直线与圆圆与圆的位置关系含解析理

合集下载

直线与圆、圆与圆的位置关系―知识讲解提高

直线与圆、圆与圆的位置关系―知识讲解提高

直线与圆相交于一点 直线与圆相切于一点 直线与圆相离于一点 直线与圆相交于两点
判断直线与圆的位置关系,可以通过比较圆心到直线的距离与圆的半径大小来实现。
圆心到直线的距离小于半径,则直线与圆相交;等于半径,则直线与圆相切;大于半径,则 直线与圆相离。
判断圆与圆的位置关系,可以通过比较两圆的圆心距与两圆半径之和或半径之差的大小来实 现。
圆心到直线的距离:利用圆心到直 线的距离判断圆与直线的关系
弦长:通过比较弦长来判断圆与圆 的位置关系
添加标题
添加标题
添加标题
添加标题
圆的半径:比较两圆的半径大小, 判断圆与圆的位置关系
切线:利用切线性质判断圆与直线 的关系
距离公式:利用两点间的距离公式求解直线与圆之间的距离 角度公式:利用三角函数或余弦定理求解直线与圆之间的夹角 代数运算:利用代数方法简化计算过程,提高解题效率
交通路线规划:利用直线与圆的位置关系,确定最佳路线。 股市分析:通过分析股票价格与均线的位置关系,判断股票走势。 地球科学:利用圆与圆的位置关系,研究地球与其他天体的相对位置。 建筑学:在建筑设计时,利用直线与圆、圆与圆的位置关系,实现美观与实用的统一。
直线与圆的位置关系在解析几何中的应用 圆与圆的位置关系在几何证明题中的应用 利用直线与圆、圆与圆的位置关系解决数学竞赛中的难题 在数学竞赛中,直线与圆、圆与圆的位置关系常作为考点和难点
特殊情况处理:针对直线与圆相切、相交等特殊情况,采用相应的方法进行求解
理解数形结合的概念,将数学问题转化为图形问题 掌握常见的数形结合方法,如坐标法、向量法等 学会利用图形直观地分析问题,找到解题思路 练习数形结合的题目,提高解题能力
掌握直线与圆的位置关系的基本题型,包括相切、相交和相离等,并掌握相应的解题方法。 掌握圆与圆的位置关系的基本题型,包括相切、相交和相离等,并掌握相应的解题方法。 熟悉不同题型的特点和解题方法,能够根据题目的具体要求选择合适的解题方法。 掌握解题技巧,如利用几何性质、数形结合等方法,提高解题效率。

2.5 直线与圆、圆与圆的位置关系(精练)(解析版).

2.5 直线与圆、圆与圆的位置关系(精练)(解析版).

