映射的概念

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必须让学生写出所有的映射,才能体会不同的映射 课后反思: 缺少一个环节:映射的要素有哪些? 应该充分应用类比函数概念的学习方法,启发学生还应该学习什么内容
2014年7月6日8时3分
练习:下列对应是否为从集合A到集合B的映射?
(1) A R, B { y | y 0}, f : x | x |;
例2
说出下图所示的对应中,哪些是A到B的映射?
A B A B
a
b
1
1
2
(2) A
a
b
c
(1) A
2 2
B
c
B
1
a
b
(3)
a
b
1
2
(4)
2 3
2014年7月6日8时3分
c
说出下图所示的对应中,哪些是B到A的映射? 变式练习:
A B A B
a
b
1
1
2
(2) A
a
b
c
(1) A
2 2
B
c
B
1
a
b
(3)
•3.设集合A={1,-3,2,3,-1,-2}, 集合B={9,0,4,1,5},对应关系是: 集合A中的每一个数,在集合B中都有一个其 对应的平方数.
2014年7月6日8时3分
思考5:有人说映射有“三性”,即“有序性”, “存在性”和“唯一性”,对此你是怎样理解的?
①“有序性”:映射是有方向的,A到B的映 射与B到A的映射往往不是同一个映射;
(2)集合A={P|P是平面直角坐标系中的点},集 合B={(x,y)|x∈R,y∈R},对应关系f:平面直角 坐标系中的点与它的坐标对应; (3)集合A={x|x是三角形},集合B={x|x是圆}, 对应关系f:每一个三角形都对应它的内切圆;
2014年7月6日8时3分
(4)集合A={x|x是师大附中的班级},集合 B={x|x是师大附中的学生},对应关系f:每 一个班级都对应班里的学生;
②“存在性”:对于集合A中的任何一个元素, 集合B中都存在元素和它对应;
③“唯一性”:对于集合A中的任何一个元 素,在集合B中和它对应的元素是唯一的.
2014年7月6日8时3分
例1 试判断下面给出的对应是否为从集合A到集合 B的映射? (1)集合A={P|P是数轴上的点},集合B=R,对应 关系f:数轴上的点与它所代表的实数对应;

王五
„ „
2014年7月6日8时3分
30

A={中国,日本,韩国 },B={北京,东京,首尔 },
f:相应国家的首都.
A
中国 日本 韩国
B 北京
东京 首尔
2014年7月6日8时3分
任意一个三角形,都有唯一确定的面 积与此相对应
A B

三角形 „

它的面 积

2014年7月6日8时3分
类比函数概念概括 映射的概念
(2) A R, B R, f : x x2 ;
(3) A Z , B R, f : x x ; 2 (4) A Z , B N , f : x x 3
2014年7月6日8时3分
小结:
1、映射的概念 2、映射与函数的区别与联系
作业:看课本相关内容,做练习册相关题目
这种“特殊对应”有何特点: 1.可以是“一对一” 2.可以是“多对一” 3.不能“一对多” 4.A中不能有剩余元素 5.B中可以有剩余元素
2014年7月6日8时3分
下面对应是否为函数?
A={高一(1)班同学} ,B={正实数} ,f:让每位同学与 学号数对应.对应如下表所示:
A 张三 李四 每位同学与学 B 号数对应 1 2
2014年7月6日8时3分
a=2 , k=5
2.函数与映射有什么区别和联系?
1.函数是一种特殊的映射; 结论: 2.两个集合中的元素类型有区别; 3.对应的要求有区别.
2014Βιβλιοθήκη Baidu7月6日8时3分
• 1.集合A={全班同学},集合B=(全班 同学的姓},对应关系是:集合A中的每一个 同学在集合B中都有一个属于自己的姓. •2.集合A={中国,美国,英国,日本}, B={北京,东京,华盛顿,伦敦},对应关 系是:对于集合A中的每一个国家,在集合 B中都有一个首都与它对应.
x+1=2 ∴x=1 2 x =1

