即着名的蒲丰投针问题
蒲丰投针――MonteCarlo算法
蒲丰投针 ―― Monte Carlo 算法背景:蒙特卡罗方法(Monte Carlo ),也称统计模拟方法,是在二次世界大战期间随着科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为基础的一类非常重要的数值计算方法。
蒙特卡罗方法在应用物理、原子能、固体物理、化学、生态学、社会学以及经济行为等领域中得到广泛利用。
蒙特卡罗方法的名字来源于世界著名的赌城 —— 摩纳哥的蒙特卡罗。
其历史起源可追溯到1777年法国科学家蒲丰提出的一种计算圆周的方法 —— 随机投针法,即著名的蒲丰投针问题。
问题:设在平面上有一组平行线,间距为d ,把一根长L 的针随机投上去,则这根针和平行线相交的概率是多少?(其中 L < d )分析:由于 L < d ,所以这根针至多只能与一条平行线相交。
设针的中点与最近的平行线之间的距离为 y ,针与平行线的夹角为 θ (0 ≤ θ ≤ π)。
相交情形 不相交情形易知针与平行线相交的充要条件是:sin 2Ly x θ≤=由于1[0,], [0, ]2y d θπ∈∈,且它们的取值均满足平均分布。
建立直角坐标系,则针与平行线的相交条件在坐标系下就是曲线所围成的曲边梯形区域(见右图)。
所以有几何概率可知针与平行线相交的概率是sin d 2212LL p d d πθθππ==⎰Monte Carlo 方法:随机产生满足平均分布的 y 和 θ,其中1[0,], [0, ]2y d θπ∈∈,判断 y 是否在曲边梯形内。
重复上述试验,并统计 y 在曲边梯形内的次数 m ,其与试验次数 n 的比值即为针与平行线相交的概率的近似值。
clear;n = 100000; L = 1; d = 2; m = 0;for k = 1 : ntheta = rand(1)*pi; y = rand(1)*d/2;if y < sin(theta)*L/2m = m + 1; end endfprintf('针与平行线相交的概率大约为 %f\n', m/n)计算π的近似值利用该方法可以计算 π 的近似值:sin d 22 22 1n LL m p d m d L d n πθθπππ⇒≈==≈⎰下面是一些通过蒲丰投针实验计算出来的 π 的近似值:蒲丰投针问题的重要性并非是为了求得比其它方法更精确的π值,而是在于它是第一个用几何形式表达概率问题的例子。
蒲丰投针问题
蒲丰投针问题1.蒲丰简介蒲丰有的时候翻译成布丰,是18世纪法国著名的博物学家。
他喜欢研究数学和生物学。
主要的贡献有:(1)翻译了牛顿的《流数法》,流数法按现在的说法就叫微积分。
(2)写了一本巨著,这部巨著的名字叫《自然史》,因为他特别喜欢研究生物。
这个自然史一共有44卷,其中他生前写了36卷,后来他学生又完成了。
这本书对后来的世界有很大的影响,尤其影响到一个人叫达尔文,所以蒲丰这个人其实是很厉害的。
2.蒲丰投针1777年,在蒲丰晚年的时候,他有一次举行了一个家庭宴会。
邀请了一大堆他的朋友来帮他做实验。
做什么实验呢,就“投针”。
那朋友来了之后发现,就是桌子上有很多根间距相等的平行线。
然后蒲丰就说了,给你们同样大的针,你把这些针随机扔到这个桌子上。
然后宾客就随便扔吗,有可能这样,有可能这样……,随便扔是吧,这都有可能,什么情况都有可能。
有的针就没有跟平行线相交,比如这个,这个,这个,就没有相交,也有相交的,比如这个,这个,这个,这是相交的,对吧,然后他就数,他说这个针一共投了多少个呢?一共投了n =2212个。
其中与这个平行线相交的针有多少个,数了一下有m =704个。
然后他说,我现在可以计算圆周率了,别人都不信,他说你看我圆周率怎么算,我只要把这两个数相除就行了。
我用n 除以m ,这个数除完了大概是3.142,这个就是圆周率了。
别人说好神奇,这怎么回事儿,蒲丰说我给你解释解释这个原理是什么?其实这个原理并不复杂,我们来看一下它的原理是什么。
3. 蒲丰投针原理(1)首先,它这个平行线是严格平行的,那平行线之间的距离是固定的,是a 。
然后我随意地把一根针投上去,也许相交,也许不相交,这不一定。
比如说这个针投上去了,投上去了之后,针的总长是b ,针有一个中点叫M ,对吧,这个M 到它比较近的平行线之间的距离我们设为x ,大家注意,这个是针的中点到比较近的平行线的距离是x ,所以我们应该知道x 的范围。
x 的最小值就是这个终点正好落在平行线上,那最小值是0,对吧。
蒲丰(Buffon)投针试验
一、利用Matlab计算机语言验证蒲丰(Buffon)投针试验问题给定a=10,b=5时,模拟100万次投针实验的Matlab程序如下:a=10;b=5;n=1000000;p=10; % a为平行线间距,b为针的长度,n为投掷次数,p为有效数字位数x=unifrnd(0,a/2,[n,1]);phi=unifrnd(0,pi,[n,1]); % 产生均匀分布的随机数,分别模拟针的中点与最近平行线的距离和针的倾斜角y=x<0.5*b*sin(phi); m=sum(y); % 计数针与平行线相交的次数PI=vpa(2*b*n/(a*m),p)运行结果PI =3.138919145二、利用C++计算机语言编程通过大量重复实验验证以下结论:三个阄,其中一个阄内写着“有”字,两个阄内不写字,三人依次抓取,各人抓到“有”字阄的概率均为1/3。
