北师大版九级数学上正方形的性质与判定正方形的判定专题练习题及答案
北师大版九年级数学上册《1.3正方形的性质与判定》同步测试题带答案
北师大版九年级数学上册《1.3正方形的性质与判定》同步测试题带答案·知识点1正方形的性质1.正方形具有而矩形不具有的性质是( )A.对边相等B.对角相等C.对角线相等D.对角线互相垂直2.如图,正方形ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=8√2cm,则EF的长度为( )A.1 cmB.2 cmC.2√2cmD.4 cm3.(2023·青岛中考)如图,O为正方形ABCD对角线AC的中点,△ACE为等边三角形.若AB=2,则OE的长度为√6.4.如图,在正方形ABCD中,对角线BD所在的直线上有两点E,F,满足BE=DF,连接AE,AF,CE,CF,求证:△ABE≌△ADF.·知识点2利用正方形的性质求面积5.为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为( )A.2a2B.3a2C.4a2D.5a26.将三个大小不同的正方形如图放置,顶点处两两相接,若正方形A的边长为4,正方形C的边长为3,则正方形B的面积为( )A.25B.5C.16D.127.(2023·重庆中考)如图,在正方形ABCD中,AE平分∠BAC交BC于点E,点F是边AB上一点,连接DF,若BE=AF,则∠CDF的度数为( )A.45°B.60°C.67.5°D.77.5°8.(2023·黄石中考)如图,正方形OABC的边长为√2,将正方形OABC绕原点O顺时针旋转45°,则点B的对应点B1的坐标为( )A.(-√2,0)B.(√2,0)C.(0,√2)D.(0,2)9.(2023·黔东南州中考)如图,在边长为2的等边△ABC的外侧作正方形ABED,过点D作DF⊥BC,垂足为F,则DF的长为√3.10.如图,在正方形ABCD中,对角线AC与BD相交于点O,点P为AD边上的一点,过点P分别作PE⊥AC于点E,作PF⊥BD于点F.若PE+PF=5,则正方形ABCD 的面积为.【素养提升】11.(2023·贵阳中考)如图,在正方形ABCD中,E为AD上一点,连接BE,BE的垂直平分线交AB于点M,交CD于点N,垂足为O,点F在DC上,且MF∥AD.(1)求证:△ABE≌△FMN;(2)若AB=8,AE=6,求ON的长.【解题模型】·模型:正方形内两条直线与对边相交所成线段若垂直则必相等(若相等则必垂直)模型.如图1,在正方形ABCD中,点E,F分别在BC,CD上,AE,BF相交于点O,若AE⊥BF,则AE=BF.如图2,点E,F,G,H分别在边BC,CD,DA,AB上,EG,FH相交于点O,若GE=HF,则GE⊥HF.参考答案·知识点1正方形的性质1.正方形具有而矩形不具有的性质是(D)A.对边相等B.对角相等C.对角线相等D.对角线互相垂直2.如图,正方形ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=8√2cm,则EF的长度为(B)A.1 cmB.2 cmC.2√2cmD.4 cm3.(2023·青岛中考)如图,O为正方形ABCD对角线AC的中点,△ACE为等边三角形.若AB=2,则OE的长度为√6.4.如图,在正方形ABCD中,对角线BD所在的直线上有两点E,F,满足BE=DF,连接AE,AF,CE,CF,求证:△ABE≌△ADF.【证明】∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°∴∠ABD=∠ADB,∴∠ABE=∠ADF在△ABE与△ADF中{AB=AD∠ABE=∠ADFBE=DF,∴△ABE≌△ADF(SAS).·知识点2利用正方形的性质求面积5.为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为(A)A.2a2B.3a2C.4a2D.5a26.将三个大小不同的正方形如图放置,顶点处两两相接,若正方形A的边长为4,正方形C的边长为3,则正方形B的面积为(A)A.25B.5C.16D.127.(2023·重庆中考)如图,在正方形ABCD中,AE平分∠BAC交BC于点E,点F是边AB上一点,连接DF,若BE=AF,则∠CDF的度数为(C)A.45°B.60°C.67.5°D.77.5°8.(2023·黄石中考)如图,正方形OABC的边长为√2,将正方形OABC绕原点O顺时针旋转45°,则点B的对应点B1的坐标为(D)A.(-√2,0)B.(√2,0)C.(0,√2)D.(0,2)9.(2023·黔东南州中考)如图,在边长为2的等边△ABC的外侧作正方形ABED,过点D作DF⊥BC,垂足为F,则DF的长为√3+1.10.如图,在正方形ABCD中,对角线AC与BD相交于点O,点P为AD边上的一点,过点P分别作PE⊥AC于点E,作PF⊥BD于点F.若PE+PF=5,则正方形ABCD的面积为50.【素养提升】11.(2023·贵阳中考)如图,在正方形ABCD中,E为AD上一点,连接BE,BE的垂直平分线交AB于点M,交CD于点N,垂足为O,点F在DC上,且MF∥AD.(1)求证:△ABE≌△FMN;(2)若AB=8,AE=6,求ON的长.【解析】略【解题模型】·模型:正方形内两条直线与对边相交所成线段若垂直则必相等(若相等则必垂直)模型.如图1,在正方形ABCD中,点E,F分别在BC,CD上,AE,BF相交于点O,若AE⊥BF,则AE=BF.如图2,点E,F,G,H分别在边BC,CD,DA,AB上,EG,FH相交于点O,若GE=HF,则GE⊥HF.。
2022-2023学年北师大版九年级数学上册《1-3正方形的性质与判定》同步练习题(附答案)
2022-2023学年北师大版九年级数学上册《1.3正方形的性质与判定》同步练习题(附答案)一.选择题1.正方形具有而矩形不一定具有的性质是()A.对角线相等B.四个角都是直角C.对角线互相垂直D.两组对边分别平行2.下列说法正确的是()A.正方形既是矩形,又是菱形B.有一个内角是直角的四边形是矩形C.两条对角线互相垂直平分的四边形是正方形D.对角线互相垂直的四边形是菱形3.如图,已知四边形ABCD是平行四边形,下列结论正确的是()A.当AB=BC时,四边形ABCD是矩形B.当AC⊥BD时,四边形ABCD是矩形C.当AC⊥BD时,四边形ABCD是菱形D.当∠ABC=90°时,四边形ABCD是正方形4.在正方形ABCD中,BF平分∠DBC交CD于F点,则∠DBF的度数是()A.15°B.22.5°C.30°D.45°5.如图,点E、F分别是正方形ABCD的边CD、BC上的点,且CE=BF,AF、BE相交于点G,下列结论不正确的是()A.AF=BE B.AF⊥BEC.AG=GE D.S△ABG=S四边形CEGF6.如图,点E,F,P,Q分别是正方形ABCD的四条边上的点,并且AF=BP=CQ=DE,则下列结论不一定正确的是()A.∠AFP=∠BPQB.EF∥QPC.四边形EFPQ是正方形D.四边形PQEF的面积是四边形ABCD面积的一半7.如图1是由一根细铁丝围成的正方形,其边长为1.现将该细铁丝围成一个三角形(如图2所示),则AB的长可能为()A.3.0B.2.5C.2.0D.1.58.如图,已知正方形ABCD的边长为4,P是对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接AP,EF.给出下列结论:①PD=EC;②四边形PECF的周长为8;③AP=EF;④EF的最小值为2.其中正确结论有几个()A.1B.2C.3D.49.如图,在平面直角坐标系xOy中,P(4,4),A、B分别是x轴正半轴、y轴正半轴上的动点,且△ABO的周长是8,则P到直线AB的距离是()A.4B.3C.2.5D.210.如图四块同样大小的正方形纸片,围出一个菱形ABCD,一个小孩顺次在这四块纸片上轮流走动,每一步都踩在一块纸片的中心,则这个小孩走的路线所围成的图形是()A.平行四边形B.矩形C.菱形D.正方形二.填空题11.如图,已知阴影部分是一个正方形,AB=4,∠B=45°,则此正方形的面积为.12.添加一个条件,使矩形ABCD是正方形,这个条件可能是.13.如图,平行四边形ABCD的对角线互相垂直,要使ABCD成为正方形,还需添加的一个条件是(只需添加一个即可)14.边长为4的一个正方形和一个等边三角形如图摆放,则△ABC的面积为.15.如图,正方形ABCD内部有一个等边△ABE,则∠DAE=°.16.如图,正方形ABCD的顶点B、C都在直角坐标系的x轴上,点D的坐标是(2,3),则点B的坐标是.17.如图,点D,E,F分别是△ABC三边的中点,连接AD,DE,DF,有下列结论:①四边形AEDF一定是平行四边形;②若∠BAC=90°,则四边形AEDF是矩形;③若AD平分∠BAC,则四边形AEDF是正方形;④若AD⊥BC,则四边形AEDF是菱形.其中正确的有.(填序号)三.解答题18.如图,在正方形ABCD中,E是BC的中点,F是CD上一点,且AB=4,CF=1.(1)求AE,EF,AF的长;(2)求证:∠AEF=90°.19.如图,在正方形ABCD中,PD=QC,求证:PB=AQ,BP⊥AQ.20.四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交线段BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)如图,求证:矩形DEFG是正方形;(2)若AB=2,CE=2,求CG的长.参考答案一.选择题1.解:∵正方形的性质为:对边平行且相等,四条边相等,四个角为直角,对角线互相垂直平分,相等,且每条对角线平分一组对角,矩形的性质为:对边平行且相等,四个角为直角,对角线互相平分,相等,∴正方形具有而矩形不一定具有的性质是:对角线互相垂直,故选:C.2.解:A.正方形既是矩形,又是菱形,正确,符合题意;B.有一个内角是直角的四边形是矩形,错误,不符合题意;C.两条对角线互相垂直平分的四边形是正方形,错误,不符合题意;D.对角线互相垂直的四边形是菱形,错误,不符合题意.故选:A.3.解:A、∵四边形ABCD是平行四边形,又∵AB=BC,∴四边形ABCD是菱形,故本选项不符合题意;B、∵四边形ABCD是平行四边形,又∵AC⊥BD,∴四边形ABCD是菱形,故本选项不符合题意;C、∵四边形ABCD是平行四边形,又∵AC⊥BD,∴四边形ABCD是菱形,故本选项符合题意;D、∵四边形ABCD是平行四边形,又∵∠ABC=90°,∴四边形ABCD是矩形,故本选项不符合题意;故选:C.4.解:∵BD是正方形ABCD的对角线,∴∠DBC=45°.∵BF平分∠DBC,∴∠DBF=∠DBC=22.5°.故选:B.5.解:∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠C=90°,∵BF=CE,∴△ABF≌△BCE(SAS),∴AF=BE,∠BAG=∠CBE,∴选项A不符合题意;∵∠ABG+∠CBE=∠ABC=90°,∴∠BAG+∠ABG=90°,∴∠AGB=90°,∴AF⊥BE,∴选项B不符合题意;∵△ABF≌△BCE,∴S△ABF=S△BCE,∴S△ABF﹣S△BFG=S△BCE﹣S△BFG,∴S△ABG=S四边形CEGF,∴选项D不符合题意;∵无法证明AG=GE,∴选项C符合题意;故选:C.6.解:∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=AD,∵AF=BP=CQ=DE,∴DF=CE=BQ=AP,∴△APF≌△DFE≌△CEQ≌△BQP(SAS),∴EF=FP=PQ=QE,∠AFP=∠BPQ,故A选项正确,不符合题意;∵EF=FP=PQ=QE,∴四边形EFPQ是菱形,∴EF∥PQ,故B选项正确,不符合题意;∵△APF≌△BQP,∴∠AFP=∠BPQ,∵∠AFP+∠APF=90°,∴∠APF+∠BPQ=90°,∴∠FPQ=90°,∴四边形EFPQ是正方形.故C选项正确,不符合题意;∵四边形PQEF的面积=EF2,四边形ABCD面积=AB2,若四边形PQEF的面积是四边形ABCD面积的一半,则EF2=AB2,即EF=AB.若EF≠AB,则四边形PQEF的面积不是四边形ABCD面积的一半,故D选项不一定正确,符合题意.故选:D.7.解:∵由一根细铁丝围成的正方形,其边长为1,∴该细铁丝的长度为4.∴AC+BC+AB=4,∴AC+BC=4﹣AB.∵AC+BC>AB,∴4﹣AB>AB,∴AB<2.∴AB的长可能为1.5,故选:D.8.解:如图,连接PC,①∵正方形ABCD的边长为4,P是对角线BD上一点,∴∠ABC=∠ADC=∠BCD=90°,∠PDC=∠DBC=45°,AB=BC=CD=AD=4,又∵PE⊥BC,PF⊥CD,∴∠PEC=∠PEB=∠PFC=∠PFD=90°=∠BCD,∴∠DPF=∠PDF=∠BPE=∠DBC=45°,∴PF=DF,PE=BE,即△PDF和△BPE均为等腰直角三角形,∴PD=PF,∵∠PEC=∠PFC=∠BCD=90°,∴四边形PECF是矩形,∴CE=PF=DF,PE=FC,∴PD=CE,故①正确;②由①知:PE=BE,且四边形PECF为矩形,∴四边形PECF的周长=2CE+2PE=2CE+2BE=2(CE+BE)=2BC=2×4=8,故②正确;③∵四边形PECF为矩形,∴PC=EF,∵四边形ABCD为正方形,∴AD=CD,∠ADP=∠CDP,在△ADP和△CDP中,,∴△ADP≌△CDP(SAS),∴AP=PC,∴AP=EF,故③正确;④由③得:EF=PC=AP,∴当AP最小时,EF最小,∴当AP⊥BD时,垂线段最短,即AP=BD=2时,EF的最小值等于2;故④错误;综上,①②③正确.故选:C.9.解:方法一:如图,过点P作PC⊥x轴,PD⊥y轴,垂直分别为C,D,设OB=a,OA=b,AB=c,P到直线AB的距离是h,∵△ABO的周长是8,∴a+b+c=8,∴a+b=8﹣c,∴a2+2ab+b2=64﹣16c+c2根据勾股定理得:a2+b2=c2,∴ab=32﹣8c,∵S△P AB=4×4﹣ab﹣4(4﹣b)﹣4(4﹣a)=2(a+b)﹣ab=2(8﹣c)﹣(32﹣8c)=16﹣2c﹣16+4c=2c,∵S△P AB=×c•h,∴2c=×c•h,∴h=4.∴P到直线AB的距离为4.方法二:如图,过点P作PC⊥x轴,PD⊥y轴,垂直分别为C,D,∵P(4,4),∴四边形CODP是边长为4的正方形,∴PC=PD=OC=OD=4,∵A、B分别是x轴正半轴、y轴正半轴上的动点,∴将△P A′D沿P A′折叠得到△P A′E,延长A′E交y轴于点B,∴∠P A′D=∠P A′E,PE=PD,A′D=A′E,∠PDA′=∠PEA′=90°,∴PE=PC,在Rt△PEB和Rt△PCB中,,∴Rt△PEB≌Rt△PCB(HL),∴BE=BC,∵△A′BO的周长是8,∴A′O+BO+A′B=A′O+BO+BE+A′E=A′O+BO+BC+A′D=CO+DO=8,∴△A′BO符合题意中的△ABO,∴P到直线AB的距离PE=4,故选:A.10.解:如图,根据题意,顺次连接四个正方形的中心,所构成的图形是正方形,所以这个小孩走的路线所围成的图形是正方形.故选:D.二.填空题11.解:∵阴影部分是一个正方形,∴∠ACB=90°,∵∠B=45°,∴△ABC是等腰直角三角形,∴AC===2,∴正方形的面积为(2)2=8,故答案为:8.12.解:AB=AD(或AC⊥BD答案不唯一).理由:∵四边形ABCD是矩形,又∵AB=AD,∴四边形ABCD是正方形.或∵四边形ABCD是矩形,又∵AC⊥BD,∴四边形ABCD是正方形,故答案为:AB=AD(或AC⊥BD答案不唯一).13.解:条件为∠ABC=90°或AC=BD,理由是:∵平行四边形ABCD的对角线互相垂直,∴四边形ABCD是菱形,∵∠ABC=90°或AC=BD,∴四边形ABCD是正方形,故答案为:∠ABC=90°或AC=BD.14.解:过C作CD⊥AB交AB延长线与D,如图:∵∠CBD=180﹣90°﹣60°=30°,∠D=90°,∴CD=BC=×4=2,∴△ABC的面积为AB•CD=×4×2=4,故答案为:4.15.解:∵四边形ABCD是正方形,∴∠DAB=90°,∵△ABE是等边三角形,∴∠DAE=∠DAB﹣∠EAB=90°﹣60°=30°,故答案为:30.16.解:∵四边形ABCD为正方形,∴AD=CD=BC=AB,∵点D的坐标是(2,3),∴AD=CD=BC=3,OC=2,∴OB=1,∴点B的坐标是(﹣1,0).故答案为:(﹣1,0).17.解:①∵点D、E、F分别是△ABC三边的中点,∴DE、DF为△ABC的中位线,∴ED∥AC,且ED=AC=AF;DF∥AB,且DF=AB=AE,∴四边形AEDF一定是平行四边形,故正确;②若∠BAC=90°,则平行四边形AEDF是矩形,故正确;③若AD平分∠BAC,则∠BAD=∠CAD,∵DE∥AC,∴∠CAD=∠ADE,∴∠BAD=∠ADE,∴AE=DE,又∵四边形AEDF是平行四边形,∴四边形AEDF是菱形,∴不能判定四边形AEDF是正方形,故错误;④若AD⊥BC,则AD垂直平分BC,∴AB=AC,∵AB=AC,AD⊥BC,∴AD平分∠BAC,即∠BAD=∠CAD,∵DE∥AC,∴∠CAD=∠ADE,∴AE=DE,又∵四边形AEDF是平行四边形,∴四边形AEDF是菱形,故正确.故答案为:①②④.三.解答题18.(1)解:∵四边形ABCD是正方形,∴∠B=∠C=∠D=90°,∵E为AB的中点,∴BE=CE=2,∴AE===2,EF===,AF===5;(2)证明:∵AE2+EF2=20+5=25,AF2=52=25,∴AE2+EF2=AF2,∴∠AEF=90°.19.证明:由题意可得:AD=AB=BC=DC,∠BAD=∠ADC=∠ABC=∠C=90°,∵PD=QC,∴AP=DQ,在△ADQ和△BAP中,,∴△ADQ≌△BAP(SAS),∴BP=AQ,∠APB=∠AQD,∵∠DAQ+∠AQD=90°,∴∠DAQ+∠APB=90°,∴BP⊥AQ,∴BP=AQ,BP⊥AQ.20.(1)证明:如图1,作EP⊥CD于P,EQ⊥BC于Q,∵∠DCA=∠BCA,∴EQ=EP,∵∠QEF+∠FEC=45°,∠PED+∠FEC=45°,∴∠QEF=∠PED,在Rt△EQF和Rt△EPD中,,∴Rt△EQF≌Rt△EPD(ASA),∴EF=ED,∴矩形DEFG是正方形;(2)解:如图2,在Rt△ABC中,AB=2,∴AC=AB=4,∵CE=2,∴AE=4﹣2=2,∴AE=CE,∴点F与C重合,此时△DCG是等腰直角三角形,∴CG=CE=2.。
北师大版九年级数学上册 1.3正方形的性质与判定同步练习题(含答案,教师版)
