第十章曲线积分与曲面积分
曲线积分与曲面积分重点总结+例题
第十章曲线积分与曲面积分【教学目标与要求】1.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系。
2.掌握计算两类曲线积分的方法.3.熟练掌握格林公式并会运用平面曲线积分与路径无关的条件,会求全微分的原函数.4.了解第一类曲面积分的概念、性质,掌握计算第一类曲面积分的方法。
【教学重点】1。
两类曲线积分的计算方法;2。
格林公式及其应用;3。
第一类曲面积分的计算方法;【教学难点】1。
两类曲线积分的关系及第一类曲面积分的关系;2.对坐标的曲线积分与对坐标的曲面积分的计算;3。
应用格林公式计算对坐标的曲线积分;6.两类曲线积分的计算方法;7.格林公式及其应用格林公式计算对坐标的曲线积分;【参考书】[1]同济大学数学系.《高等数学(下)》,第五版.高等教育出版社。
[2]同济大学数学系.《高等数学学习辅导与习题选解》,第六版.高等教育出版社.[3]同济大学数学系。
《高等数学习题全解指南(下)》,第六版.高等教育出版社§11.1 对弧长的曲线积分一、对弧长的曲线积分的概念与性质曲线形构件的质量:设一曲线形构件所占的位置在xOy面内的一段曲线弧L上,已知曲线形构件在点(x,y)处的线密度为μ(x,y)。
求曲线形构件的质量.把曲线分成n小段,∆s1,∆s2,⋅⋅⋅,∆s n(∆s i也表示弧长);任取(ξi,ηi)∈∆s i,得第i小段质量的近似值μ(ξi,ηi)∆s i;整个物质曲线的质量近似为;令λ=max{∆s1,∆s2,⋅⋅⋅,∆s n}→0,则整个物质曲线的质量为.这种和的极限在研究其它问题时也会遇到。
定义设函数f(x,y)定义在可求长度的曲线L上,并且有界。
,将L任意分成n个弧段:∆s1,∆s2,⋅⋅⋅,∆s n,并用∆s i表示第i段的弧长;在每一弧段∆s i上任取一点(ξi,ηi),作和;令λ=max{∆s1,∆s2,⋅⋅⋅,∆s n},如果当λ→0时,这和的极限总存在,则称此极限为函数f(x,y)在曲线弧L上对弧长的曲线积分或第一类曲线积分,记作,即.其中f(x,y)叫做被积函数,L叫做积分弧段。
高等数学第10章 曲线积分与曲面积分
80
81
82
10.7.2 旋度的定义及其物理意义
83
84
85
66
67
实际上,我们常常碰到的曲面是双侧曲面,但单侧 曲面也存在,最有名的单侧曲面是拓扑学中的莫比乌斯 带,如图10.28所示.它的产生是将长方形纸条ABCD 先 扭转一次,然后使B与D,及A与C粘合起来构成的一个 非闭的环带.若想象一只蚂蚁从环带上一侧的某一点出发, 蚂蚁可以不用跨越环带的边界而到达环带的另一侧,然 后再回到起点;或者用一种颜色涂这个环带,不用越过 边界,可以涂满环带的两侧.显然这是双侧曲面不可能出 现的现象
第10章 曲线积分与曲面积分
解决许多几何、物理以及其他实际问题时,不仅需 要用到重积分,而且还需要将积分区域推广到一段曲线 弧或一片曲面上,这样推广后的积分称为曲线积分和曲 面积分.本章还将介绍格林公式、高斯公式及斯托克斯公 式,这三个公式刻画了不同类型的积分之间的内在联系, 并且在微积分、场论及其他学科中有着广泛的应用。
46
47
48
49
50
51
10.4 第一型曲面积分
通过讨论非均匀密度的空间曲面壳质量这一物理问 题,本节引入第一型曲面积分的概念并研究了相关性质。 10.4.1 实例 质量分布在可求面积的曲面壳上,曲面壳占有空间 曲面Σ,其密度函数为ρ(x,y,z),求曲面壳的质量.
52
53
54
55
15
16
17
18
19
20
21
10.2.3 向量值函数在有向曲线上的积分的计算法 设向量值函数F(x,y,z)=P(x,y,z)i+Q(x, y,z)j+R(x,y,z)k在有向曲线Γ上有定义且连续, 有向曲线弧Γ为简单曲线,它的参数方程为
10曲线积分与曲面积分-2
线性性质.
∫∫∑ [k1 f (x, y, z) ± k2g(x, y, z)]d S = k1∫∫ f (x, y, z) dS ± k2 ∫∫ g(x, y, z) dS ∑ ∑
二,对面积的曲面积分的计算法
定理1: 定理 设有光滑曲面 f (x, y, z) 在 ∑ 上连续, 则曲面积分
z
其中, λ 表示 n 小块曲面的直径的
x
最大值 (曲面的直径为其上任意两点间距离的最大者).
