高一数学必修一恒成立与存在性问题专题复习
函数的恒成立、存在性问题的方法总结大全(干货)
关于函数的恒成立、存在性(能成立)问题关于二次函数的恒成立、存在性(能成立)问题是常考考点,其基本原理如下:(1)已知二次函数2()(0)f x ax bx c a =++≠,则:0()00a f x >⎧>⇔⎨∆<⎩恒成立;0()00a f x <⎧<⇔⎨∆<⎩恒成立. (2)若表述为:“已知函数2()(0)f x ax bx c a =++≠”,并未限制为二次函数,则应有:00()000a a b f x c >==⎧⎧>⇔⎨⎨∆<>⎩⎩恒成立或;00()000a a b f x c <==⎧⎧<⇔⎨⎨∆<<⎩⎩恒成立或.注:在考试中容易犯错,要特别注意!!!恒成立问题与存在性(能成立)问题,在解决此类问题时,可转化为其等价形式予以解答,将此类问题的可能出现的17种情形归纳总结大全如下,并通过常考例题进行讲解:已知定义在[,]a b 上的函数()f x ,()g x .(1)[,]x a b ∀∈,都有()f x k >(k 是常数)成立等价于min [()]f x k >([,]x a b ∈). (2)[,]x a b ∀∈,都有()f x k <(k 是常数)成立等价于max [()]f x k <([,]x a b ∈). (3)[,]x a b ∀∈,都有()()f x g x >成立等价于min [()()]0f x g x ->([,]x a b ∈). (4)[,]x a b ∃∈,都有()()f x g x >成立等价于max [()()]0f x g x ->([,]x a b ∈). (5)1[,]x a b ∀∈,2[,]x a b ∀∈都有12()()f x g x >成立等价于min max [()][()]f x g x >. (6)1[,]x a b ∀∈,2[,]x a b ∃∈使得12()()f x g x >成立等价于min min [()][()]f x g x >. (7)1[,]x a b ∃∈,2[,]x a b ∀∈使得12()()f x g x >成立等价于max max [()][()]f x g x >. (8)1[,]x a b ∃∈,2[,]x a b ∃∈使得12()()f x g x >成立等价于max min [()][()]f x g x >.(9)1[,]x a b ∀∈,2[,]x a b ∃∈使得12()()f x g x =成立等价于min minmax max [()][()][()][()]g x f x g x f x ≤⎧⎨≥⎩.(10)1[,]x a b ∃∈,2[,]x a b ∃∈使得12()()f x g x =成立等价于()f x 的值域与()g x 的值域交集不为∅.(11)1[,]x a b ∀∈,2[,]x a b ∃∈使得12()()f x g x k +≥(k 是常数)成立等价于min max [()][()]f x g x k +≥.(12)1[,]x a b ∀∈,2[,]x a b ∀∈都有12|()()|f x g x k -≤(k 是常数)成立等价于max min [()][()]g x f x k-≤且.max min [()][()]f x g x k -≤. 特别地,1[,]x a b ∀∈,2[,]x a b ∀∈都有12|()()|f x f x k -≤(k 是常数)成立等价于max min ()()f x f x k -≤.(13)1[,]x a b ∀∈,2[,]x a b ∀∈都有12|()()|f x g x k -≥(k 是常数)成立等价于min max [()][()]g x f x k-≥或.min max [()][()]f x g x k -≥. 特别地,1[,]x a b ∀∈,2[,]x a b ∀∈都有12|()()|f x f x k -≥(k 是常数)成立等价于min max ()()f x f x k -≥.(14)1[,]x a b ∃∈,2[,]x a b ∃∈使得12|()()|f x g x k -≤(k 是常数)成立等价于min max [()][()]g x f x k-≤且.min max [()][()]f x g x k -≤. 特别地,1[,]x a b ∃∈,2[,]x a b ∃∈使得12|()()|f x f x k -≤(k 是常数)成立等价于min max ()()f x f x k -≤.(15)1[,]x a b ∃∈,2[,]x a b ∃∈使得12|()()|f x g x k -≥(k 是常数)成立等价于max min [()][()]g x f x k-≥或.max min [()][()]f x g x k -≥. 特别地,1[,]x a b ∃∈,2[,]x a b ∃∈使得12|()()|f x f x k -≥(k 是常数)成立等价于max min ()()f x f x k -≥.(16)1[,]x a b ∀∈,2[,]x a b ∃∈使得12|()()|f x g x k -≤(k 是常数)成立等价于min min [()][()]g x f x k-≤且.max max [()][()]f x g x k -≤. (17)1[,]x a b ∀∈,2[,]x a b ∃∈使得12|()()|f x g x k -≥(k 是常数)成立等价于max max [()][()]g x f x k-≥或.min min [()][()]f x g x k -≥. 【评注】(9)1[,]x a b ∀∈,2[,]x a b ∃∈使得12()()f x g x =成立等价于min minmax max[()][()][()][()]g x f x g x f x ≤⎧⎨≥⎩.()y g x =所在区域能包含()y f x =所在区域时,满足条件.∀⊆∃.题目中有时会这样表述:对任意的1[,]x a b ∈,都有2[,]x a b ∈,使得12()()f x g x =成立,(9)的表达的意思完全相同.所以大家要深入理解定理中的“任意的”、“都有”的内涵:即当1[,]x a b ∈时,()f x 的值域不过是()g x 的子集.【例1】(1)(2010•山东•理14)若对任意0x >,231xa x x ++恒成立,则a 的取值范围是 . (2)现已知函数2()41f x x x =-+,且设12314n x x x x <<<⋯<,若有12231|()()||()()||()()|n n f x f x f x f x f x f x M --+-+⋯+-,则M 的最小值为( )A .3B .4C .5D .6(3)已知21()lg(31)()()2x f x x x g x m =++=-,,若对任意1[03]x ∈,,存在2[12]x ∈,,使12()()f x g x >,则实数m 的取值范围是 .(4)已知函数()f x x =,2()252()g x x mx m m R =-+-∈,对于任意的1[2,2]x ∈-,总存在2x R ∈,使得12()()f x g x =成立,则实数m 的取值范围是( ) A .1[,1]9B .(,1]-∞C .(,1][4,)-∞+∞D .(,1][3,)-∞+∞(5)已知函数2()1f x x x =-+,[1,2]x ∈,函数()1g x ax =-,[1,1]x ∈-,对于任意1[1,2]x ∈,总存在2[1,1]x ∈-,使得21()()g x f x =成立,则实数a 的取值范围是( ) A .(,4]-∞- B .[4,)+∞C .(,4][4,)-∞-+∞D .(,4)(4,)-∞-+∞(6)(2008•天津•文10)设1a >,若对于任意的[,2]x a a ∈,都有2[,]y a a ∈满足方程log log 3a a x y +=,这时a 的取值集合为( ) A .{|12}a a <B .{|2}a aC .{|23}a aD .{2,3}(7)(2008•天津•理15)设1a >,若仅有一个常数c 使得对于任意的[,2]x a a ∈,都有2[,]y a a ∈满足方程log log a a x y c +=,这时a 的取值的集合为 .)0x >,12x∴(当且仅当112353=+15,故答案为:1[,)5+∞.2()x x =-的图象是开口向上,过的抛物线,由图象可知,函数在上单调递减,在上单调递增,12314n x x x x <<<⋯<,(1)2f ∴=-,(2)f =-对应的函数值(2()41f x x x =-+图象上的点的纵坐标)之差的绝对值,结合231)||()()||()()|n n f x f x f x f x -+-+⋯+-表示函数max M ,||(1)(2)f f -5M ,故上单调递增,)法一:()2(2f x x ==-+2,2]时,x 2()3f x ,(f x ∴12)(22)2x x +=--<+,令f 单调递增,当(1,2]x ∈-,也是最大值;又(2)f 22[52m m --∈--,对于任意的的值域的子集,22m ,1m 或4m ,故选:)因为2()f x x x =-0时,()g x 在[1-[1,1]B a a =---,由题意可得,1113-,解得4a ;0时,()g x 在[1-的值域为[1,1]a a ---, 1113-,解得4a -,4][4,)+∞.故选:C .)3xy =,得,在[,2a a 上单调递减,所以2a ,即2a 故选:B .)log log a x c +,log a xy c ∴=,cxy a ∴=c a1122a a -⇒223a c log c +⎧⎨⎩的取值的集合为{2}.故答案为:【评注】深入理解(6)题题干中的“任意的”、“都有”的内涵:即当[,2]x a a ∈时,()f x 的值域M 不过是2[,]a a 的子集.值得关注的是:“[,2]x a a ∈”是指每一个这样的x ,2[,]y a a ∈是指存在这样的y ,理解到由函数的定义域导出值域M 是2[,]a a 的子集,由此才有:222[,][,]2a a a a ⊆.(6)与(7)唯一的差别就是:(7)中要求时唯一的,如何转化“唯一”这个条件是本题的关键,与函数的单调性联系起来来进行解答,需要有较强的转化问题的能力. 【例2】已知函数2()[2sin()sin ]cos ,3f x x x x x x R π=++∈.(1)求函数()f x 的最小正周期; (2)若存在05[0,]12x π∈,使不等式0()f x m <成立,求m 的取值范围. ))x .存在【例3】已知实数0a >,且满足以下条件:①x R ∃∈,|sin |x a >有解;②3[,]44x ππ∀∈,2sin sin 10x a x +-; 求实数a 的取值范围.【解析】实数10得:1sin sin a x-2[,1]2t ∈时,2()2f t f =1sin sin ax -22a ;综上,a 的取值范围是2{1}a a <.【例4】(1)已知函数2()2f x k x k =+,[0,1]x ∈,函数22()32(1)5g x x k k x =-+++,[1,0]x ∈-.对任意1[0,1]x ∈,存在2[1,0]x ∈-,21()()g x f x <成立.求k 的取值范围.(min min ()()g x f x <)(2)已知函数2()2f x k x k =+,[0,1]x ∈.函数22()32(1)5g x x k k x =-+++,[1,0]x ∈-.对任意1[0,1]x ∈,存在2[1,0]x ∈-,21()()g x f x =成立,求k 的取值范围.(()f x 的值域是()g x 的值域的子集即可.) (3)已知函数2()2f x k x k =+,[0,1]x ∈.函数22()32(1)5g x x k k x =-+++,[1,0]x ∈-.存在1[0,1]x ∈,存在2[1,0]x ∈-,21()()g x f x =成立,求k 的取值范围.(()g x 的值域与()f x 的值域的交集非空.)5k ,解得5k ,则求5k .,当[0,1]x ∈时,函数单调递增,2[,2k k k +2)[5,2210]k k ∈++,[0,1],存在210]k +,即225222k k k k k ⎧⎨++⎩,解得5k ,则求5k . 时,函数单调递增,2,2]k k +,1)k x +++10]+,由对存,存在2x 1()f x =成2][5,2k +,即252k k +且22210k k k +,解得4114k-或1414k --.【例5】已知(2)23x f x x =-+. (1)求()f x 的解析式;(2)函数2(2)5()1x a x ag x x +-+-=-,若对任意1[24]x ∈,,总存在2[24]x ∈,,使12()()g x f x =成立,求a 取值范围.,即2()(log )2log f t t =-)(log 2log x x =-+【例6】(1)已知函数1()f x e =-,3(4)g x x x =-+-,若有()()f a g b =,则b 的取值范围为( )A .]2222[+-,B .)2222(+-,C .]31[,D .)31(,(2)已知函数()1x f x e =-,2()44g x x x =-+-.若有()()f a g b =,则b 的取值范围为( ) A.[2-+ B.(2-+ C .[1,3]D .(1,3))()f x e =【例7】(1)(2014•江苏•10)已知函数2()1f x x mx =+-,若对于任意[,1]x m m ∈+都有()0f x <,则实数m 的取值范围为 .(2)已知函数2()(f x x bx c b =++、)c R ∈且当1x时,()0f x ,当13x 时,()0f x 恒成立. (ⅰ)求b ,c 之间的关系式;(ⅱ)当3c 时,是否存在实数m 使得2()()g x f x m x =-在区间(0,)+∞上是单调函数?若存在,求出m 的取值范围;若不存在,请说明理由.(3)(2017•天津•理8)已知函数23,1()2,1x x x f x x x x ⎧-+⎪=⎨+>⎪⎩,设a R ∈,若关于x 的不等式()||2x f x a +在R 上恒成立,则a 的取值范围是( ) A .47[,2]16-B .4739[,]1616-C .[-D .39[]16- (4)已知定义域为R 的函数()f x 满足22(())()f f x x x f x x x -+=-+. (①)若(2)3f =,求(1)f ;又若(0)f a =,求()f a ;(①)设有且仅有一个实数0x ,使得00()f x x =,求函数()f x 的解析表达式.【解析】(1)二次函数2()1f x x mx =+-的图象开口向上,对于任意[,1]x m m ∈+,都有()0f x <成立,∴(1)0与(1)0f 同时成立,则必有m ,使满足题设的(g 22()()g x f x b m x c =+-+开口向上,且在0b .20b m ∴.3c ,1)4b ∴=-.这与上式矛盾,从而能满足题设的实数【评注】本题主要考查一元二次函数的图象与性质.一元二次函数的对称性、最值、单调性是每年高考必考内容,要引起重视.)法一:当1x 时,关于x 的不等式)||2x x a +在R 2332x a x x +-+,2133322x a x x +--+,由132y x =+-的对称轴为14处取得最大值-3的对称轴为334x =处取得最小值47391616a① 时,关于x 的不等式)||2x x a +在R 上恒成立,即为22)2x a x x++, 22)2x a x +,由3232()22322x x x x =-+-=-(当且仅当21)3x =>取得最大值212222x x x =(当且仅当21)x =>取得最小值2.则32a ①由①①可得,47216a . ()x 的图象和折线||2xa =+,1x 时,y =11145x解得4716a =-;1x >时,y 解得2a =.由图象平移可得,47216a .故选:法三:根据题意,作出的大致图象,如图所示.【例8】(2012•陕西•理21第2问•文21第3问)设函数2()f x x bx c =++,若对任意1x ,2[1,1]x ∈-,有12|()()|4f x f x -,求b 的取值范围.|4, 4M ,即min 4M . 2b <-时,min )|(1)f =-102b -<时,即2b 时,24M 恒成立,所以2b ;012b- 时,即20b 时,21)4M 恒成立,所以20b ;综上可得,22b -,即b 的取值范围是。
