人教版-数学-七年级上册-第四章 图形认识初步 单元测试14
人教版数学七年级上册第四章《几何图形初步》单元测试题含答案
人教版初中数学七年级上册第四章《几何图形初步》测试一、选择題(每小題3分.共36分)1. 在的内部任取一点C作射线OC,则一定成立的是()A. AAOB > ZAOC B・ZAOC > ZBOCC・ZLAOC = Z1BOC D. ZAOC < ZBOC2. 下列描述正确的是()A. 若乙1+乙2+/3=180。
,则厶1、Z2、乙3互补.B. 两个锐角的和一定是钝角.C. 互补的两个角一定是一个锐角,一个钝角.D. 钝角的一半是锐角.3. 如图1是一块手表,早上8点时针、分针的位置如图所示,那么时针与分针所成的角度是()A. 60°B. 80°C. 120°D. 150°4. 已知:ZJ=25. 12°, Z^ = 25°12%那么ZA、ZB的大小关系为()A・ZA>ZB B. ZA<ZB C. ZB = AA D. ZB>Z^5. 用一对三角尺画出小于180。
的角,一共能画出()个A. 10 B・ 11 C. 12 D. 136. 如图2,若Z1 = Z2,则下列结论正确的是()A. OB 平分Z AOCB. OB、OC是ZAOD的三等分线C. ZAOC=ZBODD. ZAOD=3ZBOC1.如果Za + Z^ = 90°>而Z0与互余.那么Za 与Zy 的关系是() A ・一定互余 B ・一定互补 C. 一定相等 D.不能确定8.如图3,是O 直线AB 上一点.OD 是ZAOC 的平分线,OE 是ZCOB 的平分线,则 ZDOE 的度数是( )A. 70°B. 80°C. 90°D. 100°9. 如图4所示.下列说法中错误的是()A. 04的方向是北偏东40。
•B. 的方向是北偏两 C. OC 的方向是南僞西30。
・D. OD 的方向是正东南方向•10. 如图 5. ZAOD=ZCOB=90°t ZAOC=a.则ZBOD的D. 180°-2aA. 90°+aB. 90°+2aC. 180°-a11. 一个角的余角比它的补角的丄少20°.则这个角为()2A. 30°B・ 40° C. 60° D. 75°12、如图3・OB、OC是乙4OD内部的两条射线,OM平分乙4OB・ ON平分厶COD、若M0D=a・ 3ON=p・则MOC可表示为()A. a—flB. 2a—ftC. a—2fl D・—a二、境空題(毎小題3分,共12分)13. 如图7・厶OC = 90。
完整版人教版七年级上册数学第四章 几何图形初步含答案
人教版七年级上册数学第四章几何图形初步含答案一、单选题(共15题,共计45分)1、如图所示为几何体的平面展开图,则从左到右,其对应的几何体名称分别为()A.圆锥,正方体,三棱锥,圆柱B.圆锥,正方体,四棱锥,圆柱C.圆锥,正方体,四棱柱,圆柱D.正方体,圆锥,圆柱,三棱柱2、把如图所示的纸片沿着虚线折叠,可以得到的几何体是()A.三棱柱B.四棱柱C.三棱锥D.四棱锥3、笔尖在纸上快速滑动写出一个又一个字,用数学知识解释为()A.点动成线B.线动成面C.面动成体D.以上答案都不对4、如图,是一个正方体纸盒的外表面展开图,则这个正方体纸盒是()A. B. C. D.5、如图,直线l1∥l2,且分别与直线l交于C,D两点,把一块含30°角的三角尺按如图所示的位置摆放,若∠1=50°,则∠2的度数为()A.90°B.110°C.108°D.100°6、下列叙述:①最小的正整数是0;② 的系数是6π;③用一个平面去截正方体,截面不可能是六边形;④若AC=BC,则点C是线段AB的中点;⑤三角形是多边形;⑥绝对值等于本身的数是正数,其中正确的个数有()A.2B.3C.4D.57、如图所示,从A地到达B地,最短的路线是()A.A→C→E→BB.A→F→E→BC.A→D→E→BD.A→C→G→E→B8、如图,马聪同学用剪刀沿虚线将一片平整的银杏叶剪掉一部分,发现剩下的叶片的周长比原叶片的周长要小,能正确解释这一现象的数学知识是()A.两点确定一条直线B.经过一点有无数条直线C.两点之间线段最短D.两直线相交只有一个交点9、下列说法正确的有()①一个数的相反数不是正数就是负数;②海拔表示比海平面低;③负分数不是有理数;④由两条射线组成的图形叫做角;⑤把一个角放到一个放大5倍的放大镜下观看,角的度数也扩大5倍.A.0个B.1个C.2个D.3个10、如图,点C是线段AB的中点,点D是线段BC的中点,下列等式不正确的是()A.CD=AC﹣DBB.CD=AD﹣BCC.CD=AB﹣ADD.CD=AB﹣BD11、下列图形中,经过折叠不能围成一个正方体的是()A. B. C. D.12、“笔尖在纸上快速滑动写出数字6”,运用数学知识解释这一现象()A.点动成线B.线动成面C.面动成体D.面面相交得线13、若一个角的补角等于它的余角的3倍,则这个角为()A.75°B.60°C.45°D.30°14、如果一个角的补角为144°,那么这个角的余角为( )A.36°B.44°C.54°D.64°15、如图,下列说法中错误的是( )A.OD方向是东南方向B.OB方向是北偏西l5。
(新版人教版)七年级上第四章《图形认识初步》单元测试卷及解析答案
第四章《图形认识初步》综合测试题(满分120分时间 90分钟)一、选择题(每题3分,共30分)1. ①平角是一条直线;②射线是直线的一半;③射线AB 与射线BA 表示同一条射线;④用一个扩大2倍的放大镜去看一个角,这个角会扩大2倍;⑤两点之间,线段最短;⑥120.5°= 120°50׳.以上说法正确的有( )A .0个 B.1个 C.2个 D.3个2.下列四个图中,能用∠1、∠AOB 、∠O 三种方法表示同一个角的是( )3.下列叙述正确的是( )A .180°是补角B 120°和60°互为补角C 120°和60°是补角D 60°是30°的补角4. 如图1表示一个用于防震的L 形的包装用泡沫塑料,当从上面看这一物体时看到的图形形状是( )5.下列图形中,哪一个是正方体的展开图( )6.甲看乙的方向为南偏西25°,那么乙看甲的方向是 ( )A .北偏东75°B .南偏东75°C .北偏东25°D .北偏西25°7.若∠A 的余角是70°,则∠A 的补角是( )A .70°B .110°C .20°D .160°8.如图,AOC ∠和BOD ∠都是直角,如果 ︒=∠150AOB ,那么=∠COD ( ) A 、︒30 B 、︒40 C 、︒50 D 、︒609.经过任意三点中的两点共可画出( )A .1条直线B .2条直线C .1条或3条直线D .3条直线AC B O DA .B .C .D .(图1)10.如图所示,从O 点出发的五条射线,可以组成角的个数是( ).A .10个B .9个C .8个D .4个二、填空题(每题3分,共30分)11.橙子类似______体,菠萝类似_______体,角柜类似_______体,金字塔类似_______体,粉笔盒类似_______体。
【数学】人教版七年级数学上册第四章几何图形的初步单元测试(含答案)
人教版七年级数学上册第四章几何图形的初步单元测试(含答案)一、单选题1.如图,图、图、图均由四个全等的等边三角形组成,其中能够折叠围成一个立体图形的有()A.只有图①B.只有图①、图②C.图①、图②、图③D.只有图②、图③2.下列平面图形中不能围成正方体的是()A.B.C.D.3.某校年级(1)班在“迎中考日誓师”活动中打算制作一个带有正方体挂坠的倒计时牌挂在班级,正方体的每个面上分别书写“成功舍我其谁”六个字如图是该班同学设计的正方体挂坠的平面展开图,那么“谁”对面的字是()A.成B.功C.其D.我4.将一个底面直径是10厘米,高为36厘米的圆柱体锻压成底面直径为20厘米的圆柱体,在这个规程中不改变的是圆柱的()A.高B.侧面积C.底面积D.体积5.用一个平面去截下列立体图形,截面可以得到三角形的立体图形有()A.1个B.2个C.3个D.4个6.下列现象,能说明“线动成面”的是()A.天空划过一道流星B.汽车雨刷在挡风玻璃上刷出的痕迹C.抛出一块小石子,石子在空中飞行的路线D.旋转一扇门,门在空中运动的痕迹7.点A,B,C在一条直线上,AB=6,BC=2,点M是AC的中点,则AM的长度为()A.4 B.6 C.2或6 D.2或48.如图,小李同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.两点之间线段最短D.经过两点有且仅有一条直线9.将直角三角尺和长方形纸片如图放置,图中与∠1互余的角有A.2个B.3个C.4个D.5个10.如图,点位于点的().A.南偏东方向上B.北偏西方向上C.南偏东方向上D.南偏西方向上11.如图,直线AB,CD相交于点O,OE⊥AB于O,∠COE=55°,则∠BOD的度数是()A.35°B.45°C.30°D.40°12.过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图正确的为()A.B.C.D.二、填空题13.如图,C岛在A岛的北偏东60°方向,在B岛的北偏西45°方向,则从C岛看A、B两岛的视角∠ACB=_______.14.如图,平面展开图折叠成正方体后,相对面上的两个代数式值相等,则x+y=________.15.如图,将一副三角板叠放在一起,使直角顶点重合于O,则∠AOC+∠DOB=_____.16.线段,C是线段AB上一点,AC=4,M是AB的中点,点N是AC的中点,则线段NM的长是________.三、解答题17.从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图。
人教版七年级上册数学 第四章 几何图形初步 单元测试(含解析)