2.5直线与圆、圆与圆的位置关系(精练)1直线与圆的位置关系1.(2022·山东滨州)已知直线()22:1(32)250l m m x m y m +++---=,圆22:20C x y x +-=,则直线l 与圆C 的位置关系是()A .相离B .相切C .相交D .不确定【答案】D【解析】直线()22:1(32)250l m m x m y m +++---=,即2(2)(2)(35)0x m x y m x y -+-++-=,由2020350x x y x y -=⎧⎪-=⎨⎪+-=⎩解得21x y =⎧⎨=⎩,因此,直线l 恒过定点(2,1)A ,又圆22:20C x y x +-=,即22(1)1x y -+=,显然点A 在圆C 外,所以直线l 与圆C 可能相离,可能相切,也可能相交,A ,B ,C 都不正确,D 正确.故选:D2(2021·黑龙江)直线43110x y -+=与圆()()22114x y +++=的位置关系是()A .相离B .相切C .相交D .不确定【答案】B【解析】圆心坐标为()1,1--,半径为2,圆心到直线的距离为341125-+=,所以直线43110x y -+=与圆()()22114x y +++=相切.故选:B3.(2022·辽宁·瓦房店市高级中学高二期末)直线()1R y kx k =+∈与圆22(1)(1)4x y -+-=的位置关系是()A .相交B .相切C .相离D .不确定【答案】A【解析】直线()1R y kx k =+∈恒过定点()0,1,又22(01)(11)14-+-=<,即点()0,1在圆22(1)(1)4x y -+-=内部,所以直线与圆相交;故选:A4.(2022·湖北省武汉市汉铁高级中学高三阶段练习)直线230kx y k +--=与圆22450x y x +--=的位置关系是()A .相离B .相切C .相交D .相交或相切【答案】C【解析】直线230kx y k +--=即()()320k x y -+-=,过定点()3,2,因为圆的方程为22450x y x +--=,则223243540+-⨯-=-<,所以点()3,2在圆内,则直线与圆相交.故选:C5.(2021·重庆市两江中学校高二阶段练习)已知过点(3,1)P 的直线与圆22(1)(2)5x y -+-=相切,且与直线10x my --=垂直,则m =()A .12-B .12C .2-D .2【答案】C【解析】设过点(3,1)P 的直线为l .(1)当l 的斜率不存在时,直线l :3x =.圆22(1)(2)5x y -+-=的圆心到l 的距离为312-=≠,所以不是圆的切线,不合题意.(2)当l 的斜率存在时,直线l :()13y k x -=-.=k =2.因为l 与直线10x my --=垂直,所以121m⨯=-,解得:m =-2.故选:C6.(2022·全国·高二课时练习)若直线:420l kx y k -++=与曲线y =有两个交点,则实数k 的取值范围是()A .{}1k k =±B .3{|}4k k <-C .3{|1}4k k -≤<-D .3{|1}4k k -≤<【答案】C【解析】由题意,直线l 的方程可化为(2)40x k y +-+=,所以直线l 恒过定点(2,4)A -,y =可化为224(0)x y y +=≥其表示以(0,0)为圆心,半径为2的圆的一部分,如图.当l 与该曲线相切时,点(0,0)到直线的距离24221kd k +==+,解得34k =-.设(2,0)B ,则40122AB k -==---.由图可得,若要使直线l 与曲线24y x =-314k -≤<-.故选:C.7.(2022·贵州遵义·高二期末(文))若直线():100l ax by ab +-=>始终平分圆()()22:124C x y -+-=的周长,则11a b+的最小值为()A .322+B .6C .7D .32+【答案】A【解析】圆C 的圆心为()1,2C ,由题意可知,直线l 过圆心C ,则21a b +=,因为0ab >,则0a >且0b >,因此,()1111222332322b a b a a b a b a ba b a b ⎛⎫+=++=++≥+⋅=+ ⎪⎝⎭当且仅当2a b 时,等号成立,故11a b+的最小值为322+.故选:A.8.(2022·广西梧州·高二期末(文))已知对任意的实数k ,直线l :0kx y k t --+=与圆C :2210x y +=有公共点,则实数t 的取值范围为()A .[3,0)-B .[3,3]-C .(,3](0,3]-∞-D .(,3)[0,3]-∞-【答案】B【解析】由直线0kx y k t --+=可化为(1)-=-y t k x ,则直线l 过定点(1,)t ,因为直线l :kx y k t --+0=与圆C :2210x y +=有公共点,所以定点(1,)t 在圆C 上或圆C 内,可得22110t +≤,解得33t -≤≤,故选:B9.(2022·江西上饶·高二期末(文))已知直线2y kx =-与圆22(1)1x y -+=相交,则实数k 的取值范围是()A .3,4⎛⎤-∞ ⎥⎝⎦B .3,4⎛⎫-∞ ⎪⎝⎭C .3,4⎡⎫+∞⎪⎢⎣⎭D .3,4⎛⎫+∞ ⎪⎝⎭【答案】D【解析】由题意,圆心()1,0到直线20kx y --=1,即22441k k k -+<+,解得34k >故选:D10.(2022·浙江·温州中学高二期末)已知直线10kx y k -+-=与圆22(2)1x y -+=有两个不同的交点,则实数k 的取值范围是()A .3,04⎡⎤-⎢⎥⎣⎦B .30,4⎛⎫ ⎪⎝⎭C .30,4⎡⎤⎢⎥⎣⎦D .3,04⎛⎫- ⎪⎝⎭【答案】B【解析】因为直线10kx y k -+-=与圆22(2)1x y -+=有两个不同的交点,1<,即2860k k -<,解得304k <<,所以实数k 的取值范围是30,4⎛⎫⎪⎝⎭,故选:B.2直线与圆的弦长1.(2021·浙江高二期末)已知过点()1,3P 的直线l 被圆()2224x y -+=截得的弦长为l 的方程是()A.43130x y +-=B.34150x y +-=C.34150x y +-=或1x =D.43130x y +-=或1x =【答案】D【解析】圆()2224x y -+=的圆心为点()2,0,半径为2r =,圆心到直线l 的距离为1d ==.①若直线l 的斜率不存在,则直线l 的方程为1x =,此时圆心到直线l 的距离为1,合乎题意;②若直线l 的斜率存在,可设直线l 的方程为()31y k x -=-,即30kx y k -+-=,圆心到直线l的距离为1d ==,解得43k =-.此时直线l 的方程为43130x y +-=.综上所述,直线l 的方程为43130x y +-=或1x =.故选:D.2(2022·贵溪市)直线y kx =被圆222x y +=截得的弦长为()A.B.2C.D.与k 的取值有关【答案】A【解析】由于圆222x y +=的圆心在直线y kx =上,所以截得弦为圆222x y+=,故截得的弦长为.故选:A 3.(2022·江苏·高二)过点(-2,1)的直线中,被圆x 2+y 2-2x +4y =0截得的弦最长的直线的方程是()A .x +y +1=0B .x +y -1=0C .x -y +1=0D .x -y -1=0【答案】A【解析】由题意得,圆的方程为()221(2)5x y -++=,∴圆心坐标为()1,2-.∵直线被圆截得的弦长最大,∴直线过圆心()1,2-,又直线过点(-2,1),所以所求直线的方程为211221y x +-=+--,即10x y ++=.故选:A .4.(2022·全国·模拟预测)(多选)已知直线l :()()121740m x m y m ---+-=,圆C :2224200x y x y +---=,则()A .直线l 恒过定点()1,3B .直线l 与圆C 相交C .圆C 被x 轴截得的弦长为D .当圆C 被直线l 截得的弦最短时,34m =【答案】BD【解析】依题意,直线l :()()121740m x m y m ---+-=可化为()2740x y m x y --+++-=,由27040x y x y --+=⎧⎨+-=⎩解得3x =,1y =,即直线l 过定点()3,1P ,A 不正确;圆C :22(1)(2)25x y -+-=的圆心(1,2)C ,半径=5r ,||PC r =<,即点P 在圆C 内,直线l 与圆C 恒相交,B 正确;圆心C 到x 轴的距离2d =,则圆C 被x 轴截得的弦长为==C 不正确;由于直线l 过定点()3,1P ,圆心(1,2)C ,则直线PC 的斜率121312k -==--,当圆C 被直线l 截得的弦最短时,由圆的性质知,l PC ⊥,于是得1221m m -=-,解得34m =,D 正确.故选:BD5.(2022·湖北恩施·高二期末)(多选)已知直线l :()()221310m x m y m ++---=与圆C :()()222116x y -++=交于A ,B 两点,则弦长|AB |的可能取值是()A .6B .7C .8D .5【答案】BC【解析】由()()221310m x m y m ++---=,得()23210x y m x y +-+--=,令230210x y x y +-=⎧⎨--=⎩解得1,1,x y =⎧⎨=⎩故直线l 恒过点(1,1)M .圆心(2,1)C ,半径4r =,CM ==,则2AB r ≤≤,即8AB ≤≤.故选:BC.6.(2022·辽宁辽阳市·高二期末)已知圆22:4850C x y x y +-+-=,直线:20l mx y m --=.(1)证明:直线l 与圆C 相交.(2)设l 与圆C 交于,M N 两点,若MN =,求直线l 的倾斜角及其方程.【答案】(1)证明见解析;(2)答案见解析.【解析】(1)证明:直线:2()0l m x y --=过定点()2,0,因为224250-⨯-<,所以点()2,0在圆C 的内部,故直线l 与圆C 相交.(2)圆C 的标准方程为()2225()42x y -++=,则圆C 的圆心坐标为4(2,)C -,半径为5,且圆心C 到直线l 的距离()22242411m md m m ---==++因为2225213MN d =-=,所以23d =由24231m =+,得33m =±当33m =时﹐直线l 的方程为()323y x =-,倾斜角为6π当33m =-时﹐直线l 的方程为()323y x =--,倾斜角为56π3圆与圆的位置关系1.(2022·西藏)圆x 2+y 2-2x +4y =0与直线2x +y +1=0的位置关系为()A .相离B .相切C .相交D .以上都有可能【答案】C【解析】圆x 2+y 2-2x +4y =0的圆心坐标为(1,2)-,半径5r =圆心(1,2)-到直线2x +y +1=0的距离2221(2)15521d ⨯+-+==+由555d r =<=,可得圆与直线的位置关系为相交.故选:C2.(2022·陕西渭南)已知圆1C :()()22321x y -++=与圆2C :()()227150x y a -+-=-,若圆1C 与圆2C 有且仅有一个公共点,则实数a 等于()A .14B .34C .14或45D .34或14【答案】D【解析】圆1C :()()22321x y -++=的圆心为()113,2,1C r -=,圆2C :()()227150x y a -+-=-的圆心为()227,1,50C r a =-()()221237215C C -+--=,因为圆1C 与圆2C 有且仅有一个公共点,故圆1C 与圆2C 相内切或外切,故215r -=或215r +=,从而26=r 或24r =,所以2506r a =-=或2504r a =-=,解得:34a =或14a =所以实数a 等于34或14故选:D3.(2022广东)圆2220x y x +-=与圆22(1)(2)9x y -++=的位置关系为()A.内切B.相交C.外切D.相离【答案】A【解析】圆221:20C x y x +-=,即22(1)1x y -+=,表示以1(1,0)C 为圆心,半径等于1的圆.圆222:(1)(2)9C x y -++=,表示以2(1,2)C -为圆心,半径等于3的圆.∴两圆的圆心距|20|2d =--=,231=-,故两个圆相内切.故选:A.4.(2022·江西)已知圆()221:210C x y x my m R +-++=∈关于直线210x y ++=对称,圆2C 的标准方程是()()222316x y ++-=,则圆1C 与圆2C 的位置关系是()A.相离B.相切C.相交D.内含【答案】B【解析】22210x y x my +-++=即()222124m m x y 骣琪-++=琪桫,圆心1,2m ⎛⎫- ⎪⎝⎭,因为圆1C 关于直线210x y ++=对称,所以圆心1,2m ⎛⎫- ⎪⎝⎭在直线210x y ++=上,即12102m ⎛⎫+⨯-+= ⎪⎝⎭,解得2m =,()()22111x y -++=,圆心()1,1-,半径为1,()()222316x y ++-=,圆心()2,3-,半径为4,5=,因为圆心间距离等于两圆半径之和,所以圆1C 与圆2C 的位置关系是相切,故选:B.5.(2022云南)已知圆1C 的标准方程是()()224425x y -+-=,圆2C :22430x y x my +-++=关于直线10x +=对称,则圆1C 与圆2C 的位置关系为()A.相离B.相切C.相交D.内含【答案】C【解析】由题意可得,圆()()221:4425C x y -+-=的圆心为()4,4,半径为5因为圆222:430C x y x my +-++=关于直线10x ++=对称,所以2102m-+=(),得m =,所以圆()(222:24C x y -++=的圆心为(2,,半径为2,则两圆圆心距12C C =1252725C C -<<=+,所以圆1C 与圆2C 的位置关系是相交,故选:C .6.(2022·上海中学东校高二期末)已知圆22:28M x y ax +-=截直线:0l x y -=所得的弦长M 与圆22:(1)4N x y +-=的位置关系是()A .内切B .相交C .外切D .相离【答案】B【解析】由22:28M x y ax +-=,即()2228y a x a +=+-,故圆心(),0M a ,半径M r =所以点M 到直线:0l x y -=的距离d =故解得:1a =±;所以()1,0M ±,3M r =;又22:(1)4N x y +-=,圆心()0,1N ,2N r =,所以MN ==,且15M N M N r r r r -=<<=+,即圆M 与圆N 相交,故选:B.7.(2022·湖南岳阳·高二期末)圆221:1O x y +=与圆222:680O x y x y m +-++=外切,则实数m =_________.【答案】9【解析】圆1O 的圆心()10,0O ,半径11r =,圆2O 的圆心()23,4O -,半径2r =125O O =根据题意可得:1212O O r r =+,即51=9m =故答案为:9.8.(2022·上海徐汇·高二期末)已知圆221:(2)(2)1C x y -+-=和圆2222:()(0)C x y m m m +-=>内切,则m 的值为___________.【答案】72【解析】圆1C 的圆心为()2,2,半径为11r =,圆2C 的圆心为()0,m ,半径为2r m =,所以两圆的圆心距()()22202d m =-+-,又因为两圆内切,有()()222021d m m =-+-=-,解得72m =.故答案为:72.9.(2023·全国·高三专题练习)已知圆221:4C x y +=与圆222:860C x y x y m +-++=外切,此时直线:0l x y +=被圆2C 所截的弦长_________.【答案】34【解析】由题可知:221:4C x y +=222:860C x y x y m +-++=,即()()224325-++=-x y m且25025->⇒<m m 由两圆向外切可知()()224030225-+--=+-m ,解得16m =所以2:C ()()22439x y -++=2C 到直线的距离为22431211-==+d ,设圆2C 的半径为R则直线:0l x y +=被圆2C 所截的弦长为221229342-=-=R d 故答案为:344圆与圆的弦长1.(2021·辽宁高三其他模拟)圆O :229x y +=与圆1O :()()222316x y -+-=交于A 、B 两点,则AB =()A.6B.5C.67813D.123913【答案】D【解析】圆O 的半径3r =,圆1O 的半径14r =,113OO =故在1AOO中,22211111cos sin21313r OO rAOO AOOr OO+-∠===⇒∠=⋅,故1sin21313ABr AOO AB=∠=⇒=.故选:D2.(2021·山东济南市·高二期末)(多选)已知圆221:1C x y+=和圆222:40C x y x+-=的公共点为A,B,则()A.12||2C C=B.直线AB的方程是14x=C.12AC AC⊥D.||2AB=【答案】ABD【解析】圆1C的圆心是()0,0,半径11r=,圆()222:24C x y-+=,圆心()2,0,22r=,122C C∴=,故A正确;两圆相减就是直线AB的方程,两圆相减得1414x x=⇒=,故B正确;11AC=,22AC=,122C C=,2221212AC AC C C+≠,所以12AC AC⊥不正确,故C不正确;圆心()0,0到直线14x=的距离14d=,2AB===,故D正确.故选:ABD3.(2021·全国高二课时练习)(多选)圆221:20x y xO+-=和圆222:240O x y x y++-=的交点为A ,B ,则有()A.公共弦AB 所在直线方程为0x y -=B.线段AB 中垂线方程为10x y +-=C.公共弦AB的长为2D.P 为圆1O 上一动点,则P 到直线AB 距离的最大值为212+【答案】ABD【解析】对于A,由圆221:20x y x O +-=与圆222:240O x y x y ++-=的交点为A ,B ,两式作差可得440x y -=,即公共弦AB 所在直线方程为0x y -=,故A 正确;对于B,圆221:20x y x O +-=的圆心为()1,0,1AB k =,则线段AB 中垂线斜率为1-,即线段AB 中垂线方程为:()011y x -=-⨯-,整理可得10x y +-=,故B 正确;对于C,圆221:20x y x O +-=,圆心1O ()1,0到0x y -=的距离为2d ==,半径1r =所以AB ==,故C 不正确;对于D,P 为圆1O 上一动点,圆心1O ()1,0到0xy -=的距离为2d =,半径1r =,即P 到直线AB 距离的最大值为12+,故D 正确.故选:ABD4.(2022·全国·高二专题练习)已知圆22110C x y +=:与圆22222140C x y x y +++-=:.(1)求证:圆1C 与圆2C 相交;(2)求两圆公共弦所在直线的方程;(3)求经过两圆交点,且圆心在直线60x y +-=上的圆的方程.【答案】(1)证明见解析(2)20x y +-=(3)226620x y x y +--+=【解析】(1)证明:圆2C :2222140x y x y +++-=化为标准方程为()()221116x y +++=,()21,1C ∴--,4r =圆221:10C x y +=的圆心坐标为()10,0C ,半径为=R,12C C ∴44<,∴两圆相交;(2)解:由圆221:10C x y +=与圆222:22140C x y x y +++-=,将两圆方程相减,可得2240x y +-=,即两圆公共弦所在直线的方程为20x y +-=;(3)由22222214010x y x y x y ⎧+++-=⎨+=⎩,解得3113x x y y ==-⎧⎧⎨⎨=-=⎩⎩或,则交点为()3,1A -,()1,3B -,圆心在直线60x y +-=上,设圆心为()6,P n n -,则AP BP ==3n =,故圆心()3,3P ,半径4r AP ==,∴所求圆的方程为()22(3)316x y -+-=.5.(2021·湖南·嘉禾县第一中学高二阶段练习)已知圆1C :222220x y x y +++-=,圆2C :22410x y y +--=.(1)证明:圆1C 与圆2C 相交;(2)若圆1C 与圆2C 相交于A ,B 两点,求AB .【答案】(1)证明见解析;【解析】(1)圆1C 的标准方程为()()22114x y +++=,圆心为()1,1--,半径为2,圆2C 的标准方程为()2225x y +-=,圆心为()0,2∴圆1C 和圆2C =22<,可知:圆1C 和圆2C 相交,得证.(2)由(1)结论,将圆1C 与圆2C 作差,得:直线AB 的方程为2610x y +-=,圆2C 的圆心()0,2到直线AB=,∴AB =6.(2022·江苏·高二单元测试)已知圆221:210240 C x y x y +-+-=和圆222:2280C x y x y +++-=.(1)试判断两圆的位置关系;(2)求公共弦所在直线的方程;(3)求公共弦的长度.【答案】(1)相交(2)240x y -+=(3)【解析】(1)将两圆方程化为标准方程为221:(1)(5)50C x y -++=,222:(1)(1)10C x y +++=,则圆1C 的圆心为(1,5)-,半径1r =圆2C 的圆心为(1,1)--,半径2r =12C C =12r r +=12r r -=121212r r C C r r ∴-<<+,∴两圆相交.(2)将两圆方程相减,得公共弦所在直线的方程为240x y -+=.(3)由22222102402280x y x y x y x y ⎧+-+-=⎨+++-=⎩,解得40x y =-⎧⎨=⎩或02x y =⎧⎨=⎩,∴两圆的交点坐标为(4,0)-和(0,2).∴=5切线问题1.(2022·全国·高二课时练习)设圆221:244C x y x y +-+=,圆222:680C x y x y ++-=,则圆1C ,2C 的公切线有()A .1条B .2条C .3条D .4条【答案】B【解析】由题意,得圆()()2212:312C x y -+=+,圆心()11,2C -,圆()()2222:534C x y ++=-,圆心()23,4C -,∴125353C C -<=+,∴1C 与2C 相交,有2条公切线.故选:B .2.(2022·全国·高二课时练习)(多选)已知圆()221:9C x y a +-=与圆()222:1C x a y -+=有四条公切线,则实数a 的取值可能是()A .-4B .-2C .D .3【答案】AD【解析】圆心()10,C a ,半径13r =,圆心()2,0C a ,半径21r =.因为两圆有四条公切线,所以两圆外离.又两圆圆心距d =31>+,解得a <-或a >3.(2022·全国·高二课时练习)(多选)已知圆()()22:211M x y -+-=,圆()()22:211N x y +++=,则下列是M ,N 两圆公切线的直线方程为()A .y =0B .3x -4y =0C.20x y -=D.20x y -=【答案】ACD【解析】圆M 的圆心为M (2,1),半径11r =.圆N 的圆心为N (-2,-1),半径21r =.圆心距2d =>,两圆相离,故有四条公切线.又两圆关于原点O 对称,则有两条切线过原点O ,设切线方程为y =kx1=,解得k =0或43k =,对应方程分别为y =0,4x -3y =0.另两条切线与直线MN 平行,而1:2MN l y x =,设切线方程为12y x b =+1=,解得2b =±,切线方程为20x y -+=,20x y --=.故选:ACD .4.(2022·全国·高二专题练习)过点()1,2且与圆221x y +=相切的直线的方程是______.【答案】1x =或3450x y -+=【解析】当直线l 的斜率不存在时,因为过点()1,2,所以直线:1l x =,此时圆心(0,0)到直线1x =的距离为1=r ,此时直线:1l x =与圆221x y +=相切,满足题意;当直线l 的斜率存在时,设斜率为k ,所以:l 2(1)y k x -=-,即20kx y k --+=,因为直线l 与圆相切,所以圆心到直线的距离1d r ==,解得34k =,所以直线l 的方程为3450x y -+=.综上:直线的方程为1x =或3450x y -+=故答案为:1x =或3450x y -+=5.(2022·全国·高二专题练习)求过点()13M -,的圆224x y +=的切线方程__________.【答案】326122633y x ++=+或326122633y x --=+【解析】过点()13M -,的斜率不存在的直线为:1x =-,圆心到直线的距离为1,与圆相交,当斜率存在,设其为k ,则切线可设为()31y k x -=+.2=,解得:33k +=或33k -=.所以切线方程为:326122633y x ++=+或326122633y x --=+.6(2022·广东·中山一中高三阶段练习)已知圆22:240C x y x y m +--+=.若圆C 与圆22:(2)(2)1D x y +++=有三条公切线,则m 的值为___________.【答案】11-【解析】由22240x y x y m +--+=,得22(1)(2)5x y m -+-=-,所以圆C 的圆心为()1,2C 因为圆22:(2)(2)1D x y +++=,所以圆D 的圆心为()22D ,--,半径为1,因为圆C 与圆D 有三条公切线,所以圆C 与圆D 相外切,即1CD ==+,解得11m =-,所以m 的值为11-.故答案为:11-.7.(2022·全国·高二课时练习)已知圆221:64120C x y x y +-++=与圆222:1420C x y x y a +--+=,若圆1C 与圆2C 有且仅有一个公共点,则实数a 的值为___________.【答案】34或14【解析】设圆1C ,圆2C 的半径分别为1r ,2r .圆1C 的方程可化为22(3)(2)1x y -++=,圆2C 的方程可化为22(7)(1)50x y a -+-=-.由两圆相切,得1212C C r r =+或1212C C r r =-.因为11r =,125C C ==,所以215r +=或215r -=,可得24r =或26=r 或24r =-(舍去),因此5016a -=或5036a -=,解得34a =或14a =.故答案为:34或148.(2022·贵州黔东南·高二期末(理))若圆221x y +=与圆()()22416x a y -+-=有3条公切线,则正数a =___________.【答案】35=∴3,0,3a a a =±>∴=又6最值问题1.(2022·广东·高三阶段练习)已知C :222220x y x y +---=,直线l :220x y ++=,M 为直线l 上的动点,过点M 作C 的切线MA ,MB ,切点为A ,B ,当四边形MACB 的面积取最小值时,直线AB 的方程为____.【答案】210x y ++=【解析】C :222220x y x y +---=的标准方程为22(1)(1)4x y -+-=,则圆心()11C ,,半径2r =.因为四边形MACB 的面积2•2CAMS SCA AM AM ====,要使四边形MACB 面积最小,则需CM 最小,此时CM 与直线l 垂直,直线CM 的方程为()121y x -=-,即21y x =-,联立21220y x x y =-⎧⎨++=⎩,解得()0,1M -.则CM =则以CM 为直径的圆的方程为221524x y ⎛⎫-+= ⎪⎝⎭,与C 的方程作差可得直线AB 的方程为210x y ++=.故答案为:210x y ++=.2.(2021·广东·南海中学高二阶段练习)已知圆22:(4)(3)1C x y -++=和两点(,0)A a -、(,0)(0)B a a >,若圆C 上存在点P ,使得90APB ∠=︒,则a 的最小值为()A .1B .6C .3D .4【答案】D【解析】由90APB ∠=︒得点P 在圆222x y a +=上,所以,点P 在圆222x y a +=上,又在圆C 上,所以,两圆有交点,因为圆222x y a +=的圆心为原点O ,半径为a ,圆C 的圆心为()4,3-,半径为1.所以,|1|1a OC a -≤≤+,即|1|5146a a a -≤≤+⇒≤≤所以,a 的最小值为4.故选:D3.(2021·吉林油田高级中学高二开学考试)已知圆P 的方程为22680x y x y ++-=,过点()1,2M -的直线与圆P 交于A ,B 两点,则弦AB 的最小值为()A .B .10C .D .5【解析】圆P 的方程可化为()()223425x y ++-=,则(3,4),5P r -=,因为()()22132425-++-<,故点()1,2M -在圆内,过点()1,2M -的最长弦一定是圆P 的直径,当AB PM ⊥时,AB 最短,此时PM =则AB ==故选:A .4.(2022·浙江·杭州市富阳区场口中学高二期末)过点(7,-2)且与直线2360x y -+=相切的半径最小的圆方程是()A .()()22515x y -++=B .()()225113x y -+-=C .()()224413x y -++=D .()()221652x y -++=【答案】B【解析】过点()7,2A -作直线2360x y -+=的垂线,垂足为B ,则以AB 为直径的圆为直线2360x y -+=相切的半径最小的圆,其中AB =(),B a b ,则221732360b a a b +⎧⨯=-⎪-⎨⎪-+=⎩,解得:34a b =⎧⎨=⎩,故AB 的中点,即圆心为7342,22+-⎛⎫ ⎪⎝⎭,即()5,1,故该圆为()()225113x y -+-=故选:B5.(2022·江苏·高二专题练习)已知M 是圆22:1C x y +=上一个动点,且直线1:310(R)l mx y m m --+=∈与直线2:310(R)l x my m m +--=∈相交于点P ,则||PM 的取值范围是()A.1,1⎤⎦B.1⎤⎦C.1,1⎤⎦D.1⎤⎦【答案】B【解析】直线1:310(R)l mx y m m --+=∈整理可得,(3)(1)0m x y ---=,即直线1l 恒过(3,1),同理可得,直线2l 恒过(1,3),又()110m m ⨯+-⨯=,∴直线1l 和2l 互相垂直,∴两条直线的交点P 在以(1,3),(3,1)为直径的圆上,即P 的轨迹方程为22(2)(2)2x y -+-=,设该圆心为M ,圆心距||1MC =>,∴两圆相离,1||1PM ∴-+ ,||PM ∴的取值范围是1].故选:B .。