高一数学必修一专项练习:函数、方程与恒成立、存在性问题(江苏)
函数与方程与恒成立、存在性问题练习1当1(,3)||13a x log x ∈<时,恒成立,则实数a 的范围是____ 2.已知2sin cos 0a x x +->,x R ∈恒成立,则a 的范围为3.若关于x 的不等式ax x ≥++-21恒成立,试求a 的范围为4.方程x(x -1)=a 有四个不相等的实数解求实数a 的范围为5.如果方程cos 2x -sinx +a =0在(0,π2]上有解,求a 的取值范围为6.sinx=lgx 的实数解的个数为7.已知函数2xy a =+有零点,则实数a 的取值范围为 8.已知关于x 的方程()2log 20,1a x a a -=>≠有两解,则实数a 的范围为9.方程lnx+2x=6的解一定位于区间(k ,k+1)内则k 的值为10.已知函数f x =x 2−1,g x =a x −1 .(1)若关于x 的方程 f(x) =g(x)只有一个实数解,求实数a 的取值范围;(a<0) (2)若x ∈R 时,不等式f(x)≥g(x)恒成立,求实数a 的取值范围。
(a ≤−2)11. 已知函数a x ax x f 21)(2++-=(a 是常数且R a ∈)(1)若函数)(x f 的一个零点是1,求a 的值;(2)求)(x f 在][2,1上的最小值)(a g ; (3)记{}0)(<∈=x f R x A 若φ=A ,求实数a 的取值范围.解(1) 由题意知32022)1(=∴=+-=a a a f …………………2分(2)][2,1,12)(2∈-+-=x a x ax x fⅰ 当0=a 时3)2()(-==f a g ………………3分ⅱ 当 0<a 时,对称轴为021<=ax 36)2()(-==a f a gⅲ 当0a >时抛物线开口向下,对称轴为12x a= 若112a< 即12a >时,()(1)32g a f a ==-若1122a ≤≤即1142a ≤≤时,11()()2124g a f a a a ==--若122a>即104a <<时,()(2)63g a f a ==- ………………7分综上所述: 163,4111()21,442132,2a a g a a a a a a ⎧-<⎪⎪⎪=--≤≤⎨⎪⎪->⎪⎩……………… 8分(3)由题意知:不等式0)(<x f 无解 即 0212≥++-a x ax 恒成立即212++≥x x a 对任意R x ∈恒成立令1+=x t 则)(322t g t t ta =+-≥对任意R t ∈恒成立 ………………12分ⅰ 当0=t 时0)0(=g ……………… 13分 ⅱ 当0>t时 413)3()(max +==g t g (要具体展开计算) ⅲ 当0<t 时413)3()(min -=-=g t g (要具体展开计算)max )(t g a ≥∴ 即413+≥a ………………16分。
高一函数恒成立与存在性问题
函数恒成立与存在性问题沈阳市第十一中学赵拥权(一)基础知识:1.恒成立问题:①②③④⑤⑥2.存在性问题:①②③④⑤⑥3.恒成立与存在性混合不等式问题:①②4.恒成立与存在性混合等式问题:若f(x),g(x)的值域分别为A,B,则①②③5.解决数学恒成立与存在性问题的方法:①函数性质法;②参数分离(主参分离)法;③主参互换法;④数形结合法;典例分析:例一:(1). 已知时不等式恒成立,则x的取值范围为___;(2).不等式对满足的一切实数m都成立,则x的取值范围为___;(3).已知a是实数,函数在x上恒小于零,则实数a的取值范围____;(4).若关于x的不等式在区间(1,4)上恒成立,则实数a的取值范围____;(5). 已知a是实数,函数在x上,则实数a的取值范围____;(6).不等式对于任意都成立,则m的取值范围为___;.(7).已知函数,当时,恒有f(x),则a 的取值范围_____(8). 已知函数当时,恒有f(x),则a的取值范围_____(9) 已知一次函数当时,恒有f(x),则m 的取值范围_____例二:(1).若存在实数x,使关于x的不等式成立,则实数a的取值范围____;(2). 关于x的不等式在区间,则实数a的取值范围____;(3).关于x的二次方程在区间,则实数m的取值范围____;(4).不等式对于,则m的取值范围为___;.(5). 当时,不等式有解的取值范围;例三:已知函数①的取值范围;②的取值范围;③的取值范围;④的取值范围;⑤的取值范围;⑥的取值范围;例四:(1.当时,不等式恒成立的取值范围;(2). 当时,不等式恒成立的取值范围;(3).已知若或g(x),则m的取值范围习题:1. 当时,不等式恒成立的取值范围;2.已知函数f(x)=(2x-a),恒有的取值范围;3.已知函数f(x)=,恒有的取值范围;4. 已知函数f(x)=lg (),恒有的取值范围;5. 已知函数f(x)=,恒有的取值范围;6. 已知函数f(x)=,恒有的取值范围;7. 已知函数f(x)=,恒有的取值范围;8. 已知函数f(x)=,恒有的取值范围;9. 已知函数f(x)=,恒有的取值范围;。
(完整版)恒成立存在性问题
专题 恒成立存在性问题知识点梳理1、恒成立问题的转化:()a f x >恒成立⇒()max a f x >;()()min a f x a f x ≤⇒≤恒成立2、能成立问题的转化:()a f x >能成立⇒()min a f x >;()()max a f x a f x ≤⇒≤能成立3、恰成立问题的转化:()a f x >在M 上恰成立⇔()a f x >的解集为M ()()R a f x M a f x C M ⎧>⎪⇔⎨≤⎪⎩在上恒成立在上恒成立另一转化方法:若A x f D x ≥∈)(,在D 上恰成立,等价于)(x f 在D 上的最小值A x f =)(min ,若,D x ∈Bx f ≤)(在D 上恰成立,则等价于)(x f 在D 上的最大值B x f =)(max .4、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min min ≥5、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max max ≤6、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min max ≥7、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max min ≤8、若不等式()()f x g x >在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象上方;9、若不等式()()f x g x <在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象下方;题型一、常见方法1、已知函数12)(2+-=ax x x f ,xax g =)(,其中0>a ,0≠x . 1)对任意]2,1[∈x ,都有)()(x g x f >恒成立,求实数a 的取值范围;2)对任意]4,2[],2,1[21∈∈x x ,都有)()(21x g x f >恒成立,求实数a 的取值范围;2、设函数b x x a x h ++=)(,对任意]2,21[∈a ,都有10)(≤x h 在]1,41[∈x 恒成立,求实数b 的取值范围.3、已知两函数2)(x x f =,m x g x-⎪⎭⎫ ⎝⎛=21)(,对任意[]2,01∈x ,存在[]2,12∈x ,使得()21)(x g x f ≥,则实数m 的取值范围为题型二、主参换位法(已知某个参数的范围,整理成关于这个参数的函数)1、对于满足2p ≤的所有实数p,求使不等式212x px p x ++>+恒成立的x 的取值范围。
3.5.4 恒成立和存在性问题 -(人教A版2019必修第一册) (学生版)
恒成立和存在性问题1 恒成立和存在性问题(1)单变量的恒成立问题①∀x∈D , f(x)<a恒成立,则f(x)max<a;②∀x∈D ,f(x)>a恒成立,则f(x)min>a;③∀x∈D , f(x)<g(x)恒成立,则F(x)=f(x)−g(x)<0 ∴f(x)max<0;④ ∀x∈D , f(x)>g(x)恒成立,则F(x)=f(x)−g(x)>0 ∴f(x)min>0;(2)单变量的存在性问题①∃x0∈D,使得 f(x0)<a成立,则 f(x)min<a;②∃x0∈D,使得 f(x0)>a成立,则f(x)max>a;③∃x0∈D,使得 f(x0)<g(x0)恒成立,则F(x)=f(x)−g(x)<0 ∴f(x)min<0;④ ∃x0∈D,使得f(x0)>g(x0)恒成立,则F(x)=f(x)−g(x)>0 ∴f(x)max>0;(3) 双变量的恒成立与存在性问题①∀x1∈D ,∃x2∈E,使得f(x1)<g(x2)恒成立,则f(x)max<g(x)max;②∀x1∈D ,∃x2∈E,使得f(x1)>g(x2)恒成立,则f(x)min>g(x)min;③∀x1∈D ,∀x2∈E ,f(x1)<g(x2)恒成立,则f(x)max<g(x)min;④∃x1∈D,∃x2∈E , 使得f(x1)<g(x2)恒成立,则f(x)min<g(x)max;(4) 相等问题①∃x1∈D ,∃x2∈E,使得f(x1)=g(x2),则两个函数的值域的交集不为空集;②∀x1∈D ,∃x2∈E,使得f(x1)=g(x2),则f(x)的值域⊆g(x)的值域2 解题方法恒成立和存在性问题最终可转化为最值问题,具体的方法有◆直接最值法◆分类参数法◆变换主元法◆数形结合法【题型一】恒成立和存在性问题的解题方法1 直接构造函数最值法的最大值是a,若对于任意的x∈[0 ,2),a>x2−x+b恒成立,则b的取值范【典题1】设函数f(x)=3|x|x2+9围是.2 分离参数法+a关于点(0 ,−12)对称,若对任意的x∈[−1 ,1],k∙2x−f(2x)≥0恒【典题1】已知函数f(x)=3x+8x成立,则实数k的取值范围为.【典题2】已知f(x)=log2(1−a⋅2x+4x),其中a为常数(1)当f(1)−f(0)=2时,求a的值;(2)当x∈[1 ,+∞)时,关于x的不等式f(x)≥x−1恒成立,试求a的取值范围;3 变换主元法【典题1】对任意a∈[−1 ,1],不等式x2+(a−4) x−2 a>0恒成立,求x的取值范围.4 数形结合法【典题1】已知a>0 ,f(x)=x2−a x , 当x∈(−1 ,1)时,有f(x)<12恒成立,求a的取值范围.【题型二】恒成立与存在性问题混合题型【典题1】已知函数f(x)=x3+1 ,g(x)=2−x−m+1.(1)若对任意x1∈[−1 ,3],任意x2∈[0 ,2]都有f(x1)≥g(x2)成立,求实数m的取值范围.(2)若对任意x2∈[0 ,2],总存在x1∈[−1 ,3]使得f(x1)≥g(x2)成立,求实数m的取值范围..【典题2】设f(x)=x 2x+1,g(x)=ax+3−2a(a>0),若对于任意x1∈[0 ,1],总存在x0∈[0 ,1],使得g(x0)=f(x1)成立,则a的取值范围是.巩固练习1(★★) 已知1+2x+a∙4x>0对一切x∈(−∞ ,1]上恒成立,则实数a的取值范围是.2(★★)若不等式2x−1>m(x2−1)对满足|m|≤2的所有m都成立,则x的取值范围是..)内恒成立,实数a的取值范围是.3(★★)若不等式3x2−log a x<0在x∈(0 ,134(★★★) 已知函数f(x)=x2−3x,g(x)=x2−2mx+m,若对任意x1∈[−1 ,1],总存在x2∈[−1 ,1]使得f(x1)≥g(x2 ),则实数m的取值范围是.5(★★★) 已知a>0且a≠1,函数f(x)=a x+a−x(x∈[-1 ,1]),g(x)=ax2−2ax+4−a(x∈[−1 ,1]).(1)求f(x)的单调区间和值域;(2)若对于任意x1∈[−1 ,1],总存在x0∈[−1 ,1],使得g(x0)=f(x1)成立,求a的取值范围;(3)若对于任意x0∈[−1 ,1],任意x1∈[−1 ,1],都有g(x0)≥f(x1)恒成立,求a的取值范围.。
适合于高一学生的恒成立和存在性问题全解析-最新教育资料
恒成立和存在性问题是高中数学的一类很重要的题型, 如 何清楚地掌握它,对很多高一学生来讲是比较困难的.现就如何 清楚地掌握这类问题进行举例说明: 一、恒成立问题 小结存在性问题一定要讲,恒成立和存在性问题,一定要对比 理解,防止方法用反,只有通过大量地练习,才能融会贯通.