2014年7月6日8时3分
(2,1)在A中的对应元素为1
例4:设集合A={a、b},B={c、d、e} (1)可建立从A到B的映射个数 9 8 (2)可建立从B到A的映射个数
. .
小结:如果集合A中有m个元素,集合B中有n个 元素,那么从集合A到集合B的映射共有 nm 个。
一般地,设A、B是两个集合,如果按某一 个确定的对应关系f,使对于集合A中的每一个 元素x,在集合B中都有唯一确定的元素y与之对 应,那么就称对应f:A→B为从集合A到集合B
的一个映射(mapping)。
思考:映射与函数有什么区别与联系?
2014年7月6日8时3分
思考:映射与函数有什么区别与联系?
a
b
1
2
(4)
2 3
2014年7月6日8时3分
c
已知集合A=R,B={(x,y)|x,y∈R},f是 例3: 从A到B的映射f:x→(x+1,x2) . (1)求 2 在B中的对应元素 (2)(2,1)在A中的对应元素
解: (1)将x=
2代入对应关系,可得其在B
中的对应元素为( 2 1,1)
由题意得: (2)
2014年7月6日8时3分
知识应用
• 2. 点(x,y)在映射f下的象是(2x-y,2x+y), • (1)求点(2,3)在映射f下的像; • (2)求点(4,6)在映射f下的原象. (1)点(2,3)在映射f下的像是(1,7); (2)点(4,6)在映射f下的原象是(5/2,1) 3.设集合A={1,2,3,k},B={4,7,a4,a2+3a}, 其中a,k∈N,映射f:A→B,使B中元素y=3x+1 与A中元素x对应,求a及k的值.
(5)集合A={1,2,3,4}, B={3,4,5,6,7, 8,9},对应关系f:x→2x+1
例2 已知集合A={a,b},集合B={c,d,e}. (1)试建立一个从集合A到集合B的映射? (2)一共可建立多少个从集合A到集合B的 映射?
2014年7月6日8时3分
A 张三 李四
每位同学与学 B 号数对应 1 2
2014年7月6日8时3分
3.用映射定义函数
(1).函数的定义:如果A、B都是非空数集,那末 A到B的映射f:A → B就叫做A → B的函数。记作: y=f (x). (2)定义域:原象集合A叫做函数y=f (x)的定义 域。 (3)值域:象的集合C (C B) 叫做函数y=f (x)的值域。
5.B中可以有剩余元素
例1 说出下图所示的对应中,哪些是A到B的映射?
A 9 4 开平方 B 3 -3 2 -2 1 -1 B 1 4 9 A 30° 求正弦 B
1 2
2 2 3 2
45°
60° 90° A 乘以2 1 2 3
1
1
B 1 2 3 4 5 6
A 1 -1 2 -2 3 -3
求平方
2014年7月6日8时3分
映射的概念
2014年7月6日8时3分
复习:函数的概念
一般地,设A、B是两个非空的数集, 如果按某种对应法则f,对于集合A中的每 一个元素x,在集合B中都有唯一的元素y和 它对应,这样的对应叫做集合A到集合B的 一个函数. 函数的本质:
建立在两个非空数集上的特殊对应
2014年7月6日8时3分
复习:函数的概念
A 中国 日本 韩国
B 北京 东京 首尔

王五
三角形

2014年7月6日8时3分
„ „
A
30

B


它的面 积

函数 映射 建立在两个非空数集上的特殊对应
扩 展
建立在两个任意集合上的特殊对应
(1)函数是特殊的映射,是数集到数集的映射. (2)映射是函数概念的扩展,映射不一定是函数.
(3)映射与函数都是特殊的对应
1.可以是“一对一” 2.可以是“多对一” 3.不能“一对多” 4.A中不能有剩余元素
2014年7月6日8时3分
相关文档
最新文档