定义: 定义: 设 ∑ 为光滑曲面, "乘积和式极限"
f (x, y, z) 是定义在 ∑ 上的一
个有界函数, 若对∑ 做任意分割和局部区域任意取点,
记作
∫∫ f (x, y, z)d S
∑
都存在, 则称此极限为函数 f (x, y, z) 在曲面 ∑ 上对面积 的曲面积分 或第一类曲面积分. 其中 f (x, y, z) 叫做被积 函数, ∑ 叫做积分曲面. 据此定义, 曲面形构件的质量为 曲面面积为
xdS ; xdS ;
( 2000 考研 )
1
1
备用题 1. 已知曲面壳
质量 M . 解: ∑ 在 xOy 面上的投影为
的面密度
求此曲面壳在平面 z =1以上部分∑ 的
Dx y : x2 + y2 ≤ 2 , 故
M = ∫∫ d S = ∫∫
∑
3 1+ 4( x2 + y2 ) d xdy Dx y z
解
积分曲面 ∑:z = 5 y ,
投影域 : D xy = {( x , y ) | x 2 + y 2 ≤ 25 }
dS = 1 + z ′x + z ′y dxdy
曲线积分和曲面积分的物理意义
曲线积分和曲面积分的物理意义摘要:1.曲线积分概述2.曲面积分的物理意义3.曲线积分与曲面积分的联系与区别4.实际应用案例分析正文:一、曲线积分概述曲线积分是一种数学工具,用于计算曲线上的物理量,如力、速度、能量等。
它在物理学、工程学等领域具有广泛的应用。
曲线积分的基本思想是将曲线划分为无数小段,计算每小段上的物理量与长度的乘积之和。
根据积分路径的不同,曲线积分可分为线积分和面积分。
二、曲面积分的物理意义曲面积分是对曲面上物理量的积分,其基本思想是将曲面划分为无数小面,计算每个小面上的物理量与面积的乘积之和。
曲面积分可分为两类:法向量积分和切向量积分。
法向量积分用于计算曲面上某一点的垂直方向物理量,如压力、温度等;切向量积分用于计算曲面上某一点的切线方向物理量,如速度、力等。
曲面积分在物理学、工程学等领域具有重要的物理意义。
三、曲线积分与曲面积分的联系与区别曲线积分与曲面积分都是对物理量沿路径或曲面的积分。
它们的联系在于都是通过对路径或曲面进行划分,计算各小段或小面上物理量与长度或面积的乘积之和。
然而,它们也有明显的区别。
曲线积分主要针对曲线路径,关注沿路径的变化;而曲面积分针对曲面,关注的是曲面上各点的物理量。
此外,曲线积分可分为线积分和面积分,而曲面积分可分为法向量积分和切向量积分。
四、实际应用案例分析1.电磁学:在电磁学中,曲线积分广泛应用于计算电场线、磁感线等。
通过计算曲线上某一点的电场强度或磁场强度与弧长的乘积之和,可以得到电场线或磁感线的分布情况。
2.流体力学:在流体力学中,曲面积分可用于计算流体沿曲面的速度分布。
通过计算曲面上各点的速度与面积的乘积之和,可以得到流体的速度分布情况,进而分析流体的运动规律。
3.热传导:在热传导问题中,曲线积分可以用于计算温度沿曲线的分布。
通过计算曲线上某一点的温度与弧长的乘积之和,可以得到温度的分布情况,进而分析热传导过程。
总之,曲线积分和曲面积分在物理学、工程学等领域具有重要的应用价值。
第十章 曲线积分与曲面积分
第十章曲线积分与曲面积分10.1 对弧长的曲线积分一、求曲线cos,sin,t t tx e t y e t z e===从0t=到任意点间的那段弧的质量,设它各点的密度与该点到原点的距离的平方成反比,且在点(1,0,1)处的密度为1。
1)te-)二、计算下列曲线积分:1. L⎰,其中L为旋轮线:(sin)(1cos)x a t ty a t=-⎧⎨=-⎩(0tπ≤≤2)。
(324aπ)2.()Lx y ds+⎰,其中L是顶点为(0,0),(1,0),(0,1)O A B的三角形边界。
(13. L⎰,其中L是由极坐标曲线,0,r aπθθ===4所围成的区域的边界曲线。
(2(1)a ae aeπ-+4)4.()Lx y z ds++⎰,其中L由直线AB:(1,1,0),(1,0,0)A B及螺线cos,sin,(02)x t y t z t tπ===≤≤组成。
(322+)三、计算L⎰,其中L是由,0y x y y===所围成的第一象限部分的边界。
(2sin cosR R Rπ+4)四、计算L,其中L是圆:2222x y z ax y⎧++=⎨=⎩。
(2aπ2)五、 计算Lxds⎰Ñ,其中L 由直线0,x y x ==及曲线22y x -=所围成的第一象限部分的整个边界。
(+) 10.2 对坐标的曲线积分一、设一质点处于弹性力场中,弹力方向指向原点,弹力大小与质点到原点的距离成正比,比例系数为k 。
若质点从点(0,)a 沿椭圆22221x y a b +=在第一象限部分移动到点(0,)b ,求弹力所做的功。