小结存在性问 题一定要弄清 题意,确定簇 凳蛹匙铝翘役 剔妮爪采一低 蓝船酿憋域垣 临触渣伏爹亭 茶独滇宛既荫 铝焰溃田颓改 郑聂朝酵莽茬 抒舜掸孝谭谱 邓篇隔驾烹精 凤萎称厩酣层 窖诉浅输瞒屋 确嘿紊阁截熬 监湛影姬攫吴 奋猜缔使倡棚 佃绅页剧呐谨 豪鸦柔鸿谜拉 抉歪砧勾氮帆 磐繁拢讽画踌 忻势殃咀狙垄 箩墟懂习靛苇 茅凰举逊硒诱 达玖挖微氨屉 杆石进狮妊枣 孽歌史阂细删 问烙宙稻肯滚 蔗宇红肇折佯 俊介圆柞辛旷 默打控尽式旋 缴湖讥慨亲迭 棵坎眉迟件籍 台噶猴珐仿牢 铡疏址践赚垄 繁拿傅寺传欢 窑予骏悉睁合 衫骚四吨炔订 碱欲失绢躺曾 驹砒缴埠寓腆 勤舒珍 冗译林讹倔派系楞 汰讯共呆毒础 喀寇誉懈仓待 涡渤拖剐麦杂 凿蒙泣痊
高一数学必修一《恒成立与存在性问题》专题复习
第一部分《零点问题》专题复习利用函数零点的存在定理确立出零点能否存在,或许经过解方程,数形联合解出其零点。
(1)能够利用零点的存在性定理或直接解方程求出零点。
(2)能够利用零点的存在性定理或利用两函数图象的交点来确立函数能否有零点。
对函数零点存在的判断中,一定重申:(1) f (x)在( a,b)上连续(2) f (a) f(b)《0(3)在( a, b)上存在零点专题训练:1、函数 f x4 x 4 , x 1的图象和函数 g x log 2 x 的图象的交点个数是x2 4 x 3, x 1A.4B.3C.2D.12、函数f ( x ) log 2 x 2 x 1 的零点必落在区间()A. 1 , 1B. 1 , 1C. 1 ,1D.(1,2)8 4 4 2 23、数 f x 的零点与g x 4x 2x2 的零点之差的绝对值不超出,则f x能够是()0.25A. f x 4x 1B. f x ( x 1)2C. f x e x 1D. f ( x) ln( x 1 )24.若x0是方程(1)x1x 3的解,则 x0属于区间()2A.2,1 .B.1,2. C.1,1D.0,1 323 3 2 35.若x0是方程式lg x x 2 的解,则 x0属于区间()6.函数 f x2 x 3x 的零点所在的一个区间是()A . 2, 1B . 1,0C . 0,1D . 1,27.函数 f xe x x 2 的零点所在的一个区间是()A . 2, 1B . 1,0C . 0,1D . 1,28.已知 x 0 是函数 f x2x1 的一个零点,若 x 1 1, x 0 , x2 x 0 ,,则1 xA . f x 1 0 , f x 2 0B . f x 1 0 , f x 2 0C . f x 10 , f x 2D . f x 10 , f x 24x,x ≤ ,9.函数 f ( x)41的图象和函数 g( x) log 2 x 的图象的交点个数是( )x 24x,13 xA .4B .3C . 2D .110.函数 f xx 2 2x 3, x 0的零点个数为( )2 ln x, xA .0B .1C .2D .311.设 m ,k 为整数,方程 mx 2 kx 2 0 在区间( 0,1)内有两个不一样的根,则 m+k 的最小值为 (A )-8(B )8(C)12 (D) 1312、若函数 f ( x ) a x x a (a0 且 a 1)有两个零点,则实数 a 的取值范围是13、方程 9x6? 3x 7 0 的解是 . .14、已知函数 yf ( x) 和 y g( x) 在 [ 2,2] 的图象以下所示:给出以下四个命题:①方程 f [ g( x)] 0 有且仅有 6 个根 ②方程 g[ f (x)] 0 有且仅有 3 个根③方程 f [ f (x)]0 有且仅有 5 个根④方程 g[ g( x)]0 有且仅有 4 个根此中正确的命题是.(将全部正确的命题序号填在横线上) .15、已知定义在 R 上的奇函数 f (x) ,知足 f ( x 4)f (x) ,且在区间 [0,2]上是增函数 ,若方程f ( x ) m (m0) 在区间 8,8 上有四个不一样的根 x 1, x 2 , x 3, x 4 ,则 x 1 x 2x 3 x 4_________.2x216.已知函数 f (x),x1)3, x若对于 x 的方程 f(x)=k 有两个不一样的实根,则数 k 的取值范( x 2围是 _______17.方程 2 xx 2 3 的实数解的个数为.18.若函数 f x a x xa a0.a 1 有两个零点,则实数 a 的取值范围是 。
适合于高一学生的恒成立和存在性问题全解析
.
。
解 题 技 巧 与 方 法
始 瓣
. . _ _ 一・
●
遘
一攀羹 J 凰 壁 薄褒J 题垒藤橇
◎李 伟 ( 湖 北省 十堰 市竹 溪县 一 中 4 4 2 3 0 0 )
恒 成 立 和 存 在 性 问 题 是 高 中 数 学 的 一 类 很 重 要 的 题 型, 如何清楚地 掌握 它 , 对 很 多 高 一 学 生 来 讲 是 比 较 困 难
一
2 . 如 果 两个 函数 的定 义 域 不 同 设函数, ( ) , g ( ) 对 任 意 ∈[ “ , b ] ,
_ 厂 ( ) ≥g ( ) 恒成立 , 则_ 厂 ( ) …. ≥g ( ) 即 可.
[ c , d ] 都 有
4≤ ~3≤1, 需 分 一4≤ 一3<0, 一3=0, 0≤ 一3<1三
需 F( ) … ≥0即可 . 例3 l , < ) = 一3 + 4 , g ( )= 2 x+m, 在 ∈[ 0, 3 ] j = f ( ) ≥g ( ) 恒成立 , 求 m 的范 围.
)= 一4 x+1 , 在 R 上 的值 不 恒 大 于
当 a< 0时 , 显然不恒成立 , 舍 去. 当 a >0时 , 只 需 △< 0即 可 , . ‘ . ( 2 a一 4 ) 一 4 a< 0,
‘
) ≥g ( )
.
.
1<a<4 . 即 口∈( 1, 4) .
成立 , 则_ 厂 ( )一 g ( ) ≥0恒 成 立 , 令F ( )- - f ( )一g ( ) , 只
变 式 一 函数 厂 ( x )= + ( 。一4 ) + 4— 3 n在 R上 的 值恒大于 0 , 求 a的 取值 范 围.
高考数学核心考点之恒成立与存在性问题精编经典(实用)解析版
若 | f (x) | ax 1恒成立,只需 y ax 1 始终在 y | f (x) | 的下方,
即直线夹在与 y | x2 4x | (x 0) 相切的直线,和 y 1之间,
所以转化为求切线斜率, y | x2 4x | (x 0) x2 4x(x 0) ,
y y
x2 ax
4 1
x
联立,得
x2
(4
a)
x
1
0
①,
令 Δ 0 ,即 (4 a)2 4 0 ,解得 a 6 或 a 2 , 将 a 6 代入①,得 x 1成立; 将 a 2 代入①,得 x 1,不满足,所以舍去,
4
方法三:“端点值代入型 ”恒成立问题
例 1【2006 全国 2 卷 20】设函数 f ( x) ( x 1) ln( x 1) .若对所有 x 0 ,都有 f ( x) ax 成立,求 a
的取值范围.
例 2【2007 全国 1 卷 20】设函数 f ( x) ex ex .若对所有的 x 0 ,都有成立 f ( x) ax ,求 a 的取
x0
x0
x
x0
1
a 2
综上,a (,2].
5
例
3【2008
全国
2
卷
22(2)】设函数
f
(x)
2
sin x cos
x
.
(1) 求 f ( x) 的单调区间;
(2) 若对所有的 x 0 ,都有 f ( x) ax 成立,求 a 的取值范围.
例 4 【2014 全国 2 卷 21】已知函数 f ( x) ex ex 2x .设 g( x) f (2x) 4bf ( x) ,当 x 0 时, g( x) 0 ,求 bmax .
高三数学专题——恒成立与存在性问题
高三数学专题——恒成立与存在性问题高三复专题——恒成立与存在性问题知识点总结:1.___成立问题:1) 若对于D中的任意x,都有f(x)>A,则f(x)的最小值>A;2) 若对于D中的任意x,都有f(x)<A,则f(x)的最大值<A;3) 若对于D中的任意x,都有f(x)>g(x),则F(x)=f(x)-g(x)>0,因此F(x)的最小值>0;4) 若对于D中的任意x,都有f(x)<g(x),则F(x)=f(x)-g(x)<0,因此F(x)的最大值<0;5) 若对于D中的任意x1和E中的任意x2,都有f(x1)>g(x2),则f(x)的最小值>g(x)的最大值;6) 若对于D中的任意x1和E中的任意x2,都有f(x1)<g(x2),则f(x)的最大值<g(x)的最小值。
2.存在性问题:1) 若存在D中的x,使得f(x)>A,则f(x)的最大值>A;2) 若存在D中的x,使得f(x)<A,则f(x)的最小值<A;3) 若存在D中的x,使得f(x)>g(x),则F(x)=f(x)-g(x),因此F(x)的最大值>0;4) 若存在D中的x,使得f(x)<g(x),则F(x)=f(x)-g(x),因此F(x)的最小值<0;5) 若存在D中的x1和E中的x2,使得f(x1)>g(x2),则f(x)的最大值>g(x)的最小值;6) 若存在D中的x1和E中的x2,使得f(x1)<g(x2),则f(x)的最小值<g(x)的最大值。
3.相等问题:1) 若对于D中的任意x1,存在E中的某个x2,使得f(x1)=g(x2),则{f(x)}={g(x)};4.___成立与存在性的综合性问题:1) 若对于D中的任意x1,存在E中的某个x2,使得f(x1)>g(x2),则f(x)的最小值>g(x)的最小值;2) 若对于D中的任意x1,存在E中的某个x2,使得f(x1)<g(x2),则f(x)的最大值<g(x)的最大值。
函数恒成立与存在性问题(精编)
函数恒成立与存在性问题(精编)知识归纳:恒成立问题1. ∀x ∈D,均有f(x)>A 恒成立,则f(x)min>A ;2. ∀x ∈D,均有f(x)﹤A 恒成立,则 f(x)max<A.3. ∀x ∈D,均有f(x) >g(x)恒成立,则F(x)= f(x)- g(x) >0, ∴ F(x)min >04. ∀x ∈D,均有f(x)﹤g(x)恒成立,则F(x)= f(x)- g(x) ﹤0。
∴ F(x) max ﹤05. ∀x1∈D, ∀x2∈E,均有f(x1) >g(x2)恒成立,则f(x)min> g(x)max6. ∀x1∈D, ∀x2∈E,均有f(x1) <g(x2)恒成立,则f(x) max < g(x) min 练习:1、已知函数12)(2+-=ax x x f ,xa x g =)(,其中0>a ,0≠x . (1)对任意]2,1[∈x ,都有)()(x g x f >恒成立,求实数a 的取值范围;(2)对任意]4,2[],2,1[21∈∈x x ,都有)()(21x g x f >恒成立,求实数a 的取值范围;2、已知两函数()2728f x x x c =--,()322440g x x x x =+-。
(1)对任意[]3,3x ∈-,都有()()f x g x ≤)成立,求实数c 的取值范围;(2)对任意[]12,3,3x x ∈-,都有()()12f x g x ≤,求实数c 的取值范围;3、已知函数f(x)=x3+x ,对任意的m∈[-2,2],f(mx -2)+f(x)<0恒成立,则x 的取值范围为__________.知识归纳:存在性问题1. ∃x0∈D,使得f(x0)>A 成立,则f(x) max >A ;2. ∃x0∈D,使得f(x0)﹤A 成立,则 f(x) min <A3. ∃x0∈D,使得f(x0) >g(x0)成立,设F(x)= f(x)- g(x). ∴ F(x) max >04. ∃x0∈D,使得f(x0) <g(x0)成立,设F(x)= f(x)- g(x) ∴ F(x) min <05. ∃x1∈D, ∃x2∈E, 使得f(x1) >g(x2)成立,则f(x) max > g(x) min6. ∃x1∈D, ∃x2∈E,均使得f(x1) <g(x2)成立,则f(x) min < g(x) max 练习:2、已知两函数()2728f x x x c =--,()322440g x x x x =+-。
高考数学一轮复习-恒成立存在性问题
∴ F(x)min >0
4. ∀x∈D,均有 f(x)﹤g(x)恒成立,则 F(x)= f(x)- g(x) ﹤0
(7)若x1,x2 3,3,使f (x1) g(x2)成立,求k的取值范围
6/8/2020
合作探究 (约5分钟)
一、探究内容: 补充题目 例1、变式
二、探究要求: 参与积极,讨论高效,力争最优!
1.开始讨论时,迅速起立并把凳子轻轻地放到课桌底下。 2.组长带领本组成员按照讨论的问题一一讨论,组长充分发挥小老师的角色。
及时安排本组1个或多个成员展示,无展示任务的同学可以继续讨论。讨论结 束6/8后/20迅20 速坐下整理讨论学习的成果。
例:已知函数f x 8x2 16x k,其中k为实数.
(1) 若对 x [3,3],使 f (x) 0 恒成立,求k的取值范围; (2) 若 x0 [3,3],使 f (x0 ) 0 能成立,求k的取值范围;
2. ∀x1∈D, ∃x2∈E, 使得 f(x1) <g(x2)成立,
则 f(x) max < g(x) max
(5)恰成立问题
1. 若不等式 f(x)>A 在区间 D 上恰成立,则等价于不等式
f(x)>A 的解集为 D;
2.若不等式 f(x)<B 在区间 D
上恰成立,则等价于不等式 f(x)<B 的解集为 D.
(3) 若对 x [3,3],使 f (x) g(x) 恒成立,求k的取值范围;
恒成立与存在性问题
2.设函数 f(x)=x2-1,对任意 x∈[32,+∞),f(mx )-4m2f(x)≤f(x -1)+4f(m)恒成立,求实数 m 的取值范围
[解析] ∵f(x)=x2-1,x∈[32,+∞), f(mx )-4m2f(x)≤f(x-1)+4f(m)对 x∈[32,+∞)恒成立. 即(mx )2-1-4m2(x2-1)≤(x-1)2-1+4(m2-1)恒成立. 即(m12-4m2-1)x2+2x+3≤0 恒成立.即m12-4m2-1≤-2xx2-3恒成立. g(x)=-2xx2-3=-x32-x2=-3(x12+32x)=-3(1x+31)2+31. ∵x≥32,∴0<1x≤32,∴当1x=23时,g(x)min=-38. ∴m12-4m2-1≤-83.整理得 12m4-5m2-3≥0,(3m2+1)(4m2-3)≥0. ∵3m2+1>0,∴4m2-3≥0.即:m≥ 23或 m≤- 23.
2x 1
步转化为(ln 2xx11)max (3m成a 立4 . m2 )min
(2)①F(x)=ln(x+2)- 2x
x 1
定义域为:
(-2,-1)∪(-1,+∞).
F′(x)=
x
1
2
2(x 1) 2x (x 1)2
x
1
2
(x
2 1)2
=(x 1)2 2(x 2)
(x 2)(x 1)2
(x
x2 3 2)(x 1)2
,
令F′(x)>0,得单调增区间为 (2,和 3) ( 3,) 令F′(x)<0,得单调减区间为 ( 和3,1) (1, 3)
②不等式f(x+1)≤f(2x+1)-m2+3am+4化为:
不等式的恒成立与存在性问题
例 3:设函数 f x a ln x
1 a 2 x bx ,a R 且 a 1 .曲线 y f x 在点 1, f 1 处的切线 2 a 的斜率为 0 .若存在 x 1, ,使得 f x ,求 a 的取值范围. a 1
例 1:对于满 足 | p | 2 的所有实数 p ,求使不等式 x px 1 2 p x 恒成立的 x 的取值范围.
2
例 2:若不等式 2 x 1 m( x 1) 的所有 2 m 2 都成立,则 x 的取值范围 __________
2
7、二次函数——利用判别式、韦达定理及根的 分布求解 有以下几种基本类型:[来源:学_科_网] 类型 1:设 f ( x) ax 2 bx c(a 0). [来源
【名题精选,提升能力】
1、函数 f ( x ) x ax 3 ,当 x 2, 2 时, f ( x ) a 恒成立,则 a 的取值范围是
2
2、已知函数 f ( x ) 1 2 4 a 在 ( ,1] 上有意义,则 a 的取值范围是 3、若不等式 2 x 1 m x 1 对任意 m 1,1 恒成立,则 x 的取值范围是
S 2 n 1 ( n Ν ).若
不等式
n8 对任意 n Ν 恒成立,则实数 的最大值为 an n
e2 x e2 x 2 1 g ( x1 ) f ( x2 ) 5、设函数 f ( x ) , g ( x ) x ,对 x1 , x2 (0, ) ,不等式 恒成立, x k k 1 e
1 4
1 4
例 2:已知 f ( x )
1 2 x x , g ( x) ln( x 1) a ห้องสมุดไป่ตู้ 2
高一同步专题《函数中的“恒成立”问题与“存在性”问题》PDF
(Ⅳ)对任意 x1 D1 ,存在 x2 D2 ,使得 f x1 g x2 , f (x) x D1 g(x) x D2 ;
(二)“存在性”问题(“有解”问题):(分离参数,转化为函数的“最值”问题):
(Ⅰ)存在 x D ,使得 a f (x) 成立(即 a f (x) ( x D )有解) a f (x)min ; 存在 x D ,使得 a f (x) 成立 a f (x)min ;
1 2x 1
15,
1 3
2 2x 1
2, 3
2 5
1
2 2x 1
1 3
,
3 5
,即
m
log 2
1
2 2x 1
,
x
1,
2
的值域为
1 3
,
3 5
。
所以,
m
的取值范围为
1 3
,
3 5
①.求 a 的取值范围;
②.若对任意实数 m , f m 1 f m2 t 0 恒成立,求实数 t 的取值范围。
〖解〗(1)若 a 2 ,则当 x 0 时, f (x) x2 2x ,
x 0 时, x 0 , f x x2 2x ,
第4页共7页
《函数中的“恒成立”问题与“存在性”问题》
恒成立_能成立即存在性问题的复习教案
2
1、当 x 1, 2 时,不等式 x mx 4 0 恒成立,则 m 的取值范围是
2
.
题型四、数形结合(恒成立问题与二次函数联系(零点、根的分布法) ) a | x | ax 1、若对任意 x R ,不等式 恒成立,则实数 的取值范围是________ 2、已知函数 f x x 2kx 2 ,在 x 1 恒有 f x k ,求实数 k 的取值范围。 题型五、不等式能成立问题(有解、存在性)的处理方法
2
第3页
教学设计方案
XueDa PPTS Learning Center
x 1 1 2 g ( x) m 在 1,2 上的最小值 m 不大于 f ( x) x 在 0,2 上的最小 4 2 1 1 值 0,既 m 0 ,∴ m 4 4
题型二、主参换位法(已知某个参数的范围,整理成关于这个参数的函数) 1、对于满足 p 2 的所有实数 p,求使不等式 x2 px 1 p 2 x 恒成立的 x 的 取值范围。 解:不等式即 x 1 p x2 2x 1 0 , 设 f p x 1 p x2 2x 1 ,则
高考数学冲刺专题3.12 恒成立、存在性问题(新高考)(解析版)
专题3.12 恒成立、存在性问题1.恒成立、存在性问题的求解思路:(1)转化为基本函数(曲线)问题:数形结合,利用函数图象或曲线性质求解,如一次函数端点法,二次函数判别式、指对函数切线法、根式平方联想圆等等; (2)分离参数法:转化为函数最值问题求解;(3)变换主元法:参数与变量角色转化,以参数为自变量,构建函数再求解. 2.不等式恒成立问题的求解策略:(1)分离参数()a f x ≥恒成立(()max a f x ≥)或()a f x ≤恒成立(()min a f x ≤); (2)数形结合(()y f x = 图象在()y g x = 上方即可); (3)讨论最值()min 0f x ≥或()max 0f x ≤恒成立. 3.不等式能恒成立求参数值(取值范围)的求解策略: (1)函数法:讨论参数范围,借助函数单调性求解;(2)分离参数法:先将参数分离,转化成求函数的值域或最值问题加以解决; (3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解. 4.对于已知函数()y f x =的单调性求参数问题:(1)已知可导函数()f x 在区间D 上单调递增,转化为区间D 上()0f x '≥恒成立; (2)已知可导函数()f x 在区间D 上单调递减,转化为区间D 上()0f x '≤恒成立; (3)已知可导函数()f x 在区间D 上存在增区间,转化为()0f x '>在区间D 上有解; (4)已知可导函数()f x 在区间D 上存在减区间,转化为()0f x '<在区间D 上有解.【预测题1】已知函数()ln xf x x-=.(1)设()()1x g x f x f x ⎛⎫=+⎪-⎝⎭,求函数()g x 的最小值; (2)设()1h x f x ⎛⎫=⎪⎝⎭,对任意1x ,()20,x ∈+∞,()()()()121212h x h x h x x k x x ++++≥恒成立,求k 的最大值.【答案】(1)ln 2-;(2)ln 2-. 【解析】(1)因为()11ln x f x x =,()()1111ln 1ln 11x g x f x f x x x x x ⎛⎫⎛⎫⎛⎫=+=+-- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭, 令1t x=,则()()()ln 1ln 1F t t t t t =+--,()0,1t ∈. ()()ln 1ln 11ln1tF t t t t'=+--+=⎡⎤⎣⎦-, 当10,2t ⎛⎫∈ ⎪⎝⎭,()0F t '<,()F t 单调递减;当1,12t ⎛⎫∈ ⎪⎝⎭,()0F t '>,()F t 单调递增. 所以()F t )的最小值为1ln 22F ⎛⎫=-⎪⎝⎭.即函数()g x 的最小值是ln 2-. (2)()ln h x x x =,()()()1212h x h x h x x +-+()()11221212ln ln ln x x x x x x x x =+-++12121212lnln x x x x x x x x =+++=()11221212121212ln ln x x x x x x x x x x x x x x ⎡⎤++⎢⎥++++⎣⎦()12121212x x x x h h x x x x ⎡⎤⎛⎫⎛⎫=++⎢⎥ ⎪ ⎪++⎝⎭⎝⎭⎣⎦.由(1)知121121212ln 2x x x h h F x x x x x x ⎛⎫⎛⎫⎛⎫+=- ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭≥, 所以()()()()121212ln 2h x h x h x x x x +-+-+⋅≥. 所以ln 2k -≤,k 的最大值是ln 2-. 【名师点睛】本题关键是将函数转化为()11ln x f xx =,利用换元法而得解.【预测题2】已知函数22()ln (1)1x f x x x =+-+.(1)求()f x 的单调区间;(2)若不等式1(1)e n an++≤对任意*n N ∈恒成立,求a 的取值范围.【答案】(1)单调递增区间为(10)-,,单调递减区间为(0)+∞,;(2)1(1]ln 2-∞-,. 【解析】(1)()f x 的定义域(1)-+∞,,22222ln(1)22(1)ln(1)2()1(1)(1)x x x x x x x f x x x x ++++--'=-=+++,令2()2(1)ln(1)2g x x x x x =++--,(1)x ∈-+∞,,()2ln(1)2g x x x '=+-,令()2ln(1)2h x x x =+-,(1)x ∈-+∞,,2()21h x x '=-+,当10x -<<时,()0h x '>,当0x >时,()0h x '<, 所以()h x 在(10)-,单调递增,在(0)+∞,单调递减, 又(0)0h =,故()0≤h x ,即当1x >-时,()0g x '≤,所以()g x 在(1)-+∞,单调递减,于是当10x -<<时,()(0)0g x g >=,当0x >时,()(0)0g x g <=, 所以当10x -<<时,()0f x '>,当0x >时,()0f x '<, 所以()f x 的单调递增区间为(10)-,,单调递减区间为(0)+∞,.(2)不等式1(1)n ae n++≤*()n N ∈等价于1()ln(1)1n a n++≤,又111n+>,故11ln(1)a nn≤-+, 设11()ln(1)x x x ϕ=-+,(01]x ∈,,222222(1)ln (1)()()(1)ln (1)ln (1)x x x f x x x x x x x ϕ++-'==+++,又()(0)0f x f ,故当(01]x ∈,时,()0x ϕ'<,所以()ϕx 在(01],单调递减,于是1()(1)1ln 2x ϕϕ≥=-,故11ln 2a ≤-,所以a 的取值范围为1(1]ln 2-∞-,. 【预测题3】已知函数()2()12ln ,f x a x x a R =--∈. (1)2a =时,求在(1,(1))f 处的切线方程; (2)讨论()f x 的单调性;(3)证明:当1a ≥时,1()(1)f x ax a x≥+-+在区间(1,)+∞上恒成立. 【答案】(1)()21y x =-;(2)见解析;(3)证明见解析. 【解析】当2a =时,()()2212ln f x x x =--,0x >,()22424x f x x x x-'=-=,()10f =,()12f '=, ()f x ∴在1x =处的切线方程是()21y x =-.(2)()22222ax f x ax x x-'=-=,()0x >当0a ≤时,()0f x '<,()f x ∴在()0,∞+上单调递减,当0a >时,令()0f x '>,解得x a >,令()0f x '<,解得0x a<<,()f x ∴的增区间是⎫+∞⎪⎪⎝⎭,减区间是⎛ ⎝⎭, 综上可知0a ≤时,函数的减区间是()0,∞+,无增区间;0a >时,函数的增区间是⎫+∞⎪⎪⎝⎭,减区间是⎛ ⎝⎭. (3)要证明不等式当1a ≥时,1()(1)f x ax a x≥+-+在区间(1,)+∞上恒成立, 即证明()()2112ln 1a x x ax a x--≥+-+在区间(1,)+∞上恒成立, 即证212ln 10ax x ax x ---+≥恒成立,令()212ln 1g x ax x ax x=---+,()3222212212ax ax x g x ax a x x x --+'=--+=()()()()22222112121x ax ax x x x x-----==,1,1a x ≥>,2210,10x ax ∴->->,即()0g x '>,()g x ∴在区间()1,+∞单调递增,即()()1g x g >,而()()2110g ax ax ax x =-=->,()0g x ∴>,∴ 1a ≥时,1()(1)f x ax a x≥+-+在区间(1,)+∞上恒成立. 【预测题4】已知函数1()x f x e -=.(1)设函数()()h x xf x =,求()h x 的单调区间;(2)判断函数()y f x =与()ln g x x =的图象是否存在公切线,若存在,这样的切线有几条,为什么?若不存在,请说明理由.【答案】(1)单调减区间为(),1-∞-,单调增区间为()1,-+∞;(2)两曲线有两条公切线,理由见解析.【解析】(1)1()()x h x xf x xe-==,()()1111x x x h x xee x e ---=+=+',当1x <-时,()0h x '<,当1x >-时,()0h x '>,所以()h x 的单调减区间为(),1-∞-,单调增区间为()1,-+∞.(2)设两曲线的公切线为l ,与曲线1()x f x e -=切于点()1,a a e-,则切线方程为()11a a y e e x a ---=-,即111a a a y e x e ae ---=+-,又与曲线()ln g x x =切于点(),ln b b ,则切线方程为()1ln y b x b b-=-, 即1ln 1y x b b =+-.所以有1111ln 1a a a e be ae b ---⎧=⎪⎨⎪-=-⎩. 消元整理得110a a e ae a ---+=,所以方程根的个数即为两曲线的公切线条数.设11()x x x exe x ϕ--=-+,()11x x xeϕ-=-'.当0x <时,()0x ϕ'>,当01x <<时,由(1)知,()x ϕ'单调递减,()()10x ϕϕ''>=,当1x >时,由(1)知,()x ϕ'单调递减,()0x ϕ'<,当且仅当1x =时,()0x ϕ'=;所以()ϕx 在(),1-∞单调递增,在()1,+∞单调递减. 而()110ϕ=>,()220e ϕ=-<,22(1)10e ϕ-=-<,1(0)0eϕ=>, 又函数()ϕx 在R 上连续,所以函数11()x x x e xe x ϕ--=-+有两个零点,分别位于区间()1,0-和区间()1,2内.所以方程110a a e ae a ---+=有两个不同的根,即两曲线有两条公切线.【名师点睛】公切线问题需分别求得函数的切线方程,使斜率,截距分别相等,从而得到切线方程参数之间的关系,转化为函数问题,借助导数解决方程根的问题.【预测题5】已知函数()()1ln 22f x x x x =+-+,()()2ln 0g x x ax x a =-+>.(1)当1x >时,求函数()f x 的值域;(2)若函数()g x 有两个零点1x ,()212x x x <,当102λ≤≤时,不等式()()12110g x x a λλ'+-+-<恒成立,求实数a 的取值范围.【答案】(1)()0,∞+;(2)()0,1.【解析】(1)()()1ln 22f x x x x =+-+,定义域为()0,∞+,()1ln 2x f x x x+'=+-,所以()22111x f x x x x -''=-=,所以当1x >时,()0f x ''>,所以函数()y f x '=在[)1,+∞单调递增,又()10f '=,所以当1x >时,()0f x '>,所以函数()y f x =在[)1,+∞单调递增, 又()10f =,所以当1x >时,()0f x >,x →+∞时,()f x →+∞, 即所求的值域是()0,∞+.(2)因为()g x 有两个零点1x ,()212x x x <,所以由()0g x =得2ln x xa x+=,记2ln x x y+=,则312ln x xy --'=,令0y '=得1x =,列表得 分析得max 1y =,且当0x →时,y →-∞;当x →+∞时,0y +→; 因为()g x 有两个零点1x ,()212x x x <,即2ln x xa x +=有两个零点, 所以必有01a <<.又由(1)知当1x >时,()()1ln 220f x x x x =+-+>,即()22ln 11x x x x ->>+ (*) 又()()1210g x ax a x '=-+>,()2120g x a x''=--<,所以()g x '在()0,∞+单调递减.又令211x x x =>代入(*)式得,()2212121211222ln 1x x x x x x x x x x -->=++,即121212ln ln 2x x x x x x -+<-,又由题意函数()g x 有两个零点1x ,()212x x x <,得()()2111122222ln 0ln 0g x x ax x g x x ax x ⎧=-+=⎪⎨=-+=⎪⎩, 两式相减得()1212121210ln ln 12x x x x x x a x x -+<=<-+-,所以()1212210a x x x x -++<+,因为120x x <<,102λ≤≤, 所以()()121212121122122x x x x x x x x λλλλ++--=+---⎡⎤⎡⎤⎣⎦⎣⎦ ()()1212102x x λ=--≥,所以()121212x x x x λλ++-≥, 所以()()()1212121221102x x g x x g a x x x x λλ+⎛⎫''+-≤=-++<⎪+⎝⎭, 又()1211g x x a λλ'+-<-⎡⎤⎣⎦,所以只要10a -≥, 因为0a >,所以01a <≤.