直线与圆的位置关系

直线与圆的位置关系

直线与圆、圆与圆的位置关系【知识梳理】1.点与圆的位置关系: 有三种:点在圆外,点在圆上,点在圆内.设圆的半径为r ,点到圆心的距离为d ,则点在圆外⇔d >r .点在圆上⇔d=r .点在圆内⇔d <r .2.直线和圆的位置关系有三种:相交、相切、相离.设圆的半径为r ,圆心到直线的距离为d ,则直线与圆相交⇔d <r ,直线与圆相切⇔d=r ,直线与圆相离⇔d >r3.圆与圆的位置关系(1)同一平面内两圆的位置关系:①相离:如果两个圆没有公共点,那么就说这两个圆相离.②若两个圆心重合,半径不同观两圆是同心圆.③相切:如果两个圆只有一个公共点,那么就说这两个圆相切.④相交:如果两个圆有两个公共点,那么就说这两个圆相交.(2)圆心距:两圆圆心的距离叫圆心距.(3)设两圆的圆心距为d ,两圆的半径分别为R 和r ,则①两圆外离⇔d >R+r ;有4条公切线;②两圆外切⇔d=R +r ;有3条公切线;③两圆相交⇔R -r <d <R+r (R >r )有2条公切线;④两圆内切⇔d=R -r (R >r )有1条公切线;⑤两圆内含⇔d <R —r (R >r )有0条公切线.(注意:两圆内含时,如果d 为0,则两圆为同心圆)4.切线的性质和判定(1)切线的定义:直线和圆有唯一公共点门直线和圆相切时,这条直线叫做圆的切线.(2)切线的性质:圆的切线垂直于过切点的直径.(3)切线的判定:经过直径的一端,并且垂直于这条直径的直线是圆的切线.【例题精讲】例1.⊙O 的半径是6,点O 到直线a 的距离为5,则直线a 与⊙O 的位置关系为( )A .相离B .相切C .相交D .内含例2. 如图1,⊙O 内切于ABC △,切点分别为D E F ,,.50B ∠=°,60C ∠=°,连结OE OF DE DF ,,,,则EDF ∠等于( )例题2图A .40°B .55°C .65°D .70°例3. 如图,已知直线L 和直线L 外两定点A 、B ,且A 、B 到直线L 的距离相等,则经过A 、B 两点且圆心在L 上的圆有( )A .0个B .1个C .无数个D .0个或1个或无数个例4.已知⊙O 1半径为3cm ,⊙O 2半径为4cm ,并且⊙O 1与⊙O 2相切,则这两个圆的圆心距为( ) A.1cm B.7cm C.10cm D. 1cm 或7cm例5.两圆内切,圆心距为3,一个圆的半径为5,另一个圆的半径为 例6.两圆半径R=5,r=3,则当两圆的圆心距d 满足___ ___•时,•两圆相交;• 当d•满足___ ___时,两圆不外离.例7.⊙O 半径为6.5cm ,点P 为直线L 上一点,且OP=6.5cm ,则直线与⊙O•的位置关系是____例8.如图,P A 、PB 分别与⊙O 相切于点A 、B ,⊙O 的切线EF 分别交P A 、PB 于点E 、F ,切点C 在弧AB 上,若PA 长为2,则△PEF 的周长是 _.例9. 如图,⊙M 与x 轴相交于点(20)A ,,(80)B ,,与y 轴切于点C ,则圆心M 的坐标是 例10. 如图,四边形ABCD 内接于⊙A ,AC 为⊙O 的直径,弦DB ⊥AC ,垂足为M ,过点D 作⊙O 的切线交BA 的延长线于点E ,若AC=10,tan ∠DAE=43,求DB 的长.【当堂检测】1.如果两圆半径分别为3和4,圆心距为7,那么两圆位置关系是( )A .相离B .外切C .内切D .相交2.⊙A 和⊙B 相切,半径分别为8cm 和2cm ,则圆心距AB 为( )A .10cmB .6cmC .10cm 或6cmD .以上答案均不对3.如图,P 是⊙O 的直径CB 延长线上一点,PA 切⊙O 于点A ,如果PA =3,PB =1,那么∠APC 等于( )A. 15 B. 30 C. 45 D.604. 如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,那么PC 的长等于 ( ) A )6 (B )25 (C )210 (D )2145.如图,在10×6的网格图中(每个小正方形的边长均为1个单位长).⊙A 半径为2,⊙B 半径为1,需使⊙A 与静止的⊙B 相切,那么⊙A 由图示的位置向左平移个单位长. OD C B Ax y M B A O C l B A 例题3图 例题8图 例题9图 •A B P C EF •O 例题10图 第3题图 第4题图 第5题图 第6题图OO2O16. 如图,⊙O为△ABC的内切圆,∠C=90,AO的延长线交BC于点D,AC=4,DC =1,,则⊙O的半径等于()A.45B.54C.43D.657.⊙O的半径为6,⊙O的一条弦AB长63,以3为半径⊙O的同心圆与直线AB的位置关系是( ) A.相离 B.相交 C.相切 D.不能确定8.如图,在ABC△中,12023AB AC A BC=∠==,°,,A⊙与BC相切于点D,且交AB AC、于M N、两点,则图中阴影部分的面积是(保留π).9.如图,B是线段AC上的一点,且AB:AC=2:5,分别以AB、AC为直径画圆,则小圆的面积与大圆的面积之比为_______.10. 如图,从一块直径为a+b的圆形纸板上挖去直径分别为a和b的两个圆,则剩下的纸板面积是___.11. 如图,两等圆外切,并且都与一个大圆内切.若此三个圆的圆心围成的三角形的周长为18cm.则大圆的半径是______cm.12.如图,直线AB切⊙O于C点,D是⊙O上一点,∠EDC=30º,弦EF∥AB,连结OC交EF于H点,连结CF,且CF=2,则HE的长为_________.13. 如图,PA、PB是⊙O的两条切线,切点分别为A、B,若直径AC=12cm,∠P=60°.求弦AB的长.中考题型一、选择题1.(2009年·宁德中考)如图,直线AB与⊙O相切于点A,⊙O的半径为2,若∠OBA = 30°,则OB的长为()A.43 B.4 C.23 D.2(第1题图)(第2题图)2.(2009年·潍坊中考)已知圆O的半径为R,AB是圆O的直径,D是AB延长线上一点,DC是圆O的切线,C是切点,连结AC,若∠CAB=30°,则BD的长为()A.2R B.3R C.R D.32RBPAOC第8题图第9题图第11题图第10题图第12题图第13题图3.(2009年·襄樊中考)如图,AB 是⊙O 的直径,点D 在AB 的延长线上,DC 切⊙O 于C,若∠A=25°则∠D 等于( )A .40°B .50°C .60° D.70°(第3题图) (第4题图)4.(2009年湖南省邵阳市)如图AB 是⊙O 的直径,AC 是⊙O 的切线,,A 为切点,连结BC 交圆0于点D,连结AD,若∠ABC =450,则下列结论正确的是( ) A.AD =21BC B.AD =21AC C.AC >AB D.AD >DC二、填空题5.(2009年·綦江县中考)如图,AB 与⊙O 相切于点B ,AO 的延长线交O ⊙于点C ,连结BC ,若34A ∠=°,则C ∠= .(第5题图) (第6题图)6.(2009年·庆阳市中考)如图直线AB 与⊙O 相切于点B ,BC 是⊙O 的直径,AC 交⊙O 于点D ,连结BD ,则图中直角三角形有 个.三、解答题7.(2009桂林百色)如图,△ABC 内接于半圆,AB 是直径,过A 点作直线MN ,若∠MAC=∠ABC .(1)求证:MN 是半圆的切线; (2)设D 是弧AC 的中点,连结BD 交AC 于G ,过D 作DE⊥AB 于E ,交AC 于F .求证:FD =FG .(3)若△DFG 的面积为4.5,且DG =3,GC =4,试求△BCG 的面积.课后练习题一、填空题:1、在直角坐标系中,以点(1,2)为圆心,1为半径的圆必与y轴,与x轴2、直线m上一点P与O点的距离是3,⊙O的半径是3,则直线m与⊙O的位置关系是3、R T⊿ABC中,∠C=90°,AC=4cm,BC=3cm,则以2.4cm为半径的⊙C与直线AB的位置关系是4、如图1,AB为⊙O的直径,CD切⊙O于D,且∠A=30°,⊙O半径为2cm,则CD=5、如图2,AB切⊙O于C,点D在⊙O上,∠EDC=30°,弦EF∥AB,CF=2,则EF=6、如图3,以O为圆心的两个同心圆中,大圆半径为13cm,小圆半径为5cm,且大圆的弦AB切小圆于P,则AB=7、如图4,直线AB与CD相交于点O,∠AOC=30°,点P在射线OA上,且OP=6cm,以P为圆心,1cm为半径的⊙P以1cm/s的速度沿射线PB方向运动。

考点41 直线与圆、圆与圆的位置关系

考点41 直线与圆、圆与圆的位置关系

考点四十一直线与圆、圆与圆的位置关系知识梳理1.直线与圆的位置关系(1) 直线与圆相交,有两个公共点;(2) 直线与圆相切,只有一个公共点;(3) 直线与圆相离,无公共点.2. 直线与圆的位置关系的判断方法设直线l:Ax+By+C=0(A,B不全为0),圆为(x-a)2+(y-b)2=r2(r>0),d为圆心(a,b)到直线l的距离,联立直线和圆的方程,消元后得到的一元二次方程的判别式为Δ.3.(1) 圆与圆的位置关系有五种,分别为外离、外切、相交、内切、内含.(2) 判断两圆位置关系的方法设圆O1:(x-a1)2+(y-b1)2=r21(r1>0),圆O2:(x-a2)2+(y-b2)2=r22(r2>0).圆心距O1O2=d,则4.(1)过圆x2+y2=r2上一点P(x0,y0)的圆的切线方程为x0x+y0y=r2.(2)过圆(x-a)2+(y-b)2=r2上一点P(x0,y0)的圆的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2.(3)过圆x2+y2=r2外一点M(x0,y0)作圆的两条切线,则两切点所在直线方程为x0x+y0y=r2.5.求圆的弦长的常用方法(1)几何法:设圆的半径为r,弦心距为d,弦长为l,则(l2)2=r2-d2.(2)代数方法:运用根与系数的关系及弦长公式:设直线与圆的交点为A (x 1,y 1),B (x 2,y 2),则|AB |=1+k 2|x 1-x 2|=(1+k 2)[(x 1+x 2)2-4x 1x 2]. 注意:常用几何法研究圆的弦的有关问题. 6.相交两圆公共弦所在直线方程求法设圆O 1:(x -a 1)2+(y -b 1)2=r 21(r 1>0),圆O 2:(x -a 2)2+(y -b 2)2=r 22(r 2>0).将两圆方程相减,得到关于x 和y 的一次方程,即为公共弦所在直线方程.典例剖析题型一 判断直线与圆的位置关系例1 直线y =ax +1与圆x 2+y 2-2x -3=0的位置关系是__________. 答案 相交解析 ∵直线y =ax +1恒过定点(0,1),又点(0,1)在圆(x -1)2+y 2=4的内部,故直线与圆相交. 变式训练 已知点M (a ,b )在圆O :x 2+y 2=1外,则直线ax +by =1与圆D 的位置关系是__________. 答案 相交解析 由点M 在圆外,得a 2+b 2>1, ∴圆心D 到直线ax +by =1的距离d =1a 2+b 2<1=r ,则直线与圆O 相交. 解题要点 判断直线与圆的位置关系常见的方法: (1)几何法:利用d 与r 的关系. (2)代数法:联立方程随后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交. 上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题. 题型二 直线与圆相交弦长问题例2 在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为________. 答案2555解析 因为圆心(2,-1)到直线x +2y -3=0的距离d =|2-2-3|5=35,所以直线x +2y -3=0被圆截得的弦长为24-95=2555. 变式训练 已知圆x 2+y 2+2x -2y +a =0截直线x +y +2=0所得弦的长度为4,则实数a 的值是__________. 答案 -4解析 由圆的方程x 2+y 2+2x -2y +a =0可得,圆心为(-1,1),半径r =2-a .圆心到直线x +y +2=0的距离为d =|-1+1+2|2= 2.由r 2=d 2+⎝⎛⎭⎫422,得2-a =2+4,所以a =-4.题型三 直线与圆相切问题例3 过点P (2,4)引圆(x -1)2+(y -1)2=1的切线,则切线方程为__________; 答案 x =2或4x -3y +4=0解析 当直线的斜率不存在时,直线方程为x =2,此时,圆心到直线的距离等于半径,直线与圆相切,符合题意; 当直线的斜率存在时,设直线方程为y -4=k (x -2),即kx -y +4-2k =0,∵直线与圆相切,∴圆心到直线的距离等于半径,即d =|k -1+4-2k |k 2+(-1)2=|3-k |k 2+1=1,解得k =43,∴所求切线方程为43x -y +4-2×43=0,即4x -3y +4=0.综上,所求切线方程为x =2或4x -3y +4=0.变式训练 过坐标原点且与圆x 2-4x +y 2+2=0相切的直线方程为________________. 答案 y =±x解析 圆的标准方程为(x -2)2+y 2=2.则圆心(2,0),半径r = 2.设直线方程为y =kx .则|2k |k 2+1=2,解得k =±1,所以直线方程为y =±x .例4 过点P (4,1)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为____________. 答案 3x +y -4=0解析 方法1:如图所示,A 点的坐标为(1,1),∵AB ⊥PC ,k PC =13,∴k AB =-3,∴直线AB 的方程为y -1=-3(x -1),即3x +y -4=0.方法2:把点P 代入切点弦公式,得方程为:(4-1) ·(x -1) +1·y =1,即方程为3x +y -4=0.解题要点 过某点求圆的切线时,要注意分清该点在圆上还是在圆外.如果过圆外一点求切线,还需讨论切线斜率是否存在.当斜率存在时,设为k ,切线方程为y -y 0=k (x -x 0),即kx -y +y 0-kx 0=0.由圆心到直线的距离等于半径,即可得出切线方程.当斜率不存在时要加以验证.另外,记住一些常见的结论,有助于快速解题. ①过圆(x -a )2+(y -b )2=r 2外一点P (x 0,y 0)作圆的两条切线,则切点弦方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2. ②过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则切点弦方程为x 0x +y 0y =r 2. 题型四 圆与圆的位置关系问题例5 圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为________. 答案 相交解析 两圆圆心分别为(-2,0)和(2,1),半径分别为2和3,圆心距d =42+1=17. ∵3-2<d <3+2,∴两圆相交.变式训练 过两圆x 2+y 2+6x +4y =0及x 2+y 2+4x +2y -4=0的交点的直线方程是________. 答案 x +y +2=0解析 过两圆交点的直线就是两圆公共弦所在直线,因此该直线方程为x 2+y 2+6x +4y -(x 2+y 2+4x +2y -4)=0,即x +y +2=0.解题要点 求相交两圆公共弦所在直线方程,只需将两圆方程相减,得到关于x 和y 的一次方程,即为公共弦所在直线方程.当堂练习1.设直线l 过点P (-2,0),且与圆x 2+y 2=1相切,则l 的斜率是________. 答案 ±33解析 设l :y =k (x +2),即kx -y +2k =0,又l 与圆相切,∴|2k |1+k 2=1,∴k =±33.2.直线x -y +3=0被圆(x +2)2+(y -2)2=2截得的弦长等于________.答案解析 圆心为(-2,2),2=由勾股定理求出弦长的一半为2,3. 直线x -ky +1=0与圆x 2+y 2=1的位置关系是________. 答案 相交或相切解析 直线x -ky +1=0过定点(-1,0),而点(-1,0)在圆上,故直线与圆相切或相交. 4.圆x 2+y 2-4x =0在点P (1,3)处的切线方程为________. 答案 x -3y +2=0解析 设所求切线方程为y -3=k (x -1).⎩⎨⎧x 2+y 2-4x =0y =kx -k +3⇒x 2-4x +(kx -k +3)2=0.该二次方程应有两个相等实根,则Δ=0,解得k =33.∴y -3=33(x -1),即x -3y +2=0. 5.直线y =x +b 与曲线y =1-x 2有两个公共点,则b 的取值范围是________. 答案 1≤b < 2解析 曲线为x 2+y 2=1(y ≥0),表示单位圆的上半圆,由数形结合法,知1≤b <2.课后作业一、 填空题1.将圆x 2+y 2-2x -4y +1=0平分的直线是________. 答案 x -y +1=02.过两圆x 2+y 2+3x +2y =0及x 2+y 2+2x +6y -4=0的交点的直线方程是________. 答案 x -4y +4=0解析 过两圆交点的直线就是两圆公共弦所在直线,因此该直线方程为x 2+y 2+3x +2y -(x 2+y 2+2x +6y -4)=0,即x -4y +4=0.3.已知直线l :y =k (x -1)-3与圆x 2+y 2=1相切,则直线l 的倾斜角为________. 答案5π6解析 由题意知,|k +3|k 2+1=1,∴k =-33.∴直线l 的倾斜角为5π6.4.若圆心在x 轴上,半径为5的圆C 位于y 轴左侧,且被直线x +2y =0截得的弦长为4,则圆C 的方程是________. 答案 (x +5)2+y 2=5解析 设圆心为(a,0)(a <0),因为截得的弦长为4,所以弦心距为1,则d =|a +2×0|12+22=1,解得a =-5,所以,所求圆的方程为(x +5)2+y 2=5.5.若过点P (1,3)作圆O :x 2+y 2=1的两条切线,切点分别为A 和B ,则弦长|AB |=________. 答案3解析 如图所示,∵P A ,PB 分别为圆O :x 2+y 2=1的切线,∴OA ⊥AP . ∵P (1,3),O (0,0),∴|OP |=1+3=2.又∵|OA |=1,∴在Rt △APO 中,cos ∠AOP =12. ∴∠AOP =60°,∴|AB |=2|AO |sin ∠AOP =3.6.过点(1,1)的直线与圆(x -2)2+(y -3)2=9相交于A ,B 两点,则|AB |的最小值为________. 答案 4解析 ∵点在圆内,由圆的几何性质可知,当点(1,1)为弦AB 的中点时,|AB |的值最小, 此时|AB |=2r 2-d 2=29-5=4.7.已知圆C :x 2+y 2-4x =0,l 是过点P (3,0)的直线,则________. 答案 l 与C 相交解析 ∵32+0-4×3=9-12=-3<0,∴点P (3,0)在圆内,∴直线l 与圆C 相交.8.在平面直角坐标系xOy 中,直线3x +4y -5=0与圆x 2+y 2=4相交于A 、B 两点,则弦AB 的长等于________. 答案 2 3解析 圆心到直线3x +4y -5=0的距离d =|-5|32+42=1,∴弦AB =2r 2-d 2=2 3.9.设直线l 截圆x 2+y 2-2y =0所得弦AB 的中点为(-12,32),则直线l 的方程为________;|AB |=________.答案 x -y +2=0 2解析 设A (x 1,y 1),B (x 2,y 2),则x 21+y 21-2y 1=0,x 22+y 22-2y 2=0,两式相减得(x 1-x 2)(x 1+x 2)+(y 1-y 2)(y 1+y 2)-2(y 1-y 2)=0,k AB =y 1-y 2x 1-x 2=1. 故l 的方程为y -32=1·(x +12),即x -y +2=0. 又圆心为(0,1),半径r =1,故|AB |=2.10.设圆C 同时满足三个条件:①过原点;②圆心在直线y =x 上;③截y 轴所得的弦长为4,则圆C 的方程是________. 答案 (x +2)2+(y +2)2=8或(x -2)2+(y -2)2=8 解析 由题意可设圆心A (a ,a ),如图,则22+22=2a 2,解得a =±2,r 2=2a 2=8. 所以圆C 的方程是(x +2)2+(y +2)2=8或(x -2)2+(y -2)2=8. 11.若圆x 2+y 2=4与圆x 2+y 2+2ay -6=0(a >0)的公共弦长为23,则a =________. 答案 1解析 方程x 2+y 2+2ay -6=0与x 2+y 2=4.相减得2ay =2,则y =1a .由已知条件22-(3)2=1a,即a =1.二、解答题12.一个圆与y 轴相切,圆心在直线x -3y =0上,且在直线y =x 上截得的弦长为27,求此圆的方程. 解析 ∵所求圆的圆心在直线x -3y =0上,且与y 轴相切,∴设所求圆的圆心为C (3a ,a ),半径为r =3|a |. 又圆在直线y =x 上截得的弦长为27, 圆心C (3a ,a )到直线y =x 的距离为d =|3a -a |12+12. ∴有d 2+(7)2=r 2.即2a 2+7=9a 2,∴a =±1. 故所求圆的方程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9. 13.已知:圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0. (1)当a 为何值时,直线l 与圆C 相切;(2)当直线l 与圆C 相交于A 、B 两点,且AB =22时,求直线l 的方程.解析 将圆C 的方程x 2+y 2-8y +12=0配方得标准方程为x 2+(y -4)2=4,则此圆的圆心为(0,4),半径为2.(1)若直线l 与圆C 相切,则有|4+2a |a 2+1=2.解得a =-34.(2)过圆心C 作CD ⊥AB ,则根据题意和圆的性质,得⎩⎨⎧|CD |=|4+2a |a 2+1,|CD |2+|DA |2=|AC |2=22,|DA |=12|AB |= 2.解得a =-7或a =-1.故所求直线方程为7x -y +14=0或x -y +2=0.。

