引入正弦函数的概念,让学生回顾三角函数的定义。
2. 解释正弦函数的定义,即在直角坐标系中,正弦函数表示对边与斜边的比值。
1.2 正弦函数的图像1. 利用计算机软件或板书,绘制正弦函数的图像。
2. 解释正弦函数图像的波动特点,如周期性和振幅。
第二章:正弦函数的周期性2.1 周期性的定义1. 引入周期性的概念,让学生理解周期函数的定义。
2. 解释正弦函数的周期性,即每隔一个周期,函数值重复出现。
2.2 周期性的图像表现1. 利用计算机软件或板书,展示正弦函数周期性的图像。
2. 引导学生观察图像,理解周期性的特点。
第三章:正弦函数的对称性3.1 对称性的定义1. 引入对称性的概念,让学生理解对称函数的定义。
2. 解释正弦函数的对称性,即函数图像关于y轴对称。
3.2 对称性的图像表现1. 利用计算机软件或板书,展示正弦函数对称性的图像。
2. 引导学生观察图像,理解对称性的特点。
第四章:正弦函数的增减性4.1 增减性的定义1. 引入增减性的概念,让学生理解函数的增减性质。
2. 解释正弦函数的增减性,即在一定区间内,函数值的增减规律。
4.2 增减性的图像表现1. 利用计算机软件或板书,展示正弦函数增减性的图像。
2. 引导学生观察图像,理解增减性的特点。
《正弦型函数的图象》学案

《正弦型函数的图象》学案一、学习要求:1、了解正弦型函数的振幅、圆频率、初相,会求出周期。
2、会用五点作图法作出正弦型函数的图象。
二、学习重点:五点法作正弦型函数在一个周期内的简图。
学习难点:正弦型函数图象中五点的确定 三、课时安排:一课时 四、学习过程; (一)课前尝试 1、学习方法:(1)回顾y=sinx 的图象和性质。
图象: 性质:(2)认真阅读书P.197-P.199 2、尝试练习(1)正弦型函数的一般式: (2)一弹簧振子的位移y 与时间t 的函数关系为y=3sin()32π+t (A >0,ω>0)则弹簧振子振动的振幅为 ,圆频率为 . 初相为 ,周期为 。
(3)作出函数y=2sinx 在一个周期内的简图。
(二)课堂探究 1、问题情境:在物理和工程的许多实际问题中,会遇到这样的函数,如物体作简谐振动时 ,位移 s 与时间 t 之间的关系为s = A sin (ωt + ϕ)。
正弦交流电的电压 u 与时间 t 之间的关系为 u = Um sin (ωt + ϕ)2、知识链接正弦型函数一般式、振幅、圆频率、初相、周期。
3、问题探究:用五点作图法作出函数y=sin(x+3π)在一个周期内的简图4、拓展练习(1)用五点作图法作出函数 y=2sin(x -3π)在一个周期内的简图解:T=①、列表:②、五点:③、作图:5、当堂训练(1)用五点作图法作出函数 y=2sin(2x +4π)在一个周期内的简图(2)思考1:将上题“在一个周期内”改为x ∈R的图象如何变化?思考2:如何作出在[0,2π]的图象?6、归纳总结:(三)课后拓展(1)求函数y=2sin(2x +6π)的最大值、最小值、周期,并作出在一个周期内的图象。
(2)网上查找有关正弦型函数的实际应用例子。
(四)格言警句:学习数学要多做习题,边做边思索。
先其知然,然后再知其所以然。
(苏步青)。
正弦函数的图像与性质教案

《正弦函数的图像与性质》(教案)教学目标:1、掌握用“五点法”作正弦函数的简图;2、理解正弦函数一个周期内的性质;3、掌握利用正弦函数的图像观察其性质;4、掌握简单正弦函数的定义域、值域和单调区间;5、初步理解“数形结合”的思想;6、培养学生的观察能力、分析能力、归纳能力和表达能力等。