程序如下:#include<stdio.h>#include<stdlib.h>#include<time.h>void main(){int n=500000;int i,a[3]={0};srand(time(NULL));for(i=0;i<n;i++)a[rand()%3]++;printf("共测试%d次,其中有字事件有%d次, 占%.2f%%\n""抓到无字事件1有%d次,占%.2f%%\n""抓到无字事件2有%d次,占%.2f%%\n""抓到无字事件共%d次,占%.2f%%",n,a[0],a[0]*100.0/n,a[1],a[1]*100.0/n,a[2],a[2]*100.0/n,a[1]+a[2],(a[1]+a[2])*100.0/n);return 0;}。
蒲丰投针实验模拟
一、蒲丰投针问题在平面上画有等距离的一些平行线,平行线间的距离为a(a>0) ,向平面上随机投一长为l(l<a)的针,针与平行线相交的概率p,结果发现π =2*l/(a*p).二、试验方法能够采纳MATLAB软件进行模拟实验,即用MATLAB编写程序来进行“蒲丰投针实验”。
1、基来源理因为针投到纸上的时候,有各样不一样方向和地点,但是,每一次投针时,其地点和方向都能够由两个量独一确立,那就是针的中点和偏离水平的角度。
以 x 表示针的中点到近来的一条平行线的距离,β表示针与平行线的交角。
明显有0<=x<=a/2 ,0<=β <=Pi 。
用边长为 a/2 及 Pi 的长方形表示样本空间。
为使针与平行线相交,一定x<=l*sinβ * ,知足这个关系的地区面积是从0 到Pi的l*sinβ对β的积分,可计算出这个概率值是(2l)/(Pi*a)。
只需随机生成n 对这样的x 和β,就能够模拟 n 次的投针实验,而后统计知足 x<=l*sin β * 的 x 的个数,就能够以为这是订交的次数。
而后利用公式求得π值。
2、MATLAB编程clear ('n')clear('a')clear('x')clear('f')clear ('y')clear ('m')disp(' 本程序用来进行投针实验的演示, a 代表两线间的宽度,针的长度 l=a/2 ,n 代表实验次数 '); a=input(' 请输入 a:');n=input(' 请输入 n:');x=unifrnd(0,a/2,[n,1]);f=unifrnd(0,pi,[n,1]);y=x<*a*sin(f);m=sum(y);PI=vpa(a*n/(a*m))三、实验数据 ( 部分程序截屏见后 )a n PI第一次310000第二次310000第三次3100000第四次3100000第五次31000000第六次31000000第七次3第八次3第九次3第十次3四、实验结论从上述数据剖析可知,跟着模拟次数的愈来愈多, PI 的值渐渐稳固在π值邻近,即愈来愈趋近于π,故蒲丰投针实验的确能够模拟出π的值。
蒲丰投针问题
蒲丰投针问题
1.有一只小猫,抓到20只老鼠,他准备每次吃掉奇数位置的老鼠,直到最后一只老鼠就把它放生,有一只很聪明的老鼠听到这里,就站到了一个位置上,最后它果然是那只被放生的老鼠,请问它站的是第几个位置?
2.伟大的数学家蒲丰,他邀请了他的很多朋友到他家,他在纸上画了很多间距相同的平行线,他给了他朋友很多长度是平行线间距一半的针,经过几千次的数据收集,针与平行线相交的数量与总数量的比值是
3.14,与π接近,各位知道是什么原因吗?。
浦丰投针问题
怎么办呢?
如果我们将针的每一个位置看作是一个基 本事件,此时,假定每一个位置都“同等可能” 是合理的。这样就可以用几何概率去解决。
模型建立与求解
x 以M 表示针落下后的中点, 表示中点 M 到最近一条平行线的距离, 表示针于平行线
x
a 2
的交角
则基本事件区域为 a 0 x : 2 0
这种方法由于来源于浦丰投针问题,常常被 称为随机投针法。更进一步的,这种方法成为了 现代计算机模拟的基础——蒙特卡洛方法。
结束
L ( A)
a
x
x
a 2
投针简图
0
1 l sin d l 2
o
从而所求概率为 L( A) l 2l p L ( ) 1 a a 2
模型分析
2l 2)由于 p a
l 1)当比值 不变时, 值始终不变 p a
2l a 所以可以利用它来计算 的近似值
o
基本事件简图
它为 ox 平面上的一个矩形,其面积为:
a L() 2M 为使针与平线(这线必定是它与 最近的一条平行线)相交,其充要条件是 l 0 x sin , A 2 (为什么?) 0 显然A 是Ω 中的一个区域(如图) , 而 A 的面积为
对于一些不确定的自然现象和科学实验 结果,我们通常用概率统计学去研究,建立 概率统计模型(随机现象)
问题:平面上画有等距离为a ( a 0) l 的一些平行线,向此平面投一长为 (l a ) 的针,试求此针与任一平行线 相交的概率?
