七年级上册数学总复习doc
七年级上册数学总复习资料
七年级上册数学总复习资料1第一章有理数--------------1.1正数与负数①大于0的数叫正数。
②在正数前面加上“-”号的数,叫做负数。
③0既不是正数也不是负数。
0是正数和负数的分界,是的中性数。
④搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等。
⑤正整数、0、负整数统称整数(结合数轴和一元一次方程出题),正分数和负分数统称分数。
整数和分数统称有理数。
⑥非负数就是正数和零;非负整数就是正整数和0。
⑦“基准”题:有固定的基准数,和的求法:基准数×个数+与基准数相比较的数的代数和;平均数的求法:基准数+与基准数相比较的数的代数和÷个数(写出原数,也可用小学知识解答);“非基准”题:无固定的基准数,如明天和今天比,后天和明天比。
-------------1.2数轴①通常用一条直线上的点表示数,这条直线叫数轴。
②数轴三要素:原点、正方向、单位长度。
③数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。
④只有符号不同的两个数叫做互为相反数(和为零)。
(例:2的相反数是-2,如:2+(-2)=0;0的相反数是0)⑤数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。
从几何意义上讲,数的绝对值是两点间的距离(无方向性,有两个点)。
⑥数轴上两点间的距离=|M—N|⑥正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。
⑦两个负数,绝对值大的反而小。
⑧|a|≥0(即非负性);绝对值等于一个正数的值有两个(两个互为相反数)如:|a|=5,a=5或a=-5-------------1.3有理数的大小①数轴上不同的两个点表示的数,右边点表示的数总比左边点表示的数大。
②负数小于零,零小于正数,负数小于正数。
③两个负数的比较大小,绝对值大的反而小。
-------------1.4有理数的加减法①有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加。
七年级数学上册期末复习资料(Word版)
七年级数学上册期末复习资料(2021最新版)作者:______编写日期:2021年__月__日-----------3.1一元一次方程及其解法①方程是含有未知数的等式。
②方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的整式方程叫做一元一次方程。
③注意判断一个方程是否是一元一次方程要抓住三点:1)未知数所在的式子是整式(方程是整式方程);2)化简后方程中只含有一个未知数;(系数中含字母时不能为零)3)经整理后方程中未知数的次数是1.④解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。
方程的解代入满足,方程成立。
⑤等式的性质:1)等式两边同时加上或减去同一个数或同一个式子(整式或分式),等式不变(结果仍相等)。
a=b得:a+(-)c=b+(-)c2)等式两边同时乘以或除以同一个不为零的数,等式不变。
a=b得:a×c=b×c或a÷c=b÷c(c≠0)注意:运用性质时,一定要注意等号两边都要同时+、-、×、÷;运用性质2时,一定要注意0这个数。
⑥解一元一次方程一般步骤:去分母(方程两边同乘各分母的最小公倍数)→去括号→移项→合并同类项→系数化1;以上是解一元一次方程五个基本步骤,在实际解方程的过程中,五个步骤不一定完全用上,或有些步骤还需要重复使用.因此,解方程时,要根据方程的特点,灵活选择方法.在解方程时还要注意以下几点:⑴去分母:在方程两边都乘以各分母的最小公倍数,不要漏乘不含分母的项;分子是一个整体,去分母后应加上括号;注意:去分母(等式的基本性质)与分母化整(分数的基本性质)是两个概念,不能混淆;⑵去括号:遵从先去小括号,再去中括号,最后去大括号不要漏乘括号的项;不要弄错符号(连着符号相乘);⑶移项:把含有未知数的项移到方程的一边,其他项都移到方程的另一边(以=为界限),移项要变号;⑷合并同类项:不要丢项,解方程是同解变形,每一步都是一个方程,不能像计算或化简题那样写能连等的形式.⑸系数化1:(两边同除以未知数的系数)把方程化成ax=b (a≠0)的形式,字母及其指数不变系数化成1在方程两边都除以未知数的系数a,得到方程的解不要分子、分母搞颠倒(一步一步来)--------3.2一次方程的应用:(一)、概念梳理⑴列一元一次方程解决实际问题的一般步骤是:审题,特别注意关键的字和词的意义,弄清相关数量关系,注意单位统一,注意设未知数;①解:设出未知数(注意单位),②根据相等关系列出方程,③解这个方程,④答(包括单位名称,检验)。
七年级上册数学专题复习
七年级上册数学专题复习――与线段有关的计算问题及用方程解决实际问题1、 如图,点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点.(1)若AC=9cm ,CB=6cm ,求线段MN 的长;(2)若C 为线段AB 上任一点,满足AC+CB=acm ,其它条件不变,你能猜想MN 的长度吗?并说明理由.你能用一句简洁的话描述你发现的结论吗?(3)若C 在线段AB 的延长线上,且满足AC-BC=b cm ,M 、N 分别为AC 、BC 的中点,你能猜想MN 的长度吗?请画出图形,写出你的结论,并说明理由.2、已知:如图1,M 是定长线段AB 上一定点,C 、D 两点分别从M 、B 出发以1cm/s 、3cm/s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)(1)若AB=10cm ,当点C 、D 运动了2s ,求AC+MD 的值.(2)若点C 、D 运动时,总有MD=3AC ,直接填空:AM= AB .(3)在(2)的条件下,N 是直线AB 上一点,且AN-BN=MN ,求ABMN 的值.3、画线段AB=5厘米,延长AB 至C ,使AC=2AB ,反向延长AB 至E ,使AE=41CE ,再计算: (1)线段CE 的长;4、如图,已知数轴上A 、B 两点所表示的数分别为-2和8.(1)求线段AB 的长;(2)若P 为射线BA 上的一点(点P 不与A 、B 两点重合,M 为PA 的中点,N 为PB 的中点,当点P 在射线BA 上运动时;MN 的长度是否发生改变?若不变,请你画出图形,并求出线段MN 的长;若改变,请说明理由.(3)若有理数a 、b 、c 在数轴上的位置如图所示:且d=|a+b|-|-2-b|-|a-2c|-5,试求7(d+2c )2+2(d+2c )-5(d+2c )2-3(d+2c )的值.5、在直线L 上有A 、B 两点,线段AB=3厘米,点C 也在直线L 上,且线段AC :BC=1:2.求线段AC 、BC 的长.(要求解题时画出图形)6、在数轴上,点A 表示2.4,点B 表示-3.6,点C 表示-0.6.(1)求线段AB 的长;(2)点C 是不是线段AB 的中点为什么?(3)取线段BC 的中点D ,那么点D 表示什么数?7、如图1,已知数轴上有三点A 、B 、C ,AB=21AC ,点C 对应的数是200. (1)若BC=300,求点A 对应的数;(2)如图2,在(1)的条件下,动点P 、Q 分别从A 、C 两点同时出发向左运动,同时动点R 从A 点出发向右运动,点P 、Q 、R 的速度分别为10单位长度每秒、5单位长度每秒、2单位长度每秒,点M 为线段PR 的中点,点N 为线段RQ 的中点,多少秒时恰好满足MR=4RN (不考虑点R 与点Q 相遇之后的情形);(3)如图3,在(1)的条件下,若点E 、D 对应的数分别为-800、0,动点P 、Q 分别从E 、D 两点同时出发向左运动,点P 、Q 的速度分别为10单位长度每秒、5单位长度每秒,点M 为线段PQ 的中点,点Q 在从是点D 运动到点A 的过程中, 23QC-AM 的值是否发生变化?若不变,求其值;若不变,请说明理由.8、如图,有一数轴原点为O ,点A 所对应的数是-121,点A 沿数轴匀速平移经过原点到达点B . (1)如果OA=OB ,那么点B 所对应的数是什么?(2)从点A 到达点B 所用时间是3秒,求该点的运动速度.(3)从点A 沿数轴匀速平移经过点K 到达点C ,所用时间是9秒,且KC=KA ,分别求点K 和点C 所对应的数.9、已知A 、B 两点在数轴上表示的数为a 和b ,M 、N 均为数轴上的点,且OA <OB .(1)若A 、B 的位置如图所示,试化简:|a|-|b|+|a+b|+|a-b|.(2)如图,若|a|+|b|=8.9,MN=3,求图中以A 、N 、O 、M 、B 这5个点为端点的所有线段长度的和;(3)如图,M 为AB 中点,N 为OA 中点,且MN=2AB-15,a=-3,若点P 为数轴上一点,且PA=32AB ,试求点P 所对应的数为多少?10、已知线段AB =14cm,在线段AB 上有C 、D 、M 、N 四个点,且满足AC ;CD :DB =1:2:4,AM =21AC ,DN =41DB ,求MN 的长。
北师大七年级上册期末数学压轴题总复习(一)(word解析版)