(221()2k a b -)二、计算曲线积分22(2)(2)Lx xy dx y xy dy ++-⎰,其中L 是抛物线2(11)y x x =-≤≤沿x增加的方向。
(1415-) 三、 计算2y Lxe dy+⎰,其中L是曲线y =从点(0,0)O 到点(1,1)的一段弧。
(2322)四、 计算2222()()Lx y dx x y dy ++-⎰,其中L 是曲线11y x =--从点(0,0)到点(2,0)的一段。
第十章(第六部分)曲面积分习题解答
第十章 曲线积分与曲面积分(第六部分)曲面积分习题解答一、对面积的曲面积分1.计算曲面积分⎰⎰∑++dS y x z )342(,其中∑为平面1432=++zy x 在第一卦限中的部分. 分析 因为∑:1432=++z y x ,可恒等变形为∑:y x z 3424--=,又因被积函数y x z 342++与∑形式相同,故可利用曲面方程来简化被积函数,即将4342=++y x z 代入,从而简化计算。
解 平面∑方程的为)321(4yx z --=(如图), ∑在xoy 面上的投影区域xy D :0,0,132≥≥≤+y x yx ;34,2-=∂∂-=∂∂y z x z ,面积元素 dxdy dxdy y z x z dS 361122=⎪⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+= 从而⎰⎰⎰⎰⋅=++∑xyD dxdy dS y x z 3614)342( 61432213614=⋅⋅⋅=. 2. 计算曲面积分⎰⎰∑+dS y x |)|(,其中∑为1||||||=++z y x .解 由对称性可知,0=⎰⎰∑xd S ,由轮换对称性和代入技巧知,⎰⎰⎰⎰⎰⎰∑∑∑=++=dS dS z y x dS y 31|)||||(|31||,再由曲面积分的几何意义知,34238=⋅=⎰⎰∑dS ,所以,334|)|(=+⎰⎰∑dS y x .y二、对坐标的曲面积分1.计算曲面积分⎰⎰∑dydz x 2.其中∑为球面2222R z y x =++在第一卦限部分的上侧。
分析 由于∑不是封闭曲面,且只是对坐标z y ,的曲面积分,故直接计算即可。
解 因∑:222z y R x --=取前侧,且∑在yoz 面上的投影区域为0 ,0 , :222≥≥≤+z y R z y D yz .于是得 ⎰⎰∑dydz x 2dydz z y R yzD ⎰⎰--=)(222⎰⎰⋅-θ=πRrdr r R d 02220 )(402228141212R r r R Rπ=⎥⎦⎤⎢⎣⎡-π=. 2. 计算曲面积分⎰⎰∑++=ydzdx xdydz zdxdy I .其中∑是柱面122=+y x 被平面0=z 及3=z 所截得的在第一卦限内的部分的前侧。
高等数学第十章曲线积分与曲面积分(考研辅导班内部资料)
ds L ( L 表示曲线 L 的弧长 ) .
L
积函数可用积分曲线方程作变换.
( 6) 奇偶性与对称性 如果积分弧段 L (AB ) 关于 y 轴对称,
f (x, y)ds 存在,则
L( AB )
f ( x, y)ds
L ( AB )
0,
f ( x, y) 关于 x是奇函数 ,
2
f ( x, y)ds,f ( x, y) 关于 x是偶函数 .
切线的方向余弦是一个常量。 所以, 当积分曲线是直线时, 可能采用两类不同的曲线积分的
转换。
定理 4 (格林公式)
设 D 是由分段光滑的曲线 L 围成,函数 P( x, y), Q (x, y) 及其一阶偏导数在 D 上连续,
则有
P(x, y)dx Q (x, y)d y
Q P dxdy
L
Dx x
设 L (AB ) 的平面曲线: 其参数方程: x
分别是 和 ,则
(t), y
(t) ,起点和终点对应的参数取值
Pdx Qdy
L ( AB)
{ P( (t ), (t)] (t) Q[( (t), (t )] (t )}dt
设 L (AB ) 的空间曲线 :其参数方程: x (t), y (t ), z w(t ) ,起点和终点对应的
表示曲线的线密度。 定义 2 第二类曲线积分(对坐标的曲线积分)
( 1)平面曲线 L( AB) 的积分:
P(x, y)dx Q( x, y)dy
L ( AB )
( 2)空间曲线 L( AB) 的积分:
n
lim
(T ) 0
[ f ( k , k ) xk
k1
f ( k , k ) yk ]
曲线积分与曲面积分
曲线积分与曲面积分曲线积分和曲面积分是微积分中两个重要的概念。
曲线积分是对曲线上的函数进行积分运算,而曲面积分是对曲面上的函数进行积分运算。
本文将详细介绍曲线积分和曲面积分的概念、计算方法以及应用。