分析: 针投到平面上与平行线的关系有两种可能:
针与这些平行线中的某一根相交,或不相交。 这两种可能性一般来说不一样大,即不具有等 可能性。因此无法用古典概率来求解。
蒲丰投针原理
/4.因为对于每一个z,这个概率都为(π-2)/4,因此对于任意的正数x,y,z,有P=(π-2)/4,命题得证。
为了估算π的值,我们需要通过实验来估计它的概率,这一过程可交由计算机编程来实现,事实上x+y>z,x²+y²;﹤z²;等价于(x+y-z)(x²+y²-z²;)﹤0,因此只需检验这一个式子是否成立即可。
若进行了m 次随机试验,有n次满足该式,当m足够大时,n/m趋近于(π-2)/4,令n/m=(π-2)/4,解得π=4n/m+2,即可估计出π值。
值得注意的是这里采用的方法:设计一个适当的试验,它的概率与我们感兴趣的一个量(如π)有关,然后利用试验结果来估计这个量,随着计算机等现代技术的发展,这一方法已经发展为具有广泛应用性的蒙特卡罗方法。
计算π最稀奇方法之一计算π的最为稀奇的方法之一,要数18世纪法国的博物学家C·布丰和他的投针实验:在一个平面上,用尺画一组相距为d的平行线;一根长度小于d的针,扔到画了线的平面上;如果针与线相交,则该次扔出被认为是有利的,否则则是不利的.布丰惊奇地发现:有利的扔出与不利的扔出两者次数的比,是一个包含π的表示式.如果针的长度等于d,那么有利扔出的概率为2/π.扔的次数越多,由此能求出越为精确的π的值.公元1901年,意大利数学家拉兹瑞尼作了3408次投针,给出π的值为3.1415929——准确到小数后6位.不过,不管拉兹瑞尼是否实际上投过针,他的实验还是受到了美国犹他州奥格登的国立韦伯大学的L·巴杰的质疑.通过几何、微积分、概率等广泛的范围和渠道发现π,这是着实令人惊讶的!证明下面就是一个简单而巧妙的证明。
找一根铁丝弯成一个圆圈,使其直径恰恰等于平行线间的距离d。
可以想象得到,对于这样的圆圈来说,不管怎么扔下,都将和平行线有两个交点。
蒲丰投针问题_概率论论文
Buffon投针问题摘要本文讨论了Buffon投针问题的解法及其不同解法之间的内在联系,同时从投针到投平面图形对Buffon投针问题给出了一些推广,并得到一般的结论,指出了其概率在探矿、近似计算中的应用。
关键词蒲丰投针概率随机试验近似计算一、引言蒲丰投针问题是由法国科学家蒲丰(Buffon)在1777年提出的,它是概率中非常有代表性的问题,它是第一个用几何形式表达概率问题的例子,其结论具有很强的理论与实际意义。
蒲丰针问题的解决不仅较典型的反应了集合概率的特征及处理方法,而且还可以由此领略到从“概率土壤”上开出的一朵瑰丽的鲜花——蒙特卡洛(Monte-Carlo)方法。
二、Buffon投针问题及其解法Buffon投针问题:平面上画有等距离的平行线,每两条平行线之间的距离为2a,向平面任意投掷一枚长为2l(l<a)的针,试求针与平行线相交的概率。
解:以x表示针的中点M到最近一条平行线的距离,以φ表示该针与平行线的夹角。
针与平行线的关系见图1.则有:0≤x≤a,0≤φ≤π,由它们所围成的矩形区域记为G1。
针与平行线相交的充要条件是:0≤x≤lsinφ,记满足这个关系的区域为g1(图2中的阴影部分)。
则所求概率为P1=g1的面积G1的面积=∫lsinφdφπaπ=2laπ三、Buffon投针问题不同解法及其内在联系上述解法是常见解法之一(记为解法一),这里讨论一下蒲丰针问题的其他解法及其之间的联系。
1.其他解法解法二:以x表示针的重点M到最近一条平行线的距离,y表示该针在此平行线上投影和长度,如图3所示。
易知x和y的取值范围是0≤x≤a,0≤y≤2l,这两个不等式确定了xOy平面上的矩形区域G2,针与平行线相交的充要条件是(y2)2+x2≤l2,该不等式确定了矩形区域G2(如图4所示)中的区域g2,从而所求概率为P2=g2的面积G2的面积=14·l·2l·π2l·a=lπ4a解法三:作垂直于平行线的直线,在该直线上选定一方向为正向,用z1,z2分别表示针头与针尾关于某平行线的纵坐标(如图5所示),该平行线的选取应使|z1+z2|≤2a。
实验说明一:蒲丰投针
实验说明1:蒲丰投针一、 实验目的1、 运用基本采样技术计算积分;2、 体会用随机模拟方法解决实际问题。
二、 问题描述在历史上人们对π的计算非常感兴趣性,发明了许多求π的近似值的方法。
1777年法国科学家蒲丰(Buffon )提出并解决了如下的投针问题来近似求解π。
蒲丰投针问题如图1所示。
桌面上画有间隔为a (a >0) 的一些平行线,向平面任意投一枚长为l (l <a )的针,可以通过求针与任一平行线相交的概率,进而求得π的近似值。
用X 表示针的中点与最近一条平行线的距离,Y 表示针与此直线间的夹角。
如果sin 2X l Y <,或sin 2l X Y <时,针与一条直线相交。
图1:蒲丰投针示意图由于向桌面投针是随机的,所以可以用二维随机向量(X ,Y )来确定针在桌面上位置。
并且X 在0,2a ⎛⎞⎜⎜⎜⎝上服从均匀分布, Y 在0,2π⎛⎞⎟⎜⎟⎜⎟⎜⎝⎠上服从均匀分布, X 与Y 相互独立。
由此可以写出的联合概率密度函数为: ()40,0,220a x y f x y a ππ⎧⎪⎪<<<<⎪=⎨⎪⎪⎪⎩其他。
用随机事件A 针与平行线相交,则事件A 发生的概率为{}()sin 2200sin 242sin ,2l y l x y l l A X Y f x y dxdy dxdy a aπππ<⎧⎫⎪⎪=<===⎨⎬⎪⎪⎪⎪⎩⎭∫∫∫∫P P 。
如果{}A P 已知,则有该概率得到{}2l a A π=P 。
当蒲丰的实验中,通过投针N 次,其中针与平行线相交n 次,用频率n N 作为{}A P 的估计值,于是得到2Nl anπ≈。
三、 实验内容1、上述概率{}A P 为积分计算,可用Monte Carlo 积分近似。
通过从分布(),f x y 中产生随机数,近似积分{}A P ,从而计算π;2、当样本数N (N =50、100、1000、10000、50000)时,每个N 重复10次实验。
布丰投针数学分析与实验设计(原创)
l 由(1)和(2)我们可以得出一些结论: n 根长度为 的小 n 针仍出去后压线的概率之和与一根长为 l 的针扔出去后压线 l 的概率相等;将 n 根长为 的小针连接成任意形状后扔出去 n 压线的概率与长为 l 的针扔出去压线的概率相等;当 n ,线就是曲线,所以结论可以进一步推广:随机投
k
称作这个连分式的第 k 个渐进分数。同时,
k
它也是所有分母不超过
q 的分数中最接近实数 x 的分数,
k
k
是实数 x 的第 k 个最佳渐进分数。
k
求渐进连分式,当然可以用上面分式求出,下面给出第
p k 个渐进连分式 的递推求法: q p a q 1 p a a 1 q a a p p ( k 2) p q a q q ( k 2 )
如上图所示,AB 针的长度为 2l ,CD 针长度为 l 。在 AB 针 或 AB 针的延长线与直线的夹角为 ,AB 针的中点 M 的取
角 相等,所以 M ' , M ' ' 是 m' , m' ' 的两倍,于是 CD 与直线相交的概率是 AB 与直线相交的概率的一半。对于其 余任意夹角都有这个结论。所以:长度为 l 的针与直线相交 的概率是长度为 2l 的针与直线相交概率的一半。
产生误差原因 1:m/n 的精度问题,这个是数学造 成的误差。解决办法:选取合适的 m 值,使 m/n 的有 效数字达到要求的精度。 产生误差原因 2:如果针的端点与直线非常接近, 例如相距万分之一毫米,用肉眼无法判断针是否与直线 相交,造成误差。解决办法:该次事件无效,不予统计, 继续进行下一次实验。 产生误差原因 3:l/d 的精度问题,这是测量问题。 产生误差的原因 1 和 2,我们都可以解决,使之达
蒲丰投针问题
蒲丰投针问题1777年法国科学家布丰提出的一种计算圆周率的方法——随机投针法,即著名的蒲丰投针问题。
投针步骤这一方法的步骤是:1) 取一张白纸,在上面画上许多条间距为d的平行线。
2) 取一根长度为l(l<d)的针,随机地向画有平行直线的纸上掷n次,观察针与直线相交的次数,记为m3)计算针与直线相交的概率.18世纪,法国数学家布丰和勒可莱尔提出的“投针问题”,记载于布丰1777年出版的著作中:“在平面上画有一组间距为d的平行线,将一根长度为l (l<d)的针任意掷在这个平面上,求此针与平行线中任一条相交的概率。
”布丰本人证明了,这个概率是p=2l/(πd) π为圆周率利用这个公式可以用概率的方法得到圆周率的近似值。
下面是一些资料实验者年代投掷次数相交次数圆周率估计值沃尔夫 1850 5000 2531 3.1596 L/D=0.8史密斯 1855 3204 1219 3.1554 L/D=0.6德摩根 1680 600 383 3.137 L/D=1福克斯 1884 1030 489 3.1595 L/D=0.75拉泽里尼 1901 3408 1808 3.1415929 L/D=0.8赖纳 1925 2520 859 3.1795 L/D=0.5布丰投针实验是第一个用几何形式表达概率问题的例子,他首次使用随机实验处理确定性数学问题,为概率论的发展起到一定的推动作用。
像投针实验一样,用通过概率实验所求的概率来估计我们感兴趣的一个量,这样的方法称为蒙特卡罗方法(Monte Carlo method)。
蒙特卡罗方法是在第二次世界大战期间随着计算机的诞生而兴起和发展起来的。
这种方法在应用物理、原子能、固体物理、化学、生态学、社会学以及经济行为等领域中得到广泛利用。
法国数学家布丰(1707-1788)最早设计了投针试验。
并于1777年给出了针与平行线相交的概率的计算公式P=2L/πd(其中L是针的长度,d是平行线间的距离,π是圆周率)。
投针试验
投针试验投针问题1777年法国科学家布丰提出的一种计算圆周率的方法——随机投针法,即著名的布丰投针问题。
投针步骤这一方法的步骤是:1)取一张白纸,在上面画上许多条间距为a的平行线。
2)取一根长度为l(l<a)的针,随机地向画有平行直线的纸上掷n次,观察针与直线相交的次数,记为m3)计算针与直线相交的概率.18世纪,法国数学家布丰和勒可莱尔提出的“投针问题”,记载于布丰1777年出版的著作中:“在平面上画有一组间距为a的平行线,将一根长度为l(l<a)的针任意掷在这个平面上,求此针与平行线中任一条相交的概率。
”布丰本人证明了,这个概率是p=2l/(πd) π为圆周率利用这个公式可以用概率的方法得到圆周率的近似值。
下面是一些资料试验者时间投掷次数相交次数圆周率估计值Wolf1850年5000 2532 3.1596Smith 1855年3204 1218.5 3.1554C.De Morgan 1680年600 382.5 3.137Fox1884年1030 489 3.1595Lazzerini 1901年3408 1808 3.1415929Reina 1925年2520 859 3.1795设这三个正数为x,y,z,不妨设x≤y≤z,对于每一个确定的z,则必须满足x+y>z,x²+y²;﹤z²;,容易证明这两个式子即为以这3个正数为边长可以围成一个钝角三角形的充要条件,用线性规划可知满足题设的可行域为直线x+y=z与圆x²+y²=z²;围成的弓形,总的可行域为一个边长为z的正方形,则可以围成一个钝角三角形的概率P=S弓形/S正方形=(πz²/4-z²/2)/z²=(π-2)/4.因为对于每一个z,这个概率都为(π-2)/4,因此对于任意的正数x,y,z,有P=(π-2)/4,命题得证。
数学史上的经典实验:布丰投针实验
布丰投针实验公元1777年的一天,法国科学家D•布丰(D.Buffon1707~1788)的家里宾客满堂,原来他们是应主人的邀请前来观看一次奇特试验的。
试验开始,但见年已古稀的布丰先生兴致勃勃地拿出一张纸来,纸上预先画好了一条条等距离的平行线。
接着他又抓出一大把原先准备好的小针,这些小针的长度都是平行线间距离的一半。
然后布丰先生宣布:“请诸位把这些小针一根一根往纸上扔吧!不过,请大家务必把扔下的针是否与纸上的平行线相交告诉我。
”客人们不知布丰先生要玩什么把戏,只好客随主意,一个个加入了试验的行列。
一把小针扔完了,把它捡起来又扔,而布丰先生本人则不停地在一旁数着、记着,如此这般地忙碌了将近一个钟头。
最后,布丰先生高声宣布:“先生们,我这里记录了诸位刚才的投针结果,共投针2212次,其中与平行线相交的704次。
总数2212与相交数704的比值为3.142。
”说到这里,布丰先生故意停了停,并对大家报以神秘的一笑,接着有意提高声调说:“先生们,这就是圆周率π的近似值!”众客哗然,一时疑议纷纷,大家全部感到莫名期妙:“圆周率π?这可是与圆半点也不沾边的呀!”布丰先生似乎猜透了大家的心思,得意洋洋地解释道:“诸位,这里用的是概率的原理,如果大家有耐心的话,再增加投针的次数,还能得到π的更精确的近似值。
不过,要想弄清其间的道理,只好请大家去看敝人的新作了。
”随着布丰先生扬了扬自己手上的一本《或然算术试验》的书。
π在这种纷纭杂乱的场合出现,实在是出乎人们的意料,然而它却是千真万确的事实。
由于投针试验的问题,是布丰先生最先提出的,所以数学史上就称它为布丰问题,布丰得出的一般结果是:如果纸上两平行线间相距为d,小针长为l,投针的次数为n,所以投的针当中与平行线相交的次数的m,那么当n相当大时有:π≈(2ln)/(dm)在上面故事中,针长l恰等于平行线间距离d的一半,所以代入上面公式简化得:π≈n/m值得一提的是,后来有不少人步布丰先生的后尘,用同样的方法来计算π值。
蒲丰投针试验---------概率论与数理统计
蒲丰资料
1777年,法国科学家蒲丰(Buffon)提ห้องสมุดไป่ตู้了投针 试验问题.平面上画有等距离为a(a>0)的一些平行直 线,现向此平面任意投掷一根长为b( b<a )的针,试求 针与某一平行直线相交的概率. 解 以 x表示针投到平面上时,
针的中点M到最近的一条平行
a
M x
直线的距离, 表示针与该平行直线的夹角.