第四章几何图形初步单元测试一.选择题1.对如图所示几何体的认识正确的是()A.棱柱的底面是四边形B.棱柱的侧面是三角形C.几何体是四棱柱D.棱柱的底面是三角形2.电视剧《西游记》中,孙悟空的“金箍棒”飞速旋转,形成一个圆面,是属于()A.点动成线B.线动成面C.面动成体D.以上都不对3.下列说法正确的是()A.延长直线AB到点CB.延长射线AB到点CC.延长线段AB到点CD.射线AB与射线BA是同一条射线4.如图,C为线段AD上一点,点B为CD的中点,且AD=9,BD=2.若点E在直线AD 上,且EA=1,则BE的长为()A.4B.6或8C.6D.85.下列说法正确的是()A.两点之间的线段,叫做这两点之间的距离B.87'等于1.45°C.射线OA与射线AO表示的是同一条射线D.延长线段AB到点C,使AC=BC6.线段AB=9,点C在线段AB上,且有AC=AB,M是AB的中点,则MC等于()A.3B.C.D.7.某公司员工分别在A、B、C三个住宅区,A区有30人,B区有15人,C区有10人,三个区在一条直线上,位置如图所示,该公司的接送车打算在此间只设一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设在()A.A区B.B区C.C区D.A、B两区之间8.如图,将一副三角板叠在一起使直角顶点重合于点O,(两块三角板可以在同一平面内自由转动),下列结论一定成立的是()A.∠BOA>∠DOC B.∠BOA﹣∠DOC=90°C.∠BOA+∠DOC=180°D.∠BOC≠∠DOA9.下列说法正确的是()A.射线比直线短B.从同一点引出的两条射线所组成的图形叫做角C.若AP=BP,则P是线段AB的中点D.两点之间的线段叫做这两点之间的距离10.如图,O在直线AB上,OC平分∠DOA(大于90°),OE平分∠DOB,OF⊥AB,则图中互余的角有()对.A.6B.7C.8D.10二.填空题11.若一个六棱柱,则它有条棱,有个面.12.秒针旋转一周时,形成一个圆面,用数学知识可以理解为.13.已知点A、B、C在同一直线上,若AB=10cm,AC=16cm,点M、N分别是线段AB、AC中点,则线段MN的长是.14.如图,线段AB=3,延长AB到点C,使BC=2AB,则AC=.15.如图,已知CD=AD=BC,E、F分别是AC、BC的中点,且BF=40cm,则EF 的长度为cm.16.人们会把弯曲的河道改直,这样能够缩短航程.这样做的道理是.17.如图,有一种电子游戏,电子屏幕上有一条直线,在直线上有A,B,C,D四点,且AB=BC=CD,点P沿直线l从右向左移动,当出现点P与A,B,C,D四点中的至少两个点距离相等时,就会发出警报,则直线l上会发出警报的点P有个.18.如图,已知A、B是线段EF上两点,EA:AB:BF=1:2:3,M、N分别为EA、BF 的中点,且MN=8cm,则EF长为.19.如图,C、D是线段AB上的两点,E是AC的中点,F是BD的中点,若AB=m,CD =n,则线段EF的长为.20.如图,射线OC,OD在∠AOB内,∠AOB和∠BOC互为补角,.若∠COD比∠BOD大m°(m<30),则∠AOC=°.(用含m的式子表示)三.解答题21.如图所示是一张铁皮.(1)计算该铁皮的面积;(2)它能否做成一个长方体盒子?若能,画出来,计算它的体积;若不能,说明理由.22.如图,线段AB=20,BC=15,点M是AC的中点.(1)求线段AM的长度;(2)在CB上取一点N,使得CN:NB=2:3.求MN的长.23.如图,是小明家和学校所在地的简单地图,已知OA=2km,OB=3.5km,OP=4km,点C为OP的中点,回答下列问题:(1)图中到小明家距离相同的是哪些地方?(2)由图可知,公园在小明家东偏南30°方向2km处.请用方向与距离描述学校、商场、停车场相对于小明家的位置.24.如图,在直线AD上任取一点O,过点O做射线OB,OE平分∠DOB,OC平分∠AOB,∠BOC=26°时,求∠BOE的度数.25.如图,C是线段AB上一点,AC=5cm,点p从点A出发沿AB以3cm/s的速度匀速向点B运动,点Q从点C出发沿CB以1cm/s的速度匀速向点B运动,两点同时出发,结果点P比点Q先到3s.(1)求AB的长;(2)设点P、Q出发时间为ts,①求点P与点Q重合时(未到达点B),t的值;②直接写出点P与点Q相距2cm时,t的值.26.线段与角的计算.(1)如图1,已知点C为AB上一点,AC=15cm,CB=AC,若D、E分别为AC、AB 的中点,求DE的长.(2)已知:如图2,∠AOB被分成∠AOC:∠COD:∠DOB=2:3:4,OM平分∠AOC,ON平分∠DOB,且∠MON=90°,求∠AOB的度数.参考答案1.解:如图所示的几何体是三棱柱,它有两个全等的三角形的底面,三个矩形的侧面,因此选项ABC均不符合题意,选项D符合题意;故选:D.2.解:孙悟空的“金箍棒”飞速旋转,形成一个圆面,是属于线动成面,故选:B.3.解:A、直线可以沿两个方向无限延伸,故不能说延长直线AB,故本选项不符合题意;B、射线可沿延伸方向无限延伸,故不能说延长射线AB,故本选项不符合题意;C、线段不能延伸,可以说延长线段AB到点C,故本选项符合题意;D、射线AB与射线BA不是同一条射线,故本选项不符合题意;故选:C.4.解:若E在线段DA的延长线,如图1,∵EA=1,AD=9,∴ED=EA+AD=1+9=10,∵BD=2,∴BE=ED﹣BD=10﹣2=8,若E线段AD上,如图2,EA=1,AD=9,∴ED=AD﹣EA=9﹣1=8,∵BD=2,∴BE=ED﹣BD=8﹣2=6,综上所述,BE的长为8或6.故选:B.5.解:A、应为:连结两点的线段的长度叫做这两点间的距离,故本选项错误;B、87'=60'+27'=1°+()°=1.45°,故本选项正确;C、射线OA的端点是点O,射线AO的端点是点A,所以,它们不是同一条射线,故本选项错误;D、延长线段AB到点C,则AC一定大于BC,不能使AC=BC,故本选项错误.故选:B.6.解:∵AB=9,∴AC=AB=3,∵M是AB的中点,∴AM=AB=∴MC=AM﹣AC=﹣3=故选:B.7.解:∵当停靠点在A区时,所有员工步行到停靠点路程和是:15×100+10×300=4500m,当停靠点在B区时,所有员工步行到停靠点路程和是:30×100+10×200=5000m,当停靠点在C区时,所有员工步行到停靠点路程和是:30×300+15×200=12000m,当停靠点在A、B区之间时,设在A区、B区之间时,设距离A区x米,则所有员工步行路程之和=30x+15(100﹣x)+10(100+200﹣x),=30x+1500﹣15x+3000﹣10x,=5x+4500,∴当x=0时,即在A区时,路程之和最小,为4500米;综上,当停靠点在A区时,所有员工步行到停靠点路程和最小,那么停靠点的位置应该在A区.故选:A.8.解:因为是直角三角板,所以∠AOC=∠BOD=90°,所以∠BOA+∠DOC=∠AOC+∠BOC+∠DOC=∠AOC=∠BOD=180°,故选:C.9.解:A.射线和直线不可以比较长短,原说法错误,故本选项不符合题意;B.从同一点引出的两条射线所组成的图形叫做角,原说法正确,故本选项符合题意;C.若点P在线段AB上,AP=BP,则P是线段AB的中点,原说法错误,故本选项不符合题意;D.两点之间的线段的长度叫做这两点之间的距离,原说法错误,故本选项不符合题意;故选:B.10.解:∵OC平分∠DOA,∴∠AOC=∠COD,∵OE平分∠DOB,∴∠DOE=∠BOE,∴∠COE=90°,∴∠AOC+∠BOE=90°,∠AOC+∠DOE=90°,∠COD+∠BOE=90°,∠COD+∠DOE =90°,∠COF+∠EOF=90°,∵OF⊥AB,∴∠AOC+∠COF=90°,∠COD+∠COF=90°,∠BOE+∠EOF=90°,∠BOD+∠DOF =90°,∠DOE+∠EOF=90°,∴互余的角有10对.故选:D.11.解:因为六棱柱上下两个底面是6边形,侧面是6个长方形,所以共有18条棱,8个面;故答案为18,8.12.解:根据点、线、面、体之间的关系可得,线动成面.13.解:(1)如图1,,∵AB=10cm,点M是线段AB的中点,∴AM=10÷2=5(cm);∵AC=16cm,点N是线段AC的中点,∴AN=16÷2=8(cm),∴MN=AM+AN=5+8=13(cm)(2)如图2,,∵AB=10cm,点M是线段AB的中点,∴AM=10÷2=5(cm);∵AC=16cm,点N是线段AC的中点,∴AN=16÷2=8(cm),∴MN=AN﹣AM=8﹣5=3(cm),综上,线段MN的长是13cm或3cm.故答案为:13cm或3cm.14.解:∵AB=3,∴BC=2AB=6,∴AC=AB+BC=3+6=9.故答案为:9.15.解:∵点F是BC的中点,且BF=40cm,∴BC=2BF=80cm,∵CD=AD=BC,∴CD=×80=16cm,AD=64cm,∴AC=AD﹣CD=48cm,∵E、F分别是AC、BC的中点,∴CE=AC=24cm,CF=BF=40cm,∴EF的长度为CE+CF=64cm,故答案为:64.16.解:由线段的性质可知,把弯曲的河道改直,能够缩短航程,这样做根据的道理是两点之间线段最短,故答案为:两点之间线段最短.17.解:根据题意可知:当点P经过任意一条线段中点时会发出报警,∵图中共有线段DC、DB、DA、CB、CA、BA,∵BC和AD中点是同一个∴发出警报的可能最多有5个.故答案为5.18.解:∵EA:AB:BF=1:2:3,可以设EA=x,AB=2x,BF=3x,而M、N分别为EA、BF的中点,∴MA=EA,NB=BF,∴MN=MA+AB+BN=x+2x+x=4x ∵MN=8cm,∴4x=8,∴x=2,∴EF=EA+AB+BF=6x=12,∴EF的长为12cm,故答案为:12cm.19.解:∵AB=m,CD=n.∴AB﹣CD=m﹣n,∵E、F分别是AC、DB的中点,∴CE=AC,DF=DB,∴CE+DF=(m﹣n),∴EF=CE+DF+DC=(m﹣n)+n=m+n,故答案为:m+n.20.解:∵∠AOB和∠BOC互为补角,∴∠AOB+∠BOC=180°,∵∠BOD=,∴3∠BOD+∠BOC=180°,即∠BOC=180°﹣3∠BOD,∵∠COD+∠BOD=∠BOC,∴180°﹣3∠BOD=∠COD+∠BOD,∴∠COD+4∠BOD=180°,∵∠COD比∠BOD大m°(m<30),∴∠COD﹣∠BOD=m°,∴∠BOD=()°,∠COD=()°∴∠BOC=()°,∴∠AOB=180°﹣∠BOC=(108﹣)°,∴∠AOC=∠AOB﹣∠BOC=(108﹣)°﹣()°=(36﹣m)°.故答案为(36﹣m).21.解:(1)(1×3+2×3+1×2)×2=22(m2),(2)根据棱柱的展开与折叠,可得可以折叠成长方体的盒子,其长、宽、高分别为3cm,2cm,1cm,因此体积为:1×2×3=6(m3),22.解:(1)线段AB=20,BC=15,∴AC=AB﹣BC=20﹣15=5.又∵点M是AC的中点.∴AM=AC=×5=,即线段AM的长度是.(2)∵BC=15,CN:NB=2:3,∴CN=BC=×15=6.又∵点M是AC的中点,AC=5,∴MC=AC=,∴MN=MC+NC=,即MN的长度是.23.解:(1)因为点C为OP的中点,所以OC=2km,因为OA=2km,所以可得出距小明家距离相同的是学校和公园;(2)由图可知,学校在小明家东偏北45°方向2km处,商场在小明家西偏北60°方向3.5km处,停车场在东偏南30°方向4km处.24.解:∵OC平分∠AOB,∠BOC=26°,∴∠AOB=2∠BOC=52°.∴∠BOD=180°﹣52°=128°.∵OE平分∠DOB,∴∠BOE=∠DOB=×128°=64°.25.解:(1)设AB=xcm,根据题意可得:(x﹣5)﹣=3,解得:x=12,答:AB的长为12cm;(2)①由题意可得:3t=t+5,解得:t=,故点P与点Q重合时(未到达点B),t的值为;②当点P追上点Q前相距2cm,由题意可得:3t+2=t+5,解得:t=,当追上后相距2cm,由题意可得:3t﹣2=t+5,解得:t=,总上所述:t=或t=.26.解:(1)∵AC=15cm,CB=AC,∴CB=×15=10(cm),∴AB=15+10=25(cm).∵D,E分别为AC,AB的中点,∴AE=BE=AB=12.5cm,DC=AD=AC=7.5cm,∴DE=AE﹣AD=12.5﹣7.5=5(cm);(2)设∠AOC=2x,∠COD=3x,∠DOB=4x,则∠AOB=9x,∵OM平分∠AOC,ON平分∠DOB,∴∠MOC=x,∠NOD=2x,∴∠MON=x+3x+2x=6x,又∵∠MON=90°,∴6x=90°,∴x=15°,∴∠AOB=135°.。
人教版初中数学七年级上册第四章图形认识初步单元测试