4 第4讲 直线与圆、圆与圆的位置关系

4 第4讲 直线与圆、圆与圆的位置关系

第4讲直线与圆、圆与圆的位置关系1.直线与圆的位置关系设直线l:Ax+By+C=0(A2+B2≠0),圆:(x-a)2+(y-b)2=r2(r>0),d为圆心(a,b)到直线l的距离,联立直线和圆的方程,消元后得到的一元二次方程的判别式为Δ.设圆O1:(x-a1)2+(y-b1)2=r21(r1>0),圆O2:(x-a2)2+(y-b2)2=r22(r2>0).常用知识拓展1.过圆x2+y2=r2上一点P(x0,y0)的圆的切线方程为x0x+y0y=r2.2.过圆(x-a)2+(y-b)2=r2上一点P(x0,y0)的圆的切线方程为(x0-a)(x-a)+(y0-b)(y -b)=r2.3.过圆x2+y2=r2外一点M(x0,y0)作圆的两条切线,则两切点所在直线方程为x0x+y0y =r2.4.直线与圆相交时,弦心距d ,半径r ,弦长的一半12l 满足关系式r 2=d 2+⎝⎛⎭⎫12l 2.判断正误(正确的打“√”,错误的打“×”)(1)若直线与圆组成的方程组有解,则直线与圆相交或相切.( )(2)若两个圆的方程组成的方程组无解,则这两个圆的位置关系为外切.( ) (3)“k =1”是“直线x -y +k =0与圆x 2+y 2=1相交”的必要不充分条件.( ) (4)联立两相交圆的方程,并消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程.( )答案:(1)√ (2)× (3)× (4)√直线y =x +1与圆x 2+y 2=1的位置关系为( )A .相切B .相交但直线不过圆心C .直线过圆心D .相离解析:选B.因为圆心(0,0)到直线y =x +1的距离d =12=22,而0<22<1,所以直线和圆相交,但不过圆心.圆Q :x 2+y 2-4x =0在点P (1,3)处的切线方程为( )A .x +3y -2=0B .x +3y -4=0C .x -3y +4=0D .x -3y +2=0解析:选D.因点P 在圆上,且圆心Q 的坐标为(2,0), 所以k PQ =-32-1=-3,所以切线斜率k =33,所以切线方程为y -3=33(x -1), 即x -3y +2=0.若圆C1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则实数m =________. 解析:圆C 1的圆心是原点(0,0),半径r 1=1,圆C 2:(x -3)2+(y -4)2=25-m ,圆心C 2(3,4),半径r 2=25-m ,由两圆外切,得|C 1C 2|=r 1+r 2=1+25-m =5,所以m =9.答案:9(2018·高考全国卷Ⅰ)直线y =x +1与圆x 2+y 2+2y -3=0交于A ,B 两点,则|AB |=________.解析:由题意知圆的方程为x 2+(y +1)2=4,所以圆心坐标为(0,-1),半径为2,则圆心到直线y =x +1的距离d =|-1-1|2=2,所以|AB |=222-(2)2=2 2.答案:2 2直线与圆的位置关系(典例迁移)(1)已知点M (a ,b )在圆O :x 2+y 2=1外, 则直线ax +by =1与圆O 的位置关系是( )A .相切B .相交C .相离D .不确定(2)(一题多解)圆x 2+y 2=1与直线y =kx +2没有公共点的充要条件是________. 【解析】 (1)因为M (a ,b )在圆O :x 2+y 2=1外,所以a 2+b 2>1,从而圆心O 到直线ax +by =1的距离d =|a ·0+b ·0-1|a 2+b2=1a 2+b2<1,所以直线与圆相交.(2)法一:将直线方程代入圆方程,得(k 2+1)x 2+4kx +3=0,直线与圆没有公共点的充要条件是Δ=16k 2-12(k 2+1)<0,解得k ∈(-3,3).法二:圆心(0,0)到直线y =kx +2的距离d =2k 2+1,直线与圆没有公共点的充要条件是d >1,即2k 2+1>1,解得k ∈(-3,3). 【答案】 (1)B (2)k ∈(-3,3)[迁移探究] (变条件)若将本例(1)的条件改为“点M (a ,b )在圆O :x 2+y 2=1上”,则直线ax +by =1与圆O 的位置关系如何?解:由点M 在圆上,得a 2+b 2=1,所以圆心O 到直线ax +by =1的距离d =1a 2+b2=1,则直线与圆O 相切.判断直线与圆的位置关系常用的方法[提醒] 上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题.1.直线x sin θ+y cos θ=1+cos θ与圆x 2+(y -1)2=12的位置关系是( )A .相离B .相切C .相交D .以上都有可能解析:选A.因为圆心到直线的距离d =|cos θ-1-cos θ|sin 2θ+cos 2θ=1>22,所以直线与圆相离.2.(2019·四川教育联盟考试)若无论实数a 取何值时,直线ax +y +a +1=0与圆x 2+y 2-2x -2y +b =0都相交,则实数b 的取值范围为( )A .(-∞,2)B .(2,+∞)C .(-∞,-6)D .(-6,+∞)解析:选C.因为x 2+y 2-2x -2y +b =0表示圆,所以2-b >0,即b <2. 因为直线ax +y +a +1=0过定点(-1,-1),所以点(-1,-1)在圆x 2+y 2-2x -2y +b =0的内部,所以6+b <0,解得b <-6. 综上,实数b 的取值范围是(-∞,-6).故选C.圆的切线与弦长问题(多维探究)角度一 圆的切线问题过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条,则该切线的方程为( )A .2x +y -5=0B .2x +y -7=0C .x -2y -5=0D .x -2y -7=0【解析】 因为过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条, 所以点(3,1)在圆(x -1)2+y 2=r 2上, 因为圆心与切点连线的斜率k =1-03-1=12,所以切线的斜率为-2,则圆的切线方程为y -1=-2(x -3),即2x +y -7=0.故选B. 【答案】 B角度二 圆的弦长问题(1)(2019·湖北省重点中学联考(二))设圆x 2+y 2-2x -2y -2=0的圆心为C ,直线l 过(0,3),且与圆C 交于A ,B 两点,若|AB |=23,则直线l 的方程为( )A .3x +4y -12=0或4x -3y +9=0B .3x +4y -12=0或x =0C .4x -3y +9=0或x =0D .3x -4y +12=0或4x +3y +9=0(2)已知直线l :x +ay -1=0(a ∈R )是圆C :x 2+y 2-4x -2y +1=0的对称轴.过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |=________.【解析】 (1)当直线l 的斜率不存在时,直线l 的方程为x =0,联立方程得⎩⎪⎨⎪⎧x =0,x 2+y 2-2x -2y -2=0,得⎩⎪⎨⎪⎧x =0,y =1-3或⎩⎪⎨⎪⎧x =0,y =1+3,所以|AB |=23,符合题意.当直线l 的斜率存在时,设直线l 的方程为y =kx +3,因为圆x 2+y 2-2x -2y -2=0,即(x -1)2+(y -1)2=4,其圆心为C (1,1),圆的半径r =2,圆心C (1,1)到直线y =kx +3的距离d =|k -1+3|k 2+1=|k +2|k 2+1,因为d 2+⎝⎛⎭⎫|AB |22=r 2,所以(k +2)2k 2+1+3=4,解得k =-34,所以直线l 的方程为y =-34x +3,即3x +4y -12=0.综上,直线l 的方程为3x +4y -12=0或x =0.故选B.(2)由于直线x +ay -1=0是圆C :x 2+y 2-4x -2y +1=0的对称轴,所以圆心C (2,1)在直线x +ay -1=0上,所以2+a -1=0,所以a =-1,所以A (-4,-1).所以|AC |2=36+4=40.又r =2,所以|AB |2=40-4=36.所以|AB |=6. 【答案】 (1)B (2)6(1)求直线被圆截得的弦长的常用方法①几何法:用圆的几何性质求解,运用弦心距、半径及弦的一半构成的直角三角形,计算弦长|AB |=2r 2-d 2;②代数法:联立直线与圆的方程得方程组,消去一个未知数得一元二次方程,再利用根与系数的关系结合弦长公式求解,其公式为|AB |=1+k 2|x 1-x 2|.(2)圆的切线方程的求法①几何法:设切线方程为y -y 0=k (x -x 0),利用点到直线的距离公式表示出圆心到切线的距离d ,然后令d =r ,进而求出k ;②代数法:设切线方程为y -y 0=k (x -x 0),与圆的方程组成方程组,消元后得到一个一元二次方程,然后令判别式Δ=0进而求得k .1.平行于直线2x +y +1=0且与圆x 2+y 2=5相切的直线的方程是( ) A .2x +y +5=0或2x +y -5=0 B .2x +y +5=0或2x +y -5=0 C .2x -y +5=0或2x -y -5=0 D .2x -y +5=0或2x -y -5=0解析:选A.设直线方程为2x +y +c =0,由直线与圆相切,得d =|c |5=5,c =±5,所以所求方程为2x +y +5=0或2x +y -5=0.2.(2019·广西两市联考)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________.解析:设圆心为(a ,b )(a >0,b >0),半径为r ,则由题可知a =2b ,a =r ,r 2=b 2+3,解得a =r =2,b =1,所以所求的圆的方程为(x -2)2+(y -1)2=4.答案:(x -2)2+(y -1)2=4圆与圆的位置关系(典例迁移)(1)已知圆C 1:(x -a )2+(y +2)2=4与圆C 2:(x +b )2+(y +2)2=1相外切,则ab的最大值为( )A.62B.32C.94D .2 3(2)两圆C 1:x 2+y 2+4x +y +1=0,C 2:x 2+y 2+2x +2y +1=0相交于A ,B 两点,则|AB |=________.【解析】 (1)由圆C 1与圆C 2相外切,可得(a +b )2+(-2+2)2=2+1=3,即(a +b )2=a 2+2ab +b 2=9,根据基本不等式可知9=a 2+2ab +b 2≥2ab +2ab =4ab ,即ab ≤94,当且仅当a =b 时,等号成立.故选C.(2)由(x 2+y 2+4x +y +1)-(x 2+y 2+2x +2y +1)=0得弦AB 所在直线方程为2x -y =0. 圆C 2的方程为(x +1)2+(y +1)2=1, 圆心C 2(-1,-1),半径r 2=1. 圆心C 2到直线AB 的距离 d =|2×(-1)-(-1)|5=15.所以|AB |=2r 22-d 2=21-15=455. 【答案】 (1)C (2)455[迁移探究] (变条件)若本例(1)条件中“外切”变为“内切”,求ab 的最大值. 解:由C 1与C 2内切, 得(a +b )2+(-2+2)2=1.即(a +b )2=1, 又ab ≤⎝ ⎛⎭⎪⎫a +b 22=14,当且仅当a =b 时等号成立,故ab 的最大值为14.(1)几何法判断圆与圆的位置关系的步骤 ①确定两圆的圆心坐标和半径;②利用平面内两点间的距离公式求出圆心距d ,并求r 1+r 2,|r 1-r 2|; ③比较d ,r 1+r 2,|r 1-r 2|的大小,然后写出结论. (2)两圆公共弦长的求法两圆公共弦长,先求出公共弦所在直线的方程,在其中一圆中,由弦心距d ,半弦长l2,半径r 所在线段构成直角三角形,利用勾股定理求解.1.圆C 1:(x -m )2+(y +2)2=9与圆C 2:(x +1)2+(y -m )2=4外切,则m 的值为( ) A .2B .-5C .2或-5D .不确定解析:选C.由C 1(m ,-2),r 1=3;C 2(-1,m ),r 2=2; 则两圆心之间的距离为|C 1C 2|=(m +1)2+(-2-m )2=2+3=5,解得m =2或-5.故选C.2.圆C 1:x 2+y 2-4x +1=0与圆C 2:x 2+y 2-2x -2y +1=0的公共弦长为( ) A .2 B. 3 C .3D .4解析:选A.两圆联立错误!解得x -y =0.圆C 1可写成(x -2)2+y 2=3,故C 1(2,0),半径为3,圆心(2,0)到直线x -y =0的距离为d =|2|12+12=2,故公共弦长为2(3)2-(2)2=2.直观想象——解决直线与圆的综合问题直观想象是发现和提出数学问题、分析和解决数学问题的重要手段,是探索和形成论证思路、进行逻辑推理、构建抽象结构的思维基础。