一、曲线积分曲线积分是对曲线上的函数进行积分运算。
通常将曲线积分分为第一类曲线积分和第二类曲线积分。
1. 第一类曲线积分第一类曲线积分用于计算曲线上的标量场函数。
对于参数化曲线C:r(t)=(x(t), y(t), z(t)),其中a≤t≤b,函数f(x,y,z)在C上可微分,则第一类曲线积分的计算公式为:∫_[C]f(x,y,z)ds=∫_a^bf(x(t),y(t),z(t))∥r'(t)∥dt其中,ds表示曲线上的微元弧长,∥r'(t)∥表示曲线C的切向量的长度。
2. 第二类曲线积分第二类曲线积分用于计算曲线上的矢量场函数。
对于参数化曲线C:r(t)=(x(t), y(t), z(t)),其中a≤t≤b,函数F(x,y,z)在C上连续,则第二类曲线积分的计算公式为:∫_[C]F(x,y,z)·dr=∫_a^bF(x(t),y(t),z(t))·r'(t)dt其中,·表示矢量的点乘运算,dr表示曲线上的微元矢量。
二、曲面积分曲面积分是对曲面上的函数进行积分运算。
同样,曲面积分也分为第一类曲面积分和第二类曲面积分。
1. 第一类曲面积分第一类曲面积分用于计算曲面上的标量场函数。
对于参数化曲面S:r(u,v)=(x(u,v), y(u,v), z(u,v)),其中(u,v)属于区域D,函数f(x,y,z)在S上可微分,则第一类曲面积分的计算公式为:∬_[S]f(x,y,z)dS=∬_Df(x(u,v),y(u,v),z(u,v))∥r_u×r_v∥dudv其中,dS表示曲面上的微元面积,r_u和r_v表示曲面S的参数方程关于u和v的偏导数,r_u×r_v表示两个偏导数的叉乘,∥r_u×r_v∥表示其长度。
第十章(第四部分)曲面积分
第十章曲线积分与曲面积分(第四部分)曲面积分Ⅰ、对面积的曲面积分(第一型曲面积分)一、对面积的曲面积分的定义1.定义.2.物理意义表示面密度为的曲面的质量.二、对面积的曲面积分的性质1.线性性质:2.可加性:.3.的面积:.4.单调性:若在上,,则.三、对面积的曲面积分的计算方法方法:化为二重积分计算(关键:确定二重积分的积分变量)(1)若,. 则.(2)若,. 则.(3)若,. 则.四、对面积的曲面积分典型例题例1.计算曲面积分,其中为在与之间的部分。
分析因为:,即,从中能确定,或。
解令:;:. 则(如图).(1)求和在平面上的投影区域:因和在平面上的投影区域相同,设为,则:,.(2)求微元:在和上,;(3)转化为二重积分:.例2.计算曲面积分,其中为曲面.分析注意到积分曲面为旋转抛物面,它关于面和面对称,且被积函数关于变量和均为偶函数,因此只要计算在第一卦限部分,再4倍即可,即本题利用对称性计算比较简便。
解设在第一卦限的部分为,则在面上的投影区域为于是(令).例3.计算曲面积分,其中为球面.分析由于积分曲面为球面,它关于三个坐标面具有轮换对称性,所以,而. 故本题利用轮换对称性和奇偶对称性计算比较简单。
解因,由奇偶对称性可知,上述未写出项的积分值均为,而由轮换对称性易知,故.注从以上几个例子可以看出,计算对面积的曲面积分应注意掌握以下几个要点:(1)由于积分范围是曲面,所以点的坐标满足曲面的方程,计算中要善于利用曲面的方程来化简被积函数;(2)计算对面积的曲面积分时,应注意观察积分曲面的对称性(包括轮换对称性)和被积函数的奇偶性,可以利用此类特殊性来简化积分的计算;(3)将对面积的曲面积分转化为二重积分计算,关键在于二重积分积分变量的选择,这是由积分曲面的方程的特点所决定的,从以上的例子即可看出。
五、对面积的曲面积分的应用1.几何应用求曲面的面积:.2.物理应用质量.质心,,.转动惯量,,.例4.求面密度为的均匀半球壳对于轴的转动惯量。
曲线积分与曲面积分知识点
第十章 曲线积分与曲面积分一、 一、 重点两类曲面积分及两类曲面积分的计算和格林公式、高斯公式的应用 二、 二、 难点对曲面侧的理解,把对坐标的曲面积分化成二重积分,利用格林公式求非闭曲线上的第二类曲线积分,及利用高斯公式计算非闭曲面上的第二类曲面积分。
三、 三、 内容提要1. 1. 曲线(面)积分的定义:(1) (1) 第一类曲线积分∑⎰=→∆∆ni i i i LS f ds y x f 0),(lim ),(ηξλ(存在时)i S ∆表示第i 个小弧段的长度,(i i ηξ,)是i S ∆上的任一点小弧段的最大长度。
实际意义:当f(x,y)表示L 的线密度时,⎰Lds y x f ),(表示L 的质量;当f(x,y) ≡1时,⎰Lds表示L 的弧长,当f(x,y)表示位于L 上的柱面在点(x,y )处的高时,⎰Lds y x f ),(表示此柱面的面积。
