151有理数的乘方(1)教学设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.5.1 有理数的乘方(1)
教学目标
一、知识与技能
1.正确理解乘方、幂、指数、底数等概念。
2.会进行有理数乘方的运算。
二、过程与方法
通过对乘方意义的理解,培养学生观察比较、分析、归纳概括的能力,渗透转化思想。
三、情感态度与价值观
培养探索精神,体验小组交流、合作学习的重要性。
教学重、难点与关键
1.重点:正确理解乘方的意义,掌握乘方运算法则.
2.难点:正确理解乘方、底数、指数的概念,并合理运算.
3.关键:弄清底数、指数、幂等概念,注意区别-a n与(-a)n的意义。
教学方法启发式分层次教学法
教学过程
一、复习引入
1.几个不等于零的有理数相乘,积的符号是怎样确定的?
几个不等于零的有理数相乘,积的符号由负因数的个数确定,当负因数的个数为奇数时,积为负;当负因数的个数为偶数时,积为正.
2.正方形的边长为2,则面积是多少?棱长为2的正方体,则体积为多少?
二、新授
边长为a的正方形的面积是a·a,棱长为a的正方体的体积是a·a·a.
a·a简记作a2,读作a的平方(或二次方).
a·a·a简记作a3,读作a的立方(或三次方).
一般地,几个相同的因数a相乘,记作a n.即a·a……a.这种求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.
在a n中,a叫底数,n叫做指数,当a n看作a的n次方的结果时,也可以读作a的n次幂.
例如,在94中,底数是9,指数是4,94读作9的4次方,或9的4次幂,它表示4个9相乘,•即9×9×9×;又如(-2)4的底数是-2,指数是4,读作-2的4次方(或-2的4次幂),它表示(-2)×(-2)×(-2)×(-2).
思考:32与23有什么不同?(-2)3与-23的意义是否相同?其中结果是否一样?(-
2)4与-24呢?(3
5
)2与
2
3
5
呢?
(-2)3的底数是-2,指数是3,读作-2的3次幂,表示(-2)×(-2)×(-2),结果是-8;-23的底数是2,指数是3,读作2的3次幂的相反数,表示为-(2×2×2),结果是-8.
(-2)3与-23的意义不相同,其结果一样.
(-2)4的底数是-2,指数是4,读作-2的四次幂,表示
(-2)×(-2)×(-2)×(-2),•
结果是16;-24的底数是2,指数是4,读作2的4次幂的相反数,表示为
-(2×2×2×2),其结果为-16.(-2)4与-24的意义不同,其结果也不同.
(3
5
)2的底数是
3
5
,指数是2,读作
3
5
的二次幂,表示
3
5
×
3
5
,结果是
9
25
;
2
3
5
表示
32与5的商,即33
5
,结果是
9
5
.
因此,当底数是负数或分数时,一定要用括号把底数括起来.
一个数可以看作这个数本身的一次方,例如5就是51,指数1通常省略不写.
因为a n就是n个a相乘,所以可以利用有理数的乘方运算来进行有理数的乘方运算.例1:计算:
(1)(-4)3;(2)(-2)4;(3)(-1
2
)5;
(4)33;(5)24;(6)(-1
3
)2.
解:(1)(-4)3=(-4)×(-4)×(-4)=-64 (2)(-2)4=(-2)×(-2)×(-2)×(-2)=16
(3)(-1
2
)5=(-
1
2
)×(-
1
2
)×(-
1
2
)×(-
1
2
)×(-
1
2
)=-
1
32
(4)33=3×3×3=27 (5)24=2×2×2×2=16
(6)(-1
3
)2=(-
1
3
)×(-
1
3
)=
1
9
因此,可以得出:负数的奇次幂是负数,负数的偶次幂是正数;正数的任何非零次幂都是正数;0的任何非零次幂都是0.
三、巩固练习
课本第52页练习1、2.
四、课堂小结
正确理解乘方的意义,a n表示n个a相乘的积.注意(-a)n与-a n •两者的区别及相互关系:(-a)n的底数是-a,表示n个-a相乘的积;-a n底数是a,表示n个a相乘的积的相反数.当n为偶数时,(-a)n与-a n互为相反数,当n为奇数时,(-a)n与-a n 相等。
五、作业布置
课本第47页习题1.5第1题,第48页第11、12题.
六、课后反思