直线与圆、圆与圆的位置关系

直线与圆、圆与圆的位置关系

直线与圆、圆与圆的位置关系一、直线与圆的位置关系:1、直线与圆的位置关系有三种:如图所示. (1)直线与圆相交:有两个公共点; (2)直线与圆相切:有一个公共点; (3)直线与圆相离:没有公共点.2、直线与圆的位置关系的判定的两种方法:直线l 和圆C 的方程分别为:Ax+By+C=0,x 2+y 2+Dx+Ey+F=0. 1)代数法判断直线与圆的位置关系:由l 和C 的方程联立方程组220Ax By C x y Dx Ey F ++=⎧⎨++++=⎩, ①若方程有两个不相等的实数根(△>0),则直线与圆相交; ②若方程有两个相等的实数根(△=0),则直线与圆相切; ③若方程无实数根(△<0),则直线与圆相离.2)几何法判断直线与圆的位置关系:圆心C(a ,b)到直线的距离d=22||Aa Bb C A B+++与半径r 作比较①若d<r 时,直线l 和圆C 相交;②若d=r 时,直线l 和圆C 相切;③若d>r 时,直线l 和圆C 相离. 3、圆的切线的求法:(1)当点(x 0,y 0)在圆x 2+y 2=r 2上时,切线方程为x 0x+y 0y=r 2;(2)若点(x 0,y 0)在圆(x -a)2+(y -b)2=r 2上时,切线方程为(x 0-a)(x -a)+(y 0-b)(y -b)=r 2; (3)斜率为k 且与圆x 2+y 2=r 2相切的切线方程为21y kx k =±+;斜率为k 且与圆(x -a)2+(y -b)2=r 2相切的切线方程的求法:先设切线方程为y=kx+m ,然后变成一般 式kx -y+m=0,利用圆心到切线的距离等于半径来列出方程求m ;(4)点(x 0,y 0)在圆外面,则切线方程为y -y 0=k(x -x 0),再变成一般式,因为与圆相切,利用圆心到直线距离 等于半径,解出k ,注意若此方程只有一个实根,则还有一条斜率不存在的直线,务必要补上. 4、直线与圆相交的弦长公式1)平面几何法求弦长公式:如图所示,直线l 与圆相交于两点A 、B ,线段AB 的长 即为直线l 与圆相交的弦长.设弦心距为d ,圆的半径为r ,弦长为AB ,则有 222()2AB d r +=,即AB=222r d - . 2)解析法求弦长公式:如图所示,直线l 与圆相交于两点A(x 1,y 1),B(x 2,y 2),当直线AB 的倾斜角存在时,联 立方程组,消元得到一个关于x 的一元二次方程,求得x 1+x 2和x 1x 2.于是2121212||()4x x x x x x -=+-,这样就求得2121221||1||1||AB k x x y y k=+-=+-。

直线与圆、圆与圆的位置关系

直线与圆、圆与圆的位置关系

直线与圆、圆与圆的位置关系一、直线与圆的位置关系1. 如何判断直线与圆的位置关系直线与圆一共有三种位置关系,相离、相切、相交,判断直线与圆的位置关系有两种方法,一种的比较圆心到直线的距离与半径大小,一种是联立方程组,看判别式与0的关系。

例题1 判断直线L :(1+m)x+(1-m)y+2m-1=0与圆O :922=+y x 的位置关系。

解析:方法一:直线L :m(x-y+2)+x+y-1=0恒过点)23,21(-p ∵点P 在圆O 内, ∴直线L 与圆O 相交。

方法二:圆心O 到直线L 的距离为当d<3时,)22(9)12(22+<-m m , ∴0174142>++m m ∴m ∈R 所以直线L 与直线O 相交。

2. 求切线方程例题2 已知点),(00y x p 是圆C :222r y x =+上一点,求过点P 的圆C 的切线方程。

解析:∵点),(00y x p 是圆C :222r y x =+上一点,∴22020r y x =+ 当00≠x 且00≠y 时,00x y k cp =,∴00y x k -=, ∴切线方程为)(0000x x y x y y --=-,即2202000r y x y y x x =+=+ (1) ∴切线方程为当P 为(0,r)时,切线方程为y=r ,满足方程(1); 当P 为(0,-r)时,切线方程为t=-r ,满足方程(1); 当P 为(r ,0)时,切线方程为x=r ,满足方程(1); 当P 为(-r ,0)时,切线方程为x=-r ,满足方程(1); 综上,所求切线方程为200r y y x x =+3. 相交弦问题例题3 若点P(2,-1)为圆(x-1)2+y2=25的弦AB 的中点,求直线AB 的方程。

解析:圆心C(1,0),1-=pc k , ∵AB ⊥PC ,∴1-=AB k ,且AB 过点P ,∴直线AB的方程为y+1=x-2即y=x-3 。

高考数学复习:直线与圆、圆与圆的位置关系

高考数学复习:直线与圆、圆与圆的位置关系

当直线y=x+b过点(0,3)时,b=3;
当直线y=x+b与y=3- 4x x2相切时,由点到直线的距离 公式,得2= 2 3 b , 所以|b-1|=2 2 .结合图形知
2
b=1-2 2 . 所以1-2 2 ≤b≤3.
【状元笔记】 求直线被圆截得的弦长的常用方法 (1)几何法:用圆的几何性质求解,运用弦心距、半径及 弦的一半表示的线段构成的直角三角形, 计算弦长|AB|=2 r2 d2 .
2.已知点P(2,2),点Q是曲线C:(x2+y2-1)(x2+y2-2)=0上 一动点,则|PQ|的最小值是________.
【解析】曲线C由两部分组成,圆M:x2+y2=1与圆 N:x2+y2=2,如图,
要使|PQ|最小,需点Q在圆N上且在直线OP上, 此时,|PQ|=|OP|- 2 = 2 , 所以|PQ|的最小值是 2 . 答案: 2
【解析】(1)选A.直线l:mx-y+1-m=0过定点(1,1),因为 点(1,1)在圆x2+(y-1)2=5的内部,所以直线l与圆相交.
【一题多解微课】 本例题(1)还可以采用以下方法求解: (几何法)选A.由题意知,圆心(0,1)到直线l的距离 d= m 1 5, 故直线l与圆相交.
m2 1
A.[1-2 2 ,1+2 2 ] C.[-1,1+2 2 ]
B.[1- 2 ,3] D.[1-2 2 ,3]
【解析】选D.因为y=3- 4x x2 ,所以1≤y≤3, 所以(x-2)2+(y-3)2=4(1≤y≤3),即曲线y=3- 4x x2 表示以(2,3)为圆心,2为半径的下半圆.直线y=x+b与 曲线y=3- 4x x2 有公共点,表示两曲线至少有一个公共 点.符合条件的直线应是夹在过点(0,3)和与下半圆相切 的两直线之间.

考点4 直线与圆、圆与圆的位置关系(解析版)

考点4  直线与圆、圆与圆的位置关系(解析版)

2010-2015年高考真题汇编 专题9 直线与圆的方程考点4 直线与圆、圆与圆的位置关系1.(2015年重庆8,5分)已知直线:10()l x ay a R +-=∈是圆22:4210C x y x y +--+=的对称轴.过点(4,)A a -作圆C 的一条切线,切点为B ,则||AB =A.2B.C.6D.【答案】C【解析】将圆化为标准方程得4)1()2(22=-+-y x ,圆心)1,2(C ,2=r 。

∵直线l 是圆C 的对称轴,∴直线l 过圆心C ,012=-+∴a ,1-=∴a ,)1,4(--∴A ,∵AB 为切线,AB BC ⊥∴,222AB BC AC +=∴,又40)11()24(222=--+--=AC ,2==r BC ,644022=-=-=∴BC AC AB 。

2.(2014江西,5分)在平面直角坐标系中,A ,B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线2x +y -4=0相切,则圆C 面积的最小值为( )A. 45π B. 34πC .(6-25)π D. 54π【答案】A【解析】选A 法一:设A (a,0),B (0,b ),圆C 的圆心坐标为⎝ ⎛⎭⎪⎫a 2,b2,2r =a 2+b 2,由题知圆心到直线2x +y -4=0的距离d =⎪⎪⎪⎪⎪⎪a +b 2-45=r ,即|2a +b -8|=25r ,2a +b =8±25r ,由(2a +b )2≤5(a 2+b 2),得8±25r ≤25r ⇒r ≥25,即圆C 的面积S =π r 2≥45π.法二:由题意可知以线段AB 为直径的圆C 过原点O ,要使圆C 的面积最小,只需圆C 的半径或直径最小.又圆C 与直线2x +y -4=0相切,所以由平面几何知识,知圆的直径的最小值为点O 到直线2x +y -4=0的距离,此时2r =45,得r =25,圆C 的面积的最小值为S=πr 2=45π.3.(2014新课标全国卷Ⅱ,5分)设点M (x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得∠OMN =45°,则x 0的取值范围是________. 【答案】[-1,1]【解析】由题意可知M 在直线y =1上运动,设直线y =1与圆x 2+y 2=1相切于点P (0,1).当x 0=0即点M 与点P 重合时,显然圆上存在点N (±1,0)符合要求;当x 0≠0时,过M 作圆的切线,切点之一为点P ,此时对于圆上任意一点N ,都有∠OMN ≤∠OMP ,故要存在∠OMN =45°,只需∠OMP ≥45°.特别地,当∠OMP =45°时,有x 0=±1.结合图形可知,符合条件的x 0的取值范围为[-1,1].4.(2014江苏,5分)在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为________. 【答案】2555【解析】因为圆心(2,-1)到直线x +2y -3=0的距离d =|2-2-3|5=35,所以直线x +2y-3=0被圆截得的弦长为24-95=2555. 5.(2014重庆,5分)已知直线ax +y -2=0与圆心为C 的圆(x -1)2+(y -a )2=4相交于A ,B 两点,且△ABC 为等边三角形,则实数a =________.【答案】4±15【解析】依题意,圆C 的半径是2,圆心C (1,a )到直线ax +y -2=0的距离等于32×2=3,于是有|1·a +a -2|a 2+1=3,即a 2-8a +1=0,解得a =4±15.6.(2014湖北,5分)直线l 1:y =x +a 和l 2:y =x +b 将单位圆C :x 2+y 2=1分成长度相等的四段弧,则a 2+b 2=________. 【答案】2【解析】由题意得,直线l 1截圆所得的劣弧长为π2,则圆心到直线l 1的距离为22,即|a |2=22⇒a 2=1,同理可得b 2=1,则a 2+b 2=2. 7.(2014江苏,16分)如图,为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆.且古桥两端O 和A 到该圆上任意一点的距离均不少于80 m .经测量,点A 位于点O 正北方向60 m 处,点C 位于点O 正东方向170 m 处(OC 为河岸),tan ∠BCO =43.(1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大?【解析】法一:(1)如图,以O 为坐标原点,OC 所在直线为x 轴,建立平面直角坐标系xOy .由条件知A (0,60),C (170,0),直线BC 的斜率k BC = -tan ∠BCO =-43.又因为AB ⊥BC ,所以直线AB 的斜率k AB =34.设点B 的坐标为(a ,b ), 则k BC =b -0a -170=-43,k AB =b -60a -0=34. 解得a =80,b =120. 所以BC =-2+-2=150.因此新桥BC 的长是150 m.(2)设保护区的边界圆M 的半径为r m ,OM =d m(0≤d ≤60). 由条件知,直线BC 的方程为y =-43(x -170),即4x +3y -680=0.由于圆M 与直线BC 相切,故点M (0,d )到直线BC 的距离是r , 即r =|3d -680|42+32=680-3d 5. 因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以⎩⎪⎨⎪⎧r -d ≥80,r --d ,即⎩⎪⎨⎪⎧680-3d5-d ≥80,680-3d 5--d解得10≤d ≤35.故当d =10时,r =680-3d5最大,即圆面积最大.所以当OM =10 m 时,圆形保护区的面积最大. 法二:(1)如图,延长OA ,CB 交于点F .因为tan ∠FCO =43,所以sin ∠FCO =45,cos ∠FCO =35.因为OA =60,OC =170, 所以OF =OC tan ∠FCO =6803,CF =OCcos ∠FCO =8503.从而AF =OF -OA =5003.因为OA ⊥OC ,所以cos ∠AFB =sin ∠FCO =45.又因为AB ⊥BC ,所以BF =AF cos ∠AFB =4003,从而BC =CF -BF =150. 因此新桥BC 的长是150 m.(2)设保护区的边界圆M 与BC 的切点为D ,连接MD ,则MD ⊥BC ,且MD 是圆M 的半径,并设MD =r m ,OM =d m(0≤d ≤60).因为OA ⊥OC ,所以sin ∠CFO =cos ∠FCO . 故由(1)知sin ∠CFO =MD MF =MD OF -OM =r6803-d=35,所以r =680-3d 5. 因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以⎩⎪⎨⎪⎧r -d ≥80,r --d ,即⎩⎪⎨⎪⎧680-3d5-d ≥80,680-3d 5--d解得10≤d ≤35.故当d =10时,r =680-3d5最大,即圆面积最大.所以当OM =10 m 时,圆形保护区的面积最大.8.(2013江西,5分)过点(2,0)引直线l 与曲线y =1-x 2相交于A ,B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于( )A.33 B .-33C .±33D .- 3【答案】B【解析】本题考查圆的标准方程、直线与圆的位置关系,意在考查考生的数形结合的数学思想及运算能力.由y = 1-x 2得x 2+y 2=1(y ≥0),即该曲线表示圆心在原点,半径为1的半圆,如图所示.故S △AOB =12|OA |·|OB |·sin ∠AOB =12sin ∠AOB .所以当sin ∠AOB =1,即OA ⊥OB 时,S △AOB 取得最大值,此时点O 到直线l 的距离d =|OA |·sin 45°=22.设此时直线l 的斜率为k ,则方程为y =k (x -2),即kx -y -2k =0,则有22=|0-0-2k | k 2+1,解得k =±33,由图可知直线l 的倾斜角为钝角,故取k =-33. 9.(2013山东,4分)过点(3,1)作圆(x -2)2+(y -2)2=4的弦,其中最短弦的长为________. 【答案】2 2【解析】本题主要考查直线与圆的位置关系,考查数形结合思想和运算能力.最短弦为过点(3,1),且垂直于点(3,1)与圆心的连线的弦,易知弦心矩d =-2+-2=2,所以最短弦长为2r 2-d 2=222-22=2 2.10.(2013重庆,5分)已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x-3)2+(y -4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM |+|PN |的最小值为( )A .52-4 B.17-1 C .6-2 2 D.17【答案】A【解析】本题考查与圆有关的最值问题,意在考查考生数形结合的能力.两圆的圆心均在第一象限,先求|PC 1|+|PC 2|的最小值,作点C 1关于x 轴的对称点C ′1(2,-3),则(|PC 1|+|PC 2|)min =|C ′1C 2|=52,所以(|PM |+|PN |)min =52-(1+3)=52-4. 11.(2013江苏,14分)如图,在平面直角坐标系xOy 中,点A (0,3),直线l :y =2x -4.设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线y =x -1上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使MA =2MO ,求圆心C 的横坐标a 的取值范围.【解析】本题考查直线与圆的方程,两直线交点和直线与直线、直线与圆、圆与圆的位置关系,意在考查学生用待定系数法处理问题的能力和用代数法处理几何性质的能力.(1)由题设,圆心C 是直线y =2x -4和y =x -1的交点,解得点C (3,2),于是切线的斜率必存在.设过A (0,3)的圆C 的切线方程为y =kx +3,由题意,|3k +1|k 2+1=1,解得k =0或-34,故所求切线方程为y =3或3x +4y -12=0.(2)因为圆心在直线y =2x -4上,所以圆C 的方程为(x -a )2+[y -2(a -2)]2=1. 设点M (x ,y ),因为MA =2MO , 所以x 2+y -2=2x 2+y 2,化简得x 2+y 2+2y -3=0,即x 2+(y +1)2=4,所以点M 在以D (0,-1)为圆心,2为半径的圆上.由题意,点M (x ,y )在圆C 上,所以圆C 与圆D 有公共点,则|2-1|≤CD ≤2+1,即1≤a 2+a -2≤3.由5a 2-12a +8≥0,得a ∈R ; 由5a 2-12a ≤0,得0≤a ≤125. 所以点C 的横坐标a 的取值范围为0,125.12.(2012天津,5分)设m ,n ∈R ,若直线(m +1)x +(n +1)y -2=0与圆(x -1)2+(y -1)2=1相切,则m +n 的取值范围是( )A .[1-3,1+ 3 ]B .(-∞,1- 3 ]∪[1+3,+∞)C .[2-22,2+2 2 ]D .(-∞,2-2 2 ]∪[2+22,+∞) 【答案】D 【解析】由题意可得|m +n |m +2+n +2=1,化简得mn =m +n +1≤m +n24,解得m+n ≤2-22或m +n ≥2+2 2.13.(2012陕西,5分)已知圆C :x 2+y 2-4x =0,l 是过点P (3,0)的直线,则( )A .l 与C 相交B .l 与C 相切C .l 与C 相离D .以上三个选项均有可能【答案】A【解析】把点(3,0)代入圆的方程的左侧得32+0-4×3=-3<0,故点(3,0)在圆的内部,所以过点(3,0)的直线l 与圆C 相交.14.(2011江西,5分)若曲线C 1:x 2+y 2-2x =0与曲线C 2:y (y -mx -m )=0有四个不同的交点,则实数m 的取值范围是( )A .(-33,33) B .(-33,0)∪(0,33) C .[-33,33] D .(-∞,-33)∪(33,+∞) 【答案】B【解析】整理曲线C 1方程得,(x -1)2+y 2=1,知曲线C 1为以点C 1(1,0)为圆心,以1为半径的圆;曲线C 2则表示两条直线,即x 轴与直线l :y =m (x +1),显然x 轴与圆C 1有两个交点,知直线l 与x 轴相交,故有圆心C 1到直线l 的距离d =|m+-0|m 2+1<r =1,解得m ∈(-33,33),又当m =0时,直线l 与x 轴重合,此时只有两个交点,应舍去. 15.(2012江苏,5分)在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________. 【答案】43【解析】设圆心C (4,0)到直线y =kx -2的距离为d ,则d =|4k -2|k 2+1,由题意知问题转化为d ≤2,即d =|4k -2|k 2+1≤2,得0≤k ≤43,所以k max=43.。