初中数学-七年级上册-第四章图形认识初步-单元测试一、单选题(选择一个正确的选项)1 、如图是一个正方体,用一个平面去截这个正方体,截面形状不可能为下图中的()A、B、C、D、2 、两个完全相同的正方体,将一面完全重合,构成的几何体面数有()A、12个B、11个C、10个D、6个3 、下列哪个图形阴影部分的面积与已知图形阴影部分的面积不相等()A、图形阴影部分的面积=1×1=1面积单位,与已知图形阴影部分的面积相等;B、图形阴影部分的面积=1×2÷2=1面积单位,与已知图形阴影部分的面积相等;C、图形阴影部分的面积=1×2÷2=1面积单位,与已知图形阴影部分的面积相等;D、图形阴影部分的面积=1×1÷2=面积单位,与已知图形阴影部分的面积不相等.4 、圆锥可以看作是由一个( )旋转得到的A、矩形(长方形)B、等腰梯形C、半圆D、直角三角形5 、两个角的大小之比是7:3,它们的差是,则这两个角的关系是( )A、相等B、互补C、互余D、无法确定6 、如图所示的图形绕虚线旋转一周,所形成的几何体是()A、B、C、D、7 、将如图所示的直角梯形绕直线l旋转一周,得到的立体图形是()A、B、C、D、8 、用一个平面去截一个几何体,不能截得三角形截面的几何体是()A、圆柱B、圆锥C、三棱柱D、正方形9 、如图,点A位于点O的方向上()A、南偏东35°B、北偏西65°C、南偏东65°D、南偏西65°10 、下面的几何体是棱柱的是()A、B、C、D、二、填空题(在空白处填写正确的答案)11 、下列图形各能叠成什么图形?答:图A____________,图B____________12 、如图,数一数,图中共有____________个三角形.13 、时钟表面3点30分时,时针与分针所夹角的度数是____14 、把正六面体的各面分别涂上不同的颜色,不同的颜色对应的数字如表.现将三个大小、颜色完全相同的正六面体摆成如图所示的长方体,则这个长方体底面上的数字和为________15 、如图,MN是圆柱底面的直径,NO是圆柱的高,在圆柱的侧面上,过点M,P.有一条绕了四周的路径最短的金属丝,现将圆柱侧面沿NO剪开,所得的侧面展开图可以是:_________(填序号).三、解答题(在题目下方写出解答过程)16 、如图12,小张从家(图中A处)出发,向南偏东40°的方向走到学校(图中B处),再从学校出发,向北偏西75°的方向走到小明家(图中C处),试问∠ABC为多少度?说明你的理由。
(新版人教版)七年级上第四章《图形认识初步》测试题及答案
D CB AB A第1题图会社谐和设建DC BAβββααα第3题图七级数学第四章几何图形初步测试题(新课标)(时限:100分钟 总分:100分)一、选择题:将下列各题正确答案的代号填在下表中。
每小题2分,共24分。
1.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“建”字一面的相对面上的字是( )A.和B.谐C.社D.会2.下面左边是用八块完全相同的小正方体搭成 的几何体,从上面看该几何体得到的图是( )A B C D3.如图,四个图形是由立体图形展开得到的,相应的立体图形顺次是( ) A. 正方体、圆柱、三棱柱、圆锥 B. 正方体、圆锥、三棱柱、圆柱 C. 正方体、圆柱、三棱锥、圆锥 D. 正方体、圆柱、四棱柱、圆锥4.如图,对于直线AB ,线段CD ,射线EF ,其中能相交的是( )5.下列说法中正确的是( )A.画一条3厘米长的射线B.画一条3厘米长的直线C.画一条5厘米长的线段D.在线段、射线、直线中直线最长 6.如图,将一副三角尺按不同位置摆放,摆放方式中∠α 与∠β 互余的是( )1乙甲N MP D C B A B ()D C A D C B A 第9题图BA 7.点E 在线段CD 上,下面四个等式①CE =DE ;②DE =21CD ;③CD =2CE ; ④CD =21DE.其中能表示E 是线段CD 中点的有( ) A. 1个 B. 2个 C. 3个 D. 4个 8. C 是线段AB 上一点,D 是BC 的中点,若AB =12cm ,AC =2cm ,则BD 的长为( ) A. 3cm B. 4cm C. 5cm D. 6cm9.如图是一正方体的平面展开图,若AB =4,则该正方体A 、B 两点间的距离为( )A. 1B. 2C. 3D. 410.用度、分、秒表示91.34°为( ) A. 91°20/24// B. 91°34/ C. 91°20/4// D. 91°3/4// 11.下列说法中正确的是( )A.若∠AOB =2∠AOC ,则OC 平分∠AOBB.延长∠AOB 的平分线OCC.若射线OC 、OD 三等份∠AOB ,则∠AOC =∠DOCD.若OC 平分∠AOB ,则∠AOC =∠BOC12.甲、乙两人各用一张正方形的纸片ABCD 折出一个45°的角(如图),两人做法如下:甲:将纸片沿对角线AC 折叠,使B 点落在D 点上,则∠1=45°; 乙:将纸片沿AM 、AN 折叠,分别使B 、D 落在对角线AC 上的一点P ,则∠MAN =45°对于两人的做法,下列判断正确的是( )A.甲乙都对B.甲对乙错C.甲错乙对D.甲乙都错 二、填空题:本大题共8小题,每小题3分,共24分。
人教版数学七年级上册第第四章 几何图形初步 基础检测题含答案
人教版数学七年级上册第第四章基础检测题含答案4.1几何图形一、选择题(每小题3分,共30分)1.如图所示,将平面图形绕轴旋转一周,得到的几何体是()A.B.C.D.2.如图所示的几何体从正面(箭头方向)看到的平面图形是()3.下列说法正确的是()①教科书是长方形;②教科书是长方体,也是棱柱;③教科书的表面是长方形.A.①②B.①③C.②③D.①②③4.如图是一个正方体纸盒侧面展开图,折成正方体后相对的面上的两个数互为相反数,则A、B、C表示的数为()A.0,﹣5,B.,0,﹣5C.,﹣5,0D.5,,05.如下图,下列图形全部属于柱体的是()6.骰子是一种特别的数字立方体(见右图),它符合规则:相对两面的点数之和总是7,下面四幅图中可以折成符合规则的骰子的是()A.B.C.D.7.如图所示的几何体,从上面看得到的平面图形是()8.下列图形中为三棱柱的表面展开图的是()A.B.C.D.9.图(1)是一个正方体的表面展开图,小正方体从图(2)所示的位置依次翻到第1格、第2格、第3格、第4格,这时小正方体朝上一面的字是( )A.家B.乡C.是D.伊4 的网格图剪去5个小正方形后,图中还剩下7个小正方形,为了使余10.如图,将3下的部分(小正方形之间至少要有一条边相连)恰好能...折成一个正方体,需要再剪去1个小正方形,则应剪去的小正方形的编号是()A.7B.6C.5D.4二、填空题(每小题3分,共30分)11.写出一个主视图、左视图、俯视图都相同的几何体:.12.一个矩形绕着它的一边旋转一周,所得到的立体图形是.13.一个棱锥的棱数是12,则这个棱锥的面数是.14.一个几何体的从三个方向看到的平面图形,如图所示,则这个几何体的名称是____________.第14题图第15题图第16题图15.如图,该平面展开图按虚线折叠成正方体后,相对面上两个数之和为8,则x+y =.16.立方体木块的六个面分别标有数字1、2、3、4、5、6,如图,是从不同方向观察这个立方体木块看到的数字情况,数字1和5对面的数字的和是.17.如图,一长方体木板上有两个洞,一个是正方形形状的,一个是圆形形状的,对于以下4种几何体,你觉得哪一种作为塞子既可以堵住圆形空洞又可以堵住方形空洞?(填序号).18.一个立体图形的三视图如图所示,请你根据图中给出的数据求出这个立体图形的表面积为.第18题图第19题图第20题图19.如图,从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如所示的零件,则这个零件的表面积为20.如图,用小木块搭一个几何体,它的从正面看和从上面看如图所示.问:最少需要__________个小正方体木块.三、解答题(共40分)21.(9分)如图所示由五个小立方体构成的立体图形,请你分别画出从它的正面、左面、上面三个方向看所得到的平面图形.从正面看从左面看从上面看22.(6分)下面是一个正方体纸盒的展开图,请把-10,7,10,-2,-7,2分别填入六个正方形,使得按虚线折成正方体后,相对面上的两数互为相反数.23.(12分)如图,一个多面体的展开图中,每个面内的大写字母表示该面,被剪开的棱边所注的小写字母可表示该棱.(1)说出这个多面体的名称 ;(2)写出所有相对的面 _ ;(3)若把这个展开图折叠起来成立体时,被剪开的棱b 与 重合,f 与 重合.24.(13分)将一个正方体表面全部涂上颜色把正方体的棱三等分,然后沿等分线把正方体切开,得到27个小正方体,我们把仅有i 个面涂色的小正方体的个数记为i x ,例如:通过观察我们可以发现仅有3个面涂色的小正方体个数83=x ,仅有2个面涂色的小正方体个数122=x ,仅有1个面涂色的小正方体个数61=x ,6个面均不涂色的小正方体个数10=x ;(1)如果把正方体的棱四等分,同样沿等分线把正方体切开,得到64个小正方体,那么=3x ________,=2x _______,=1x _______,=0x _________;(2)如果把正方体的棱n 等分(n 大于3),然后沿等分线把正方体切开,得到3n 个小正方体,且满足184232=-x x ,请求出n 的值.参考答案1.C2.B3.C∴不能说它是一个长方形,∵有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱∴它是棱柱.教科书的表面是一个长方形.故选C.4.A【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点求出A、B、C的值,然后代入进行计算即可求解.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,∴A与0是相对面,B与5是相对面,C与﹣是相对面,∵折成正方体后相对的面上的两个数互为相反数,∴A=0,B=﹣5,C=.故选:A.5.C【解析】A选项中含有三棱锥,就是锥体;B选项中含有圆锥,就是锥体;D选项中含有圆台,就是台体.6.A【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解.解:根据正方体的表面展开图,相对的面之间一定相隔一个正方形,A.4点与3点是向对面,5点与2点是向对面,1点与6点是向对面,所以可以折成符合规则的骰子,故本选项正确;B.1点与3点是向对面,4点与6点是向对面,2点与5点是向对面,所以不可以折成符合规则的骰子,故本选项错误;C.3点与4点是向对面,1点与5点是向对面,2点与6点是向对面,所以不可以折成符合规则的骰子,故本选项错误;D.1点与5点是向对面,3点与4点是向对面,2点与6点是向对面,所以不可以折成符合规则的骰子,故本选项错误.故选A.7.B.【解析】根据所看位置,找出此几何体的三视图即可.解:从上面看得到的平面图形是两个同心圆,故选:B.8.B【解析】利用棱柱及其表面展开图的特点解题.解:A、C、D围成三棱柱时,两个三角形重合为同一底面,而另一底面没有.故不能围成三棱柱;B、中间三个长方形能围成三棱柱的侧面,左、右两个三角形围成三棱柱的上、下两底面,故能围成三棱柱,是三棱柱的表面展开图.