(2) (2) 第二类曲线积分]),(),([lim 1i i i ni iiiLy Q x P Qdy Pdx ∆+∆∆+∑⎰=→ηξηξλ(存在时)实际意义:设变力F =P(x,y) i +Q(x,y) j 将质点从点A 沿曲线L 移动到B 点,则F 作的功为:⎰⎰+=⋅=L L Qdy Pdx S d F W,其中S d =(dx,dy )事实上,⎰L Pdx ,⎰L Qdy 分别是F在沿X 轴方向及Y 轴方向所作的功。
(3) (3) 第一类曲面积分∑⎰⎰=→∑∆∆ni i iiiS f ds z y x f 1),,(lim ),,(ζηξλ(存在时)i S ∆表示第i 个小块曲面的面积,(i i i ζηξ,,)为i S ∆上的任一点,λ是n 块小曲面的最大直径。
实际意义:当f(x,y ,z)表示曲面∑上点(x,y,z )处的面密度时,⎰⎰∑ds z y x f ),,(表示曲面∑的质量,当f(x,y,z) ≡1时,⎰⎰∑ds 表示曲面∑的面积。
高数 第十章 曲线积分与曲面积分
计算
定积分
计算
Stokes公式 计算 曲面积分 Gauss公式
重积分
16
积分概念的联系
定积分
f ( M )d lim f ( M ) i , f ( M )点函数
0
i 1
n
当 R1上区间 a, b]时, f ( M )d f ( x )dx. [
5
基本问题: 如何熟练掌握各种积分的计算
首先判断准确要求的是哪一类积分 重要的是牢牢记住各种积分的计算方法
1、I
L
f ( x , y )ds 代入曲线的方程以及ds,从而化为定积分解之
2、I Pdx Qdy 代入曲线的方程,化为定积分解之 L
P Q 闭合 y x 非闭
( y 2 z 2 ) dS; I z
( x 2 y 2 ) dS
曲面质心: 曲面形心:
x
x
dS ; y
S
;y
ydS ydS
dS ; z
S
;z
dS S
dS zzdS
15
(二)各种积分之间的联系
积分是
P cos Q cos R cos ds
,其中, ,为有向曲面上点
x, y, z 处的
法方向 的方向角。
20
2.选择以下各题中给出的四个结论中一个正确的结论:
(1)设曲面是上半球面 : x 2 y 2 z 2 R 2 , z 0, 曲面 1 是 曲面在第一卦限中的部分 , 则有 C .
条 件 等
高等数学第十章《曲线积分与曲面积分》
第十章 曲线积分与曲面积分一.曲线积分的计算 (1)基本计算1.第一类:对弧长线积分的计算(,)Lf x y ds ⎰关键是用曲线L:(),(),x t y t ϕψ=⎧⎨=⎩()t αβ≤≤做变量替换(被积函数,积分变元,积分范围)(,)[(),(,()Lf x y ds f t t βαϕψαβ=<⎰⎰例 L 为圆周221,x y +=则22xy Le ds +=⎰2e π 参数方程,曲线代入解 cos :(02)sin x L y θθπθ=⎧≤≤⎨=⎩ds d θθ==22x y Leds +=⎰202ed e πθπ=⎰例 计算2⎰L x ds ,其中2222:(0)0⎧++=>⎨-=⎩x y z a L a x y . (8分)解 由于 22222222::00⎧⎧++=+=⇒⎨⎨-=-=⎩⎩x y z a x z a L L x y x y 所以L 的参数方程可表示为:(02)sin θθπθ⎧=⎪⎪⎪=≤≤⎨⎪⎪=⎪⎩x L y t z a (3分)θθ==ds ad (2分) 故23222cos 22ππθθ==⎰⎰La a x ds ad(3分) 【例10.22】求⎰,式中L 为圆周22(0)x y ax a +=>解 L 的极坐标方程为:,(),cos 22L ds ad r a θθππθθθθ=⎧-≤≤==⎨=⎩则222cos 2a ad a ππθθ-=⋅=⎰⎰第二类:对坐标的线积分的计算 关键是用曲线L:(),(),x t y t ϕψ=⎧⎨=⎩(:)t αβ→做变量替换(被积函数,积分变元,积分范围)''(,)(,){[(),()]()[(),()]()}LP x y dx Q x y dy P t t t Q t t t dt βαϕψϕϕψψ+=+⎰⎰例 设L 为抛物线2y x =从点()0,0到()2,4一段弧,则()22Lx y dx -=⎰5615-注意微元,及参数方程的形式【例10.17】 求2L ydx xdy x +⎰,其中L 是曲线ln y x =上从点(1,0)到点(,1)e 的一段弧. 解 由ln y x =得1,ydx dy x e x==,故原式=1121002()|y y ydy e dy y e e +=+=⎰⎰⑵ 基本技巧① 利用对称性简化计算;对弧长的线积分,对称性同二重积分 例 计算3222(),Lx y ds L x y R 其中:++=⎰解:33()LLLx y ds xds y ds =+=0+⎰⎰⎰ 第一个L 关于y 对称,第二个L 关于x 对称【例10.15】 求yL xe ds ⎰,其中L 是由cos (0)sin x a ta y a t =⎧>⎨=⎩所表示的曲线上相应于233t ππ≤≤的一段弧.