北师大版九年级数学上册第一章特殊的平行四边形1.3正方形的性质与判定同步练习题一、选择题1.下列说法正确的是(C)A .一组邻边相等的四边形是菱形B .四边相等的四边形是正方形C .对角线相等且互相垂直平分的四边形是正方形D .对角线相等的矩形是正方形2.如图,在△ABC 中,∠ACB =90°,BC 的垂直平分线EF 交BC 于点D ,交AB 于点E ,且BE =BF ,添加一个条件,仍不能证明四边形BECF 为正方形的是(D)A .BC =ACB .BD =DFC .CF ⊥BFD .AC =BF3.如图,正方形ABCD 中,AB =1,则AC 的长是(B)A .1 B. 2 C. 3 D .24.如图,正方形ABCD 的边长是2,对角线AC ,BD 相交于点O ,点E ,F 分别在边AD ,AB 上,且OE ⊥OF ,则四边形AFOE 的面积是(C)A .4B .2C .1 D.125.如图,以正方形ABCD 的顶点A 为坐标原点,直线AB 为x 轴建立平面直角坐标系,对角线AC 与BD 相交于点E ,P 为BC 上一点,点P 坐标为(a ,b),则点P 绕点E 顺时针旋转90°得到的对应点P ′的坐标是(D)A .(a -b ,a)B .(b ,a)C .(a -b ,0)D .(b ,0)二、填空题 6.如图,在正方形ABCD 的外侧作等边△ABE ,则∠BFC =60°.7.如图,在正方形ABCD 中,E 是BD 上一点,BE =BA ,则∠ACE =22.5°.8.如图,直线l 过正方形ABCD 的顶点B ,点A ,C 到直线l 的距离分别是3和4,则正方形ABCD 的面积是25.9.如图,在等腰Rt △ABC 中,∠C =90°,点O 是AB 的中点,且AC =1,将一块直角三角板的直角顶点放在点O 处,始终保持该直角三角板的两直角边分别与AC ,BC 相交,交点分别为D ,E ,则两个三角形重叠部分的面积为14.三、解答题10.如图,在矩形ABCD 中,BE 平分∠ABC ,CE 平分∠DCB ,BF ∥CE ,CF ∥BE.求证:四边形BECF 是正方形.证明:∵BF ∥CE ,CF ∥BE ,∴四边形BECF 是平行四边形.又∵在矩形ABCD 中,BE 平分∠ABC ,CE 平分∠DCB ,∴∠EBC =∠ECB =45°.∴∠BEC =90°,BE =CE.∴四边形BECF 是正方形.11.如图,点M ,N 分别是正方形ABCD 的边BC ,CD 上的点,且BM =CN ,AM 与BN 交于点P ,试探索AM 与BN 的关系.(1)数量关系AM =BN ,并证明;(2)位置关系AM ⊥BN ,并证明.解:(1)AM =BN.证明如下:∵四边形ABCD 是正方形,∴∠ABM =∠BCN =90°,AB =BC.在△ABM 和△BCN 中,⎩⎪⎨⎪⎧AB =BC ,∠ABM =∠BCN ,BM =CN ,∴△ABM ≌△BCN(SAS).∴AM =BN.(2)AM ⊥BN.证明如下:∵△ABM ≌△BCN ,∴∠BAM =∠NBC.∵∠NBC +∠ABN =∠ABC =90°,∴∠BAM +∠ABN =90°.∴∠APB =90°.∴AM ⊥BN.12.如图,等边△AEF 的顶点E ,F 在矩形ABCD 的边BC ,CD 上,且∠CEF =45°.求证:矩形ABCD 是正方形.证明:∵四边形ABCD 是矩形,∴∠B =∠D =∠C =90°.∵△AEF 是等边三角形,∴AE =AF ,∠AEF =∠AFE =60°.∵∠CEF =45°,∴∠CFE =∠CEF =45°.∴∠AFD =∠AEB =180°-45°-60°=75°.∴△AEB ≌△AFD(AAS).∴AB =AD.∴矩形ABCD 是正方形.13.已知:如图,P 是正方形ABCD 的对角线BD 上一点,PE ⊥DC ,PF ⊥BC ,E ,F 分别为垂足,求证:AP =EF.证明:连接PC.∵ABCD 是正方形,∴∠ABP =∠CBP ,∠BCD =90°.∵PE ⊥CD ,PF ⊥BC ,∴四边形PFCE 是矩形.∴EF =PC.在△ABP 和△CBP 中,⎩⎪⎨⎪⎧AB =CB ,∠ABP =∠CBP ,BP =BP ,∴△ABP ≌△CBP(SAS).∴AP =CP.∴AP =EF.14.如图,正方形ABCD 的对角线AC ,BD 相交于点O ,E 是OC 上一点,连接EB.过点A 作AM ⊥BE ,垂足为M ,AM 与BD 相交于点F.求证:OE =OF.证明:∵四边形ABCD 是正方形,∴∠BOE =∠AOF =90°,OB =OA.又∵AM ⊥BE ,∴∠BEO +∠MAE =∠AFO +∠MAE =90°.∴∠BEO =∠AFO.∴△BOE ≌△AOF(AAS).∴OE =OF.15.已知:如图,在菱形ABCD 中,点E ,O ,F 分别为AB ,AC ,AD 的中点,连接CE ,CF ,OE ,OF.(1)求证:△BCE ≌△DCF ;(2)当AB 与BC 满足什么关系时,四边形AEOF 是正方形?请说明理由.解:(1)证明:∵四边形ABCD 是菱形,∴∠B =∠D ,AB =BC =DC =AD.∵点E ,O ,F 分别为AB ,AC ,AD 的中点,∴AE =BE =DF =AF =OF =OE =12BC ,OE ∥BC. 在△BCE 和△DCF 中,⎩⎪⎨⎪⎧BE =DF ,∠B =∠D ,BC =DC ,∴△BCE ≌△DCF(SAS).(2)当AB ⊥BC 时,四边形AEOF 是正方形,理由如下:由(1)可得AE =OE =OF =AF ,∴四边形AEOF 是菱形.∵AB ⊥BC ,OE ∥BC ,∴OE ⊥AB.∴∠AEO =90°.∴四边形AEOF 是正方形.16.如图,正方形ABCD 的对角线交于点O ,点E ,F 分别在AB ,BC 上(AE <BE)且∠EOF =90°,OE ,DA 的延长线交于点M ,OF ,AB 的延长线交于点N ,连接MN.求证:OM =ON.证明:∵∠EOF =90°,∠AOB =90°,∴∠AOM =∠BON.∵四边形ABCD 是正方形,∴∠DAC =∠ABD =45°,OA =OB.∴∠OAM =∠OBN =135°.在△AOM 和△BON 中,⎩⎪⎨⎪⎧∠AOM =∠BON ,OA =OB ,∠OAM =∠OBN ,∴△AOM ≌△BON(ASA).∴OM =ON.17.如图,在正方形ABCD 中,点E 是BC 的中点,连接DE ,过点A 作AG ⊥ED 交DE 于点F ,交CD 于点G.(1)求证:△ADG ≌△DCE ; (2)连接BF ,求证:AB =FB.证明:(1)∵四边形ABCD 是正方形,∴∠ADG =∠C =90°,AD =DC.又∵AG ⊥DE ,∴∠DAG +∠ADF =∠CDE +∠ADF =90°.∴∠DAG =∠CDE.∴△ADG ≌△DCE(ASA).(2)延长DE 交AB 的延长线于点H ,∵E 是BC 的中点,∴BE =CE.又∵∠C =∠HBE =90°,∠DEC =∠HEB ,∴△DCE ≌△HBE(ASA).∴BH =DC =AB.∴B 是AH 的中点.又∵∠AFH =90°,∴在Rt △AFH 中,BF =12AH =AB. 18.如图1,▱ABCD 中,O 是CD 的中点,连接AO 并延长,交BC 的延长线于点E.(1)求证:△AOD ≌△EOC ;(2)如图2,连接AC ,DE ,当∠B =∠AEB =45°时,求证:四边形ACED 是正方形.图1 图2证明:(1)∵四边形ABCD 是平行四边形,∴AD ∥BC.∴∠D =∠OCE ,∠DAO =∠E.∵O 是CD 的中点,∴OC =OD.在△AOD 和△EOC 中,⎩⎪⎨⎪⎧∠D =∠OCE ,∠DAO =∠E ,DO =CO ,∴△AOD≌△EOC(AAS).(2)∵△AOD≌△EOC,∴OA=OE.又∵OC=OD,∴四边形ACED是平行四边形.∵∠B=∠AEB=45°,∴AB=AE,∠BAE=90°.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∴∠COE=∠BAE=90°.∴四边形ACED是菱形.∵AB=AE,AB=CD,∴AE=CD.∴四边形形ACED是正方形.19.如图,四边形ABCD和四边形CEFG均是正方形,连接BG,DE.(1)试判断BG与DE的关系; (2)当AB=3,CE=2时,求BE2+DG2的值.解:(1)延长BG交DE于点H.∵四边形ABCD和四边形CEFG是正方形.∴DC=BC,CG=CE,∠BCG=∠DCE=90°.∴Rt△BCG≌Rt△DCE(SAS).∴BG=DE,∠GBC=∠EDC.∵∠BGC+∠GBC=90°,∠BGC=∠DGH,∴∠DGH+∠EDC=90°.∴∠DHG=90°.∴BG⊥DE.∴BG与DE的关系是BG=DE且BG⊥DE.(2)∵四边形ABCD是正方形,∴BC=AB=DC=3.∴BE=BC+CE=3+2=5.∵四边形CEFG是正方形,∴CG=CE=2.∴DG=DC-CG=3-2=1.∴BE 2+DG 2=25+1=26.20.如图,四边形ABCD 是正方形,点E 是边BC 上任意一点,∠AEF =90°,且EF 交正方形外角的平分线CF 于点F.求证:AE =EF.证明:在AB 上截取BM =BE ,连接ME.∵∠B =90°,CF 平分∠DCH ,∴∠BME =∠FCH =45°.∴∠AME =∠ECF =135°.∵∠AEF =90°,∴∠AEB +∠FEC =90°.∵∠AEB +∠MAE =90°,∴∠MAE =∠FEC.∵AB =BC ,BM =BE ,∴AM =EC.在△AME 和△ECF 中,⎩⎪⎨⎪⎧∠MAE =∠CEF ,AM =EC ,∠AME =∠ECF ,∴△AME ≌△ECF(ASA).∴AE =EF.21.已知:如图,在四边形ABCD 中,AD ∥BC ,AD =AB ,E 是对角线AC 上一点,且EB =ED.(1)求证:四边形ABCD 是菱形;(2)若DE =EC =26,AD =43,求证:四边形ABCD 是正方形.证明:(1)在△ADE 和△ABE 中,⎩⎪⎨⎪⎧AD =AB ,AE =AE ,ED =EB ,∴△ADE ≌△ABE(SSS).∴∠AED =∠AEB ,∠DAC =∠BAC.在△ADC 和△ABC 中,⎩⎪⎨⎪⎧AD =AB ,∠DAC =∠BAC ,AC =AC ,∴△ADC ≌△ABC(SAS).∴DC =BC.∵AD ∥BC ,∴∠DAC =∠ACB.∴∠ACB =∠BAC.∴AB =BC.∴AB =BC =CD =AD.∴四边形ABCD 是菱形.(2)∵DE =EC =26,AD =43,∴DE 2+EC 2=AD 2=CD 2.∴∠DEC =90°.∴∠DCE =∠EDC =45°.∵△ADC ≌△ABC ,∴∠BCE =∠DCE =45°.∴∠DCB =90°.∵四边形ABCD 是菱形,∴四边形ABCD 是正方形.22.如图,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且DF =BE.(1)求证:CE =CF ;(2)若点G 在AD 上,且∠GCE =45°,则GE =BE +GD 成立吗?为什么?解:(1)证明:∵四边形ABCD 是正方形,∴BC =CD ,∠B =∠CDF.又∵BE =DF ,∴△CBE ≌△CDF(SAS).∴CE =CF.(2)GE =BE +GD 成立.理由:由(1)得,△CBE ≌△CDF ,∴∠BCE =∠DCF.∴∠BCE +∠ECD =∠DCF +∠ECD ,即∠BCD =∠ECF =90°.又∵∠GCE =45°,∴∠GCF =∠GCE =45°.∴△ECG ≌△FCG(SAS).∴GE =GF.∴GE =DF +GD =BE +GD.23.如图,在▱ABCD 中,点E ,F ,G ,H 分别在边AB ,BC ,CD ,DA 上,AE =CG ,AH =CF ,且EG 平分∠HEF.(1)求证:△AEH ≌△CGF ;(2)若∠EFG =90°,求证:四边形EFGH 是正方形.证明:(1)∵四边形ABCD 是平行四边形,∴∠A =∠C.在△AEH 和△CGF 中,⎩⎪⎨⎪⎧AE =CG ,∠A =∠C ,AH =CF ,∴△AEH ≌△CGF(SAS).(2)∵四边形ABCD 是平行四边形,∴AD =BC ,AB =CD ,∠B =∠D.∵AE =CG ,AH =CF ,∴EB =DG ,HD =BF.∴△BEF ≌△DGH(SAS).∴EF =HG.又∵△AEH ≌△CGF ,∴EH =GF.∴四边形EFGH 为平行四边形.∴EH ∥FG.∴∠HEG =∠FGE.∵EG 平分∠HEF ,∴∠HEG =∠FEG.∴∠FGE =∠FEG.∴EF =GF.又∵∠EFG =90°,∴四边形EFGH 是正方形.24.如图,在正方形ABCD 中,点E ,F 分别为边BC ,CD 上一点,且∠EAF =45°,AE ,AF 分别交对角线BD 于点M ,N.求证:MN 2=BM 2+DN 2.解:过点A 作GA ⊥AN ,使GA =NA ,连接GB ,GM.∵∠GAB +∠BAF =90°,∠NAD +∠BAF =90°,∴∠GAB =∠NAD.在△GAB 和△NAD 中,⎩⎪⎨⎪⎧GA =NA ,∠GAB =∠NAD ,BA =DA ,∴△GAB ≌△NAD(SAS).∴∠ABG =∠ADN =45°,BG =DN.∴∠GBM =90°.∵∠EAF =45°,∠GAN =90°,∴∠GAM =45°.在△GAM 和△NAM 中,⎩⎪⎨⎪⎧GA =NA ,∠GAM =∠NAM ,AM =AM ,∴△GAM ≌△NAM(SAS).∴GM =MN.在Rt △GBM 中,GM 2=GB 2+BM 2,∴MN 2=BM 2+DN 2.25.如图,四边形ABCD 是正方形,G 是直线BC 上的任意一点,DE ⊥AG 于点E ,BF ⊥AG 于点F.(1)如图1,若点G 在线段BC 上,判断AF ,BF ,EF 之间的数量关系,并说明理由;(2)若点G 在BC 延长线上,判断AF ,BF ,EF 之间的数量关系,并说明理由;(3)若点G 在CB 延长线上,直接写出AF ,BF ,EF 之间的数量关系.解:(1)AF =EF +BF.理由如下:∵四边形ABCD 是正方形,∴AB =AD ,∠BAD =90°.∵DE ⊥AG ,BF ⊥AG ,∴∠AFB =∠DEA =90°. ∴∠BAF +∠DAE =∠DAE +∠ADE =90°. ∴∠BAF =∠ADE.在△BAF 和△ADE 中,⎩⎪⎨⎪⎧∠AFB =∠DEA ,∠BAF =∠ADE ,AB =DA ,∴△BAF ≌△ADE(AAS).∴AE =BF. ∴AF =AE +EF =BF +EF.(2)AF +EF =BF.理由如下:∵四边形ABCD 是正方形,∴AB =AD ,∠BAD =90°.∵DE ⊥AG ,BF ⊥AG ,∴∠AFB =∠DEA =90°. ∴∠BAF +∠DAE =∠DAE +∠ADE =90°. ∴∠BAF =∠ADE.在△BAF 和△ADE 中,⎩⎪⎨⎪⎧∠AFB =∠DEA ,∠BAF =∠ADE ,AB =DA ,∴△BAF ≌△ADE(AAS).∴AE =BF. ∴AF +EF =AE =BF.(3)AF +BF =EF.。
九年级数学北师大版上册课时练第1章《正方形的性质与判定》 练习测试卷 含答案解析(2)
课时练第1单元正方形的性质与判定一.选择题1.如图,正方形ABCD中,对角线AC,BD相交于点O,H为CD边中点,正方形ABCD 的周长为8,则OH的长为()A.4B.3C.2D.12.如图,四边形ABCD、CEFG均为正方形,其中正方形ABCD面积为8cm2,图中阴影部分面积为5cm2,正方形CEFG面积为()A.14cm2B.16cm2C.18cm2D.20cm23.如图,平行四边形ABCD中,对角线AC、BD相交于点O,则下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当AC=BD时,它是矩形D.当AC垂直平分BD时,它是正方形4.如图,在边长为4的正方形ABCD中,点E、F分别是边BC、CD上的动点.且BE=CF,连接BF、DE,则BF+DE的最小值为()A.B.C.D.5.正方形具有而菱形不具有的性质是()A.对角线平分一组对角B.对角线相等C.对角线互相垂直平分D.四条边相等6.如图,在正方形ABCD中,E点是对角线BD上的一点,AE的延长线交CD于点F,连接CE,若∠BAE=56°,则∠CEF的度数为()A.30°B.79°C.22°D.81°7.如图,四边形ABCD是正方形,以CD为边长向正方形外作等边△CDE,AC与BE相交于点F,则∠AFD的度数为()A.65°B.60°C.50°D.45°8.矩形、菱形、正方形都具有的性质是()A.对角线相等B.对角线互相平分C.对角线互相垂直D.对角线互相垂直且相等9.如图,正方形ABCD的对角线AC,BD交于点O,P为边BC上一点,且2BP=AC,则∠COP的度数为()A.15°B.22.5°C.25°D.17.5°10.下列说法正确的是()A.矩形对角线相互垂直平分B.对角线相等的菱形是正方形C.两邻边相等的四边形是菱形D.一条对角线分别平分对角的四边形是平行四边形11.如图,在正方形ABCD中,点E、F分别在边CD、AD上,BE与CF交于点G.若BC =8,DE=AF=2,则FG的长为()A.B.C.D.12.正方形ABCD中,点E、F分别在CD、BC边上,△AEF是等边三角形.以下结论:①EC=FC;②∠AED=75°;③AF=CE;④EF的垂直平分线是直线AC.正确结论个数有()个.A.1B.2C.3D.4二.填空题13.如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是.14.如图,正方形AFCE中,D是边CE上一点,B是CF延长线上一点,且AB=AD,若四边形ABCD的面积是24cm2,则AC长是cm.三.解答题15.如图,在正方形ABCD中,点P是BC延长线上一点,连结AP,过点B作BE⊥AP于点E,过点D作DF⊥AP于点F.(1)证明:△ABE≌△DAF;(2)若AB=10,∠P=30°,求EF的长.16.如图,菱形ABCD的边长为4,∠B=60°,以AC为边长作正方形ACEF,求这个正方形的周长.17.已知:如图,在Rt△ABC中,∠ACB=90°,CD平分∠ACB,DE⊥BC,DF⊥AC,垂足分别为E、F,求证:四边形CFDE是正方形.18.如图,四边形ABCD为正方形,E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE,EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)若AB=2,CE=,求CG的长度.19.如图,平行四边形ABCD中,AD=9cm,CD=3cm,∠B=45°,点M、N分别以A、C为起点,1cm/秒的速度沿AD、CB边运动,设点M、N运动的时间为t秒(0≤t≤6)(1)求BC边上高AE的长度;(2)连接AN、CM,当t为何值时,四边形AMCN为菱形;(3)作MP⊥BC于P,NQ⊥AD于Q,当t为何值时,四边形MPNQ为正方形.20.如图,已知四边形ABCD和四边形CEFG都是正方形,且AB>CE,连接BG,DE.(1)求证:BG=DE;(2)连接BD,若CG∥BD,BG=BD,求∠BDE的度数.21.如图,P是正方形ABCD对角线BD上一点,PE⊥DC,PF⊥BC,点E,F分别是垂足.