故选B.9.C.【解析】由图1可得,“伊”和“乡”相对;“春”和“我”相对;“是”和“家”相对;由图2可得,小正方体从图2的位置依次翻到第4格时,“家”在下面,则这时小正方体朝上面的字是“是”.10.C.【解析】根据只要有“田”字格的展开图都不是正方体的表面展开图,应剪去的小正方形的编号是5.故选C.11.球或正方体.【解析】试题分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解:球的三视图都为圆;正方体的三视图为正方形;所以应填球或正方体.12.圆柱体【解析】本题是一个矩形绕着它的一边旋转一周,根据面动成体的原理即可解.解:以矩形的一边所在直线为旋转轴,形成的旋转体叫做圆柱体.故答案为圆柱体.13.7.【解析】因为一个棱锥的棱数是12,可得多面体为六棱锥,所以多面体的面数为714.三棱柱.【解析】根据图中三视图的形状,符合条件的只有三棱柱,因此这个几何体的名称是三棱柱.15.10.【解析】∵“4”与“y”是对面,“x”与“2”是对面,∴x=6,y=4.∴x+y=10.【解析】从3个图形看,和1相邻的有2,4,5,6,那么和1相对的就是3.则和2相邻的有1,3,4,5,那么和2相对的就是6.则和5相对的就是4.再将数字1和5对面的数字相加即可.解:根据三个图形的数字,可推断出来,1对面是3;2对面是6;5对面是4.∴3+4=7.则数字1和5对面的数字的和是7.故答案为:7.17.②.【解析】本题中圆柱的俯视图是圆,可以堵住圆形空洞,它的正视图和左视图是长方形,可以堵住方形空洞,据此选择即可.解:圆柱的俯视图是圆,可以堵住圆形空洞,它的正视图和左视图是长方形,可以堵住方形空洞,故圆柱是最佳选项,故答案为②.18.8π.【解析】从三视图可以看正视图以及俯视图为矩形,而左视图为圆形,可以得出该立体图形为圆柱,再由三视图可以圆柱的半径,长和高求出体积.解:∵正视图和俯视图是矩形,左视图为圆形,∴可得这个立体图形是圆柱,∴这个立体图形的侧面积是2π×3=6π,底面积是:21ππ⋅=,∴这个立体图形的表面积为6π+2π=8π;故答案为:8π.【解析】挖去一个棱长为1的小正方体,得到的图形与原图形表面积相等,则表面积是2×2×6=24.20.10【解析】根据俯视图可以判定就至少需要7个,再根据主视图上面还需要3个,则最少需要10个.21.见解析【解析】分别画出三视图即可解:如图:22.(1)正方体;(2)P与X,Q与Y,R与Z;(3)i;g【解析】根据正方体的展开图我们就可以得到答案,自己也可以动手叠一下试试看.解:(1)这个多面体是正方体.(2)相对的面有三对:P与X,Q与Y,R与Z.(3)将会重合的棱有b与i,f与g23.见解析【解析】如图,A-A’、B-B’、C-C’是相对面,填入互为相反数的两个数即可.解:如图所示:(答案不唯一,符合即可)4.2直线、射线、线段一.选择题1.下列说法正确的是()A.射线P A和射线AP是同一条射线B.射线OA的长度是3cmC.直线ab,cd相交于点PD.两点确定一条直线2.如图,C为AB的中点,D是BC的中点,则下列说法错误的是()A.CD=AC﹣BD B.CD=AB﹣BD C.CD=BC D.AD=BC+CD 3.平面上有A、B、C三点,经过任意两点画一条直线,可以画出直线的数量为()A.1条B.3条C.1条或3条D.无数条4.如图,线段CD在线段AB上,且CD=3,若线段AB的长度是一个正整数,则图中以A,B,C,D这四点中任意两点为端点的所有线段长度之和可能是()A.28B.29C.30D.315.已知点A、B、C、D在同一条直线上,线段AB=8,C是AB的中点,DB=1.5.则线段CD的长为()A.2.5B.3.5C.2.5或5.5D.3.5或5.56.点M在线段AB上,给出下列四个条件,其中不能判定点M是线段AB的中点的是()A.AM=BM B.AB=2AM C.AM+BM=AB D.BM=AB7.如图,线段AB=18cm,点M为线段AB的中点,点C将线段MB分成MC:CB=1:2,则线段AC的长度为()A.6cm B.12cm C.9cm D.15cm8.如图,已知线段AB=8,点C是线段AB是一动点,点D是线段AC的中点,点E是线段BD的中点,在点C从点A向点B运动的过程中,当点C刚好为线段DE的中点时,线段AC的长为()A.3.2B.4C.4.2D.9.如图,D、E顺次为线段AB上的两点,AB=19,BE﹣DE=7,C为AD的中点,则AE ﹣AC的值为()A.5B.6C.7D.810.如图,C,D,E是线段AB上的三个点,下面关于线段CE的表示:①CE=CD+DE;②CE=CB﹣EB;③CE=CD+DB﹣AC;④CE=AE+CB﹣AB.其中,正确的是()A.①②B.①②③C.①②④D.①②③④二.填空题11.数学来源于生活而又高于生活,比如当我们在植树的时候,要想整齐地栽一行树,只需要确定两端树坑的位置即可.用数学知识可以解释为.12.如图,已知C为线段AB的中点,D在线段CB上.若DA=6,DB=3,则CD=.13.如图,点C在线段AB上,且AC=AB,点D在线段BC上,AD=5,BD=3,则线段CD的长度为.14.如图,点C、D在线段AB上,AC=6cm,CD=4cm,AB=12cm,则图中所有线段的和是cm.15.如图,已知A、B是线段EF上两点,EA:AB:BF=1:2:3,M、N分别为EA、BF 的中点,且MN=8cm,则EF长为.三.解答题16.如图,已知点A、B、C.D,根据下列语句画图.(不写作图过程)作射线AB、直线AC,连接AD并延长线段AD.17.如图,A,B,C三棵树在同一直线上,若小明正好站在线段的AC中点Q处,BC=2BQ.(1)填空:AQ==AC,AQ﹣BC=.(2)若BQ=3米,求AC的长.18.如图,线段AB上顺次有三个点C,D,E,把线段AB分为了2:3:4:5四部分,且AB=28.(1)求线段AE的长;(2)若M,N分别是DE,EB的中点,求线段MN的长度.参考答案一.选择题1.解:A、射线P A和射线AP不是同一条射线,故本选项错误;B、射线是无限长的,故本选项错误;C、直线ab,cd,直线的写法不对,故本选项错误;D、两点确定一条直线是正确的.故选:D.2.解:∵C是AB的中点,D是BC的中点,∴AC=BC=AB,CD=BD=BC,∵CD=BC﹣BD∴CD=AC﹣BD,故A正确;∵CD=BC﹣DB,∴CD=AB﹣DB,故B正确;∴AD=AC+CD=BC+CD,故D正确;∵CD=BD=BC;故C错误;故选:C.3.解:①如果三点共线,过其中两点画直线,共可以画1条;②如果任意三点不共线,过其中两点画直线,共可以画3条.故选:C.4.解:所有线段之和=AC+AD+AB+CD+CB+BD,∵CD=3,∴所有线段之和=AC+AC+3+AC+3+BD+3+3+BD+BD=12+3(AC+BD)=12+3(AB﹣CD)=12+3(AB﹣3)=3AB+3=3(AB+1),∵AB是正整数,∴所有线段之和是3的倍数,故选:C.5.解:∵AB=8,C是AB的中点,∴AC=BC=4,∵DB=1.5.当点D在点B左侧时,CD=BC﹣BD=4﹣1.5=2.5,当点D在点B右侧时,CD=BC+BD=4+1.5=5.5,则线段CD的长为2.5或5.5.故选:C.6.解:A、由AM=BM可以判定点M是线段AB中点,所以此结论正确,故这个选项不符合题意;B、由AB=2AM可以判定点M是线段AB中点,所以此结论正确,故这个选项不符合题意;C、由AM+BM=AB不可以判定点M是线段AB中点,所以此结论不正确,故这个选项符合题意;D、由BM=AB可以判定点M是线段AB中点,所以此结论不正确,故这个选项不符合题意;故选:C.7.解:∵线段AB=18cm,点M为线段AB的中点,∴AM=BM=AB=9,∵点C将线段MB分成MC:CB=1:2,设MC=x,CB=2x,∴BM=MC+CB=3x,∴3x=9,解得x=3,∴AC=AM+MC=9+3=12.则线段AC的长度为12.故选:B.8.解:∵点D是线段AC的中点,∴AD=CD,∵点E是线段BD的中点,∴BE=DE,∵点C为线段DE的中点,∴CD=CE,∴AD=CD=CE,∵AB=AD+DC+CE+BE=3AD+BE=3AD+DE=3AD+2CD=5AD,∴AD=1.6,∴AC=2AD=3.2,故选:A.9.解:∵AB=19,设AE=m,∴BE=AB﹣AE=19﹣m,∵BE﹣DE=7,∴19﹣m﹣DE=7,∴DE=12﹣m,∴AD=AB﹣BE﹣DE=19﹣(19﹣m)﹣(12﹣m)=19﹣19+m﹣12+m=2m﹣12,∵C为AD中点,∴AC=AD=×(2m﹣12)=m﹣6.∴AE﹣AC=6,故选:B.10.解:由图可知:①CE=CD+DE,正确;②CE=CB﹣EB,正确;③CE=CD+DB﹣EB,错误;④CE=AE+CB﹣AB,正确;故选:C.二.填空题11.解:两端两个树坑的位置,可看做两个点,根据两点确定一条直线,即可确定一行树所在的位置.故答案为:两点确定一条直线.12.解:∵DA=6,DB=3,∴AB=DB+DA=3+6=9,∵C为线段AB的中点,∴BC=AB=×9=4.5,∴CD=BC﹣DB=4.5﹣3=1.5.故答案为:1.5.13.解:∵AD=5,BD=3,∴AB=AD+BD=8,∵AC=AB=,∴CD=AD﹣AC=5﹣=,故答案为:.14.解:由线段的和差,得AC+DB=AB﹣CD=12﹣4=8(cm).图中所有线段的和AC+AD+AB+CD+CB+DB=AC+(AC+CD)+AB+CD+(CD+DB)+DB =2(AC+DB)+3CD+AB=2×8+3×4+12=40(cm).答:图中所有线段的和是40cm,故答案为:40.15.解:∵EA:AB:BF=1:2:3,可以设EA=x,AB=2x,BF=3x,而M、N分别为EA、BF的中点,∴MA=EA,NB=BF,∴MN=MA+AB+BN=x+2x+x=4x∵MN=8cm,∴4x=8,∴x=2,∴EF=EA+AB+BF=6x=12,∴EF的长为12cm,故答案为:12cm.三.解答题16.解:作射线AB、直线AC,连接AD并延长线段AD,如图所示:17.解:(1)∵O是线段AC的中点,∴AQ=CQ=AC,AQ﹣BC=CQ﹣BC=QB,故答案为;(2)∵BQ=3米,BC=2BQ,∴BC=2BQ=6米,∴CQ=BC+BQ=6+3=9(米),∵Q是AC中点,∴AQ=QC=9(米),∴AC=AQ+QC=9+9=18(米),∴AC的长是18米.18.解:(1)设AC=2x,则CD、DE、EB分别为3x、4x、5x,由题意得,2x+3x+4x+5x=28,解得,x=2,则AC、CD、DE、EB分别为4、6、8、10,则AE=AC+CD+DE=4+6+8=18;(2)如图:∵M是DE的中点,∴ME=DE=4,∵N是EB的中点∴EN=EB=5,∴MN=ME+EN=4+5=9.4.3角一.选择题1.25°的补角是()A.155°B.145°C.55°D.65°2.已知∠A=30°45',∠B=30.45°,则∠A()∠B.A.两点之间直线最短B.一个有理数,不是正数就是负数C.平角是一条直线D.整数和分数统称为有理数4.下列语句中:正确的个数有()①画直线AB=3cm;②连接点A与点B的线段,叫做A、B两点之间的距离;③两条射线组成的图形叫角;④任何一个有理数都可以用数轴上的一个点来表示.A.0B.1C.2D.35.