1.0
0.75 0.83 0.5419
600
1030 3408 2520
382
489 1808 859
3.137
3.1595 3.1415929 3.1795
利用蒙特卡罗(Monte Carlo)法进行计算机模拟. 单击图形播放/暂停 ESC键退出 取a 1, b 0.85.
利用上式可计算圆周率π 的近似值.
历史上一些学者的计算结果(直线距离a=1)
试验者 Wolf Smith 时间 1850 1855 针长 0.8 0.6 投掷次数 相交次数 π的近似值 5000 3204 2532 1218 3.1596 3.1554
De Morgan 1860
Fox Lazzerini Reina 1884 1901 1925
那么针落在平面上的位置可由( x , )完全确定.
投针试验的所有可能结果与 矩形区域
a S {( x , ) 0 x ,0 π} 2 中的所有点一一对应 . 由投掷的任意性可知 这是一个几何概型问题.
a
M x
所关心的事件
o
A { 针与某一平行直线相交} 发生的充分必要条件为S 中的点满足 b 0 x sin , 0 π . 2
蒲丰投针实验原理
蒲丰投针实验原理1.地球是一个球体:在蒲丰时代,人们普遍相信地球是一个球体,而蒲丰的实验就是为了验证这一点。
2.光线传播是直线传播:蒲丰认为光线传播是呈直线传播的,这是基于他对光学的观察和实验中得到的结论。
基于以上前提,蒲丰提出了以下实验步骤来验证地球的球形:1.准备一个平坦的地面:选择一个平坦的地面,比如一块大理石板或者是一个平整的木板。
2.准备一把针:选择一根细长的针,尽量确保它是笔直的。
3.垂直投放针:将针垂直地向地面投放,确保它垂直于地面,并且尽量避免针倾斜或弯曲。
4.观察针在地面上的分布:观察针在地面上的分布情况,看是否存在一定的规律。
理论上,如果地球是一个平坦的平面,那么无论针的位置如何投放,针都应该均匀地分布在地面上。
然而,如果地球是一个球体,那么针的位置投放将会影响其在地面上的分布。
由于地球表面的曲率,针的投放位置不同将导致一些规律的变化。
根据蒲丰的实验,当针被随机分布在地面上时,如果地球是一个球体,那么在一些特定范围内的细长物体的位置分布将会有所偏差。
这是因为在投针的过程中,总有一些针会与地面相交,而一些则不会。
蒲丰实验的原理是基于概率统计的方法。
通过计算和观察一系列接触和不接触地面的针,可以推导出地球的曲率和球形。
如果这些数据和理论上的期望一致,那么可以得出结论地球是球状的。
总结起来,蒲丰投针实验的原理是基于光线的直线传播以及地球的球形假设。
通过观察针在地面上的分布情况,可以验证地球是否是球状的。
这个实验的重要性在于它提供了一种简单直观的方法来验证古代关于地球形状的理论,并且可以通过实验数据来验证理论的正确性。
蒲丰投针概率推导过程
蒲丰投针概率推导过程蒲丰投针是一种经典的概率问题,它的推导过程相对简单,但却能够展示出概率论的基本思想和方法。
下面我将详细介绍蒲丰投针的概率推导过程。
首先,我们需要了解蒲丰投针的实验过程。
在一块平面上,画有一些平行线,线之间的距离为d,然后随机地投掷一根长度为l(l<d)的针,求这根针与平行线相交的概率。
为了方便计算,我们可以将针的中心点与最近的平行线之间的距离记为x,将针与平行线之间的夹角记为θ。
那么,针与平行线相交的条件可以表示为:x≤l/2sinθ接下来,我们需要确定x和θ的分布情况。
由于针的中心点是随机投掷的,因此x的分布是均匀的,即:P(x)=1/d而θ的分布则需要根据概率密度函数进行计算。
由于θ的取值范围为0到π/2,因此我们可以将其概率密度函数表示为:f(θ)=2/π,0≤θ≤π/2接下来,我们可以利用边缘概率密度函数来计算针与平行线相交的概率。
具体来说,我们可以将针与平行线相交的条件转化为:θ≤sin^-1(2x/l)然后,我们可以将上述条件带入概率密度函数中,得到:P(θ≤sin^-1(2x/l))=∫0^l/2sin^-1(2x/l)f(θ)dθ=2/πsin^-1(2x/l)最后,我们可以将上述结果带入到边缘概率密度函数中,得到针与平行线相交的概率为:P=∫0^dP(θ≤sin^-1(2x/l))P(x)dx=2l/πd综上所述,蒲丰投针的概率推导过程相对简单,但需要对概率密度函数和边缘概率密度函数有一定的了解。
通过这个经典的概率问题,我们可以更好地理解概率论的基本思想和方法,为今后的学习打下坚实的基础。
蒲丰投针试验
m 2b π 2bn.
n aπ
am
利用上式可计算π圆 的周 近率 似. 值
历史上一些学者的计算结果(直线距离a=1)
试验者 时间 针长 投掷次数 相交次数 π的近似值
Wolf
1850 0.8
5000
2532 3.1596
Smith
1855 0.6
3204
1218 3.1554
De Morgan 1860 1.0
600
382 3.137
Fox
1884 0.75 1030
489 3.1595
Lazzerini 1901 0.83 3408
1808 3.1415929
Reina
1925 0.5419 2520
859 3.1795
利用蒙特卡罗(Monte Carlo)法进行计算机模拟. 取 a1 ,b0 .8.5单击图形播放/暂停 ESC键退出
2
P(A)μμ((G S))G S的 的面 面积 积
π b sin d
02 a π 2
a
b
π
2b . aπ
o
蒲丰投针试验的应用及意义
P(A) 2b aπ
根据频率 ,当 的投 稳针 定试 性 n验 很次 大,数 时
测出针与平行 的直 次线 m数 ,则 相频 交率 m即 值可 n
那么针落在平 置面 可(x上 由 ,)完 的全 位确 . 定
投针试验的所有可能果结与
矩形区域
a
S{x (,)0xa,0π}
2 中的所有点一一对应.
由投掷的任意性可知
这是一个几何概型问题.
蒲丰试验
蒲丰试验一天,法国数学家蒲丰请许多朋友到家里,做了一次试验.蒲丰在桌子上铺好一张大白纸,白纸上画满了等距离的平行线,他又拿出很多等长的小针,小针的长度都是平行线的一半.蒲丰说:“请大家把这些小针往这张白纸上随便仍吧!”客人们按他说的做了。
蒲丰的统计结果是:大家共掷2212次,其中小针与纸上平行线相交704次,2210÷704≈3.142。
蒲丰说:“这个数是π的近似值。
每次都会得到圆周率的近似值,而且投掷的次数越多,求出的圆周率近似值越精确。
”这就是著名的“蒲丰试验”。
笛卡儿笛卡儿,(1596-1650)法国哲学家,数学家,物理学家,解析几何学奠基人之一。
他认为数学是其他一切科学的理论和模型,提出了数学为基础,以演绎为核心的方法论,对后世的哲学。
数学和自然科Х⒄蛊鸬搅司薮蟮淖饔谩?笛卡儿分析了几何学和代数学的优缺点,表示要寻求一种包含这两门科学的优点而没有它们的缺点的方法,这种方法就是用代数方法,来研究几何问题--解析几何,《几何学》确定了笛卡儿在数学史上的地位,《几何学》提出了解析几何学的主要思想和方法,标志着解析几何学的诞生,思格斯把它称为数学的转折点,以后人类进入变量数学阶段。
笛卡儿还改进了韦达的符号记法,他用a、b、c……等表示已知数,用x、y、z……等表示未知数,创造了“=”,“”等符号,延用至今。
笛卡儿在物理学,生理学和天文学方面也有许多独到之处。
韦达韦达(1540-1603),法国数学家。
年青时学习法律当过律师,后从事政治活动,当过议会议员,在西班牙的战争中曾为政府破译敌军密码。
韦达还致力于数学研究,第一个有意识地和系统地使用字母来表示已知数、未知数及其乘幂,带来了代数理论研究的重大进步。
韦达讨论了方程根的多种有理变换,发现了方程根与分数的关系,韦达在欧洲被尊称为“代数学之父”。
1579年,韦达出版《应用于三角形的数学定律》,同时还发现,这是π的第一个分析表达式。
主要著有《分析法入门》、《论方程的识别与修正》、《分析五章》、《应用于三角形的数学定律》等,由于他贡献卓著,成为十六世纪法国最杰出的数学家。
蒲丰投针试验
P(
A)
m( A) m()
A对应区域D的度量 对应区域S的度量
即等可能性
例(蒲丰投针问题)平面上有等距离的平行线,平行线间
的距离为a。向此平面任意投掷一枚长为l (l≤a) 的针,求针
与任一平行线相交的概率。
解:设M为针的中点,M点到最近平行线的距离为x,针与 平行线的夹角为θ。针的位置可由(x, θ)决定,
概率论与数理统计
蒲丰投针试验
几何概型
定义: 若随机试验的样本空间对应一个度
量有限的几何区域S,每一基本事件与S内的 点一一对应,则任一随机事件A对应S中的某 一子区域D。若事件A的概率只与A对应的区 域D的度量成正比,而与D的形状及D在S中的 位置无关。则称为几何概型。
事件A发生的概率为:
De Morgan(1860 1.0 600 年) Fox(1884年) 0.75 1030
相交次数 近似值 m
2532
3.1596
1219
3.1541
383
3.1332
489
3.1596
2
2l
m() a / 2 a
蒲丰投针实验的应用
利用随机模拟方法计算
P(A) 2l 2l
a
aP( A)
利用P(A)m/n。其中n为投掷次数,m为相交次数。 就可以近似计算。
验者
l/a 投掷次数n
Wolf(1850年) 0.8 5000
Smith(1855年) 0.6 3204
样本空间:
{(x, ) | 0 x a / 2, 0 }
设A:针与任一条平行线相交。其充要条件为:
x l sin
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
蒲丰投针 ―― Monte Carlo 算法
20
书面作业(P51)
1. 在一条笔直的流水线上,有5个机器人,它们顺序间 隔为1千米。试在流水线上设置一个零件供应站,使 得各机器人到供应站的距离总和为最短,并求出这 个最短距离总和。若有奇数个机器人,又将如何? 2. 丈夫和他的妻子上街购物,他们决定在下午4:00到 5:00之间在某一街角相会。他们约好当其中一人先 到后,一定要等另一人20分钟,若另一人仍不到则 离去。试问这对夫妇能相遇的概率为多少(假定他 们到达约定地点的时间是随机的,且都在约定的一 小时内)? 3. 设计一种蒙特卡罗模型用于估计无理数 ln2 的近似 值。(提示:ln2 等于1/(1+x)在[0,1] 上的定积分)
古典概型不仅要求基本事件的出现等可能 性,而且要求样本空间为有限集。但实际问题 却经常碰到无限样本空间的情形。对于无限样 本空间的情形,常可转化为几何概型来解决。 所谓几何概型主要用长度、面积、体积等有关 几何的直观概念来解决问题。古典概型与几何 概型的相同点:两者基本事件发生的可能性都 是相等的;古典概型与几何概型的不同点:古 典概型要求基本事件有有限个,几何概型要求 基本事件有无限多个。 12
19
三、(补充)蒙特卡罗模型
问题的提出:
蒲丰投针问题的重要性并非是为了求得比 其它方法更精确的π值,而是在于它是第一个 用几何形式表达概率问题的例子。计算π的这 一方法,不但因其新颖,奇妙而让人叫绝,而 且它开创了使用随机数处理确定性数学问题的 先河,是用偶然性方法去解决确定性计算的前 导。 具体内容参见文件:
数学建模理论与实践
—— 基于几何学的数学建模
1
基于几何学的数学建模
一、几何优化模型 二、普通几何概几何优化模型
问题的提出:
我们都知道,平面几何里有一个基 本公理:平面上两点之间的连线,线段 最短。这里的最短,就是一种几何优化 思想。
3
一、几何优化模型
问题的提出: 现在的问题是: 例1:在一条笔直的流水线上,有5个机器人。现要 在流水线上设置一个零件供应站,使得各机器人到供 应站的距离总和为最短,问供应站应设在哪里?一般 地,如果有n 个机器人,供应站又应设在哪里? 例2:在一条笔直的流水线上,有 7 个点分别有机器 人3、2、2、1、2、4、3个,现要在流水线上设置 一个零件供应站,使得各机器人到供应站的距离总和 为最短,供应站应设在哪里?若最后一个点上多 1 个机器人,将如何?若最后一个点上多 3 个机器人, 4 又如何?
二、普通几何概率模型
问题的提出:
对于复杂的实际问题,解题的关键是要建 立概率模型,找出随机事件与所有基本事件相 对应的几何区域,把问题转化为几何概型的问 题,利用几何概型公式求解。
13
二、普通几何概率模型
例子及其解答
假设小王家订了一份报纸,送报人可能在 下午1:30到2:30之间把报纸送到小王家,而小 王离家去工作的时间在下午2:00到3:00之间, 问小王在离开家前能得到报纸(称为事件)的 概率是多少?
21
10
二、普通几何概率模型
问题的提出:
概率,又称为几率、或然率,是反映某种 事件发生的可能性大小的一种数量指标.它介 于0和1之间。这里的事件是指随机现象中出 现的某个可能结果。概率论是研究随机现象统 计规律的一门数学分支学科,它有着悠久的历 史。其中以古典概型特别成熟。
11
二、普通几何概率模型
问题的提出:
14
二、普通几何概率模型
例子及其解答
15
二、普通几何概率模型
例子及其解答
16
二、普通几何概率模型
例子及其解答
17
二、普通几何概率模型
例子及其解答
18
三、(补充)蒙特卡罗模型
问题的提出: 蒙特卡罗方法(Monte Carlo),也称统计模拟 方法,是在二次世界大战期间随着科学技术的发展和 电子计算机的发明,而被提出的一种以概率统计理论 为基础的一类非常重要的数值计算方法。蒙特卡罗方 法在应用物理、原子能、固体物理、化学、生态学、 社会学以及经济行为等领域中得到广泛利用。 蒙特卡罗方法的名字来源于世界著名的赌城 — — 摩纳哥的蒙特卡罗。其历史起源可追溯到1777年 法国科学家蒲丰提出的一种计算圆周率的方法 —— 随机投针法,即著名的蒲丰投针问题。
一、几何优化模型
模型假设 1. 流水线在一条笔直的直线上
2. 机器人、供应站都是一个质点,没有长度
建模目的
最佳的供应站设点位在哪?
5
一、几何优化模型
例1的求解:
6
一、几何优化模型
例1的求解:
7
一、几何优化模型
例1的求解:
8
一、几何优化模型
例1的求解:
9
一、几何优化模型
例2的求解:
在若干点上机器人有重复,考虑将此种情 形化成例1的情况,问题迎刃而解!具体此略。