直线与圆及圆与圆的位置关系

直线与圆及圆与圆的位置关系

直线与圆及圆与圆的位置关系【本讲教育信息】⼀. 教学内容:直线与圆及圆与圆的位置关系⼆. 学习⽬标:1、能根据给出的直线和圆的⽅程,判断直线与圆、圆与圆的位置关系;2、在学习过程中,进⼀步体会⽤代数⽅法处理⼏何问题的思想;3、进⼀步体会转化、数形结合等数学思想和⽅法。

三. 知识要点:1、直线和圆的位置关系设△是联⽴直线⽅程与圆的⽅程后得到的判别式,dO-L是圆⼼O到直线L的距离,则有:直线与圆相交:有两个公共点——△>0——dO-L∈[0,R];直线与圆相切:有⼀个公共点——△=0——dO-L=R;直线与圆相离:⽆公共点——△<0——dO-L>R.2、圆与圆的位置关系两圆相交:有两个公共点——△>0——dO-O’∈[|R-r|,R+r];两圆外切:有⼀个公共点——△=0——dO-O’=R+r;两圆内切:有⼀个公共点——△=0——dO-O’=|R-r|;④两圆相离:⽆公共点——△<0——dO-O’>R+r;⑤两圆内含:⽆公共点——△<0——dO-O’<|R-r|.【典型例题】考点⼀ 研究直线与圆的位置关系例1 已知直线L过点(-2,0),当直线L与圆x2+y2=2x有两个不同交点时,求斜率k的取值范围。

法⼀:设直线L的⽅程为:y=k(x+2),与圆的⽅程联⽴,代⼊圆的⽅程令△>0可得:。

法⼀:法⼆:设直线L的⽅程为:y=k(x+2),利⽤圆⼼到直线的距离dO-L∈[0,R]可解得:。

法⼆:考点⼆ 研究圆的切线例2 直线y=x+b与曲线有且仅有⼀个公共点,求b的取值范围。

分析:作出图形后进⾏观察,以找到解决问题的思路。

分析:解:曲线即x2+y2=1(x≥0),当直线y=x+b解:与之相切时,满⾜:由观察图形可知:当或时,它们有且仅有⼀个公共点。

例3 过点P(1,2)作圆x2+y2=5的切线L,求切线L的⽅程。

解:因P点在圆上,故可求切线L的⽅程为x+2y=5。

直线与圆、圆与圆的位置关系题型归纳总结

直线与圆、圆与圆的位置关系题型归纳总结

直线与圆、圆与圆的位置关系【重难点精讲】重点一、直线与圆的位置关系:(1)直线与圆相交,有两个公共点;(2)直线与圆相切,只有一个公共点;(3)直线与圆相离,没有公共点. 重点二、几何判定法:设r 为圆的半径,d 为圆心到直线的距离:(1)d >r ⇔圆与直线相离;(2)d =r ⇔圆与直线相切;(3)d <r ⇔圆与直线相交.重点三、代数判定法:由⎩⎪⎨⎪⎧ Ax +By +C =0x -a 2+y -b 2=r 2消元,得到一元二次方程的判别式Δ,则(1)Δ>0⇔直线与圆相交;(2)Δ=0⇔直线与圆相切;(3)Δ<0⇔直线与圆相离.重点四、圆与圆的位置关系:两圆(x -a 1)2+(y -b 1)2=r 21(r 1>0)与(x -a 2)2+(y -b 2)2=r 22(r 2>0)圆心距d 221212()()a a b b -+- d >r 1+r 2⇔两圆外离;d =r 1+r 2⇔两圆外切;|r 1-r 2|<d <r 1+r 2⇔两圆相交;d =|r 1-r 2|⇔两圆内切;0<d <|r 1-r 2|⇔两圆内含,d =0时为同心圆.重点五、两圆的公切线条数:当两圆内切时有一条公切线;当两圆外切时有三条公切线;相交时有两条公切线;相离时有四条公切线;内含时无公切线.【典题精练】考点1、直线与圆的位置关系例1.已知直线320l x y -+=,圆22:4410C x y x y ++--=.(1)判断直线l 与圆C 的位置关系,并证明;(2)若直线l 与圆C 相交,求出圆C 被直线l 截得的弦长;否则,求出圆上的点到直线l 的最短距离.【解析】(1)相交,证明如下;可将圆的一般方程22:4410C x y x y ++--=化为:22(2)(2)9x y ++-=,可得其圆心:(2,2)-,半径为:3,由直线320l x y -+=, 可得圆心到直线l 的距离:2322313d --+==+d r <,可得直线l 与圆C 相交;(2)由(1)得直线l 与圆C 相交,且圆心到直线l 的距离d =故弦长为:==考点2、弦长问题例2.已知圆C 的圆心在直线1y x =+上,且圆C 经过点()3,6P 和点()5,6Q .(1)求圆C 的方程;(2)过点()3,0的直线l 截圆所得弦长为2,求直线l 的方程.【解析】(1)由题意可知,设圆心为(),1a a +,则圆C 为:22()[(1)]2x a y a -+-+=, 圆C 经过点()3,6P 和点()5,6Q ,2222(3)[6(1)]2(5)[6(1)]2a a a a ⎧-+-+=∴⎨-+-+=⎩,解得4a =,则圆C 的方程为:22(4)(5)2x y -+-=; (2)当直线l 的斜率存在时,设直线l 的方程为()3y k x =-,即30k y k --=,∴过点()3,0的直线l 截圆所得弦长为2,1d ∴==,解得125k =, ∴直线l 的方程为125360x y --=,当直线l 的斜率不存在时,直线l 为3x =,此时弦长为2符合题意. 综上,直线l 的方程为3x =或125360x y --=.考点点睛:设直线l 的方程为ax +by +c =0,圆O 的方程为(x -x 0)2+(y -y 0)2=r 2,求弦长的方法通常有以下两种:(1)几何法:由圆的性质知,过圆心O 作l 的垂线,垂足C 为线段AB 的中点.如图所示,在Rt △OCB 中,|BC |2=r 2-d 2,则弦长|AB |=2|BC |=2r 2-d 2.(2)代数法:解方程组222000()()ax by c x x y y r++=⎧⎪⎨-+-=⎪⎩,消元后可得关于x 1+x 2,x 1·x 2或y 1+y 2,y 1·y 2的关系式,则|AB |考点3、圆的切线问题例3.已知点1,2P ,点()3,1M ,圆22:124C x y(1)求过点P 的圆C 的切线方程;(2)求过点M 的圆C 的切线方程.【解析】由题意得:圆心()1,2C ,半径2r(1)()()22211224+-+= P ∴在圆C 上 1PC k ==-∴切线的斜率11PC k k =-= ∴过点P 的圆C 的切线方程为()21y x --=-,即10x y -+-= (2)()()22311254-+-=> M ∴在圆C 外部若过点M 的直线斜率不存在,直线方程为3x =,是圆C 的切线;若过点M 的切线斜率存在,可设切线方程为:()13y k x -=-,即310kx y k--+=∴圆心C 到切线的斜率2d ===,解得:34k = ∴切线方程为()3413y x -=-,即3450x y --= 综上所述:切线方程为3x =或3450x y --=考点点睛:求过某一点的圆的切线方程,首先判定点与圆的位置关系,以确定切线的条数.(1)求过圆上一点P (x 0,y 0)的圆的切线方程:先求切点与圆连线的斜率k ,则由垂直关系得切线斜率为-1k,由点斜式方程可求得切线方程.如果k =0或斜率不存在,则由图形可直接得切线方程为y =y 0或x =x 0.(2)求过圆外一点P (x 0,y 0)的圆的切线方程时,常用几何方法求解:设切线方程为y -y 0=k (x -x 0),即kx -y -kx 0+y 0=0,由圆心到直线的距离等于半径,可求得k ,进而求出切线方程.但要注意,若求出的k 值只有一个时,则另一条切线的斜率一定不存在,切线方程为x =x 0. 考点4、两圆位置关系的判断例4.已知两圆1C :22210100x y x y +-++=和2C :222210x y x y ++++=. (Ⅰ)判断两圆的位置关系;(Ⅱ)求两圆公共弦所在直线方程;(Ⅲ)求两圆公共弦的长度.【解析】(Ⅰ)1C :()()221516x y -++=,()11,5C -,14r =, 2C :()()22111x y +++=,()21,1C --,21r =,∴12C C ==121212r r C C r r <<-+,故1C 与2C 相交. (Ⅱ)因为两圆1C :22210100x y x y +-++=和2C 222210x y x y ++++=,所以两方程相减得:4890x y --=.(Ⅲ)设1C 到4890x y --=的距离为d ,则d ==,弦长AB ==2=. 考点点睛: 判断两圆位置关系的方法有两种,一是代数法,看方程组的解的个数,但往往较繁琐,另外须注意方程组有“一个”解与两圆相切不等价;二是几何法,看两圆连心线的长d ,若d =r 1+r 2,两圆外切;d =|r 1-r 2|时,两圆内切;d >r 1+r 2时,两圆外离;d <|r 1-r 2|时,两圆内含;|r 1-r 2|<d <r 1+r 2时,两圆相交.考点5、由圆与圆的位置关系求参数的值或取值范围例5.已知直线:0l x y m ++=与圆()()22:119C x y ++-=没有公共点,圆()()221:121O x y -++=与圆()()()2222:420O x y m m -+-=>相交,求m 的取值范围.【解析】圆()()22:119C x y ++-=的圆心()1,1C -,半径3r =,由题意可得,圆心C 到直线的距离3d =>,0m >,则m >圆()()221:121O x y -++=与圆()()()2222:420O x y m m -+-=>相交,圆心()11,2O -,圆1O 的半径11R =,圆心()24,2O ,圆2O 的半径2R m =,121212R R OO R R ∴-<<+,即11m m -<<+,解得46m <<.综上所述,实数m 的取值范围是().考点点睛: 两圆相切包括外切与内切,外切时,圆心距等于两圆半径之和,内切时,圆心距等于两圆半径差的绝对值.在题目没有说明是内切还是外切时,要分两种情况进行讨论.解决两圆相切问题,常用几何法.。

2022-2023学年人教版高二数学阶段复习精练专题2-5 直线与圆,圆与圆位置关系(解析版)