期末压轴题总复习(一)学校:___________姓名:___________班级:___________考号:___________一、解答题1.用长方形硬纸板做长方体盒子,底面为正方形.(1)每个长方形盒子有________个侧面,有________个底面;(2)长方形硬纸板以如图两种方法裁剪.A方法:剪3个侧面;B方法:剪2个侧面和2个底面.现有35张硬纸板,裁剪时x张用A方法,其余用B方法.①用含x的代数式分别表示裁剪出的侧面和底面的个数;②若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?2.如图,数轴上点A表示的数为﹣2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>0).(1)填空:①A、B两点间的距离AB=,线段AB的中点表示的数为;②用含t的代数式表示:t秒后,点P表示的数为;点Q表示的数为.(2)求当t为何值时,PQ=12AB;(3)当点P运动到点B的右侧时,PA的中点为M,N为PB的三等分点且靠近于P点,求PM﹣34BN的值.3.已知数轴上两点A、B对应的数分别是6,﹣8,M、N、P为数轴上三个动点,点M从A点出发速度为每秒1个单位长度,点N从点B出发速度为点M的3倍,点P从原点出发速度为每秒0.5个单位长度.(1)求A、B两点的距离为个单位长度.(2)若点M向右运动,同时点N向左运动,求经过多长时间点M与点N相距30个单位长度?(3)若点M、N同时向右运动,求经过多长时间点M、N相遇?并求出此时点N对应的数.(4)若点M、N、P同时都向右运动,当点M与点N相遇后,点M、P继续以原来的速度向右运动,点N改变运动方向,以原来的速度向左运动,求从开始运动后,经过多长时间点P到点M、N的距离相等?4.某超市第一次用3600元购进了甲、乙两种商品,其中甲种商品80件,乙种商品120件.已知乙种商品每件进价比甲种商品每件进价贵5元.甲种商品售价为20元/件,乙种商品售价为30元/件.(注:获利=售价﹣进价)(1)该超市第一次购进甲、乙两种商品每件各多少元?(2)该超市将第一次购进的甲、乙两种商品全部销售完后一共可获得多少利润?(3)该超市第二次又购进同样数量的甲、乙两种商品.其中甲种商品每件的进价不变,乙种商品进价每件少3元;甲种商品按原售价提价a%销售,乙种商品按原售价降价a%销售,如果第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多260元,那么a的值是多少?5.某省公布的居民用电阶梯电价听证方案如下:第一档电量第二档电量第三档电量月用电量210度以下,每度价格0.52元月用电量210度至350度,每度比第一档提价0.05元月用电量350度以上,每度比第一档提价0.30元例:若某户月用电量400度,则需交电费为210×0.52+(350﹣210)×(0.52+0.05)+(400﹣350)×(0.52+0.30)=230(元)(1)以此方案请你回答:若小华家某月用电量是300度,则这个月的电费为元?(2)如果按此方案计算,小华家5月份的电费为138.84元,请你求出小华家5月份的用电量.6.某商场经销的甲、乙两种商品,甲种商品每件售价60元,利润率为50%;乙种商品每件进价50元,售价80元.(1)甲种商品每件进价为元,每件乙种商品利润率为.(2)若该商场同时购进甲、乙两种商品共60件,恰好总进价为2800元,求购进甲种商品多少件?(3)在国庆期间,该商场只对甲乙两种商品进行如下的优惠促销活动:打折前一次性购物总金额优惠措施少于等于450元不优惠超过450元,但不超过600元按售价的九折其中600元部分八点二折优惠,超过600元超过600元的部分打三折优惠.按上述优惠条件,若小华一次性购买乙种商品实际付款504元,求小华在该商场购买乙种商品多少件?7.点A、B、C在数轴上表示的数a、b、c满足2(3)|12|0++-=,且a是绝对值最小b c的有理数.(1)a的值为,b的值为,c的值为;(2)已知点P、点Q是数轴上的两个动点,点P从点B出发,以3个单位/秒的速度向右运动,点Q从点C出发,速度为2个单位/秒.①若在点P出发的同时点Q向左运动,几秒后点P和点Q在数轴上相遇?②若点P运动到点A处,动点Q再出发也向右运动,则P运动几秒后这两点之间的距离为2个单位?8.现象感知如图1,在数轴上,线段AB的中点为E,点E表示的数与点A、点B表示的数关系存在:482+=6;线段CD的中点为F,点F表示的数与点C、点D表示的数的关系也存在:512-+=﹣2归纳性质如图2,在数轴上,线段GH的中点为P.(1)如图2,在数轴上,点G、H、P表示的数分别为a,b,c,请猜想a,b,c的等量关系,请写出一等量关系式.小宇同学为了说明a,b,c的等量关系是正确的,采用了字母表示数的方法,设PG=PH=m,从而表示出G、H两点的数(含c和m).请完成小宇的说理过程.拓展应用(2)如图,点A,B,C在数轴上对应的数分别为﹣3,1,9,它们分别以每秒2个单位长度、1个单位长度和4个单位长度的速度在数轴上同时向左做匀速运动,设同时运动的时间为t秒.若A,B,C三点中,有一点恰为另外两点所连线段的中点,求t的值.9.为鼓励居民节约用电,某省试行阶段电价收费制,具体执行方案如表:档次每户每月用电量(度)执行电价(元/度)第一档小于等于2000.55第二档大于200小于4000.6第三档大于等于4000.85某户居民五、六月份共用电500度,缴电费290.5元.已知该用户六月份用电量大于五月份,且五、六月份的用电量均小于400度.问该户居民五、六月份各用电多少度?10.如图,一块长为5厘米,宽为2厘米的长方形纸板,一块长为4厘米,宽为1厘米的长方形纸板与一块边长为a厘米的正方形纸板以及另外两块长方形纸板,(1)用含a的式子表示图形左上角长方形的长AG= 厘米,宽AE= 厘米.(2)用含a的式子表示大图形边AD= 厘米,边AB= 厘米,若恰好拼成一个大正方形,问大正方形的面积是多少?参考答案1.(1)4,2;(2)①侧面(x +70)个,底面(70-2x )个②21个. 【分析】(1)根据长方体的性质求得答案; (2)①根据题意列出代数式即可;②根据题意列出一元一次方程,解方程求解即可. 【详解】(1)每个长方形盒子有4个侧面,有2个底面; 故答案为:4,2;(2)①A 方法剪3x 个侧面,B 方法剪()235x -个侧面和()235x -个底面32(35)70x x x +-=+,()235702x x -=-∴共有侧面()70x +个,底面()702x -个②根据已知条件可得7070242x x+-= 解得14x =1470=214+∴答:裁剪出的侧面和底面恰好全部用完,能做21个盒子. 【点睛】本题考查了一元一次方程的应用,正确的找出题中的等量关系是解题的关键. 2.(1(①10(3(②(2+3t(8(2t((2(t=1或3((3(5 【分析】(1((根据点A 表示的数为﹣2,点B 表示的数为8,即可得到A 、B 两点间的距离以及线段AB 的中点表示的数;(依据点P ,Q 的运动速度以及方向,即可得到结论; (2)由t 秒后,点P 表示的数﹣2+3t ,点Q 表示的数为8﹣2t ,于是得到PQ=|((2+3t(((8(2t(|=|5t(10|,列方程即可得到结论;(3)依据PA 的中点为M ,N 为PB 的三等分点且靠近于P 点,运用线段的和差关系进行计算,即可得到PM ﹣34BN 的值.【详解】解:(1(①8(((2(=10((2+12×10=3(②由题可得,点P表示的数为﹣2+3t,点Q表示的数为8(2t((2(∵t秒后,点P表示的数﹣2+3t,点Q表示的数为8(2t(∴PQ=|((2+3t(((8(2t(|=|5t(10|(又PQ=12AB=12×10=5(∴|5t(10|=5(解得:t=1或3(∴当t=1或3时,PQ=12AB((3(∵PA的中点为M(N为PB的三等分点且靠近于P点,∴MP=12AP=12×3t=32t(BN=23BP=23(AP(AB(=23×(3t(10(=2t(203(∴PM(34BN=32t(34(2t(203(=5(【点睛】本题考查了实数和数轴以及一元一次方程的应用应用,解题的关键是掌握点的移动与点所表示的数之间的关系,根据题目给出的条件,找出合适的等量关系列出方程求解.3.(1)14;(2)4;(3)7秒,此时N点对应的数是13;(4)23秒或7秒或403秒【分析】(1)由题意根据两点间的距离公式即可求出A、B两点的距离;(2)根据题意设经过x秒点M与点N相距30个单位,由点M从A点出发速度为每秒1个单位,点N从点B出发速度为M点的3倍,得出x+3x+14=30求解即可;(3)由题意根据追及问题即时间等于路程除以速度差求出点M、N相遇时间,进而代入时间得出点N对应的数;(4)根据题意设从开始运动后,相遇前经过t秒点P到点M、N的距离相等,或相遇后经过t秒点P到点M、N的距离相等,根据PM=PN列出方程,进而求解即可.【详解】解:(1)∵数轴上两点A、B对应的数分别是6,-8,∴A、B两点的距离为6-(-8)=14.故答案为:14;(2)设经过x秒点M与点N相距30个单位.依题意可列方程为:x+3x+14=30,解方程,得x=4.答:经过4秒点M与点N相距30个单位;;(3)点M与点N相遇的时间为14÷(3﹣1)=7秒,此时N点对应的数是﹣8 + 7×3=13;(4)点M与点N相遇的时间为14÷(3﹣1)=7秒,设从开始运动后,相遇前经过t秒点P到点M、N的距离相等.依题意可列方程为:0.5t-(-8+3t)=6+t-0.5t,解得t=23,设从开始运动后,相遇后经过t秒点P到点M、N的距离相等.依题意可列方程为:(t+6)-0.5t=0.5t-[13-3(t-7)],解得t=403.所以23秒或7秒或403秒,点P到点M、N的距离相等.【点睛】本题主要考查数轴上的动点问题和一元一次方程的应用,利用行程问题的基本数量关系,以及数轴直观解决问题即可.4.(1)该超市第一次购进甲种商品每件15元,乙种商品每件20元;(2)该超市将第一次购进的甲、乙两种商品全部销售完后一共可获得1600元的利润;(3)a的值是5.【分析】(1)设该超市第一次购进甲种商品每件x元,乙种商品每件(x+5)元,根据题意列出方程求解即可.(2)根据利润公式求出总利润即可.(3)根据题意列出方程求解即可.【详解】(1)设该超市第一次购进甲种商品每件x元,乙种商品每件(x+5)元.由题意得80x+120(x+5)=3600,解得:x=15,x+5=15+5=20.答:该超市第一次购进甲种商品每件15元,乙种商品每件20元.(2)该超市将第一次购进的甲、乙两种商品全部销售完后一共可获得的利润=80×(20﹣15)+120×(30﹣20)=1600元.答:该超市将第一次购进的甲、乙两种商品全部销售完后一共可获得1600元的利润.(3)由题意得80×[20(1+a%)﹣15]+120×[30(1﹣a%)﹣(20﹣3)]=1600+260,解得:a=5.答:a的值是5.【点睛】本题考查了一元一次方程的销售问题,掌握解一元一次方程的方法是解题的关键.5.(1)160.5;(2)小华家5月份的用电量为262度.【分析】(1)根据300度在第二档列式计算即可得解;(2)根据第二档的电费求法列方程计算即可得解.【详解】解:(1)小华家8月用电量为300度,需交电费210×0.52+(300-210)×(0.52+0.05)=160.5(元).