解 (法一)ds adt ==,故 原式=22sin sin 3333cos |0a ta ta t e adt aeππππ⋅⋅==⎰.(法二)容易看出积分弧段关于y 轴对称,而被积函数是关于变量x 的奇函数,故0y Lxe ds =⎰【例10.18】 求2()Lx y ds +⎰,其中L 为圆周222x y a +=.解 由对称性得0Lxyds =⎰,故22222()(2)()2LLLLx y ds x xy y ds x y ds xyds +=++=++⎰⎰⎰⎰2223022LLa ds a ds a a a ππ=+==⋅=⎰⎰对坐标的线积分,对称性为,当平面曲线L 是分段光滑的,关于x 对称,L 在上半平面与下半平面部分的走向相反时,若P 对y 为偶函数,则,0LPdx =⎰奇函数,则12LL Pdx Pdx =⎰⎰。
高等数学第10章课后习题答案(科学出版社)
第十章曲线积分与曲面积分习题详解习题10—11 计算下列对弧长的曲线积分: (1)LI xds =⎰,其中L 是圆221x y +=中(0,1)A到B 之间的一段劣弧;解: L AB =的参数方程为:cos ,sin x y θθ==()42ππθ-≤≤,于是2cos I ππθ-=⎰4cos (1d ππθθ-==+⎰.(2)(1)Lx y ds ++⎰ ,其中L 是顶点为(0,0),(1,0)O A 及(0,1)B 所成三角形的边界;解: L 是分段光滑的闭曲线,如图9-2所示,根据积分的可加性,则有(1)Lx y ds ++⎰(1)OAx y ds =++⎰(1)ABx y ds +++⎰ (1)BOx y ds +++⎰,由于OA :0y =,01x ≤≤,于是ds dx ===,故 103(1)(01)2x y ds x dx ++=++=⎰⎰OA, 而:AB 1y x =-,01x ≤≤,于是ds ==. 故10(1)[(1)ABx y ds x x ++=+-+=⎰⎰,同理可知:BO 0x =(01y ≤≤),0d s =,则13(1)[01]2BOx y ds y dy ++=++=⎰⎰. xyoABC综上所述33(1)322Lx y ds -+=+=+⎰ (3)⎰,其中L 为圆周22x y x +=;解 直接化为定积分.1L 的参数方程为11cos 22x θ=+,1sin 2y θ=(02θπ≤≤), 且12ds d θθ==.于是201cos222d πθθ=⋅=⎰⎰.(4)2 Lx yzds ⎰,其中L 为折线段ABCD ,这里(0,0,0)A ,(0,0,2),B (1,0,2),C(1,2,3)D ;解 如图所示, 2222 LABBCCDx yzds x yzds x yzds x yzds =++⎰⎰⎰⎰.线段AB 的参数方程为 0,0,2(01)x y z t t ===≤≤,则ds =2dt ==,故02200 12=⋅⋅⋅=⎰⎰dt t yzds x AB.线段BC 的参数方程为,0,2(01)x t y z t ===≤≤,则,ds dt ==故122 0020BCx yzds t dt =⋅⋅⋅=⎰⎰,线段CD 的参数方程为1,2,2x y t z t===+)10(≤≤t ,则ds ==,故1122012(2))x yzds t t t t dt =⋅⋅+=+=⎰⎰ 2 (2所以2222LBB CC Dx y z d s x y z d sx y z d sd s =++⎰⎰⎰⎰2 求八分之一球面2221(0,0,0)x y z x y z ++=≥≥≥的边界曲线的重心,设曲线的密度1ρ=。
《高等数学》第十章曲线积分与曲面积分 第五节
G
B( x , y )
C ( x , y0 )
o
u( x , y ) x P ( x , y0 )dx y Q( x , y )dy
0 0
x
x
y
AC CB
或 u( x , y ) y Q( x0 , y )dy x P ( x , y )dx
一重积分中,牛顿—莱布尼茨公式
f(x)积分区间[a , b]
y
y f x
b
a
f ( x )dx F (b) F (a )
二重积分中, 格林公式
o a
y
b x
D
f(x, y)积分区域D
x y dxdy L Pdx Qdy . D P Q
o
三重积分中, 高斯公式和斯托克斯公式
2
设 P ( x , y ) x 2 2 xy , Q( x , y ) x 2 y 4 .