如图,∠AOC=90°,OC平分∠DOB,且∠DOC=22°36′,∠BOA度数是()A.67°64′B.57°64′C.67°24′D.68°24′6.如图,射线OA表示的方向是()A.北偏东65°B.北偏西35°C.南偏东65°D.南偏西35°7.已知∠1和∠2互为余角,且∠2与∠3互补,∠1=60°,则∠3为()A.120°B.60°C.30°D.150°8.如图所示的是正方形网格,则∠AOB___∠COD()A.>B.<C.=D.≥9.如图,OA是北偏东30°方向的一条射线,若射线OB与OA垂直,则射线OB表示的方向是()A.东偏北30°B.东偏北60°C.北偏西30°D.北偏西60°10.如图,甲、乙两人同时从A地出发,甲沿北偏东50°方向步行前进,乙沿图示方向步行前进.当甲到达B地,乙到达C地时,甲与乙前进方向的夹角∠BAC为100°,则此时乙位于A地的()A.南偏东30°B.南偏东50°C.北偏西30°D.北偏西50°二.填空题11.计算:18°13′×5=.12.若此时时钟表上的时间是8:20分,则时针与分针的夹角为度.13.若两个角互补,且度数之比为3:2,求较大角度数为.14.若∠AOB=45°,∠BOC=75°,OD平分∠AOB,OE平分∠BOC,则∠DOE的度数为.15.将一副三角板按如图方式摆放在一起,且∠1比∠2大20°,则∠1的度数等于.三.解答题16.已知:如图,∠AOB=30°,∠COB=20°,OC平分∠AOD,求∠BOD的度数.17.如图,已知∠MON=150°,∠AOB=90°,OC平分∠MOB,(1)若∠AOC=35°,则∠BOC=°,∠NOB=°;(2)若∠NOB=10°,则∠BOC=°,∠AOC=°;(3)若∠AOC=α,∠NOB=β,请直接写出α与β之间的数量关系.18.已知O为直线AB上一点,射线OD,OC,OE位于直线AB上方,OD在OE的左侧,∠AOC=120°,∠DOE=50°,设∠BOE=n.(1)若射线OE在∠BOC的内部(如图1),①若n=43°,求∠COD的度数;②当∠AOD=3∠COE时,求∠COD的度数.(2)若射线OE恰为图中某一个角(小于180°)的角平分线,试求n的值.19.如图,已知∠AOB内部有三条射线,OE平分∠AOD,OC平分∠BOD.(1)若∠AOB=90°,求∠EOC的度数;(2)若∠AOB=α,求∠EOC的度数;(3)如果将题中“平分”的条件改为∠EOA=∠AOD,∠DOC=∠DOB且∠DOE:∠DOC=4:3,∠AOB=90°,求∠EOC的度数.参考答案与试题解析一.选择题1.【解答】解:25°的补角是:180°﹣25°=155°.故选:A.2.【解答】解:30.45°=30°+0.45×60′=30°27′,∵30°45′>30°27′,∴30°45'>30.45°,∴∠A>∠B,故选:A.3.【解答】解:A、两点之间线段最短,原说法错误,故本选项不符合题意;B、一个有理数,不是正数就是负数或零,原说法错误,故本选项不符合题意;C、平角的两边在一条直线上,原说法错误,故本选项不符合题意;D、整数和分数统称为有理数,原说法正确,故本选项符合题意;故选:D.4.【解答】解:①因为直线不可以度量,所以画直线AB=3cm是错误的;②连接点A与点B的线段的长度,叫做A、B两点之间的距离,原说法错误;③有公共端点是两条射线组成的图形叫做角,原说法错误;④任何一个有理数都可以用数轴上的一个点来表示,原说法正确;正确的有1个,故选:B.5.【解答】解:∵OC平分∠DOB,∴∠DOC=∠BOC=22°36′.∵∠AOC=∠AOB+∠BOC=90°,∴∠AOB=∠AOC﹣∠BOC=90°﹣22°36′=67°24′.故选:C.6.【解答】解:射线OA表示的方向是南偏东65°,故选:C.7.【解答】解:∵∠1和∠2互为余角,∠1=60°,∴∠2=90°﹣∠1=90°﹣60°=30°,∵∠2与∠3互补,∴∠3=180°﹣∠2=180°﹣30°=150°.故选:D.8.【解答】解:∵∠AOC=∠BOD=90°,∴∠AOB+∠BOC=90°,∠COD+∠BOC=90°,∴∠AOB=∠COD.故选:C.9.【解答】解:由题意得,∠AOC=30°,∵射线OB与射线OA垂直,∴∠BOC=60°,∴OB的方向角是北偏西60°.故选:D.10.【解答】解:如图所示:由题意可得:∠1=50°,∠BAC=100°,则∠2=180°﹣100°﹣50°=30°,故乙位于A地的南偏东30°.故选:A.二.填空题(共5小题)11.【解答】解:原式=90°+65′=91°5′.故答案是:91°5′.12.【解答】解:∵时针在钟面上每分钟转0.5°,分针每分钟转6°,∴钟表上8点20分,时针与分针的夹角可以看成30°×4+0.5°×20=130°.故答案为:130.13.【解答】解:因为两个角的度数之比为3:2,所以设这两个角的度数分别为(3x)°和(2x)°.根据题意,列方程,得3x+2x=180,解这个方程,得x=36,所以3x=108.即较大角度数为108°.故答案为108°.14.【解答】解:如图1,∵∠AOB=45°,∴∠BOD=22.5°,∵∠BOC=75°,∴∠BOE=37.5°,∴∠DOE=22.5°+37.5°=60°;如图2,∵∠AOB=45°,∴∠BOD=22.5°,∵∠BOC=75°,∴∠BOE=37.5°,∴∠DOE=37.5°﹣22.5°=15°,故答案为:60°或15°.15.【解答】解:设∠2为x,则∠1=x+20°;根据题意得:x+x+20°=90°,解得:x=35°,则∠1=35°+20°=55°;故答案为:55°.三.解答题(共4小题)16.【解答】解:∵∠AOB=30°,∠COB=20°,∴∠AOC=∠AOB+∠BOC=30°+20°=50°,∵OC平分∠AOD,∴∠AOC=∠COD=50°,∴∠BOD=∠BOC+COD=20°+50°=70°.17.【解答】解:(1)∠BOC=∠AOB﹣∠AOC=90°﹣35°=55°;∵OC平分∠MOB,∴∠MOB=2∠BOC=110°,∴∠NOB=∠MON﹣∠MOB=150°﹣110°=40°.故答案为:55,40;(2)∠MOB=∠MON﹣∠NOB=150°﹣10°=140°,∵OC平分∠MOB,∴∠BOC=;∴∠AOC=90°﹣∠BOC=20°.故答案为70,20;(3)∵∠AOC=α,∠NOB=β,∴∠BOC=90°﹣α,∵OC平分∠MOB,∴∠MOB=2∠BOC=180°﹣2α,∵∠MOB+∠NOB=150°,∴180°﹣2α+β=150°,即β=2α﹣30°.18.【解答】解:(1)①∠BOC=180°﹣∠AOC=60°,由n=43°,可得∠COE=∠BOC﹣∠BOE=17°,∴∠COD=∠DOE﹣∠COE=50°﹣17°=33°;②∵∠AOD=3∠COE,∠AOD+∠COD=120°,∠DOE=50°,∴3∠COE+50°﹣∠COE=120°,解得∠COE=35°,∴∠COD=∠DOE﹣∠COE=50°﹣35°=15°;(2)当OE平分∠BOC时,如图所示:∵∠AOC=120°,∴∠BOC=180°﹣∠AOC=60°,∴∠BOE==30°.即n=30°;当OE平分∠AOC时,如图所示:∠BOE=2∠BOC=120°,即n=120°;当OE平分∠BOD时,如图所示:∠BOE=∠DOE=50°,即n=50°;当OE平分∠COD时,∠BOE=∠EOC+∠BOC=50°+60°=110°,即n=110°;OE平分∠AOD是不成立.所以n=30°、50°、110°或120°.19.【解答】解:(1)∵OE平分∠AOD,OC平分∠BOD,∴∠EOD=∠AOD,∠DOC=∠DOB,∴∠EOC=(∠AOD+∠DOB)=45°;(2)由(1)可知:∠EOC=(∠AOD+∠DOB)=α;(3)∵∠DOE:∠DOC=4:3,∴设∠DOE=4x,∠DOC=3x,∵∠EOA=∠AOD,∴∠DOE=∠AOD,∴∠AOD=5x,∵∠DOC=∠DOB,∴∠DOB=4x4.4课题学习制作长方形形状一.选择题1.给出一个正方形,请你动手画一画,将它剖分为n个小正方形.那么,通过实验与思考,你认为下列自然数n不可以取到的是()A.5B.6C.7D.82.有一块两条直角边长分别为3m和4m的直角三角形绿地,现在要扩充成等腰三角形,且扩充部分是直角边长为4m的直角三角形,则扩充后的等腰三角形绿地的周长不可能是()A.16m B.m C.(10+)m D.(10+)m 3.某地有三家工厂,分别位于矩形ABCD的顶点A、B及边CD的中点P处,已知AB=16km,BC=12km,为了处理三家工厂的污水,现要在矩形ABCD的区域上(含边界),且与A,B等距离的一点O处建造一个污水处理厂,并铺设排污管道AO,BO,OP.记管道总长为S km.下列说法正确的是()A.S的最小值是8B.S的最小值应该大于28C.S的最小值是26D.S的最小值应该小于264.某乡镇的4个村庄A、B、C、D恰好位于正方形的4个顶点上,为了解决农民出行难问题,镇政府决定修建连接各村庄的道路系统,使得每两个村庄都有直达的公路,设计人员给出了如下四个设计方案(实线表示连接的道路)在上述四个方案中最短的道路系统是方案()A.一B.二C.三D.四5.有甲、乙、丙三个村庄分别位于等边△ABC的顶点,在城中村改造时,为保护环境,改善居民的生活条件,政府决定铺设能够连结这三个村庄的天然气管道.设计人员给出了如图四个设计方案(点D为BC边的中点,点O为△ABC的中心,实线表示天然气管道),其中天然气管道总长最短的是()A.方案1B.方案2C.方案3D.方案46.如图,直线m表示一条河,点M、N表示两个村庄,计划在m上的某处修建一个水泵向两个村庄供水.在下面四种铺设管道的方案中,所需管道最短的方案是(图中实线表示铺设的管道)()A.B.C.D.7.将一块长为a米,宽为b米的矩形空地建成一个矩形花园,要求在花园中修两条入口宽均为x米的小道,其中一条小道两边分别经过矩形一组对角顶点,剩余的地方种植花草,现有从左至右三种设计方案如图所示,种植花草的面积分别为S1,S2和S3,则它们的大小关系为()A.S3<S1<S2B.S1<S2<S3C.S2<S1<S3D.S1=S2=S38.四座城市A,B,C,D分别位于一个边长为100km的大正方形的四个顶点,由于各城市之间的商业往来日益频繁,于是政府决定修建公路网连接它们,根据实际,公路总长设计得越短越好,公开招标的信息发布后,一个又一个方案被提交上来,经过初审后,拟从下面四个方案中选定一个再进一步论证,其中符合要求的方案是()A.B.C.D.9.如图:有一块三角形状的土地平均分给四户人家,现有四种不同的分法,(如图中,D、E、F分别是BC、AC、AB的中点,G、H分别是BF、AF的中点),其中正确的分法有()A.1种B.2种C.3种D.4种10.王老师用28米长的木条给花圃做围栏,他想把花圃设计成以下四种造型,不能用28米的长木条围成的设计有()种.A.1B.2C.3D.4二.填空题11.如图,笔直的公路旁有A、B两车站,相距15km,C、D为同旁的两个村庄,DA⊥AB 于A,CB⊥AB于B,AD=10cm,CB=5cm,要在这段公路AB旁建一个公路管理站E,使C、D两村到公路管理站的距离相等,那么公路管理站E应建在距A站km处.12.