(1)求证:AP=PC;(2)若∠BAP=60°,PD=,求PC的长.参考答案一.选择题1.D2.C3.D4.C5.B6.C7.B8.B9.B10.B11.A12.D二.填空题13.814.4.三.解答题15.(1)证明:∵四边形ABCD是正方形,∴AD=AB,∵BE⊥AP,DF⊥AP,∴∠AEB=∠DF A=90°,∴∠ABE+∠BAE=∠BAE+∠F AD=90°,∴∠ABE=∠DF A,∴△ABE≌△DAF(AAS);(2)解:∵四边形ABCD是正方形,∠APB=30°,∴AD∥BC,∴∠DAP=∠APB=30°,∵DF⊥AP,∴DF=AD==5,在Rt△ADF中,由勾股定理,得AF===5,∵△ABE≌△DAF,∴AE=DF=5,∴EF=5.16.解:∵四边形ABCD是菱形,∴AB=BC,∵∠B=60°,∴△ABC是等边三角形,∴AC=AB=4,∴正方形ACEF的周长是16.17.证明:∵∠ACB=90°,DE⊥BC,DF⊥AC,∴四边形CFDE是矩形.又∵CD平分∠ACB,DE⊥BC,DF⊥AC,∴DE=DF.∴四边形CFDE是正方形(有一组邻边相等的矩形是正方形).18.(1)证明:如图1,作EP⊥CD于P,EQ⊥BC于Q,∵∠DCA=∠BCA,∴EQ=EP,∵∠QEF+∠FEC=45°,∠PED+∠FEC=45°,∴∠QEF=∠PED,在△EQF和△EPD中,,∴△EQF≌△EPD(ASA),∴EF=ED,∴矩形DEFG是正方形;(2)如图2中,在Rt△ABC中,AC=AB=2,∵CE=,∴AE=CE,∴点F与C重合,此时△DCG是等腰直角三角形,∴四边形DECG是正方形,∴CG=CE=.19.解:(1)∵四边形ABCD是平行四边形,∴AB=CD=3cm.在直角△ABE中,∵∠AEB=90°,∠B=45°,∴AE=3(cm);(2)∵点M、N分别以A、C为起点,1cm/秒的速度沿AD、CB边运动,设点M、N运动的时间为t秒(0≤t≤6),∴AM=CN=t,∵AM∥CN,∴四边形AMCN为平行四边形,∴当AN=AM时,四边形AMCN为菱形.∵BE=AE=3,EN=6﹣t,∴AN2=32+(6﹣t)2,∴32+(6﹣t)2=t2,解得t=.故当t为时,四边形AMCN为菱形;(3)∵MP⊥BC于P,NQ⊥AD于Q,QM∥NP,∴四边形MPNQ为矩形,∴当QM=QN时,四边形MPNQ为正方形.∵AM=CN=t,BE=3,∴AQ=EN=BC﹣BE﹣CN=9﹣3﹣t=6﹣t,∴QM=AM﹣AQ=|t﹣(6﹣t)|=|2t﹣6|(注:分点Q在点M的左右两种情况),∵QN=AE=3,∴|2t﹣6|=3,解得t=4.5或t=1.5.故当t为4.5或1.5秒时,四边形MPNQ为正方形.20.(1)证明:∵四边形ABCD和四边形CEFG为正方形,∴BC=DC,CG=CE,∠BCD=∠GCE=90°,∴∠BCG=∠DCE,∴△BCG≌△DCE(SAS),∴BG=DE;(2)连接BE,∵CG∥BD,∴∠DCG=∠BDC=45°,∴∠BCG=∠BCD+∠DCG=90°+45°=135°.∵∠GCE=90°,∴∠BCE=360°﹣∠BCG﹣∠GCE=360°﹣135°﹣90°=135°,∴∠BCG=∠BCE.∵CG=CE,BC=BC,∴△BCG≌△BCE(SAS),∴BG=BE.∵由(1)可知BG=DE,∴BD=BE=DE,∴△BDE为等边三角形,∴∠BDE=60°.21.(1)证明:∵ABCD是正方形,∴∠C=90°,∵PE⊥CD,PF⊥BC,∴四边形PFCE是矩形,∴EF=PC,在△ABP和△CBP 中,,∴△ABP≌△CBP(SAS),∴AP=CP;(2)解:∵由(1)知△ABP≌△CBP,∴∠BAP=∠BCP=60°,∴∠PCE=30°,∵四边形ABCD是正方形,BD是对角线,∴∠PDE=45°,∵PE⊥CD,∴DE=PE,∵PD =,∴PE=1,∴PC=2PE=2.11/11。
北师大版九年级数学上册第一章特殊平行四边形《正方形的性质与判定》同步练习
正方形的性质与判定(典型题)第1课时正方形及其性质1.如图1,已知P是正方形ABCD的对角线BD上一点,且BP=BC,则∠ACP的度数是()图1A.45°B.22.5°C.67.5°D.75°2.正方形的一条对角线的长为4,则这个正方形的面积是()A.8 B.4 2C.8 2D.163.如图2,四边形ABCD是正方形,E,F分别是AB,AD上的一点,且BF⊥CE,垂足为G.求证:AF=BE.图24.如图,在正方形ABCD的外侧作等边三角形ADE,AC,BE交于点F,则∠BFC的度数为()A.45°B.55°C.60°D.75°5.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,Rt△FEG的两直角边EF,EG分别交BC,DC于点M,N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A.23a2B.14a2C.59a2D.49a26.如图5,正方形ABCD的边长为3,连接AC,AE平分∠CAD,交BC的延长线于点E,F A⊥AE,交CB的延长线于点F,则EF的长为________.图57.如图6,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC相交于点G,连接AE,CF.(1)求证:AE=CF;(2)若∠ABE=55°,求∠EGC的大小.图68.如图7,正方形ABCD绕点A逆时针旋转45°与正方形AEFG重合,EF与CD交于点M,得四边形AEMD,正方形ABCD的边长为2,则两正方形重合部分(阴影部分)的面积为()图7A.4 2-4 B.4 2+4 C.8-4 2 D.2+19.如图8,在正方形ABCD和正方形DEFG中,点G在CD上,DE=2,将正方形DEFG 绕点D顺时针旋转60°,得到正方形DE′F′G′,此时点G′在AC上,连接CE′,则CE′+CG′=()图8A.2+6B.3+1C.3+2D.3+610.如图9,正方形纸片ABCD的边长为8,将其沿EF折叠,则图中①②③④四个三角形的周长之和为________.图911.如图10所示,在正方形ABCD中,点E,F分别在边AD,CD上,且∠EBF=45°.(1)求证:EF=FC+AE;(2)若AB=2,求△DEF的周长.图1012.如图11,在正方形ABCD中,点E,F分别在BC,CD上移动,但点A到EF的距离AH始终保持与AB的长相等,则在点E,F移动的过程中:(1)∠EAF的大小是否发生变化?请说明理由;(2)△ECF的周长是否发生变化?请说明理由.图1113.如图12,∠MON=45°,OA1=1,作正方形A1B1C1A2,周长记作C1;再作第二个正方形A2B2C2A3,周长记作C2;继续作第三个正方形A3B3C3A4,周长记作C3;点A1,A2,A3,A4,…在射线ON上,点B1,B2,B3,B4,…在射线OM上……依此类推,则第n个正方形的周长C n=________.图1214.如图13①,在正方形ABCD中,E,F分别是边BC,AB上的点,且CE=BF.连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.(1)请判断:FG与CE的数量关系是________,位置关系是________;(2)如图②,若E,F分别是边CB,BA延长线上的点,其他条件不变,(1)中结论是否仍然成立?请做出判断并给予证明;(3)如图③,若E,F分别是边BC,AB延长线上的点,其他条件不变,(1)中结论是否仍然成立?请直接写出你的判断.参考答案1.B2.A3.证明:∵四边形ABCD是正方形,∴AB=BC,∠A=∠CBE=90°.∵BF⊥CE,∴∠BCE+∠CBG=90°.∵∠ABF+∠CBG=90°,∴∠BCE=∠ABF.在△BCE和△ABF中,∠BCE=∠ABF,BC=AB,∠CBE=∠A,∴△BCE≌△ABF(ASA),∴AF=BE.4.C5.D6.6 2[解析]7.解:(1)证明:∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°.∵BE⊥BF,∴∠EBF=90°,∴∠ABE=∠CBF.∵AB=BC,∠ABE=∠CBF,BE=BF,∴△ABE≌△CBF,∴AE=CF.(2)∵BE=BF,∠EBF=90°,∴∠BEF=45°.∵∠ABC=90°,∠ABE=55°,∴∠GBE=35°,∴∠EGC=∠GBE+∠BEF=80°.8.A9.A10.3211.解:(1)证明:将△ABE绕点B顺时针旋转90°得到△CBM,则BA=BC,AE=CM,BE=BM,∠ABE=∠CBM,∠A=∠BCM.∵四边形ABCD是正方形,∴∠A=∠ABC=∠BCD=90°,∴F,C,M三点共线,∠EBM=90°.∵∠EBF=45°,∴∠FBM=45°.在△BEF与△BMF中,BE=BM,∠EBF=∠MBF,BF=BF,∴△BEF≌△BMF,∴EF=FM=FC+CM=FC+AE.(2)由(1)知EF=FC+AE,∴△DEF的周长=DE+DF+EF=DE+DF+AE+CF=AD+CD=2AB=4. 12.解:(1)∠EAF的大小不发生变化.理由如下:根据题意,知AB=AH,∠B=∠AHE=90°.又∵AE=AE,∴Rt△BAE≌Rt△HAE,∴∠BAE=∠HAE.同理,Rt△HAF≌Rt△DAF,∴∠HAF=∠DAF,∴∠EAF=12∠BAH+12∠HAD=12(∠BAH+∠HAD)=12∠BAD.又∵∠BAD=90°,∴∠EAF=45°,∴∠EAF的大小不发生变化.(2)△ECF的周长不发生变化.理由如下:C△ECF=EF+EC+FC.由(1),得Rt△BAE≌Rt△HAE,∴EB=HE.同理,HF=DF.∴C△ECF=EF+EC+FC=EB+DF+EC+FC=2BC,∴△ECF的周长不发生变化.13.2n+114.解:(1)相等互相平行(2)成立.证明:如图,过点G作GH⊥CB交其延长线于点H.∵EG⊥DE,∴∠GEH+∠DEC=90°.∵∠GEH+∠HGE=90°,∴∠DEC=∠HGE.在△HGE与△CED中,∠GHE=∠DCE=90°,∠HGE=∠DEC,EG=DE,∴△HGE≌△CED,∴GH=CE,HE=CD.∵CE=BF,∴GH=BF.又∵GH∥BF且∠GHE=90°,∴四边形GHBF是矩形,∴FG=BH,FG∥CH,∴FG∥CE.∵四边形ABCD是正方形,∴CD=BC,∴HE=BC,∴HE+EB=BC+EB,∴BH=CE,∴FG=CE.(3)成立.FG=CE,FG∥CE.第2课时正方形的判定(典型题)1.下列说法不正确的是()A.一组邻边相等的矩形是正方形B.对角线相等的菱形是正方形C.对角线互相垂直的矩形是正方形D.有一个角是直角的平行四边形是正方形2.在平行四边形ABCD中,对角线AC与BD相交于点O,要使四边形ABCD是正方形,还需添加一组条件.下面给出了四组条件:①AB⊥AD,且AB=AD;②AB=BD,且AB⊥BD;③OB=OC,且OB⊥OC;④AB=AD,且AC=BD.其中正确的序号是________.3.如图14,在△ABC中,O是AC上一动点,过点O作直线MN∥BC.设MN交∠BCA 的平分线于点E,交∠BCA的外角平分线于点F,若点O运动到AC的中点,且∠ACB=()时,则四边形AECF是正方形.图14A.30°B.45°C.60°D.90°4.已知四边形ABCD各边的中点分别是E,F,G,H,如果四边形ABCD满足____________________,那么四边形EFGH是正方形.5.如图15,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF∥BC 交BE的延长线于点F,连接CF.(1)求证:AD=AF;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.图156.如图16,在Rt△ABC中,∠BAC=90°,AD=CD,E是边AC的中点,连接DE,DE的延长线与边BC相交于点F,AG∥BC,交DE于点G,连接AF,CG.(1)求证:AF=BF;(2)如果AB=AC,求证:四边形AFCG是正方形.图167.⑥如图17,在正方形ABCD中,△ABE和△CDF为直角三角形,∠AEB=∠CFD=90°,AE=CF=5,BE=DF=12,则EF的长是()图17A.7 B.8 C.7 2D.7 38.2017·宜昌如图18,正方形ABCD的边长为1,O是BC边上的一个动点(与B,C不重合),以O为顶点在BC所在直线的上方作∠MON=90°.(1)当OM经过点A时,请直接填空:ON________(填“可能”或“不可能”)过点D;(图①仅供分析)(2)如图②,在ON上截取OE=OA,过点E作EF垂直于直线BC,垂足为F,作EH⊥CD 于点H,求证:四边形EFCH为正方形.图189.如图19,在等腰直角三角形ABC中,∠ACB=90°,AC=BC=4,D是AB的中点,E,F分别是AC,BC上的点(点E不与端点A,C重合),且AE=CF,连接EF并取EF的中点O,连接DO并延长至点G,使GO=OD,连接DE,DF,GE,GF.(1)求证:四边形EDFG是正方形;(2)当点E在什么位置时,四边形EDFG的面积最小?并求出四边形EDFG面积的最小值.图1910.矩形的四个内角平分线围成的四边形是()A.正方形B.矩形C.菱形D.一般平行四边形11.如图0,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于点P.若四边形ABCD的面积是18,则DP的长是________.图012.如图1,E是矩形ABCD的边BC的中点,P是边AD上的一动点,PF⊥AE,PH⊥DE,垂足分别为F,H.(1)当矩形ABCD的长与宽满足什么条件时,四边形PHEF是矩形?并证明;(2)在(1)的条件下,动点P运动到什么位置时,矩形PHEF变为正方形?为什么?图113.如图2,AC,BD是正方形ABCD的对角线,将△DCB绕点D顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG.(1)求证:△AED≌△GED;(2)求证:四边形AEGF是菱形;(3)若AC=1,求BC+FG的值.图214.如图3①,△ABC中,AD平分∠BAC交BC于点D,在线段AB上截取AE=AC,过点E作EF∥BC交AD于点F.连接DE,DF.(1)试判断四边形CDEF是何种特殊的四边形.(2)当AB>AC,∠ABC=20°时,四边形CDEF能是正方形吗?如果能,求出此时∠BAC 的度数;如果不能,请说明理由.(3)若AD平分∠BAC的外角交直线BC于点D,在直线AB上截取AE=AC,过点E作EF∥BC交直线AD于点F,如图②”,设∠ABC=x,其他条件不变,四边形CDEF能是正方形吗?如果能,求出此时∠BAC关于x的关系式;如果不能,试说明理由.图3参考答案1.D2.①③④3.D.4.对角线互相垂直且相等5.解:(1)证明:∵AF∥BC,∴∠EAF=∠EDB.∵E是AD的中点,∴AE=DE.在△AEF和△DEB中,∠EAF=∠EDB,AE=DE,∠AEF=∠DEB,∴△AEF≌△DEB(ASA),∴AF=BD.∵在△ABC中,∠BAC=90°,AD是中线,∴AD=BD=DC=12BC,∴AD=AF.(2)四边形ADCF是正方形.证明:∵AF=BD=DC,AF∥BC,∴四边形ADCF是平行四边形.∵AB=AC,AD是中线,∴AD⊥BC.又∵AD=AF,∴四边形ADCF是正方形.6.证明:(1)∵AD=CD,E是边AC的中点,∴DE⊥AC,∴DE是线段AC的垂直平分线,∴AF=CF,∴∠F AC=∠ACB.在Rt△ABC中,由∠BAC=90°,得∠B+∠ACB=90°,∠F AC+∠BAF=90°,∴∠B=∠BAF,∴AF=BF.(2)∵AG∥CF,∴∠AGE=∠CFE.又∵E是边AC的中点,∴AE=CE.在△AEG和△CEF中,∠AGE=∠CFE,∠AEG=∠CEF,AE=CE,∴△AEG≌△CEF(AAS),∴AG=CF.又∵AG∥CF,∴四边形AFCG是平行四边形.又∵AF=CF,∴四边形AFCG是菱形.在Rt△ABC中,由AF=CF,AF=BF,得BF=CF,即F是边BC的中点.又∵AB=AC,∴AF⊥BC,即∠AFC=90°,∴四边形AFCG是正方形.7.C8.解:(1)不可能.理由如下:若ON过点D,则OA>AB,OD>CD,∴OA2>AD2,OD2>AD2,∴OA2+OD2>2AD2≠AD2,∴∠AOD≠90°,这与∠MON=90°矛盾,∴ON不可能过点D,故答案为:不可能.(2)证明:∵EH⊥CD,EF⊥BC,∴∠EHC=∠EFC=90°.又∠HCF=90°,∴四边形EFCH为矩形.∵∠MON=90°,∴∠EOF=90°-∠AOB.在正方形ABCD中,∠BAO=90°-∠AOB,∴∠EOF=∠BAO.在△OFE和△ABO中,∠EOF=∠BAO,∠EFO=∠B,OE=AO,∴△OFE≌△ABO(AAS),∴EF=OB,OF=AB.又OF=CF+OC,AB=BC=BO+OC,∴CF=BO=EF,∴四边形EFCH为正方形.9.解:(1)证明:连接CD,如图①所示.∵△ABC为等腰直角三角形,∠ACB=90°,D是AB的中点,∴∠A=∠DCF=45°,AD=CD.在△ADE和△CDF中,AE=CF,∠A=∠DCF,AD=CD,∴△ADE≌△CDF(SAS),∴DE=DF,∠ADE=∠CDF.∵∠ADE+∠EDC=90°,∴∠EDC+∠CDF=∠EDF=90°,∴△EDF为等腰直角三角形.∵O为EF的中点,GO=OD,∴GD⊥EF,且GD=2OD=EF,∴四边形EDFG是正方形.(2)过点D作DE′⊥AC于点E′,如图②所示.∵△ABC为等腰直角三角形,∠ACB=90°,AC=BC=4,∴DE′=12BC=2,AB=42,点E′为AC的中点,∴2≤DE<22(点E与点E′重合时取等号),∴4≤S四边形EDFG=DE2<8.∴当点E为线段AC的中点时,四边形EDFG的面积最小,该最小值为4.10.A11.3212.解:(1)当矩形ABCD的长是宽的2倍时,四边形PHEF是矩形.证明:∵四边形ABCD是矩形,∴AD=BC,AB=CD.∵E是BC的中点,∴AB=BE=EC=CD,则△ABE,△DCE均是等腰直角三角形,∴∠AEB=∠DEC=45°,∴∠AED=90°.在四边形PHEF中,∵∠PFE=∠FEH=∠EHP=90°,∴四边形PHEF是矩形.(2)当点P是AD的中点时,矩形PHEF变为正方形.理由如下:由(1)可得∠BAE=∠CDE=45°,∴∠F AP=∠HDP=45°.又∵∠AFP=∠DHP=90°,AP=DP,∴Rt△AFP≌Rt△DHP,∴PF=PH,∴矩形PHEF是正方形.13.解:(1)证明:由旋转可知DG=DC,∠DGH=∠DCB=90°. ∵AD=CD,∴AD=DG.又∵ED=ED,∴Rt△AED≌Rt△GED(HL).(2)证明:由(1)知△AED≌△GED,∴AE=EG,∠ADE=∠GDE=12∠BDA=22.5°,∴∠CDF=67.5°,∠CFD=67.5°,∴∠CDF=∠CFD,∴CF=CD.又∵AC=BD,CD=DG,∴AF=BG=EG.由旋转知∠H=∠DBC=45°.又∵∠DAC=45°,∴AF∥EG,∴四边形AEGF是平行四边形.又∵AE=EG,∴▱AEGF是菱形.(3)由(2)知四边形AEGF是菱形,∴AF=FG.由(2)知CF=CD,∴BC=CF,∴BC+FG=CF+AF=AC=1.。
北师大版九年级数学上册《1.3 正方形的性质与判定》 同步练习试题
1.3 正方形的性质与判定一.选择题1.下列说法错误的是()A.对角线互相垂直的平行四边形是矩形B.矩形的对角线相等C.对角线相等的菱形是正方形D.两组对边分别相等的四边形是平行四边形2.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E,若∠CBF=25°,则∠AED=()A.60°B.65°C.70°D.75°3.如图,两把完全一样的直尺叠放在﹣起,重合的部分构成一个四边形,给出以下四个论断:①这个四边形可能是正方形②这个四边形一定是菱形③这个四边形不可能是矩形④这个四边形一定是轴对称图形,其中正确的论断是()A.①②B.③④C.①②④D.①②③④4.如图,以△ABC的各边为边,在边BC的同侧分别作三个正方形ABDI,BCFE,ACHG,对于四边形ADEG的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是()A.若△ABC为任意三角形,则四边形ADEG是平行四边形B.若∠BAC=90°,则四边形ADEG是矩形C.若AC=AB,则四边形ADEG是菱形D.若∠BAC=135°且AC=AB,则四边形ADEG是正方形5.如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE与BF相交于O;下列结论:(1)AE=BF;(2)AE⊥BF;(3)AD=OE;(4)S△AOB=S四边形DEOF.其中正确的有()A.4个B.3个C.2个D.1个二.填空题6.如图,平面内直线l1∥l2∥l3∥l4,且相邻两条平行线间隔均为1,正方形ABCD四个顶点分别在四条平行线上,则正方形的面积为.7.如图,正方形ABCD的边长为5,AG=CH=4,BG=DH=3,连接GH,则线段GH的长为.8.如图,在边长为2的正方形ABCD中,点E、F分别是边AB,BC的中点,连接EC,FD,点G、H分别是EC,FD的中点,连接GH,则GH的长度为.9.如图,已知正方形ABCD的边长为7,点E,F分别在AD、DC上,AE=DF=3,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为.10.如图,四边形ABCD为正方形,AB为边向正方形外作等边三角形ABE、CE与DB相交于点F,则∠AFD=度.11.如图,在正方形ABCD的外侧,作等边三角形ABE,则∠DEB的度数为度.12.如图,若四边形ABCD是正方形,△CDE是等边三角形,则∠EAB的度数为.13.如图,四边形ABCD是一个正方形,E是BC延长线上的一点,且AC=EC,则∠DAE =.14.如图,已知正方形ABCD的边长为1,连接AC、BD,CE平分∠ACD交BD于点E,则DE=.15.已知:正方形ABCD中,对角线AC、BD相交于点O,∠DBC的平分线BF交CD于点E,交AC于点F,OF=1,则AB=.三.解答题16.如图,在△ABC中,AC=BC=6,∠ACB>90°,∠ABC的平分线交AC于点D,E是AB上点,且BE=BC,CF∥ED交BD于点F,连接EF,ED.(1)求证:四边形CDEF是菱形;(2)当∠ACB=度时,四边形CDEF是正方形,请给予证明;并求此时正方形的边长.17.已知:如图,菱形ABCD的对角线AC与BD相交于点O,若∠CAD=∠DBC.(1)求证:四边形ABCD是正方形.(2)E是OB上一点,DH⊥CE,垂足为H,DH与OC相交于点F,求证:OE=OF.18.如图,正方形ABCD中,AB=4,点E是对角线AC上的一点,连接DE.过点E作EF ⊥ED,交AB于点F,以DE、EF为邻边作矩形DEFG,连接AG.(1)求证:矩形DEFG是正方形;(2)求AG+AE的值;(3)若F恰为AB中点,连接DF交AC于点M,请直接写出ME的长.19.如图,已知四边形ABCD为正方形,AB=3,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE,交BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.20.如图,已知平行四边形ABCD中,对角线AC、BD交于点O,E是DB延长线上一点,且△ACE是等边三角形.(1)求证:四边形ABCD是菱形;(2)若∠AEB=2∠EAB,求证:四边形ABCD是正方形.21.以△ABC的各边,在边BC的同侧分别作三个正方形.他们分别是正方形ABDI,BCFE,ACHG,试探究:(1)如图中四边形ADEG是什么四边形?并说明理由.(2)当△ABC满足什么条件时,四边形ADEG是矩形?(3)当△ABC满足什么条件时,四边形ADEG是正方形?参考答案一.选择题1.解:对角线互相垂直的平行四边形是菱形,故选项A错误;矩形的对角线相等,故选项B正确;对角线相等的菱形是正方形,故选项C正确;两组对边分别相等的四边形是平行四边形,故选项D正确;故选:A.2.解:∵四边形ABCD是正方形,∴∠ABC=90°,BA=DA,∠BAE=∠DAE=45°.又AE=AE,∴△ABE≌△ADE(SAS).∴∠ADE=∠ABE=90°﹣25°=65°.∴∠AED=180°﹣45°﹣65°=70°.故选:C.3.解:过点D作DE⊥AB于E,DF⊥BC于F.∵两张长方形直尺的宽度相等,∴DE=DF,又∵平行四边形ABCD的面积=AB•DE=BC•DF,∴AB=BC,∴平行四边形ABCD为菱形.当∠DAB=90°时,这个四边形是正方形,∴这个四边形一定是轴对称图形,故选:C.4.解:A、∵四边形ABDI、四边形BCFE、四边形ACHG都是正方形,∴AC=AG,AB=BD,BC=BE,∠GAC=∠EBC=∠DBA=90°.∴∠ABC=∠EBD(同为∠EBA的余角).在△BDE和△BAC中,,∴△BDE≌△BAC(SAS),∴DE=AC=AG,∠BAC=∠BDE.∵AD是正方形ABDI的对角线,∴∠BDA=∠BAD=45°.∵∠EDA=∠BDE﹣∠BDA=∠BDE﹣45°,∠DAG=360°﹣∠GAC﹣∠BAC﹣∠BAD=360°﹣90°﹣∠BAC﹣45°=225°﹣∠BAC,∴∠EDA+∠DAG=∠BDE﹣45°+225°﹣∠BAC=180°,∴DE∥AG,∴四边形ADEG是平行四边形(一组对边平行且相等),正确,故本选项不符合题意;B、∵四边形ABDI和四边形ACHG是正方形,∴∠DAI=45°,∠GAC=90°,∵∠BAC=90°,∴∠DAG=360°﹣45°﹣90°﹣90°=135°,∵四边形ADEG是平行四边形,∴四边形ADEG不是矩形,错误,故本选项符合题意;C、∵四边形ADEG是平行四边形,∴若要四边形ADEG是菱形,则需AD=AG,即AD=AC.∵AD=AB,∴当AB=AD,即AB=AC时,四边形ADEG是菱形,正确,故本选项不符合题意;D、∵当∠BAC=135°时,∠DAG=360°﹣45°﹣90°﹣135°=90°,即平行四边形ADEG是平行四边形,∵当AB=AD,即AB=AC时,四边形ADEG是菱形,∴四边形ADEG是正方形,即当∠BAC=135°且AC=AB时,四边形ADEG是正方形,正确,故本选项不符合题意;故选:B.5.解:∵四边形ABCD是正方形,∴AB=AD,∠BAF=∠ADE=90°.∵CE=DF,∴AF=DE.在△ABF和△DAE中,,∴△ABF≌△DAE.∴AE=BF,故(1)正确.∵△ABF≌△DAE,∴∠AFB=∠AED.∵∠AED+∠DAE=90°,∴∠AFB+∠DAE=90°,∴∠AOF=90°,即AE⊥BF,故(2)正确.∵△ABF≌△DAE,∴S△ABF=S△ADE.∴S△AOB=S△ABF﹣S△AOF,S四边形DEOF=S△ADE﹣S△AOF,即∴S△AOB=S四边形DEOF.如图所示:过点E作EG⊥AB,则EG=AD.∵HE>OE,GE>HE,∴GE>OE.∴AD>OE,故(3)错误.故选:B.二.填空题6.解:过C点作EF⊥l2,交l1于E点,交l4于F点.∵l1∥l2∥l3∥l4,EF⊥l2,∴EF⊥l1,EF⊥l4,即∠CED=∠BFC=90°.∵ABCD为正方形,∴∠BCD=90°.∴∠DCE+∠BCF=90°.又∵∠DCE+∠CDE=90°,∴∠CDE=∠BCF.在△CDE和△BCF中,∴△CDE≌△BCF(AAS),∴BF=CE=2.∵CF=1,∴BC2=12+22=5,即正方形ABCD的面积为5.故答案为:5.7.解:如图,延长BG交CH于点E,在△ABG和△CDH中,,∴△ABG≌△CDH(SSS),∴∠1=∠5,∠2=∠6,∵AG=CH=4,BG=DH=3,AB=5,∴AG2+BG2=AB2,∴∠AGB=∠CHD=90°,∴∠1+∠2=90°,∠5+∠6=90°,又∵∠2+∠3=90°,∠4+∠5=90°,∴∠1=∠3=∠5,∠2=∠4=∠6,在△ABG和△BCE中,,∴△ABG≌△BCE(ASA),∴BE=AG=4,CE=BG=3,∠BEC=∠AGB=90°,∴GE=BE﹣BG=4﹣3=1,同理可得HE=1,在Rt△GHE中,GH===,故答案为:.8.解:连接CH并延长交AD于P,连接PE,∵四边形ABCD是正方形,∴∠A=90°,AD∥BC,AB=AD=BC=2,∵E,F分别是边AB,BC的中点,∴AE=CF=×2=1,∵AD∥BC,∴∠DPH=∠FCH,∵∠DHP=∠FHC,∴△PDH≌△CFH(AAS),∴PD=CF=1,∴AP=AD﹣PD=1,∴PE==,∵点G,H分别是EC,FD的中点,∴GH=EP=.9.解:∵四边形ABCD是正方形,∴AB=DA,∠BAE=∠ADF=90°,在△BAE和△ADF中,,∴△BAE≌△ADF(SAS),∴∠ABE=∠DAF,∵∠ABE+∠BEA=90°,∴∠DAF+∠BEA=90°,∴∠AGE=90°,∴∠BGF=90°,∵点H为BF的中点,∴GH=BF,又∵BC=CD=7,DF=3,∠C=90°,∴CF=4,∴BF===,∴GH=,故答案为:.10.解:∵∠CBA=90°,∠ABE=60°,∴∠CBE=150°,∵四边形ABCD为正方形,三角形ABE为等边三角形∴∠BEC=15°,∵∠FBE=∠DBA+∠ABE=105°,∴∠BFE=60°,在△CBF和△ABF中,,∴△CBF≌△ABF(SAS),∴∠BAF=∠BCE=15°,又∠ABF=45°,且∠AFD为△AFB的外角,∴∠AFD=∠ABF+∠F AB=15°+45°=60°.故答案为60.11.解:∵四边形ABCD是正方形∴AB=AD,∠BAD=90°∵△ABE是等边三角形∴AE=AB,∠BAE=∠BEA=60°∴AD=AE,∠DAE=150°∴∠AED=∠ADE=(180°﹣∠DAE)=15°∴∠DEB=∠BEA﹣∠AED=60°﹣15°=45°故答案为:45.12.解:∵∠ADE=∠BCE=90°+60°=150°,AD=BC,DE=CE,∴△ADE≌△BCE,∴AE=BE,∴∠EAB=∠EBA.∵正方形中AD=DC,等边三角形中DC=DE,∴AD=DE,∵∠ADE=90°+60°=150°,∴∠DEA==15°,同理∠CEB=15°,∴∠AEB=60°﹣15°﹣15°=30°,∴∠EAB==75°.故答案为75°.13.解:∵四边形ABCD是正方形,∴∠ACB=45°,AD∥BC,∵AC=EC,∴∠E=∠CAE,∵∠ACB=∠E+∠CAE=2∠E,∴∠E=∠ACB=22.5°,∵AD∥BC,∴∠DAE=∠E=22.5°.故答案为:22.5°.14.解:过E作EF⊥DC于F,∵四边形ABCD是正方形,∴AC⊥BD,∵CE平分∠ACD交BD于点E,∴EO=EF,在Rt△COE和Rt△CFE中,∴Rt△COE≌Rt△CFE(HL),∴CO=FC,∵正方形ABCD的边长为1,∴AC=,∴CO=AC=,∴CF=CO=,∴EF=DF=DC﹣CF=1﹣,∴DE==﹣1,另法:因为四边形ABCD是正方形,∴∠ACB=45°=∠DBC=∠DAC,∵CE平分∠ACD交BD于点E,∴∠ACE=∠DCE=22.5°,∴∠BCE=45°+22.5°=67.5°,∵∠CBE=45°,∴∠BEC=67.5°,∴BE=BC,∵正方形ABCD的边长为1,∴BC=1,∴BE=1,∵正方形ABCD的边长为1,∴AC=,∴DE=﹣1,故答案为:﹣1.15.解:如图作FH∥BC交BD于点H.∵四边形ABCD是正方形,∴∠OBC=∠OCB=45°,OB=OC,∠BOC=90°∵FH∥BC,∴∠OHF=∠OBC,∠OFH=∠OCB,∴∠OHF=∠OFH,∴OH=OF=1,FH==,∵BF平分∠OBC,∴∠HBF=∠FBC=∠BFH,∴BH=FH=,∴OB=OC=1+,∴BC=OB=2+.故答案为2+.三.解答题16.证明:(1)如图,连接EC,交BD于点O∵BE=BC,BD平分∠ABC∴EO=CO,BD⊥CE∴EF=FC,DE=CD,∵CF∥DE∴∠DFC=∠FDE,且EO=CO,∠FOC=∠DOE ∴△DOE≌△FOC(AAS)∴DE=CF∴EF=FC=CD=DE∴四边形EFCD是菱形(2)当∠ACB=120度时,四边形CDEF是正方形,理由如下:∵∠ACB=120°,BC=AC∴∠ABC=∠BAC=30°∵BD平分∠ABC∴∠DBC=15°,且BD⊥EC∴∠BCO=75°∴∠ACE=45°,∵四边形EFCD是菱形∴∠FCD=2∠ACE=90°∴四边形CDEF是正方形,∴∠ADE=90°如图,过点C作CP⊥AB于点P,∵BC=AC=6,∠ABC=30°,CP⊥AB∴CP=3,BP=CP=3,AB=2BP=6,∴AE=AB﹣BE=6﹣6∵∠A=30°,∠ADE=90°∴DE=AE=3﹣317.(1)证明:∵四边形ABCD是菱形,∴AD∥BC,∠BAD=2∠DAC,∠ABC=2∠DBC,∴∠BAD+∠ABC=180°,∵∠CAD=∠DBC,∴∠BAD=∠ABC,∴2∠BAD=180°,∴∠BAD=90°,∴四边形ABCD是正方形;(2)证明:∵四边形ABCD是正方形,∴AC⊥BD,AC=BD,CO=AC,DO=BD,∴∠COB=∠DOC=90°,CO=DO,∵DH⊥CE,垂足为H,∴∠DHE=90°,∠EDH+∠DEH=90°,∵∠ECO+∠DEH=90°,∴∠ECO=∠EDH,在△ECO和△FDO中,,∴△ECO≌△FDO(ASA),∴OE=OF.18.解:(1)如图,作EM⊥AD于M,EN⊥AB于N.∵四边形ABCD是正方形,∴∠EAD=∠EAB,∵EM⊥AD于M,EN⊥AB于N,∴EM=EN,∵∠EMA=∠ENA=∠DAB=90°,∴四边形ANEM是矩形,∵EF⊥DE,∴∠MEN=∠DEF=90°,∴∠DEM=∠FEN,∵∠EMD=∠ENF=90°,∴△EMD≌△ENF,∴ED=EF,∵四边形DEFG是矩形,∴四边形DEFG是正方形.(2)∵四边形DEFG是正方形,四边形ABCD是正方形,∴DG=DE,DC=DA=AB=4,∠GDE=∠ADC=90°,∴∠ADG=∠CDE,∴△ADG≌△CDE(SAS),∴AG=CE,∴AE+AG=AE+EC=AC=AD=4.(3)如图,作EH⊥DF于H.∵四边形ABCD是正方形,∴AB=AD=4,AB∥CD,∵F是AB中点,∴AF=FB∴DF==2,∵△DEF是等腰直角三角形,EH⊥AD,∴DH=HF,∴EH=DF=,∵AF∥CD,∴AF:CD=FM:MD=1:2,∴FM=,∴HM=HF﹣FM=,在Rt△EHM中,EM==.19.解:(1)如图,作EM⊥BC于M,EN⊥CD于N,∴∠MEN=90°,∵点E是正方形ABCD对角线上的点,∴EM=EN,∵∠DEF=90°,∴∠DEN=∠MEF,∵∠DNE=∠FME=90°,在△DEN和△FEM中,,∴△DEN≌△FEM(ASA),∴EF=DE,∵四边形DEFG是矩形,∴矩形DEFG是正方形;(2)CE+CG的值是定值,定值为6,理由如下:∵正方形DEFG和正方形ABCD,∴DE=DG,AD=DC,∵∠CDG+∠CDE=∠ADE+∠CDE=90°,∴∠CDG=∠ADE,在∴△ADE和△CDG中,,∴△ADE≌△CDG(SAS),∴AE=CG,∴CE+CG=CE+AE=AC=AB=×3=6是定值.20.证明:(1)∵四边形ABCD是平行四边形,∴AO=CO.∵△ACE是等边三角形,∴AE=CE.∴BE⊥AC.∴四边形ABCD是菱形.(2)从上易得:△AOE是直角三角形,∴∠AEB+∠EAO=90°∵△ACE是等边三角形,∴∠EAO=60°,∴∠AEB=30°∵∠AEB=2∠EAB,∴∠EAB=15°,∴∠BAO=∠EAO﹣∠EAB=60°﹣15°=45°.又∵四边形ABCD是菱形.∴∠BAD=2∠BAO=90°∴四边形ABCD是正方形.21.解:(1)图中四边形ADEG是平行四边形.理由如下:∵四边形ABDI、四边形BCFE、四边形ACHG都是正方形,∴AC=AG,AB=BD,BC=BE,∠GAC=∠EBC=∠DBA=90°.∴∠ABC=∠EBD(同为∠EBA的余角).在△BDE和△BAC中,,∴△BDE≌△BAC(SAS),∴DE=AC=AG,∠BAC=∠BDE.∵AD是正方形ABDI的对角线,∴∠BDA=∠BAD=45°.∵∠EDA=∠BDE﹣∠BDA=∠BDE﹣45°,∠DAG=360°﹣∠GAC﹣∠BAC﹣∠BAD=360°﹣90°﹣∠BAC﹣45°=225°﹣∠BAC∴∠EDA+∠DAG=∠BDE﹣45°+225°﹣∠BAC=180°∴DE∥AG,∴四边形ADEG是平行四边形(一组对边平行且相等).(2)当四边形ADEG是矩形时,∠DAG=90°.则∠BAC=360°﹣∠BAD﹣∠DAG﹣∠GAC=360°﹣45°﹣90°﹣90°=135°,即当∠BAC=135°时,平行四边形ADEG是矩形;(3)当四边形ADEG是正方形时,∠DAG=90°,且AG=AD.由(2)知,当∠DAG=90°时,∠BAC=135°.∵四边形ABDI是正方形,∴AD=AB.又∵四边形ACHG是正方形,∴AC=AG,∴AC=AB.∴当∠BAC=135°且AC=AB时,四边形ADEG是正方形.。
北师大版数学九年级上册《正方形的性质与判定》 同步练习题 含答案
第一章特殊平行四边形 1.3 正方形的性质与判定1. 如图,在正方形ABCD中,AC为对角线,点E在AB边上,EF⊥AC于点F,连接EC,AF=3,△EFC的周长为12,则EC的长为( )A. 4B. 5C. 6D. 82. 平行四边形、矩形、菱形、正方形都具有的性质是( )A.对角线互相垂直且相等 B.对角线相等C.对角线互相垂直 D.对角线互相平分3. 如图,将正方形纸片按如图折叠,AM为折痕,点B落在对角线AC上的点E 处,则∠CME等于( )A. 25°B. 35°C. 45°D. 50°4. 如图所示,直线a经过正方形ABCD的顶点A,分别过顶点D,B作DE⊥a于点E,BF⊥a于点F,若DE=4,BF=3,则EF的长为( )A. 7B. 8C. 9D. 105. 如图,E,F分别是正方形ABCD的边CD,AD上的点,且CE=DF,AE,BF相交于点O,下列结论:①AE=BF;②AE⊥BF;③AO=OE;④S△AOB=S四边形DEOF.其中正确的有( )A.4个 B.3个 C.2个 D.1个6. 如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB 于点E,且BE=BF.添加一个条件,仍不能证明四边形BECF为正方形的是( )A.AC=BF B.CF⊥BF C.BD=DF D.BC=AC7. 如图,Rt△ABC中,∠ACB=90°,点D,E,F分别是AB,AC,BC的中点,连接DE,DF,CD,如果AC=BC,那么四边形DECF是( )A.菱形B.矩形C. 正方形D. 梯形8. 下列命题中,真命题是( )A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相垂直平分的四边形是正方形D.对角线互相平分的四边形是平行四边形9. 四边形ABCD的对角线AC和BD相交于点O,设有下列条件:①AB=AD;②∠DAB=90°;③AO=CO,BO=DO;④矩形ABCD;⑤菱形ABCD;⑥正方形ABCD,则下列推理不成立的是( )A.①②⇒⑥ B.①③⇒⑤ C.①④⇒⑥ D.②③⇒④10. 如图,将一张长方形纸片对折两次,然后剪下一个角,打开.如果要剪出一个正方形,那么剪口线与折痕成( )度角.A. 30B. 45C. 50D. 6011. 如图,四边形ABCD,AEFG都是正方形,点E,G分别在AB,AD上,连接FC,过点E作EH∥FC交BC于点H.若AB=4,AE=1,则BH的长为12. 如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH.若BE∶EC=2∶1,则线段CH的长是13. 如图,正方形ABCD的边长为4 cm,则图中阴影部分的面积为 cm214. 如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE =5,F为DE的中点.若△CEF的周长为18,则OF的长为________.15. 如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推…,则正方形OB2 015B2 016C2 016的顶点B2 016的坐标是________.16. 如图,在△ABC中,点D,E,F分别在边BC,AB,CA上,且DE∥CA,DF∥BA.下列结论:①四边形AEDF是平行四边形;②若∠BAC=90°,则四边形AEDF是矩形;③若AD平分∠BAC,则四边形AEDF是菱形;④若∠BAC=90°,AD平分∠BAC,则四边形AEDF是正方形,你认为正确的是 (填序号)17. ▱ABCD的对角线AC与BD相交于点O,且AC⊥BD,请添加一个条件:____________,使得▱ABCD为正方形.18. 如图,在正方形ABCD中,△ABE和△CDF为直角三角形,∠AEB=∠CFD=90°,AE=CF=5,BE=DF=12,则EF=19. 如图,以边长为1的正方形的四边中点为顶点作四边形,再以所得四边形的四边中点为顶点作四边形,…依次作下去,所作的第三个四边形的周长为________;第n个四边形的周长为________.20. 如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于点F.求证:AE=EF.21. 如图,过正方形ABCD的顶点D作DE∥AC交BC的延长线于点E.(1)判断四边形ACED的形状,并说明理由;(2)若BD=8 cm,求线段BE的长.22. 如图,点O是线段AB上一点,OA=OC,OD平分∠AOC交AC于点D,OF平分∠COB,CF⊥OF于点F.(1)求证:四边形CDOF是矩形;(2)当∠AOC为多少度时,四边形CDOF是正方形?请说明理由.23. 如图①,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB.(1)求证:△BCP≌△DCP;(2)求证:∠DPE=∠ABC;(3)把正方形ABCD改为菱形,其他条件不变(如图②),若∠ABC=58°,则∠DPE=________度.24. 如图①,在正方形ABCD中,E,F,G,H分别为边AB,BC,CD,DA上的点,HA=EB=FC=GD,连接EG,FH,交点为O.(1)如图②,连接EF,FG,GH,HE,试判断四边形EFGH的形状,并证明你的结论;(2)将正方形ABCD沿线段EG,HF剪开,再把得到的四个四边形按图③的方式拼接成一个四边形.若正方形ABCD的边长为3 cm,HA=EB=FC=GD=1 cm,则图③中阴影部分的面积为________cm2.25. 如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,垂足为点F,交直线MN于点E,连接CD,BE.(1)求证:CE=AD;(2)当点D是AB的中点时,四边形BECD是什么特殊四边形?请说明理由;(3)若点D为AB的中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明理由.答案:1---10 BDCAB ACDAB 11. 3 12. 4 13. 8 14. 7215. (21 008,0) 16. ① ② ③ ④ 17. ∠BAD=90° 18. 7 219. 2 4(22)n 20. 解:如图,取AB 的中点H ,连接EH ,∵∠AEF=90°,∴∠2+∠AEB=90°,∵四边形ABCD 是正方形,∴∠1+∠AEB=90°,∴∠1=∠2,∵点E 是BC 的中点,点H 是AB 的中点,∴BH=BE ,AH =CE ,∴∠BHE=45°,∵CF 是∠DCG 的角平分线,∴∠FCG=45°,∴∠AHE=∠ECF=135°,在△AHE 和△ECF 中,⎩⎪⎨⎪⎧∠1=∠2,AH =EC ,∠AHE=∠ECF,∴△AHE≌△ECF(ASA),∴AE=EF.21. 解:.(1)四边形ACED 是平行四边形.理由如下:∵四边形ABCD 是正方形,∴AD∥BC,即AD∥CE,∵DE∥AC,∴四边形ACED 是平行四边形. (2)由(1)知,BC =AD =CE =CD ,在Rt △BCD 中,令BC =CD =x , 则x 2+x 2=82.解得x =42,∴BE =2x =82(cm).22. .(1)证明:∵OD 平分∠AOC,OF 平分∠COB,∴∠AOC=2∠COD,∠COB=2∠COF,∵∠AOC+∠BOC=180°,∴2∠COD+2∠COF=180°,∴∠COD+∠COF =90°,∴∠DOF=90°.∵OA=OC ,OD 平分∠AOC,∴OD⊥AC,AD =DC ,∴∠CDO=90°,∵CF⊥OF,∴∠CFO=90°,∴四边形CDOF 是矩形. (2)当∠AOC =90°时,四边形CDOF 是正方形. 理由如下:∵∠AOC =90°,AD =DC ,∴OD=DC. 又由(1)知四边形CDOF 是矩形,则矩形CDOF 是正方形. 因此,当∠AOC =90°时,四边形CDOF 是正方形.23. (1)证明:∵四边形ABCD 是正方形,∴BC=DC ,∠BCP=∠DCP =45°, 又∵CP =CP ,∴△BCP≌△DCP(SAS).(2)证明:由(1)知,△BCP≌△DCP,∴∠CBP=∠CDP,∵PE=PB ,∴∠CBP=∠E,∴∠CDP=∠E,∵∠1=∠2(对顶角相等),∴180°-∠1-∠CDP=180°-∠2-∠E,即∠DPE=∠DCE,∵AB∥CD,∴∠DCE =∠ABC,∴∠DPE=∠ABC.(3) 5824. (1)四边形EFGH是正方形.证明:∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA.∵HA=EB=FC=GD,∴AE=BF=CG=DH.∴△AEH≌△BFE≌△CGF≌△DHG.∴EH=EF=FG=GH.∴四边形EFGH是菱形.由△DHG≌△AEH,知∠DHG=∠AEH.∵∠AEH+∠AHE=90°,∴∠DHG+∠AHE=90°.∴∠GHE=90°.∴菱形EFGH是正方形.(2) 125. (1)证明:∵DE⊥BC,∴∠DFB=90°,又∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,又∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD.(2)四边形BECD是菱形.理由如下:∵D为AB中点,∴AD=BD,又∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB 中点,∴CD=BD,∴▱BECD是菱形.(3)当∠A=45°时,四边形BECD是正方形.理由如下:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°,∴AC=BC,∵D为BA的中点,∴CD⊥AB,∴∠CDB =90°,∵四边形BECD是菱形,∴四边形BECD是正方形,即当∠A=45°时,四边形BECD是正方形.1、最困难的事就是认识自己。
北师大版九年级数学1.3 正方形的 性质与判定 同步练习2(含答案)
1.3 正方形的性质与判定基础过关1.若正方形的边长是4,则它的对角线长是_________,面积是_________.2.正方形的对角线与边长之比是_____________.3.如图,点E 是正方形ABCD 的边BC 延长线上的一点,且CE=AC ,若AE 交CD 于点F ,则∠E= °; ∠AFC= °4.如图,E 是正方形ABCD 对角线AC 上任意一点,四边形EFBG 是矩形,若正方形ABCD 的周长a ,则矩形EFBG 的周长是__________.5.已知四边形ABCD 是菱形,当满足________________时,它成为正方形(填上你认为正确的一个条件即可).6. 已知四边形ABCD 是矩形,当满足_______________时,它成为正方形(填上你认为正确的一个条件即可).能力提高7.如图,以数轴的单位长线段为边作一正方形,以数轴的原点为圆心,正方形的对角线长为半径画弧,交数轴正半轴与点A ,则点A 表示的数是______________.8.如图,E 为正方形ABCD 内一点,若△ABE 是等边三角形,则∠DCE= °.9.如图,正方形的边长为4,MN BC ∥分别交AB 、CD 于点M N ,,在MN 上任取两点P 、Q ,那么图中阴影部分的面积是 .10.如图,正方形ABCD 边长为8,M 在DC 上,且DM =2,N 是在AC 上的一动点,则DN +MN 的最小值为___________.11. 如图,正方形ABCD 的对角线AC 是菱形AEFC 的一边,则∠FAB 等于( )(11题图)(12题图)OEDBAC F(10题图)BD ACNMabc(第14题图)(9题图)ABDN PQDA EB(8题图)(3题图)FEBD AC(4题图)FG BDA C EAO 1 (7题图)A.135°B.45°C.22.5°D.30° 12.如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE=DF ,AE 、BF 相交于点O ,下列结论(1)AE=BF ;(2)AE ⊥BF ;(3)AO=OE ;(4)S △AOB =S 四边形DEOF 中,错误的有( )A.1个B.2个C.3个D.4个 13.将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去上方的小三角形.将纸片展开,得到的图形是 ( )14.如图,直线l 上有三个正方形a b c ,,,若a c ,的面积分别为5和11,则b 的面积为( ) A.4 B.6 C.16 D.5515.四边形ABCD 中,AC 、BD 交于点O ,能判别这个四边形是正方形的条件是( )A.OA=OB=OC=OD ,AC ⊥BDB.AB ∥CD ,AC=BDC.AD ∥BC ,∠A=∠CD.OA=OC ,OB=OD ,AB=BC16.用两块完全相同的直角三角形一定能拼下列图形:(1)平行四边形(2)矩形(3)菱形(4)正方形(5)等腰三角形(6)等边三角形,一定能拼成的图形是( ) A.(1)(4)(5) B.(2)(5)(6) C.(1)(2)(3) D.(1)(2)(5)17.如下图,ABCD 和AEFG 都是正方形.求证:BE=DGA .B .C .D .G E AC B DF18.把正方形ABCD 绕着点A ,按顺时针方向旋转得到正方形AEFG ,边FG 与BC 交于点H (如图).试问线段HG 与线段HB 相等吗?请先观察猜想,然后再证明你的猜想.19. 如图,ABCD 是正方形,点G 是BC 上的任意一点,DE ⊥AG 于E ,BF ∥DE ,交AG 于F ,求证:AF —BF=EF . 证明:∵四边形ABCD 是正方形,20.如图,正方形ABCD 的边长是1,G 是CD 边上的一个动点(点G 与C 、D 不重合),以CG 为一边向正方形ABCD 外作正方形GCEF ,连结DE 交BG 的延长线于H. (1)求证:△BCG ≌△DCE ;(2)BH ⊥DE ;(3)试问当点G 运动到什么位置时,BH 垂直平分DE ?HE GB DACFGFEDCBAD C A B GHFE21.如图l ,已知正方形ABCD 的对角线AC 、BD 相交于点O ,E 是AC 上一点,连结EB ,过点A 作AM ⊥BE ,垂足为M ,AM 交BD 于点F . ⑴求证:OE =OF ;⑵如图2,若点E 在AC 的延长线上,AM ⊥BE 于点M ,交DB 的延长线于点F ,其它条件不变,则结论“OE =OF ”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.22.如图,Q 是正方形ABCD 的CD 边的中点,P 为CD 上一点,且AP=PC+CB.求证:∠BAP=2∠ QAD.BCQ DAPAB DCO E F M图1AB DC 图2OMFE聚沙成塔1.如图,△ABC 中,点O 是AC 边上一动点,过点O 作直线MN ∥BC ,交∠ACB 的平分线于点E ,交∠ACB 的外角平分线于F. (1)求证:EO=FO ;(2)当O 运动到什么位置时,四边形AECF 是矩形?证明你的结论;(3)在(2)的条件下,当ABC 满足什么条件时,四边形AECF 是正方形?说明你的理由.2.如图,等腰梯形ABCD 中,AD ∥BC ,M 、N 分别是AD 、BC 的中点,E 、F 分别是BM 、CM 的中点.(1)求证:四边形MENF 是菱形; (2)若四边形MENF 是正方形,请探索等腰梯形ABCD 的高和底边BC 的数量关系并说明你的结论.FE NBMC DAFEBCAD OM N。
1.3 正方形的性质与判定 第2课时 北师大版数学九年级上册同步练习(含答案)
第一章3正方形的性质与判定第2课时核心回顾微点拨1.正方形的判定除定义外,判定思路有两条:先证四边形是菱形,再证明它有一个角是直角或对角线相等(即矩形);或先证四边形是矩形,再证明它有一组邻边相等或对角线互相垂直(即菱形).2.矩形判定条件+菱形判定条件=正方形判定条件.基础必会1.下列命题中,正确的是(D)A.四边相等的四边形是正方形B.四角相等的四边形是正方形C.对角线垂直的平行四边形是正方形D.对角线相等的菱形是正方形2.如图,已知四边形ABCD是平行四边形,下列结论中错误的是(D)A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当AC=BD时,它是矩形D.当∠ABC=90°时,它是正方形3.如图,正方形ABCD的边长为8,在各边上顺次截取AE=BF=CG=DH=5,则四边形EFGH的面积是(B)A.30 B.34 C.36 D.404.我们把顺次连接任意一个四边形各边中点所得的四边形叫做中点四边形.已知四边形ABCD的中点四边形是正方形,对角线AC与BD的关系,下列说法正确的是(C)A.AC,BD相等且互相平分B.AC,BD垂直且互相平分C.AC,BD相等且互相垂直D.AC,BD垂直且平分对角5.将图1中两个三角形按图2所示的方式摆放,其中四边形ABCD为矩形,连接PQ,MN,甲、乙两人有如下结论:甲:若四边形ABCD为正方形,则四边形PQMN必是正方形;乙:若四边形PQMN为正方形,则四边形ABCD必是正方形.下列判断正确的是(B)A.甲正确,乙不正确B.甲不正确,乙正确C.甲、乙都不正确D.甲、乙都正确6.如图,以边长为1的正方形的四边中点为顶点作四边形,再以所得四边形四边中点为顶点作四边形,…,依次作下去,图中所作的第三个四边形的周长为____;所作的第n个四边形的周长为__4()n__.7.如图,在四边形ABCD中,∠BAD=∠C=90°,AB=AD,AE⊥BC于点E,△BEA 旋转后能与△DFA重合,若AE=5 cm,则四边形AECF的面积为__25__cm2__.8.如图,在△ABC中,AB=AC,AD是BC边上的中线,点E是AD边上一点,过点B作BF∥EC,交AD的延长线于点F,连接BE,CF.(1)求证:△BDF≌△CDE.(2)若DE=12BC,求证:四边形BECF是正方形.【证明】(1)∵AD是BC边上的中线,AB=AC,∴BD=CD,∵BF∥EC,∴∠DBF=∠DCE,∵∠BDF=∠CDE,∴△BDF≌△CDE(ASA).(2)∵△BDF≌△CDE,∴BF=CE,DE=DF,∵BF∥CE,∴四边形BECF是平行四边形,∵AB=AC,AD是中线,∴AD⊥BC,∴平行四边形BECF是菱形,∵DE=12BC,DE=DF=12EF,∴EF=BC,∴菱形BECF是正方形,即四边形BECF是正方形.9.如图,在四边形AECF中,AE⊥EC,AF⊥FC.CE,CF分别是△ABC的内、外角平分线.(1)求证:四边形AECF是矩形.(2)当△ABC满足什么条件时,四边形AECF是正方形?请说明理由.解析:(1)∵CE,CF分别是△ABC的内、外角平分线,∴∠ACE+∠ACF=12×180°=90°,∵AE⊥CE,AF⊥CF,∴∠AEC=∠AFC=90°,∴四边形AECF是矩形.(2)当△ABC满足∠ACB=90°时,四边形AECF是正方形,理由是:∵∠ACE=12∠ACB=45°,∵∠AEC=90°,∴∠EAC=45°=∠ACE,∴AE=CE,∵四边形AECF是矩形,∴矩形AECF 是正方形.能力提升1.如图,四边形ABCD 中,AD =DC ,∠ADC =∠ABC =90°,DE ⊥AB ,若四边形ABCD 的面积为16,则DE 的长为(C )A .3B .2C .4D .82.如图,将n 个边长都为2的正方形按如图所示摆放,点A 1,A 2,…,A n 分别是正方形的中心,则这n 个正方形重叠部分的面积之和是(B )A.nB. n -1 C .(14)n -1 D .(14)n 3.在平行四边形ABCD 中,对角线AC 与BD 相交于点O ,要使四边形ABCD 是正方形,还需添加一组条件.下面给出了四组条件:①AB ⊥AD ,且AB =AD ;②AB =BD ,且AB ⊥BD ;③OB =OC ,且OB ⊥OC ;④AB =AD ,且AC =BD .其中正确的序号是__①③④__.4.如图,在四边形ABCD 中,AB =BC ,AB ∥CD ,AD ∥BC ,∠ABC =90°.点E ,F 分别在边AB ,AD 上,CE 与BF 相交于点G ,BE =AF .线段BG 的垂直平分线交BE 于点H ,且∠EHG =54°.若∠EGH =m °,则m =__63__.5.已知:如图,在四边形ABCD 中,AB ⊥AC ,DC ⊥AC ,∠B =∠D ,点E ,F 分别是BC ,AD的中点.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形AECF是正方形?请证明.解析:(1)∵AB⊥AC,DC⊥AC,∴∠BAC=∠ACD=90°,∵∠B=∠D,AC=CA,∴△ABC≌△CDA(AAS),∴AB=CD,AD=BC,∵点E,F分别是BC,AD的中点,∴BE=12BC,DF=12AD,∴BE=DF,在△ABE与△CDF中,{AB=CD,∠B=∠D,BE=DF,∴△ABE≌△CDF(SAS);(2)当AB=AC时,四边形AECF是正方形,理由:∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,∴AD∥BC,∵点E,F分别是BC,AD的中点,∴EC=12BC,AF=12AD,∴EC=AF,∴四边形AECF是平行四边形.∵∠BAC=90°,点E是BC的中点,∴AE=12BC=EC,∴平行四边形AECF是菱形,∵AB=AC,点E是BC的中点,∴AE⊥BC,即∠AEC=90°,∴菱形AECF是正方形.6.如图,已知菱形ABCD,点E,F是对角线BD所在直线上的两点,且∠AED=45°,DF=BE,连接CE,AF,CF,得四边形AECF.(1)求证:四边形AECF是正方形;(2)若BD=4,BE=3,求菱形ABCD的面积.解析:(1)连接AC,∵四边形ABCD是菱形,∴AO=CO,BO=DO,AC⊥BD,∵BE=DF,∴BE+OB=DF+DO,∴FO=EO,∴EF与AC垂直且互相平分,∴四边形AECF是菱形,∴∠AEF=∠CEF,又∵∠AED=45°,∴∠AEC=90°,∴菱形AECF是正方形;(2)∵BD=4,BE=3,∴FD=3,∴EF=10,∴AC=10,∴菱形ABCD的面积=1 2AC·BD=12×10×4=20.。
北师大版九年级数学上册第一章特殊平行四边形《正方形的性质与判定》同步练习 (含答案)
正方形的性质——典型题专项训练知识点 1 利用正方形的性质求解与线段有关的问题1.如图1-3-1,在正方形ABCD中,点E在边DC上,DE=4,EC=2,则AE的长为________.1-3-11-3-22.如图1-3-2,正方形ABCD的边长为1,点E在边DC上,AE平分∠DAC,EF⊥AC,F为垂足,那么FC=________.3.2017·广安如图1-3-3,四边形ABCD是正方形,E,F分别是AB,AD上的一点,且BF⊥CE,垂足为G.求证:AF=BE.图1-3-3知识点 2 利用正方形的性质求解与角有关的问题4.如图1-3-4,在正方形ABCD的外侧作等边三角形ADE,则∠AEB的度数为( ) A.10° B.12.5° C.15° D.20°1-3-4图1-3-55.如图1-3-5,E为正方形ABCD的对角线BD上的一点,且BE=BC,则∠DCE=________°.6.2017·怀化如图1-3-6,四边形ABCD是正方形,△EBC是等边三角形.(1)求证:△ABE≌△DCE;(2)求∠AED的度数.图1-3-6知识点 3 利用正方形的性质求解与面积有关的问题7.若正方形的一条对角线长为4,则这个正方形的面积是( )A.8 B.4 2 C.8 2 D.16图1-3-78.如图1-3-7,三个边长均为2的正方形重叠在一起,O1,O2是其中两个正方形的中心,则阴影部分的面积是________.9.如图1-3-8,正方形ABCD的边长为4,E,F分别为DC,BC的中点.(1)求证:△ADE≌△ABF;(2)求△AEF的面积.图1-3-8知识点 4 正方形对称性的应用10.如图1-3-9,在平面直角坐标系中,正方形OABC的顶点O,B的坐标分别是(0,0),(2,0),则顶点C的坐标是( )A.(1,1) B.(-1,-1)C.(1,-1) D.(-1,1)图1-3-9图1-3-1011.如图1-3-10,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是________.12.如图1-3-11,在正方形ABCD的外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC的度数为( )A.45° B.55° C.60° D.75°1-3-111-3-1213.如图1-3-12,正方形ABCD的边长为2,连接AC,AE平分∠CAD,交BC的延长线于点E,FA⊥AE,交CB的延长线于点F,则EF的长为________.14.如图1-3-13,将边长为8 cm的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在点F处,折痕为MN,则线段CN的长是________.图1-3-13 图1-3-1415.如图1-3-14,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推,则正方形OB2017B2018C2018的顶点B2018的坐标是________.16.如图1-3-15,在正方形ABCD中,对角线AC,BD相交于点O,点E,F分别在OD,OC上,且DE=CF,连接DF,AE,AE的延长线交DF于点M.求证:AM⊥DF.图1-3-1517.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1-3-16①),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图1-3-16②),求证:EF2=ME2+NF2.图1-3-161.2132.2-13.证明:∵四边形ABCD是正方形,∴AB=BC,∠A=∠CBE=90°.∵BF⊥CE,∴∠BCE+∠CBG=90°.∵∠ABF+∠CBG=90°,∴∠BCE=∠ABF.在△BCE和△ABF中,∠BCE=∠ABF,BC=AB,∠CBE=∠A,∴△BCE≌△ABF(ASA),∴AF=BE.4.C5.22.56.解:(1)证明:∵四边形ABCD是正方形,△EBC是等边三角形,∴BA=BC=CD=BE=CE,∠ABC=∠BCD=90°,∠EBC=∠ECB=60°,∴∠ABE=∠ECD=30°.在△ABE和△DCE中,AB=DC,∠ABE=∠DCE,BE=CE,∴△ABE≌△DCE(SAS).(2)∵BA=BE,∠ABE=30°,∴∠BAE=12×(180°-30°)=75°.∵∠BAD=90°,∴∠EAD=90°-75°=15°,同理可得∠ADE=15°,∴∠AED=180°-15°-15°=150°.7.A8.29.解:(1)证明:∵四边形ABCD为正方形,∴AD=AB,∠D=∠B=90°,BC=DC.∵E,F分别为DC,BC的中点,∴DE=12DC,BF=12BC,∴DE=BF.在△ADE和△ABF中,AD=AB,∠D=∠B,DE=BF,∴△ADE≌△ABF(SAS).(2)由题知△ABF,△ADE,△CEF均为直角三角形,且AB=AD=4,DE=BF=12×4=2,CE=CF=12×4=2,∴S△AEF=S正方形ABCD-S△ADE-S△ABF-S△CEF=4×4-12×4×2-12×4×2-12×2×2=6.10.C11.10 12.C13.414.3 cm15.(0,21009)16.证明:∵四边形ABCD是正方形,∴OD=OC.又∵DE=CF,∴OD-DE=OC-CF,即OE=OF.在△AOE和△DOF中,AO=DO,∠AOE=∠DOF,OE=OF,∴△AOE≌△DOF(SAS),∴∠OAE=∠ODF.∵∠OAE+∠AEO=90°,∠AEO=∠DEM,∴∠ODF+∠DEM=90°,即AM⊥DF.17.证明:(1)∵△ADF绕着点A顺时针旋转90°,得到△ABG,∴AG=AF,∠GAF=90°.∵∠EAF=45°,∴∠GAE=∠GAF-∠EAF=90°-45°=45°,即∠GAE=∠EAF.在△AEG和△AEF中,AG=AF,∠GAE=∠EAF,AE=AE,∴△AEG≌△AEF(SAS).(2)把△ADF绕着点A顺时针旋转90°,得到△ABG,如图,连接GM,则△ADF≌△ABG,∴DF=BG.由(1)知△AEG≌△AEF,∴EG=EF.∵∠CEF=45°,∴△BME,△DNF,△CEF均为等腰直角三角形,∴CE=CF,BE=BM,NF=2DF,∴BE=DF,∴BE=BM=DF=BG,∴∠BMG=45°,∴∠GME=45°+45°=90°,∴EG2=ME2+MG2.又∵EG=EF,MG=2BM=2DF=NF,∴EF2=ME2+NF2.正方形的判定——典型题专项训练知识点 1 用定义判定正方形1.如果要证明平行四边形ABCD为正方形,那么我们需要在四边形ABCD是平行四边形的基础上,进一步证明( )A.AB=BD且AC⊥BDB.∠A=90°且AB=ADC.∠A=90°且AC=BDD.AC和BD互相垂直平分2.已知在四边形ABCD中,∠A=∠B=∠C=90°,若使四边形ABCD是正方形,则还需加上一个条件:________________.知识点 2 利用菱形判定四边形是正方形3.在四边形ABCD中,AC,BD相交于点O,下列条件能判定四边形ABCD是正方形的是( )A.OA=OC,OB=ODB.OA=OB=OC=ODC.OA=OC,OB=OD,AC=BDD.OA=OB=OC=OD,AC⊥BD图1-3-174.如图1-3-17,将一张长方形纸片对折两次,然后剪下一个角,打开.如果要剪出一个正方形,那么剪口线与折痕成( )A.22.5°角B.30°角C.45°角D.60°角5.教材习题1.8第3题变式题如图1-3-18,有4个动点P,Q,E,F分别从正方形ABCD的4个顶点出发,沿着AB,BC,CD,DA以同样的速度向B,C,D,A各点移动.请判断四边形PQEF的形状.图1-3-18知识点 3 利用矩形判定四边形是正方形6.2017·齐齐哈尔矩形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件:________,使其成为正方形.(只填一个即可)图1-3-197.如图1-3-19所示,一张矩形纸片,要折叠出一个最大的正方形,小明把矩形上的一个角沿折痕AE翻折上去,使AB与AD边上的AF重合,则四边形ABEF就是一个最大的正方形,他判定的方法是__________________________.8.2017·邵阳如图1-3-20所示,已知平行四边形ABCD,对角线AC,BD相交于点O,∠OBC=∠OCB.(1)求证:平行四边形ABCD是矩形;(2)请添加一个条件使矩形ABCD为正方形.图1-3-209.若顺次连接四边形ABCD各边中点所得的四边形是正方形,则四边形ABCD一定是( )A.矩形B.对角线互相垂直的四边形C.菱形D.对角线互相垂直且相等的四边形图1-3-2110.如图1-3-21,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF.添加一个条件,仍不能判定四边形ECFB为正方形的是( )A.BC=AC B.CF⊥BFC.BD=DF D.AC=BF图1-3-2211.教材习题1.8第3题变式题如图1-3-22,正方形ABCD的边长为8,在各边上顺次截取AE=BF=CG=DH=5,则四边形EFGH的面积是( )A.30 B.34 C.36 D.4012.2017·贵阳期末如图1-3-23,在平行四边形ABCD中,对角线AC,BD相交于点O,E是BD延长线上的点,且△ACE是等边三角形.(1)求证:四边形ABCD是菱形;(2)若∠AED=2∠EAD,求证:四边形ABCD是正方形.图1-3-2313.如图1-3-24,在△ABC中,AB=AC,AD⊥BC,垂足为D,AN是△ABC外角∠CAM 的平分线,CE⊥AN,垂足为N.(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE为正方形?并给出证明.图1-3-2414.观察如图1-3-25所示图形的变化过程,解答以下问题:图1-3-25如图1-3-26,在△ABC中,D为BC边上的一动点(点D不与B,C两点重合),DE∥AC 交AB于点E,DF∥AB交AC于点F.(1)试探索当AD满足什么条件时,四边形AEDF为菱形,并说明理由;(2)在(1)的条件下,当△ABC满足什么条件时,四边形AEDF为正方形?为什么?图1-3-2615.如图1-3-27,在四边形ABCD中,E,G分别是AD,BC的中点,F,H分别是BD,AC的中点.(1)当AB,CD满足什么条件时,四边形EFGH是矩形?并证明你的结论;(2)当AB,CD满足什么条件时,四边形EFGH是菱形?并证明你的结论;(3)当AB,CD满足什么条件时,四边形EFGH是正方形?并证明你的结论.图1-3-271.B 2.AB=BC(答案不唯一)3.D4.C .5.解:在正方形ABCD中,AP=BQ=CE=DF,AB=BC=CD=DA,∴AF=BP=CQ=DE.又∵∠A=∠B=∠C=∠D=90°,∴△AFP≌△BPQ≌△CQE≌△DEF,∴FP=PQ=QE=EF,∴四边形PQEF是菱形.∵△AFP≌△BPQ,∴∠APF=∠BQP.∵∠BPQ+∠BQP=90°=∠BPQ+∠APF,∴∠FPQ=90°,∴四边形PQEF为正方形.6.AB=BC或AC⊥BD(答案不唯一)7.有一组邻边相等的矩形是正方形8.解:(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵∠OBC=∠OCB,∴OB=OC,∴AC=BD,∴平行四边形ABCD是矩形.(2)AB=AD(或AC⊥BD,答案不唯一).9.D 10.D11.B12.证明:(1)∵四边形ABCD是平行四边形,∴AO=CO.又∵△ACE是等边三角形,∴EO⊥AC,即AC⊥BD,∴四边形ABCD是菱形.(2)∵四边形ABCD是平行四边形,∴AO=CO.又∵△ACE是等边三角形,∴EO平分∠AEC,∴∠AED=12∠AEC=12×60°=30°.又∵∠AED=2∠EAD,∴∠EAD=15°,∴∠ADO=∠EAD+∠AED=15°+30°=45°.∵四边形ABCD是菱形,∴∠ADC=2∠ADO=90°,∴四边形ABCD是正方形.13.解:(1)证明:∵在△ABC中,AB=AC,AD⊥BC,∴∠BAD=∠DAC.∵AN是△ABC外角∠CAM的平分线,∴∠MAE=∠CAE,∴∠DAE=∠DAC+∠CAE=12×180°=90°.又∵AD⊥BC,CE⊥AN,∴∠ADC=∠CEA=90°,∴四边形ADCE为矩形.(2)当△ABC满足∠BAC=90°时,四边形ADCE为正方形.证明:∵AB=AC,∠BAC=90°,∴∠ACB=∠B=45°.∵AD⊥BC,∴∠CAD=∠ACD=45°,∴DC=AD.又∵四边形ADCE是矩形,∴矩形ADCE是正方形.∴当∠BAC=90°时,四边形ADCE是正方形.14.解:(1)当AD平分∠BAC时,四边形AEDF为菱形.理由:∵AE∥DF,DE∥AF,∴四边形AEDF为平行四边形.∵AD平分∠BAC,∴∠EAD=∠FAD.又∵DE∥AF,∴∠FAD=∠ADE,∴∠EAD=∠ADE,∴AE=DE,∴平行四边形AEDF为菱形.(2)当∠BAC=90°时,菱形AEDF是正方形.因为有一个角是直角的菱形是正方形.15.解:(1)当AB⊥CD时,四边形EFGH是矩形.证明:∵E,F分别是AD,BD的中点,G,H分别是BC,AC的中点,∴EF∥AB,EF=12AB,GH∥AB,GH=12AB,FG∥CD.∴EF∥GH,EF=GH,∴四边形EFGH是平行四边形.∵AB⊥CD,∴EF⊥FG,即∠EFG=90°,∴四边形EFGH是矩形.(2)当AB=CD时,四边形EFGH是菱形.证明:∵E,F分别是AD,BD的中点,H,G分别是AC,BC的中点,∴EF=12AB,GH=12AB,FG=12CD,EH=12CD.又∵AB=CD,∴EF=FG=GH=EH,∴四边形EFGH是菱形.(3)当AB=CD且AB⊥CD时,四边形EFGH是正方形.证明:∵E,F分别是AD,BD的中点,∴EF∥AB,EF=12AB,同理,EH∥CD,EH=12CD,FG=12CD,GH=12AB.∵AB=CD,∴EF=EH=GH=FG,∴四边形EFGH是菱形.∵AB⊥CD,∴EF⊥EH,即∠FEH=90°,∴菱形EFGH是正方形.。
北师大版九年级上册数学第一章 正方形的性质与判定课时精练(附答案)
北师大版九年级上册数学第一章正方形的性质与判定课时精练(附答案)一、单选题1.下列四个命题中错误的是()A. 对角线相等的菱形是正方形B. 有两边相等的平行四边形是菱形C. 对角线相等的平行四边形是矩形D. 对角线互相平分的四边形是平行四边形2.下列说法正确的是()A. 矩形的对角线互相垂直平分B. 对角线相等的菱形是正方形C. 两邻边相等的四边形是菱形D. 对角线互相垂直且相等的四边形是正方形3.如图,正方形ABCD的边长为1,点E,F分别是对角线AC上的两点,EG⊥AB.EI⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G,I,H,J.则图中阴影部分的面积等于()A. 1B.C.D.4.若一个正方形的面积是18,则它的边长是( )A. 9B. 4.5C. 3D. 25.下列命题正确的是()A. 平行四边形的对角线互相垂直平分B. 矩形的对角线互相垂直平分C. 菱形的对角线互相平分且相等D. 正方形的对角线互相垂直平分6.如图,在平行四边形ABCD中,对角线,,,为的中点,E为边上一点,直线交于点F,连结,.下列结论不成立的是()A. 四边形为平行四边形B. 若,则四边形为矩形C. 若,则四边形为菱形D. 若,则四边形为正方形7.下列说法中错误的是()A. 有一组邻边相等的矩形是正方形B. 在反比例函数中,y随x的增大而减小C. 顺次连接矩形各边中点得到的四边形是菱形D. 如果用反证法证明“三角形中至少有一个内角小于或等于60°”,首先应假设这个三角形中每一个内角都大于60°8.如图,正方形ABCD的边长是4,∠DAC的平分线交DC于点E,若点P、Q分别是AD和AE上的动点,则DQ+PQ的最小值()A. 2B. 4C.D.9.一顶点重合的两个大小完全相同的边长为3的正方形ABCD和正方形AB′C′D′,如图所示,∠DA′D′=45°,边BC与D′C′交于点O,则四边形ABOD′的周长是()A. 6B. 6C. 4D. 3+3二、填空题10.如图,两个正方形的面积分别是100和36,则字母B所代表的正方形的面积是________(10题)(11题)11.如图,在正方形ABCD中,E为边BC的中点,连接AE,若AB=2,则AE的长为________12.如图,在四边形ABCD中,AB=BC=CD=DA ,对角线AC与BD相交于点O ,若不增加任何字母与辅助线,要使四边形ABCD是正方形,则还需增加一个条件是________(12题)(13题)13.如图,正方形ABCD的边长为2,H在CD的延长线上,四边形CEFH也为正方形,则△DBF的面积为________.14.如图,,是正方形的对角线上的两点,,,则四边形的周长是________.(14题)(15题)15.如图所示,四边形OABC为正方形,边长为6,点A、C分别在x轴,y轴的正半轴上,点D在OA上,且D点的坐标为(2,0),P是OB上的一个动点,试求PD+PA和的最小值是________16.如图,已知正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.若AE=1,则FM的长为________.17.若正方形ABCD的边长为4,E为BC上一点,BE=3,M为线段AB上一点,射线BM交正方形的一边于点F,且BF=AE,则BM的长为________.18.如图,在正方形ABCD中,AB=4,点E、F分别在CD、AD上,CE=DF,BE、CF相交于点G,若图中阴影部分的面积与正方形ABCD的面积之比为3:4,则△BCG的面积为________.三、解答题19.已知四边形ABCD是正方形(1)如图1.点M在边BA的延长线上,点N在边BC上,且AM=CN,连接MN,DM,DN,判断△DMN 的形状(直接写出答案).(2)如图2,当店N在边AB上,点N在边BC的延长线上,AM=CN,连接MN,取线段MN的中点G,连接DG,DM,判断线段DG和线段MG的关系并说明理由.(3)如图3,当点M在边AB的延长线上,点N在边BC的延长线上,AM=CN,连接MN,DM,DN,点G 是线段MN的中点,连接BG,DG,连接GC并延长交BD于点H,若∠AMN=75°,判断线段GH和线段BD 的关系并说明理由.20.图1、图2是两张形状大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,线段AB、EF的端点均在小正方形的顶点上。
北师大版九级数学上正方形的性质与判定正方形的判定专题练习题及答案
北师大版九年级数学上册第一章特殊平行四边形3.正方形的性质与判定正方形的判定专题练习题1.下列说法不正确的是()A.一组邻边相等的矩形是正方形B.对角线相等的菱形是正方形C.对角线互相垂直的矩形是正方形D.有一个角是直角的平行四边形是正方形2.在四边形ABCD中,O是对角线的交点,能判定这个四边形是正方形的条件是() A.AC=BD,AB∥CD,AB=CD B.AD∥BC,∠A=∠CC.AO=BO=CO=DO,AC⊥BD D.AO=CO,BO=DO,AB=BC3. 已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC ⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A.选①②B.选②③C.选①③D.选②④4.如图,只要把一张矩形纸片的一个角沿折痕AE翻折上去,使AB和AD边上的AF重合,则四边形ABEF就是一个正方形,判断的依据是____________________________.5.如图,在四边形ABCD中,AB=BC=CD=DA,对角线AC与BD相交于点O,若不增加任何字母与辅助线,要使得四边形ABCD是正方形,则还需增加的一个条件是__________________.6.黑板上画有一个图形,学生甲说它是多边形,学生乙说它是平行四边形,学生丙说它是菱形,学生丁说它是矩形,老师说这四位同学的答案都正确,则黑板上画的图形是__________.7.对角线________的菱形是正方形,对角线________的矩形是正方形,对角线________________的平行四边形是正方形,对角线的四边形是正方形.8.已知:如图,△ABC中,∠ABC=90°,BD是∠ABC的平分线,DE⊥AB于点E,DF ⊥BC于点F.求证:四边形DEBF是正方形.9.如图,在△ABC中,点D,E分别是边AB,AC的中点,将△ADE绕点E旋转180°得到△CFE.(1)求证:四边形ADCF是平行四边形;(2)当△ABC满足什么条件时,四边形ADCF是正方形?请说明理由.10.四边形ABCD的对角线AC=BD,AC⊥BD,分别过点A,B,C,D作对角线的平行线,所成的四边形EFMN是()A.正方形B.菱形C.矩形D.任意四边形11.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF12.如图,将一张长方形纸片对折两次,然后剪下一个角,打开.如果要剪出一个正方形,那么剪口线与折痕成________度角.13.如图,以边长为1的正方形的四边中点为顶点作四边形,再以所得四边形的四边中点为顶点作四边形,…依次作下去,图中所作的第三个四边形的周长为________;所作的第n 个四边形的周长为________.14.如图,正方形ABCD的边长为6,菱形EFGH的三个顶点E,G,H分别在正方形ABCD 的边AB,CD,DA上,且AH=2,连接CF.若DG=2,求证:菱形EFGH为正方形.15.如图,正方形CEFG的边GC在正方形ABCD的边CD上,延长CD到H,使DH=CE,K在BC边上,且BK=CE,求证:四边形AKFH为正方形.答案:1---3 DCB4. 有一组邻边相等的矩形是正方形5. AC=BD6. 正方形7. 相等互相垂直互相垂直且相等互相垂直平分且相等8.证明:∵DE⊥AB,DF⊥BC,∴∠DEB=∠DFB=90°.又∵∠ABC=90°,∴四边形BEDF为矩形.∵BD是∠ABC的平分线,且DE⊥AB,DF⊥BC,∴DE=DF,∴矩形BEDF为正方形.9. (1)证明:∵△CFE是由△ADE绕点E旋转180°得到的,∴A,E,C三点共线,D,E,F三点共线,且AE=CE,DE=FE,故四边形ADCF是平行四边形;(2)解:当∠ACB=90°,AC=BC时,四边形ADCF是正方形.理由如下:在△ABC中,∵AC=BC,AD=BD,∴CD⊥AB,即∠ADC=90°.由(1)知,四边形ADCF是平行四边形,∴四边形ADCF是矩形.又∵∠ACB=90°,∴CD=12AB=AD,故四边形ADCF是正方形10. A11. D12. 4513. 2 4(2 2)n14.证明:∵四边形ABCD是正方形,∴∠D=∠A=90°.∵四边形EFGH是菱形,∴HG =HE.∵DG=AH=2,∴Rt△HDG≌Rt△EAH,∴∠DHG=∠AEH.又∵∠AEH+∠AHE=90°,∴∠DHG+∠AHE=90°,∴∠GHE=90°,∴菱形EFGH为正方形.15.证明:∵四边形ABCD和四边形CEFG是正方形,∴AB=BC=CD=AD,∠BAD=∠DCB=∠B=∠ADC=90°,∠GCE=∠E=∠GFE=∠CGF=90°,∴∠ADH=∠HGF=∠E=∠B=90°.又∵DH=CE,BK=CE,∴BK=GF=DH=EF,KE=GH=AB=AD,∴△ABK ≌△KEF≌△HGF≌△ADH,∴AK=KF=HF=AH,∠BAK=∠DAH.∵∠BAD=90°,∴∠HAK=∠HAD+∠DAK=∠BAK+∠DAK=∠BAD=90°,∴四边形AKFH为正方形.。
北师大版数学九年级上册《正方形的性质与判定》 同步练习题 含答案
第一章特殊平行四边形 1.3 正方形的性质与判定1. 如图,在正方形ABCD中,AC为对角线,点E在AB边上,EF⊥AC于点F,连接EC,AF=3,△EFC的周长为12,则EC的长为( )A. 4B. 5C. 6D. 82. 平行四边形、矩形、菱形、正方形都具有的性质是( )A.对角线互相垂直且相等 B.对角线相等C.对角线互相垂直 D.对角线互相平分3. 如图,将正方形纸片按如图折叠,AM为折痕,点B落在对角线AC上的点E 处,则∠CME等于( )A. 25°B. 35°C. 45°D. 50°4. 如图所示,直线a经过正方形ABCD的顶点A,分别过顶点D,B作DE⊥a于点E,BF⊥a于点F,若DE=4,BF=3,则EF的长为( )A. 7B. 8C. 9D. 105. 如图,E,F分别是正方形ABCD的边CD,AD上的点,且CE=DF,AE,BF相交于点O,下列结论:①AE=BF;②AE⊥BF;③AO=OE;④S△AOB=S四边形DEOF.其中正确的有( )A.4个 B.3个 C.2个 D.1个6. 如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB 于点E,且BE=BF.添加一个条件,仍不能证明四边形BECF为正方形的是( )A.AC=BF B.CF⊥BF C.BD=DF D.BC=AC7. 如图,Rt△ABC中,∠ACB=90°,点D,E,F分别是AB,AC,BC的中点,连接DE,DF,CD,如果AC=BC,那么四边形DECF是( )A.菱形B.矩形C. 正方形D. 梯形8. 下列命题中,真命题是( )A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相垂直平分的四边形是正方形D.对角线互相平分的四边形是平行四边形9. 四边形ABCD的对角线AC和BD相交于点O,设有下列条件:①AB=AD;②∠DAB=90°;③AO=CO,BO=DO;④矩形ABCD;⑤菱形ABCD;⑥正方形ABCD,则下列推理不成立的是( )A.①②⇒⑥ B.①③⇒⑤ C.①④⇒⑥ D.②③⇒④10. 如图,将一张长方形纸片对折两次,然后剪下一个角,打开.如果要剪出一个正方形,那么剪口线与折痕成( )度角.A. 30B. 45C. 50D. 6011. 如图,四边形ABCD,AEFG都是正方形,点E,G分别在AB,AD上,连接FC,过点E作EH∥FC交BC于点H.若AB=4,AE=1,则BH的长为12. 如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH.若BE∶EC=2∶1,则线段CH的长是13. 如图,正方形ABCD的边长为4 cm,则图中阴影部分的面积为 cm214. 如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE =5,F为DE的中点.若△CEF的周长为18,则OF的长为________.15. 如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推…,则正方形OB2 015B2 016C2 016的顶点B2 016的坐标是________.16. 如图,在△ABC中,点D,E,F分别在边BC,AB,CA上,且DE∥CA,DF∥BA.下列结论:①四边形AEDF是平行四边形;②若∠BAC=90°,则四边形AEDF是矩形;③若AD平分∠BAC,则四边形AEDF是菱形;④若∠BAC=90°,AD平分∠BAC,则四边形AEDF是正方形,你认为正确的是 (填序号)17. ▱ABCD的对角线AC与BD相交于点O,且AC⊥BD,请添加一个条件:____________,使得▱ABCD为正方形.18. 如图,在正方形ABCD中,△ABE和△CDF为直角三角形,∠AEB=∠CFD=90°,AE=CF=5,BE=DF=12,则EF=19. 如图,以边长为1的正方形的四边中点为顶点作四边形,再以所得四边形的四边中点为顶点作四边形,…依次作下去,所作的第三个四边形的周长为20. 如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于点F.求证:AE=EF.21. 如图,过正方形ABCD的顶点D作DE∥AC交BC的延长线于点E.(1)判断四边形ACED的形状,并说明理由;(2)若BD=8 cm,求线段BE的长.22. 如图,点O是线段AB上一点,OA=OC,OD平分∠AOC交AC于点D,OF平分∠COB,CF⊥OF于点F.(1)求证:四边形CDOF是矩形;(2)当∠AOC为多少度时,四边形CDOF是正方形?请说明理由.23. 如图①,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB.(1)求证:△BCP≌△DCP;(2)求证:∠DPE=∠ABC;(3)把正方形ABCD改为菱形,其他条件不变(如图②),若∠ABC=58°,则∠DPE=________度.24. 如图①,在正方形ABCD中,E,F,G,H分别为边AB,BC,CD,DA上的点,HA=EB=FC=GD,连接EG,FH,交点为O.(1)如图②,连接EF,FG,GH,HE,试判断四边形EFGH的形状,并证明你的结论;(2)将正方形ABCD沿线段EG,HF剪开,再把得到的四个四边形按图③的方式拼接成一个四边形.若正方形ABCD的边长为3 cm,HA=EB=FC=GD=1 cm,则图③中阴影部分的面积为________cm2.25. 如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,垂足为点F,交直线MN于点E,连接CD,BE.(1)求证:CE=AD;(3)若点D为AB的中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明理由.答案:1---10 BDCAB ACDAB 11. 3 12. 4 13. 8 14. 7215. (21 008,0) 16. ① ② ③ ④ 17. ∠BAD=90° 18. 7 219. 2 4(22)n20. 解:如图,取AB 的中点H ,连接EH ,∵∠AEF=90°,∴∠2+∠AEB=90°,∵四边形ABCD 是正方形,∴∠1+∠AEB=90°,∴∠1=∠2,∵点E 是BC 的中点,点H 是AB 的中点,∴BH=BE ,AH =CE ,∴∠BHE=45°,∵CF 是∠DCG 的角平分线, ∴∠FCG=45°,∴∠AHE=∠ECF=135°,在△AHE 和△ECF 中,⎩⎪⎨⎪⎧∠1=∠2,AH =EC ,∠AHE=∠ECF,∴△AHE≌△ECF(ASA),∴AE=EF.21. 解:.(1)四边形ACED 是平行四边形.理由如下:∵四边形ABCD 是正方形,(2)由(1)知,BC=AD=CE=CD,在Rt△BCD中,令BC=CD=x,则x2+x2=82.解得x=42,∴BE=2x=82(cm).22. .(1)证明:∵OD平分∠AOC,OF平分∠COB,∴∠AOC=2∠COD,∠COB=2∠COF,∵∠AOC+∠BOC=180°,∴2∠COD+2∠COF=180°,∴∠COD+∠COF =90°,∴∠DOF=90°.∵OA=OC,OD平分∠AOC,∴OD⊥AC,AD=DC,∴∠CDO=90°,∵CF⊥OF,∴∠CFO=90°,∴四边形CDOF是矩形.(2)当∠AOC=90°时,四边形CDOF是正方形.理由如下:∵∠AOC=90°,AD=DC,∴OD=DC.又由(1)知四边形CDOF是矩形,则矩形CDOF是正方形.因此,当∠AOC=90°时,四边形CDOF是正方形.23. (1)证明:∵四边形ABCD是正方形,∴BC=DC,∠BCP=∠DCP=45°,又∵CP=CP,∴△BCP≌△DCP(SAS).(2)证明:由(1)知,△BCP≌△DCP,∴∠CBP=∠CDP,∵PE=PB,∴∠CBP=∠E,∴∠CDP=∠E,∵∠1=∠2(对顶角相等),∴180°-∠1-∠CDP=180°-∠2-∠E,即∠DPE=∠DCE,∵AB∥CD,∴∠DCE =∠ABC,∴∠DPE=∠ABC.(3) 5824. (1)四边形EFGH是正方形.证明:∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,DH.∴△AEH≌△BFE≌△CGF≌△DHG.∴EH=EF =FG =GH.∴四边形EFGH 是菱形.由△DHG≌△AEH,知∠DHG=∠AEH.∵∠AEH+∠AHE=90°,∴∠DHG+∠AHE=90°.∴∠GHE=90°.∴菱形EFGH 是正方形.(2) 125. (1)证明:∵DE⊥BC,∴∠DFB=90°,又∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,又∵MN∥AB,即CE∥AD,∴四边形ADEC 是平行四边形,∴CE=AD.(2)四边形BECD 是菱形.理由如下:∵D 为AB 中点,∴AD=BD ,又∵CE=AD ,∴BD=CE ,∵BD∥CE,∴四边形BECD 是平行四边形,∵∠ACB=90°,D 为AB 中点,∴CD=BD ,∴▱BECD 是菱形.(3)当∠A =45°时,四边形BECD 是正方形.理由如下:∵∠ACB =90°,∠A=45°,∴∠ABC=∠A =45°,∴AC=BC ,∵D 为BA 的中点,∴CD⊥AB,∴∠CDB =90°,∵四边形BECD 是菱形,∴四边形BECD 是正方形,即当∠A =45°时,四边形BECD 是正方形.、最困难的事就是认识自己。
北师版九上数学1.3正方形的性质与判定 同步训练 (含答案)
北师版九上数学1.3正方形的性质与判定同步训练1、四边形ABCD中,AC、BD相交于点O,能判别这个四边形是正方形的条件是()A.OA=OB=OC=OD,AC⊥BDB.AB∥CD,AC=BDC.AD∥BC,∠A=∠CD.OA=OC,OB=OD,AB=BC2、在正方形ABCD中,AB=12cm,对角线AC、BD相交于O,则△ABO的周长是()A.12+122B.12+62C.12+2D.24+623、如图,四边形ABCD是正方形,延长BC至点E,使CE=CA,连结AE交CD 于点F, 则∠AFC 的度数是().(A)150°(B)125°(C)135°(D)112.5°4、已知正方形的面积为4,则正方形的边长为________,对角线长为________.5、如左下图,四边形ABCD是正方形,△CDE是等边三角形,则∠AED=______,∠AEB=______.6、如右上图,四边形ABCD是正方形,△CDE是等边三角形,求∠AEB的度数.7、已知:如左下图,在正方形ABCD 中,AE⊥BF,垂足为P,AE 与CD 交于点E, BF 与AD 交于点F,求证:AE=BF.8、如图,正方形ABCD,AB=a,M 为AB 的中点,ED=3AE,(1)求ME 的长;(2)△EMC 是直角三角形吗?为什么?9、如左下图,在正方形ABCD 中,E、F、G、H 分别在它的四条边上,且AE=BF=CG=DH.四边形EFGH 是什么特殊的四边形,你是如何判断的?10、如右上图所示,E 是正方形ABCD 的对角线BD 上一点,EF⊥BC,EG⊥CD,垂足分别是F、G.试说明AE=FG.A A BCD EF G11、以锐角△ABC 的边AC、AB 为边向外作正方形ACDE 和正方形ABGF,连结BE、CF.(1)试探索BE 和CF 的关系?并说明理由。
(2)你能找到哪两个图形可以通过旋转而相互得到,并指出旋转中心和旋转角。
2021年北师大版数学九年级上册《正方形的性质与判定》练习含答案
北师大版数学九年级上册《正方形的性质与判定》课时练习一、选择题1.如图是一张矩形纸片ABCD,AD=10cm,若将纸片沿DE折叠,使DC落在DA上,点C的对应点为点F,若BE=6cm,则CD=( )A.4cmB.6cmC.8cmD.10cm2.如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A.2对B.3对C.4对D.5对3.如图,△ABC是一个等腰直角三角形,DEFG是其内接正方形,H是正方形的对角线交点;那么,由图中的线段所构成的三角形中相互全等的三角形的对数为()A.12B.13C.26D.304.已知四边形ABCD是平行四边形,再从①AB=BC;②∠ABC=90°;③AC=BD;④AC⊥BD.四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A.选①②B.选②③C.选①③D.选②④5.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC;②∠ABC=90°;③AC=BD;④AC⊥BD.中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是()A.①②B.②③C.①③D.②④6.下列说法中,错误的是()A.一组对边平行且相等的四边形是平行四边形B.两条对角线互相垂直且平分的四边形是菱形C.四个角都相等的四边形是矩形D.邻边相等的菱形是正方形7.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是( )A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形8.如图,正方形AEFG的边AE放置在正方形ABCD的对角线AC上,EF与CD交于点M,得四边形AEMD,且两正方形的边长均为2,则两正方形重合部分(阴影部分)的面积为()A.﹣4+4B.4+4C.8﹣4D. +1二、填空题9.如图,已知正方形ABCD的边长为4,对角线AC与BD相交于点O,点E在DC边的延长线上.若∠CAE=15°,则AE= .10.如图,已知正方形ABCD,点E在边DC上,DE=4,EC=2,则AE的长为.11.如图,已知正方形ABCD中,CM=CD,MN⊥AC,连接CN,则∠MNC= .12.如图所示,正方形ABCD的周长为8cm,顺次连结正方形ABCD各边的中点,得到正方形EFGH,则EFGH的周长等于_____cm,面积等于______cm2.13.如图所示,直线a经过正方形ABCD的顶点A,分别过此正方形的顶点B、D作BF⊥a于点F、DE⊥a于点E,若DE=4,BF=3,则EF的长为____________.14.如图,正方形ABCD的面积为18,菱形AECF的面积为6,则菱形的边长为.三、解答题15.如图,已知点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且EA⊥AF.求证:DE=BF.16.已知正方形ABCD,E、F分别为边BC、CD上的点,DE=AF.求证:AF⊥DE.17.如图,点E、F分别在正方形ABCD的边DC、BC上,AG⊥EF,垂足为G,且AG=AB,求∠EAF 的度数.18.如图,四边形ABCD是边长为a的正方形,点G,E分别是边AB,BC的中点,∠AEF=90°,且EF交正方形外角的平分线CF于点F.(1)证明:∠BAE=∠FEC;(2)证明:△AGE≌△ECF;(3)求△AEF的面积.参考答案1.A2.C3.C4.B5.B6.D7.D8.A9.答案为:8.10.答案为:132.11.答案为:67.5°.12.答案为:;213.答案为:714.答案为:;15.证明:∵∠FAB+∠BAE=90°,∠DAE+∠BAE=90°,∴∠FAB=∠DAE,∵∠AB=AD,∠ABF=∠ADE,∴△AFB≌△ADE,∴DE=BF.16.证明:∵四边形ABCD为正方形,∴AD=DC,∠ADC=∠C=90°,在Rt△ADF与Rt△DCE中,AF=DE,AD=CD,∴Rt△ADF≌Rt△DCE(HL)∴∠DAF=∠EDC 设AF与ED交于点G,∴∠DGF=∠DAF+∠ADE=∠EDC+∠ADE=∠ADC=90°∴AF⊥DE.17.解:在Rt△ABF与Rt△AGF中,∵AB=AG,AF=AF,∠B=∠G=90°,∴△ABF≌△AGF(HL),∴∠BAF=∠GAF,同理易得:△AGE≌△ADE,有∠GAE=∠DAE;即∠EAF=∠EAG+∠FAG=∠DAG+∠BAG=∠DAB=45°,故∠EAF=45°.18.解:。
北师大版九年级数学上册--第一章 1.3《正方形的性质与判定》同步练习题(含答案)
1.3《正方形的性质与判定》同步练习一、填空题1.正方形的定义:有一组邻边______并且有一个角是______的平行四边形叫做正方形,因此正方形既是一个特殊的有一组邻边相等的______,又是一个特殊的有一个角是直角的______。
2.正方形的性质:正方形具有四边形、平行四边形、矩形、菱形的一切性质,正方形的四个角都是______;四条边都______且__________________;正方形的两条对角线______,并且互相______,每条对角线平分______对角。
它有______条对称轴。
3.正方形的判定:(1)____________________________________的平行四边形是正方形;(2)____________________________________的矩形是正方形;(3)____________________________________的菱形是正方形。
4.对角线________________________________的四边形是正方形。
5.若正方形的边长为a ,则其对角线长为______,若正方形ACEF 的边是正方形ABCD 的对角线,则正方形ACEF 与正方形ABCD 的面积之比等于______。
6.延长正方形ABCD 的BC 边至点E ,使CE =AC ,连结AE ,交CD 于F ,那么∠AFC 的度数为______,若BC =4cm ,则△ACE 的面积等于______。
7.如图,E 是正方形ABCD 的对角线BD 上一点,且BE =BC ,则∠ACE = 。
8.如图,已知正方形ABCD ,以CD 为边作等边△CDE ,则∠AED 的度数是 。
二、选择题。
1、已知四边形ABCD 是平行四边形,再从①AB =BC ,②∠ABC =90°,③AC =BD ,④AC ⊥BD 四个条件中,选两个作为补充条件后,使得四边形ABCD 是正方形,现有下列四种选法,其中错误的是( ) A .选①② B .选②③ C .选①③ D .选②④2、四边形ABCD 的对角线AC =BD ,AC ⊥BD ,分别过点A ,B ,C ,D 作对角线的平行线,所成的四边形EFMN 是( )A .正方形B .菱形C .矩形D .任意四边形3、已知四边形中,对角线与相交于点,,下列判断中错误的是( ) A.如果=,=,那么四边形是平行四边形 B.如果,=,那么四边形是矩形 C.如果=,,那么四边形是菱形 D.如果=,垂直平分,那么四边形是正方第7题图 第8题图4、满足下列条件的四边形是正方形的是()A.对角线互相垂直平分的平行四边形B.对角线互相平分且相等的矩形C.对角线互相垂直平分的菱形D.对角线互相垂直平分且相等的四边形5、如图,已知P是正方形ABCD的对角线BD上一点,且BP=BC,则∠ACP的度数是( )A.45° B.22.5° C.67.5° D.75°题5图题6图题7图6、如图,点在正方形内,满足,,,则阴影部分的面积是()A.76B.70C.48D.247、如图,在四边形中,点是对角线的交点,在下列条件中,能判定这个四边形为正方形的是()A.,B.,C.,D.,,8、如图,四边形是正方形,对角线,交于点,下列结论:①;②;③;④正方形有四条对称轴.上述结论正确的有()A.①②③④B.①②③C.②③④D.①③④9、下列四个命题:①一组对边平行且一组对角相等的四边形是平行四边形;②对角线互相垂直且相等的四边形是正方形;③顺次连接矩形四边中点得到的四边形是菱形;④正五边形既是轴对称图形又是中心对称图形.其中真命题共有()A.个B.个C.个D.个三、解答题1、已知Rt△ABC中,∠C=90°,CD平分∠ACB交AB于D,DF//BC,DE//AC。
2023-2024学年九年级数学上册《第一章正方形的性质与判定》同步练习题有答案(北师大版)
2023-2024学年九年级数学上册《第一章正方形的性质与判定》同步练习题有答案(北师大版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.矩形,菱形,正方形都具有的性质是()A.对角线相等B.对角线互相平分C.对角线平分一组对角D.对角线互相垂直2.如图,数字代表所在正方形的面积,则A所代表的正方形的面积为()A.25 B.49 C.81 D.1003.正方形的一条对角线长为2,则这个正方形的边长为()A.1 B.√2C.√3D.2√24.如图,E是正方形ABCD的边BC延长线上的一点,且CE=CA,AE交CD于点F,则∠DAF的度数为()A.45°B.30°C.20°D.22.5°5.如图,正方形木板ABCD的面积是18dm2,在这个木板上截出面积为8dm2的正方形CFGE,连接AG,则AG的长度为()A.3√2dm B.√2dm C.2dm D.4dm6.如图,在正方形ABCD中,点E,点F分别是BC,AB上的点,连接DE,DF,EF,满足∠DEF=∠DEC.若∠ADF=α,则∠EDC=()A.2αB.45°−αC.45°+αD.90°−2α7.如图,一块边长为18dm的正方形铁片,四角各被截去了一个边长为4dm的小正方形,现在要从剩下的铁片中剪出一块完整的正方形铁片来,剪出的正方形面积最大为()A.100dm2B.128dm2C.162dm2D.180dm28.如图,在正方形ABCD中,E为对角线AC上一点,连接DE,过点E作EF⊥DE,交BC延长线于点F,以DE,EF为邻边作矩形DEFG,连接CG.在下列结论中:①ED=EF;②AE=CG;③AE⊥CG;④∠DEC=∠CFG.其中正确结论的个数是()A.1个B.2个C.3个D.4个二、填空题9.如图,四边形ABCD是菱形,对角线AC与BD相交于点O,请添加条件,使得菱形ABCD为正方形.(只能添加一个条件)10.如图,从一个大正方形中裁去两个小正方形,则留下部分的面积为cm2.11.如图所示,在正方形ABCD中,点P在AC上PE⊥AB,PF⊥BC垂足分别为E,F,EF=3则DP的长为.12.如图,正方形ABCD中,点E是对角线BD上的一点,且BE=AB,连接CE,AE,则∠AEC的度数为.13.如图,在正方形ABCD中,E为AD上一点,连接BE,交对角线AC于点F,连接DF,若∠ABE=35°,则∠CFD=度.三、解答题14.如图,在正方形ABCD中,点E在BC边的延长线上,点F在CD边的延长线上,且CE=DF,连接AE和BF 相交于点M.求证:AE=BF.15.如图,已知正方形ABCD中AB=2,AC为对角线,AE平分∠DAC,EF⊥AC垂足为F.求FC的长.16.如图,正方形ABCD中,点E为对角线AC上的一点EF⊥CD,EG⊥AD垂足分别为F,G,已知EG=1,EF= 2求BE的长度.AB,求证:∠FEC=90°.17.如图,已知正方形ABCD的边长为4,E为AB中点,F为AD上的一点,且AF=1418.如图在正方形ABCD中,点E,F分别在AD,CD上,且DE=CF,AF与BE相交于点G.(1)求证:BE=AF;(2)若AB=12,DE=3求AG的长.参考答案1.B2.D3.B4.D5.C6.B7.D8.C9.∠ABC=90°(答案不唯一)10.4√611.312.135°13.8014.证明:在正方形ABCD中AB=BC=CD=AD,∠ABE=∠BCF=90°∵CE=DF∴BE=CF在△AEB与△BFC中{AB=BC∠ABE=∠BCF BE=CF∴△AEB≌△BFC(SAS)∴AE=BF.15.解:∵正方形ABCD中AB=2,AC为对角线∴AB=BC=AD=2∴AC=√AB2+BC2=2√2∵AE平分∠DAC,EF⊥AC,ED⊥AD∴EF=ED∵EA=EA∴Rt△EAF≌Rt△EAD∴AF=AD=2∴FC=AC−AF=2√2−2.16.解:如图所示,连接DE∵四边形ABCD是正方形∴CB=CD,∠ECB=∠ECD=45°又∵CE=CE∴△CBE≌△CDE∴BE=ED∵EF⊥CD∴∠EGD=∠GDF=∠DFE=90°∴四边形GEFD是矩形∴GF=DE在Rt△EFG中EG=1∴FG=√EG2+EF2=√5∴BE=FG=√5.AB17.证明:∵正方形ABCD的边长为4,且AF=14∴AF=1,FD=3,DC=BC=4∵E为AB的中点∴AE=EB=2在Rt△AEF中EF=√AF2+AE2=√12+22=√5在Rt△DFC中FC=√DF2+DC2=√32+42=5在Rt△EBC中EC=√EB2+BC2=√22+42=2√5.∴EC2+EF2=FC2∴△EFC是以EC、EF为直角边的直角三角形∴∠FEC=90°.18.(1)证明:∵四边形ABCD是正方形∴∠BAE=∠ADF=90°∵DE=CF∴AE=DF.在△BAE和△ADF中{AB=AD,∠BAE=∠ADF,AE=DF,∴△BAE≌△ADF(SAS)∴BE=AF(2)解:由(1)得△BAE≌△ADF∴∠EBA=∠FAD∴∠GAE+∠AEG=∠GAE+∠BAG=∠BAD=90°∴∠AGE=90°∵AB=12,DE=3∴AE=9∴BE=√AB2+AE2=√122+92=15在Rt△ABE中12AB×AE=12BE×AG∴AG=12×915=7.2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版九年级数学上册第一章特殊平行四边形 3. 正方形的性质与判定正方形的判定
专题练习题
1.下列说法不正确的是()
A.一组邻边相等的矩形是正方形B.对角线相等的菱形是正方形
C.对角线互相垂直的矩形是正方形D.有一个角是直角的平行四边形是正方形2.在四边形ABCD中,O是对角线的交点,能判定这个四边形是正方形的条件是() A.AC=BD,AB∥CD,AB=CD B.AD∥BC,∠A=∠C
C.AO=BO=CO=DO,AC⊥BD D.AO=CO,BO=DO,AB=BC
3. 已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC ⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()
A.选①②B.选②③C.选①③D.选②④
4.如图,只要把一张矩形纸片的一个角沿折痕AE翻折上去,使AB和AD边上的AF重合,则四边形ABEF就是一个正方形,判断的依据是____________________________.
5.如图,在四边形ABCD中,AB=BC=CD=DA,对角线AC与BD相交于点O,若不增加任何字母与辅助线,要使得四边形ABCD是正方形,则还需增加的一个条件是__________________.
6.黑板上画有一个图形,学生甲说它是多边形,学生乙说它是平行四边形,学生丙说它是菱形,学生丁说它是矩形,老师说这四位同学的答案都正确,则黑板上画的图形是__________.
7.对角线________的菱形是正方形,
对角线________的矩形是正方形,
对角线________________的平行四边形是正方形,
对角线的四边形是正方形.8.已知:如图,△ABC中,∠ABC=90°,BD是∠ABC的平分线,DE⊥AB于点E,DF ⊥BC于点F.求证:四边形DEBF是正方形.
9.如图,在△ABC中,点D,E分别是边AB,AC的中点,将△ADE绕点E旋转180°得到△CFE.
(1)求证:四边形ADCF是平行四边形;
(2)当△ABC满足什么条件时,四边形ADCF是正方形?请说明理由.
10.四边形ABCD的对角线AC=BD,AC⊥BD,分别过点A,B,C,D作对角线的平行线,所成的四边形EFMN是()
A.正方形B.菱形C.矩形D.任意四边形
11.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是() A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF
12.如图,将一张长方形纸片对折两次,然后剪下一个角,打开.如果要剪出一个正方形,那么剪口线与折痕成________度角.
13.如图,以边长为1的正方形的四边中点为顶点作四边形,再以所得四边形的四边中点为顶点作四边形,…依次作下去,图中所作的第三个四边形的周长为________;所作的第n 个四边形的周长为________.
14.如图,正方形ABCD的边长为6,菱形EFGH的三个顶点E,G,H分别在正方形ABCD 的边AB,CD,DA上,且AH=2,连接CF.若DG=2,求证:菱形EFGH为正方形.
15.如图,正方形CEFG的边GC在正方形ABCD的边CD上,延长CD到H,使DH=CE,K在BC边上,且BK=CE,求证:四边形AKFH为正方形.
答案:
1---3 DCB
4. 有一组邻边相等的矩形是正方形
5. AC=BD
6. 正方形
7. 相等
互相垂直
互相垂直且相等
互相垂直平分且相等
8.证明:∵DE⊥AB,DF⊥BC,
∴∠DEB=∠DFB=90°.
又∵∠ABC=90°,
∴四边形BEDF为矩形.
∵BD是∠ABC的平分线,
且DE⊥AB,DF⊥BC,∴DE=DF,
∴矩形BEDF为正方形.
9. (1)证明:∵△CFE是由△ADE绕点E旋转180°得到的,∴A,E,C三点共线,D,E,F三点共线,且AE=CE,DE=FE,故四边形ADCF是平行四边形;
(2)解:当∠ACB=90°,AC=BC时,四边形ADCF是正方形.理由如下:在△ABC中,∵AC=BC,AD=BD,∴CD⊥AB,即∠ADC=90°.由(1)知,四边形ADCF是平行四边形,
∴四边形ADCF是矩形.又∵∠ACB=90°,∴CD=1
2AB=AD,故四边形ADCF是正方
形
10. A
11. D
12. 45
13. 2 4(
2 2)
n
14.证明:∵四边形ABCD是正方形,∴∠D=∠A=90°.∵四边形EFGH是菱形,∴HG =HE.∵DG=AH=2,∴Rt△HDG≌Rt△EAH,∴∠DHG=∠AEH.又∵∠AEH+∠AHE=90°,∴∠DHG+∠AHE=90°,∴∠GHE=90°,∴菱形EFGH为正方形.
15.证明:∵四边形ABCD和四边形CEFG是正方形,∴AB=BC=CD=AD,∠BAD=∠DCB=∠B=∠ADC=90°,∠GCE=∠E=∠GFE=∠CGF=90°,∴∠ADH=∠HGF=∠E
=∠B=90°.又∵DH=CE,BK=CE,∴BK=GF=DH=EF,KE=GH=AB=AD,∴△ABK ≌△KEF≌△HGF≌△ADH,∴AK=KF=HF=AH,∠BAK=∠DAH.∵∠BAD=90°,∴∠HAK=∠HAD+∠DAK=∠BAK+∠DAK=∠BAD=90°,∴四边形AKFH为正方形.。