故需交电费160.5元;故答案为:160.5;(2)月用电量为210度时,需交电费210×0.52=109.2(元)月用电量为350度时,需交电费210×0.52+(350-210)×(0.52+0.05)=189(元),所以小华家5月份的用电量在第二档.设小华家5月份的用电量为x度,则210×0.52+(x-210)×(0.52+0.05)=138.84,解得x=262.答:小华家5月份的用电量为262度.【点睛】本题考查了一元一次方程的应用,读懂题目信息,理解阶梯电价的收费方法和电费的计算方法是解题的关键.6.(1)40,60%;(2)20件;(3)7件或8件【分析】(1)设甲的进价为x元/件,根据甲的利润率为50%,求出x的值;(2)设购进甲种商品x件,则购进乙种商品(500−x)件,再由总进价是2800元,列出方程求解即可;(3)分两种情况讨论,①打折前购物金额超过450元,但不超过600元,②打折前购物金额超过600元,分别列方程求解即可.【详解】解:(1)设甲的进价为x元/件,则(60−x)=50%x,解得:x=40.故甲的进价为40元/件;乙商品的利润率为(80−50)÷50=60%.故答案是:40;60%;(2)设购进甲种商品x件,则购进乙种商品(500−x)件,由题意得,40x+50(60-x)=2800,解得:x=20.即购进甲商品20件.(3)设小华打折前应付款为y元,(若打折前购物金额超过450元,但不超过600元,由题意得0.9y=504,解得:y=560,560÷80=7(件),(若打折前购物金额超过600元,600×0.82+(y-600)×0.3=504,解得:y=640,640÷80=8(件),综上可得小华在该商场购买乙种商品件7件或8件.【点睛】本题考查了一元一次方程的应用,解答本题的关键是仔细审题,找到等量关系,利用方程思想求解.7.(1)0,-3,12;(2)①3秒;②11或15秒【分析】(1)根据非负数的性质即可求出bc 的值,根据a 是绝对值最小的有理数即可求出a 的值; (2)①设t s 后P 和Q 相遇,根据两人相遇一共走的路程即为BC 的长,即可得到答案; ②分P 在追上Q 前和P 在超过Q 后两种情况进行求解即可.【详解】解:(1)∵a 是绝对值最小的有理数,(a =0,∵()23120b c ++-=,()230b +≥,120c -≥,∴30b +=,120c -=,∴3b =-,12c =;故答案为:0,-3,12;(2)(设t s 后P 和Q 相遇,由题意得(3+2)t =12-(-3),解得t =3,∴3秒后点P 和点Q 在数轴上相遇(设P 点运动ts ,后这两点之间的距离为2个单位,∵B 表示的数是-3,A 表示的数是0,(AB =3,∴P 运动到A 的时间为1s ,即Q 在P 出发1s 后再出发,若P 在追上Q 前:3t +2=2(t -1)+12-(-3),解得t =11,若P 在超过Q 后:3t -2=2(t -1)+12-(-3),解得t =15,∴P 运动11秒或15后这两点之间的距离为2个单位.【点睛】本题主要考查了非负数的性质,绝对值的意义,数轴上的动点问题,解题的关键在于能够根据题意求出a 、b 、c 的值.8.(1)2a b c +=,见解析;(2)1秒或4秒或16秒 【分析】(1)用c m 、表示出点G H 、,然后求解即可;(2)分三种情况讨论求解即可,当点B 是线段AC 的中点、点C 是线段AB 的中点、点A 是线段BC 的中点时,分别求解即可.【详解】(1)2a b c +=;理由:H 点:b =c +m ,G 点:a =c -m , 2222a b c m c m c c +-++===,即2a b c +=. (2)运动t 秒后A 、B 、C 三点表示的数分别为A :-3-2t ,B :1-t ,C :9-4t ①当点B 是线段AC 的中点时:32941,12t t t t --+-=-= ②当点C 是线段AB 的中点时:32194,42t t t t --+-=-= ③当点A 是线段BC 的中点时:94132,162t t t t -+-=--= 综上所述,t 的值为1秒或4秒或16秒.【点睛】此题考查了数轴的有关应用,涉及了用数轴表示数,数轴上的动点问题,中点公式,解题的关键是掌握数轴的有关性质,正确求解.9.五月份用电190度,六月份用电310度.【分析】根据两个月份用电量共是500度,可知每个月用电量不可能都在第一档,根据题意用电量又都小于400度,且六月份用电量大于五月份用电量.分两种情况来讨论.(1)五月份用电量小于200度(2)五月份用电量大于200度,分别列出方程求解即可.【详解】设五月份用电量为x ,则六月份用电量为500-x ,且500-x >x .(1)当五月份用电量x <200时,六月份用电量500-x 一定大于200.根据题意可列方程:0.55x +0.6(500-x )=290.5解得x =190,所以五月份用电量为190度.所以六月份用电量为500-190=310度.(2)当五月份用电量x >200,且六月份用电量为500-x >200.根据题意可列方程:0.6x +0.6(500-x )=290.5方程无解,不符合题意.【点睛】本题考察了利用分类讨论的方法,列出一元一次方程来解决实际问题,总价=单价×数量是解决本题的关键.10.(1)(1+a),(5-a);(2)(9-a),(3+a),36平方厘米【分析】(1)根据图形可得AE=GH=NG-NH=BQ-NH=5-a,AG=EH=EF+FH=1+a;(2)根据图形可得AD=AE+ED=5-a+4=9-a,AB=AG+2=3+a,由AD=AB求出a的值,从而可得大正方形的面积.【详解】解:如图所示,∵四边形NMFH是正方形,∴NH=FH=a,又EF=1,∴AG=EH=EF+FH=1+a,AE=GH=NG-NH=BQ-NH=5-a,故答案为:(1+a),(5-a);(2)根据图形可得AD=AE+ED=5-a+4=9-a,AB=AG+2=3+a,∵AD=AB,∴9-a=3+a,解得,a=3,∴大正方形的边长为6厘米,∴大正方形的面积是6×6=36(平方厘米),答:大正方形的面积是36平方厘米.故答案为:(9-a),(3+a).【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.。
新人教版七年级数学上册期末专题总复习资料
新人教版七年级数学上册期末专题总复习资料人教版七年级数学上册期末专题总复资料类比归纳专题:有理数加、减、乘、除中的简便运算——灵活变形,举一反三类型一加减混合运算的技巧一、相反数相结合或同号结合1.计算:【方法2】515-3;1-(+6)-3+(-1.25)- 48/82.3+(-1.7)+6.2+(-2.2)-1.1.二、同分母或凑整结合2.计算:【方法2】6.82)+3.78+(-3.18)-3.78;311/-5 + (-9)/8 - 1.25.三、计算结果成规律的数相结合3.计算1+2-3-4+5+6-7-8+…+2013+2014-2015-2016的结果是()A。
B。
-1 C。
2016 D。
-20164.★阅读:因为一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,所以,当a≥时,|a|=a;当a<0时,|a|=-a.根据以上阅读完成下列问题:1)|3.14-π|=________;1/1-1/11+1/111-1/1111+…-1/2013+1/2014-1/2015-1/2016 2)计算:2/3-3/2+4/3-9/8+10/9类型二运用分配律解题的技巧一、正用分配律5.计算.131/2-4+8×(-24);39×(-14).二、逆用分配律666/(-3)-3×(-3)-6×3.6.计算:4×7/7.三、除法变乘法,再利用分配律122/6-7+3÷(-42).参考答案与解析1.解:(1)原式=1+(-1.25)-6+4/8= -4.75.2)原式=2.3+6.2-(-1.7-2.2-1.1)= 3.5.2.解:(1)原式=[(-6.82)+(-3.18)]+(3.78-3.78)= -10.2)原式=19+8/4-9/8-1.25= 3.3.D4.解:(1)π-3.14=π-3.14.2)原式=1-1/2-1/10= 3/5.5.解:(1)原式=-12+18-3=3.2)原式=2/3-3/2+4/3-9/8+10/9= 55/72.1.下列说法正确的是()A。
初一上学期数学知识点总复习
初一上学期数学知识点总复习
1. 整数
- 正整数、零、负整数的概念
- 整数的加减法、乘除法
- 判断一个数的正负性
2. 分数
- 分数的概念和表示方法
- 分数的四则运算
- 分数与整数的相互转换
3. 小数
- 小数的概念和表示方法
- 小数的四则运算
- 小数与分数的相互转换
4. 百分数
- 百分数的概念和表示方法
- 百分数的换算
- 百分数与小数、分数的相互转换
5. 数据统计
- 数据的收集、整理和展示
- 平均数、中位数、众数的计算- 折线图、柱形图的绘制和分析
6. 几何图形
- 几何图形的概念和基本要素
- 直线、线段、射线的认识和绘制- 不同类型几何图形的性质和特点
7. 方程与不等式
- 方程的概念和解的意义
- 一元一次方程的解法
- 不等式的概念和解的意义
- 一元一次不等式的解法
8. 几何运动
- 直线运动与曲线运动的概念
- 单位速度、位移与时间的关系
- 运动图像的绘制和分析
9. 数据的处理
- 数据的分类和整理
- 求出简单统计指标
- 制作直方图和折线图
10. 三角形
- 三角形的概念和分类
- 三角形的性质和判定
- 三角形内角和外角的性质
以上是初一上学期数学的主要知识点总结,希望能对你的复有所帮助。
七年级上册数学总复习(含答案)