面积为1个平方单位的正三角形,称为单位正三角形.下面图中的每一个小三角形都是单位正三角形,三角形的顶点称为格点.在图1,2,3中分别画出一个平行四边形、梯形和对边都不平行的凸四边形,要求这三个图形的顶点在格点、面积都为12个平方单位..13.如图,有两个正方形的花坛,准备把每个花坛都分成形状相同的四块,种不同的花草.下面左边的两个图案是设计示例,请你在右边的两个正方形中再设计两个不同的图案..14.有一块方角形钢板如图所示,请你用一条直线将其分为面积相等的两部分(不写作法,保留作图痕迹,在图中直接画出).15.如图,平原上有A、B、C、D四个村庄,为解决当地缺水问题,政府准备投资修建一个蓄水池,不考虑其他因素,请你画图确定蓄水池H点的位置,使它与四个村庄的距离之和最小.三.解答题16.如图为正方形网格,每个小正方形的边长均为1,各个小正方形的顶点叫做格点,请在下面的网格中按要求分别画图,使得每个图形的顶点均在格点上.(1)在图中画一个以AB为一边的菱形ABCD,且菱形ABCD的面积等于20.(2)在图中画一个以EF为对角线的正方形EGFH,并直接写出正方形EGFH的面积.17.通过文明城市的评选,人们增强了卫生意识,大街随地乱扔生活垃圾的人少了,人们自觉地将生活垃圾倒入垃圾桶中,如图所示,A,B,C为市内的三个住宅小区,环保公司要建一垃圾回收站,为方便起见,要使得回收站建在三个小区都相等的某处,请问如果你是工程师,你将如何选址.18.图①、图②、图③均是4×4的正方形网格,每个小正方形的顶点称为格点,线段AB 的端点均在格点上,在图②、图③中仿照图①,只用无刻度的直尺,各画出一条线段CD,将线段AB分为2:3两部分.要求:所画线段CD的位置不同,点C、D均在格点上19.小名准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,你能在图中的拼接图形上再接一个正方形画出阴影,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子吗?请在下面的图①和图②中画出两种不同的补充方法.参考答案与试题解析一.选择题1.【解答】解:对任一正方形,容易分为大于等于4的偶数个小正方形(大小不等),比如2N,(N≥2).具体分法为:设原正方形边长为1,按在水平和垂直方向划两条线,这可分出边长为和两个正方形及长宽分别为和的两个小长方形,而每个小长方形又可分为(N ﹣1)个边长为的小正方形,因此总的正方形数为2+2×(N﹣1)=2N.而对于奇数(N≥7),显然原正方形先可一分为四,而其中之一的小正方形又可分为大于等于4的偶数个小正方形(前一结论),计为2N,因此可分为3+2N=2(N+1)+1个奇数个小正方形,其中(N≥2),故N=4或N≥6的所有自然数.故选:A.2.【解答】解:如图所示:(1)图1:当BC=CD=3m时;由于AC⊥BD,则AB=AD=5m;此时等腰三角形绿地的周长=5+5+3+3=16(m);(2)图2:当AC=CD=4m时;∵AC⊥CB,∴AB=BD=5m,此时等腰三角形绿地的周长=5+5+4+4=18(m);。
【数学】人教版七年级上册第四章《几何图形初步》单元测试(解析版)
人教版七年级上册第四章《几何图形初步》单元测试(解析版)一、选择题1、如图所示,该几何体的主视图是()A. B. C. D.2、图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.① B.② C.③ D.④3、已知一个几何体的三种视图如图所示,则这个几何体是()A.圆柱 B.圆锥 C.球体 D.正方体4、下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设电线,总是尽可能沿着线段AB架设;④把弯曲的公路改直,就能缩短路程,其中可用公理“两点之间,线段最短”来解释的现象有( )A.①② B.①③ C.②④ D.③④5、已知∠AOB=30°,自∠AOB顶点O引射线OC,若∠AOC︰∠AOB=4︰3,那么∠BOC的度数是()A.10° B.40° C.70° D.10°或70°6、.下列说法正确的是()A.两点之间的连线中,直线最短 B.若P是线段AB的中点,则AP=BPC.若AP=BP,则P是线段AB的中点 D.若A,B,C在同一直线上,且AB=2,BC=3,则AC=57、如图,C,D是线段AB上两点.若CB=4cm,DB=7cm,且D是AC的中点,则AC的长等于()A.3cm B.6cm C.11cm D.14cm8、如图,下列说法中错误的是()A.OA的方向是东北方向 B.OB的方向是北偏西60°C.OC的方向是南偏西60° D.OD的方向是南偏东60°9、钟表盘上指示的时间是10时40分,此刻时针与分针之间的夹角为()。
(A)60°(B)70°(C)80°(D)85°10、如图,已知∠AOC=∠BOD=900, ∠AOD=1500,则∠BOC的度数为()A、450B、300C、500D、60011、∠α=40.4°,∠β=40°4′,则∠α与∠β的关系是()A. ∠α=∠β;B. ∠α>∠β;C. ∠α<∠β;D. 以上都不对;12、如图,已知直线AB、CD相交于点O,OA平分∠EOC,∠EOC=100°,则∠BOD的度数是()A. 20°;B. 40°;C. 50°;D. 80°;二、填空题13、一个角的余角比这个角的补角的一半小40°,则这个角为度.14、17°14′24″=___度.15、.计算:153°﹣26°40′=_______.16、如图所示,将图沿虚线折起来,得到一个正方体,那么“我”的对面是(填汉字).17、图1,是一个由边长为1的小正方形木块摆放在地上而成的图形,图2,图3也是由边长为1的小正方体木块叠放在地上而成,要给露在外面的小正方体表面涂上油漆(底面不涂),按照这样的规律继续叠放下去,到第7个叠放的图形中,涂到油漆部分的面积是.18、五棱柱有__________个顶点,有__________个面,有__________条棱.19、如图,AC=CD=DE=EB,则点C是线段的中点,点D是线段的中点,如果AB=8 cm,则AD= cm,AE= cm。
人教版七年级上数学第四章《图形认识初步》单元卷含答案
人教版七年级上数学第四章《图形认识初步》单元卷含答案班级 姓名 号数一、填空题 (每题3分.共30分)1、 三棱柱有 条棱. 个顶点. 个面;2、 如图1.若是中点.AB=4.则DB= ;3、 42.79= 度 分 秒;4、 如果∠α=29°35′.那么∠α的余角的度数为 ;5、 如图2.从家A 上学时要走近路到学校B.最近的路线为 (填序号).理由是 ;6、 如图3.OA 、OB 是两条射线.C 是OA 上一点.D 、E 分别是OB 上两点.则图中共有 条线段,共有 射线.共有 个角;7. 如图4.把书的一角斜折过去.使点A 落在E 点处.BC 为折痕.BD 是∠EBM 的平分线.则∠CBD =8. 如图5.将两块三角板的直角顶点重合.若∠AOD=128°.则∠BOC= ; 9. 2:35时钟面上时针与分针的夹角为 ;10. 经过平面内四点中的任意两点画直线.总共可以画 条直线; 二选择题(每题3分.共24分)7、 将一个直角三角形绕它的直角边旋转一周得到的几何体是( )题号 123456789答案C BADE F(1)(2)(3)图2图3图5图412、如果与互补.与互余.则与的关系是()A.=B.C.D.以上都不对13、对于直线.线段.射线.在下列各图中能相交的是()AB;③AM=BM;④AM+BM=AB。
15、已知M是线段AB的中点.那么.①AB=2AM;②BM=2上面四个式子中.正确的有()A.1个 B.2个 C.3个 D.4个16、在海上.灯塔位于一艘船的北偏东40度方向.那么这艘船位于这个灯塔的()方向A.南偏西50度B.南偏西40度C.北偏东50度D.北偏东40度17、如右图.AB、CD交于点O.∠AOE=90°.若∠AOC:∠COE=5:4.则∠AOD等于()A.120° B.130° C.140° D.150°18、图中(1)-(4)各图都是正方体的表面展开图.若将他们折成正方体.各面图案均在正方体外面.则其中两个正方体各面图案完全一样.他们是()A. (1)(2)B.(2)(3)C.(3)(4)D.(2)(4)三、作图题(各7分.共21分)19、已知、求作线段AB使AB=2a-b(不写作法.保留作图痕迹)20、按照要求.在图中画出表示下列方向的射线:(1)南偏东300 (2)北偏西600 (3)西南方向四、解答题(8+8+9分.共25分)21、若一个角的补角等于它的余角的4倍.求这个角的度数。
初中数学人教版(2012)七年级上册 第四章几何图形初步 单元测试(有答案)
初中数学人教版(2012)七年级上册第四章几何图形初步单元测试一、单选题1.如图,将一副三角尺按不同的位置摆放,下列方式中α∠与β∠互余的是().A.①B.②C.③D.④2.由5个棱长为1的小正方体组成的几何体如图放置,一面着地,两面靠墙.如果要将露出来的部分涂色,则涂色部分的面积为()A.9 B.11 C.14 D.183.用一个平面去截正方体(如图),下列关于截面(截出的面)的形状的结论:①可能是锐角三角形;②可能是直角三角形;③可能是钝角三角形;④可能是平行四边形.其中所有正确结论的序号是( )A.①②B.①④C.①②④D.①②③④4.如图,码头A在码头B的正西方向,甲、乙两船分别从,A B同时出发.并以等速驶向某海域,甲的航向是北偏东35°,为避免行进中甲、乙相撞,则乙的航向不能是( )A.北偏东55°B.北偏西55°C.北偏东35°D.北偏西35°5.线段12cm AB =,点C 在线段AB 上,且1,3AC BC M =为BC 的中点,则AM 的长为( ) A.4.5cm B.6.5cm C.7.5cm D.8cm6.下面关于余角、补角的说法,正确的是( )A.若123180∠+∠+∠=°,则1,2,3∠∠∠互补B.若1290∠+∠=°,则1∠与2∠互余C.若12180∠+∠=°,则1∠与2∠互余D.一个角的余角和它的补角相等7.下列关于角的平分线的说法中,正确的是( )A.角的平分线是一条线段B.角的平分线是平分这个角的一条直线C.以一个角的顶点为端点且把这个角分成相等的两个角的一条线段D.以一个角的顶点为端点且把这个角分成相等的两个角的一条射线8.下列说法中,正确的是( )A.两条射线所组成的图形叫做角B.有公共端点的两条线段组成的图形叫做角C.角是一条射线绕着它的端点旋转而形成的图形D.角是一条线段绕着它的一个端点旋转而形成的图形9.下列四个图形中,能用1,,AOB O ∠∠∠三种方法表示同一个角的是( )A. B.C. D.10.如图,AB CD =,则AC 与BD 的大小关系是( )A.AC BD >B.AC BD <C.AC BD =D.无法确定11.下列判断中,正确的是( )①锐角的补角一定是钝角;②一个角的补角一定大于这个角;③如果两个角是同一个角的补角,那么它们相等;④锐角和钝角互补.A.①②B.①③C.①④D.②③12.下列图形中,能通过折叠围成一个三棱柱的是( )A. B.C. D.13.如图,将三角形绕直线l 旋转一周,可以得到图5所示的立体图形的是( )A.图1B.图2C.图3D.图414.