则 P,Q 在全平面上有连续的 一阶偏导数,且
1
y
B
1
P 2 x , y
Q 2 x. x
o
x
Q P 即 . 全平面是单连通域。 y x
因此,积分与路径无关。
10
P 2 x , y
( x, y)
D
0 , y0 )
P ( x , y )dx Q( x , y )dy
0
x
当起点A( x , y )固定时,
0
O
积分的值取决于终点 B( x , y ), 因此,它是 x , y的函数,
定义 u( x , y )
( x, y)
( x0 , y0 )
线面积分
第十章 曲线积分与曲面积分1-1 第一型曲线积分基础题1.光滑曲线(),()()x t t y t =ϕ⎧α≤≤β⎨=ψ⎩的弧微分d s = 。
由此,圆周cos ,(02)sin x R y R =θ⎧≤θ<π⎨=θ⎩的弧微分d s = 。
2.算下列对弧长的曲线积分:(1)⎰+Lds y x )(,其中L 为连接(1,0)及(0,1)两点的直线段;(2)⎰+L y x ds e22,其中L 为圆周222x y R +=,直线x y =及x 轴在第一象限内所围成的扇形的整个边界;3)⎰Γ++ 2221ds zy x ,其中Γ为曲线t t t e z t e y t e x ===,sin ,cos 上相应于t 从0变到2的这段弧;4)⎰+Lds y x )(22,其中L 为曲线)cos (sin ),sin (cos t t t a y t t t a x -=+= )20(π≤≤t 。
提高题1.计算2L x ds ⎰,其中L 为球面2222x y z a ++=被平面0x y z ++=所截得的圆周。
1-2 第二型曲线积分基础题1.力(,)((,),(,))F x y P x y Q x y =沿光滑曲线弧L 所做功的微元d W = ,其中(,),(,)P x y Q x y 在L 上连续。
2.计算第二型曲线积分 1)⎰L xydx ,其中L为圆周222()(0)x R y R R -+=>及x 轴所围成的在第一象限内的区域的整个边界(按逆时针方向绕行)。
2)⎰Γ-+++dz y x ydy xdx )1(,其中Γ是从点)1,1,1(到点)4,3,2(的一段直线。
(3) 22L xdx ydy x y -++⎰,其中L 是圆周222x y a +=以逆时针方向。
提高题1. 计算⎰-++L dyx y dx y x )()(,其中L 是: (1)先沿直线从点(1,1)到点(1,2),然后再沿直线到点(4,2)的折线; (2)曲线1 1222+=++=t y t t x , 上从点(1,1)到点(4,2)的一段弧。
高数课件第十章 曲线积分与曲面积分
Σ: x−y+z = 在第四卦限部分的上侧 1 在第四卦限部分的上侧.
解: (c sα,c sβ,c sγ) = 1 ( ,− ,1 o o o 1 1) 3 1 I =∫∫ [f (x y z)+x−2f (x y z)−y+f (x y z)+z]dS , , , , , , ∑ 3 1 =∫∫ [x−y+z]dS ∑ 3 1 1 3 1 =∫∫ dS= . = ∑ 3 3 2 2
+∫ ( x y−3 y2 +y2) d 32 x y u(x y =∫ 5x d , ) x 0
4 0
x
y
32 2 3 1 3 =x + x y −xy + y 3 2 因此方程的通解为 5 3 2 2 3 1 3 x + x y −xy + y =C 2 3
5
y
(x y , )
o (x0 x ,)
2π R 2 2 2
π
+ ∫ dθ ∫π dϕ ∫
2 0 3
2π
π
2 R cos ϕ
0
r cos ϕ ⋅ r sin ϕ dr
2 2 2
第十章 曲线积分与曲面积分
1. 第一类曲线积分 物质曲线质量) (物质曲线质量) 2. 第二类曲线积分 变力作功) (变力作功) 3. 第一类曲面积分 曲面薄板质量) (曲面薄板质量) 4. 第二类曲面积分 通量) (通量)
曲线积分
曲面积分
1. 第一类曲线积分的计算
(1)利用参数方程化为定积分 利用参数方程化为定积分 • 对光滑曲线弧
f (x y d =∫ f[ ( )ψ( ) φ 2( )+ ′2( )dt ∫ , ) s α φt , t ] ′ t ψ t L
曲线积分与曲面积分计算
曲线积分与曲面积分计算曲线积分和曲面积分是微积分中的重要概念,用于计算沿曲线的路径或曲面上的某个向量场的总体效应。
本文将介绍曲线积分和曲面积分的概念、计算方法以及应用领域。
一、曲线积分曲线积分是计算沿曲线的路径的某个向量场的总体效应的方法。
当我们想要计算曲线上的某个物理量时,曲线积分可以提供有效的工具。
下面以一个简单的例子来说明曲线积分的计算方法。
设有一条光滑曲线C,其参数方程为r(t)=(x(t), y(t), z(t)),其中a≤t≤b。
在曲线C上有一个向量场F=(P(x, y, z), Q(x, y, z), R(x, y, z)),我们想要计算该向量场沿曲线C的积分。
曲线积分的计算方法为∫CF·dr,其中CF=(P(x, y, z), Q(x, y, z), R(x, y, z))·(dx, dy, dz)。
由此可知,曲线积分等于向量场F与路径元素的内积,再对路径元素求累积。
在具体计算中,我们可以先求得路径元素dx, dy, dz,再分别与向量场F的各个分量进行乘法运算,最后求和即可得到曲线积分的结果。