综上所述,实数a 的取值范围是()0,1.【预测题6】已知函数21()(ln )2f x a x x x x=++-. (1)若02a <<,求函数()f x 的单调区间;(2)若存在实数[1,)a ∈+∞,使得()()2f x f x '+≤对于任意的x m ≥恒成立,求实数m 的取值范围.【答案】(1)增区间为⎫⎪⎪⎭,减区间为⎛ ⎝,(1,)+∞;(2)m 1≥. 【解析】(1)()f x 定义域为(0,)x ∈+∞,()222(1)211()22x x a f x a x x x x --⎛⎫'=-+-=-⎪⎝⎭22(1)x x x x ⎛- ⎝⎭⎝⎭=-,当02a <<时,令()0f x '>1x <, 所以()f x的增区间为⎫⎪⎪⎭,减区间为⎛ ⎝,(1,)+∞ (2)()()2f x f x '+≤,即222ln 0a aa x x x x+--≤ 即存在[1,)a ∈+∞,使得221211ln x x x x a⎛⎫+-≤ ⎪⎝⎭, 故22121ln 1x x x x ⎛⎫+-≤ ⎪⎝⎭对于任意的x m ≥恒成立,即2221ln 0x x x x+--≤, 令2221()ln g x x x x x=+--,即()0g x ≤对于任意的x m ≥恒成立,244233222222()x x x x x x g x x x -+--+-'==-, 设42()222h x x x x =-+-,3()82(1)h x x x '=--,当01x <<时,()0h x '>,42()222h x x x x =-+-在(0,1)单调递增,又(0)0h <,(1)0h >,所以存在唯一的0(0,1)x ∈,使得()00h x =, 当()0,1x x ∈时,()0h x >,则()0g x '<,()g x 是减函数, 所以()(1)0g x g >=,不符合题意,所以1m ≥, 下证当1≥x 时,()0g x ≤恒成立,()4222222212(1)0x x x x x x -+-=-+->, 所以423222()0x x x g x x-+-'=-<, 即()g x 在[1,)+∞上单调递减,()g(1)0g x ≤=, 综上,m 1≥.【名师点睛】此题考查导数的应用,考查利用导数求函数的单调区间,利用导数解决不等式恒成立问题,解题的关键是将问题转化为22121ln 1x x x x ⎛⎫+-≤ ⎪⎝⎭对于任意的x m ≥恒成立,即2221ln 0x x x x+--≤,然后构造函数,利用导数解决,考查数学转化思想和计算能力,属于中档题【预测题7】已知()ln f x x x =,()()212xg x x e e=--(1)求函数()g x 的单调区间;(2)已知1≥x 时,不等式()()2245ax x x f x -≤-+恒成立,求实数a 的取值范围.【答案】(1)在(),0-∞递增,在()0,2递减,在()2,+∞递增;(2)(],1ln 2-∞+. 【解析】(1)()g x 的定义域是R ,又()()2xg x x x e '=-,令()0g x '=,解得0x =或2x =,x ,()g x ',()g x 的变化如下:故()g x 在(),0-∞递增,在()0,2递减,在()2,+∞递增; (2)()y f x =的定义域是()0,∞+,当1≥x 时,由()()2245ax x x f x -≤-+可知()2245ln a x x x x≤-++, 令()()2245ln h x x x x x=-++,(1≥x ), 则()()2245222ln x x h x x x x x-+'=-+-()()222222ln x x x x x x -+-=-+()()22222ln 1x x x x x⎡⎤-+-⎣⎦=, 令()0h x '=,则1x =或2x =,故()h x 在()1,2递减,在()2,+∞递增, 故()h x 在[)1,+∞上的最小值是()21ln 2h =+, 故1ln2a ≤+,即a 的取值范围是(],1ln 2-∞+.【名师点睛】对于不等式恒成立可以采用常变量分离法构造函数,利用导数的性质进行求解. 【预测题8】已知函数()22ln kx f x x x +-=(1)当1k =时,求在1x =处的切线方程;(2)若()f x 在定义域上存在极大值,求实数k 的取值范围. 【答案】(1)3y x =;(2)1,02⎛⎫-⎪⎝⎭. 【解析】(1)1k =时,()22ln f x x x x =+-定义域是()0,∞+,()122f x x x'=+-(0x >) 所以()13f =,()13f '=,切线方程为()331y x -=-即3y x =(2)()f x 的定义域是()0,∞+,求导得()2122122kx x f x kx x x+-'=+-=(0x >) 记()2221g x kx x =+-,①当0k =时,令()102g x x =⇒=, 当10,2x ⎛⎫∈ ⎪⎝⎭时,()()()00g x f x f x <⇒'<⇒单调递减, 当1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()()()00g x f x f x >⇒'>⇒单调递增;()f x 有极小值没有极大值.②当0k >时,480k ∆=+>,()21042g x x k k-=⇒==(负根舍去),当10,2x k ⎛⎫∈ ⎪ ⎪⎝⎭时,()()()00g x f x f x <⇒'<⇒单调递减,当x ⎫∈+∞⎪⎪⎝⎭时,()()()00g x f x f x >⇒'<⇒单调递增;()f x 有极小值没有极大值.③当0k <时,令480k ∆=+≤得1,2k ⎛⎤∈-∞- ⎥⎝⎦,则()22210g x kx x =+-≤在()0,∞+恒成立,于是()0f x '≤在()0,∞+恒成立,()f x 在定义域()0,∞+上单调递减,没有极大值. 令480k ∆=+>得1,02k ⎛⎫∈-⎪⎝⎭,令()10g x x =⇒=2x =()0f x '=有2个不相等正根,()f x 在10,2k ⎛⎫⎪ ⎪⎝⎭上单调递减,在11,22k k ⎛⎫ ⎪ ⎪⎝⎭单调递增,在1,2k ⎛⎫+∞ ⎪ ⎪⎝⎭单调递减.所以()f x在2x =综上所述,()f x 在定义域上存在极大值时,实数k 的取值范围是1,02⎛⎫-⎪⎝⎭. 【名师点睛】本题考查导数的几何意义,考查用导数研究函数的最值.解题关键是掌握导数与单调性的关系,掌握极值的定义.解题方法是利用分类讨论思想讨论()0f x '=的根的分布,()'f x 0>或()0f x '<的解的情况,确定单调性得极值情况.【预测题9】已知函数()f x x =,()sin cos g x x x =+.(1)当4x π≥-时,求证:()()f x g x ≥;(2)若不等式()()2f x g x ax +≤+在[0,)+∞上恒成立,求实数a 的取值范围. 【答案】(1)证明见解析;(2)[2,)+∞. 【解析】(1)令()()()sin cos h x f x g x x x x =-=--,4x π≥-,①当44x ππ-≤<时,则()1cos sin h x x x '=+-+,设1()()h x h x =',)1321()04h x x π⎛⎫'=++> ⎪⎝⎭, ()h x '∴在,44ππ⎡⎫-⎪⎢⎣⎭上单调递增,且()00h '=,当04x π-≤<时,()0h x '<;当04x π≤<时,()0h x '≥,()h x ∴在,04π⎡⎫-⎪⎢⎣⎭上递减,在0,4π⎡⎫⎪⎢⎣⎭上递增, ()()00h x h ∴≥=,()()f x g x ∴≥;②当4x π≥时,则()4h x x x x π⎛⎫=+≥- ⎪⎝⎭1044ππ≥>+->,()()f x g x ∴≥;综上所述,当4x π≥-时,()()f x g x ≥;(2)令()()()2sin cos 2t x f x g x ax x x x ax =+--=++--,0x ≥,则()1cos sin t x x x a '=+--,由题意得()0t x ≤在[0,)+∞上恒成立,()00t =,()020t a '∴=-≤,2a ∴≥;下证当2a ≥时,()0t x ≤在[0,)+∞上成立,()sin cos 2sin cos 22t x x x x x ax x xx x =++--≤++--,令()sin cos 2x x x x ϕ++-,只需证明()0xϕ≤在[0,)+∞上成立, (1)当04x π≤≤时,()1cos sin x x x ϕ'=-+-,设1()()x x ϕϕ=',1321()4x x πϕ⎛⎫'=-+ ⎪⎝⎭, ()1x ϕ'在0,4⎡⎤⎢⎥⎣⎦π上单调递减,11()(0)0x ϕϕ∴'≤'=,()x ϕ'∴在0,4⎡⎤⎢⎥⎣⎦π上单调递减,()()00x ϕϕ''∴≤=,()x ϕ∴在0,4⎡⎤⎢⎥⎣⎦π上单调递减,()()00xϕϕ∴≤=;(2)当4x π>时,()24x xx πϕ⎛⎫=++- ⎪⎝⎭2x ≤-+204π≤+<;综上所述,实数a 的取值范围是[2,)+∞.【名师点睛】本题考查了利用导数证明不等式,利用导数研究不等式恒成立,解题的关键是由题意确定2a ≥,将不等式恒成立转化为()sin cos 22t x x x x x ≤++--,进而证明()sin cos 220x x x x x ϕ=++--≤,考查了转化思想以及运算能力.【预测题10】已知函数()()ln 10f x m x kx m =++> (1)讨论()f x 的单调性;(2)若存在实数k ,使得()mxxf x e '≤恒成立的m 值有且只有一个,求k m +的值.【答案】(1)答案见解析;(2)2e k m +=. 【解析】(1)函数()f x 的定义域为()0,∞+,()m m kxf x k x x+'=+=. 当0k ≥时,()0f x '>,()f x 在(0,)+∞上单调递增; 当0k <时,令()0f x '=,解得mx k=-, 当0,m x k ∈-⎛⎫ ⎪⎝⎭时,()0f x '>,当,m x k ⎛⎫∈-+∞ ⎪⎝⎭时,()0f x '<.()f x ∴在0,m k ⎛-⎫ ⎪⎝⎭上单调递增,在,m k ⎛⎫-+∞ ⎪⎝⎭上单调递减. 综上所述,当0k ≥,()f x 在(0,)+∞上单调递增; 当0k <时,()f x 在0,m k ⎛-⎫ ⎪⎝⎭上单调递增,在,m k ⎛⎫-+∞ ⎪⎝⎭上单调递减;(2)()mxxf x e '≤恒成立,即0mx e kx m --≥恒成立 令()mxg x ekx m =--,则()mx g x me k '=-.①当0k ≤时,()0g x '>,()g x 单调递增,要使()0g x ≥在()0,∞+上恒成立,只需()010g m =-≥,01m ∴<≤,此时m 不唯一,不合题意;②当0k m <≤时,令()0g x '=,解得ln ln 0k mx m-=≤,()g x 在()0,∞+上单调递增. 要使()0g x ≥在()0,∞+上恒成立,只需()010g m =-≥,01m ∴<≤,此时m 不唯一,不合题意;③当k m >时,令()0g x '=,解得ln ln 0k mx m-=>,当ln ln 0,k m x m -⎛⎫∈ ⎪⎝⎭时,()0g x '<,()g x 单调递减, 当ln ln ,k m x m -⎛⎫∈+∞⎪⎝⎭时,()0g x '>,()g x 单调递增, ()()ln ln min ln ln ln ln k m k m kg x g ek m m m m --⎛⎫∴==--- ⎪⎝⎭, 要使()0g x ≥在()0,∞+上恒成立,且m 值唯一,只需ln ln 0k m g m -⎛⎫=⎪⎝⎭, 整理得2ln ln 10m m k k-+-=,令()2ln ln 1m h m m k k =-+-,则()22k m h m mk-'=,令()0h m '=,解得m =.当m ⎛∈ ⎝时,0h m,()h m 单调递增,当m ⎫∈+∞⎪⎪⎭时,0h m,()h m 单调递减.()max 1ln 2h m h ∴==,要使m 值唯一,只需()max 102h m ==,解得2e k =,m =,k m ∴+= 【名师点睛】本题考查利用函数不等式恒成立,关键就是将问题转化为()min 0g x ≥,并利用导数分析函数的单调性,进而求解.【预测题11】已知函数2()2ln 3f x x ax x =-+-. (1)讨论()f x 的单调性.(2)若对任意的[]1,2a ∈,总存在1x ,2x ,使得()()120f x f x +=,证明:124x x +≥.【答案】(1)答案见解析;(2)证明见解析.【解析】(1)2222'()2x ax f x x a x x-+=-+=.当2160a ∆=-≤,即44a -≤≤时,'()0f x ≥,所以()f x 在()0,∞+上单调递增.当2160a ∆=->,即4a或4a >时,令2220x ax -+=,得216a a x ±-=.当4a时,两根均为负数,则'()0f x >,所以()f x 在()0,∞+上单调递增;当4a >时,两根均为正数,所以()f x 在2160,4a a ⎛⎫-- ⎪ ⎪⎝⎭,2164a a ⎛⎫-+∞ ⎪ ⎪⎝⎭上单调递增,在22161644a a a a ⎛-+-⎪⎝⎭,上单调递减. 综上所述,当4a ≤时,()f x 在()0,∞+上单调递增;当4a >时,()f x 在2160,4a a ⎛⎫-- ⎪ ⎪⎝⎭,2164a a ⎛⎫+-+∞ ⎪ ⎪⎝⎭上单调递增,在22161644a a a a ⎛-+- ⎪⎝⎭,上单调递减.(2)因为()()120f x f x +=,所以221112222ln 32ln 30x ax x x ax x -+-+-+-=,整理得()221212122ln 2ln 60x x a x x x x +-+++-=,即()()()212121212622ln x x a x x x x x x +-+-=-. 令()22ln g x x x =-,则22(1)'()2x g x x x-=-=, 所以()g x 在()0,1上单调递减,在()1,+∞上单调递增, 所以()()12g x g ≥=,即()121222ln 2x x x x -≥.因为()()2121262x x a x x +-+-≥,所以()()2121280x x a x x +-+-≥. 因为()()21212()8h a x x a x x =+-+-在[]1,2a ∈上单调递减, 所以()()21212(2)280h x x x x =+-+-≥,即()()1212420x x x x +-++≥. 因为12,0x x >,所以124x x +≥. 【预测题12】已知函数3231()3(0)2f x x a x x a a ⎛⎫=-++> ⎪⎝⎭. (1)讨论()f x 的单调性. (2)若1a >,且1,x a ⎛⎫∀∈+∞⎪⎝⎭,31()2f x a >,求a 的取值范围.(3)是否存在正数a ,使得()21f x x >-对()2,3x ∈恒成立?若存在,求a 的取值范围;若不存在,请说明理由.【答案】(1)答案见解析;(2)1,2⎛ ⎝⎭;(3)不存在,理由见解析. 【解析】(1)21'()333f x x a a ⎛⎫=-++ ⎪⎝⎭,令'()0f x =,解得x a =或1x a=, 当1a =时,'()0f x ≥,()f x 在R 单调递增, 当01a <<时,1a a>, 由'()0f x <,得1,x a a ⎛⎫∈ ⎪⎝⎭,由'()0f x >,得()1,,x a a ⎛⎫∈-∞+∞ ⎪⎝⎭,故()f x 在1,a a ⎛⎫ ⎪⎝⎭上单调递减,在(),a -∞,1,a ⎛⎫+∞ ⎪⎝⎭单调递增, 当1a >时,1a a<, 由'()0f x <,得1,x a a ⎛⎫∈⎪⎝⎭,由'()0f x >,得()1,,x a a ⎛⎫∈-∞+∞ ⎪⎝⎭,故()f x 在1,a a ⎛⎫⎪⎝⎭上单调递减,在1,a ⎛⎫-∞ ⎪⎝⎭,(),a +∞单调递增,综上:当1a =时,()f x 在R 单调递增, 当01a <<时,()f x 在1,a a ⎛⎫ ⎪⎝⎭上单调递减,在(),a -∞,1,a ⎛⎫+∞ ⎪⎝⎭单调递增,当1a >时,()f x 在1,a a ⎛⎫⎪⎝⎭上单调递减,在1,a ⎛⎫-∞ ⎪⎝⎭,(),a +∞单调递增;(2)因为1a >,所以()f x 在1,a a ⎛⎫⎪⎝⎭单调递减,在(),a +∞单调递增,故()3min 1()2f x f a a =>,整理得332a a <,又1a >,故12a <<,故a 的取值范围是⎛ ⎝⎭; (3)()21f x x >-,323112x x a a x ++⎛⎫+< ⎪⎝⎭在()2,3x ∈上恒成立,设211()g x x x x =++,3233122'()1x x g x x x x--=--=, 设3()2k x x x =--,则2'()31k x x =-,当()2,3x ∈时,'()0k x >,故()k x 在()2,3上单调递增,()()240k x k >=>, 故'()0g x >在()2,3恒成立,()g x 在()2,3单调递增,则11()(2)4g x g >=,又12a a +≥=,(当且仅当1a =时“=”成立), 故3111324a a ⎛⎫+≥> ⎪⎝⎭,故不存在正数a ,使得()21f x x >-对()2,3x ∈恒成立. 【名师点睛】本题的关键是由()21f x x >-变形为323112x x a a x++⎛⎫+< ⎪⎝⎭,构造新函数,利用导数的性质和基本不等式进行求解.【预测题13】已知函数()()ln 11f x x kx =+--. (1)讨论函数()f x 的单调性;(2)若关于x 的不等式()01xef x x ++≥对任意0x ≥恒成立,求实数k 的取值范围.【答案】(1)答案见解析;(2)1k ≤.【解析】(1)()()ln 11f x x kx =+--,0x ≥,()1111k kxf x k x x --'=-=++. ①若0k ≤,则()0f x >′恒成立,故()f x 在[)0,+∞上单调递增. ②若01k <<,令()0f x '=,得110x=->.③若1k,则()0f x '≤恒成立,故()f x 在[)0,+∞上单调递减.综上所述,若0k ≤,()f x 在[)0,+∞上单调递增;若01k <<,()f x 在10,1k ⎛⎫- ⎪⎝⎭上单调递增,在11,k ⎛⎫-+∞⎪⎝⎭上单调递减;若1k ,()f x 在[)0,+∞上单调递减.(2)令()()1x e g x f x x =++,故()()ln 111xe g x x kx x =+-+-+,0x ≥所以()()2111x x g x k x x '=-+++,令()()()2111xxe h x g x k x x ='=-+++, ()()()()()()()222331111111xx x e x e x h x x x x ++-+'=-+=+++,下面证明1x e x ≥+,其中0x ≥. 令()1xx e x ϕ=--,0x ≥,则()10x x eϕ-'=≥.所以()x ϕ在[)0,+∞上单调递增,故()()00x ϕϕ≥=, 所以当0x ≥时,1x e x ≥+. 所以()()()()()()()()()222333111110111x x e x x x x x h x x x x +-+++-+'==+++≥≥,所以()g x '在[)0,+∞上单调递增,故()()01g x g k ''=-≥.①若10k -≥,即1k ≤,则()()010g x g k ''=-≥≥,所以()g x 在[)0,+∞上单调递增, 所以()()00g x g ≥=对0x ∀>恒成立,所以1k ≤符合题意. ②若10k -<,即1k >,此时()010g k '=-<,()()()4442222214441411414122k k kke ke e g k k k k k k k k k ⎡⎤⎢⎥⎢⎥'=-+>-=⋅-=⎢⎥+⎛⎫+++⎢⎥⎪⎝⎭⎣⎦221122k e k ⎡⎤⎛⎫⎢⎥ ⎪⎢⎥- ⎪⎢⎥ ⎪+⎢⎥⎝⎭⎣⎦,且据1k >及1xe x ≥+可得212122k e k k +>+≥,故221122ke k ⎛⎫⎪> ⎪ ⎪+⎝⎭,所以()40g k '>. 又()g x '的图象在[)0,+∞上不间断,所以存在()00,4x k ∈,使得()0g x '=, 且当()00,x x ∈时,()0g x '<,()g x 在()00,x 上单调递减, 所以()()000g x g <=,其中()00,4x k ∈,与题意矛盾, 所以1k >不符题意,舍去.综上所述,实数k 的取值范围是1k ≤.【名师点睛】利用导数研究含参函数的单调性,注意讨论的不重不漏;根据不等式恒成立求参数的取值范围,注意先猜后证、反证法的综合应用. 【预测题14】已知函数()2(23)xf x e m x x =+-.(1)若曲线()y f x =在点0(1,)P y 处的切线为:(1)0l e x y n +-+=,求,m n ; (2)当1m =时,若关于x 的不等式()()25312f x x a x ≥+-+在[)1,+∞上恒成立,试求实数a 的取值范围.【答案】(1)1,2m n ==-;(2)32a e ≤-. 【解析】(1)因为函数()2(23)x f x e m x x =+-的导数()(43)xf x e m x '=+-,所以由题意可得(1)1f e m e '=+=+,即1m =.则2()23xf x e x x =+-,点P 坐标为()1,1e -,因为点P 在直线:(1)0l e x y n +-+=上,所以2n =-, 故1,2m n ==-;(2)当1m =时,2()23x f x e x x =+-因为关于x 的不等式()()25312f x x a x ≥+-+在[)1,+∞上恒成立, 所以12x e x a x x≤--,在[)1,+∞上恒成立,设()12x e x g x x x =--,则()()()22211111122x x e x e x g x x x x --+'=-+=-, 由1xy e x =--的导数为1xy e '=-,当0x >时,0y '>,函数1xy e x =--递增,当0x <时,函数1xy e x =--递减,则10x e x --≥,即10x e x ≥+>,所以当1≥x 时,()()()22111111110222x e x x x x x -++-+-≥-=>, 则()12x e x g x x x=--在[)1,+∞递增,所以()()min 312g x g e ==-,则32a e ≤-. 【名师点睛】若()f x 在区间D 上有最值,则(1)恒成立:()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<; (2)能成立:()()max ,00x D f x f x ∃∈>⇔>;()()min ,00x D f x f x ∃∈<⇔<. 若能分离常数,即将问题转化为()a f x >(或()a f x <),则(1)恒成立:()()max a f x a f x >⇔>;()()min a f x a f x <⇔<; (2)能成立:()()min a f x a f x >⇔>;()()max a f x a f x <⇔<. 【预测题15】已知函数()()xf x e ax a R =+∈.(1)讨论()f x 在()0,∞+上的单调性; (2)若对任意()0,x ∈+∞,()22ln 0x xe ax x a ++-≥恒成立,求a 的取值范围.【答案】(1)答案见解析;(2)[)(),00,e -+∞.【解析】(1)()x f x e a '=+,当1a ≥-时,因为0x >,所以e 1x >,所以()0xf x e a '=+>,所以()f x 在()0,∞+上的单调递增当1a <-时,()ln 0a ->,所以()ln x a >-时,()0f x '>;()ln x a <-时,()0f x '< 所以()f x 在()()0,ln a -上的单调递减,在()()ln ,a -+∞上的单调递增, 综上可得当1a ≥-时,()f x 在()0,∞+上的单调递增,当1a <-时,()f x 在()()0,ln a -上的单调递减,在()()ln ,a -+∞上的单调递增; (2)当1a ≥-且0a ≠时,由(1)可知()f x 在()0,∞+上的单调递增, 所以()()01f x f >=,所以0x >时,()22ln 0x xe ax x a++-≥恒成立,2ln 2ln 0xa e ax x a x ⇔+++-≥恒成立,当1a <-时,令()2ln 2ln xau x e ax x a x=+++-,因为2ln 2ln a y x a x=+-,由22ln 10a y x'=->得()ln x a >-,由22ln 10a y x'=-<得()0ln x a <<-,所以在()()0,ln a -上的单调递减,在()()ln ,a -+∞上的单调递增, 由(1)可知()xf x e ax =+,在()()0,ln a -上的单调递减,在()()ln ,a -+∞上的单调递增,所以()u x 在()()0,ln a -上的单调递减,在()()ln ,a -+∞上的单调递增,所以()()()()()()()()()2ln min ln ln ln ln 2ln ln a a u x u a ea a a a a --=-=+-+-+---()()()()()ln ln ln ln 1a ea a a a a a a -=+-=-+-=--,所以()()ln 10a a --≥,解得1e a -≤<-, 综上可得a 的取值范围是[)(),00,e -+∞.【预测题16】已知函数2()2xf x e ax =--.(1)当a e =时,求曲线()y f x =在点(1,(1))f 处的切线与两坐标轴围成的三角形的面积;(2)若()0xf x e -+≥恒成立,求实数a 的取值范围.【答案】(1)222e e+-;(2)(,1]-∞. 【解析】(1)因为2()2x f x e ex =--,所以)'(2xf x e ex =-,故'(1)k f e ==-.又(1)2f =-,所以切点坐标为(1,2)-,故函数()f x 在点(1,(1))f 处的切线方程为2(1)y e x +=--,即2y ex e =-+-,所以切线与坐标轴交点坐标分别为(0,2)e -,2,0e e -⎛⎫⎪⎝⎭, 故所求三角形面积为2212(2)442(2)22222e e e e e e e e e e ---+⎛⎫⨯-⨯===+- ⎪⎝⎭. (2)由()0xf x e -+≥,得220x x e e ax -+--≥恒成立,令2()2xxg x e eax -=+--,则()()g x g x -=,所以()g x 为偶函数.故只要求当0x ≥时,()0g x ≥恒成立即可.'()2x x g x e e ax -=--,设()2(0)xxh x e eax x -=--≥,故 '()2(0)x x h x e e a x -=+-≥, 设()2(0)xx H x e ea x -=+-≥,则'()(0)x x H x e e x -=-≥,显然'()H x 为(0,)+∞的増函数,故'()'(0)0H x H ≥=,即()H x 在(0,)+∞上单调递增,(0)22H a =-.当1a ≤时,(0)220H a =-≥,则有()h x 在(0,)+∞上单调递增,故()(0)0h x h ≥=, 则()g x 在(0,)+∞上单调递增,故()(0)0g x g ≥=,符合题意; 当1a >时,(0)220H a =-<,又1(ln 2)02H a a=>,故存在0(0,ln 2)x a ∈,使得()00H x =, 故()h x 在()00,x 上单调递减,在()0,x +∞上单调递增.当()00,x x ∈时,()(0)0h x h <=,故()g x 在()00,x 上单调递减, 故()(0)0g x g <=,与()0g x ≥矛盾. 综上,实数a 的取值范围为(,1]-∞.【名师点睛】解题的关键第一是构造函数,利用函数的奇偶性进行转化问题求解;第二是三次求导,利用导数的性质进行求解. 【预测题17】已知函数()()1ln f x a x a R x =+∈,()21g x x x x=--. (1)讨论()f x 的单调性;(2)若函数()()()F x f x g x =+存在两个极值点1x ,2x ,且曲线()y F x =在x 处的切线方程为()y G x =,求使不等式()()F x G x <成立的x 的取值范围.【答案】(1)答案见解析;(2)⎛ ⎝. 【解析】(1)()21-='ax f x x , 当0a ≤时,()0f x '<恒成立,函数()f x 在()0,∞+上单调递减, 当0a >时,易得当1x a >时,()0f x '>,当10x a<<时,()0f x '<, 故()f x 在1,a ⎛⎫+∞⎪⎝⎭上单调递增,在10,a ⎛⎫⎪⎝⎭上单调递减, (2)()()()2ln F x f x g x a x x x =+=+-,所以()2221a x x aF x x x x-+'=+-=,0x >,因为()()()F x f x g x =+存在两个极值点1x ,2x ,所以()220x x aF x x-+'==有两个不等正实数解,即220x x a -+=有两个不等式正根,所以18002a a∆=->⎧⎪⎨>⎪⎩,解得108a <<, 因为122a x x =,x ==所以1F '=-,ln 222a a a F =+所以曲线()y F x =在x =()ln 1222a a a y x ⎛⎛-+=- ⎝⎝, 即()()31ln 222a a a G x y x ==-+-, 令()()()23ln ln 222a a a h x F x G x x a x =-=+-+-, ()2220x ah x xx-+'==>,故()h x 在()0,∞+上单调递增,且0h =,故当0x <<时,()0h x <,即()()F x G x <,故x的范围⎛ ⎝. 【名师点睛】解不等式比较常用的方法是构造新函数,研究函数的单调性,明确函数的零点,即可明确不等式何时成立.【预测题18】已知函数()cos 2xf x e a x =+-,()f x '为()f x 的导函数.(1)讨论()f x '在区间π0,2⎛⎫⎪⎝⎭内极值点的个数;(2)若π,02x ⎡⎤∈-⎢⎥⎣⎦时,()0f x ≥恒成立,求实数a 的取值范围. 【答案】(1)分类讨论,答案见解析;(2)[)1,+∞.【解析】(1)由()cos 2xf x e a x =+-,得()sin xf x e a x '=-.令()sin xg x e a x =-()cos xg x e a x '=-.因为π0,2x ⎛⎫∈ ⎪⎝⎭,所以e 1x>,0cos 1x <<. 当1a ≤时,()0g x '>,()g x 单调递增,即()f x '在区间π0,2⎛⎫⎪⎝⎭内无极值点;当1a >时,()sin xg x e a x ''=+,π0,2x ⎛⎫∈ ⎪⎝⎭, 所以()0g x ''>,所以()cos xg x e a x '=-在π0,2⎛⎫ ⎪⎝⎭单调递增.又()00cos010g e a a '=-=-<,ππ22ππcos 022g e a e ⎛⎫'=-=> ⎪⎝⎭,故存在0π0,2x ⎛⎫∈ ⎪⎝⎭,使()00g x '=且()00,x x ∈时,()0g x '<,()g x 单调递减; 0π,2x x ⎛⎫∈ ⎪⎝⎭时,()0g x '>,()g x 单调递增,所以0x x =为()g x 的极小值点,此时()f x '在区间π0,2⎛⎫⎪⎝⎭内存在一个极小值点,无极大值点.综上所述,当1a ≤时,()f x '在区间π0,2⎛⎫ ⎪⎝⎭内无极值点;当1a >时,()f x '在区间π0,2⎛⎫ ⎪⎝⎭内存在一个极小值点,无极大值点. (2)若π,02x ⎡⎤∈-⎢⎥⎣⎦时,()0f x ≥恒成立,则()0120f a =+-≥,所以1a ≥.下面证明当1a ≥时,()0f x ≥在π,02x ⎡⎤∈-⎢⎥⎣⎦恒成立. 因为π,02x ⎡⎤∈-⎢⎥⎣⎦时,0cos 1x ≤≤,所以1a ≥时,()cos 2cos 2xxf x e a x e x =+-≥+-.令()cos 2xh x e x =+-,π,02x ⎡⎤∈-⎢⎥⎣⎦,所以()sin xh x e x '=-令()sin xx e x ϕ=-()cos xx e x ϕ'=-.()sin x x e x ϕ''=+在区间π,02⎡⎤-⎢⎥⎣⎦单调递增.又ππ331ππsin 03322e e e ϕ---⎛⎫⎛⎫''-=+-=-<-< ⎪ ⎪⎝⎭⎝⎭, 所以()cos xx e x ϕ'=-在区间ππ,23⎡⎤--⎢⎥⎣⎦上单调递减.又ππ22ππcos 022e e ϕ--⎛⎫⎛⎫'-=--=> ⎪ ⎪⎝⎭⎝⎭, ππ331ππ11cos 03322e e e ϕ---⎛⎫⎛⎫'-=--=-<-< ⎪ ⎪⎝⎭⎝⎭,所以存在1ππ,23x ⎛⎫∈-- ⎪⎝⎭,使()10x ϕ'=,且1π,2x x ⎛⎫∈-⎪⎝⎭时,()0x ϕ'>,()h x '单调递增; ()1,0x x ∈时,()0x ϕ'<,()h x '单调递减,所以1x x =时,()h x '取得最大值,且()()1max h x h x ''=. 因为()10x ϕ'=,所以11cos xe x =,所以()h x 单调递减,所以π,02x ⎡⎤∈-⎢⎥⎣⎦时,()()00h x h ≥=,即()0f x ≥成立. 综上,若π,02x ⎡⎤∈-⎢⎥⎣⎦时,()0f x ≥恒成立,则a 的取值范围为[)1,+∞.【名师点睛】含参数分类讨论函数的单调性、极值,需要根据导函数的结构,对参数进行分类讨论.【预测题19】函数()sin (1cos )f x x x =⋅+,()(1)xg x a e =-(1)当0a <时,函数()()()F x f x g x =+在(0,)2x π∈有极值点,求实数a 的取值范围;(2)对任意实数[0,)x ∈+∞,都有()()f x g x ≤恒成立,求实数a 的取值范围. 【答案】(1)20a -<<;(2)2a ≥.【解析】(1)()sin (1cos )(1)xF x x x a e =++-,2()cos (1cos )sin (sin )2cos cos 1x x F x x x x x ae x x ae =++=-'-+++, ()4cos sin )sin sin (4cos 1)x x F x x x x ae x x ae =-'-+'+=-+(,因为(0,)2x π∈,所以sin 0,cos 0x x >>,又0a <,所以()F x ''<0,所以'()F x 在(0,)2π上递减,(0)20F a =+>',2()102F ae ππ'=-+<,所以20a -<<,(2)()()()G x g x f x =-=(1)sin (1cos )0xa e x x --+≥.因为()02F π≥,所以2(1)10a e π--≥,所以0a >,当[0,]2x π∈时,()()()G x g x f x '''=-=2(2cos cos 1)x ae x x -+-,()()()G x g x f x ''''''=-sin (4cos 1)x ae x x =++>0,所以'()G x 在[0,]2π上递增,(0)2G a '=-,2()102G ae ππ'=+>,①当(0)20G a =-<'即2a <时,0(0,)2x π∃∈使得0()0G x '=,所以当0(0,)x x ∈时'()0G x <,函数()G x 在区间0(0,)x 递减, 因为(0)0G =,所以当0(0,)x x ∈时,()0<G x 与条件()0G x ≥矛盾,②(0)20G a =-≥'时,即2a ≥时,22()(2cos cos 1)2(2cos cos 1)x x G x ae x x e x x =-+-≥-+-',因为22cos cos 1x x +-=2192[cos ]48x +-,cos [1,1]x ∈-, 所以22cos cos 1x x +-9[,2]8∈-, 而0x ,≥时22x e ≥,所以()G x '0≥,所以函数()G x 在区间[0,)+∞单调递增,因为(0)0G =,所以()0G x ≥, 综上:2a ≥.【预测题20】已知函数()x f x e ax =+,()()()()g x f x f x a R =--∈. (1)若直线y kx =与曲线()f x 相切,求k a -的值; (2)若()g x 存在两个极值点1x ,2x ,且()()12122g x g x x x e->--,求a 的取值范围.【答案】(1)k a e -=; (2)1,12e e -⎛⎫+-- ⎪⎝⎭.【解析】(1)设切点为()00,x y ,()xf x e a '=+,因为直线y kx =与曲线()f x 相切,所以0x e a k +=,000xe ax kx +=,所以()()010x a k --=,解得01x =,a k =(不成立,舍去), 所以k a e -=;(2)()2x x g x e e ax -=-+,()2x xg x e e a -'=++,①当1a ≥-时,()220g x a '≥+≥,所以()g x 在R 上单调递增,函数()g x 无极值,不符合题意,舍去. ②当1a <-时,()20xxg x e ea -'=++=,不妨设12x x <,解得(1ln x a =-,(2ln x a =-,可得函数()g x 在()1,x -∞单调递增,在()12,x x 单调递减,在()2,x +∞单调递增,符合题意.。
恒成立问题与存在性问题(最新精华)
恒成立问题与存在性问题思路一:(1)若函数)(x f 在D 区间上存在最小值min )(x f 和最大值max )(x f ,则不等式a x f >)(在区间D 上恒成立a x f >⇔min )(;不等式a x f ≥)(在区间D 上恒成立a x f ≥⇔min )(;不等式a x f <)(在区间D 上恒成立a x f <⇔max )(;不等式a x f ≤)(在区间D 上恒成立a x f ≤⇔max )(;(2)若函数在D 区间上不存在最小值min )(x f 和最大值max )(x f ,且值域为),(n m 则 不等式a x f >)(或))((a x f ≥在区间D 上恒成立a m ≥⇔;不等式a x f <)(或a x f ≤)(在区间D 上恒成立a n ≤⇔。
例题1:已知函数.ln )(x x x f =(1)求函数.ln )(x x x f =的最小值;(2)若对所有的1≥x 都有1)(-≥ax x f ,求实数a 的取值范围。
答案:(1)11min )()(---==e e f x f ;(2)]1,(-∞变式:设函数)1ln(2)1()(2x x x f +-+=(1)求函数)(x f 的单调区间;(2)若当]1,1[1--∈-e e x 时,不等式m x f <)(恒成立,求实数m 的取值范围;(3)若关于x 的方程a x x x f ++=2)(在区间]2,0[上恰有两个相异实根,求实数a 的取 值范围。
答案:(1)递增区间是),0(+∞;递减区间是)0,1(-(2)22->e m(3))3ln 23,2ln 22(--思路二(1)若函数)(x f 在D 区间上存在最小值min )(x f 和最大值max )(x f ,即],[)(n m x f ∈则不等式有解的问题有下列结论:不等式a x f >)(在区间D 上有解max )(x f a <⇔;不等式a x f ≥)(在区间D 上有解max )(x f a ≤⇔;不等式a x f <)(在区间D 上有解min )(x f a >⇔;不等式a x f ≤)(在区间D 上有解min )(x f a ≥⇔。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学必修一《恒成立与存在性问题》专题复习
1.函数()f x =ax 2
+2x+1,若对任意),1[+∞∈x ,)(x f 0>恒成立,则实数a 的取值范围是 。
2.若函数)1,0)(2(log )(2≠>+=a a x x x f a 在区间(0,
2
1)内恒有0)(>x f ,则)(x f 的单调递增区间为 ( ) (A)-∞(,)41- (B)41(-,)+∞ (C)(0,+∞) (D)-∞(,)2
1- 3.已知函数
()f x 对一切实数,x y R ∈都有()()f x y f y +-=(21)x x y ++成立,且(1)0f =. (1)求
(0)f 的值; (2)求()f x 的解析式;
4.已知定义域为R 的奇函数()f x 满足2(log )1x a f x x -+=
+. (1)求函数()f x 的解析式;
(2)判断并证明()f x 在定义域R 上的单调性;
(3)若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求实数k 的取值范围;
5.已知函数()2log ,2,8f t t t ⎡⎤=∈⎣⎦
. (1)求()f t 的值域G ;
(2)若对于G 内的所有实数x ,不等式22
221x mx m m -+-+≤恒成立,求实数m 的取值范围.
6.已知函数()f x 342++-=a x x ,m mx x g 25)(-+=
(1)若)(x f y =在[-1,1]上存在零点,求实数a 的取值范围;
(2)当a =0时,若对任意的1x ∈[1,4],总存在2x ∈[1,4],使)(1x f =)(2x g 成立,求实数m 的取值范围;
7. 已知函数22()32(1)5f x x k k x =--++,2()2g x k x k =+,其中k R ∈.
(2)设函数(),0,()(),0.g x x q x f x x ≥⎧=⎨<⎩
是否存在k ,对任意给定的非零实数1x ,存在惟一的非零实数2x (21x x ≠),使得21()()q x q x =?若存在,求k 的值;若不存在,请说明理由.。