在灯塔O 处观测到轮船A 位于北偏西54°的方向,同时轮船B 在南偏东15°的方向,那么AOB ∠的大小为( )A.69°B.111°C.141°D.159°15.下列说法中,正确的有( )①射线OP 和射线PO 是同一条射线;②连接两点的线段叫两点间的距离;③两点确定一条直线;④若AC BC =,则C 是线段AB 的中点.A.1个B.2个C.3个D.4个16.因为1290,2390∠+∠=︒∠+∠=︒,所以13∠=∠理由是( )A.同角的余角相等B.同角的补角相等C.等角的余角相等D.等角的补角相等17.点C 在AOB ∠内部,现有四个等式1,2COA BOC BOC AOB ∠=∠∠=∠,12,2AOB COA ∠=∠2AOB AOC ∠=∠,其中能表示OC 是角平分线的等式的个数是( ) A.1 B.2 C.3 D.418.下列关于平角、周角的说法正确的是( )A.平角是一条直线B.周角是一条射线C.反向延长射线OA ,就形成一个平角D.两个锐角的和不一定小于平角19.如图.下列表示角的方法中.不正确的是( )A.A ∠B.E ∠C.α∠D.1∠20.如果点B 在线段AC 上,那么下列表达式中:①12AB AC =;②AB BC =;③2AC AB =;④AB BC AC +=.能表示点B 是线段AC 的中点的有( )A.1个B.2个C.3个D.4个二、填空题21.如果一个角的补角是150°,那么这个角的余角的度数是______________度.22.若要使图中的展开图按虚线折叠成正方体后,相对面上两个数之和为10,则x y +=_____.23.把弯曲的河道改直,能够缩短航程.这样做根据的道理是___________________.24.已知一条直线上有,,A B C 三点,线段AB 的中点为,16P AB =cm ,线段BC 的中点为Q ,且6BC =cm,则线段PQ 的长为 .25.下图是一个无盖的长方体盒子的展开图(重叠部分及厚度不计),根据图中数据,则该无盖长方体盒子的容积为 .26.如果一个角的补角比这个角的余角的3倍大10°,则这个角的度数是________27.如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要________个小立方块.28.如图,从图书馆A到教室B,不少人没有走人行道,而是直接沿图中虚线由A穿过草坪到达B,他们这样做的数学依据是,你对此的看法是 .29.已知线段AB,延长AB到C,使得12BC AB=,延长BA到D,使得2AD AB=,M,N分别为,BC AD的中点,若18MN=,则AB=_______.30.一个几何体的展开图如图所示.请根据图中所标的尺寸,这个几何体的侧面积为 .三、解答题31.如图,AB与CD相交于,O OE平分AOC∠,OF AB⊥于,O OG OE⊥于O,若40BOD∠=︒,求AOE∠和FOG∠的度数.32.已知线段10cm AB =,直线AB 从上有一点C ,6cm BC =,M 为线段的中点,N 为线段BC 的中点,求线段MN 的长.33.如图,90AOB ∠=︒,2BOC BOD ∠=∠,OD 平分AOC ∠,求BOD ∠的度数.34.已知点C 在线段AB 上,线段7cm AC =,5cm BC =,点,M N 分别是,AC BC 的中点,求 MN 的长度.参考答案1.答案:A解析:图①中,1809090αβ∠+∠=+=°°°,互余;图②中,根据同角的余角相等,得αβ∠=∠图③中,根据等角的补角相等,得αβ∠=∠;图④中,180αβ∠+∠=°,互补.2.答案:B解析:由图可知涂色部分是从上、前、右三个方向所涂面积相加的和,即涂色部分面积为44311++=,3.答案:B解析:用平面去截正方体,得到的截面可能为三角形、四边形、五边形、六边形,而三角形只能是锐角三角形,不能是直角三角形和钝角三角形.4.答案:D解析:因为甲的航向是北偏东35°且甲、乙等速,为避免行进中甲、乙相撞,所以乙的航向不能是北偏西35°.故选D.5.答案:C解析:如图,因为13AC BC =,所以11123(cm)44AC AB ==⨯= 所以1239(cm)BC AB AC =-=-=因为点M 为BC 的中点,所以119 4.5(cm)22CM BC ==⨯= 所以3 4.57.5(cm)AM AC CM =+=+=.6.答案:B解析:1,2∠∠与3∠是3个角,不符合互补的定义,故选项A 错误;若1290∠+∠=°,则1∠与2∠互余,故选项B 正确;若12180∠+∠=°,则1∠与2∠互补,故选项C 错误;若设这个角为x °,则它的余角为90x -°°,补角为180x -°°.因为(180)(90)90x x ---=°°°°°,所以一个角的余角比它的补角小90°,故选项D 错误.故选B.7.答案:D解析:根据角平分线的定义可知选项A,B,C 都不对.只有D 选项符合题意.8.答案:C解析:A 中有两条射线,但未强调有公共端点,所以不正确,B,D 中说的是两条线段,所以也不正确.故选C.9.答案:C解析:能用1,,AOB O ∠∠∠三种方法表示同一个角的图形是选项C 中的图形,选项A,B,D 中的图形都不能同时用1,,AOB O ∠∠∠三种方法表示同一个角,故选C.10.答案:C解析:因为AB CD =,所以AB BC CD BC +=+,即AC BD =.故选C.11.答案:B解析:由互补的定义和性质可知,①③正确;因为90︒角的补角还是90︒,150︒角的补角是30︒,所以②错误;因为60︒和100︒的和不是180︒,所以④错误.故选B.12.答案:C解析:根据三棱柱及其表面展开图的特点对各选项分析判断即可得解.试题解析:A 、折叠后少一面,故本选项错误;B 、折叠后两侧面重叠,不能围成三棱柱,故本选项错误;C 、折叠后能围成三棱柱,故本选项正确;D 、折叠后两侧面重叠,不能围成三棱柱,故本选项错误.故选C .考点:展开图折叠成几何体.13.答案:B解析:绕直角三角形一条直角边旋转一周可得到圆锥,绕斜边旋转一周可得到两个有公共底面的圆锥.故选B.14.答案:C解析:由题意得154,215,3905436∠=︒∠=︒∠=︒-︒=︒369015141AOB ∠=︒+︒+︒=︒.故选C.15.答案:A解析:射线OP 的端点是O ,从O 向P 无限延伸,射线PO 的端点是P ,从P 向O 无限延伸,所以不是同一条射线,故①错误,连接两点间的线段的长度,叫两点间的距离,故②错误。
新人教版七年级上第四章《图形认识初步》单元测试卷
七年级上期《图形认识初步》测验试卷(满分100分)班级姓名座号成绩一、填空题(每题3分,共30分)1.圆柱的侧面展开图是;2.若要使右图中平面展开图折叠成正方体后,相对面上两个数之和为6,则x=_ ___, y=______.3.已知α∠与β∠互余,且40α=∠51',则β∠为.4.如图,若是中点,是中点,若,,_________。
5.俯视图为圆的立体图形可能是____________ 。
(填两个即可)6.要在墙上固定一根木条,至少要个钉子,根据的原理是。
7.⑴°;⑵0.5°=______′=______″8.不在同一直线上的四点最多能确定条直线。
9.小明每天下午5:30回家,这时分针与时针所成的角的度数为____度。
10. 一个角的补角等于它的余角的3倍,则这个角的度数为 .二、选择题(每题3分,共30分)1.如果与互补,与互余,则与的关系是…………()(A)=(B)(C)(D)以上都不对2.对于直线,线段,射线,在下列各图中能相交的是()12 3x yA650O3.下列四个图中,能用∠1、∠AOB、∠O三种方法表示同一个的是()4.如图,∠1=︒15,∠AOC=︒90点B、O、D在同一直线上,则的度数为()(A)(B)(C)(D)5.如图的几何体,左视图是()6.如图,点A位于点O的方向上.().(A)南偏东35°(B)北偏西65°(C)南偏东65°(D)南偏西65°7.将下列图形绕直线l旋转一周, 可以得到右图所示的立体图形的是( )8.下图中, 是正方体的展开图是( )DCBA9、平面上A 、B 两点间的距离是指( )A 、 经过A 、B 两点的直线 B 、 射线ABC 、 A 、B 两点间的线段D 、 A 、B 两点间线段的长度 10、一个立体图形的三视图如图所示, 那么它是 ( ) A .圆锥 B .圆柱 C .三棱锥 D .四棱锥 三、作图题:(6分)根据下列要求画图: (1)连接线段AB ; (2)画射线OA ,射线OB ;(3)在线段AB 上取一点C ,在射线OA 上 取一点D (点C 、D 不与点A 重合),画直 线CD ,使直线CD 与射线OB 交于点E 。
(新版人教版)七年级上第四章《图形认识初步》单元测试卷及解析答案
第四章《图形认识初步》 综合测试题(满分120 分时间90 分钟)一、选择题(每题 3 分,共 30 分)1. ①平角是一条直线;②射线是直线的一半;③射线一个扩大 2 倍的放大镜去看一个角, 这个角会扩大= 120 °50. ?AB 与射线 BA 表示同一条射线;④用2 倍;⑤两点之间,线段最短; ⑥ 120.5 °以上说法正确的有 (A.0 个B.12.以下四个图中,能用∠)个 C.2 个 D.3 个1、∠ AOB 、∠ O 三种方法表示同一个角的是()3.以下表达正确的选项是() A . 180°是补角B 120°和 60°互为补角 C 120 °和 60°是补角 D 60°是 30°的补角4. 如图 1 表示一个用于防震的 L 形的包装用泡沫塑料,当从上边看这一物体时看到的图形形状是()A .B .C .D .(图 1)5.以下图形中,哪一个是正方体的睁开图()6.甲看乙的方向为南偏西25°,那么乙看甲的方向是 ()A .北偏东 75° B.南偏东 75° C.北偏东 25° D .北偏西 25°7.若∠ A 的余角是 70°,则∠ A 的补角是()A . 70°B .110°C . 20°D . 160°8.如图,AOC和BOD都是直角,假如D CAOB150 ,那么 COD()AA 、30B 、40C 、50D 、60BO9.经过随意三点中的两点共可画出()A .1 条直线B . 2 条直线C .1 条或 3 条直线D . 3 条直线10. 如下图,从O点出发的五条射线,能够构成角的个数是().A.10个B.9个C.8个D.4个二、填空题(每题 3 分,共 30 分)11.橙子近似 ______ 体,菠萝近似 _______ 体,角柜近似 _______ 体,金字塔近似 _______体,粉笔盒近似 _______体。
人教版数学七年级上册《几何图形初步》单元检测卷附答案
故选D.
【点睛】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.
4.与红砖、足球类似的图形是( )
A.长方形、圆B.长方体、圆
C.长方体、球D.长方形、球
16.天上一颗颗闪烁的星星给我们以“_____”的形象;中国武术中有“枪扎一条线,棍扫一大片”的说法,这句话给我们以“_____”的形象;宾馆里旋转的大门给我们以“_____”的形象.
17.定义:两个直角三角形,若一个三角形的两条直角边分别与另一个三角形的两条直角边相等,我们就说这两个直角三角形是“同胞直角三角形”.如图,在边长为10的正方形中有两个直角三角形,当直角三角形①和直角三角形②是同胞直角三角形时,a的值是_____.