2022-2023学年人教版高二数学阶段复习精练专题2-5 直线与圆,圆与圆位置关系(解析版)

d=rrd专题2.5 直线与圆,圆与圆之间的位置关系1.直线与圆的位置关系:1. 直线0=++C By Ax 与圆222)()(r b y a x =-+-,圆心到直线的距离22BA C Bb Aa d +++=(1)无交点直线与圆相离⇔⇔>r d ; (2)只有一个交点直线与圆相切⇔⇔=r d ;(3)有两个交点直线与圆相交⇔⇔<r d ;弦长|AB|=222d r - 2.还可以利用直线方程与圆的方程联立方程组⎩⎨⎧=++++=++0022F Ey Dx y x C By Ax 求解,通过解的个数来判断:(1)当0>∆时,直线与圆有2个交点,,直线与圆相交; (2)当0=∆时,直线与圆只有1个交点,直线与圆相切; (3)当0<∆时,直线与圆没有交点,直线与圆相离;2. 两圆的位置关系1.设两圆2121211)()(:r b y a x C =-+-与圆2222222)()(:r b y a x C =-+-,圆心距221221)()(b b a a d -+-= ① 条公切线外离421⇔⇔+>r r d ; ② 条公切线外切321⇔⇔+=r r d ; ③ 条公切线相交22121⇔⇔+<<-r r d r r ; ④ 条公切线内切121⇔⇔-=r r d ; ⑤ 无公切线内含⇔⇔-<<210r r d ;外离 外切 相交 内切 内含3.切线问题1. 过一点作圆的切线的方程: (1) 过圆外一点的切线: ①k 不存在,验证是否成立①k 存在,设点斜式方程,用圆心到该直线距离=半径,即:⎪⎩⎪⎨⎧+---=-=-1)()(2110101k x a k y b R x x k y y(2) 过圆上一点的切线方程:圆(x -a )2+(y -b )2=r 2,圆上一点为(x 0,y 0),设切线方程上某点坐标为),(y x ,10000-=--⋅--ax by x x y y则过此点的切线方程为:0))(())((0000=--+--y y b y x x a x22020)()(r a x b y =-+- , 则过此点的切线方程也可为:200))(())((r b y b y a x a x =--+--特别地,过圆222r y x =+上一点),(00y x P 的切线方程为200r y y x x =+. 2.切点弦过①C :222)()(r b y a x =-+-外一点),(00y x P 作①C 的两条切线,切点分别为B A 、,则切点弦AB 所在直线方程为:200))(())((r b y b y a x a x =--+--3.切线长:若圆的方程为(x -a )2+(y -b )2=r 2,则过圆外一点P (x 0,y 0)的切线长为 d =22020b)(+)(r y a x --- 4.圆心的三个重要几何性质:① 圆心在过切点且与切线垂直的直线上;① 圆心在某一条弦的中垂线上;两圆内切或外切时,切点与两圆圆心三点共线。

高二数学点与圆、直线与圆以及圆与圆的位置关系知识精讲

高二数学点与圆、直线与圆以及圆与圆的位置关系知识精讲

高二数学点与圆、直线与圆以及圆与圆的位置关系【本讲主要内容】点与圆、直线与圆以及圆与圆的位置关系【知识掌握】 【知识点精析】1. 点与圆的位置关系设圆C ∶(x -a )2+(y -b )2=r 2,点M (x 0,y 0)到圆心的距离为d ,则有: (1)d >r 点M 在圆外; (2)d =r 点M 在圆上; (3)d <r 点M 在圆内。

2. 直线与圆的位置关系设圆C ∶(x -a )2+(y -b )2=r 2,直线l 的方程为Ax +By +C =0,圆心(a ,b )到直线l 的距离为d ,⎩⎨⎧=++=-+-0C By Ax r )b y ()a x (222消去y 得x 的一元二次方程判别式为△,则有: (1)d <r 直线与圆相交; (2)d =r 直线与圆相切; (3)d>r 直线与圆相离,即几何特征; 或(1)△>0直线与圆相交; (2)△=0直线与圆相切; (3)△<0直线与圆相离,即代数特征。

3. 圆与圆的位置关系 设圆C 1:(x -a )2+(y -b )2=r 2和圆C 2:(x -m )2+(y -n )2=k 2(k≥r ),且设两圆圆心距为d ,则有: (1)d =k +r 两圆外切; (2)d =k -r 两圆内切; (3)d >k +r 两圆外离; (4)d <k -r 两圆内含; (5)k -r <d <k +r 两圆相交。

4. 其他(1)过圆上一点的切线方程:①圆x 2+y 2=r 2,圆上一点为(x 0,y 0),则此点的切线方程为x 0x +y 0y =r 2 ②圆(x -a )2+(y -b )2=r 2,圆上一点为(x 0,y 0),则过此点的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2(2)相交两圆的公共弦所在直线方程:设圆C 1∶x 2+y 2+D 1x +E 1y +F 1=0和圆C 2∶x 2+y 2+D 2x +E 2y +F 2=0,若两圆相交,则过两圆交点的直线方程为(D 1-D 2)x +(E 1-E 2)y +(F 1-F 2)=0。

直线与圆、圆与圆的位置关系

直线与圆、圆与圆的位置关系
点A(a,b),则下列说法正确的是(ABD)
A.若点A在圆C上,则直线l与圆C相切
B.若点A在圆C内,则直线l与圆C相离
C.若点A在圆C外,则直线l与圆C相离
D.若点A在直线l上,则直线l与圆C相切
由已知得圆心 C(0,0)到直线 l 的距离 d=
2
2 +2
若点 A(a,b)在圆 C 上,则 a +b =r ,所以 d=
A.相交
B.相切
C.相离
D.不能确定
x2+y2-2ax+2by=0 可化为(x-a)2+(y+b)2=a2+b2,可得圆的圆心坐标为(a,-b),
半径为√2 + 2 .
因为圆心到直线 ax-by=0 的距离 d=
|2 +2 |
2 +2
= √2 + 2 ,
故直线 ax-by=0 与圆 x2+y2-2ax+2by=0 相切.
所以圆心到直线 x-y=0 的距离
|0-2|
d=
√2
所以所求弦长为 2 2 -2 =2√2.
= √2,
A)
5.过点A(3,5)作圆C:x2+y2-2x-4y+1=0的切线,则切线的方程为
.
5x-12y+45=0或x-3=0
圆 C 的标准方程为(x-1)2+(y-2)2=4,圆心为 C(1,2),
当方程组无解时,两圆有外离和内含两种情况.
1.当两圆相交(切)时,两圆方程(x2,y2项的系数相同)相减便可得公共弦(公
切线)所在直线的方程.
2.(1)过圆x2+y2=r2上一点P(x0,y0)的圆的切线方程为x0x+y0y=r2.