教学重点:1、用“五点法”画正弦函数在一个周期上的图像;2、利用函数图像观察正弦函数的性质;3、给学生逐渐渗透“数形结合”的思想教学难点:正弦函数性质的理解和应用由于正弦函数为周期函数,所以函数的定义域内单调区间有多个,将正弦函数划到同一单调区间进行判断函数值的大小是学生难以掌握的知识点,教学中应引起足够的重视。
教学方法:讲授法、启发式、讲练结合法1、应用多媒体教学手段演示描点作图过程给学生以直观感受;2、通过引导学生观察正弦曲线,发现正弦曲线的性质,通过例题分析与巩固练习,使学生加深对性质的理解。
教学过程:Ⅰ课程导入我们已经学过一次函数、二次函数、指数函数等,对于各种函数我们都讨论过它们的图像及性质,前面我们又学习了任意角的正弦、余弦和正切三角函数,那么它们的图像是什么样子的,又具有哪些性质呢?本节我们先来学习和讨论正弦函数的图像和性质。
Ⅱ知识讲授每一个实数x ,都对应着唯一确定的角(在弧度制中角的弧度数等于这个实数),根据正弦函数的定义,写出正弦函数的定义域(角x 的范围):正弦函数y=sinx 的定义域:R1、用描点法作出正弦函数在最小正周期[0, 2π]上的图像x y sin =,[]π2,0∈x(1)、列表(2)、描点以表中对应的x ,y 值为坐标,在坐标系中描点。
(3)、连线将所描各点顺次用光滑曲线连接起来,即完成所画图像。
2、再利用描点法在同一坐标系中画出正弦函数y=sinx 在[-2π,0]上的图像,通过比较它们的图像特征,我们发现正弦函数y=sinx 在[-2π,0]上的图像与[0, 2π]上的图像形状完全一致,只是左右位置不同。
正弦函数的图像与性质教案

正弦函数的图像与性质教案一、教学目标知识与技能目标:1. 理解正弦函数的定义和基本概念;2. 学会绘制正弦函数的图像;3. 掌握正弦函数的性质,并能应用于实际问题。
过程与方法目标:1. 通过观察和分析正弦函数的图像,探索其性质;2. 利用数形结合的方法,理解正弦函数的周期性、奇偶性、单调性等性质;3. 培养学生的逻辑思维能力和解决问题的能力。
情感态度与价值观目标:1. 激发学生对数学学习的兴趣;2. 培养学生的团队合作意识和交流能力;3. 使学生认识到数学在生活中的重要性。
二、教学重点与难点重点:1. 正弦函数的定义和图像;2. 正弦函数的性质。
难点:1. 正弦函数图像的绘制;2. 正弦函数性质的理解和应用。
三、教学准备教师准备:1. 正弦函数的图像和性质的相关资料;2. 教学多媒体设备。
学生准备:1. 预习正弦函数的相关知识;2. 准备笔记本和笔。
四、教学过程1. 导入:a. 引导学生回顾之前学过的函数图像和性质;b. 提问:你们认为正弦函数的图像和性质会是什么样的呢?2. 讲解:a. 讲解正弦函数的定义和基本概念;b. 利用多媒体展示正弦函数的图像;c. 引导学生观察和分析正弦函数的图像,探索其性质;d. 讲解正弦函数的周期性、奇偶性、单调性等性质;e. 举例说明正弦函数性质的应用。
3. 实践:a. 让学生独立绘制正弦函数的图像;b. 让学生分组讨论正弦函数的性质,并完成相关练习题;c. 让学生应用正弦函数的性质解决实际问题。
4. 总结:a. 回顾本节课所学的正弦函数的图像和性质;b. 强调正弦函数在实际中的应用价值。
五、作业布置1. 绘制正弦函数的图像,并标注出其周期性、奇偶性、单调性等性质;2. 运用正弦函数的性质解决实际问题,如测量角度、计算波浪高度等;3. 预习下一节课的内容。
六、教学反馈与评估1. 在课后,教师应收集学生的作业,评估学生对正弦函数图像和性质的理解程度;2. 教师可以通过课后交流或提问的方式,了解学生对课堂内容的掌握情况;3. 根据学生的反馈,教师应及时调整教学方法和策略,以便更好地帮助学生理解和掌握正弦函数的知识。
《正弦函数图像》教学设计

《正弦函数图像》教学设计一、教材分析:1、教材的地位与作用《正弦函数图像与性质》是高中数学必修四第一章第五节的内容.本节课是在学习了三角函数的定义之后进行的,由正弦函数的定义可知,由于角的变化,而引起正弦函数值的变化,如何直观的反映角的变化所引起的函数值的变化,自然考虑到函数的图像,这也是研究函数的一般规律. 一般函数图像的研究都是通过“列表、描点、连线”三步完成的,当然,正弦函数也是采用一般方法,但是由于如何计算正弦函数的值,我们只知道几个特殊锐角的正弦值,对于推广后的角的正弦值还不清楚,因此,这种常规思路难以进行,但是,我们已经知道了正弦函数的定义以及正弦线,那么,利用正弦线来刻画正弦函数值的变化,及准确又直观,这便是本节课借助于正弦线来描述正弦函数图像的依据.同时,有了正弦函数图像之后,就可以借助于图像来直观的反映正弦函数的性质. 也是为后继的学习做好铺垫. 因此,本节的学习有着承上启下的作用.2、教学重点和难点教学重点:用“五点作图法”画长度为一个周期的闭区间上的正弦函数图像.教学难点:利用单位圆画正弦函数图像二、目标分析根据《普通高中数学课程标准》的要求和教学内容的结构特征,依据学生学习的心里规律和素质教育的要求,结合学生的实际水平,制定本节课的教学目的如下:知识目标:能够借助于正弦线说出正弦函数值的变化特点,画出正弦函数的图像,并初步掌握“五点作图法”的基本要领.能力目标:培养观察能力、分析能力、归纳能力和表达能力等;培养数形结合和化归转化的数学思想方法.德育目标:渗透由抽象到具体的思想,使学生理解动与静的辩证关系,培养辩证唯物主义观点;培养学生勇于探索,勤于思考的精神;培养学生合作学习和数学交流的能力;、三、教法分析根据上述教材分析和目标分析,贯彻启发性教学原则,特显以教师为主导,以学生为主体的教学思想,神话教学改革,确定本节课的教法为:1、计算机辅助教学、借助多媒体教学手段引导学生利用单位圆中的正弦线画出正弦函数的图像,使问题变得直观,易于突破难点;利用多媒体向学生展示优美的函数图像,给人以美得享受.2、讨论式教学、通过观察课件的演示,让学生交流,总结,说出正弦函数的主要特征和函数的图像中起着关键作用的点.1.讲义结合教学、教师耐心引导,分析,讲解和提问,并及时对学生的意见进行肯定与评议.四、学法分析引导学生认真观察教学课件的演示,指导学生进行讨论交流,促进学生知识体系的建构和数学思想方法的形成,注意面向全体学生,培养勇于探索,勤于思考的精神,提高合作学习和数学交流的能力.五、教学过程的设计(一)情景设置、提出问题我们知道函数的图像为我们解决相关的函数问题提供了重要的方法和工具,前面我们已经探讨了各三角函数的定义以及相关的诱导公式,那么它们的图像是怎样的呢?这节课让我们来共同探讨这一问题(板书课题)(二)问题探索、统一认识问题1、对于以前所学的一次函数、二次函数、指数函数、对数函数等,其作函数图像的方法是什么?对于正弦函数的图像呢?思路:对于前面所学的函数,其作图像的方法步骤都是列表,描点,连线.如果我们仍用描点法来画正弦函数的图像,我们只知道几个特殊的锐角的正弦函数值,对于其它角的正弦值需要利用计算器才能得到,而且大多数是一些近似值,因此不容易描出对应点的准确位置,因而画出的图像不够准确. 为此,我们考虑用一种新的方法来作出正弦函数的图像.【设计意图】一方面是复习函数图像的作图方法,另一方面,对于正弦函数又提出新的挑战,利用“列表、描点、连线”很难完成.问题2、一般情况下,我们在遇到困难时,总是“返璞归真”,寻找相应的定义来找到突破口,那么,借助于正弦函数的定义或者正弦线,能否描出正弦函数图像上的点呢?思路:用几何画板演示单位圆上的正弦线随着角的变化而变化的规律,如图所示. 以单位圆与x轴的交点A为起点,以点A为起点,若按照逆时针方向旋转,对于函数,对于x的任意一个值,例如:当时,其正弦线为MP,即,把角的正弦线平移到直角坐标系中的x轴上表示的点的位置,就可以描出点,同样地,利用几何画板把描出内的每一个值的正弦线对应到图像中的点,这些点便形成了函数在区间上的图像.【设计意图】:通过正弦函数定义和正弦线的概念,借助于几何画板,让学生直观的认识正弦线对应到正弦函数图像上的相应点,得到正弦函数的图像并领会转化意图.y问题3、如何作出函数,的图像?x结合前面的描点方法,学生小组合作完成,教师巡视学生完成情况,出现问题教师及时纠正. 其步骤为:(1)建立直角坐标系,并在轴左侧画单位圆(2)以单位圆与x轴的交点为一个分点,将单位圆12等份,过单位圆上的各点作轴的垂线,可以得到对应于,···角的正弦线(3)把轴上从0到这一段分成12 等份,分别得到x轴的数,……对应的点.(4)将角……的正弦线向右平移到所对应的相应数的位置,即得到函数图像上相应的点.(5)用平滑的曲线将12个点依次从左到右连接起来,即可得的图像【设计意图】在几何画板演示的基础上,通过动手实践,一方面对正弦线及其变化规律进一步熟悉,另一方面掌握画正弦曲线的方法步骤.问题4、我们通过正弦线描点法画出了正弦函数的图像,如何作在上的图像?【设计意图】因为终边相同的角有相同的三角函数值,所以函数的图像与的图像形状完全相同,只是位置不同. 只需要将上述函数向左或向右平移(每次平移个单位长度),就可以得到正弦函数的图像. 再用几何画板予以演示.问题5、我们已经画出了正弦函数的图像,但是在实际操作的过程中,虽然函数的图像可以通过函数的图像平移得到,但是,要画出的图像还是比较繁琐的,能否寻找出图像中的几个具有典型意义的点,通过这几个典型的点就可以轻松的画出正弦函数的图像呢?这些点又是什么呢?【设计意图】虽然学生可能会找出、、……等这些特殊角对应的点,但是要引导学生发现、、、、这5个点更具有典型意义,因为它们分别是图像与x轴的交点和最值点. 这样的作图称之为“五点作图法”.问题6、有了“五点作图法”,就可以列表得到相应点的函数值,按照作函数图像的“列表、描点、连线”,用五点法作正弦函数的图像.步骤:列表:0100描点、连线【设计意图】通过“五点作图法”与利用正弦线作图法的比较,让学生认识到“五点作图法”在作正弦函数图像时的快捷、直观.(三)及时巩固、不断强化问题7、利用“五点作图法”分别作出函数、在区间上的图像.【设计意图】进一步熟悉五点作图法的方法步骤.步骤:列表0100001012101描点、连线xxy=sin x-1追问、由图像看出,函数的图像与函数、图像之间有何关系?【设计意图】既然在同一坐标系中作出了函数与、的图像,很有必要让学生认识它们之间的关系,为研究三角函数图像变换做好相应的铺垫.(四)小结归纳、理顺思路问题8、通过本节课的学习,我们都可以用哪些方法可以画出正弦函数的图像?具体的操作步骤是什么?在实际操作时,你会选择用什么方法画正弦函数的图像?【设计意图】对正弦函数图像画法中的正弦线法、五点作图法的画法步骤进一步复习巩固. 特别是对五点作图法是今后画正弦函数图像最快捷、最简便的方法.(五)作业布置用“五点法”画出下列函数在区间上的简图(1)(2) (3)【设计意图】进一步熟悉五点作图的方法,并认识它们图形之间的关系,为下节课学习正弦函数的性质打好基础.1.反思与体会在利用单位圆来画正弦函数图像的过程中教材是对单位圆12等分,并且等分的份数越多画出的图像就越精确,但传统教法无法把这个过程动态的展示出来,我用几何画板课件把这个过程演示出来,克服了传统教法的不足,极大地调动了学生的学习热情.借助于几何画板,通过单位圆上的点的运动,得到正弦函数图像重复出现这一过程,直观的把终边相同的角有相同的三角函数值动态显示,使得在由的图像得出的图像这一环节的教学水到渠成,同时也渗透了正弦曲线的周期性等性质,为下一节学习正弦函数的性质做了铺垫.画正弦函数的图像确实也是学生的难点,通过课堂巡视也可以看出,虽然学生的描点都比较正确,但是在连线后,画出的图像有些“生硬”,因此,不断地让学生参与到知识的形成过程中,在小组合作练习与独立训练的过程中,不断强化图像的画法,使学生听有所思,思有所获,增强学生学习数学的信心和兴趣.。
正弦函数的图像学案

正弦函数的图像学案腔镜甲状腺手术体会作为一名医生,我有幸参与了腔镜甲状腺手术,这是一次难忘的经历。
在此,我想分享我的手术经验和体会,希望对大家有所帮助。
一、手术背景甲状腺疾病是一种常见的内分泌疾病,对于需要手术治疗的患者来说,传统的开放手术方式会留下明显的疤痕。
随着医学技术的发展,腔镜甲状腺手术逐渐被广泛应用,这种手术方式具有创伤小、恢复快、美观性高等优点。
二、手术过程在进行腔镜甲状腺手术前,我和我的团队进行了详细的术前评估和讨论。
患者被给予全身麻醉,并被放置在舒适的手术体位。
我们使用了先进的腔镜设备,通过几个小的皮肤切口将甲状腺暴露出来。
在这个过程中,我们使用了特殊的手术器械和能量设备,如超声刀和电凝器,以进行精细的手术操作。
三、手术体会在进行腔镜甲状腺手术时,我深刻体会到了以下几点:1、技能要求高:腔镜手术需要医生具备丰富的开放手术经验和精湛的内镜操作技能。
在手术过程中,要保持稳定的操作姿势,灵活运用各种手术器械,做到准确无误。
2、团队合作重要:腔镜甲状腺手术需要一支专业的团队密切配合。
麻醉师、护士和医生之间需要建立良好的沟通,确保手术顺利进行。
3、细节:在手术过程中,我深感细节的重要性。
如术前评估、体位摆放、切口选择、器械使用等细节都会影响到手术效果和患者恢复。
4、患者关怀:作为医生,我们不仅要手术本身,还要患者的身心需求。
在手术过程中,要时刻患者的生命体征和感受,给予适当的安慰和关怀。
四、总结通过这次腔镜甲状腺手术,我深刻体会到了现代医学技术的进步和发展。
作为一名医生,我们要不断学习和掌握新技术,提高自己的医疗水平。
我们要始终患者的需求和感受,给予他们全面的关怀和治疗。
我相信,在医生和患者的共同努力下,我们可以战胜各种疾病,创造更美好的未来。
正弦函数的图像和性质课件一、引言正弦函数是数学中基本且重要的一类函数,其在三角学、信号处理、物理和工程等领域都有广泛的应用。
理解正弦函数的图像和性质不仅有助于深化我们对数学概念的理解,也有助于我们在实际应用中更好地使用和操作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.4.1正弦函数、余弦函数的图像学案
学习目标
1.能借助正弦线画出正弦函数的图象,并在此基础上由诱导公式画出余弦函数的图象.
2.能熟练运用“五点法”作图.
学习过程
一、课前准备
(预习教材P 30~ P 33,找出疑惑之处) 1.请在右图中分别作出角
3
611π
π,的三角函数线。
2.遇到一个新的函数,画出它的图象,通过观察图象获得对它的性质的直观认识是研究函数的基本方法,那么,面对一个新函数,一般采用什么方法画图象?
3.如何在直角坐标系下描出点)3
sin ,3(
π
π
? ①代数法:73.1314.3≈≈,π ②几何法:利用弧度与弧长的关系以及三角函数线
二、新课导学 ※ 预习探究
探究任务一:如何画正弦函数的图像?
步骤一:如何画出正弦函数x y sin =在[]π2,0∈x 上的图像? 1.在直角坐标系内把单位圆十二等分,分别画出对应角的正弦线.; 2.在相应坐标系内,在x 轴上将区间[]π2,0分成12等份;
3.在相应坐标系内,将单位圆中12个角的正弦线进行右移到相应角的位置得到点列
())12....3,2,1(sin ,=i x x i i 。
.
4.通过刚才描点(x 0,sinx 0),把一系列点用光滑曲线连结起来,你能得到什么?
步骤二:如何画出正弦函数x y sin =在R x ∈上的图像?
探究任务二:余弦函数的图像
(1)方法1:完成下表,并进行描点、连线得出余弦函数]2,0[,cos π∈=x x y 的图像
x 0
π
π
x y cos =
(2)方法2:用以前学过的诱导公式 cosx=________(用正弦式表示),你能根据这一关系利用x y sin =的图像画出y=cosx 的图象吗?
探究任务三:(1)观察所得正弦函数与余弦函数的图象,有五个点在确定形状是起关键作用,哪五个点?完成下表:
x
x y sin =
x y cos =
(2)你能在同一个直角坐标系中画出x y x y cos ,sin ==的图像吗?
2
3π2
π
※ 预习检测
1. 以下对正弦函数x y sin =的图像描述不正确的是 ( ) A.在[])()1(2,2Z k k k x ∈+∈ππ 上的图象形状相同,只是位置不同 B.关于x 轴对称
C.介于直线1=y 与直线1-=y 之间
D.与y 轴仅有一个交点
2. 下列函数图像相同的是 ( )
A.x x f sin )(=与)sin()(x x g +=π
B. 与
C. x x f sin )(=与)sin()(x x g -=
D. )2sin()(x x f +=π与x x g sin )(=
3. 方程x x cos 2=的实根的个数是 ( ) A.1个 B.2个 C.3个 D.4个
※ 典型例题
例1.画出下列函数的简图
(1)[]π2,0,sin 2∈+=x x y ; (2)[]π2,0,cos 2∈-=x x y
例2.已知直线a y =,函数)20(sin 2π≤≤=x x y ,试探究以下问题: (1)当a 为何值时,直线与函数图像只有一个交点? (2)当a 为何值时,直线与函数图像有两个交点? (3)当a 为何值时,直线与函数图像有三个交点? (4)当a 为何值时,直线与函数图像无交点?
※ 当堂检测
1.x y sin =的图象与x y sin -=的图象关于________对称;x y cos =的图象与x y cos -=的图象关于________对称.
2.把余弦曲线向______平移______个单位就可以得到正弦曲线;把正弦曲线向______平移______个单位就可以得到余弦曲线.
3.写出使[])2,0(2
1
sin π∈≥x x 成立的x 的取值集合.
※基础过关
1.观察正弦函数的图象,以下4个命题:
(1)关于原点对称 (2)关于x 轴对称 (3)关于y 轴对称 (4)有无数条对称轴 其中正确的是 ( ) A.(1)、(2) B.(1)、(3) C.(1)、(4) D.(2)、(3)
)
2
sin()(x x g
-=π
)2
sin()(π-=x x f
2.对于下列判断:
(1)正弦函数曲线与函数)2
3cos(
x y +=π
的图象是同一曲线; (2)向左、右平移π2个单位后,图象都不变的函数一定是正弦函数; (3)直线2
3π
-=x 是正弦函数图象的一条对称轴; (4)点)0,2
(π
-
是余弦函数的一个对称中心.
其中不正确的是 ( )
A.(1)
B.(2)
C.(3)
D.(4)
3.已知παπαπ2,5
3
)cos(<<-=+,则=-+-)cos()3sin(παπα 4.化简:=-o o 20cos 20sin 21 5.已知,3tan =α则=ααcos sin
6.已知)
sin()cos()23sin()2cos()3sin()(απαππααππαα----+
---=
f
(1)化简)(αf ;
(2)若α是第三象限角,且,5
1
)23cos(=-πα求)(αf 的值。
7.画出函数[]π2,0,sin 1∈-=x x y 的图像.
8.(1)已知,53)6cos(=+
π
α则=+)3
2sin(π
α (2)已知,33)6
sin(=
+απ
则=-)3
cos(π
α 9.写出使)(2
1
sin R x x ∈≥
成立的x 的取值集合.。