a10总 复 习1、下列说法不正确的是( )(A)0既不是正数,也不是负数 (B) 1是绝对值最小的数 (C)一个有理数不是整数就是分数 (D) 0的绝对值是0 2、下列语句正确的是( )A.1是最小的自然数B.平方等于它本身的数只有1C.绝对值最小的数是0D.倒数等于它本身的数只有1 3、下列说法正确的是 ( )A. 几个有理数相乘, 当负因数有奇数个时, 积为负B. 几个有理数相乘, 当负因数有偶数个时, 积为正C. 几个有理数相乘, 当积为负时, 负因数有奇数个D. 几个有理数相乘, 当因数有偶数个时, 积为正 4、下列各组量中,互为相反意义的量是( ) A 收入200元与支出20元 B 上升10米与下降7米 C 超过0.05毫米与不足0.03毫米 D 增大2升与减少2升 5、在数轴上,原点及原点右边的点表示的数是( ) A 正数 B 负数 C 非正数 D 非负数 6、如果一个有理数的绝对值是正数,那么这个数一定( ) A 是正数 B 不是0 C 是负数 D 以上都不对 7、下列关于0的结论错误的是( ) A 0不是正数也不是负数 B 0的相反数是0 C 0的绝对值是0 D 0的倒数是08、有理数a 、b 在数轴上的位置如图1-1所示,那么下列式子中成立的是( ) A a>b B a<bC ab>0D 0ab> 9、下列运算正确的是( ) A. -22=4B.31128327⎛⎫-=- ⎪⎝⎭C. 81)21(3-=-D. 6)2(3-=-10、a, b 是有理数, 它们在数轴上的对应点的位置如图1所示, 把a , -a , b , -b 按照从小到大的顺序排列是 ( )A. b a a b <<-<-B. b a b a <<-<-C.b a a b <-<<-D.a a b b <-<<- 11、下面计算正确的事( )A.32x -2x =3 B.32a +23a =55a C.3+x =3xD.-0.25ab +41ba =0 12、下列说法正确的是( )A 、13 πx 2的系数是13B 、12 xy 2的系数为12xC 、-5x 2的系数为5D 、-x 2的系数为-113、买一个足球需要m 元,买一个篮球需要n 元,则买4个足球、7个篮球共需要( )元A 、4m +7nB 、28mnC 、7m +4nD 、11mn14、计算:6a 2-5a +3与5a 2+2a -1的差,结果正确的是( )A 、a 2-3a +4B 、a 2-3a +2C 、a 2-7a +2D 、a 2-7a +415、下列说法正确的是( )A .32xyz 与32xy 是同类项 B .x 1和21x 是同类项 C .0.523y x 和732y x 是同类项D .5n m 2与-42nm 是同类项16、若A 是一个六次多项式,B 也是一个七次多项式,则B A +一定是( )A.十三次多项式B.七次多项式 C .不高于七次的整式 D.六次多项式17、下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.⎪⎭⎫ ⎝⎛-+-22213y xy x 2222123421y x y xy x -=⎪⎭⎫ ⎝⎛-+--,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是 ( )A. xy 7-B. xy 7+C. xy -D. xy + 18、当x 分别取2和-2时,多项式x 5+2x 3-x 的值( ) A.互为相反数 B.互为倒数 C.相等D.异号不等19、已知关于x 的多项式222ax abx b bx abx a -+++与的和是一个单项式,则有( ) A. a =bB. a =0或b =0C. ab =1D. a =-b 或b =-2a20、32281x x x -+-若多项式与多项式323253x mx x +-+的和不含二次项,则m 等于( )A.2B.-2C.4D.-421、如果4x 2-2x = 7是关于x 的一元一次方程,那么m 的值是( )A 、- 12B 、12C 、0D 、122、在下列方程中,解是2的方程是( )A 、3x =x +3B 、-x +3=0C 、2x =6D 、5x -2=823、方程x9+1=0的解是( )A 、-10B 、-9C 、9D 、1924、将方程 - 34 x =12 的未知数的系数化为1,得( )A 、x = - 83B 、x = 83C 、x = 23D 、- 2325、一个长方形的周长是40㎝,若将长减少8㎝,宽增加2㎝,长方形就变成了正方形,则正方形的边长为( )A 、6㎝B 、7㎝C 、8㎝D 、9㎝ 26、如果一元一次方程a x +b =0(a≠0)的解是正数,则( ) A 、a 、b 为异号 B 、b 大于0 C 、a 、b 为同号 D 、a 小于0 27、下列说法中,正确的是( ) A 、若ac =bc ,则a =bB 、若 a c = bc,则a =bC 、若a 2=b 2,则a =bD 、若∣a ∣=∣b ∣,则a =b28、甲比乙大15岁。
新人教版_七年级数学上册总复习
5、分配律: a(b c) ab ac
有理数混合运算的运算顺序 先算乘方,再算乘除,最后算加减。 如果有括号就先算括号里面的。
同级运算从左到右进行。
(4)、科学计数法 1、 把一个绝对值大于10的数表示成a×10的形式(a是
整数数位只有一位的数,n是比原整数数位小1的正整数), 如236000000=2.36×108;-2450000=-2.45×106
• 2、根据题意找出能够表示应用题全部含义的一个 相等关系;(关键的一步)
• 3、根据相等关系,正确列出方程,即所列的方程 应满足两边的量要相等;方程两边的代数式的单位 要相同;题中条件应充分利用;
• 4、求出所列方程的解; • 5、检验后明确地、完整地写出答案(注意单位)
这里要求的检验应是,检验所求出的解既能使方程 成立,又能使应用题有意义。
⑷交点:当两条不同的直线有一个公共点时,我们 就称这两条直线相交,这个公共点叫做它们的交点。
6、射线:把线段向一方无限延伸的图形叫做射线。 ①表示方法:端点字母必须写在前 ②射线可以看做是直线的一部分,识别射线是否相同---端点相同、延伸方向也相同。
7.线段:直线上两个点和它们之间的部分叫做线段,这两个 点叫做线段的端点。
新人教版_七年级数学上册总复习
新人教版 七年级数学上册 (各章知识点课件)
第一章 有理数
1.1正数和负数
(1)正数:大于零的数叫做正数。如:1,0.25,…,69。 负数:小于零的数叫做负数。如:-1,-3.8,-1/4,…,-25。 零: 零既不是正数也不是负数 整数:正数、0、负数
(2)用正负数表示两个意义相反的量。
一个正数的绝对值是 是它本身 ,一个负数的绝对值是
新人教版七年级上册数学总复习知识点和练习题
新人教版七年级上册数学总复习知识点和练习题新人教版数学七年级上期末总复期末复一有理数的意义一、双基回顾1、前进8米的相反意义的量是;盈利50元的相反意义的量是。
2、向东走5m记作+5m,则向西走8记作,原地不动用表示。
正数{…};负数{…};分数{…};整数{…};非负整数{…};非正数{…}。
4、与表示-1的点距离为3个单位的点所表示的数是。
5、数轴上到原点的距离为2的点所表示的数是。
6、3的相反数的倒数是。
7、最小的自然数是;最小的正整数是;绝对值最小的数是;最大的负整数是。
8、相反数等于它本身的数是,绝对值等于它本身的数是,平方等于它本身的数是,,倒数即是它自己的数是。
9、如图,如果a<,b>0,那么a、b、-a、-b的大小关系是.10、已知︱a+2︱+(3- b)2=0,则a b =。
ab二、例题导引例1(1)大于-3且小于2.1的整数有哪些?(2)绝对值大于1小于4.3的整数的和是多少?例2已知a、b互为相反数,m、n互为倒数,︱x︱=3,求(a+b)2-3mn+2x的值。
例3(1)若a<,a2=4,b3=-8,求a+b的值。
(2)已知︱a︱= 2,︱b︱=5,求a-b的值;3、操演升华1、判断下列叙述是否正确:①零上6℃的相反意义的量是零下6℃,而不是零下8℃()②如果a是负数,那末-a就是正数()③正数与负数互为相反数()④一个数的相反数长短正数,那末这个数肯定长短负数()⑤若a=b,则︱a︱=︱b︱;若︱a︱=︱b︱,则a=b()2、一种零件标明的要求是Ф10(单位:mm)表示这种零件的标准尺寸是10mm,加工零件要求最大直径不超过mm,最小直径不小于mm.。
3、某天气温上升了-2℃的意义是。
5、12的相反数与-7的绝对值的和是。
6、若a<0,b<0,则下列各式正确的是( )A、a-b<0 B、a-b>0 C、a-b=0 D、(-a)+(-b)>07、两个非零有理数的和是,它们的商是()A、0B、-1C、1D、不能确定8、若|x|=-x,则x=_____;若︱x-2︱=3,则x= .9、古希腊科学家把数1,3,6,10,15,21,……叫做三角形数它有一定的规律性,第个三角形数为_______。
七年级上册数学全册概念总结复习
七年级上册数学全册概念总结复习七年级上册数学全册概念总结复习第一章丰富的图形世界1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、常见的几何体及其特点长方体:有8个顶点,12条棱,6个面,且各面都是长方形(正方形是特殊的长方形),正方体是特殊的长方体。
棱柱:上下两个面称为棱柱的底面,各面称为侧面,长方体是四棱柱。
棱锥:一个面是多边形,其余各面是有一个公共顶点的三角形。
圆柱:有上下两个底面和一个侧面(曲面),两个底面是半径相等的圆。
圆柱的表面展开图是由两个相同的圆形和一个长方形连成。
圆锥:有一个底面和一个侧面(曲面)。
侧面展开图是扇形,底面是圆。
球:由一个面(曲面)围成的几何体4、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
5、正方体的平面展开图:11种6、截一个正方体:(1)用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
注意:①、正方体只有六个面,所以截面最多有六条边,即截面边数最多的图形是六边形.②、长方体、棱柱的截面与正方体的截面有相似之处.(2)用平面截圆柱体,可能出现以下的几种情况.(3)用平面去截一个圆锥,能截出圆和三角形两种截面(还有其他截面,初中不予研究)(4)用平面去截球体,只能出现一种形状的截面——圆.(5)需要记住的要点:几何体截面形状正方体三角形、正方形、长方形、梯形、五边形、六边形圆柱圆、长方形、(正方形)、……圆锥圆、三角形、……球圆7、三视图物体的三视图指主视图、俯视图、左视图。
七年级上册数学总复习
七年级数学上册知识归纳第一章1.点运动成线,线运动成面,面运动成体。
2.圆柱与圆锥的相同与不同相同点:底面都是圆,侧面都是曲面不同点:(1)圆柱有两个大小相同的底面,而圆锥只有一个底面(2)圆柱没有顶点, 而圆锥有一个顶点棱柱与圆柱的相同与不同相同点:都有上、下两个底面,都有侧面不同点:(1)棱柱的底面是形状和大小完全相同的多边形, 圆柱的底面是圆(2)棱柱的侧面是长方形,圆柱的侧面是曲面(3)棱柱有顶点,圆柱没有顶点3.在立体图形中,若围成的面都是平的,这样的几何体叫做多面体4.几何体的分类(1)按面“平”或“曲”分类围成几何体所有面都是平面的为一类。
如:正方体、长方体、棱柱、棱锥。
围成几何体的面中至少有一个面不是平面的为一类。
如:圆柱、圆锥、球。
(2)按“柱锥球”分类柱体包括:棱柱、圆柱。
锥体包括:棱锥、圆锥。
球体包括:球。
5.棱柱:(1)在棱柱中,任何相邻两个面的交线都叫做棱,相邻两个侧面的交线叫做侧棱,棱柱的上、下底面的形状相同,侧面的形状都是长方形。
(2)人们通常根据底面图形的边数将棱柱分为三棱柱、四棱柱、五棱柱、六棱柱……它们底面图形的形状分别为三角形、四边形、五边形、六边形……(3)长方体和正方体都四棱柱。
(4)棱柱有直棱柱和斜棱柱。
(5)n棱柱有2n个顶点,3n条棱,n+2个面。
6. 几何体的截面边数不能多于几何体的面数。
如:正方体的截面不可能为七边形。
7.我们从不同的方向观察同一物体时,把从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图。
8.多边形是由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形。
三角形、四边形、五边形、六边形等都是多边形。
n边形是由n条不在同一条直线上的线段集资依次首尾相连组成的封闭图形。
从一个n 边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个多边形分割成n-2个三角形。
9.圆上A,B两点之间的部分叫做弧,由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。
人教版初一数学七年级数学上册经典总复习练习题打印版
七年级数学上册经典练习题七年级有理数一、境空题1、31-的倒数是____;321的相反数是____. 2、比–3小9的数是____;最小的正整数是____.3、在数轴上,点A 所表示的数为2,那么到点A 的距离等于3个单位长度的点所表示的数是____.4、两个有理数的和为5,其中一个加数是–7,那么另一个加数是____.5、某旅游景点11月5日的最低气温为 2-,最高气温为8℃,那么该景点这天的温差是____. C6、计算:.______)1()1(101100=-+-7、平方得412的数是____;立方得–64的数是____. 8、+2与2-是一对相反数,请赋予它实际的意义:___________________。
9、绝对值大于1而小于4的整数有____________,其和为_________。
10、若a 、b 互为相反数,c 、d 互为倒数,则 3 (a + b) 3-cd =__________。
11、若0|2|)1(2=++-b a ,则b a +=_________。
12、数轴上表示数5-和表示14-的两点之间的距离是__________。
13、在数5-、 1、 3-、 5、 2-中任取三个数相乘,其中最大的积是___________,最小的积是____________。
14、若m ,n 互为相反数,则│m-1+n │=_________.二、选择题(每小题3分,共21分)15、有理数a 、b 在数轴上的对应的位置如图所示:则( )0-11abA .a + b <0B .a + b >0;C .a -b = 0D .a -b >016、下列各式中正确的是( )A .22)(a a -=B .33)(a a -=;C .|| 22a a -=-D .|| 33a a =17、如果0a b +>,且0ab <,那么( )A.0,0a b >> ;B.0,0a b << ;C.a 、b 异号;D. a 、b 异号且负数和绝对值较小18、下列代数式中,值一定是正数的是( )A .x 2 B.|-x+1| C.(-x)2+2 D.-x 2+119、算式(-343)×4可以化为() (A )-3×4-43×4 (B )-3×4+3 (C )-3×4+43×4 (D )-3×3-3 20、小明近期几次数学测试成绩如下:第一次85分,第二次比第一次高8分,第三次比第二次低12分,第四次又比第三次高10分.那么小明第四次测验的成绩是…………()A 、90分B 、75分C 、91分D 、81分21、一家商店一月份把某种商品按进货价提高60%出售,到三月份再声称以8折(80%)大拍卖,那么该商品三月份的价格比进货价………………………………………()A 、高12.8%B 、低12.8%C 、高40%D 、高28%三、计算(每小题5分,共15分)22、)1279543(+--÷361; 23、|97|-÷2)4(31)5132(-⨯--24、322)43(6)12(7311-⨯⎥⎦⎤⎢⎣⎡÷-+--四、解答题(共46分)25、已知|a|=7,|b|=3,求a+b 的值。
七年级数学上册全册单元试卷复习练习(Word版 含答案)
七年级数学上册全册单元试卷复习练习(Word版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图 1,CE 平分∠ACD,AE 平分∠BAC,且∠EAC+∠ACE=90°.(1)请判断 AB 与 CD 的位置关系,并说明理由;(2)如图2,若∠E=90°且AB 与CD 的位置关系保持不变,当直角顶点E 移动时,写出∠BAE 与∠ECD 的数量关系,并说明理由;(3)如图 3,P 为线段 AC 上一定点,点 Q 为直线 CD 上一动点,且 AB 与 CD 的位置关系保持不变,当点 Q 在射线 CD 上运动时(不与点 C 重合),∠PQD,∠APQ 与∠ BAC 有何数量关系?写出结论,并说明理由.【答案】(1),理由如下:CE 平分,AE 平分,;(2),理由如下:如图,延长AE交CD于点F,则由三角形的外角性质得:;(3),理由如下:,即由三角形的外角性质得:又,即即.【解析】【分析】(1)根据角平分线的定义、平行线的判定即可得;(2)根据平行线的性质(两直线平行,内错角相等)、三角形的外角性质即可得;(3)根据平行线的性质(两直线平行,同旁内角互补)、三角形的外角性质、邻补角的定义即可得.2.将一副三角板中的两个直角顶点叠放在一起(如图①),其中,, .(1)猜想与的数量关系,并说明理由;(2)若,求的度数;(3)若按住三角板不动,绕顶点转动三角,试探究等于多少度时,并简要说明理由.【答案】(1)解:,理由如下:,(2)解:如图①,设,则,由(1)可得,,,(3)解:分两种情况:①如图1所示,当时,,又,;②如图2所示,当时,,又,.综上所述,等于或时, .【解析】【分析】(1)由∠BCD=∠ACB+∠ACD=90°+∠ACD,即可求出∠BCD+∠ACE的度数.(2)如图①,设∠ACE=a,可得∠BCD=3a,结合(1)可得3a+a=180°,求出a的度数,即得∠BCD的度数.(3)分两种情况讨论,①如图1所示,当AB∥CE时,∠BCE=180°-∠B=120°,②如图2所示,当AB∥CE时,∠BCE=∠B=60°,分别求出∠BCD的度数即可.3.如图1,已知∠MON=140°,∠AOC与∠BOC互余,OC平分∠MOB,(1)在图1中,若∠AOC=40°,则∠BOC=°,∠NOB=°.(2)在图1中,设∠AOC=α,∠NOB=β,请探究α与β之间的数量关系(必须写出推理的主要过程,但每一步后面不必写出理由);(3)在已知条件不变的前提下,当∠AOB绕着点O顺时针转动到如图2的位置,此时α与β之间的数量关系是否还成立?若成立,请说明理由;若不成立,请直接写出此时α与β之间的数量关系.【答案】(1)解:如图1,∵∠AOC与∠BOC互余,∴∠AOC+∠BOC=90°,∵∠AOC=40°,∴∠BOC=50°,∵OC平分∠MOB,∴∠MOC=∠BOC=50°,∴∠BOM=100°,∵∠MON=40°,∴∠BON=∠MON-∠BOM=140°-100°=40°,(2)解:β=2α-40°,理由是:如图1,∵∠AOC=α,∴∠BOC=90°-α,∵OC平分∠MOB,∴∠MOB=2∠BOC=2(90°-α)=180°-2α,又∵∠MON=∠BOM+∠BON,∴140°=180°-2α+β,即β=2α-40°;(3)解:不成立,此时此时α与β之间的数量关系为:2α+β=40°,理由是:如图2,∵∠AOC=α,∠NOB=β,∴∠BOC=90°-α,∵OC平分∠MOB,∴∠MOB=2∠BOC=2(90°-α)=180°-2α,∵∠BOM=∠MON+∠BON,∴180°-2α=140°+β,即2α+β=40°,答:不成立,此时此时α与β之间的数量关系为:2α+β=40.【解析】【分析】(1)先根据余角的定义计算∠BOC=50°,再由角平分线的定义计算∠BOM=100°,根据角的差可得∠BON的度数;(2)同理先计算∠MOB=2∠BOC=2(90°-α)=180°-2α,再根据∠BON=∠MON-∠BOM列等式即可;(3)同理可得∠MOB=180°-2α,再根据∠BON+∠MON=∠BOM列等式即可.4.如图,以直线AB上一点O为端点作射线OC,使∠BOC=70°,将一个直角三角形的直角顶点放在点O处.(注:∠DOE=90°)(1)如图①,若直角三角板DOE的一边OD放在射线OB上,则∠COE=________°;(2)如图②,将直角三角板DOE绕点O逆时针方向转动到某个位置,若OC恰好平分∠BOE,求∠COD的度数;(3)如图③,将直角三角板DOE绕点O转动,如果OD始终在∠BOC的内部,试猜想∠BOD和∠COE有怎样的数量关系?并说明理由.【答案】(1)20(2)解:如图②,∵OC平分∠EOB,∠BOC=70°,∴∠EOB=2∠BOC=140°,∵∠DOE=90°,∴∠BOD=∠BOE-∠DOE=50°,∵∠BOC=70°,∴∠COD=∠BOC-∠BOD=20°(3)解:∠COE-∠BOD=20°,理由是:如图③,∵∠BOD+∠COD=∠BOC=70°,∠COE+∠COD=∠DOE=90°,∴(∠COE+∠COD)-(∠BOD+∠COD)=∠COE+∠COD-∠BOD-∠COD=∠COE-∠BOD=90°-70°=20°,即∠COE-∠BOD=20°【解析】【解答】⑴如图①,∠COE=∠DOE-∠BOC=90°-70°=20°;【分析】(1)根据角度的换算可知∠COE和∠BOC互余,那么根据∠COB=70°可得∠COE=20°;(2)根据角平分线和∠BOC可得∠BOE=140°,∠COE=∠BOC=90°,所以它的余角∠COD=20°;(3)一个是直角∠EOD,,一个是70°∠BOC,这两个角里都包含了同一个角∠COD,那么大家都减去这个∠COD的度数,剩下的两角差与原两角差是一致的,所以可得出结论∠COE-∠BOD=20°。
七年级数学上册-总复习-北师大版
第一章丰富的图形世界1、复习目标:2、能在具体情境中, 认识圆柱、圆锥、正方体、长方体、棱柱、球等几何体, 并能用自己的语言描述他们的特征。
3、了解棱柱、圆柱、圆锥的侧面展开图, 能根据展开图判断和制作简单的立体图形。
4、亲身经历切截正方体的过程, 体会面与体的转换, 提高动手操作的能力。
会从不同方向观察同一个物体, 能识别简单物体的三种视图。
会画正方体及简单组合的三种视图, 并在小正方体内填上表示该位置小立方块的个数。
能在具体情境中认识多边形, 拓展思维空间。
二、知识结构网络三、重点知识点点拨1.常见的几何体及其特点长方体: 有8个顶点, 12条棱, 6个面, 且各面都是长方形(正方形是特殊的长方形)正方体是特殊的长方体。
棱柱: 上下两个面称为棱柱的底面, 其它各面称为侧面, 长方体是四棱柱。
圆柱:有上下两个底面和一个侧面, 两个底面是半径相等的圆。
圆锥:有一个底面和一个顶点, 且侧面展开图是扇形。
球: 由一个面围成的几何体。
2.展开与折叠(1)棱柱:如图1所示的棱柱, 上底面是五边形A'B'C'D'E', 下底面是五边形ABCDE, 这两个五边形的大小形状都相同, 这个棱柱有5个侧面, 当它为直棱柱时, 5个侧面都是长方形, 当它为斜棱柱时, 5个侧面都是平行四边形, 在棱柱中任何相邻的两个面的交线都叫做棱桂的棱, 其中相邻的两个侧面的交线都叫做棱柱的侧棱, 图1中的棱柱有15条侧棱, 其中有5条侧棱, 这5条侧棱的长相等, 将这个棱柱展开定一个长方形(图2是图1中棱柱的侧面展开图)反过来可以将一个长方形折叠成一个棱桂的侧面。
当一个棱柱的地面是三角形时, 称为三棱柱, 当一个棱柱的底面是四边形时, 称为四棱柱, (长方体正方体都是四棱柱)当一个棱柱的底面是五边形时, 称为五棱柱(图1就是五棱柱)………当一个棱柱的底面是n边形时, 称为n棱柱它有2n个顶点, 3n条棱, n十2个面(其中2个底面, n个侧面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级上册数学总复习doc一、选择题1.购买单价为a 元的物品10个,付出b 元(b >10a ),应找回( ) A .(b ﹣a )元 B .(b ﹣10)元 C .(10a ﹣b )元 D .(b ﹣10a )元 2.在0,1-, 2.5-,3这四个数中,最小的数是( )A .0B .1-C . 2.5-D .3 3.已知线段AB 的长为4,点C 为AB 的中点,则线段AC 的长为( ) A .1B .2C .3D .44.下列方程是一元一次方程的是( ) A .213+x =5x B .x 2+1=3x C .32y=y+2 D .2x ﹣3y =15.已知:有公共端点的四条射线OA ,OB ,OC ,OD ,若点()1P O ,2P ,3P ⋯,如图所示排列,根据这个规律,点2014P 落在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上6.一根绳子弯曲成如图①所示的形状.当用剪刀像图②那样沿虚线a 把绳子剪断时,绳子被剪为5段;当用剪刀像图③那样沿虚线b (b ∥a )把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a 、b 之间把绳子再剪(n ﹣2)次(剪刀的方向与a 平行),这样一共剪n 次时绳子的段数是( )A .4n+1B .4n+2C .4n+3D .4n+57.若x=﹣13,y=4,则代数式3x+y ﹣3xy 的值为( ) A .﹣7B .﹣1C .9D .78.方程3x +2=8的解是( ) A .3B .103C .2D .129.点()5,3M 在第( )象限. A .第一象限B .第二象限C .第三象限D .第四象限10.如果代数式﹣3a 2m b 与ab 是同类项,那么m 的值是( )A.0 B.1 C.12D.311.下列计算正确的是()A.-1+2=1 B.-1-1=0 C.(-1)2=-1 D.-12=112.某同学晚上6点多钟开始做作业,他家墙上时钟的时针和分针的夹角是120°,他做完作业后还是6点多钟,且时针和分针的夹角还是120°,此同学做作业大约用了()A.40分钟B.42分钟C.44分钟D.46分钟二、填空题13.如图,点A在点B的北偏西30方向,点C在点B的南偏东60︒方向.则ABC∠的度数是__________.14.苹果的单价为a元/千克,香蕉的单价为b元/千克,买2千克苹果和3千克香蕉共需____元.15.把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为_____.16.小明妈妈支付宝连续五笔交易如图,已知小明妈妈五笔交易前支付宝余额860元,则五笔交易后余额__________元.支付宝帐单日期交易明细10.16乘坐公交¥ 4.00-10.17转帐收入¥200.00+10.18体育用品¥64.00-10.19零食¥82.00-10.20 餐费¥100.00-17.如图,这是一种数值转换机的运算程序,若第一次输入的数为7,则第2018次输出的数是_____;若第一次输入的数为x ,使第2次输出的数也是x ,则x =_____.18.计算: 101(2019)5-⎛⎫+- ⎪⎝⎭=_________ 19.禽流感病毒的直径约为0.00000205cm ,用科学记数法表示为_____cm ; 20.在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码,方便记忆,原理是对于多项44x y -,因式分解的结果是()()()22x y x y x y-++,若取9x =,9y =时,则各个因式的值是:()18x y +=,()0x y -=,()22162x y +=,于是就可以把“180162”作为一个六位数的密码,对于多项式324x xy -,取36x =,16y =时,用上述方法产生的密码是________ (写出一个即可).21.小何买了5本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元,则小何共花费_____元(用含a ,b 的代数式表示).22.如图,将△ABE 向右平移3cm 得到△DCF,若BE=8cm ,则CE=______cm.23.若关于x 的方程2x +a ﹣4=0的解是x =﹣2,则a =____.24.定义:从一个角的顶点出发,把这个角分成1: 2 的两个角的射线,叫做这个角的三分线,显然,一个角的三分线有两条.如图,90AOB ︒∠=,OC 、OD 是∠AOB 的两条三分线,以O 为中心,将∠COD 顺时针最少旋转__________ ,OA 恰好是∠COD 的三等分线.三、解答题25.阅读下面解题过程:计算:13(15)3632⎛⎫-÷--⨯⎪⎝⎭解:原式=25(15)66⎛⎫-÷-⨯ ⎪⎝⎭(第一步) =25(15)66⎛⎫-÷-⨯ ⎪⎝⎭(第二步)=(﹣15)÷(﹣25)(第三步) =﹣35(第四步) 回答:(1)上面解题过程中有两个错误,第一处是第 步,错误的原因是 ,第二处是第 步,错误的原因是 ; (2)正确的结果是 .26.(1)先化简,再求值:当(x ﹣2)2+|y+1|=0时,求代数式4(12x 2﹣3xy ﹣y 2)﹣3(x 2﹣7xy ﹣2y 2)的值;(2)关于x 的代数式(x 2+2x )﹣[kx 2﹣(3x 2﹣2x+1)]的值与x 无关,求k 的值. 27.某水果销售店用1000元购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:(1)这两种水果各购进多少千克?(2)若该水果店按售价销售完这批水果,获得的利润是多少元? 28.解方程:5711232x x -+-=+. 29.如图所示,OC 是AOD ∠的平分线,OE 是BOD ∠的平分线,65 25EOC DOC ∠=︒∠=,,求AOB ∠的度数.30.一个几何体由若干个大小相同的小立方块搭成,从上面看到的这个几何体的形状图如图所示,其中小正方形中的数字表示在该位置上小立方块的个数.画出从正面和从左面看到的这个几何体的形状图.四、压轴题31.如图1,已知面积为12的长方形ABCD,一边AB在数轴上。
点A表示的数为—2,点B表示的数为1,动点P从点B出发,以每秒1个单位长度的速度沿数轴向左匀速运动,设点P运动时间为t(t>0)秒.(1)长方形的边AD长为单位长度;(2)当三角形ADP面积为3时,求P点在数轴上表示的数是多少;(3)如图2,若动点Q以每秒3个单位长度的速度,从点A沿数轴向右匀速运动,与P点出发时间相同。
那么当三角形BDQ,三角形BPC两者面积之差为12时,直接写出运动时间t 的值.32.如图,已知数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,动点Q 从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动.(1)设运动时间为t(t >0)秒,数轴上点B表示的数是,点P表示的数是(用含t的代数式表示);(2)若点P、Q同时出发,求:①当点P运动多少秒时,点P与点Q相遇?②当点P运动多少秒时,点P与点Q间的距离为8个单位长度?33.对于数轴上的点P,Q,给出如下定义:若点P到点Q的距离为d(d≥0),则称d为点P 到点Q的d追随值,记作d[PQ].例如,在数轴上点P表示的数是2,点Q表示的数是5,则点P到点Q的d追随值为d[PQ]=3.问题解决:(1)点M,N都在数轴上,点M表示的数是1,且点N到点M的d追随值d[MN]=a(a≥0),则点N表示的数是_____(用含a的代数式表示);(2)如图,点C表示的数是1,在数轴上有两个动点A,B都沿着正方向同时移动,其中A点的速度为每秒3个单位,B点的速度为每秒1个单位,点A从点C出发,点B表示的数是b,设运动时间为t(t>0).①当b=4时,问t为何值时,点A到点B的d追随值d[AB]=2;②若0<t≤3时,点A到点B的d追随值d[AB]≤6,求b的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】根据题意知:花了10a 元,剩下(b ﹣10a )元. 【详解】购买单价为a 元的物品10个,付出b 元(b >10a ),应找回(b ﹣10a )元. 故选D . 【点睛】本题考查了列代数式,能读懂题意是解答此题的关键.2.C解析:C 【解析】 【分析】由题意先根据有理数的大小比较法则比较大小,再选出选项即可. 【详解】解:∵ 2.5-<1-<0<3, ∴最小的数是 2.5-, 故选:C . 【点睛】本题考查有理数的大小比较的应用,主要考查学生的比较能力,注意正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.3.B解析:B 【解析】 【分析】根据线段中点的性质,可得AC 的长. 【详解】解:由线段中点的性质,得 AC =12AB =2. 故选B . 【点睛】本题考查了两点间的距离,利用了线段中点的性质.解析:A 【解析】 【分析】只含有一个未知数(元),并且未知数的指数是1次的整式方程叫做一元一次方程,它的一般形式是ax+b =0(a ,b 是常数且a≠0).据此可得出正确答案. 【详解】 解:A 、213+x =5x 符合一元一次方程的定义; B 、x 2+1=3x 未知数x 的最高次数为2,不是一元一次方程; C 、32y=y+2中等号左边不是整式,不是一元一次方程; D 、2x ﹣3y =1含有2个未知数,不是一元一次方程; 故选:A . 【点睛】解题的关键是根据一元一次方程的定义,未知数x 的次数是1这个条件.此类题目可严格按照定义解题.5.A解析:A 【解析】 【分析】根据图形可以发现点的变化规律,从而可以得到点2014P 落在哪条射线上. 【详解】 解:由图可得,1P 到5P 顺时针,5P 到9P 逆时针,()2014182515-÷=⋯,∴点2014P 落在OA 上,故选A . 【点睛】本题考查图形的变化类,解答本题的关键是明确题意,利用数形结合的思想解答.6.A解析:A 【解析】试题分析:设段数为x ,根据题意得:当n=0时,x=1,当 n=1时,x=1+4=5,当 n=2时,x=1+4+4=9,当 n=3时,x=1+4+4+4=13,所以当n=n 时,x=4n+1.故选A . 考点:探寻规律.7.D解析:D【分析】将x 与y 的值代入原式即可求出答案. 【详解】 当x=﹣13,y=4, ∴原式=﹣1+4+4=7 故选D . 【点睛】本题考查代数式求值,解题的关键是熟练运用有理数运算法则,本题属于基础题型.8.C解析:C 【解析】 【分析】移项、合并后,化系数为1,即可解方程. 【详解】解:移项、合并得,36x =, 化系数为1得:2x =, 故选:C . 【点睛】本题考查一元一次方程的解;熟练掌握一元一次方程的解法是解题的关键.9.A解析:A 【解析】 【分析】根据平面直角坐标系中点的坐标特征判断即可. 【详解】 ∵5>0,3>0,∴点()5,3M 在第一象限. 故选A. 【点睛】本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x 轴上的点纵坐标为0,y 轴上的点横坐标为0.10.C解析:C 【解析】 【分析】根据同类项的定义得出2m=1,求出即可.【详解】解:∵单项式-3a2m b与ab是同类项,∴2m=1,∴m=12,故选C.【点睛】本题考查了同类项的定义,能熟记同类项的定义是解此题的关键,所含字母相同,并且相同字母的指数也分别相同的项,叫同类项.11.A解析:A【解析】解:A,异号相加,取绝对值较大的符号,并把绝对值大的减去绝对值小的,故选A;B,同号相加,取相同的符号,并把绝对值相加,-1-1=-2;C,底数为-1,一个负数的偶次方应为正数(-1)2=1;D,底数为1,1的平方的相反数应为-1;即-12=-1,故选A.12.C解析:C【解析】试题解析:设开始做作业时的时间是6点x分,∴6x﹣0.5x=180﹣120,解得x≈11;再设做完作业后的时间是6点y分,∴6y﹣0.5y=180+120,解得y≈55,∴此同学做作业大约用了55﹣11=44分钟.故选C.二、填空题13.【解析】【分析】由题意根据方向角的表示方法,可得∠ABD=30°,∠EBC=60°,根据角的和差,可得答案.【详解】解:如图:由题意,得∠ABD=30°,∠EBC=60°,∴∠FBC解析:150︒【解析】【分析】由题意根据方向角的表示方法,可得∠ABD=30°,∠EBC=60°,根据角的和差,可得答案.【详解】解:如图:由题意,得∠ABD=30°,∠EBC=60°,∴∠FBC=90°-∠EBC=90°-60°=30°,∠ABC=∠ABD+∠DBF+∠FBC=30°+90°+30°=150°,故答案为150︒.【点睛】本题考查方向角,利用方向角的表示方法得出∠ABD=30°,∠EBC=60°是解题关键.14.【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元,共用去:(2a+3b)元解析:(23)a b +【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a +3b )元.故选C.【点睛】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.15.【解析】【分析】设小长方形卡片的长为2m,则宽为m,观察图2可得出关于m的一元一次方程,解之即可求出m的值,设盒子底部长方形的另一边长为x,根据长方形的周长公式结合图2与图3阴影部分周长之比为解析:【解析】【分析】设小长方形卡片的长为2m,则宽为m,观察图2可得出关于m的一元一次方程,解之即可求出m的值,设盒子底部长方形的另一边长为x,根据长方形的周长公式结合图2与图3阴影部分周长之比为5:6,即可得出关于x的一元一次方程,解之即可得出x的值,再利用长方形的面积公式即可求出盒子底部长方形的面积.【详解】解:设小长方形卡片的长为2m,则宽为m,依题意,得:2m+2m=4,解得:m=1,∴2m=2.再设盒子底部长方形的另一边长为x,依题意,得:2(4+x﹣2):2×2(2+x﹣2)=5:6,整理,得:10x=12+6x,解得:x=3,∴盒子底部长方形的面积=4×3=12.故答案为:12.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.16.810【解析】【分析】根据有理数的加减运算法则,对题干支出与收入进行加减运算即可.【详解】解:由题意五笔交易后余额为860+200-4-64-82-100=810元,故填810.【点睛解析:810【解析】【分析】根据有理数的加减运算法则,对题干支出与收入进行加减运算即可.【详解】解:由题意五笔交易后余额为860+200-4-64-82-100=810元,故填810.【点睛】本题考查有理数的加减运算,理解题意根据题意对支出与收入进行加减运算从而求解. 17.2; 0或3或6【解析】【分析】先计算出前6次输出结果,据此得出循环规律,从而得出答案;根据数值转换机的运算程序,求出所有x的值,使得输入的数和第2次输出的数相等即可.【详解】解析:2; 0或3或6【解析】【分析】先计算出前6次输出结果,据此得出循环规律,从而得出答案;根据数值转换机的运算程序,求出所有x的值,使得输入的数和第2次输出的数相等即可.【详解】解:∵第1次输出的结果为7+3=10,第2次输出的结果为12×10=5,第3次输出结果为5+3=8,第4次输出结果为12×8=4,第5次输出结果为12×4=2,第6次输出结果为12×2=1,第7次输出结果为1+3=4,第8次输出结果为12×4=2,……∴输出结果除去前3个数后,每3个数为一个周期循环,∵(2018﹣3)÷3=671…2,∴第2018次输出的数是2,如图,若x=14x,则x=0;若x=12x+3,则x=6;若x=12(x+3),则x=3;故答案为:2、0或3或6.【点睛】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.18.6【解析】【分析】利用负整数指数幂和零指数幂的性质计算即可.【详解】解:原式=5+1=6,故答案为:6.【点睛】本题考查了负整数指数幂和零指数幂的性质,解题的关键是熟练掌握基本知识,解析:6【解析】【分析】利用负整数指数幂和零指数幂的性质计算即可.【详解】解:原式=5+1=6,故答案为:6.【点睛】本题考查了负整数指数幂和零指数幂的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.19.【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:62.0510-⨯【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.00000205=62.0510-⨯故答案为62.0510-⨯【点睛】此题考查科学记数法,难度不大20.36684或36468或68364或68436或43668或46836等(写出一个即可)【解析】【分析】首先对多项式进行因式分解,然后把字母的值代入求得各个因式,从而写出密码【详解】=x(解析:36684或36468或68364或68436或43668或46836等(写出一个即可)【解析】【分析】首先对多项式进行因式分解,然后把字母的值代入求得各个因式,从而写出密码【详解】324x xy -=x(x+2y)(x-2y).当x=36,y=16时,x+2y=36+32=68x-2y=36-32=4.则密码是36684或36468或68364或68436或43668或46836故答案为36684或36468或68364或68436或43668或46836【点睛】此题考查因式分解的应用,解题关键在于把字母的值代入21.(5a+10b ).【解析】【分析】由题意得等量关系:小何总花费本笔记本的花费支圆珠笔的花费,再代入相应数据可得答案.解:小何总花费:,故答案为:.【点睛】此题主要考查了列代数解析:(5a +10b ).【解析】【分析】由题意得等量关系:小何总花费5=本笔记本的花费10+支圆珠笔的花费,再代入相应数据可得答案.【详解】解:小何总花费:510a b +,故答案为:(510)a b +.【点睛】此题主要考查了列代数式,关键是正确理解题意,找出题目中的数量关系.22.5【解析】【分析】根据平移的性质可得BC=3cm ,继而由BE=8cm ,CE=BE-BC 即可求得答案.【详解】∵△ABE 向右平移3cm 得到△DCF,∴BC=3cm,∵BE=8cm,∴C解析:5【解析】【分析】根据平移的性质可得BC=3cm ,继而由BE=8cm ,CE=BE-BC 即可求得答案.【详解】∵△ABE 向右平移3cm 得到△DCF ,∴BC=3cm ,∵BE=8cm ,∴CE=BE-BC=8-3=5cm ,故答案为:5.【点睛】本题考查了平移的性质,熟练掌握对应点间的距离等于平移距离的性质是解题的关键. 23.8【分析】把x=﹣2代入方程2x+a ﹣4=0求解即可.【详解】把x=﹣2代入方程2x+a ﹣4=0,得2×(﹣2)+a ﹣4=0,解得:a=8.故答案为:8.【点睛】本题考查了一解析:8【解析】【分析】把x =﹣2代入方程2x +a ﹣4=0求解即可.【详解】把x =﹣2代入方程2x +a ﹣4=0,得2×(﹣2)+a ﹣4=0,解得:a =8.故答案为:8.【点睛】本题考查了一元一次方程的解,解答本题的关键是把x =﹣2代入方程2x +a ﹣4=0求解. 24.40【解析】【分析】由OA 恰好是COD 的三等分线可得或,旋转角为,求出其度数取最小值即可. 【详解】解:因为,OC 、OD 是AOB 的两条三分线,所以 因为OA 恰好是COD 的解析:40【解析】【分析】由OA 恰好是∠COD 的三等分线可得'10AOD ︒∠=或'20AOD ︒∠=,旋转角为'DOD ∠,求出其度数取最小值即可.【详解】解:因为90AOB ︒∠=,OC 、OD 是∠AOB 的两条三分线,所以30AOD ︒∠=因为OA 恰好是∠COD 的三等分线,所以'10AOD ︒∠=或'20AOD ︒∠=,当'10AOC ︒∠=时,''301040DOD AOD AOD ︒︒︒∠=∠+∠=+=当'20AOD ︒∠=时,''302050DOD AOD AOD ︒︒︒∠=∠+∠=+=,综上所述将∠COD 顺时针最少旋转40︒.故答案为:40︒【点睛】本题考查了角的平分线,熟练掌握角平分线的相关运算是解题的关键.三、解答题25.(1)二;在同级运算中,没有按从左到右的顺序进行;四;两数相除,同号得正,符号应该是正的;(2)1085. 【解析】【分析】(1)应先算括号里的,再按从左到右的顺序计算,故可求解;(2)根据有理数的混合运算法则即可求解.【详解】解:(1)上面解题过程中有两个错误,第一处是第二步,错误的原因是在同级运算中,没有按从左到右的顺序进行,第二处是第四步,错误的原因是两数相除,同号得正,符号应该是正的;(2)13(15)3632⎛⎫-÷--⨯⎪⎝⎭ =25(15)66⎛⎫-÷-⨯ ⎪⎝⎭ =1865⨯ =1085.故正确的结果是1085.故答案为:二;在同级运算中,没有按从左到右的顺序进行;四;两数相除,同号得正,符号应该是正的;1085.【点睛】此题主要考查了有理数的混合运算,运算顺序和符号问题是学生最容易出现错误的地方.26.(1)﹣x2+9xy+2y2,﹣20;(2)k=4.【解析】【分析】(1)根据|x﹣2|+(y+1)2=0可以求得x、y的值,然后将题目中所求式子化简,再将x、y的值代入化简后的式子即可解答本题.(2)利用多项式的值与x无关,得出x的系数和为0,即可得出k的值,进而求出答案.【详解】解:(1)∵(x﹣2)2+|y+1|=0,∴x=2、y=﹣1,则原式=2x2﹣12xy﹣4y2﹣3x2+21xy+6y2=﹣x2+9xy+2y2=﹣22+9×2×(﹣1)+2×(﹣1)2=﹣4﹣18+2=﹣20;(2)原式=x2+2x﹣kx2+3x2﹣2x+1=(4﹣k)x2+1∵代数式的值与x无关,∴k=4.【点睛】本题考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键.27.(1)、甲种65千克,乙种75千克;(2)、495元.【解析】试题分析:首先设甲种水果x千克,则乙种水果(140-x)千克,根据进价总数列出方程,求出x的值;然后根据利润得出总利润.试题解析:(1)设购进甲种水果x千克,则购进乙种水果(140﹣x)千克,根据题意得:5x+9(140﹣x)=1000,解得:x=65,∴140﹣x=75(千克),答:购进甲种水果65千克,乙种水果75千克.(2)3×65+4×75=495,答:利润为495元.考点:一元一次方程的应用.28.x=5.【解析】【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【详解】解:去分母得:2(5x﹣7)﹣6=12+3(x+1),去括号得:10x﹣14﹣6=12+3x+3,移项合并得:7x=35,解得:x=5.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.29.130︒【解析】【分析】∠的度数.根据题意直接利用角平分线的性质得出∠AOD和∠BOD,进而求出AOB【详解】解:∠EOD=∠EOC-∠DOC=65°-25°=40°,∵OC是∠AOD的平分线,OE是∠BOD的平分线,∴∠AOD=2∠DOC=2⨯25°=50°,∠BOD=2∠EOD=2⨯40°=80°,∴∠AOB=∠AOD+∠BOD =50°+80°=130°.【点睛】本题主要考查角的运算,熟练运用角平分线的定义以及正确掌握角平分线的性质是解题关键.30.见解析【解析】【分析】由已知条件可知,从正面看有4列,每列小正方数形数目分别为2,3,3,1;从左面看有3列,每列小正方形数目分别为3,2,3.据此可画出图形.【详解】解:如图所示.从正面看从侧面看【点睛】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.四、压轴题31.(1)4;(2)-3.5或-0.5;(3)t 的值为1116、1316、138或118. 【解析】【分析】(1)先求出AB 的长,由长方形ABCD 的面积为12,即可求出AD 的长;(2)由三角形ADP 面积为3,求出AP 的长,然后分两种情况讨论:①点P 在点A 的左边;②点P 在点A 的右边.(3) 分两种情况讨论:①若Q 在B 的左边,则BQ = 3-3t .由|S △BDQ -S △BPC |=12,解方程即可;②若Q 在B 的右边,则BQ = 3t -3.由|S △BDQ -S △BPC |=12,解方程即可. 【详解】(1)AB =1-(-2)=3.∵长方形ABCD 的面积为12,∴AB ×AD =12,∴AD =12÷3=4.故答案为:4.(2)三角形ADP 面积为:12AP •AD =12AP ×4=3, 解得:AP =1.5,点P 在点A 的左边:-2-1.5=-3.5,P 点在数轴上表示-3.5;点P 在点A 的右边:-2+1.5=-0.5,P 点在数轴上表示-0.5.综上所述:P 点在数轴上表示-3.5或-0.5.(3)分两种情况讨论:①若Q 在B 的左边,则BQ =AB -AQ =3-3t . S △BDQ =12BQ •AD =1(33)42t -⨯=66t -,S △BPC =12BP •AD =142t ⨯=2t , 1(66)22t t --=,680.5t -=±,解得:t =1316或1116; ②若Q 在B 的右边,则BQ =AQ -AB =3t -3.S △BDQ =12BQ •AD =1(33)42t -⨯=66t -,S △BPC =12BP •AD =142t ⨯=2t , 1(66)22t t --=,460.5t -=±,解得:t =138或118. 综上所述:t 的值为1116、1316、138或118. 【点睛】本题考查了数轴、一元一次方程的应用,用到的知识点是数轴上两点之间的距离公式.32.(1)﹣4,6﹣5t;(2)①当点P运动5秒时,点P与点Q相遇;②当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.【解析】【分析】(1)根据题意可先标出点A,然后根据B在A的左侧和它们之间的距离确定点B,由点P 从点A出发向左以每秒5个单位长度匀速运动,表示出点P即可;(2)①由于点P和Q都是向左运动,故当P追上Q时相遇,根据P比Q多走了10个单位长度列出等式,根据等式求出t的值即可得出答案;②要分两种情况计算:第一种是点P追上点Q之前,第二种是点P追上点Q之后.【详解】解:(1)∵数轴上点A表示的数为6,∴OA=6,则OB=AB﹣OA=4,点B在原点左边,∴数轴上点B所表示的数为﹣4;点P运动t秒的长度为5t,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,∴P所表示的数为:6﹣5t,故答案为﹣4,6﹣5t;(2)①点P运动t秒时追上点Q,根据题意得5t=10+3t,解得t=5,答:当点P运动5秒时,点P与点Q相遇;②设当点P运动a秒时,点P与点Q间的距离为8个单位长度,当P不超过Q,则10+3a﹣5a=8,解得a=1;当P超过Q,则10+3a+8=5a,解得a=9;答:当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.【点睛】在数轴上找出点的位置并标出,结合数轴求追赶和相遇问题是本题的考点,正确运用数形结合解决问题是解题的关键,注意不要漏解.33.(1)1+a或1-a;(2)12或52;(3)1≤b≤7.【解析】【分析】(1)根据d追随值的定义,分点N在点M左侧和点N在点M右侧两种情况,直接写出答案即可;(2)①分点A在点B左侧和点A在点B右侧两种情况,类比行程问题中的追及问题,根据“追及时间=追及路程÷速度差”计算即可;②【详解】解:(1)点N在点M右侧时,点N表示的数是1+a;点N在点M左侧时,点N表示的数是1-a;(2)①b=4时,AB相距3个单位,当点A在点B左侧时,t=(3-2)÷(3-1)=12,当点A在点B右侧时,t=(3+2)÷(3-1)=52;②当点B在点A左侧或重合时,即d≤1时,随着时间的增大,d追随值会越来越大,∵0<t≤3,点A到点B的d追随值d[AB]≤6,∴1-d+3×(3-1)≤6,解得d≥1,∴d=1,当点B在点A右侧时,即d>1时,在AB重合之前,随着时间的增大,d追随值会越来越小,∵点A到点B的d追随值d[AB]≤6,∴d≤7∴1<d≤7,综合两种情况,d的取值范围是1≤d≤7.故答案为(1)1+a或1-a;(2)①12或52;②1≤b≤7.【点睛】本题考查了数轴上两点之间的距离和动点问题.。