高考数学考点归纳之 直线与圆、圆与圆的位置关系

高考数学考点归纳之  直线与圆、圆与圆的位置关系

高考数学考点归纳之 直线与圆、圆与圆的位置关系一、基础知识1.直线与圆的位置关系(半径为r ,圆心到直线的距离为d )Δ<0 Δ=0 Δ>0 2.圆与圆的位置关系(两圆半径为r 1,r 2,d =|O 1O 2|)|r -r |<d <二、常用结论(1)圆的切线方程常用结论①过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2.②过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2.③过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点所在直线方程为x 0x +y 0y =r 2.(2)直线被圆截得的弦长弦心距d 、弦长l 的一半12l 及圆的半径r 构成一直角三角形,且有r 2=d 2+⎝⎛⎭⎫12l 2. 考点一 直线与圆的位置关系考法(一) 直线与圆的位置关系的判断[典例] 直线l :mx -y +1-m =0与圆C :x 2+(y -1)2=5的位置关系是( ) A .相交B .相切C .相离D .不确定[解析] 法一:由⎩⎪⎨⎪⎧mx -y +1-m =0,x 2+(y -1)2=5, 消去y ,整理得(1+m 2)x 2-2m 2x +m 2-5=0, 因为Δ=16m 2+20>0, 所以直线l 与圆相交.法二:由题意知,圆心(0,1)到直线l 的距离d =|m |m 2+1<1<5,故直线l 与圆相交. 法三:直线l :mx -y +1-m =0过定点(1,1),因为点(1,1)在圆x 2+(y -1)2=5的内部,所以直线l 与圆相交.[答案] A[解题技法] 判断直线与圆的位置关系的常见方法 (1)几何法:利用d 与r 的关系.(2)代数法:联立方程组,消元得一元二次方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交. [提醒] 上述方法中最常用的是几何法. 考法(二) 直线与圆相切的问题[典例] (1)过点P (2,4)作圆(x -1)2+(y -1)2=1的切线,则切线方程为( ) A .3x +4y -4=0 B .4x -3y +4=0 C .x =2或4x -3y +4=0 D .y =4或3x +4y -4=0(2)(2019·成都摸底)已知圆C :x 2+y 2-2x -4y +1=0上存在两点关于直线l :x +my +1=0对称,经过点M (m ,m )作圆C 的切线,切点为P ,则|MP |=________.[解析] (1)当斜率不存在时,x =2与圆相切;当斜率存在时,设切线方程为y -4=k (x -2),即kx -y +4-2k =0,则|k -1+4-2k |k 2+1=1,解得k =43,则切线方程为4x -3y +4=0,故切线方程为x =2或4x -3y +4=0.(2)圆C :x 2+y 2-2x -4y +1=0的圆心为C (1,2),半径为2.因为圆上存在两点关于直线l :x +my +1=0对称,所以直线l :x +my +1=0过点(1,2),所以1+2m +1=0,解得m =-1,所以|MC |2=13,|MP |=13-4=3.[答案] (1)C (2)3 考法(三) 弦长问题[典例] (1)若a 2+b 2=2c 2(c ≠0),则直线ax +by +c =0被圆x 2+y 2=1所截得的弦长为( )A.12 B .1 C.22D.2(2)(2019·海口一中模拟)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为( )A .4πB .2πC .9πD .22π[解析] (1)因为圆心(0,0)到直线ax +by +c =0的距离d =|c |a 2+b 2=|c |2|c |=22,因此根据直角三角形的关系,弦长的一半就等于1-⎝⎛⎭⎫222=22,所以弦长为 2. (2)易知圆C :x 2+y 2-2ay -2=0的圆心为(0,a ),半径为a 2+2.圆心(0,a )到直线y =x +2a 的距离d =|a |2,由直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,|AB |=23,可得a 22+3=a 2+2,解得a 2=2,故圆C 的半径为2,所以圆C 的面积为4π,故选A.[答案] (1)D (2)A[题组训练]1.已知圆的方程是x 2+y 2=1,则经过圆上一点M ⎝⎛⎭⎫22,22的切线方程是________. 解析:因为M ⎝⎛⎭⎫22,22是圆x 2+y 2=1上的点,所以圆的切线的斜率为-1,则设切线方程为x +y +a =0,所以22+22+a =0,得a =-2,故切线方程为x +y -2=0. 答案:x +y -2=02.若直线kx -y +2=0与圆x 2+y 2-2x -3=0没有公共点,则实数k 的取值范围是________.解析:由题知,圆x 2+y 2-2x -3=0可写成(x -1)2+y 2=4,圆心(1,0)到直线kx -y +2=0的距离d >2,即|k +2|k 2+1>2,解得0<k <43.答案:⎝⎛⎭⎫0,43 3.设直线y =kx +1与圆x 2+y 2+2x -my =0相交于A ,B 两点,若点A ,B 关于直线l :x +y =0对称,则|AB |=________.解析:因为点A ,B 关于直线l :x +y =0对称,所以直线y =kx +1的斜率k =1,即y =x +1.又圆心⎝⎛⎭⎫-1,m2在直线l :x +y =0上,所以m =2,则圆心的坐标为(-1,1),半径r =2,所以圆心到直线y =x +1的距离d =22,所以|AB |=2r 2-d 2= 6. 答案:6考点二 圆与圆的位置关系[典例] (2016·山东高考)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A .内切B .相交C .外切D .相离[解析] 法一:由⎩⎪⎨⎪⎧x 2+y 2-2ay =0,x +y =0,得两交点为(0,0),(-a ,a ). ∵圆M 截直线所得线段长度为22, ∴a 2+(-a )2=2 2.又a >0,∴a =2.∴圆M 的方程为x 2+y 2-4y =0, 即x 2+(y -2)2=4,圆心M (0,2),半径r 1=2.又圆N :(x -1)2+(y -1)2=1,圆心N (1,1),半径r 2=1, ∴|MN |=(0-1)2+(2-1)2= 2. ∵r 1-r 2=1,r 1+r 2=3,1<|MN |<3, ∴两圆相交.法二:由题知圆M :x 2+(y -a )2=a 2(a >0),圆心(0,a )到直线x +y =0的距离d =a2,所以2a 2-a 22=22,解得a =2.圆M ,圆N 的圆心距|MN |=2,两圆半径之差为1,两圆半径之和为3,故两圆相交.[答案] B [变透练清]1.(2019·太原模拟)若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m =( )A .21B .19C .9D .-11解析:选C 圆C 1的圆心为C 1(0,0),半径r 1=1,因为圆C 2的方程可化为(x -3)2+(y -4)2=25-m ,所以圆C 2的圆心为C 2(3,4),半径r 2=25-m (m <25).从而|C 1C 2|=32+42=5.由两圆外切得|C 1C 2|=r 1+r 2,即1+25-m =5,解得m =9,故选C.2.(变结论)若本例两圆的方程不变,则两圆的公共弦长为________.解析:联立两圆方程⎩⎪⎨⎪⎧x 2+y 2-4y =0,(x -1)2+(y -1)2=1,两式相减得,2x -2y -1=0,因为N (1,1),r =1,则点N 到直线2x -2y -1=0的距离d =|-1|22=24,故公共弦长为21-⎝⎛⎭⎫242=142.答案:142[解题技法]几何法判断圆与圆的位置关系的3步骤(1)确定两圆的圆心坐标和半径长;(2)利用平面内两点间的距离公式求出圆心距d ,求r 1+r 2,|r 1-r 2|; (3)比较d ,r 1+r 2,|r 1-r 2|的大小,写出结论.[课时跟踪检测]A 级1.若直线2x +y +a =0与圆x 2+y 2+2x -4y =0相切,则a 的值为( ) A .±5 B .±5 C .3D .±3解析:选B 圆的方程可化为(x +1)2+(y -2)2=5,因为直线与圆相切,所以有|a |5=5,即a =±5.故选B.2.与圆C 1:x 2+y 2-6x +4y +12=0,C 2:x 2+y 2-14x -2y +14=0都相切的直线有( )A .1条B .2条C .3条D .4条解析:选A 两圆分别化为标准形式为C 1:(x -3)2+(y +2)2=1,C 2:(x -7)2+(y -1)2=36,则两圆圆心距|C 1C 2|=(7-3)2+[1-(-2)]2=5,等于两圆半径差,故两圆内切.所以它们只有一条公切线.故选A.3.(2019·南宁、梧州联考)直线y =kx +3被圆(x -2)2+(y -3)2=4截得的弦长为23,则直线的倾斜角为( )A.π6或5π6 B .-π3或π3C .-π6或π6D.π6解析:选A 由题知,圆心(2,3),半径为2,所以圆心到直线的距离为d =22-(3)2=1.即d =|2k |1+k 2=1,所以k =±33,由k =tan α,得α=π6或5π6.故选A.4.过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条,则该切线的方程为( ) A .2x +y -5=0 B .2x +y -7=0 C .x -2y -5=0D .x -2y -7=0解析:选B 由题意知点(3,1)在圆上,代入圆的方程可得r 2=5,圆的方程为(x -1)2+y 2=5,则过点(3,1)的切线方程为(x -1)·(3-1)+y (1-0)=5,即2x +y -7=0.故选B.5.(2019·重庆一中模拟)若圆x 2+y 2+2x -6y +6=0上有且仅有三个点到直线x +ay +1=0的距离为1,则实数a 的值为( )A .±1B .±24 C .± 2D .±32解析:选B 由题知圆的圆心坐标为(-1,3),半径为2,由于圆上有且仅有三个点到直线的距离为1,故圆心(-1,3)到直线x +ay +1=0的距离为1,即|-1+3a +1|1+a 2=1,解得a =±24. 6.(2018·嘉定二模)过点P (1,-2)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则AB 所在直线的方程为( )A .y =-34B .y =-12C .y =-32D .y =-14解析:选B 圆(x -1)2+y 2=1的圆心为C (1,0),半径为1,以|PC |=(1-1)2+(-2-0)2=2为直径的圆的方程为(x -1)2+(y +1)2=1,将两圆的方程相减得AB 所在直线的方程为2y +1=0,即y =-12.故选B.7.在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为________.解析:易知圆心(2,-1),半径r =2,故圆心到直线的距离d =|2+2×(-1)-3|12+22=355,弦长为2r 2-d 2=2555. 答案:25558.若P (2,1)为圆(x -1)2+y 2=25的弦AB 的中点,则直线AB 的方程为________. 解析:因为圆(x -1)2+y 2=25的圆心为(1,0),所以直线AB 的斜率等于-11-02-1=-1,由点斜式得直线AB 的方程为y -1=-(x -2),即x +y -3=0.答案:x +y -3=09.过点P (-3,1),Q (a,0)的光线经x 轴反射后与圆x 2+y 2=1相切,则a 的值为________. 解析:因为P (-3,1)关于x 轴的对称点的坐标为P ′(-3,-1), 所以直线P ′Q 的方程为y =-1-3-a (x -a ),即x -(3+a )y -a =0, 圆心(0,0)到直线的距离d =|-a |1+(3+a )2=1,所以a =-53.答案:-5310.点P 在圆C 1:x 2+y 2-8x -4y +11=0上,点Q 在圆C 2:x 2+y 2+4x +2y +1=0上,则|P Q |的最小值是________.解析:把圆C 1、圆C 2的方程都化成标准形式,得(x -4)2+(y -2)2=9,(x +2)2+(y +1)2=4.圆C 1的圆心坐标是(4,2),半径长是3; 圆C 2的圆心坐标是(-2,-1),半径是2.圆心距d =(4+2)2+(2+1)2=35>5.故圆C 1与圆C 2相离, 所以|P Q |的最小值是35-5.答案:35-511.已知圆C 1:x 2+y 2-2x -6y -1=0和圆C 2:x 2+y 2-10x -12y +45=0. (1)求证:圆C 1和圆C 2相交;(2)求圆C 1和圆C 2的公共弦所在直线的方程和公共弦长. 解:(1)证明:圆C 1的圆心C 1(1,3),半径r 1=11, 圆C 2的圆心C 2(5,6),半径r 2=4,两圆圆心距d =|C 1C 2|=5,r 1+r 2=11+4, |r 1-r 2|=4-11,∴|r 1-r 2|<d <r 1+r 2,∴圆C 1和圆C 2相交. (2)圆C 1和圆C 2的方程相减,得4x +3y -23=0, ∴两圆的公共弦所在直线的方程为4x +3y -23=0.圆心C 2(5,6)到直线4x +3y -23=0的距离d =|20+18-23|16+9=3,故公共弦长为216-9=27.12.已知圆C 经过点A (2,-1),和直线x +y =1相切,且圆心在直线y =-2x 上. (1)求圆C 的方程;(2)已知直线l 经过原点,并且被圆C 截得的弦长为2,求直线l 的方程. 解:(1)设圆心的坐标为C (a ,-2a ), 则(a -2)2+(-2a +1)2=|a -2a -1|2.化简,得a 2-2a +1=0,解得a =1.∴C (1,-2),半径r =|AC |=(1-2)2+(-2+1)2= 2. ∴圆C 的方程为(x -1)2+(y +2)2=2.(2)①当直线l 的斜率不存在时,直线l 的方程为x =0,此时直线l 被圆C 截得的弦长为2,满足条件.②当直线l 的斜率存在时,设直线l 的方程为y =kx , 由题意得|k +2|1+k 2=1,解得k =-34,∴直线l 的方程为y =-34x ,即3x +4y =0.综上所述,直线l 的方程为x =0或3x +4y =0.B 级1.过圆x 2+y 2=1上一点作圆的切线,与x 轴、y 轴的正半轴相交于A ,B 两点,则|AB |的最小值为( )A. 2B.3 C .2D .3解析:选C 设圆上的点为(x 0,y 0),其中x 0>0,y 0>0,则有x 20+y 20=1,且切线方程为x 0x +y 0y =1.分别令y =0,x =0得A ⎝⎛⎭⎫1x 0,0,B ⎝⎛⎭⎫0,1y 0,则|AB |=⎝⎛⎭⎫1x 02+⎝⎛⎭⎫1y 02=1x 0y 0≥1x 20+y 202=2,当且仅当x 0=y 0时,等号成立.2.(2018·江苏高考)在平面直角坐标系xOy 中,A 为直线l :y =2x 上在第一象限内的点,B (5,0),以AB 为直径的圆C 与直线l 交于另一点D .若AB ―→·CD ―→=0,则点A 的横坐标为________.解析:因为AB ―→·CD ―→=0,所以AB ⊥CD ,又点C 为AB 的中点,所以∠BAD =π4,设直线l 的倾斜角为θ,直线AB 的斜率为k ,则tan θ=2,k =tan ⎝⎛⎭⎫θ+π4=-3.又B (5,0),所以 直线AB 的方程为y =-3(x -5),又A 为直线l :y =2x 上在第一象限内的点,联立直线AB 与直线l 的方程,得⎩⎪⎨⎪⎧ y =-3(x -5),y =2x ,解得⎩⎪⎨⎪⎧x =3,y =6,所以点A 的横坐标为3. 答案:33.(2018·安顺摸底)已知圆C :x 2+(y -a )2=4,点A (1,0). (1)当过点A 的圆C 的切线存在时,求实数a 的取值范围; (2)设AM ,AN 为圆C 的两条切线,M ,N 为切点,当|MN |=455时,求MN 所在直线的方程.解:(1)过点A 的切线存在,即点A 在圆外或圆上, ∴1+a 2≥4,∴a ≥3或a ≤- 3.(2)设MN 与AC 交于点D ,O 为坐标原点. ∵|MN |=455,∴|DM |=255.又|MC |=2,∴|CD |=4-2025=45, ∴cos ∠MCA =452=25,|AC |=|MC |cos ∠MCA =225=5,∴|OC|=2,|AM|=1,∴MN是以点A为圆心,1为半径的圆A与圆C的公共弦,圆A的方程为(x-1)2+y2=1,圆C的方程为x2+(y-2)2=4或x2+(y+2)2=4,∴MN所在直线的方程为(x-1)2+y2-1-x2-(y-2)2+4=0,即x-2y=0或(x-1)2+y2-1-x2-(y+2)2+4=0,即x+2y=0,因此MN所在直线的方程为x-2y=0或x+2y=0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课后限时集训(四十三)(建议用时:60分钟) A 组 基础达标一、选择题1.(2019·广州模拟)若一个圆的圆心为(0,1),且该圆与直线y =x +3相切,则该圆的标准方程是( )A .x 2+(y -1)2=2 B .(x -1)2+y 2=2 C .x 2+(y -1)2=4D .(x -1)2+y 2=4A [由于圆心为(0,1),设该圆的标准方程是x 2+(y -1)2=r 2(r >0),因为该圆与直线y =x +3相切,故r =|2|2=2,故该圆的标准方程是x 2+(y -1)2=2.故选A.]2.(2019·昆明摸底调研)直线l :x -y =0与圆C :(x -2)2+y 2=6相交于A ,B 两点,则|AB |=( )A .2B .4C. 2D. 6B [由题意知,圆C 的圆心为C (2,0),半径为6,圆心C 到直线l 的距离为2,所以|AB |=262-22=4,故选B.]3.已知圆O 1的方程为x 2+y 2=4,圆O 2的方程为(x -a )2+y 2=1,如果这两个圆有且只有一个公共点,那么a 的所有取值构成的集合是( )A .{1,-1}B .{3,-3}C .{1,-1,3,-3}D .{5,-5,3,-3}C [因为两圆有且只有一个公共点,所以两个圆内切或外切,内切时,|a |=1;外切时,|a |=3,所以实数a 的取值集合是{1,-1,3,-3}.]4.已知直线l :kx -y -3=0与圆O :x 2+y 2=4交于A ,B 两点,且OA →·OB →=2,则k =( )A .2B .± 2C .±2D. 2B [圆O :x 2+y 2=4的圆心为(0,0),半径为2, 设OA →与OB →的夹角为θ,则 2×2×cos θ=2, 解得cos θ=12,θ=π3,∴圆心到直线l 的距离为2cos π6=3,可得|-3|1+k2=3,解得k =± 2.]5.已知过原点的直线l 与圆C :x 2+y 2-6x +5=0相交于不同的两点A ,B ,且线段AB 的中点坐标为D (2,2),则弦长为( )A .2B .3C .4D .5A [将圆C :x 2+y 2-6x +5=0,整理得其标准方程为(x -3)2+y 2=4,∴圆C 的圆心坐标为(3,0),半径为2.∵线段AB 的中点坐标为D (2,2),∴|CD |=1+2=3,∴|AB |=24-3=2.故选A.] 二、填空题6.(2019·南京模拟)在平面直角坐标系xOy 中,若直线ax +y -2=0与圆C :(x -1)2+(y -a )2=16相交于A ,B 两点,且△ABC 为直角三角形,则实数a 的值是________.-1 [由题意知,圆C 的半径是4,△ABC 为直角三角形,则圆心C (1,a )到直线ax +y -2=0的距离为22,所以|a +a -2|a 2+1=22,解得a =-1.]7.(2019·兰州月考)点P 在圆C 1:x 2+y 2-8x -4y +11=0上,点Q 在圆C 2:x 2+y 2+4x +2y +1=0上,则|PQ |的最小值是________.35-5 [把圆C 1、圆C 2的方程都化成标准形式,得 (x -4)2+(y -2)2=9,(x +2)2+(y +1)2=4. 圆C 1的圆心坐标是(4,2),半径长是3; 圆C 2的圆心坐标是(-2,-1),半径是2. 圆心距d =4+22+2+12=35>5.故圆C 1与圆C 2相离,所以|PQ |的最小值是35-5.]8.若⊙O :x 2+y 2=5与⊙O 1:(x -m )2+y 2=20(m ∈R )相交于A ,B 两点且两圆在点A 处切线互相垂直,则线段AB 的长度是________.4 [由题意⊙O 1与⊙O 在A 处切线互相垂直,则两切线分别过另一圆圆心,∴O 1A ⊥O A.又|OA |=5,|O 1A |=25,∴|O 1O |=5. 又A ,B 关于O 1O 所在直线对称, ∴AB 是Rt△OAO 1斜边上高的2倍. ∴|AB |=2×5×255=4.]三、解答题9.已知圆C 经过点A (2,-1),和直线x +y =1相切,且圆心在直线y =-2x 上. (1)求圆C 的方程;(2)已知直线l 经过原点,并且被圆C 截得的弦长为2,求直线l 的方程. [解] (1)设圆心的坐标为C (a ,-2a ), 则a -22+-2a +12=|a -2a -1|2.化简,得a 2-2a +1=0,解得a =1. ∴C (1,-2),半径r =|AC |=1-22+-2+12= 2.∴圆C 的方程为(x -1)2+(y +2)2=2.(2)①当直线l 的斜率不存在时,直线l 的方程为x =0, 此时直线l 被圆C 截得的弦长为2,满足条件.②当直线l 的斜率存在时,设直线l 的方程为y =kx ,由题意得|k +2|1+k2=1,解得k =-34, ∴直线l 的方程为y =-34x .综上所述,直线l 的方程为x =0或y =-34x .10.(2018·河北邢台月考)已知圆C 的方程为x 2+(y -4)2=1,直线l 的方程为2x -y =0,点P 在直线l 上,过点P 作圆C 的切线PA ,PB ,切点为A ,B.(1)若∠APB =60°,求点P 的坐标;(2)求证:经过A ,P ,C (其中点C 为圆C 的圆心)三点的圆必经过定点,并求出所有定点的坐标.[解] (1)由条件可得圆C 的圆心坐标为(0,4),|PC |=2, 设P (a,2a ),则a 2+2a -42=2,解得a =2或a =65,∴点P 的坐标为(2,4)或⎝ ⎛⎭⎪⎫65,125. (2)设P (b,2b ),过点A ,P ,C 的圆即是以PC 为直径的圆,其方程为x (x -b )+(y -4)(y -2b )=0,整理得x 2+y 2-bx -4y -2by +8b =0,即(x 2+y 2-4y )-b (x +2y -8)=0.由⎩⎪⎨⎪⎧x 2+y 2-4y =0,x +2y -8=0,得⎩⎪⎨⎪⎧x =0,y =4或⎩⎪⎨⎪⎧x =85,y =165,∴该圆必经过定点(0,4)和⎝ ⎛⎭⎪⎫85,165.B 组 能力提升1.已知两点A (-m,0)和B (2+m,0)(m >0),若在直线l :x +3y -9=0上存在点P ,使得PA ⊥PB ,则实数m 的取值范围是( )A .(0,3)B .(0,4)C .[3,+∞)D .[4,+∞)C [因为A (-m,0),B (2+m,0)(m >0),所以以AB 为直径的圆的圆心为(1,0),半径为1+m ,即方程为(x -1)2+y 2=(1+m )2.若直线l :x +3y -9=0上存在点P ,使得PA ⊥PB , 则直线l 与圆有公共点. ∴|1-9|2≤1+m ,解得m ≥3.] 2.(2019·达州联考)若圆(x -3)2+(y +5)2=r 2有且只有两个点到直线4x -3y =2的距离等于1,则半径r 的取值范围是( )A .(4,6)B .(4,6]C .[4,6)D .[4,6]A [由圆的标准方程得圆心坐标(3,-5),则圆心(3,-5)到直线4x -3y =2的距离d =|4×3-3×-5-2|32+42=255=5. 若圆(x -3)2+(y +5)2=r 2有且只有两个点到直线4x -3y =2的距离等于1,则满足d -1<r <d +1,即4<r <6,故选A.]3.若直线x sin θ+y cos θ=1与圆x 2+y 2-2x -2y cos θ+cos 2θ+1516=0相切,且θ为锐角,则这条直线的斜率是________.-33 [圆x 2+y 2-2x -2y cos θ+cos 2θ+1516=0化为标准方程得(x -1)2+(y -cos θ)2=116,圆心为(1,cos θ),半径为14,由题意得,圆心到直线的距离d =|1×sin θ+cos 2θ-1|cos 2θ+sin 2θ=14,所以|sin θ-sin 2θ|=14.因为θ为锐角,所以0<sin 2θ<sin θ<1,sin 2θ-sin θ+14=0,解得sin θ=12,故cos θ=32,所以直线x sin θ+y cos θ=1的斜率k =-sin θcos θ=-1232=-33.] 4.(2018·江苏南通模拟)如图,在平面直角坐标系xOy 中,已知圆C :x 2+y 2-4x =0及点A (-1,0),B (1,2).(1)若直线l 平行于AB ,与圆C 相交于M ,N 两点,|MN |=|AB |,求直线l 的方程; (2)在圆C 上是否存在点P ,使得|PA |2+|PB |2=12?若存在,求点P 的个数;若不存在,说明理由.[解] (1)圆C 的标准方程为(x -2)2+y 2=4,所以圆心C (2,0),半径为2.因为l ∥AB ,A (-1,0),B (1,2),所以直线l 的斜率为2-01--1=1.设直线l 的方程为x -y +m =0,则圆心C 到直线l 的距离为d =|2-0+m |2=|2+m |2.因为|MN |=|AB |=22+22=22,而|CM |2=d 2+⎝ ⎛⎭⎪⎫|MN |22,所以4=2+m22+2,解得m =0或m =-4,故直线l 的方程为x -y =0或x -y -4=0.(2)假设圆C 上存在点P ,设P (x ,y ),则(x -2)2+y 2=4,|PA |2+|PB |2=(x +1)2+(y -0)2+(x -1)2+(y -2)2=12,化简得x 2+y 2-2y -3=0,即x 2+(y -1)2=4.因为|2-2|<2-02+0-12<2+2,所以圆(x -2)2+y 2=4与圆x 2+(y -1)2=4相交,所以存在点P ,使|PA |2+|PB |2=12,点P 的个数为2.。

相关文档
最新文档