9.A,B,C三点在同一直线上,线段AB=5cm,BC=4cm,那么A,C两点的距离是( )
A.1cmB.9cmC.1cm或9cmD. 以上答案都不对
二、填空题
10.如图,有一个长方形纸片,减去相邻的两个角,使∠ABC=90°,如果∠1=152°,那么∠2=_____________°.
11.一个长方体形状的粉笔盒展开如图所示,相对的两个面上的数字之和等于6,则a+b+c=_____.
(1)数一下每一个多面体具有的顶点数 、棱数 和面数 .并且把结果记入表中.
多面体
顶点数
面数
棱数
正四面体
4
4
6
正方体
正八面体
正十二面体
正ห้องสมุดไป่ตู้十面体
12
20
30
(2)观察表中数据,猜想多面体的顶点数 、棱数 和面数 之间的关系.
【数学】人教版七年级上册数学第四章几何图形初步单元测试题(含答案)
人教版七年级上册数学第四章几何图形初步单元测试题(含答案)一、选择题1.角是指()A. 由两条线段组成的图形B. 由两条射线组成的图形C. 由两条直线组成的图形D. 有公共端点的两条射线组成的图形2.如果一个角的补角是150°,那么这个角的余角的度数是()A. 30°B. 60°C. 90°D. 120°3.下列说法正确的是()A. 经过两点有且只有一条线段B. 经过两点有且只有一条直线C. 经过两点有且只有一条射线D. 经过两点有无数条直线4.如图,四条线段中,最短和最长的一条分别是()A. acB. bdC. adD. bc5.如图,B在线段AC上,且BC=2AB,D,E分别是AB,BC的中点.则下列结论:①AB= AC;②B是AE的中点;③EC=2BD;④DE=AB.其中正确的有()A. 1个B. 2个C. 3个D. 4个6.已知∠α=70°,则∠α的补角为()A. 120°B. 110°C. 70°D. 20°7.下列语句中,正确的是().A. 比直角大的角钝角;B. 比平角小的角是钝角C. 钝角的平分线把钝角分为两个锐角;D. 钝角与锐角的差是锐角8.如图,已知AD平分∠BAE,若∠BAD=62°,则∠CAE的度数是()A. 55°B. 56°C. 58°D. 62°9.如图,下列关系式中与图不符合的式子是()A. AD-CD=AB+BCB. AC-BC=AD-BDC. AC-BC=AC+BDD. AD-AC=BD-BC10.如图是一个正方体的平面展开图,当把它拆成一个正方体,与空白面相对的字应该是()A. 北B. 京C. 欢D. 迎二、填空题11.已知线段AB=8 cm,在直线AB上画线段BC,使它等于3 cm,则线段AC=________.12.若∠α=32°22′,则∠α的余角的度数为________.13.已知一个角的补角等于155°,则这个角的余角等于________14.八棱柱有________个顶点,________条棱,________个面.15.和互补,且-=50°,求和的度数. ________、 ________16.34.42°=________(用度、分、秒表示).17.一个角的补角加上10°后,等于这个角的余角的3倍,则这个角=________ °.18.用一个平面去截长方体,截面________是平行四边形(填“可能”或“不可能”).19.一条直线上有A、B、C三个点,AB=7cm,BC=4cm,则AC=________ .20.已知线段AB=1996,P、Q是线段AB上的两个点,线段AQ=1200,线段BP=1050,则线段PQ=________.三、解答题21.已知∠BOC=120°,∠AOB=70°,求∠AOC的大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)15︒65︒东(5)B A O北西南人教七年级第四章《图形认识初步》水平测试一、填空题:(每空1.5分,共45分)1.82°32′5″+______=180°.2.如图1,线段AD 上有两点B 、C,图中共有______条线段.(2)CBA O E D 4321(3)CBA O ED(4)C BAO ED3.一个角是它补角的一半,则这个角的余角是_________.4.线段AB=5cm,C 是直线AB 上的一点,BC=8cm,则AC=________.5.如图2,直线AB 、CD 相交于点O,OE 平分∠COD,则∠BOD 的余角______, ∠COE 的补角是_______,∠AOC 的补角是______________________.6.如图3,直线AB 、CD 相交于点O,∠AOE=90°,从给出的A 、B 、 C 三个答案中选择适当答案填空. (1)∠1与∠2的关系是( ) (2)∠3与∠4的关系是( )(3)∠3与∠2的关系是( ) (4)∠2与∠4的关系是( )A.互为补角B.互为余角C.即不互补又不互余 7.如图4,∠AOD=90°,∠COE=90°,则图中相等的锐角有_____对.8.如图5所示,射线OA 表示_____________方向,射线OB 表示______________方向. 9.四条直线两两相交时,交点个数最多有_______个.10.如果一个角是30°,用10倍的望远镜观察,这个角应是_______°. 11.38°41′的角的余角等于________,123°59′的角的补角等于________.12.如果∠1的补角是∠2,且∠1>∠2,那么∠2的余角是________(用含∠1 的式子表示). 13.如果∠α与∠β互补,且∠α:∠β=5:4,那么,∠α=_______,∠β=_________. 14.根据下列多面体的平面展开图,填写多面体的名称.(1)__________,(2)__________,(3)_________.15.指出图(1)、图(2) 、图(3)是左边几何体从哪个方向看到的图形。
几何体( )( )( )(3)(2)(1)16.圆锥由_______面组成,其中一个是_______面 ,另一个是_______面.二、选择题:(每题3分,共15分)17.如图8,直线a、b相交,∠1=130°,则∠2+∠3=( )A.50°B.100°C.130° C.180°ba312(8)cba(9)O18.轮船航行到C处观测小岛A的方向是北偏西48°,那么从A同时观测轮船在C处的方向是( ) A.南偏东48° B.东偏北48° C.东偏南48° D.南偏东42°19.如图9,三条直线相交于O点,则图中相等的角(平角除外)有( )对A.3对B.4对C.6对D.8对20.下列图形不是正方体展开图的是( )ABCD21.从正面、上面、左面看四棱锥,得到的3个图形是( )ABC三、判断题:(每题2分,共20分)22.射线AB 与射线BA 表示同一条射线.( ) 23.直角都相等.( )24.若∠1+∠2=900,∠1+∠3=900,则∠2=∠3.( ) 25.钝角的补角一定是锐角.( ) 26.一条射线把一个角分成两个角,这条射线叫这个角的平分线.( )27.两点之间,直线最短.( ) 28.连结两点的线段叫做两点之间的距离.( ) 29.20050ˊ=20.50.( ) 30.互余且相等的两个角都是450.( ) 31.若AC+CB=AB,则C 点在线段AB 上.( ) 四、计算题:(每题10分,共40分)32. 如图,已知C 是AB 的中点,D 是AC 的中点,E 是BC 的中点. (1)若AB=18cm,求DE 的长;(2)若CE=5cm,求DB 的长.B33.如图3-12,已知直线AB 和CD 相交于O 点,∠COE 是直角,OF 平分∠AOE, ∠COF=34°,求∠BOD 的度数.C B AEODF34.一个角的余角比它的补角的13还少20°,求这个角. 35.一个角的补角是123°24′16″,则这个角的余角是多少? 五、作图题:(每题10分,共20分)36. 如图,已知∠1,∠2,画出一个角,使它等于3∠1-∠2.1237.用三角板画出一个75°的角和一个105°的角. 六:(10分)38.如图,图(1)是正方体木块,把它切去一块,可能得到(2)、(3)、(4)、 (5)所示的图形,问(2)、(3)、(4)、(5)图中切掉的部分可能是其他几块中的哪一块?(1)(2)(3)(4)(5)39.如图,A 、B 两地隔着湖水,从C 地测得CA=50m,CB=60m,∠ACB=145°,用1 厘米代表10米(就是1:1000的比例尺)画出如图的图形.量出AB 的长(精确到1毫米), 再换算出A 、B 间的实际距离.CAB答案: 一、1.97°27′55″2.63.30°4.13cm 或3cm5.∠AOE ∠DOE ∠AOD 与∠BOC6.(1)B (2)A (3)B (4)C7.审题及解题迷惑点:由∠BAC=90°,可得到∠B 与∠C 互余,由同角的余角相等,在此须在图中再找出∠B 的余角便可找出与∠C 相等的角,同样若再找出与∠C 互为余角的角便是与∠B 相等的角.解:如答图所示.∵∠BAC=90°,∴∠B+∠C=90°.又∵∠ADC=90°,∴∠DAC+∠C=90°.∴∠B=∠DAC.同理可得∠C=∠DAB.8.北偏西65°或西偏北25°方向;南偏东15°或东偏南75°方向.9.6 10.30° 11.51°19′ 56°1′. 12. 1(12)2∠-∠或∠1-90°13.100° 80° 14.(1)长方体 (2)三棱柱 (3)三棱锥 15.(1)正视图 (2)俯视图 (3)左视图 16. 两个;曲面;平面二、17.B 18.A 19.C20.审题及解题迷惑点:首先认真观察图形,充分运用空间想像能力,分析思考这四个图形中的哪些图形能还原成原几何图形,哪个图不能.21.C三、22.× 23.∨ 24.∨ 25.∨ 26.× 27.× 28.× 29.× 30. ∨ 31.×四、32. (1)∵C是AB的中点,∴AC=BC=12AB=9(cm).∵D是AC的中点,∴AD=DC=12AC=92(cm).∵E是BC的中点,∴CE=BE=12BC=92(cm)又∵DE=DC+CE,∴DE=92+92=9(cm).(2)由(1)知AD=DC=CE=BE,∴CE=13 BD.∵CE=5cm,∴BD=15(cm)33.解:如答图,∵∠COE=90°,∠COF=34°,∴∠EOF=90°-34°=56°. ∵OF 平分∠AOE, ∴∠AOE=∠EOF=56°.∴∠AOC=∠AOF-∠COF=56°-34°=22°. ∵∠AOC=∠BOD(对顶角相等), ∴∠BOD=22°.34.解:设这个角为α,则这个角的余角为90°-α,补角为180°-α, 依题意,得 000190(180)203αα-=--,解得α=75°. 答:这个角为75°.35.解:设这个角为α,则余角为90°-α,由题意,得 α=180°-123°24′16″=56°35′44″, ∴90°-α=90°-56°35′44″=33°24′16″. 答:这个角的余角是33°24′16″. 五、36.审题及解题迷惑点:要作一角等于3∠1-∠2,就须先以O 为顶点,以OA 为一边作∠AOD=3∠1,然后在∠AOD 的内部以∠AOD 的一边为边作一个角等于∠2即可. 解:(1)以∠1的顶点O 为圆心,以适当的长为半径画弧,分别交射线OA 、OB 于点E 、F (2)在弧上依次截取,FG GH ,并使FG GH EF ==. (3)自O 点过H 点作射线OD,则∠AOD 即为3∠1.(4)以∠2的顶点为圆心,适当长为半径画弧交∠2的两边于M ′、N ′两点. (5)以O 为圆心,以同样长为半径画弧交OA 于点M. (6)以M 为圆心,以M ′N ′为半径画弧交前弧于点N. (7)自O 点为N 点作射线OC. ∠COD 即为所求.37.解:用三角板中的45°的角和30°的角,让其顶点和一边重合在一起,可以画出75°的角,同样的道理,用三角板中的60°的角和45 °的角可以画出105°的角. 六、38.解:(2)图切掉的部分可能是(3)图和(5)图,(3)图切掉的部分可能是(2)图,(5)图切掉的部分可能是(2)图.39.略.。