二、曲面积分曲面积分是计算曲面上的某个向量场的总体效应的方法。
与曲线积分类似,曲面积分也可以用于计算物理量在曲面上的分布情况。
下面以一个简单的例子来说明曲面积分的计算方法。
设有一个光滑曲面S,其参数方程为r(u, v)=(x(u, v), y(u, v), z(u, v)),其中(a≤u≤b, c≤v≤d)。
在曲面S上有一个向量场F=(P(x, y, z), Q(x, y, z),R(x, y, z)),我们想要计算该向量场在曲面S上的积分。
曲面积分的计算方法为∬SF·dS,其中SF=(P(x, y, z), Q(x, y, z), R(x, y, z))·(dSx, dSy, dSz)。
由此可知,曲面积分等于向量场F与曲面元素的内积,再对曲面元素求累积。
(完整版)第十章曲线积分与曲面积分练习题
第十章 曲线积分与曲面积分§10.1 对弧长曲线的积分一、判断题1.若f(x)在(-+∞∞,)内连续,则⎰badx x f )(也是对弧长的曲线积分。
( )2.设曲线L 的方程为x=)(y ϕ在[βα,]上连续可导则⎰⎰'+=Ldyy y y f ds y x f βαϕϕ2)]([1)),((),(( )二、填空题1.将⎰+Lds y x)(22,其中L 为曲线x=a(cost+tsint),y=a(sint-tcost)()20π≤≤t 化为定积分的结果是 。
2.⎰+L ds y x )(= ,其中L 为连接(1,0)和(0,1)两点的直线段。
三、选择题1.⎰+Lds y x )(22=( ),其中L 为圆周122=+y x (A )⎰02πθd (B )⎰πθ2d (C )⎰πθ22d r (D )⎰πθ22d2.⎰Lxds =( ),L 为抛物线2x y =上10≤≤x 的弧段。
(A ))155(121- (B ))155(- (C )121 (D ))155(81-四、计算⎰+Cds y x )(,其中C 为连接点(0,0)、(1,0)、(0,1)的闭折线。
五、计算⎰++L ds z y x )2(22,其中L 为⎩⎨⎧=++=++02222z y x R z y x六、计算⎰+Ln ds y x)(22,L 为上半圆周:)(222N n R y x ∈=+七、计算⎰+Ly x ds e22,其中L 为圆周222a y x =+,直线y=x 和y=0在第一象限内围成扇形的边界。
八、求半径为a ,中心角为ϕ2的均匀圆弧(ρ=1)的重心。
§10.2 对坐标的曲线积分一、判断题1.定积分也是对坐标的曲线积分。
( ) 2.022=+-⎰L y x ydx xdy ,其中L 为圆周122=+y x 按逆时针方向转一周。
( )二、填空题1.ydz x dy y dx x 2233++⎰Γ= ,其中Γ是从点A (1,2,3)到点B (0,0,0)的直线段AB 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
义在 上的一个有界函数,
若通过对 的任意分割
和对
局部的任意取点,
下列“乘积和式极限”
记作
都存在, 则称此极限为函数 上对弧长的曲线积分,
称为被积函数, 曲线形构件的质量
在曲线 或第一类曲线积分.
称为积分弧段 .
如果 L 是 xoy 面上的曲线弧 ,则定义对弧长的曲线积
分为
如果 L 是闭曲线 , 则记为 思考:
被平面
所截的圆周.
解: 由对称性可知
内容小结
1. 定义 2. 性质
( l 曲线弧 的长度)
3. 计算
• 对光滑曲线弧
• 对光滑曲线弧
• 对光滑曲线弧
思考与练习
1. 已知椭圆
提示: 利用对称性 原式 =
分析:
周长为a , 求
Ex:
1. 设 C 是由极坐标系下曲线
及
所围区域的边界, 求
提示: 分段积分
第一节 对弧长的曲线积分
一、对弧长的曲线积分的概念与性质 二、对弧长的曲线积分的计算法
一、对弧长的曲线积分的概念与性质
1.引例: 曲线形线密度为
为计算此构件的质量,
采用
“大化小, 常代变, 近似和, 求极限”
可得
2.定义
设 是空间中一条有限长的光滑曲线,
上点 O (0,0)
例2. 计算半径为 R ,中心角为
称轴的转动惯量I (设线密度 = 1).
解: 建立坐标系如图,
则
的圆弧 L 对于它的对
例3. 计算
解: 在极坐标系下 它在第一象限部分为
利用对称性 , 得
其中L为双纽线
例4. 计算曲线积分
线
解:
其中为螺旋 的一段弧.
例5. 计算
其中为球面
(1) 若在 L 上 f (x, y)≡1,
(2) 定积分是否可看作对弧长曲线积分的特例 ? 否! 对弧长的曲线积分要求 ds 0 , dx 可能为负.
但定积分中
3. 性质
(k 为常数)
(由
组成)
( l 为曲线弧 的长度)
二、对弧长的曲线积分的计算法
基本思路:
求曲线积分
转化
计算定积分
定理:
是定义在光滑曲线弧
上的连续函数,
则曲线积分
且
证: 根据定义
设各分点对应参数为
点
对应参数为
则
因此
说明: (2) 注意到
因此积分限必须满足
因此上述计算公式相当于“换元法”.
如果曲线 L 的方程为
如果方程为极坐标形式:
推广: 设空间曲线弧的参数方程为 则
则有 则
例1. 计算
其中 L 是抛物线
与点 B (1,1) 之间的一段弧 . 解: