第25章概率初步复习卷[1]
第25章概率初步(复习)练习复习题
学校 班级 考号 姓名__________________________◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆装◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆订◆◆◆◆◆◆◆◆◆◆◆◆◆线◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆高大坪中学2015-2016学年度第一学期九年级期末数学复习题第25章概率初步(复习)一、知识回顾 1.基本概念(1)必然事件是指一定能发生的事件,或者说发生的可能性是100%; (2)不可能事件是指一定不能发生的事件;(3)随机事件是指在一定条件下,可能发生也可能不发生的事件; (4)随机事件的可能性一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同. (5)概率一般地,在大量重复试验中,如果事件A 发生的频率mn会稳定在某个常数P 附近,•那么这个常数P 就叫做事件A 的概率,记为P (A )=P . (6)可能性与概率的关系事件发生的可能性越大,它的概率越接近于1,反之事件发生的可能性越小,则它的概率越接近0.(图6-30) (7)古典概率一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性相等,•事件A 包含其中的m 种结果,那么事件A 发生的概率为P (A )=m n. (8)几何图形的概率 概率的大小与面积的大小有关,•事件发生的概率等于此事件所有可能结果所组成图形的面积除以所有可能结果组成图形的面积.2.概率的理论计算方法有:①树状图法;②列表法.3.通过大量重复实验得到的频率估计事件发生概率的值4.利用概率的知识解决一些实际问题,如利用概率判断游戏的公平性等 三 典型例题例1、下列事件中,是必然事件的是( )A.购买一张彩票中奖一百万B.打开电视机,任选一个频道,正在播新闻C.在地球上,上抛出去的篮球会下落D.掷两枚质地均匀的骰子,点数之和一定大于6 例2.在一场足球比赛前,甲教练预言说:“根据我掌握的情况,这场比赛我们队有 60%的机会获胜”意思最接近的是( )A.这场比赛他这个队应该会赢B.若两个队打100场比赛,他这个队会赢60场C.若这两个队打10场比赛,这个队一定会赢6场比赛.D.若这两个队打100场比赛,他这个队可能会赢60场左右.例3一个袋中装有6个黑球3个白球,这些球除颜色外,大小、形状、质地完全相同,在看不到球的情况下,随机的从这个袋子中摸出一个球,摸到白球的概率是( )例6.小江玩投掷飞镖的游戏,他设计了一个如图所示的靶子,点E 、F 分别是矩形ABCD 的两边AD .BD 上的点,EF∥AB,点M 、N 是EF 上任意两点,则投掷一次,飞镖落在阴影部分的概率是( ) A .B .C .D .例8.一个密封不透明的盒子里有若干个白球, 在不允许将球倒出来的情况下, 为估计白球的个数, 小刚向其中放入8个黑球, 摇匀后从中随机摸出一个球记下颜色, 再把它放回盒中, 不断重复, 共摸球400次, 其中88次摸到黑球. 估计盒中大约有白球( ) A 、28个 B 、30个 C 、36个 D 、42个 例4.用树状图法求下列事件的概率:(1)连续掷两次硬币,两次朝上的面都相同的概率是多少? (2)连续掷三次,至少出现两次正面朝上的概率是多少例5.在一个口袋中有4个完全相同的小球,把它们分别标号l 、2、3、4.小明先随机地摸出一个小球,小强再随机地摸出一个小球.记小明摸出球的标号为x ,小强摸出的球标号为y.小明和小强在此基础上共同协商一个游戏规则:当x>y 时小明获胜,否则小强获胜.①若小明摸出的球不放回,求小明获胜的概率.②若小明摸出的球放回后小强再随机摸球,问他们制定的游戏规则公平吗?请说明理由.例7.为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼______________条.例9. 一个不透明的袋子中装有三个完全相同的小球,分别标有数字3,4,5.从袋子中随机取出一个小球,用小球上的数字作为十位上的数字,然后放回;再取出一个小球,用小球上的数字作为个位上的数字,这样组成一个两位数.试问:按这种方法能组成哪些两位数?十位上的数字与个位上的数字之和为9的两位数的概率是多少?用列表法或画树状图法加以说明.例10.小明和小亮是一对双胞胎,他们的爸爸买了两套不同品牌的运动服送给他们,小明和小亮都想先挑选.于是小明设计了如下游戏来决定谁先挑选.游戏规则是:在一个不透明的袋子里装有除数字以外其它均相同的4个小球,上面分别标有数字1、2、3、4.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为奇数,则小明先挑选;否则小亮先挑选. (1)用树状图或列表法求出小明先挑选的概率; (2)你认为这个游戏公平吗?请说明理由.1112....9323A B CD学校 班级 考号 姓名__________________________◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆装◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆订◆◆◆◆◆◆◆◆◆◆◆◆◆线◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆高大坪中学2015-2016学年度第一学期九年级期末数学复习题第25章概率初步(复习检测)一、选择题(每小题3分,共30分) 1.下列事件中,是必然事件的为 ( )A.抛掷一枚质地均匀的硬币,落地后正面朝上B.江汉平原7月份某一天的最低气温是-2℃C.通常加热到100℃时,水沸腾D.打开电视,正在播放节目《男生女生向前冲》2.一枚质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字,抛掷这枚骰子一次,则向上的面的数字大于4的概率是 ( )A.B.C.D.3.如图,在一块菱形菜地ABCD 中,对角线AC 与BD 相交于点O,若在菱形菜地内均匀地撒上种子,则种子落在阴影部分的概率是 ( ) A.1B.C.D.4.如图,在平面直角坐标系中,点A 1,A 2在x 轴上,点B 1,B 2在y 轴上,其坐标分别为A 1(1,0),A 2(2,0),B 1(0,1),B 2(0,2),分别以A 1,A 2,B 1,B 2其中的任意两点与点O 为顶点作三角形,所作三角形是等腰三角形的概率是 ( )A.B.C.D.5.在元旦联欢会上,班长准备了若干张相同的卡片,上面写的是联欢会上同学们要回答的问题,联欢会开始后,班长问小明:你能设计一个方案,估计联欢会共准备了多少张卡片吗?小明将20张空白卡片(与写有问题的卡片相同)和全部写有问题的卡片洗匀,从中抽取10张,发现2张空白卡片,马上正确估计出写有问题的卡片数目,小明估计的数目是 ( ) A.60张B.80张C.90张D.100张6.欢欢与贝贝统计学校门前的车辆日流量,欢欢统计的结果是每10辆通过学校门前的车中有一辆小轿车;贝贝统计的结果是学校门前每天通过的小轿车有60辆,请你估计学校门前每天通过的车辆数为 ( ) A.10B.60C.70D.6007.从n 张互不相同的普通扑克牌中任意抽取一张,抽到黑桃K 的概率为,则n = ( ) A.54B.52C.10D.58.在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球不放回,再随机地摸出一个小球,则两次摸出的小球的标号的和为奇数的概率是 ( )A.B.C.D.9.在一个不透明的盒子里有3个分别标有数字5,6,7的小球,它们除数字外其他均相同.充分摇匀后,先摸出1个球不放回,再摸出1个球,那么这两个球上的数字之和为奇数的概率为 ( )A.B.C.D.10.如图是两个可以自由转动的转盘,各转盘被等分成三个扇形,并分别标上1,2,3和6,7,8这6个数字,如果同时转动两个转盘各一次(指针落在等分线上重转),转盘停止后,则指针指向的数字和为偶数的概率是 ( ) A.B.C.D.二、填空题(每小题3分,共24分)11.端午节前,妈妈去超市买了大小、质量及包装均相同的粽子8个,其中火腿粽子5个,豆沙粽子3个,若小明从中任取1个,是火腿粽子的概率是 .12.一副扑克牌52张(不含大小王),分为黑桃、红心、方块及梅花4种花色,每种花色各有13张,分别标有字母A,K,Q,J 和数字10,9,8,7,6,5,4,3,2.从这副牌中任意抽出一张,则这张牌是标有字母的牌的概率是 .13.小芳同学有两根长度为4cm,10cm 的木棒,她想钉一个三角形相框,桌上有五根木棒供她选择(如图所示),从中任选一根,能钉成三角形相框的概率是 .14.在一个不透明的袋子中有10个除颜色外均相同的小球,通过多次摸球试验后,发现摸到白球的频率约为40%,估计袋中白球有 个.15.在平面直角坐标系中,作△OAB,其中三个顶点分别是O(0,0),B(1,1),A(x,y)(-2≤x ≤2,-2≤y ≤2,x,y 均为整数),则所作△OAB 为直角三角形的概率是 .16.为了估计湖里有多少条鱼,有如下方案:从湖里捕上100条鱼做上标记,然后放回湖里,经过一段时间,第二次再捕上200条鱼,若其中有标记的鱼有32条,那么估计湖里大约有 条鱼.17.一张圆桌旁边有四个座位,A 先坐在如图所示的座位上,B,C,D 三人随机坐到其他三个座位上,则A 与B 不相邻而坐的概率为 .18.抛掷一枚质地均匀的硬币,如果每掷一次出现正面与反面的可能性相同,那么连掷三次硬币,出现“一次正面,两次反面”的概率为 .三、解答题(共46分)19.(6分)一次联欢会上,12个男生(相互挨着)和10个女生围坐成一个圆圈,采用击鼓传花的方式决定谁演节目,若男生接传一次需用0.9 s,女生接传一次需用1 s,则每击鼓传花一次,男生演节目的可能性与女生演节目的可能性哪个大?为什么?20.(7分)如图,有四张背面相同的纸牌A,B,C,D,其正面分别是红桃,方块,黑桃,梅花,其中红桃,方块为红色,黑桃,梅花为黑色,小明将这4张纸牌背面朝上洗匀后,摸出一张,将剩余3张洗匀后再摸出一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A,B,C,D表示).(2)求摸出的两张纸牌同为红色的概率.21.(7分)有A,B两个不透明的布袋,A袋中有两个完全相同的小球,分别标有数字0和-2;B袋中有三个完全相同的小球,分别标有数字-2,0和1.小明从A袋中随机取出一个小球,记录标有的数字为x,再从B袋中随机取出一个小球,记录标有的数字为y,这样确定了点Q的坐标(x,y).(1)写出点Q所有可能的坐标.(2)求点Q在x轴上的概率.(3)在平面直角坐标系xOy中,☉O的半径是2,求过点Q能作☉O切线的概率.22.(8分)用如图所示的三等分的圆盘转两次做“配紫色(红色+蓝色)”游戏,配出紫色的概率用分式P=计算,请问:m和n分别是多少?m和n的意义分别是什么?23.(9分)小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)试验,她们共做了60次试验,试验的结果如下:(1)计算“3点朝上”的频率和“5点朝上”的频率.(2)小颖说:“根据试验,一次试验中出现5点朝上的概率最大.”小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次.”小颖和小红的说法正确吗?为什么? 24.(9分)周日,我和爸爸、妈妈在家都想使用电脑上网,可是家里只有一台电脑,怎么办?为了公平起见我设计了下面的两种游戏规则,确定谁使用电脑上网.(1)任意投掷两枚质地均匀的硬币,若两枚正面都朝上,则爸爸使用电脑;若两枚反面都朝上,则妈妈使用电脑;若一枚正面朝上一枚反面朝上,则我使用电脑.(2)任意投掷两枚骰子,若点数之和被3整除,则爸爸使用电脑;若点数之和被3除余数为1,则妈妈使用电脑;若点数之和被3除余数为2,则我使用电脑.请你来评判,这两种游戏规则哪种公平,并说明理由!25.(10分)如图,已知一次函数y=kx+b(k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=mx (m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为点D,若OA=OB=OD=1.(1)求点A、B、D的坐标;(2)求一次函数和反比例函数的解析式.26.(12分)制作一种产品,需先将材料加热达到60℃后,再进行操作.设该材料温度为y(℃),从加热开始计算的时间为x(分钟).据了解,该材料加热时,温度y与时间x成一次函数关系;停止加热进行操作时,温度y 与时间x成反比例关系(如图).已知该材料在操作加工前的温度为15℃,加热5分钟后温度达到60℃.根据工艺要求,当材料的温度低于15℃时,须停止操作.(1)分别求出将材料加热和停止加热进行操作时,y与x的函数解析式;(2)求从开始加热到停止操作,共经历了多长时间?。
人教版九年级数学上册《第二十五章概率初步》单元测试卷(带答案)
人教版九年级数学上册《第二十五章概率初步》单元测试卷(带答案)一、选择题1.下列事件中,是必然事件的是()A.任意画一个三角形,其内角和是180∘B.任意买一张电影票,座位号是单号C.掷一次骰子,向上一面的点数是3D.射击运动员射击一次,命中靶心2.在四张完全相同的卡片上,分别画有等腰三角形、钝角、线段和直角三角形,现从中任意抽取一张,卡片上的图形一定是轴对称图形的概率是( )A.14B.12C.34D.13.一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上,每块地砖的大小、质地完全相同,那么该小球停留在黑色区域的概率是()A.12B.13C.49D.594.如图,电路连接完好,且各元件工作正常,随机闭合开关S1、S2、S3中的两个,能让两个小灯泡同时发光的概率是()A.12B.13C.14D.155.4件外观相同的产品中只有1件不合格,现从中一次抽取2件进行检测,抽到的两件产品中有一件产品合格而另一件产品不合格的概率是()A.38B.13C.23D.126.在一个不透明的箱子里装有m个球,其中红球4个,这些球除颜色外都相同,每次将球搅拌均匀后,任意摸出一个球记下颜色后再放回,大量重复试验后发现,摸到红球的频率在0.2,那么可以估算出m的值为()A.8 B.12 C.16 D.207.有三张卡片,正面分别写有A、B、C三个字母,其它完全相同,反扣在桌面上混合均匀,从中在取两张,同时取到A、B的概率是()A.12B.13C.23D.298.某小组做“当试验次数很大时,用频率估计概率”的试验时,统计了某一结果出现的频率,表格如下,则符合这一结果的试验最有可能是()A.掷一个质地均匀的骰子,向上的面点数是“6”B.掷一枚一元的硬币,正面朝上C.不透明的袋子里有2个红球和3个黄球,除颜色外都相同,从中任取一球是红球D.三张扑克牌,分别是3,5,5,背面朝上洗匀后,随机抽出一张是5二、填空题9.有4根细木棒,长度分别为1cm,2cm,3cm,4cm,从中任选3根,恰好能搭成一个三角形的概率是.10.一只小花猫在如图的方砖上走来走去,最终停留在阴影方砖上的概率是.11.在4张完全相同的卡片上,分别标出1,2,3,4,从中随机抽取1张后,放回再混合在一起.再随机抽取一张,那么第二次抽取卡片上的数字能够整除第一次抽取卡片上的数字的概率是.12.在一次科学课上,小明同学设计了如下电路图,随机闭合两个开关,能使其中1个灯泡发亮的概率为.13.篮球运动是一项既能健身娱乐,又能促进社会化文明进程的良好竞技运动项目.某校篮球队进行篮球训练,某队员投篮的统计结果如下表.根据表中数据可知该队员一次投篮命中的概率的估计值是.(精确到0.01)三、解答题14.甲、乙两同学用一副扑克牌中牌面数字分别是3、4、5、6的4张牌做抽数学游戏.游戏规则是:将这4张牌的正面全部朝下,洗匀,从中随机抽取一张,抽得的数作为十位上的数字,然后,将所抽的牌放回,正面全部朝下、洗匀,再从中随机抽取一张,抽得的数作为个位上的数字,这样就得到一个两位数.若这个两位数小于45,则甲获胜,否则乙获胜.你认为这个游戏公平吗?请运用概率知识说明理由.(用列表法或画树状图分别求出两同学获胜的概率)15.如图,甲、乙两个完全相同的转盘均被分成3个面积相等的扇形,每个扇形中都标有相应的数字,同时转动两个转盘(当指针指在边界线上时视为无效,需重新转动转盘),当转盘停止后,记下甲、乙两个转盘中指针所指的数字.请用画树状图或列表的方法,求这两个数字之和为偶数的概率.16.学校开展学生会主席竞选活动,最后一轮是演讲环节,抽签方式如下:每位选手分别从标有“A”、“B”内容的签中随机抽取一个,就抽取的内容进行演讲.现有小明、小亮和小丽三名选手,求出下列事件发生的概率.(请用“画树状图”或“列举”等方法写出分析过程)(1)三个选手抽中同一演讲内容;(2)三个选手有两人抽中内容“A”,一人抽中内容“B”.17.在甲乙两个不透明的口袋中,分别有大小、材质完全相同的小球,其中甲口袋中的小球上分别标有数字1,2,3,4,乙口袋中的小球上分别标有数字2,3,4,先从甲袋中任意摸出一个小球,记下数字为m,再从乙袋中摸出一个小球,记下数字为n.(1)请用列表或画树状图的方法表示出所有(m,n)可能的结果;(2)若m,n都是方程x2-5x+6=0的解时,则小明获胜;若m,n都不是方程x2-5x+6=0的解时,则小利获胜,问他们两人谁获胜的概率大?18.2022年3月25日,教育部印发《义务教育课程方案和课程标准(2022年版)》,优化了课程设置,将劳动从综合实践活动课程中独立出来.某校以中国传统节日端午节为契机,组织全体学生参加包粽子劳动体验活动,随机调查了部分学生,对他们每个人平均包一个粽子的时长进行统计,并根据统计结果绘制成如下不完整的统计图表.等级时长t(单位:分钟)人数所占百分比A0≤t<2 4 xB2≤t<4 20C4≤t<6 36%D t≥6 16%根据图表信息,解答下列问题:(1)本次调查的学生总人数为,表中x的值为;(2)该校共有500名学生,请你估计等级为B的学生人数;(3)本次调查中,等级为A的4人中有两名男生和两名女生,若从中随机抽取两人进行活动感想交流,请利用画树状图或列表的方法,求恰好抽到一名男生和一名女生的概率.参考答案1.A2.C3.D4.B5.D6.D7.B8.C9.1410.2511.1212.2313.0.7214.解:画树状图如下:由树状图可知,共有16种等可能的结果数,此时甲获胜的可能性有6种,乙获胜的可能性有10种故甲获胜的概率为616=38,乙获胜的概率为1016=58,而38<58所以游戏不公平.15.解:画树状图如下:由树状图知,共有9种等可能结果,其中两个数字之和是偶数的有4种结果∴P(两个数字之和是偶数)=49.16.解:解:(1)根据题意画出树状图如图:由树状图知,共有8种等可能结果,其中三个选手抽中同一演讲内容的有2种结果∴三个选手抽中同一演讲内容的概率为=;(2)三个选手有两人抽中内容“A”,一人抽中内容“B”的有3种结果∴三个选手有两人抽中内容“A”,一人抽中内容“B”的概率为.17.解:(1)树状图如图所示:(2)∵m,n都是方程x2﹣5x+6=0的解∴m=2,n=3,或m=3,n=2由树状图得:共有12个等可能的结果,m,n都是方程x2﹣5x+6=0的解的结果有(2,3)(3,2)(2,2)(3,3)共四种m,n都不是方程x2﹣5x+6=0的解的结果有2个小明获胜的概率为41123=,小利获胜的概率为21126=∴小明获胜的概率大.18.解:解:(1)本次调查的学生总人数为8÷16%=50(人)所以x==8%;故答案为:50;8%;(2)500×=200(人)所以估计等级为B的学生人数为200人;(3)画树状图为:共有12种等可能的结果,其中一名男生和一名女生的结果数为8 所以恰好抽到一名男生和一名女生的概率==.。
初中数学人教版九年级上册第二十五章 概率初步单元复习-章节测试习题(1)
章节测试题1.【题文】如图,假设可以随机在图中取点,(1)这个点取在阴影部分的概率是_______;(2)在保留原阴影部分情况下,请你重新设计图案(直接在图上涂阴影),使得这个点取在阴影部分的概率为.【答案】(1) ;(2)见解答,答案不唯一【分析】(1)用阴影部分的面积除以图形总面积即可;(1)使所设计图案阴影部分的面积占整个图案面积的即可.【解答】(1)1÷7=(2)如图所示(红色部分),答案不唯一2.【题文】游戏者同时转动如图的两个转盘进行“配紫色游戏”,若要使游戏者获胜的概率为,转盘B不动,转盘A应该如何设计?并写出解答过程说明理由.【答案】将转盘A平均分成10分,一份是蓝色,一份是红色,其他是绿色.说明理由见解答【分析】B转盘有2种情况,A转盘有3种情况,要想获胜的概率为,则应让转盘A 分成10份,使配成紫色的情况数有2种即可.【解答】将转盘A平均分成10分,一份是蓝色,一份是红色,其他是绿色.则共有20种,能配成紫色的情况有两种,∴P(配成紫色)=3.【题文】在不透明的袋子中装有5个红球和8个黄球,每个球除颜色外都相同.(1)从中任意摸出一个球,摸到球的可能性大.(2)如果再放入若干个黄球并摇匀,随机摸出一个球是红球的概率是,请问放入了多少个黄球?【答案】(1)黄;(2)2.【分析】(1)分别求出摸出各种颜色球的概率,即可比较出摸出何种颜色球的可能性大;(2)由红球所占的份数可求出总数目,进而可求出放入黄球的个数.【解答】(1)摸到红球的概率为=,摸到黄球的概率为:,所以摸到黄球的可能性大.故答案为:黄;(2)∵随机摸出一个球是红球的概率是,∴总的小球数=5÷=15(个),∴放入黄球的个数=15-13=2.4.【题文】学生甲与乙学习概率初步知识后设计了如下游戏:甲手中有6、8、10 三张扑克牌,乙手中有 5、8、9 三张扑克牌,每局比赛时,两人从各自手中随机取一张牌进行比较,数字大的则本局获胜.(1)若每人随机取出手中的一张牌进行比较,请列举出所有情况;(2)求学生乙一局比赛获胜的概率.【答案】(1)详见解答;(2).【分析】(1)根据题意可以写出所有的可能性;(2)根据(1)中的结果可以得到乙本局获胜的可能性,从而可以解答本题.【解答】解:(1)由题意可得,每人随机取出手中的一张牌进行比较的所有情况是:,,,,,,,,.(2)由()知共有9种等可能的情况,学生乙获胜的情况有:,,,所以学生乙一局比赛获胜的概率是:.故答案为:(1)见解答;(2).5.【题文】小王和小张利用如图所示的转盘做游戏,转盘的盘面被分为面积相等的4个扇形区域,且分别标有数字1,2,3,4.游戏规则如下:两人各转动转盘一次,分别记录指针停止时所对应的数字,如两次的数字都是奇数,则小王胜;如两次的数字都是偶数,则小张胜;如两次的数字是奇偶,则为平局.解答下列问题:(1)小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图的方法说明理由.【答案】(1);(2)该游戏公平.【分析】(1)根据概率公式直接计算即可;(2)画树状图得出所有等可能的情况数,找出两指针所指数字都是偶数或都是奇数的概率即可得知该游戏是否公平.【解答】解:(1)小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率= ;(2)该游戏公平.理由如下:画树状图为:共有16种等可能的结果数,其中两次的数字都是奇数的结果数为4,所以小王胜的概率= ;两次的数字都是偶数的结果数为4,所以小张胜的概率= ,因为小王胜的概率与小张胜的概率相等,所以该游戏公平.6.【题文】某商场有一个可以自由转动的圆形转盘(如图).规定:顾客购物100元以上可以获得一次转动转盘的机会,当转盘停止时,指针落在哪一个区域就获得相应的奖品(指针指向两个扇形的交线时,当作指向右边的扇形).下表是活动进行中的一组统计数据动转盘的次数n100 150 200 500 800 1000落在“铅笔”的次数m68 111 136 345 546 701落在“铅笔”的频率0.68 0.74 0.68 0.69 0.68 0.70(结果保留小数点后两位)(1)转动该转盘一次,获得铅笔的概率约为______;(结果保留小数点后一位)(2)铅笔每支0.5元,饮料每瓶3元,经统计该商场每天约有4000名顾客参加抽奖活动,请计算该商场每天大致需要支出的奖品费用;(3)在(2)的条件下,该商场想把每天支出的奖品费用控制在3000元左右,则转盘上“一瓶饮料”区域的圆心角应调整为______度.【答案】(1)0.7;(2)该商场每天大致需要支出的奖品费用为5000元;(3)36【分析】(1)利用频率估计概率求解;(2)利用(1)得到获得铅笔的概率为0.7和获得饮料的概率为0.3,然后计算4000×0.5×0.7+4000×3×0.3即可;(3)设转盘上“一瓶饮料”区域的圆心角应调整为n度,则4000×3×+4000×0.5(1-)=3000,然后解方程即可.【解答】(1)转动该转盘一次,获得铅笔的概率约为0.7;故答案为: 0.7(2)4000×0.5×0.7+4000×3×0.3=5000,所以该商场每天大致需要支出的奖品费用为5000元;(3)设转盘上“一瓶饮料”区域的圆心角应调整为n度,则4000×3×+4000×0.5(1-)=3000,解得n=36,所以转盘上“一瓶饮料”区域的圆心角应调整为36度.故答案为36.7.【答题】下列事件是必然事件的是()A. 乘坐公共汽车恰好有空座B. 同位角相等C. 打开手机就有未接电话D. 三角形内角和等于180°【答案】D【分析】本题考查了必然事件。
人教版 九年级数学 第25章 概率初步 综合复习(含答案)
人教版九年级数学第25章概率初步综合复习一、选择题(本大题共10道小题)1. 下列事件中,是必然事件的为()A.三点确定一个圆B.抛掷一枚骰子,朝上的一面点数恰好是5C.四边形有一个外接圆D.圆的切线垂直于过切点的半径2. 下列事件中随机事件的个数是()①投掷一枚硬币正面朝上;①明天太阳从东方升起;①五边形的内角和是560°;①购买一张彩票中奖.A.0 B.1 C.2 D.33. 用频率估计概率可以发现,抛掷一枚均匀的硬币,“正面朝上”的概率为0.5,是指()A.连续抛掷2次,结果一定是“正面朝上”和“反面朝上”各1次B.连续抛掷100次,结果一定是“正面朝上”和“反面朝上”各50次C.抛掷2n次,恰好有n次“正面朝上”D.抛掷n次,当n越来越大时,正面朝上的频率会越来越接近0.54. 下列说法正确的是()A.可能性很小的事件在一次试验中一定不会发生B.可能性很小的事件在一次试验中一定发生C.可能性很小的事件在一次试验中有可能发生D.不可能事件在一次试验中也可能发生5. 某路口交通信号灯的时间设置为红灯35秒,绿灯m秒,黄灯3秒,当车经过该路口时,遇到红灯的可能性最大,则m的值不可能是()A.3 B.15 C.30 D.406. 三名九年级同学坐在仅有的三个座位上,起身后重新就座,恰好有两名同学没有坐回原位的概率是 ( ) A.19B.16C.14D.127. 在-2,-1,0,1,2这五个数中任取两数m ,n ,则二次函数y =(x -m)2+n的图象的顶点在坐标轴上的概率为( ) A.25B.15C.14D.128. 如图显示了用计算机模拟随机投掷一枚图钉的某次试验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;①随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;①若再次用计算机模拟此试验,则当投掷次数为1000时,“钉尖向上”的频率一定是0.620.其中合理的是( ) A .① B .① C .①① D .①①9. 如图,①ABC是一块绿化带,将阴影部分修建为花圃,已知AB =13,AC =5,BC =12,阴影部分是①ABC 的内切圆.一只自由飞翔的小鸟随机落在这块绿化带上,则小鸟落在花圃上的概率为( )A.115πB.215πC.415πD.π510. 如图,在4×4的正方形网格中,阴影部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂上阴影,使阴影部分的图形仍然构成一个轴对称图形的概率是()A.613 B.5 13C.413 D.3 13二、填空题(本大题共7道小题)11. 写一个你喜欢的实数m的值:________,使得事件“对于二次函数y=12x2-(m-1)x+3,当x<-3时,y随x的增大而减小”成为随机事件.要使此事件成为随机事件,则抛物线的对称轴应位于直线x=-3的左侧.12. 有五张卡片(形状、大小、质地等均相同),正面分别画有下列图形:①线段;②正三角形;③平行四边形;④等腰梯形;⑤圆.将卡片背面朝上洗匀,从中任取一张,其正面图形既是轴对称图形,又是中心对称图形的概率是________.13. 从一个不透明的口袋中随机摸出一球,再放回袋中,不断重复上述过程,一共摸了150次,其中有50次摸到黑球,已知口袋中仅有黑球10个和白球若干个,这些球除颜色不同外,其他都一样,由此估计口袋中有________个白球.14.①①①①①①①①①①①①①①①3①①(①①①①①①)①①①2①①①①①1①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①________①15.①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①________①16. 有三张背面完全相同的数字牌,它们的正面分别印有数字“1”“2”“3”,将它们背面朝上,洗匀后随机从中抽取一张,记录下牌上的数字后并把牌放回,再重复这样的步骤两次,共得到三个数字a,b,c,则以a,b,c为边长正好构成等边三角形的概率是________.17. 某校欲从初三年级3名女生、2名男生中任取两名学生代表学校参加全市举办的“中国梦·青春梦”演讲比赛,则恰好选中一男一女的概率是________.三、解答题(本大题共4道小题)18. 某路口红绿灯的时间设置为红灯40秒,绿灯60秒,黄灯4秒.当人或车随意经过该路口时,遇到哪一种灯的可能性最大?遇到哪一种灯的可能性最小?根据是什么?19. 方案设计盒中装有红球、黄球共10个,每个球除颜色不同外其余都相同,每次从盒中摸出1个球,摸三次,不放回,请你按要求设计盒中红球的个数.(1)“摸出的3个球都是红球”是不可能事件;(2)“摸出红球”是必然事件;(3)“至少摸出2个黄球”是确定性事件;(4)“至少摸出2个黄球”是随机事件.20. 如图所示,有一个可以自由转动的转盘,其盘面被分为4等份,在每一等份分别标有对应的数字2,3,4,5.小明打算自由转动转盘10次,现已经转动了8次.每一次停止后,小明将指针所指数字记录如下:(1)求前8次的指针所指数字的平均数.(2)小明继续自由转动转盘2次,判断是否可能发生“这10次的指针所指数字的平均数不小于3.3,且不大于3.5”的结果?若有可能,计算发生此结果的概率,并写出计算过程;若不可能,说明理由.(指针指向盘面等分线时视为无效转次)21. 在一个不透明的布袋中,有2个红球,1个白球,这些球除颜色不同外其余都相同.(1)搅匀后从中任意摸出1个球,摸到红球的概率是________;(2)搅匀后先从中任意摸出1个球(不放回),再从余下的球中任意摸出1个球,求两次都摸到红球的概率.(用树状图或表格列出所有等可能出现的结果)人教版九年级数学第25章概率初步综合复习-答案一、选择题(本大题共10道小题)1. 【答案】D2. 【答案】C[解析] 掷一枚硬币正面朝上是随机事件;明天太阳从东方升起是必然事件;五边形的内角和是560°是不可能事件;购买一张彩票中奖是随机事件.所以随机事件有2个.3. 【答案】D4. 【答案】C5. 【答案】D[解析] 因为车遇到红灯的可能性最大,可知亮红灯的时间最长,故m <35.6. 【答案】D[解析] 利用列举法可知,三人全部的坐法有6种,其中恰好有两名同学没有坐回原位的情况有3种,因此恰好有两名同学没有坐回原位的概率是36=12. 故选D.7. 【答案】A[解析] 画树状图如下:由树状图可知,共有20种等可能的结果,其中取到0的结果有8种, 所以函数图象的顶点在坐标轴上的概率为820=25.8. 【答案】B9. 【答案】B[解析] 因为132=122+52,即AB2=BC2+AC2,所以①ABC 为直角三角形,所以①ABC 的内切圆半径=12×(12+5-13)=2. 所以S①ABC =12AC·BC =12×12×5=30,S 圆=4π. 所以小鸟落在花圃上的概率=S 圆S①ABC =4π30=215π. 故选B.10. 【答案】B[解析] 因为根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,共13种情况,而能构成一个轴对称图形的有下列5种情况:所以使图中阴影部分的图形仍然构成一个轴对称图形的概率是513.故选B.二、填空题(本大题共7道小题)11. 【答案】答案不唯一,如-4[解析] y =12x 2-(m -1)x +3,图象的对称轴为直线x =-b2a =m -1.∵事件“对于二次函数y =12x 2-(m -1)x +3,当x <-3时,y 随x 的增大而减小”是随机事件,∴m -1<-3,解得m <-2, ∴m 为小于-2的任意实数.12. 【答案】25 [解析] 五种图形中,既是中心对称图形,又是轴对称图形的有线段、圆2种,所以所求概率为25.13. 【答案】20[解析] 摸了150次,其中有50次摸到黑球,则摸到黑球的频率是50150=13.设口袋中有x 个白球,则10x +10=13, 解得x =20.经检验,x =20是原方程的解, 故答案为20.14. 【答案】49①①①①①①①①①①①①①①①①①①①9①①①①①①①①①①①①①①①①①①①4①①①①①①①①①①①①①①①P①m n ①49.15.【答案】13①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①26①13.16. 【答案】19 [解析] 画树状图如下:∵共有27种等可能的结果,能构成等边三角形的结果有3种,∴以a ,b ,c 为边长正好构成等边三角形的概率是327=19.17. 【答案】35 [解析] 解法1:列表如下:共有20种等可能的结果,其中恰好选中一男一女的结果有12种,所以恰好选中一男一女的概率P=1220=35.解法2:画树状图如下:共有20种等可能的结果,其中恰好选中一男一女的结果有12种,所以恰好选中一男一女的概率P=1220=35.三、解答题(本大题共4道小题)18. 【答案】解:当人或车随意经过该路口时,遇到绿灯的可能性最大,遇到黄灯的可能性最小.根据:绿灯持续的时间最长,黄灯持续的时间最短.19. 【答案】解:(1)2个或1个.(2)8个或9个.(3)9个或1个.(4)多于1个且小于9个.20. 【答案】解:(1)3+5+2+3+3+4+3+58=3.5.答:前8次的指针所指数字的平均数为3.5.(2)可能.若这10次的指针所指数字的平均数不小于3.3,且不大于3.5,则所指数字之和应不小于33,且不大于35.而前8次所指数字之和为28,所以最后2次所指数字之和应不小于5,且不大于7.第9次和第10次指针可能所指的数字如下表所示:一共有16种等可能的结果,其中指针所指数字之和不小于5,且不大于7的结果有9种,其概率为9 16.21. 【答案】解:(1)布袋中共有3个球,这些球除颜色外都相同,故能摸到红球的概率为2 3.(2)两个红球分别记为红1,红2,用表格列出所有可能出现的结果如下:由表格可知,一共有6种可能出现的结果,它们是等可能的,其中“两次都摸到红球”的结果有2种,所以P(两次都摸到红球)=26=13.。
第二十五章 概率初步 期末综合复习题 2022-2023学年陕西省各地九年级上学期人教版数学
第二十五章概率初步一、单选题1.(2022·陕西·紫阳县师训教研中心九年级期末)如图是44正方形网格,其中已有3个小方格涂成了灰色.现在要从其余13个白色小方格中任选出一个也涂成灰色,则使整个涂灰部分为轴对称图形的概率是()A.213B.313C.413D.5132.(2022·陕西宝鸡·九年级期末)某火车站的显示屏每间隔4分钟显示一次火车班次的信息,显示时间持续1分钟,某人到达该车站时,显示屏正好显示火车班次信息的概率是()A.12B.13C.14D.153.(2022·陕西安康·九年级期末)某校学生小明每天骑自行车上学时都要经过一个十字路口,设十字路口有红、黄、绿三色交通信号灯,他在路口遇到红灯的概率为13,遇到黄灯的概率为19,那么他遇到绿灯的概率为().A.19B.29C.49D.594.(2022·陕西渭南·九年级期末)如图,每个转盘被分成面积相等的几个扇形,同时转动两个转盘,两个转盘停止后,指针(如果落在分隔线上,则重新转动,直至转到其中一块区域)都不落在“1”区域的概率是()A.13B.23C.56D.165.(2022·陕西西安·九年级期末)陕西是中华文明和中华民族的发源地之一,周秦汉唐故里,旅游资源非常丰富,在今年“十一”期间,小康和小明两家准备从华山、华阳古镇,太白山三个著名景点中各选择一个景点旅游,他们通过抽签的方式确定景点,那么他们两家恰好能抽到同一景点的概率是( ) A .23B .12C .14D .136.(2022·陕西咸阳·九年级期末)笼子里关着一只小松鼠(如图).笼子主人决定把小松鼠放归大自然,将笼子所有的门都打开,松鼠要先过第一道门(A 或B ),再过第二道门(C ,D 或E )才能出去,则松鼠走出笼子的路线是“先经过A 门、再经过D 门”的概率为( )A .12B .13C .23D .167.(2022·陕西汉中·九年级期末)从1,2,3中任取一个数作为十位上的数字,从4,5中任取一个数作为个位上的数字,组成的两位数是偶数的概率为( ) A .12B .13C .14D .168.(2022·陕西·紫阳县师训教研中心九年级期末)如图,在33 的正方形网格中,每个小正方形的边长都为1,已有两个小正方形被涂黑,再将图中剩余的编号1~5的小正方形中任意一个涂黑,则所得图案是中心对称图形的概率是( )A .45B .35C .25D .159.(2022·陕西宝鸡·九年级期末)小明将贵州健康码打印在面积为216dm 的正方形纸上,如图所示为了估计图中健康码部分的面积,在纸内随机掷点,经过大量重复试验,发现点落入健康码部分的频率稳定在0.6左右,据此可以估计健康码部分的面积约为( )A .22.4dmB .24dmC .26.4dmD .29.6dm10.(2022·陕西咸阳·九年级期末)在一个不透明的口袋中,装有若干个红球和6个黄球,它们只有颜色不同,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球试验发现,摸到黄球的频率稳定在0.6,则估计口袋中大约有红球()A.24个B.10个C.9个D.4个二、填空题11.(2022·陕西安康·九年级期末)在一个不透明的袋子里装有红球、黄球共20个,这些球除颜色外都相同,小红通过多次试验发现,摸出红球的频率稳定在0.4左右,则袋子里黄球的个数最有可能是______.12.(2022·陕西西安·九年级期末)如图是康康的健康绿码示意图,用黑白打印机打印于边长为10cm的正方形区域内,为了估计图中黑色部分的总面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.65左右,据此可以估计黑色部分的总面积约为___cm2.13.(2022·陕西咸阳·九年级期末)在一个不透明的盒子中装有红、黑两种除颜色外完全相同的球,其中有a个黑球和10个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色后再放回盒子,通过大量重复试验后,发现摸到红球的频率稳定在0.4,则估计a的值为______.14.(2022·陕西汉中·九年级期末)在一个不透明的盒子中装有黑球和白球共500个,这些球除颜色外其余均相同,将球搅匀后任意摸出一个球,记下颜色后放回,通过大量重复摸球试验后,发现摸到白球的频率稳定在0.1,则盒子中白球有______个.15.(2022·陕西·紫阳县师训教研中心九年级期末)一个不透明的袋子里装有黑白两种颜色的球共60个,这些球除颜色外都相同.小贤从袋子中随机摸一个球,记下颜色后放回,不断重复,并绘制了如图所示的统计图,则这个袋中黑球的个数最有可能是______.16.(2022·陕西宝鸡·九年级期末)一个不透明的口袋中装有标号为1、2、3的三个小球,这些小球除标号外完全相同,随机摸出1个小球,然后把小球重新放回口袋并摇匀,再随机摸出1个小球,那么两次摸出小球上的数字之和是偶数的概率是___________.17.(2022·陕西渭南·九年级期末)在一个不透明的布袋中,蓝色,黑色,白色的玻璃球共有20个,除颜色外其他完全相同.将布袋中的球摇匀,从中随机摸出一个球,记下它的颜色再放回去,通过多次摸球试验后发现,摸到黑色、白色球的频率分别稳定在10%和35%,则口袋中蓝色球的个数很可能是_____.三、解答题18.(2022·陕西渭南·九年级期末)琳琳有4盒外包装完全相同的糖果,其中有2盒巧克力味的,1盒牛奶味的,1盒水果味的,她准备和好朋友分享糖果.(1)若琳琳随机打开1盒糖果,恰巧是牛奶味的概率是______;(2)若琳琳从这4盒中随机挑选两盒打开,请用列表或画树状图法打开的两盒都是巧克力味的概率.19.(2022·陕西·紫阳县师训教研中心九年级期末)在一个不透明的盒子里装有6个白色乒乓球,若干个黄色乒乓球,这些乒乓球除颜色外都相同,小希通过多次试验发现,摸出白色乒乓球的频率稳定在0.3左右,求盒子中黄色乒乓球可能有多少个?20.(2022·陕西安康·九年级期末)小叶和小瑜报名参加“十四运”志愿者活动,他们将被随机分配到羽毛球(A)、篮球(B)、射箭(C)、水球(D)四个项目中承担工作任务.(1)小叶被分配到水球(D)项目的概率为______;(2)请用画树状图或列表的方法,求出小叶和小瑜至少有一人被分配到射箭项目的概率.21.(2022·陕西西安·九年级期末)有两部大小一样但型号不同的手机A、B,现有6个手机壳,其中与手机A匹配的手机壳有2个,与手机B匹配的手机壳有3个,还有1个手机壳与两部手机都不匹配.(1)从6个手机壳中随机的取一个,求恰好与手机A匹配的概率;(2)随机取一部手机和一个手机壳,求恰好能匹配的概率(用树状图或列表法解答).22.(2022·陕西咸阳·九年级期末)寒冬战疫,西安常安,感谢每一位为这座城拼命的人!一个不透明的口袋里装有分别标有汉字“西”、“安”、“常”、“安”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.(1)若从中任取一球,球上的汉字刚好是“安”的概率为多少?(2)甲从中任取一球,不放回,再从中任取一球,请用画树状图或列表法,求出甲取出的两个球上的汉字恰能组成“西安”的概率。
新人教版九年级数学上《第25章概率初步》单元测试含答案解析
《第25章概率初步》一、选择题:1.同时掷两枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,下列事件中是不可能事件的是( )A.点数之和为12 B.点数之和小于3C.点数之和大于4且小于8 D.点数之和为132.下列说法正确的是( )A.可能性很小的事件在一次实验中一定不会发生B.可能性很小的事件在一次实验中一定发生C.可能性很小的事件在一次实验中有可能发生D.不可能事件在一次实验中也可能发生3.下列事件是确定事件的为( )A.太平洋中的水常年不干B.男生比女生高C.计算机随机产生的两位数是偶数D.星期天是晴天4.一只小鸟自由自在地在空中飞行,然后随意落在图中所示的某个方格中中央电视台“幸运 52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在2020标牌中,有6个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖,参与这个游戏的观众有三次翻牌机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是( )A.B.C.D.不能确定6.在一个不透明的袋子中装有2个红球,3个白球,它们除颜色外其余均相同,随机从中摸出一球,记录下颜色后将它放回袋子中,充分摇匀后,再随机摸出一球,则两次都摸到红球的概率是( ) A.B.C.D.7.下列说法正确的是( )A.一颗质地均匀的骰子已连续抛掷了2020次,其中,抛掷出5点的次数最少,则第2020次一定抛掷出5点B.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖C.天气预报说明天下雨的概率是50%,所以明天将有一半时间在下雨D.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等8.在今年的中考中,市区学生体育测试分成了三类,耐力类,速度类和力量类.其中必测项目为耐力类,抽测项目为:速度类有50米,100米,50米×2往返跑三项,力量类有原地掷实心球,立定跳远,引体向上(男)或仰卧起坐(女)三项.市中考领导小组要从速度类和力量类中各随机抽取一项进行测试,请问同时抽中50米×2往返跑、引体向上(男)或仰卧起坐(女)两项的概率是( ) A.B.C.D.9.元旦游园晚会上,有一个闯关活动:将2020小重量完全要样的乒乓球放入一个袋中,其中8个白色的,5个黄色的,5个绿色的,2个红色的.如果任意摸出一个乒乓球是红色,就可以过关,那么一次过关的概率为( )A.B.C.D.10.关于频率和概率的关系,下列说法正确的是( )A.频率等于概率;B.当实验次数很大时,频率稳定在概率附近;C.当实验次数很大时,概率稳定在频率附近;D.实验得到的频率与概率不可能相等二、填空题11.在一个不透明的箱子里放有除颜色外,其余都相同的4个小球,其中红球3个、白球1个,搅匀后,从中同时摸出2个小球,请你写出这个实验中的一个可能事件: .12.掷一枚均匀的骰子,2点向上的概率是,7点向上的概率是.13.设盒子中有8个小球,其中红球3个,黄球4个,蓝球1个,若从中随机地取出1个球,记事件A为“取出的是红球”,事件B为“取出的是黄球”,事件C为“取出的是蓝球”,则P(A)= ,P(B)= ,P(C)= .14.有大小、形状、颜色完全相同的5个乒乓球,每个球上分别标有数字1,2,3,4,5中的一个,将这5个球放入不透明的袋中搅匀,如果不放回的从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是.15.下面图形:四边形,三角形,正方形,梯形,平行四边形,圆,从中任取一个图形既是轴对称图形又是中心对称图形的概率为.16.从下面的6张牌中,任意抽取两张.求其点数和是奇数的概率为.17.在一个袋子中装有除颜色外其它均相同的2个红球和3个白球,从中任意摸出一个球,则摸到红球的概率是.18.在一个不透明的盒子中装有2个白球,n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则n= .三、解答题19.某出版社对其发行的杂志的质量进行了5次“读者调查问卷”,结果如下:被调查人数n 1001 1000 1004 1003 1000满意人数m 999 998 1002 1002 1000满意频率(1)计算表中各个频率;(2)读者对该杂志满意的概率约是多少?(3)从中你能说明频率与概率的关系吗?2020个布袋中放有红、黄、白三种颜色的球各一个,它们除颜色外其他都一样,小明从布袋中摸出一个球后放回去摇匀,再摸出一个球,请你利用画树状图法分析并求出小明两次都能摸到白球的概率.21.杨华与季红用5张同样规格的硬纸片做拼图游戏,正面如图1所示,背面完全一样,将它们背面朝上搅匀后,同时抽出两张.规则如下:当两张硬纸片上的图形可拼成电灯或小人时,杨华得1分;当两张硬纸片上的图形可拼成房子或小山时,季红得1分(如图2).问题:游戏规则对双方公平吗?请说明理由;若你认为不公平,如何修改游戏规则才能使游戏对双方公平?22.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸球的次数n 100 200 300 500 800 1000 3000摸到白球的次数m 65 124 178 302 481 599 1803摸到白球的频率0.65 0.62 0.593 0.604 0.601 0.599 0.601(1)请估计:当n很大时,摸到白球的频率将会接近;(精确到0.1)(2)假如你摸一次,你摸到白球的概率P(白球)= ;(3)试估算盒子里黑、白两种颜色的球各有多少只?《第25章概率初步》参考答案与试题解析一、选择题:1.同时掷两枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,下列事件中是不可能事件的是( )A.点数之和为12 B.点数之和小于3C.点数之和大于4且小于8 D.点数之和为13【考点】随机事件.【分析】找到一定不会发生的事件即可.【解答】解:A、6点+6点=12点,为随机事件,不符合题意;B、例如:1点+1点=2点,为随机事件,不符合题意;C、例如:1点+5点=6点,为随机事件,不符合题意;D、两枚骰子点数最大之和为12点,不可能是13点,为不可能事件,符合题意.故选:D.【点评】本题考查事件的分类,事件根据其发生的可能性大小分为必然事件、随机事件、不可能事件.不可能事件是指在一定条件下,一定不发生的事件.2.下列说法正确的是( )A.可能性很小的事件在一次实验中一定不会发生B.可能性很小的事件在一次实验中一定发生C.可能性很小的事件在一次实验中有可能发生D.不可能事件在一次实验中也可能发生【考点】可能性的大小.【分析】事件的可能性主要看事件的类型,事件的类型决定了可能性及可能性的大小.【解答】解:A、可能性很小的事件在一次实验中也会发生,故A错误;B、可能性很小的事件在一次实验中可能发生,也可能不发生,故B错误;C、可能性很小的事件在一次实验中有可能发生,故C正确;D、不可能事件在一次实验中更不可能发生,故D错误.故选:C.【点评】一般地必然事件的可能性大小为1,不可能事件发生的可能性大小为0,随机事件发生的可能性大小在0至1之间.注意可能性较小的事件也有可能发生;可能性很大的事也有可能不发生.3.下列事件是确定事件的为( )A.太平洋中的水常年不干B.男生比女生高C.计算机随机产生的两位数是偶数D.星期天是晴天【考点】随机事件.【分析】确定事件包括必然事件和不可能事件.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件.【解答】解:B,C,D都是不一定发生的事件,属于不确定事件.是确定事件的为:太平洋中的水常年不干.故选A.【点评】理解概念是解决这类基础题的主要方法.注意确定事件包括必然事件和不可能事件.4.一只小鸟自由自在地在空中飞行,然后随意落在图中所示的某个方格中(2020•汕头模拟)中央电视台“幸运 52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在2020标牌中,有6个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖,参与这个游戏的观众有三次翻牌机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是( )A.B.C.D.不能确定【考点】概率公式.【分析】先计算出此观众前两次翻牌均获得若干奖金后,现在还有多少个商标牌,其中有奖的有多少个,它们的比值即为所求.【解答】解:∵某观众前两次翻牌均获得若干奖金,即现在还有18个商标牌,其中有奖的有4个,∴他第三次翻牌获奖的概率是=.故选B.【点评】本题考查的是随机事件概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.6.在一个不透明的袋子中装有2个红球,3个白球,它们除颜色外其余均相同,随机从中摸出一球,记录下颜色后将它放回袋子中,充分摇匀后,再随机摸出一球,则两次都摸到红球的概率是( ) A.B.C.D.【考点】列表法与树状图法.【专题】压轴题.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率即可.【解答】红1 红2 白1 白2 白3 红1 红1红1 红1红2 红1白1 红1白2 红1白3红2 红2红1 红2红2 红2白1 红2白2 红2白3白1 白1红1 白1红2 白1白1 白1白2 白1白3白2 白2红1 白2红2 白2白1 白2白2 白2白3白3 白3红1 白3红2 白3白1 白3白2 白3白3解:由列表可知共有5×5=25种可能,两次都摸到红球的有4种,所以概率是.故选D.【点评】考查概率的概念和求法,用树状图或表格表达事件出现的可能性是求解概率的常用方法.用到的知识点为:概率=所求情况数与总情况数之比.7.下列说法正确的是( )A.一颗质地均匀的骰子已连续抛掷了2020次,其中,抛掷出5点的次数最少,则第2020次一定抛掷出5点B.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖C.天气预报说明天下雨的概率是50%,所以明天将有一半时间在下雨D.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等【考点】概率的意义.【专题】压轴题.【分析】概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.【解答】解:A、是随机事件,错误;B、中奖的概率是1%,买100张该种彩票不一定会中奖,错误;C、明天下雨的概率是50%,是说明天下雨的可能性是50%,而不是明天将有一半时间在下雨,错误;D、正确.故选D.【点评】正确理解概率的含义是解决本题的关键.注意随机事件的条件不同,发生的可能性也不等.8.在今年的中考中,市区学生体育测试分成了三类,耐力类,速度类和力量类.其中必测项目为耐力类,抽测项目为:速度类有50米,100米,50米×2往返跑三项,力量类有原地掷实心球,立定跳远,引体向上(男)或仰卧起坐(女)三项.市中考领导小组要从速度类和力量类中各随机抽取一项进行测试,请问同时抽中50米×2往返跑、引体向上(男)或仰卧起坐(女)两项的概率是( ) A.B.C.D.【考点】概率公式.【专题】压轴题.【分析】依据题意找到所有等可能的出现结果,然后根据概率公式求出该事件的概率.【解答】解:共有3×3=9种可能,同时抽中50米×2往返跑、引体向上(男)或仰卧起坐(女)两项的有1种,所以概率是.故选D.【点评】用到的知识点为:概率=所求情况数与总情况数之比.9.元旦游园晚会上,有一个闯关活动:将2020小重量完全要样的乒乓球放入一个袋中,其中8个白色的,5个黄色的,5个绿色的,2个红色的.如果任意摸出一个乒乓球是红色,就可以过关,那么一次过关的概率为( )A.B.C.D.【考点】概率公式.【专题】应用题.【分析】让红球的个数除以球的总个数即为所求的概率.【解答】解:全部2020,只有2个红球,所以任意摸出一个乒乓球是红色的概率是=.故选D.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A 出现m种结果,那么事件A的概率P(A)=.10.关于频率和概率的关系,下列说法正确的是( )A.频率等于概率;B.当实验次数很大时,频率稳定在概率附近;C.当实验次数很大时,概率稳定在频率附近;D.实验得到的频率与概率不可能相等【考点】利用频率估计概率.【分析】大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果.【解答】解:A、频率只能估计概率;B、正确;C、概率是定值;D、可以相同,如“抛硬币实验”,可得到正面向上的频率为0.5,与概率相同.故选B.【点评】考查利用频率估计概率,大量反复试验下频率稳定值即概率.二、填空题11.在一个不透明的箱子里放有除颜色外,其余都相同的4个小球,其中红球3个、白球1个,搅匀后,从中同时摸出2个小球,请你写出这个实验中的一个可能事件: 摸到1个红球,1个白球.【考点】随机事件.【专题】开放型.【分析】填写一个有可能发生,也可能不发生的事件即可.【解答】解:摸到1个红球,1个白球或摸到2个红球.【点评】可能事件就是可能发生,也可能不发生的事件.12.掷一枚均匀的骰子,2点向上的概率是,7点向上的概率是0 .【考点】概率公式.【分析】由掷一枚均匀的骰子有6种等可能的结果,其中2点向上的有1种情况,7点向上的有0种情况,直接利用概率公式求解即可求得答案.【解答】解:∵掷一枚均匀的骰子有6种等可能的结果,其中2点向上的有1种情况,7点向上的有0种情况,∴2点向上的概率是:,7点向上的概率是:0.故答案为:,0.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.13.设盒子中有8个小球,其中红球3个,黄球4个,蓝球1个,若从中随机地取出1个球,记事件A为“取出的是红球”,事件B为“取出的是黄球”,事件C为“取出的是蓝球”,则P(A)= ,P(B)= ,P(C)= .【考点】概率公式.【分析】分别用所求的情况与总情况的比值即可得答案.【解答】解:∵盒子中有8个小球,其中红球3个,黄球4个,蓝球1个,∴若从中随机地取出1个球,则P(A)=,P(B)==,P(C)=.故答案为:,,.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A 出现m种结果,那么事件A的概率P(A)=.14.有大小、形状、颜色完全相同的5个乒乓球,每个球上分别标有数字1,2,3,4,5中的一个,将这5个球放入不透明的袋中搅匀,如果不放回的从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是.【考点】列表法与树状图法.【分析】列举出所有情况,看所求的情况占总情况的多少即可.【解答】解:列表得:(1,5) (2,5) (3,5) (4,5) ﹣(1,4) (2,4) (3,4) ﹣ (5,4)(1,3) (2,3) ﹣ (4,3) (5,3)(1,2) ﹣ (3,2) (4,2) (5,2)﹣ (2,1) (3,1) (4,1) (5,1)∴一共有2020况,这两个球上的数字之和为偶数的8种情况,∴这两个球上的数字之和为偶数的概率是=.【点评】列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.15.下面图形:四边形,三角形,正方形,梯形,平行四边形,圆,从中任取一个图形既是轴对称图形又是中心对称图形的概率为.【考点】概率公式;轴对称图形;中心对称图形.【分析】四边形,三角形,正方形,梯形,平行四边形,圆中任取一个图形共有6个结果,且每个结果出现的机会相同,其中既是轴对称图形又是中心对称图形的正方形和圆两个.【解答】解:∵在四边形,三角形,正方形,梯形,平行四边形,圆6个图形中,既是轴对称图形又是中心对称图形的正方形和圆两个.∴从中任取一个图形既是轴对称图形又是中心对称图形的概率为.【点评】正确认识轴对称图形和中心对称图形以及理解列举法求概率是解题的关键.用到的知识点为:概率=所求情况数与总情况数之比.16.从下面的6张牌中,任意抽取两张.求其点数和是奇数的概率为.【考点】概率公式.【分析】一个奇数和一个偶数得和是奇数,6张牌中,任意抽取两张总共有6×5=30种情况,计算出和是奇数的情况个数,利用概率公式进行计算.【解答】解:一个奇数和一个偶数总共有2×2×4=16种情况,故点数和是奇数的概率为.【点评】如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.17.在一个袋子中装有除颜色外其它均相同的2个红球和3个白球,从中任意摸出一个球,则摸到红球的概率是.【考点】概率公式.【分析】让红球的个数除以球的总数即为摸到红球的概率.【解答】解:∵袋子中共有2+3=5个球,2个红球,∴从中任意摸出一个球,则摸到红球的概率是.故答案为:.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A 出现m种结果,那么事件A的概率P(A)=.18.在一个不透明的盒子中装有2个白球,n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则n= 1 .【考点】概率公式.【专题】压轴题.【分析】根据白球的概率公式列出关于n的方程,求出n的值即可.【解答】解:由题意知:,解得n=1.【点评】用到的知识点为:概率=所求情况数与总情况数之比.三、解答题19.某出版社对其发行的杂志的质量进行了5次“读者调查问卷”,结果如下:被调查人数n 1001 1000 1004 1003 1000满意人数m 999 998 1002 1002 1000满意频率0.998 0.998 0.998 0.999 1.000(1)计算表中各个频率;(2)读者对该杂志满意的概率约是多少?(3)从中你能说明频率与概率的关系吗?【考点】利用频率估计概率.【分析】(1)概率就是满意的人数与被调查的人数的比值;(2)根据题目中满意的频率估计出概率即可;(3)从概率与频率的定义分析得出即可.【解答】解:(1)由表格数据可得:≈0.998, =0.998,≈0.998,≈0.999, =1.000;(2)由第(1)题的结果知出版社5次“读者问卷调查”中,收到的反馈信息是:读者对杂志满意的概率约是:P(A)=0.998;(3)频率在一定程度上反映了事件发生的可能性大小.尽管每进行一连串(n次)试验,所得到的频率可以各不相同,但只要 n相当大,频率与概率是会非常接近的.因此,概率是可以通过频率来“测量”的,频率是概率的一个近似.概率是频率稳定性的依据,是随机事件规律的一个体现.实际中,当概率不易求出时,人们常通过作大量试验,用事件出现的频率去近似概率.【点评】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.2020个布袋中放有红、黄、白三种颜色的球各一个,它们除颜色外其他都一样,小明从布袋中摸出一个球后放回去摇匀,再摸出一个球,请你利用画树状图法分析并求出小明两次都能摸到白球的概率.【考点】列表法与树状图法.【分析】依据题意先用画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.【解答】解:画树形图如下:由图可知,两次摸球可能出现的结果共有9种,而出现(白,白)的结果只有一种,因此,小明两次摸球都摸到白球的概率为P=.【点评】画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.21.(2020•南通)杨华与季红用5张同样规格的硬纸片做拼图游戏,正面如图1所示,背面完全一样,将它们背面朝上搅匀后,同时抽出两张.规则如下:当两张硬纸片上的图形可拼成电灯或小人时,杨华得1分;当两张硬纸片上的图形可拼成房子或小山时,季红得1分(如图2).问题:游戏规则对双方公平吗?请说明理由;若你认为不公平,如何修改游戏规则才能使游戏对双方公平?【考点】游戏公平性.【分析】游戏是否公平,关键要看是否游戏双方赢的机会是否相等,即判断双方取胜的概率是否相等,或转化为在总情况明确的情况下,判断双方取胜所包含的情况数目是否相等.【解答】解:(1)这个游戏对双方不公平.∵P(拼成电灯)=;P(拼成小人)=;P(拼成房子)=;P=,(拼成小山)∴杨华平均每次得分为(分);季红平均每次得分为(分).∵<,∴游戏对双方不公平.(2)改为:当拼成的图形是小人时杨华得3分,其余规则不变,就能使游戏对双方公平.(答案不惟一,其他规则可参照给分)【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.22.(2020•贵阳)在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸球的次数n 100 200 300 500 800 1000 3000摸到白球的次数m 65 124 178 302 481 599 1803摸到白球的频率0.65 0.62 0.593 0.604 0.601 0.599 0.601(1)请估计:当n很大时,摸到白球的频率将会接近0.6 ;(精确到0.1)(2)假如你摸一次,你摸到白球的概率P(白球)= 0.6 ;(3)试估算盒子里黑、白两种颜色的球各有多少只?【考点】利用频率估计概率.【专题】图表型.【分析】(1)计算出其平均值即可;(2)概率接近于(1)得到的频率;(3)白球个数=球的总数×得到的白球的概率,让球的总数减去白球的个数即为黑球的个数.【解答】解:(1)∵摸到白球的频率为0.6,∴当n很大时,摸到白球的频率将会接近0.6.(2)∵摸到白球的频率为0.6,∴假如你摸一次,你摸到白球的概率P(白球)=0.6.(3)盒子里黑、白两种颜色的球各有40﹣24=16,40×0.6=24.【点评】本题比较容易,考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:部分的具体数目=总体数目×相应频率.。
人教新版九年级数学上学期 期末单元复习 第25章 概率初步 含答案
第25章概率初步一.选择题(共11小题)1.若气象部门预报明天下雨的概率是65%,下列说法正确的是()A.明天一定会下雨B.明天一定不会下雨C.明天下雨的可能性较大D.明天下雨的可能性较小2.下列事件中,是不可能事件的是()A.购买一张彩票,中奖B.射击运动员射击一次,命中靶心C.经过有交通信号灯的路口,遇到红灯D.从装有5个黑球的袋子中摸出白球3.下列成语表示随机事件的是()A.水中捞月B.水滴石穿C.守株待兔D.瓮中捉鳖4.掷一枚质地均匀的标有1,2,3,4,5,6六个数字的立方体骰子,骰子停止后,出现可能性最大的是()A.大于4的点数B.小于4的点数C.大于5的点数D.小于5的点数5.在70周年国庆阅兵式上有两辆阅兵车的车牌号如图所示(每辆阅兵车的车牌号含7位数字或字母),则“9”这个数字在这两辆车牌号中出现的概率为()A.B.C.D.6.一个不透明的袋子里装有两双只有颜色不同的手套,小明已经摸出一只手套,他再任意摸取一只,恰好两只手套凑成同一双的概率为()A.B.C.D.17.甲、乙两人分别投掷一枚质地均匀的正方体骰子,规定掷出的两个骰子“和为奇数”算甲赢,否则算乙赢,这个游戏对甲乙双方()A.公平B.对甲有利C.对乙有利D.无法确定8.一只昆虫在如图所示的树枝上寻觅食物,假定昆虫在每个岔路口都会随机选择一条路径,则它获取食物的概率是()A.B.C.D.9.盒子中有白色乒乓球和黄色乒乓球若干个,某同学进行了如下实验:每次摸出一个乒乓球记下它的颜色再放回,如此重复360次,摸出白色乒乓球90次,由此估计摸白色乒乓球的概率为()A.B.C.D.10.如图是某小组做用频率估计概率“的实验时,绘出的某一结果出现的频率折线图,则符合这一结果的实验可能是()A.抛一枚硬币,出现正面朝上B.从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球C.一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃D.掷一枚均匀的正六面体骰子,出现3点朝上11.做“抛掷一枚质地均匀的硬币试验”,在大量重复试验中,对于事件“正面朝上”的频率和概率,下列说法正确的是()A.概率等于频率B.频率等于C.概率是随机的D.频率会在某一个常数附近摆动二.填空题(共4小题)12.同时抛掷3枚均匀的硬币,则3枚硬币落地后,都是正面朝上的概率是.13.从﹣1,1,2这三个数中随机抽取两个数分别记为x,y,把点M的坐标记为(x,y),若点N为(3,0),则在平面直角坐标系内直线MN经过第二象限的概率为.14.在一个不透明的袋子中共装有白球、红球和蓝球200个,这些球除颜色外都相同.小明每次从中任意摸出一个球,记下颜色后将球放回并搅匀,通过多次重复试验,算得摸到红球的频率是25%,则估计这只袋子中有红球个.15.在一个不透明的袋子中装有20个蓝色小球、若干个红色小球和10个黄色小球,这些球除颜色不同外其余均相同,小李通过多次摸取小球试验后发现,摸取到红色小球的频率稳定在0.4左右,若小明在袋子中随机摸取一个小球,则摸到黄色小球的概率为.三.解答题(共3小题)16.某路口南北方向红绿灯的设置时间为:红灯40s、绿灯60s、黄灯3s.司机A随机地由南往北开车到达该路口,问:(1)他遇到红灯的概率大还是遇到绿灯的概率大?(2)他遇到绿灯的概率是多少?17.车辆经过润扬大桥收费站时,有A、B、C、D四个收费通道,假设车辆通过每个收费通道的可能性相同,车辆可随机选择一个通过.(1)一辆车经过此收费站时,A通道通过的概率为;(2)两辆车经过此收费站时,用树状图或列表法求选择不同通道通过的概率.18.为了准备体育艺术节的比赛,某篮球运动员在进行定点罚球训练,如表是部分训练记录:(1)根据上表:估计该运动员罚球命中的概率是;(2)根据上表分析,如果该运动员在一次比赛中共获得10次罚球机会(每次罚球投掷2次,每命中一次得1分),估计他罚球能得多少分,请说明理由.参考答案与试题解析一.选择题(共11小题)1.若气象部门预报明天下雨的概率是65%,下列说法正确的是()A.明天一定会下雨B.明天一定不会下雨C.明天下雨的可能性较大D.明天下雨的可能性较小【分析】根据概率的意义找到正确选项即可.【解答】解:气象部门预报明天下雨的概率是65%,说明明天下雨的可能性比较大.所以只有C合题意.故选:C.2.下列事件中,是不可能事件的是()A.购买一张彩票,中奖B.射击运动员射击一次,命中靶心C.经过有交通信号灯的路口,遇到红灯D.从装有5个黑球的袋子中摸出白球【分析】根据必然事件、不可能事件、随机事件的概念进行解答即可.【解答】解:A、购买一张彩票,中奖,是随机事件,不合题意;B、射击运动员射击一次,命中靶心,是随机事件,不合题意;C、经过有交通信号灯的路口,遇到红灯,是随机事件,不合题意;D、从装有5个黑球的袋子中摸出白球,是不可能事件,符合题意.故选:D.3.下列成语表示随机事件的是()A.水中捞月B.水滴石穿C.守株待兔D.瓮中捉鳖【分析】根据必然事件、不可能事件、随机事件的概念进行解答即可.【解答】解:A、水中捞月是不可能事件,故选项A不符合题意;B、水滴石穿是必然事件,故选项B不符合题意;C、守株待兔是随机事件,故选项C符合题意;D、瓮中捉鳖是必然事件,故选项D不符合题意;故选:C.4.掷一枚质地均匀的标有1,2,3,4,5,6六个数字的立方体骰子,骰子停止后,出现可能性最大的是()A.大于4的点数B.小于4的点数C.大于5的点数D.小于5的点数【分析】求出各个选项概率即可判断【解答】解:A、P1==;B、P2==;C、P3=;D、P4==.骰子停止运动后出现点数可能性大的是出现小于5的点.故选:D.5.在70周年国庆阅兵式上有两辆阅兵车的车牌号如图所示(每辆阅兵车的车牌号含7位数字或字母),则“9”这个数字在这两辆车牌号中出现的概率为()A.B.C.D.【分析】由在这两辆车牌中,共有14个字符,其中数字9出现3次,再根据概率公式计算可得.【解答】解:在这两辆车牌中,共有14个字符,其中数字9出现3次,∴“9”这个数字在这两辆车牌号中出现的概率为,故选:B.6.一个不透明的袋子里装有两双只有颜色不同的手套,小明已经摸出一只手套,他再任意摸取一只,恰好两只手套凑成同一双的概率为()A.B.C.D.1【分析】列举出所有情况,让恰好是一双的情况数除以总情况数即为所求的概率.【解答】解:设两双只有颜色不同的手套的颜色为红和绿,列表得:∵一共有12种等可能的情况,恰好是一双的有4种情况,∴恰好是一双的概率=.故选:B.7.甲、乙两人分别投掷一枚质地均匀的正方体骰子,规定掷出的两个骰子“和为奇数”算甲赢,否则算乙赢,这个游戏对甲乙双方()A.公平B.对甲有利C.对乙有利D.无法确定【分析】列表得出所有等可能结果,根据概率公式计算出甲乙获胜的概率,再比较大小即可得.【解答】解:列表如下由表可知,共有36种等可能结果,其中和为奇数的有18种,和为偶数的有18种结果,∴甲获胜的概率为=,乙获胜的概率为=,故这个游戏对甲乙双方是公平的,故选:A.8.一只昆虫在如图所示的树枝上寻觅食物,假定昆虫在每个岔路口都会随机选择一条路径,则它获取食物的概率是()A.B.C.D.【分析】根据树形图即可求概率.【解答】解:根据树形图,可知蚂蚁可选择食物的主干路径有3条,即有三种等可能的结果,有食物的有两条.第一次选择有3种情况,然后其中有2种情况的每一种情况中有2种,所以是+=所以它获取食物的概率.故选:B.9.盒子中有白色乒乓球和黄色乒乓球若干个,某同学进行了如下实验:每次摸出一个乒乓球记下它的颜色再放回,如此重复360次,摸出白色乒乓球90次,由此估计摸白色乒乓球的概率为()A.B.C.D.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,利用概率公式解答即可.【解答】解:估计摸白色乒乓球的概率为,故选:A.10.如图是某小组做用频率估计概率“的实验时,绘出的某一结果出现的频率折线图,则符合这一结果的实验可能是()A.抛一枚硬币,出现正面朝上B.从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球C.一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃D.掷一枚均匀的正六面体骰子,出现3点朝上【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的频率,约为0.33者即为正确答案.【解答】解:A、抛一枚硬币,出现正面朝上的频率是=0.5,故本选项错误;B、从一个装有2个红球和1个黑球的袋子中任取一球,取到的是黑球的概率是≈0.33,故本选项正确;C、一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率是=0.25,故本选项错误;D、掷一个正六面体的骰子,出现3点朝上的频率约为:≈0.17,故本选项错误;故选:B.11.做“抛掷一枚质地均匀的硬币试验”,在大量重复试验中,对于事件“正面朝上”的频率和概率,下列说法正确的是()A.概率等于频率B.频率等于C.概率是随机的D.频率会在某一个常数附近摆动【分析】大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果.【解答】解:A、频率只能估计概率,故此选项错误;B、概率等于,故此选项错误;C、频率是随机的,随实验而变化,但概率是唯一确定的一个值,故此选项错误;D、当实验次数很大时,频率稳定在概率附近,故此选项正确.故选:D.二.填空题(共4小题)12.同时抛掷3枚均匀的硬币,则3枚硬币落地后,都是正面朝上的概率是.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与三次落地后都是正面朝上的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有8种等可能的结果,三次落地后都是正面朝上的只有1种情况,∴三次落地后都是正面朝上的概率=,故答案为:.13.从﹣1,1,2这三个数中随机抽取两个数分别记为x,y,把点M的坐标记为(x,y),若点N为(3,0),则在平面直角坐标系内直线MN经过第二象限的概率为.【分析】根据题意画出树状图得出所有点M的坐标,再根据N点的坐标和直线MN经过第二象限,得出符合条件M的坐标,然后根据概率公式即可得出答案.【解答】解:根据题意画图如下:得到点M的坐标分别是(﹣1,1)(﹣1,2)(1,﹣1)(1,2)(2,﹣1)(2,1),∵点N为(3,0),∴直线MN经过第二象限时,点M的坐标有(﹣1,1)(﹣1,2)(1,2)(2,1),共4种情况数,∴在平面直角坐标系内直线MN经过第二象限的概率为=;故答案为:.14.在一个不透明的袋子中共装有白球、红球和蓝球200个,这些球除颜色外都相同.小明每次从中任意摸出一个球,记下颜色后将球放回并搅匀,通过多次重复试验,算得摸到红球的频率是25%,则估计这只袋子中有红球50 个.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【解答】解:设袋中有x个红球.由题意可得:=25%,解得:x=50,故答案为:50.15.在一个不透明的袋子中装有20个蓝色小球、若干个红色小球和10个黄色小球,这些球除颜色不同外其余均相同,小李通过多次摸取小球试验后发现,摸取到红色小球的频率稳定在0.4左右,若小明在袋子中随机摸取一个小球,则摸到黄色小球的概率为.【分析】设袋子中红色小球有x个,根据摸取到红色小球的频率稳定在0.4左右列出关于x的分式方程,解之求得x的值即可得出红色小球的个数,再利用概率公式计算可得.【解答】解:设袋子中红色小球有x个,根据题意,得:=0.4,解得x=20,经检验x=20是分式方程的解,则在袋子中随机摸取一个小球,摸到黄色小球的概率=,故答案为:.三.解答题(共3小题)16.某路口南北方向红绿灯的设置时间为:红灯40s、绿灯60s、黄灯3s.司机A随机地由南往北开车到达该路口,问:(1)他遇到红灯的概率大还是遇到绿灯的概率大?(2)他遇到绿灯的概率是多少?【分析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.【解答】解:(1)∵红灯40s、绿灯60s、黄灯3s.∴他遇到绿灯的概率大;(2)遇到绿灯的概率=,故遇到绿灯的概率是.17.车辆经过润扬大桥收费站时,有A、B、C、D四个收费通道,假设车辆通过每个收费通道的可能性相同,车辆可随机选择一个通过.(1)一辆车经过此收费站时,A通道通过的概率为;(2)两辆车经过此收费站时,用树状图或列表法求选择不同通道通过的概率.【分析】(1)根据概率公式即可得到结论;(2)画出树状图即可得到结论.【解答】解:(1)选择A通道通过的概率=,故答案为:,(2)设两辆车为甲,乙,画树状图得:由树状图可知:两辆车经过此收费站时,会有16种可能的结果,其中选择不同通道通过的有12种结果,∴选择不同通道通过的概率==.18.为了准备体育艺术节的比赛,某篮球运动员在进行定点罚球训练,如表是部分训练记录:(1)根据上表:估计该运动员罚球命中的概率是0.8 ;(2)根据上表分析,如果该运动员在一次比赛中共获得10次罚球机会(每次罚球投掷2次,每命中一次得1分),估计他罚球能得多少分,请说明理由.【分析】(1)直接由表格数据可估计该运动员罚球命中的概率;(2)根据(1)可知运动员罚球命中的概率,由题意可知20次罚球得分多少.【解答】解:(1)根据表格数据可知该运动员罚球命中的概率0.8,故答案为0.8;(2)由题意可知,罚球一次命中概率为0.8,则罚球10次得分为10×2×0.8=16,∴估计他能得16分.。
人教版九年级上册数学第二十五章 概率的初步(含答案 )
第二十五章概率的初步一、单选题1.下列事件为必然事件的是()A.抛一枚硬币,正面朝上B.打开电视,正在播放动画片C.3个人分成两组,每组至少1人,一定有2个人分在同一组D.随意掷两个均匀的骰子,上面的点数之和为62.不透明的袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出3个球,下列事件是不可能事件的是()A.3个球都是黑球B.3个球都是白球C.三个球中有黑球D.3个球中有白球3.下列说法正确的是()A.367人中至少有2人生日相同B.任意掷一枚均匀的骰子,掷出的点数是偶数的概率是1 3C.天气预报说明天的降水概率为90%,则明天一定会下雨D.某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖4.一个不透明的袋中,装有2个黄球、3个红球和5个白球,它们除颜色外都相同.从袋中任意摸出一个球,是白球的概率是()A.12B.13C.310D.155.下列事件是随机事件的为 ( )A.一个图形旋转后所得的图形与原来的图形不全等B.元旦是晴天C.y=(a²+1)x²+bx+c(a,b,c是常数)是二次函数D.在圆中任意画一个圆内接四边形,对角互补6.“我的梦,中国梦”这句话六个字中,“梦”字出现的频率是()A.12B.13C.14D.167.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于5的概率为( )A.15B.14C.13D.128.如图,有四张不透明的卡片除正面的算式不同外,其余完全相同,将它们背面朝上洗匀后,从中随机抽取一张,则抽到得卡片上算式正确的概率是()A.12B.34C.14D.19.掷一枚质地均匀的骰子,骰子停止后,出现可能性大的是()A.大于的点数B.小于的点数C.大于的点数D.小于的点数10.下面四个实验中,实验结果概率最小的是( )A.如(1)图,在一次实验中,老师共做了400次掷图钉游戏,并记录了游戏的结果绘制了下面的折线统计图,估计出的钉尖朝上的概率B.如(2)图,是一个可以自由转动的转盘,任意转动转盘,当转盘停止时,指针落在蓝色区域的概率C.如(3)图,有一个小球在的地板上自由滚动,地板上的每个格都是边长为1的正方形,则小球在地板上最终停留在黑色区域的概率D.有7张卡片,分别标有数字1,2,3,4,6,8,9,将它们背面朝上洗匀后,从中随机抽出一张,抽出标有数字“大于6”的卡片的概率11.把一个球任意投人A、B、C、D四个盒子内,则A号盒子无球的概率是()A.1B.C.D.12.小鸡孵化场孵化出只小鸡,在只上做记号,再放入鸡群中让其充分跑散,再任意抓出只,其中左右记号的大约是()A.只B.只C.只D.只二、填空题13.一个不透明的布袋中只装有红球和白球两种球,它们除颜色外其余均相同.若白球有9个,摸到白球的概率为0.75,则红球的个数是_____.14.从﹣3,﹣l,π,0,3这五个数中随机抽取一个数,恰好是负数的概率是____________. 15.如图,第(1)个图有1个黑球;第(2)个图为3个同样大小球叠成的图形,最下一层的2个球为黑色,其余为白色;第(3)个图为6个同样大小球叠成的图形,最下一层的3个球为黑色,其余为白色;;则从第(n)个图中随机取出一个球,是黑球的概率是____________.16.在一次摸球实验中,摸球箱内放有白色、黄色乒乓球共50个,这两种乒乓球的大小、材质都相同.小明发现,摸到白色乒乓球的频率稳定在60%左右,则箱内黄色乒乓球的个数很可能是________.三、解答题17.如图,现有一个可以自由转动的转盘,盘面被平均分成6等份,分别标有2,3,4,5,6,7这六个数字.转动转盘,当转盘停止时,指针指向区域所标示的数字即为转出的数字(若指针落在相邻两扇形交界处,重新转动转盘).(1)转出数字10是________(填“随机事件”“必然事件”“不可能事件”中的一个);(2)转出的数字大于3的概率是_________;(3)现有两张分别写有3和4的卡片,随机转动转盘,转盘停止后记下转出的数字,该数字与两张卡片上的数字分别作为三条线段的长度.①这三条线段以有构成三角形的概率是___________;②这三条线段能构成等腰三角形的概率是_____________.18.丹尼斯超市举行有奖促销活动:顾客凡一次性购买满300元者即可获得一次摇奖机会.摇奖机是一个圆形转盘,被等分成16个扇形,如果转盘停止后,指针正好对准红黄或蓝色区域,顾客就可以分别获得一、二、三等奖奖金依次为60元、50元、40元一次性购物满300元者,如果不摇奖可返还奖金15元.(1)摇奖一次,获一等奖、二等奖、三等奖的概率分别是多少?(2)小李一次性购物满300元他是参与摇奖划算,还是领15元现金划算?请你帮他算算19.某校随机选取了1000名学生,对他们喜欢的运动项目进行调查,整理成以下统计表,其中“√”表示喜欢,“×”表示不喜欢.项目长跑短跑跳绳跳远学生数200 √×√√300 ×√×√150 √√√×200 √×√×150 √×××(1)估计该校学生同时喜欢短跑和跳绳的概率;(2)估计该校学生在长跑、短跑、跳绳、跳远中同时喜欢三个项目的概率;20.一个不透明的口袋中有4个大小、质地完全相同的乒乓球,球面上分别标有数-1,2,-3,4.(1)摇匀后任意摸出1个球,则摸出的乒乓球球面上的数是负数的概率为________.(2)摇匀后先从中任意摸出1个球(不放回),再从余下的3个球中任意摸出1个球,用列表或画树状图的方法求两次摸出的乒乓球球面上的数之和是正数的概率.21.阳春三月,龙泉驿区的桃花又开了,小明乘坐地铁到龙泉看桃花,计划在龙平路地铁口下车,如图是龙平路地铁口的平面图,其有A、B、C、D四个出入口,小明任选一个出口下车出站,赏花结束后,任选一个入口入站乘车.(1)小明从出站到入站共有多少种可能的结果?请用树形图或列表说明;(2)求出小明从龙平路同一侧出入站的概率答案1.C 2.B3.A 4.A 5.B 6.B 7.C 8.A 9.D 10.C 11.C 12.A 13.314.2 515.16.2017.解:(1)转到数字10是不可能事件,故答案为:不可能事件;(2)转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能结果,大于3的结果有4种,∴转出的数字大于3的概率是42 = 63故答案为:23;(3)①转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能结果,能够成三角形的结果有5种,∴这三条线段能构成三角形的概率是56;②转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能结果,能够成等腰三角形的结果有2种,∴这三条线段能构成等腰三角形的概率是21=63.18.(1)整个圆周被分成了16份,红色为1份,黄色为2份,蓝色为4份,所以获得-等奖的概率为116,二等奖概率为2=1618,三等奖概率为416=14.(2)转转盘:118160504020146⨯+⨯+⨯=(元),20元15>元,∴转转盘划算.19.(1)同时喜欢短跑和跳绳的概率为:1503 100020=;(2)同时喜欢三个项目的概率为:2001507 100020+=.20.(1)摇匀后任意摸出1个球,则摸出的乒乓球球面上的数是负数的概率21 42 ==;故答案为12;(2)画树状图为:共有12种等可能的结果数,其中两次摸出的乒乓球球面上的数之和是正数的结果数为8,所以两次摸出的乒乓球球面上的数之和是正数的概率82 123 ==.21.解:(1)画树状图如下:小明从出站到入站共有16种可能的结果.(2)∵小明从龙平路同一侧出入站的有8种等可能结果, ∴小明从龙平路同一侧出入站的概率为.。
初中数学 人教版九年级上册 第25章《概率初步》单元测试卷(附答案) (1)
人教版数学九年级上册第25章概率初步单元测试卷考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.从1−9这九个自然数中任取一个,是2的倍数的概率是()A.23B.59C.49D.292.在一次抽奖中,若抽中的概率是0.34,则抽不中的概率是()A.0.34B.0.17C.0.66D.0.763.一副扑克牌,去掉大小王,从中任抽一张,抽到的牌是6的概率是()A.12B.14C.110D.1134.袋中有同样大小的3个球,其中2个红色,1个白色.从袋中任意地同时摸出两个球,这两个球的颜色相同的概率是()A.16B.14C.13D.125.掷一次骰子(每面分别刻有1−6点),向上一面的点数是质数的概率等于()A.16B.12C.13D.236.如图所示,小明、小刚利用两个转盘进行游戏;规则为小明将两个转盘各转一次,如配成紫色(红与蓝)得5分,否则小刚得3分,此规则对小明和小刚()A.公平B.对小明有利C.对小刚有利D.不可预测7.一个不透明的袋中装有除颜色外均相同的2个红球、1个白球,从中随机摸出2个球,则下列说法正确的是()A.至少有一个是白球B.至少有一个是红球C.一定是一个白球、一个红球D.一定是两个红球8.在一个布口袋中装着只有颜色不同,其他都相同的白、红、黑三种颜色的小球各1只,甲、乙两人进行模球游戏:甲先从袋中摸出一球看清颜色后放回,再由乙从袋中摸出一球.如果规定:乙摸到与甲相同颜色的球为乙胜,否则为输,则乙在游戏中能获胜的概率为()A.13B.14C.19D.239.在一个不透明的布袋中,红色、黑色的球共有10个,它们除颜色外其他完全相同.张宏通过多次摸球试验后发现其中摸到红球的频率稳定在20%附近,则口袋中红球的个数很可能是()A.2个B.5个C.8个D.10个10.一个不透明的口袋里装有除颜色外都相同的10个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1000次,其中有200次摸到白球,因此小亮估计口袋中的红球大约为()A.60个B.50个C.40个D.30个二、填空题(共 8 小题,每小题 3 分,共 24 分)11.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放12.“双十二”期间,小冉的妈妈在网上商城给小冉买了一个书包,除了书包打八折外还随机赠送购买者1支笔(除颜色外其它都相同且数量有限).小冉的妈妈购买成功时,还有5支黑色,3支绿色,2支红色的笔.那么随机赠送的笔为绿色的概率为________.13.小明和小颖按如下规则做游戏:桌面上放有8粒豆子,每次取1粒或2粒,由小明先取,最后取完豆子的人获胜.要使小明获胜的概率为1,那么小明第一次应该取走________粒.14.“刘翔在110米跨栏比赛中一定不会输给其他任何一个选手”是________事件(填“必然”,“不可能”或“不确定”).15.从一个装有2个白球,3个红球,5个黄球的口袋中,随机摸一个不是白球的概率为________.16.有6张看上去无差别的卡片,上面分别写着1,2,3,4,5,6,随机抽取1张后,放回并混在一起,再随机抽取1张,则两次取出的数字都是奇数的概率为________.17.一只不透明的袋子中装有2个红球、3个白球,这些球除颜色外都相同,摇匀后从中任意摸出一个球,摸到红球的概率是________.18.小明和爸爸今年五一节准备到峨眉山去游玩,他们选择了报国寺、伏虎寺、清音阁三个景点去游玩.如果他们各自在这三个景点中任选一个景点作为游玩的第一站(每个景点被选为第一站的可能性相同),那么他们都选择报国寺为第一站的概率是________.三、解答题(共 8 小题,共 66 分)19.(6分) 在一个不透明的袋中装有3个完全相同的小球,上面分别标号为1、2、3,从中随机摸出两个小球,并用球上的数字组成一个两位数.(1)求组成的两位数是奇数的概率;(2)小明和小华做游戏,规则是:若组成的两位数是4的倍数,小明得3分,否则小华得3分,你认为该游戏公平吗?说明理由;若不公平,请修改游戏规则,使游戏公平.20.(6分) 为决定谁获得仅有的一张电影票,甲和乙设计了如下游戏:在三张完全相同的卡片上,分别写上字母A,B,B,背面朝上,每次活动洗均匀.甲说:我随机抽取一张,若抽到字母B,电影票归我;乙说:我随机抽取一张后放回,再随机抽取一张,若两次抽取的字母相同的电影票归我.(1)求甲获得电影票的概率;(2)求乙获得电影票的概率;(3)此游戏对谁有利?21.(9分) 小明和小亮想趁暑假去看世博会,可是只有一张门票,谁都想去,最后商定通过转盘游戏来决定.他们准备了如图12所示两个可以自由转动的转盘A、B,每个转盘被分成面积相等的几个扇形,并在每一个扇形内标上数字,游戏规则是:同时转动两个转盘,当转盘停止后,指针所指区域的数字之和为0时,小明去:数字之和为1时,小亮去.(如果指针恰好指在分割线上,那么重转一次,直到指针指向某一区域为止)(1)用树状图或列表法求小明去的概率;(2)这个游戏规则对小明、小亮双方公平吗?请判断并说明理由.22.(9分) 判断下列事件为必然事件,随机事件,还是不可能事件?一个昏庸的国王,总是用抽卡片的方式决定他的臣民的生与死.如果抽到卡片上写着生,国王就让臣民活下去,如果抽到卡片上写着死,国王就杀死臣民,每次国王都准备两张卡片.(1)若两张卡片均为死,该臣民最终活着;(2)若两张卡片均为死,该臣民被杀死;(3)若两张卡片上分别写着一“生”一“死”,该臣民最终活着.23.(9分) 在一个不透明的盒子中装有3个形状大小完全一样的小球,上面分别有标号1,2,−1,用树状图或列表的方法解决下列问题:(1)将球搅匀,从盒中一次取出两个球,求其两标号互为相反数的概率.(2)将球搅匀,摸出一个球将其标号记为k,放回后搅匀后再摸出一个球,将其标号记为b.求直线y=kx+b不经过第三象限的概率.24.(9分) 小明、小刚和小红打算各自随机选择本周日的上午或下午去扬州马可波罗花世界游玩.(1)小明和小刚都在本周日上午去游玩的概率为________;(2)求他们三人在同一个半天去游玩的概率.25.(9分)在一个口袋中有3个完全相同的小球,把它们分别标号为1,2,3,随机地摸取一个小球然后放回,再随机地摸出一个小球.记事件A为“两次取的小球的标号的和是2的整数倍”,记事件B为“两次取的小球的标号的和是2或+P(A)是否成立,并说明理由.3的整数倍”,请你判断等式P(B)=1326.(9分) 解答下列问题:(1)在一个不透明的口袋中有10个红球和若干个白球,这些球除颜色不同外其他都相同,请通过以下实验估计口袋中白球的个数:从口袋中随机摸出一球,记下颜色,再把它放回袋中,不断重复上述过程,实验总共摸了200次,其中有50次摸到了红球,那么估计口袋中有白球多少个?(2)请思考并作答:在一个不透明的口袋里装有若干个形状、大小完全相同的白球,在不允许将球倒出来的情况下,如何估计白球的个数(可以借助其它工具及用品)?写出解决问题的主要步骤及估算方法,并求出结果(其中所需数量用a、b、c等字母表示).答案 1.C 2.C 3.D 4.C 5.B 6.A 7.B 8.A 9.A 10.C 11.0.6 12.310 13.214.不确定 15.45 16.14 17.25 18.1919.解:(1)画树状图如下:一共有6种等可能的结果,组成的两位数是奇数的有13,23,21,31共4种情况,两位数是奇数的概率为23;(2)∵组成的两位数是4的倍数的有2种情况, ∴P (小明得3分)=13,P (小华得3分)=23,∴该游戏不公平.可改游戏规则为:组成的两位数是4的倍数,小明得2分,否则小华得1分. 20.解:(1)根据题意得:P (甲获得电影票)=23;(2)列表如下:则P (乙获得电影票)=59;(3)∵23>59, ∴此游戏对甲更有利. 21.解:(1)画树状图得:∵共有12种等可能的结果,小明去的有3种情况; ∴小明去的概率为:312=14;(2)公平. 理由:∵数字之和为1的有3种情况, ∴P (小亮去)=312=14,∴P (小明去)=P (小亮去),∴这个游戏规则对小明、小亮双方公平.22.解:(1)不可能事件(2)必然事件(3)随机事件 23.解:(1)列表得:所以两标号互为相反数的概率=26=13;(2)列表如下:∴P (不经过第三象限)=29. 24.(1)14.25.解:等式P(B)=13+P(A)不成立, 理由:列表得:其中为2的倍数的有5种,为2或3的倍数的有7种, 故P(A)=59,P(B)=79, 故P(B)=13+P(A)不成立.26.解:(1)∵实验总共摸了200次,其中有50次摸到了红球, ∵口袋中有10个红球,假设有x 个白球, ∴1010+x =50200,解得:x =30,∴口袋中有白球30个;(2)可以拿出a 个标上记号,然后搅匀后再拿出b 个,带记号的有c 个,即可估计白球的个数. 设球的总个数为x ,b x=ca ,∴x =ab c.∴白球的个数为abc .。
2022学年人教版九年级数学上册第25章《概率初步》期末复习练附答案
2022学年九年级数学上册第25章《概率初步》期末复习练一、选择题(每题3分,共30分)1.已知事件A:小明刚到教室,上课铃声就响了;事件B:掷一枚质地均匀的骰子(骰子的六个面上分别刻有1到6的点数).向上一面的点数不大于6.下列说法正确的是()A.只有事件A是随机事件B.只有事件B是随机事件C.都是随机事件D.都是确定性事件2.春天园游会有一个摊位的游戏,先旋转一个转盘的指针,如果指针箭头停在奇数的位置(落在分界线上重转),那么玩的人就可以从袋子中抽出一个弹珠.转盘和袋子里的弹珠如图25-4-1所示,抽到黑色的弹珠就能得到奖品,小刚玩了这个游戏,小刚得到奖品的可能性为()图25-4-1A.不可能B.非常有可能C.不太可能D.大约有50%的可能3.下列说法正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天降雨的概率为40%”,表示明天有40%的时间都在降雨C.“篮球队队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,lal≥0”是不可能事件4.关于频率与概率有下列几种说法,其中正确的说法是()①“明天下雨的概率是90%”表示明天下雨的可能性很大;②“抛一枚硬币正面朝上的概率为”表示每抛两次就有一次正面朝上;③“某彩票中奖的概率是1%”表示买10张该种彩票不可能中奖;④“抛一枚硬币正面朝上的概率为”表示随着抛掷次数的增加,“抛出正面朝上”这一事件发生的频率稳定在附近.A.①③B.①④C.②③D.②④5.在一个不透明的口袋里装有白、黄、蓝三种颜色的乒乓球,它们除颜色外其余都相同,其中白球有2个,黄球有1个.已知从中任意摸出一个是蓝球的概率为,则袋中蓝球有()A.3个B.4个C.5个D.6个6.小强、小亮、小文三位同学玩投硬币游戏.三人同时各投出一枚均匀硬币,若出现三个正面向上或三个反面向上,则小强赢;若出现2个正面向上一个反面向上,则小亮赢;若出现一个正面向上2个反面向上,则小文赢.下面说法正确的是()A .小强赢的概率最小B .小文赢的概率最小C .小亮赢的概率最小D .三人赢的概率都相等7.正方形ABCD 的边长为2,以各边为直径在正方形内画半圆,得到如图所示的阴影部分,若随机向正方形ABCD 内投一粒米,则米粒落在阴影部分的概率为A .π-22B .π-24C .π-28D .π-2168.小李与小陈做猜拳游戏,规定每人每次至少要出一个手指,两人出拳的手指数之和为偶数时小李获胜,那么,小李获胜的概率为A .1325B .1225C .425D .129.投掷一枚质地均匀的骰子两次,向上一面的点数依次记为a ,b.那么方程x 2+ax +b =0有解的概率是A .12B .13C .815D .193610.如图是一个沿3×3正方形方格纸的对角线AB 剪下的图形,一质点P 由A 点出发,沿格点线每次向右或向上运动1个单位长度,则点P 由A 点运动到B 点的不同路径共有A .4条B .5条C .6条D .7条二、填空题(每题3分,共24分)11.海枯石烂,这是事件.(填“必然事件”“随机事件”“不可能事件”)12.有四张不透明卡片,分别写有实数,﹣1,,,除正面的数不同外其余都相同,将它们背面朝上洗匀后,从中任取一张卡片,取到的数是无理数的可能性大小是.13.小华抛一枚质地均匀的硬币10次,只有2次正面朝上,当他抛第11次时,正面朝上的概率是.14.有四张背面完全相同的不透明的卡片,正面分别写有4,-l-2l ,(2)0,(-1)²ᴼ¹⁹,把卡片背面朝上洗匀后,先随机抽取一张记下数字后放回,洗匀后再抽取一张,则两次抽到的数字互为相反数的概率是______________.15.(2017四川成都武侯模拟)在一个不透明的盒子中装有x 颗白色棋子和y 颗黑色棋子,它们除颜色外完全相同,现从该盒子中随机取出一颗棋子,取得白色棋子的概率是52,将取出的棋子放回,再往该盒子中放进6颗同样的黑色棋子,此时从盒子中随机取出一颗棋子,取得白色棋子的概率是41,那么原来盒子中的白色棋子有________颗.16.一个口袋里有25个球,其中红球、黑球、黄球若干个,从口袋中随机摸出一球记下其颜色,再把它放回口袋中摇匀,重复上述过程,共试验200次,其中有120次摸到黄球,由此估计袋中的黄球约有_____个.17.一枚均匀的正方体骰子,六个面上分别标有数字1,2,3,4,5,6, 连续抛掷两次,朝上的数字分别是m、n,若把m、n作为点A的横、纵坐标,那么点A(m,n)在函数y=2x的图像上的概率是。
人教版版九年级数学第25章《概率初步》单元复习练习题(含答案)
人教版版九年级数学第25章《概率初步》单元复习练习题(含答案)一、单选题1.从甲、乙、丙三名同学中随机抽取两名同学去参加义务劳动,则甲与乙恰好被选中的概率是()A.16B.14C.13D.122.王师傅对某批零件的质量进行了随机抽查,并将抽查结果绘制成如下表格,请你根据表格估计,若从该批零件中任取一个,为合格零件的概率为()随机抽取的零件个数n20 50 100 500 1000合格的零件个数m18 46 91 450 900零件的合格率mn0.9 0.92 0.91 0.9 0.9A.0.9 B.0.8 C.0.5 D.0.13.小明在一次用“频率估计概率”的实验中,把对联“海水朝朝朝朝朝朝朝落,浮云长长长长长长长消”中的每个汉字分别写在同一种卡片上,然后把卡片无字的面朝上,随机抽取一张,并统计了某一结果出现的频率,绘制了如图所示的折线统计图,则符合这一结果的实验最有可能是()A.抽出的是“朝”字B.抽出的是“长”字C.抽出的是独体字D.抽出的是带“氵”的字4.小明在一次用频率估计概率的实验中,统计了某一结果出现的频率,并绘制了如图所示的统计图,则符合这一结果的实验可能是()A.掷一枚质地均匀的硬币,正面朝上的概率B.从一副去掉大小王的扑克牌中任意抽取一张,抽到黑桃的概率C.从一个装有2个白球和1个红球的不透明袋子中任意摸出一球(小球除颜色外,完全相同),摸到红球的概率D.任意买一张电影票,座位号是2的倍数的概率5.如图所示的是由8个全等的小正方形组成的图案,假设可以随意在图中取一点,那么这个点取在阴影部分的概率是()A.38B.12C.58D.16.如图是用七巧板拼成的正方形桌面,一个小球在桌面上自由地滚动,它最终停在黑色区域的概率是()A.14B.18C.316D.237.某人在做掷硬币试验时,抛掷m次,正面朝上有n次,则即正面朝上的频率是P=nm,下列说法中正确的是()A.P一定等于12B.抛掷次数逐渐增加,P稳定在12附近C.多抛掷一次,P更接近12D.硬币正面朝上的概率是n m8.不透明袋中装有除颜色外完全相同的a个白球、b个红球,则任意摸出一个球是红球的概率是()A.ba b+B.baC.aa b+D.ab9.不透明的袋子中装有红、绿小球各一个,除颜色外两个小球无其他差别,从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么第一次摸到红球、第二次摸到绿球的概率是()A.14B.13C.12D.3410.将一枚飞镖任意投掷到如图所示的正六边形镖盘上,飞镖落在白色区域的概率为()A.12B.13C.25D.35二、填空题11.从3-,2-,2这三个数中任取两个不同的数,作为点的坐标,则该点落在第三象限的概率是___.12.在一个不透明的口袋中,装有若干个红球和6个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球试验发现,摸到黄球的频率是0.3,摸到红球的频率是_____,则估计盒子中大约有红球_____个.13.科研人员对某玉米种子在相同条件下的发芽情况进行试验,统计结果如下表:试验的种子数n(单位:粒)500 800 1000 2000 3000发芽的频数m(单位:粒)458 764 948 1902 2849发芽的频率mn0.916 0.955 0.948 0.9510 0.950根据统计结果,该玉米种子发芽的概率估计值为______(结果精确到0.01). 14.某射击运动员在同一条件下进行射击,结果如下表: 射击总次数n 10 100 200 500 1000 击中靶心次数m 9 86 168 426 849 击中靶心频率m /n 0.90.860.840.8520.849则这名运动员在此条件下击中靶心的概率大约是__________(精确到0.01).15.某社区组织A 、B 、C 、D 小区的居民接种加强针新冠疫苗.若将这4个小区的居民随机分成两批,每批2个小区的居民接种加强针,则A 、B 两个小区都被分在第一批的概率是______.16.如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD 与正方形EFGH .连结BD 交AF 、CH 于点M 、N .若DE 平分ADB ,现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为________.三、解答题17.如图,是一个竖直放置的钉板,其中,黑色圆面表示钉板上的钉子,11234,A B B D D ,,,,分别表示相邻两颗钉子之间的空隙,这些空隙大小均相等,从入口1A 处投放一个直径略小于两颗钉子之间空隙的圆球,圆球下落过程中,总是碰到空隙正下方的钉子,且沿该钉子左右两个相邻空隙继续下落的机会相等,直至圆球落入下面的某个槽内.用画树状图的方法,求圆球落入③号槽内的概率.18.2022年4月15日是第七个全民国家安全教育日,某校七、八年级举行了一次国家安全知识竞赛,经过评比后,七年级的两名学生(用A,B表示)和八年级的两名学生(用C,D表示)获得优秀奖.(1)从获得优秀奖的学生中随机抽取一名分享经验,恰好抽到七年级学生的概率是_________.(2)从获得优秀奖的学生中随机抽取两名分享经验,请用列表法或画树状图法,求抽取的两名学生恰好一名来自七年级、一名来自八年级的概率.19.如图是小丽设计可自由的均匀转盘,将其等分为12个扇形,每个扇形有1个有理数,转得下列各数的概率是多少?(1)转得非负数的概率是多少?(2)转得整数的概率是多少?(3)若小丽和妈妈做游戏,转得负整数小丽获胜;若转得的数绝对值大于等于8妈妈获胜,这个游戏公平吗?请说明理由.20.一个不透明的袋子里装有黑白两种颜色的球若干个,这些球除颜色外都相同.小明从袋子中随机摸一个球,记下颜色后放回,不断重复,并绘制了如图所示的统计图根据统计图提供的信息解决下列问题:(1)摸到黑球的频率会接近(精确到0.1);(2)若袋子中白球有4个,①估算一下袋中两种颜色球共有个;②若小明又将a个相同的黑球放进了这个不透明的袋子里,然后再次进行摸球试验,当重复大量试验后,摸出黑球的概率估计值是多少?(用含a的式子表示).21.为了调动同学们学习数学的积极性,班内组织开展了“数学小先生”讲题比赛,老师将四道备讲题的题号1,2,3,4,分别写在完全相同的4张卡片的正面,将卡片背面朝上洗匀.(1)随机抽取一张卡片,卡片上的数字是“4”的概率是________;(2)小明随机抽取两张卡片,用画树状图或列表的方法求两张卡片上的数字是“2”和“3”的概率.22.“石头、剪子、布”是一个广为流传的游戏,规则是:甲、乙两人都做出“石头”“剪子”“布”3种手势中的1种,其中“石头”赢“剪子”,“剪子”赢“布”,“布”赢“石头”,手势相同不分输赢.假设甲、乙两人每次都随意并且同时做出3种手势中的1种.(1)甲每次做出“石头”手势的概率为_________;(2)用画树状图或列表的方法,求乙不输的概率.23.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共60个.小亮做摸球实验,他将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:(1)请估计:当n的值越来越大时,摸到白球的频率将会接近______;(精确到0.1)(2)假如你摸球一次,摸到白球的概率P(摸到白球)=______,摸到黑球的概率P(摸到黑球)=______;(3)请估算盒子里黑、白两种颜色的球各有多少个?24.小董利用均匀的骰子和同桌做游戏,规则如下:①两人同时做游戏,各自投掷一枚骰子,也可以连续投掷几次骰子;②当掷出的点数和不超过10,如果决定停止投掷,那么你的得分就是掷出的点数和;当掷出的点数和超过10,必须停止投掷,并且你的得分为0;③比较两人的得分,谁的得分多谁就获胜.在一次游戏中,同桌连续投掷两次,掷出的点数分别是2、6,同桌决定不再投掷;小董也是连续投掷两次,但是掷出的点数分别了3、4,小董决定再投掷一次.请问:(1)最终小董的得分为0分的概率多大?并说明原因.(2)小董获胜的概率多大?并说明原因.(3)做这个游戏时应该注意什么才能使游戏公平?25.“共和国勋章”获得者钟南山院士说:按照疫苗保护率达到70%计算,中国的新冠疫苗覆盖率需要达到近80%,才有可能形成群体免疫.本着自愿的原则,18至60周岁符合身体条件的中国公民均可免费接种新冠疫苗.居民甲、乙准备接种疫苗,其居住地及工作单位附近有两个大型医院和两个社区卫生服务中心均可免费接种疫苗,提供疫苗种类如下表:接种地点疫苗种类A新冠病毒灭活疫苗医院B重组新冠病毒疫苗(CHO细胞)C新冠病毒灭活疫苗社区卫生服务中心D重组新冠病毒疫苗(CHO细胞)若居民甲、乙均在A、B、C、D中随机独立选取一个接种点接种疫苗,且选择每个接种点的机会均等.(提示:用A、B、C、D表示选取结果)(1)居民甲接种的是新冠病毒灭活疫苗的概率为;(2)请用列表或画树状图的方法求居民甲、乙接种的是相同种类疫苗的概率.26.某批乒乓球的质量检验结果如下:(1)填写完成表格中的空格;(2)画出该批乒乓球优等品频率的折线统计图;(3)从这批乒乓球中,任意抽取的一只乒乓球是优等品的概率的估计值是___________(精确到0.01)参考答案1.C2.A3.D4.C5.A6.C7.B8.A9.A10.A11.1 312.0.7 14 13.0.95 14.0.8515.1 61617.3818.(1)从获得优秀奖的学生中随机抽取一名分享经验,恰好抽到七年级学生的概率是2142,故答案为:12;(2)树状图如下:由表知,共有12种等可能结果,其中抽取的两名学生恰好一名来自七年级、一名来自八年级的有8种结果,所以抽取的两名学生恰好一名来自七年级、一名来自八年级的概率为82 123=.19(1)解:由题意可知,转盘中有12个数,其中非负数为:0,15,8,11,6,5,23,这7个,所以转得非负数的概率为712.(2)解∶由题意可知,转盘中有12个数,其中整数为:﹣1,0,15,﹣17,8,11,6,﹣10,5,这9个,所以转得整数的概率为93 124=.(3)解:由题意可知,转盘中有12个数,其中负整数为:﹣1,﹣17,﹣10,这3个,转得负整数的概率为31124=,故小丽获胜的概率为:14;这12个数中转得的数绝对值大于等于8为:15,﹣17,8,11,﹣10,这5个,转得绝对值大于等于8的数的概率为512,故妈妈获胜的概率为:512;因为15 412≠,故这个游戏不公平.20.(1)摸到黑球的频率会接近0.5,故答案为:0.5.(2)①∵摸到黑球的频率接近0.5,∴白球的频率约为0.5,则估算袋中两种颜色球共有4÷0.5=8(个);故答案为:8.②小明又将a个相同的黑球放进了这个不透明的袋子里,则袋中球的总个数约为(a+8)个,其中黑球的个数为(a+4)个,当重复大量试验后,摸出黑球的概率估计值是48aa++.21.(1)解:随机抽取一张卡片,卡片上的数字是4的概率为14,故答案为:14;(2)解:画树状图如下:共有12种等可能的结果,其中两张卡片上的数字是2和3的结果有2种,∴两张卡片上的数字是2和3的概率为21126=.22.(1)解:∵甲每次做出的手势只有“石头”、“剪子”、“布”其中的一种,∴甲每次做出“石头”手势的概率为13;(2)解:树状图如图所示:甲、乙两人同时做出手势共有9种等可能结果,其中乙不输的共有6种,∴P(乙不输)6293==.答:乙不输的概率是23.23.(1)解:当n的值越来越大时,摸到白球的频率将会接近0.6,故答案为:0.6;(2)根据频率估计概率可得,摸到白球的概率P(摸到白球)=0.6,摸到黑球的概率P(摸到黑球)=1-0.6=0.4,故答案为:0.6,0.4;(3)60×0.4=24,60-24=36.∴黑球有24只,白球有36只.24.(1)解:1()由题意可知:小董投掷骰子的点数为4、5、6时,得分为0,∴小董得零分的概率为:P(小董得分为零31 62 ==).(2)解:根据题意得:小董再次投掷骰子,点数为2或3时得分为9或10,小董获胜,∴小董获胜的概率为:P(小董获胜21 63 ==).(3)根据游戏规则,前一个人投掷的骰子点数总和大小会影响后一个人是否再次投掷第二次骰子,∴在游戏过程中应注意轮流投掷骰子,先小董或同桌投掷第一次,如需投掷第二次,再同桌或小董投掷第二次,这样即可保证游戏公平.25.(1)解:由概率的定义可得:居民甲接种的是新冠病毒灭活疫苗的概率是21=42.故答案为:12.(2)画树状图如图:由上表可知:一共有16种等可能的结果,居民甲、乙接种的是相同种类疫苗的结果有8种,∴居民甲、乙接种的是相同种类疫苗的概率为816=12.26.(1)解:补全表格如下:抽取的乒乓球数n50 100 200 500 1000 1500 2000 优等品的频数m48 95 188 471 946 1426 1898优等品的频率m n(精确到0.001)0.960 0.950 0.940 0.942 0.946 0.951 0.949(2)解:折线图如下:(3)解:从这批乒乓球中,任意抽取的一只乒乓球是优等品的概率的估计值是0.95.故答案为:0.95;。
人教版九年级数学上册《第二十五章概率初步》测试卷-附带答案
人教版九年级数学上册《第二十五章概率初步》测试卷-附带答案一、单选题1.下列事件是必然事件的是()A.明年杨家坪房价一定下降B.两个负数相乘结果是正数C.九龙坡区明天一定会下雪D.小明努力学习这次数学考试一定得满分2.在1000张奖券中有1个一等奖 4个二等奖 15个三等奖. 从中任意抽取1张获奖的概率为()A.B.C.D.3.掷两枚普通正六面体骰子所得点数之和为11的概率为( )A.B.C.D.4.甲从标有1 2 3 4的4张卡片中任抽1张然后放回.乙再在4张卡片中任抽1张两人抽到的标号的和是2的倍数的(包括2)概率是()A.B.C.D.5.如图电路图上有四个开关A、B、C、D和一个小灯泡闭合开关D或同时闭合开关A、B、C都可使小灯泡发光则任意闭合其中两个开关小灯泡发光的概率是()A.B.C.D.6.在一个不透明的口袋里装着只有颜色不同的黑、白两种颜色的球共20只某学习小组作摸球实验将球搅匀后从中随机摸出一个球记下颜色再把它放回袋中不断重复下表示活动进行中的一组统计数据:请估算口袋中白球约是()只.A.8 B.9 C.12 D.137.不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同)其中白球有2个黄球有1个篮球有3个第一次任意摸出一个球(不放回)第二次再摸出一个球请用树状图或列表法则两次摸到的都是白球的概率为()A.B.C.D.8.一个盒子中有个红球、8个白球、个黑球每个球除颜色外其他都相同.从中任取一个球如果取得的球是白球的概率与不是白球的概率相同那么与的关系是().A.B.C.D.二、填空题9.从这个数中任取两个数作为点的坐标则点在第四象限的概率是.10.十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数.如796就是一个“中高数”.若十位上的数字为7 则从4 5 6 9中任选两数与7组成“中高数”的概率是.11.现有三张正面分别标有数字的卡片它们除数字不同外其余完全相同将卡片背面朝上洗匀后从中随机抽取一张将卡片上的数字记为放回洗匀后再随机抽取一张将卡片上的数字记为则满足为偶数的概率为.12.有5张正面分别标有数字-2 0 2 4 6的不透明卡片它们除数不同外其余全部相同先将它们背面朝上洗匀后从中任取一张将该卡片上的数字记为则使关于不等式组有实数解的概率为13.如图所示小区公园里有一块圆形地面被黑白石子铺成了面积相等的八部分阴影部分是黑色石子小华随意向其内部抛一个小球则小球落在黑色石子区域内的概率是.三、解答题14.某医院计划选派护士支援某地的防疫工作甲、乙、丙、丁4名护士积极报名参加其中甲是共青团员其余3人均是共产党员.医院决定用随机抽取的方式确定人选.(1)随机抽取1人甲恰好被抽中的概率是(2)若需从这4名护士中随机抽取2人请用画树状图法或列表法求出被抽到的两名护士都是共产党员的概率.15.一个袋子中装有5个白球和若干个红球(袋中每个球除颜色外其余都相同).某活动小组想估计袋子中红球的个数分20个组进行摸球试验.每一组做400次试验汇总后摸到红球的次数为60000次.(1)估计从袋中任意摸出一个球恰好是红球的概率.(2)请你估计袋中红球接近多少个.16.小源的父母决定中考之后带她去旅游初步商量有意向的四个景点分别为:A.明月山 B.庐山 C.婺源 D.三清山.由于受到时间限制只能选两个景点于是小源的父母决定通过抽签选择用四张小纸条分别写上四个景点做成四个签(外表无任何不同)让小源随机抽两次每次抽一个签每个签抽到的机会相等.(1)小源最希望去婺源则小源第一次恰好抽到婺源的概率是多少(2)除婺源外小源还希望去明月山求小源抽到婺源、明月山两个景点中至少一个的概率是多少.(通过“画树状图”或“列表”进行分析)17.现有三张反面朝上的扑克牌:红桃2、红桃3、黑桃x(1≤x≤13且x为奇数或偶数).把牌洗匀后第一次抽取一张记好花色和数字后将牌放回重新洗匀第二次再抽取一张.(1)求两次抽得相同花色的概率(2)当甲选择x为奇数乙选择x为偶数时他们两次抽得的数字和是奇数的可能性大小一样吗?请说明理由.(提示:三张扑克牌可以分别简记为红2、红3、黑x)18.小强和小兵两位同学设计了一个游戏:将三张正面分别写有数-2 -1 1的卡片背面朝上洗匀.从中任意抽取一张以其正E面的数作为x的值.放回卡片.洗匀再从中任意抽取一张以其正面的数为y值两次结果记为(x y).(1)(x y)所有可能出现的结果有种.(2)游戏规定:若点(x y)使分式有意义则小强获胜若(x y)使分式无意义则小兵获胜.你认为这个游戏规则是否公平?为什么?参考答案:1.B2.B3.A4.A5.A6.C7.A8.D9.10.11.12.13.14.(1)(2)解:如图共有:团党、团党、团党、党团、党党、党党、党团、党党、党党、党团、党党、党党十二种可能所以两名护士都是党员的概率为:.答:随机抽取2人被抽到的两名护士恰好都是党员的概率为15.(1)解:∵20×400=8000∴摸到红球的概率为:因为试验次数很大大量试验时频率接近于理论概率所以估计从袋中任意摸出一个球恰好是红球的概率是0.75(2)解:设袋中红球有x个根据题意得:解得x=15经检验x=15是原方程的解.∴估计袋中红球接近15个.16.(1)解:∵有意向的四个景点分别为:A.明月山 B.庐山 C.婺源 D.三清山∴小源第一次恰好抽到婺源的概率是:(2)解:画树状图得:∵共有12种等可能的结果小源抽到婺源、明月山两个景点中至少一个的情况数有10种∴小源抽到婺源、明月山两个景点中至少一个的概率= =17.(1)解:如图所有可能的结果有9种两次抽得相同花色的可能性有5种∴P(相同花色)=∴两次抽得相同花色的概率为:(2)解:他们两次抽得的数字和是奇数的可能性大小一样∵x为奇数两次抽得的数字和是奇数的可能性有4种∴P(甲)=∵x为偶数两次抽得的数字和是奇数的可能性有4种∴P(乙)=∴P(甲)=P(乙)∴他们两次抽得的数字和是奇数的可能性大小一样.18.(1)9(2)解:不公平理由如下:∵∴当x+y=0或x-y=0时分式没有意义其他情况分式有意义∴使分式有意义的情况数有:(-2 -1) (-2 1) (-1 -2) (1 -2)四种∴P(小强获胜)=∵使分式无意义的情况数有:(-2 -2) (-1 -1) (1 1) (1 -1) (-1 1)五种∴P(小兵获胜)=∵∴这个游戏规则不公平。
章复习 第25章 概率初步
章复习第25章概率初步(学案)一、事件1、确定事件在一定条件下,有些事件发生与否是可以事先确定的,这样的事件叫做______事件.其中必然发生的事件叫做______事件;不可能发生的事件叫做______事件.2、随机事件在一定条件下,可能发生也可能不发生的事件,称为______事件.注:随机事件发生与否,事先是______确定的。
二、概率1、概率的定义会稳定在某个常数p附近,那一般地,在大量重复试验中,如果事件A发生的频率mn么这个常数p就叫做事件A的______.记作P(A)= p.注:因0≤m≤n,所以______≤P(A)≤______.2、概率的意义概率从数量上刻画了一个随机事件发生的可能性的______,事件发生的可能性越大,它的概率越接近______;反之,事件发生的可能性越小,它的概率越接近______.注:①必然事件的概率为______,不可能事件的概率为______;②概率是针对大量试验而言的,大量试验反映的规律并非在每次试验中一定存在.3、概率的计算⑴一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率为P(A)= ______ .注1:该种方法主要用于计算只涉及一次试验的随机事件发生的概率.⑵当一次试验要涉及两个因素,并且可能出现的结果数目较多时,可采用列表法列出所有可能的结果,再根据①计算概率。
⑶当一次试验要涉及3个或更多因素时,列表法就不方便了,这时可采用树形图法,表示出所有可能的结果,再根据①计算概率.注2:①利用列表法、树形图法求概率,实质上还是求等可能性事件......的概率;②在利用列表法、树形图法求概率时,各种情况出现的可能性必须相等,否则是错误的.三、典型例题1、利用列表法或树形图法计算概率当一次试验涉及两个以上因素时,往往需采用列表法或树形图法来计算事件发生的概率,当一次试验涉及两个因素时,采用列表法较好;当事件要经过多次步骤(三步以上)或涉及多个因素时,用树形图法很有效.【例】袋中有1个红球和2个白球,它们除颜色外都相同,任意摸出1个球,记下球的颜色,放回袋中,搅匀后再任意摸出1个球,记下球的颜色.求摸到1红1白两球的概率是多少.解法一、列表解法二、树形图2、游戏的公平性一个公平的游戏应该是所有参加游戏的人获胜的概率相等,否则这个游戏不公平. 判断一个游戏是否公平,应从各参加者获胜的概率是否相等去判断,常需要利用列表法或树形图法计算概率.而设计一个公平游戏,也需要从概率相等出发.四、章测试题A 卷 知识技能训练一、选择题1.下列事件中,不可能事件是( ).A .掷一枚六个面分别刻有数字1—6的均匀正方体骰子,向上一面的点数是“5”B .任意选择某个电视频道,正在播放动画片C .肥皂泡会破碎D .在平面内,度量一个三角形的内角度数,其和为36002.如图(1),有6张写有汉字的卡片,它们的背面都相同,现将它们背面朝上洗匀后如图(2)摆放,从中任意翻开一张,是汉字“自”的概率是( ).A .12B .13C .23D .163.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外,其他完全相同.小李通过多次摸球试验后发现其中摸到红色、黑色球的频率分别为15%和45%,则口袋中白色球的数目很可能是( ).A .6B .16C .18D .244.假定有一排蜂房,形状如图,一只蜜蜂在左下角,由于受了点伤,只能爬行,不能飞,而且始终向右方(包括右上,右下)爬行,从一间蜂房爬到右边相邻的蜂房中去,例如,蜜蜂爬到1号蜂房的爬法有:蜜蜂→1号;蜜蜂→O 号→1号,共有2种不同的爬法,问蜜蜂从最初位置爬到4号房共有( )种不同的爬法.A.7 B.8 C.9 D.105.在某次国际乒乓球单打比赛中,甲、乙两名中国选手进入最后决赛,那么下列事件为必然事件的是( ).A.冠军属于中国选手 B.冠军属于外国选手C.冠军属于中国选手甲 D.冠军属于中国选手乙二、填空题6.口袋中放有3个红球和11个黄球,这两种球除颜色外没有任何区别,随机从口袋中任取1个球,取到黄球的概率是______7.在“We like maths .”这个句子的所有字母中,字母“e”出现的频率约为______(结果保留2个有效数字).8.晓明玩转盘游戏,当他转动如图7的转盘,转盘停止时指针指向2的概率是______.9.我县住宅电话号码是由7位数字组成,某人到电信公司申请安装一部住宅电话,那么该公司配送给这部电话的号码末尾数字为6的概率是______.10.一个口袋有12个白球和若干个黑球,在不允许将球倒出来数的前提下,小亮为估计口袋中黑球的个数,采用了如下的方法:每次先从口袋中摸出10个球,求出其中白球数与10的比值,再把球放回口袋中摇匀,不断重复上述过程5次,得到的白球数与10的比值分别为:0.4,0.1,0.2,0.1,0.2.根据上述数据,小亮可估计口袋中大约有______个黑球.三、解答题11.如图(1),有四张编号为1,2,3,4的卡片,卡片的背面完全相同,现将它们搅匀并正面朝下放置在桌面上.(1)从中随机抽取一张,抽到的卡片是眼睛的概率是多少?(2)从四张卡片中随机抽取一张贴在如图(2)所示的大头娃娃的左眼处,然后再随机抽取一张贴在大头娃娃的右眼处,用树状图法或列表法求贴法正确的概率.12.桌面上放有4张卡片,正面分别标有数字l,2,3,4,这些卡片除数字外完全相同.把这些卡片反面朝上洗匀后放在桌面上,甲从中任意抽出1张,记下卡片上的数字后仍反面朝上放回洗匀,乙再从中任意抽出1张,记下卡片上的数字,然后将这两数相加.(1)请用列表或画树形图的方法求两数和为5的概率;(2)若甲与乙按上述方式作游戏,当两数之和为5时,甲胜;反之则乙胜;若甲胜一次得12分,那么乙胜一次得多少分,这个游戏才对双方公平?B卷综合应用创新训练四、综合题13.一个均匀的正方体,六个面分别标有数字2,3,4,5,6,连续抛掷两次,朝上的数字分别为m,n,若m,n分别作为点A的横、纵坐标,那么点A(m,n)在函 y =2x的图象上的概率是多少?五、应用题14.田忌赛马是一个为人熟知的故事.传说战国时期,齐王与田忌各有上、中、下三匹马,同等级的马中,齐王的马比田忌的马强.有一天,齐王要与田忌赛马,双方约定:比赛三局,每局各出一匹,每匹马赛一次,赢得两局者为胜.看样子田忌似乎没有什么胜的希望,但是田忌的谋士了解到主人的上、中等马分别比齐王的中、下等马要强……(1)如果齐王将马按上、中、下的顺序出阵比赛,那么田忌的马如何出阵,田忌才能取胜?(2)如果齐王将马按上、中、下的顺序出阵比赛,而田忌的马随机出阵比赛,田忌获胜的概率是多少?(要求写出双方对阵的所有情况)六、开放探究题15.在“妙手推推推”的游戏中,主持人出示了一个9位数:,让参与者猜商品价格,被猜的价格是一个4位数,也就是这个9位数中从左到右连在一起的某4个数字,如果参与者不知道商品的价格,从这些连在一起的所有4位数中,任意猜一个,求他猜中该商品价格的概率.16.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20个,某学习小组做摸球试验,将球搅匀后从中随机摸出1个球记下颜色,再把它放回袋中,不断重复,下表是活动进行中的一组统计数据:(1)请估计:当n很大时,摸到白球频率将会接近____;(2)假如你去摸一次,你摸到白球的概率是____,摸到黑球的概率是____;(3)试估算口袋中黑、白两种颜色的球各有多少个?(4)解决了上面的问题,小明同学猛然顿悟,过去一个悬而未决的问题有办法了,这个问题是:在一个不透明的口袋里有若干个白球,在不允许将球倒出来数的情况下,如何估计白球的个数(可以借助其他工具及用品)?请你应用统计与概率的思想和方法解决这个问题,写出解决这个问题的主要步骤及估算方法.七、创新题17.(1)如图的转盘中指针落在每个数字上的机会相等,现同时转动A、B两转盘,停止后,指针各指向一个数字,小彬和小颖利用这个转盘做游戏:若两数之积为非负数,则小彬胜,否则,小颖胜.你认为这个游戏对双方公平吗?____;(直接写出结果)(2)如图,小明在操场上做游戏,他发现地上有一个不规则的封闭图形ABC,为了知道它的面积,小明在封闭图形内划出了一个半径为1米的圆,在不远处向圈内掷石子,且记录如下:。
人教版初中数学九年级上册《第25章 概率初步》单元测试卷(含答案解析
人教新版九年级上学期《第25章概率初步》单元测试卷一.选择题(共4小题)1.下列事件中,属于确定事件的个数是()(1)打开电视,正在播广告;(2)投掷一枚普通的骰子,掷得的点数小于10;(3)射击运动员射击一次,命中10环;(4)在一个只装有红球的袋中摸出白球.A.0B.1C.2D.32.动物学家通过大量的调查估计,某种动物活到20岁的概率为0.8,活到25岁的概率为0.6,则现年20岁的这种动物活到25岁的概率是()A.0.8B.0.75C.0.6D.0.483.一位批发商从某服装制造公司购进60包型号为L的衬衫,由于包装工人疏忽,在包裹中混进了型号为M的衬衫,每包混入的M号衬衫数及相应的包数如表所示.一位零售商从60包中任意选取一包,则包中混入M号衬衫数不超过3的概率是()A.B.C.D.4.气象台预测“本市降雨的概率是90%”,对预测的正确理解是()A.本市明天将有90%的地区降雨B.本市明天将有90%的时间降雨C.明天出行不带雨具肯定会淋雨D.明天出行不带雨具可能会淋雨二.填空题(共4小题)5.有长为3,4,5,6的四根细木条,从中任取三根为边组成三角形,则能构成直角三角形的概率为.6.有三张材质及大小都相同的牌,在牌面上分别写上数:﹣1,1,2.从中随机摸出两张,牌面上两数和为0的概率是.7.不透明的袋子里装有2个白球,1个红球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,则摸出白球的概率是.8.一天上午林老师来到某中学参加该校的校园开放日活动,他打算随机听一节九年级的课程,下表是他拿到的当天上午九年级的课表,如果每一个班级的每一节课被听的可能性是一样的,那么听数学课的可能性是.三.解答题(共16小题)9.某中学需在短跑、长跑、跳远、跳高四类体育项目中各选拔一名同学参加市中学生运动会.根据平时成绩,把各项目进入复选的学生情况绘制成如下不完整的统计图:(1)参加复选的学生总人数为人,扇形统计图中短跑项目所对应圆心角的度数为°;(2)补全条形统计图,并标明数据;(3)求在跳高项目中男生被选中的概率.10.某校每学期都要对优秀的学生进行表扬,而每班采取民主投票的方式进行选举,然后把名单报到学校.若每个班级平均分到3位三好生、4位模范生、5位成绩提高奖的名额,且各项均不能兼得、现在学校有30个班级,平均每班50人.(1)作为一名学生,你恰好能得到荣誉的机会有多大?(2)作为一名学生,你恰好能当选三好生、模范生的机会有多大?(3)在全校学生数、班级人数、三好生数、模范生数、成绩提高奖人数中,哪些是解决上面两个问题所需要的?(4)你可以用哪些方法来模拟实验?11.口袋中有三个颜色的球共m个,其中白球x+3个,红球2x个.其它都是黑球,这些球除颜色和数字外完全相同.①若m=24,摸到黑球的概率不少于,则口袋中的红球的个数最多几个?②若m=,当摸到白种球概率的最大时,袋中黑球有几个?12.袋子中装有2个红球,1个黄球,它们除颜色外其余都相同.小明和小英做摸球游戏,约定一次游戏规则是:小英先从袋中任意摸出1个球记下颜色后放回,小明再从袋中摸出1个球记下颜色后放回,如果两人摸到的球的颜色相同,小英赢,否则小明赢.(1)请用树状图或列表格法表示一次游戏中所有可能出现的结果;(2)这个游戏规则对双方公平吗?请说明理由.13.盒中有若干枚黑棋和白棋,这些棋除颜色外无其他差别,现让学生进行摸棋试验:每次摸出一枚棋,记录颜色后放回摇匀.重复进行这样的试验得到以下数据:摸到黑棋的频率(精确到0.001)(1)根据表中数据估计从盒中摸出一枚棋是黑棋的概率是;(精确到0.01)(2)若盒中黑棋与白棋共有4枚,某同学一次摸出两枚棋,请计算这两枚棋颜色不同的概率,并说明理由14.在一个口袋中有3个完全相同的小球,把它们分别标号为1,2,3,随机地摸取一个小球然后放回,再随机地摸出一个小球.记事件A为“两次取的小球的标号的和是2的整数倍”,记事件B为“两次取的小球的标号的和是2或3的整数倍”,请你判断等式P(B)=+P(A)是否成立,并说明理由.15.欢欢有红色,白色,黄色三件上衣,又有米色,白色的两条裤子.如果欢欢最喜欢的穿着搭配是白色上衣配米色裤子,求欢欢随机拿出一件上衣和一条裤子正好是她最喜欢的穿着搭配的概率.16.四张大小、质地均相同的卡片上分别标有:1,2,3,4.现将标有数字的一面朝下扣在桌子上,然后由小明从中随机抽取一张(不放回),再从剩下的3张中随机取第二张.(1)用画树状图的方法,列出小明前后两次取得的卡片上所标数字的所有可能情况;(2)求取到的两张卡片上的数字之积为奇数的概率.17.不透明的口袋里装有红、黄、蓝三种颜色的小球若干个(除颜色外其余都相同),其中红球2个(分别标有1号、2号),蓝球1个.若从中任意摸出一个球,它是蓝球的概率为.(1)求袋中黄球的个数;(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,请用画树状图或列表格的方法,求两次摸到不同颜色球的概率.18.艺术节期间,学校向学生征集书画作品,杨老师从全校36个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作品的数量进行了统计,制作了两幅不完整的统计图.请根据相关信息,回答下列问题:(1)请你将条形统计图补充完整;并估计全校共征集了件作品;(2)如果全校征集的作品中有4件获得一等奖,其中有3名作者是男生,1名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求选取的两名学生恰好是一男一女的概率.19.某校对初三500名学生体育进行坐位体前屈测试,根据男生及女生的成绩整理绘制成如下不完整的统计图,请根据统计图提供的信息,回答下列问题:(1)男生有人,女生有人;扇形统计图中a=,b=,并补全条形统计图;(2)求图①中“8分a%”所对应的扇形圆心角的度数;(3)若该校学生中随机抽取一名男生,则这名男生的坐位体前屈测试成绩为10分的概率是多少?20.甲口袋中装有3个小球,分别标有号码1,2,3;乙口袋中装有2个小球,分别标有号码2,3;这些球除数字外完全相同.从甲、乙两口袋中分别随机地摸出一个小球,求这两个小球的号码之和大于4的概率.21.如图,某校在开展积极培育和践行社会主义核心价值观的活动中,小光同学将自己需要加强的“文明”、“友善”、“法治”、“诚信”的价值取向文字分别贴在4张质地、大小完全一样的硬纸板上,制成卡片,随时提醒自己要做个遵纪守法的好学生.小光同学还把卡片编成一道数学题考同桌小亮:将这4张卡片洗匀后背面朝上放在桌子上,从中随机抽取一张卡片,不放回,再随机抽取另一张卡片,让小亮同学用列表法或画树状图法,求出两次抽到卡片上的文字含有“文明”、“诚信”价值取向的概率(卡片名称可用字母表示).22.如图,有两个可以自由转动的均匀转盘A、B,转盘A被均匀地分成4等份,每份分别标上1、2、3、4四个数字;转盘B被均匀地分成6等份,每份分别标上1、2、3、4、5、6六个数字.有人为甲、乙两人设计了一个游戏,其规则如下:(1)同时自由转动转盘A与B;(2)转盘停止后,指针各指向一个数字(如果指针恰好指在分格线上,那么重转一次,直到指针停留在某一数字为止),用所指的两个数字作乘积,如果得到的积是偶数,那么甲胜;如果得到的积是奇数,那么乙胜(如转盘A指针指向3,转盘B指针指向5,3×5=15,按规则乙胜).你认为这样的规则是否公平?请说明理由;如果不公平,请你设计一个公平的规则,并说明理由.23.在一个口袋中有3个完全相同的小球,把它们分别标上数字:﹣1,1,2,随机的摸出一个小球记录数字然后放回,再随机的摸出一个小球记录数字,求“两次都是正数”的概率.24.甲口袋中装有3个小球,分别标有号码1,2,3;乙口袋中装有2个小球,分别标有号码2,3;这些球除数字外完全相同.小明和小华从甲、乙两口袋中分别随机地摸出一个小球,若2个数字的乘积为偶数,就算小明赢,否则就算小华赢.请判断这个游戏是否公平,并用概率知识说明理由.人教新版九年级上学期《第25章概率初步》单元测试卷参考答案与试题解析一.选择题(共4小题)1.下列事件中,属于确定事件的个数是()(1)打开电视,正在播广告;(2)投掷一枚普通的骰子,掷得的点数小于10;(3)射击运动员射击一次,命中10环;(4)在一个只装有红球的袋中摸出白球.A.0B.1C.2D.3【分析】确定事件就是一定发生的事件或一定不会发生的事件,根据定义即可确定.【解答】解:(1)(3)属于随机事件;(4)是不可能事件,属于确定事件;(2)是必然事件,属于确定事件;故属于确定事件的个数是2,故选:C.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.动物学家通过大量的调查估计,某种动物活到20岁的概率为0.8,活到25岁的概率为0.6,则现年20岁的这种动物活到25岁的概率是()A.0.8B.0.75C.0.6D.0.48【分析】先设出所有动物的只数,根据动物活到各年龄阶段的概率求出相应的只数,再根据概率公式解答即可.【解答】解:设共有这种动物x只,则活到20岁的只数为0.8x,活到25岁的只数为0.6x,故现年20岁到这种动物活到25岁的概率为=0.75.故选:B.【点评】考查了概率的意义,用到的知识点为:概率=所求情况数与总情况数之比.注意在本题中把20岁时的动物只数看成单位1.3.一位批发商从某服装制造公司购进60包型号为L的衬衫,由于包装工人疏忽,在包裹中混进了型号为M的衬衫,每包混入的M号衬衫数及相应的包数如表所示.一位零售商从60包中任意选取一包,则包中混入M号衬衫数不超过3的概率是()A.B.C.D.【分析】直接利用概率公式计算.【解答】解:一位零售商从60包中任意选取一包,包中混入M号衬衫数不超过3的概率==.故选:C.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.4.气象台预测“本市降雨的概率是90%”,对预测的正确理解是()A.本市明天将有90%的地区降雨B.本市明天将有90%的时间降雨C.明天出行不带雨具肯定会淋雨D.明天出行不带雨具可能会淋雨【分析】根据概率的意义找到正确选项即可.【解答】解:本市降雨的概率是90%,是说明天下雨发生的可能性很大,但不一定就一定会发生.所以只有D合题意.故选:D.【点评】概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,机会小也有可能发生.二.填空题(共4小题)5.有长为3,4,5,6的四根细木条,从中任取三根为边组成三角形,则能构成直角三角形的概率为.【分析】列举出所有情况,看直角三角形的情况数占总情况数的多少即可.【解答】解:4条线段的全部组合有:3,4,5和3,4,6和3,5,6和4,5,6.能构成直角三角形的是3,4,5一组,∴P(构成三角三角形)=,故答案为:.【点评】本题主要考查概率公式的应用,解题的关键是熟练掌握三角形三边间的关系、勾股定理逆定理及概率公式的运用.6.有三张材质及大小都相同的牌,在牌面上分别写上数:﹣1,1,2.从中随机摸出两张,牌面上两数和为0的概率是.【分析】根据题意分析可得:3个数字两辆相加有3种情况,其中有1种情况可使牌面上两数和为0,故其概率是.【解答】解:一共有3种情况,这个两位数是0的有1种情况;∴P(两数和为0)=.故本题答案为:.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.7.不透明的袋子里装有2个白球,1个红球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,则摸出白球的概率是.【分析】先求出球的总数,再根据概率公式求解即可.【解答】解:∵不透明的袋子里装有2个白球,1个红球,∴球的总数=2+1=3,∴从袋子中随机摸出1个球,则摸出白球的概率=.故答案为:.【点评】本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数的商是解答此题的关键.8.一天上午林老师来到某中学参加该校的校园开放日活动,他打算随机听一节九年级的课程,下表是他拿到的当天上午九年级的课表,如果每一个班级的每一节课被听的可能性是一样的,那么听数学课的可能性是.【分析】根据概率公式可得答案.【解答】解:由表可知,当天上午九年级的课表中听一节课有16种等可能结果,其中听数学课的有3种可能,∴听数学课的可能性是,故答案为:.【点评】本题考查的可能性的大小.用到的知识点为:概率=所求情况数与总情况数之比.三.解答题(共16小题)9.某中学需在短跑、长跑、跳远、跳高四类体育项目中各选拔一名同学参加市中学生运动会.根据平时成绩,把各项目进入复选的学生情况绘制成如下不完整的统计图:(1)参加复选的学生总人数为25人,扇形统计图中短跑项目所对应圆心角的度数为72°;(2)补全条形统计图,并标明数据;(3)求在跳高项目中男生被选中的概率.【分析】(1)利用条形统计图以及扇形统计图得出跳远项目的人数和所占比例,即可得出参加复选的学生总人数;用短跑项目的人数除以总人数得到短跑项目所占百分比,再乘以360°即可求出短跑项目所对应圆心角的度数;(2)先求出长跑项目的人数,减去女生人数,得出长跑项目的男生人数,根据总人数为25求出跳高项目的女生人数,进而补全条形统计图;(3)用跳高项目中的男生人数除以跳高总人数即可.【解答】解:(1)由扇形统计图和条形统计图可得:参加复选的学生总人数为:(5+3)÷32%=25(人);扇形统计图中短跑项目所对应圆心角的度数为:×360°=72°.故答案为:25,72;(2)长跑项目的男生人数为:25×12%﹣2=1,跳高项目的女生人数为:25﹣3﹣2﹣1﹣2﹣5﹣3﹣4=5.如下图:(3)∵复选中的跳高总人数为9人,跳高项目中的男生共有4人,∴跳高项目中男生被选中的概率=.【点评】此题主要考查了概率公式,扇形统计图以及条形统计图,利用已知图形得出正确信息是解题关键.10.某校每学期都要对优秀的学生进行表扬,而每班采取民主投票的方式进行选举,然后把名单报到学校.若每个班级平均分到3位三好生、4位模范生、5位成绩提高奖的名额,且各项均不能兼得、现在学校有30个班级,平均每班50人.(1)作为一名学生,你恰好能得到荣誉的机会有多大?(2)作为一名学生,你恰好能当选三好生、模范生的机会有多大?(3)在全校学生数、班级人数、三好生数、模范生数、成绩提高奖人数中,哪些是解决上面两个问题所需要的?(4)你可以用哪些方法来模拟实验?【分析】(1)全班共有50名学生,共有12名学生获奖,让获奖总人数除以学生总数即为能获得荣誉的机会;(2)全班共有50名学生,共有7名学生当选三好生、模范生,让当选三好生、模范生的总人数除以学生总数即为能当选三好生、模范生的机会;(3)利用(1)(2)的计算过程可得后四项为必须数据;(4)可以利用50个不同颜色的球来模拟实验.【解答】解:(1)全班共有50名学生,共有12名学生获奖,所以恰好能得到荣誉的机会为=;(2)恰好能当选三好生的机会为,能当选模范生的机会为=;(3)班级人数、三好生数、模范生数、成绩提高奖人数;(4)用50个小球,其中3个红球、4个白球、5个黑球,其余均为黄球,把它们装进不透明的口袋中搅均,闭着眼从中摸出一个球,则摸到非黄球的机会就是得到荣誉的机会,摸到红球或白球的机会就是当选为三好生和模范生的机会.【点评】概率等于所求情况数与总情况数之比;注意理解可以用一个班的获奖情况来估计整个学校的学生获奖情况;模拟实验需在等可能的情况下进行模拟,一般采用摸球法.11.口袋中有三个颜色的球共m个,其中白球x+3个,红球2x个.其它都是黑球,这些球除颜色和数字外完全相同.①若m=24,摸到黑球的概率不少于,则口袋中的红球的个数最多几个?②若m=,当摸到白种球概率的最大时,袋中黑球有几个?【分析】(1)由m=24,摸到黑球的概率不少于,根据题意可得≥,继而求得答案;(2)由若m=,摸到白种球概率的最大,可得==,则可求得x的值,继而求得答案.【解答】解:(1)∵口袋中有三个颜色的球共m个,其中白球x+3个,红球2x 个,m=24,∴黑球有:24﹣(x+3)﹣2x=21﹣3x,∵摸到黑球的概率不少于,∴≥,解得:x≤3,∴口袋中的红球的个数最多6个;(2)∵m=,白球x+3,∴摸到白种球概率为:==,∴当x=2时,摸到白种球概率的最大,∴m=10,白球5个,红球4个,∴袋中黑球有:10﹣5﹣4=1(个);∴若m=,当摸到白种球概率的最大时,袋中黑球有1个.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.12.袋子中装有2个红球,1个黄球,它们除颜色外其余都相同.小明和小英做摸球游戏,约定一次游戏规则是:小英先从袋中任意摸出1个球记下颜色后放回,小明再从袋中摸出1个球记下颜色后放回,如果两人摸到的球的颜色相同,小英赢,否则小明赢.(1)请用树状图或列表格法表示一次游戏中所有可能出现的结果;(2)这个游戏规则对双方公平吗?请说明理由.【分析】(1)2次实验,每次实验都有3种情况,列举出所有情况即可;(2)看两人摸到的球的颜色相同的情况占所有情况的多少即可求得小明赢的概率,进而求得小英赢的概率,比较即可.【解答】解:(1)根据题意,画出树状图如下:或列表格如下:所以,游戏中所有可能出现的结果有以下9种:红1红1,红1红2,红1黄,红红1,2红2红2,红2黄,黄红1,黄红2,黄黄,这些结果出现的可能性是相等的;(2)这个游戏对双方不公平.理由如下:由(1)可知,一次游戏有9种等可能的结果,其中两人摸到的球颜色相同的结果有5种,两人摸到的球颜色不同的结果有4种.∴P(小英赢)=,P(小明赢)=,∵P(小英赢)≠P(小明赢),∴这个游戏对双方不公平.【点评】如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A 出现m种结果,那么事件A的概率P(A)=,注意本题是放回实验.解决本题的关键是得到相应的概率,概率相等就公平,否则就不公平.13.盒中有若干枚黑棋和白棋,这些棋除颜色外无其他差别,现让学生进行摸棋试验:每次摸出一枚棋,记录颜色后放回摇匀.重复进行这样的试验得到以下数据:摸到黑棋的频率(精确到0.001)(1)根据表中数据估计从盒中摸出一枚棋是黑棋的概率是0.25;(精确到0.01)(2)若盒中黑棋与白棋共有4枚,某同学一次摸出两枚棋,请计算这两枚棋颜色不同的概率,并说明理由【分析】(1)大量重复试验下摸球的频率可以估计摸球的概率,据此求解;(2)画树状图列出所有等可能结果,再找到符合条件的结果数,根据概率公式求解可得.【解答】解:(1)根据表中数据估计从盒中摸出一枚棋是黑棋的概率是0.25,故答案为:0.25;(2)由(1)可知,黑棋的个数为4×0.25=1,则白棋子的个数为3,画树状图如下:由表可知,所有等可能结果共有12种情况,其中这两枚棋颜色不同的有6种结果,所以这两枚棋颜色不同的概率为.【点评】本题考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中某个事件发生的频率能估计概率.14.在一个口袋中有3个完全相同的小球,把它们分别标号为1,2,3,随机地摸取一个小球然后放回,再随机地摸出一个小球.记事件A为“两次取的小球的标号的和是2的整数倍”,记事件B为“两次取的小球的标号的和是2或3的整数倍”,请你判断等式P(B)=+P(A)是否成立,并说明理由.【分析】分别求得时间A和事件B的概率后即可确定P(B)=+P(A)是否成立.【解答】解:等式P(B)=+P(A)不成立,理由:列表得:共9种等可能的结果,其中为2的倍数的有5种,为2或3的倍数的有7种,故P(A)=,P(B)=,故P(B)=+P(A)不成立.【点评】此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.15.欢欢有红色,白色,黄色三件上衣,又有米色,白色的两条裤子.如果欢欢最喜欢的穿着搭配是白色上衣配米色裤子,求欢欢随机拿出一件上衣和一条裤子正好是她最喜欢的穿着搭配的概率.【分析】首相根据题意画出树状图,然后由树状图求得所有等可能的结果与白色上衣配米色裤子的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵所有等可能结果共6种,其中正好是白色上衣配米色裤子的只有1种,∴所求概率是:.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.16.四张大小、质地均相同的卡片上分别标有:1,2,3,4.现将标有数字的一面朝下扣在桌子上,然后由小明从中随机抽取一张(不放回),再从剩下的3张中随机取第二张.(1)用画树状图的方法,列出小明前后两次取得的卡片上所标数字的所有可能情况;(2)求取到的两张卡片上的数字之积为奇数的概率.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.【解答】解:(1)所有可能的情况如下:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3).(2)由(1)知,所有可能的积有12种情况,其中出现奇数的情形只有2种,且每一种情形出现的可能性都是相同的,=.所以,P(积为奇数)【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.17.不透明的口袋里装有红、黄、蓝三种颜色的小球若干个(除颜色外其余都相同),其中红球2个(分别标有1号、2号),蓝球1个.若从中任意摸出一个球,它是蓝球的概率为.(1)求袋中黄球的个数;(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,请用画树状图或列表格的方法,求两次摸到不同颜色球的概率.【分析】(1)利用概率的求解方法,借助于方程求解即可;(2)此题需要两步完成,所以采用树状图法或者采用列表法都比较简单;解题时要注意是放回实验还是不放回实验,此题属于不放回实验.【解答】解:(1)设袋中黄球的个数为x个,=∴x=1∴袋中黄球的个数为1个;(2分)(2)方法一、列表如下:(6分)∴一共有12种情况,两次摸到不同颜色球的有10种情况,∴两次摸到不同颜色球的概率为:.(8分)方法二,画树状图如下:。
人教版九年级数学上 第25章《概率初步》期末复习试卷(含答案)
单元测试(五) 概率初步(时间:45分钟总分:100分)一、选择题(每小题3分,共30分) 1.下列事件中是随机事件的有( )①早晨的太阳一定从东方升起;②打开数学课本时刚好翻到第60页;③从一定高度落下的图钉,落地后钉尖朝上;④今年14岁的小云一定是初中学生. A.1个B.2个C.3个D.4个2.同时抛掷两枚质地均匀的正方体骰子1次,下列事件中是不可能事件的是( ) A.朝上的点数之和为13 B.朝上的点数之和为12C.朝上的点数之和为2D.朝上的点数之和小于33.在一个不透明的口袋中装有若干个只有颜色不同的球,如果口袋中只装有2个黄球且摸出黄球的概率为21,那么袋中其他颜色的球共有( ) A.1个B.2个C.3个D.4个4.某超市在“五·一”期间开展有奖促销活动,每买100元商品,可参加抽奖一次,中奖的概率为31,小张这期间在该超市买商品获得了三次抽奖机会,则小张( ) A.能中奖一次B.能中奖二次C.至少能中奖一次D.中奖次数不能确定5.四张质地、大小相同的卡片上,分别画上如下图所示的四个图形,在看不到图形的情况下从中任意抽出一张,则抽出的卡片是轴对称图形的概率是()A.21 B.41 C.43 D.16.小明在做一道正确答案是2的计算题时,由于运算符号(“+”“-”“×”或“÷”)被墨迹污染,看见的算式是“4■2”,那么小明还能做对的概率是( )A.41 B.31C.61 D.21 7.义乌国际小商品博览会某志愿小组有五名翻译,其中一名只会翻译阿拉伯语,三名只会翻译英语,还有一名两种语言都会翻译.若从中随机挑选两名组成一组,则该组能够翻译上述两种语言的概率是( )A.53B.107 C.103 D.2516 8.一个盒子里有完全相同的三个小球,球上分别标有数字-1,1,2.随机摸出一个小球(不放回)其数字记为p ,再随机摸出另一个小球其数字记为q ,则满足关于x 的方程x 2+px +q =0有实数根的概率是( )A.21 B. 31 C.32 D.659.如图,正方形ABCD 内接于⊙O ,⊙O 的直径为2分米,若在这个圆面上随意抛一粒豆子,则豆子落在正方形 ABCD 内的概率是()A.π2B.2π C.π21 D.2π10.在盒子里放有三张分别写有整式a +1,a +2,2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是( ) A.31 B.32C.61 D.43二、填空题(每小题4分,共24分)11.小颖妈妈经营的玩具店某次进了一箱黑白两种颜色的塑料球共3 000个,为了估计两种颜色的球各有多少个,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到黑球的频率在0.7附近波动,据此可以估计黑球的个数约是______.12.在一个不透明的盒子中装有2个白球,n 个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,它是黄球的概率为32,则n =______. 13.张凯家购置了一辆新车,爸爸妈妈商议确定车牌号,前三位选定为8ZK 后,对后两位数字意见有分歧,最后决定由毫不知情的张凯从如图排列的四个数字中随机划去两个,剩下的两个数字从左到右组成两位数,续在8ZK 之后,则选中的车牌号为8ZK 86的概率是______14.小明把如图所示的矩形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上),击中阴影区域的概率是______ 15.小宝与小贝玩一个游戏:三张大小、质地都相同的卡片上分别标有数字1,2,3,将标有数字的一面朝下,小宝从中任意抽取一张,记下数字后放回洗匀,然后小贝从中任意抽取一张,计算抽得的两个数字之和,如果和为奇数,则小贝胜;如果和为偶数,则小宝胜.该游戏对双方______(填“公平”或“不公平”).16.有三张正面分别标有数字3,4,5的不透明卡片,它们除数字不同外其余完全相同.现将它们背面朝上,洗匀后从中任取一张,记下数字后将卡片背面朝上放回,又洗匀后再抽取一张,则两次抽得卡片上的数字的差的绝对值大于1的概率是______三、解答题(共46分)17.(10分)在一个不透明的袋子中,装有9个大小和形状一样的小球,其中3个红球,3个白球,3个黑球,它们已在口袋中被搅匀,现在有一个事件:从口袋中任意摸出n个球,在这n个球中,红球、白球、黑球至少各有一个.(1)当n为何值时,这个事件必然发生?(2)当n为何值时,这个事件不可能发生?(3)当n为何值时,这个事件可能发生?18.(10分)“石头、剪子、布”是小朋友都熟悉的游戏,游戏时小聪、小明两人同时做“石头、剪子、布”三种手势中的一种,规定“石头”(记为A)胜“剪子”,“剪子”(记为B)胜“布”,“布”(记为C)胜“石头”,同种手势不分胜负,继续比赛.(1)请用树状图或表格列举出同一回合中所有可能的对阵情况;(2)假定小聪、小明两人每次都等可能地做这三种手势,那么同一回合中两人“不谋而合”(即同种手势)的概率是多少?19.(12分)在一个暗箱中装有红、黄、白三种颜色的乒乓球(除颜色外其余均相同),其中白球、黄球各1个,若从中任意摸出一个球是白球的概率是31. (1)求暗箱中红球的个数.(2)先从暗箱中任意摸出一个球记下颜色后放回,再从暗箱中任意摸出一个球,求两次摸到的球颜色不同的概率(用树状图或列表法求解)20.(14分)若一个三位数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”.现从1,2,3,4这四个数字中任取3个数,组成无重复数字的三位数.(1)请画出树状图并写出所有可能得到的三位数;(2)甲、乙二人玩一个游戏,游戏规则是:若组成的三位数是“伞数”,则甲胜;否则乙胜.你认为这个游戏公平吗?试说明理由.参考答案一、选择题(每小题3分,共30分) 1.C2.A3.B4.D5.A6.D7.B8.A9.A10.B二、填空题(每小题4分,共24分) 11.2 100个.12.4.13.31.14.41. 15.不公平 16.92 三、解答题(共46分)17.(1)当n =7或8或9时,这个事件必然发生; (2)当n =1或2时,这个事件不可能发生; (3)当n =3或4或5或6时,这个事件可能发生. 18.(1)列表格如下:小聪小明ABCAAAABACBBABBBCCCACBCC 所有可能的结果为AA ,AB ,AC ,BA ,BB ,BC ,CA ,CB ,CC ;可见,所有可能的对阵共有9种不同的情况;(2)其中恰好是“不谋而合”(即同种手势)的情况有3种,分别是AA ,BB ,C C. ∴P (不谋而合)=93=3119.(1)设暗箱中红球有x 个,由题意得:x ++111=31.解得x =1.经检验:x =1是原方程的解. 答:暗箱中红球有1个.(2)用树状图列出所有可能的结果:共有9种结果,且它们是等可能的,其中两次摸到不同颜色的结果有6种,即P (两次摸不同颜色)=96=32. 20.(1)树状图如下:所有可能得到的三位数有24个,分别为:123,124,132,134,142,143,213,214,231,234,241,243,312,314,321,324,341,342,412,413,421,423,431,432;(2)这个游戏不公平.理由如下:组成的三位数中是“伞数”的有:132,142,143,231,241,243,341,342,共有8个,所以,甲胜的概率为31,而乙胜的概率为32,故这个游戏不公平.。
人教版数学九年级上册 第25章概率初步单元测试试题(一)
概率初步单元测试试题(一)一.选择题1.下列事件中,必然事件是()A.2月份有31天B.一个等腰三角形中,有两条边相等C.明天的太阳从西边出来D.投掷一枚质地均匀的骰子,出现6点朝上2.下列说法正确的是()A.端午节我们有吃棕子的习俗,为了保证大家吃上放心的棕子,质监部门对广安市市场上的棕子实行全面调查B.一组数据﹣1,2,5,7,7,7,4的众数是7,中位数是7C.海底捞月是必然事件D.甲、乙两名同学各跳远10次,若他们跳远成绩的平均数相同,甲同学跳远成绩的方差为1.2,乙同学跳远成绩的方差为1.6,则甲同学发挥比乙同学稳定3.一枚质地均匀的普通骰子,抛掷6次没有1次点数1朝上,那么第7次抛掷,点数1朝上的概率是()A.B.C.1D.04.在一个不透明的袋子里装有若干个白球和15个黄球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过很多次重复试验,发现摸到黄球的频率稳定在0.75,则袋中白球有()A.5个B.15个C.20个D.35个5.下列成语表示随机事件的是()A.水中捞月B.水滴石穿C.瓮中捉鳖D.守株待兔6.正方形地板由9块边长均相等的小正方形组成,米粒随机地撒在如图所示的正方形地板上,那么米粒最终停留在黑色区域的概率是()A.B.C.D.7.一枚质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字,投掷这个骰子一次,得到的点数与3,4作为等腰三角形三边的长,能构成等腰三角形的概率是()A.B.C.D.8.春节期间,《中国诗词大会)节目的播出深受观众喜爱,进一步激起了人们对古诗词的喜爱,现有以下四句古诗词:①锄禾日当午;②春眠不觉晓;③白日依山尽;④床前明月光,甲、乙两名同学从中各随机选取了一句写在了纸上,则他们选取的诗句恰好相同的概率为()A.B.C.D.9.小明要用如图的两个转盘做“配紫色”游戏,每个转盘均被等分成若干个扇形,他同时转动两个转盘,停止时指针所指的颜色恰好配成紫色的概率为()A.B.C.D.10.一部记录片播放了关于地震的资料及一个有关地震预测的讨论,一位专家指出:“在未来20年,A城市发生地震的机会是三分之二”对这位专家的陈述下面有四个推断:①×20≈13.3,所以今后的13年至14年间,A城市会发生一次地震;②大于50%,所以未来20年,A城市一定发生地震;③在未来20年,A城市发生地震的可能性大于不发生地震的可能性;④不能确定在未来20年,A城市是否会发生地震;其中合理的是()A.①③B.②③C.②④D.③④二.填空题11.袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为”,则这个袋中白球大约有个.12.点P的坐标是(a,b),从﹣2,﹣1,1,2这四个数中任取一个数作为a的值,再从余下的三个数中任取一个数作b的值,则点P(a,b)在平面直角坐标系中第一象限内的概率是.13.在一个不透明的口袋中装有3个红球、1个黑球,这些球除颜色外其他都相同,在看不到球的条件下,随机地从这个袋子中摸出两个球,摸到的两个球都是红球的概率是.14.一个不透明的袋子中有4个分别标有数字6,2,﹣4,﹣1的球,这些球除所标的数字不同外其他都相同,若从袋子中随机摸出两个球,则这两个球上的两个数字之积为负数的概率是.15.如图,△ABC是一块绿化带,将阴影部分修建为花圃,已知AB=15,AC=9,BC=12,阴影部分是△ABC的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为.三.解答题16.甲、乙、丙三位同学在知识竞赛问答环节中,采用抽签的方式决定出场顺序.求甲比乙先出场的概率.17.有四组家庭参加亲子活动,A、B、C、D分别代表四个家长,他们的孩子分别是a、b、c、d,若主持人随机从家长、孩子中各选择一个,请你用树状图或列表的方法求出选中的两人刚好是同一个家庭的概率.18.“迎元旦大酬宾!”某商场设计的促销活动如下:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“50元”的字样.规定:在本商场同一日内,顾客每消费满300元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相等价格的购物券.某顾客刚好消费300元.(1)该顾客至多可得到元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于60元的概率.19.某商店在四个月的试销期内,只销售A、B两个品牌的电视机,共售出400台.如图1和图2为经销人员正在绘制的两幅统计图,请根据图中信息回答下列问题.(1)第四个月两品牌电视机的销售量是多少台?(2)先通过计算,再在图2中补全表示B品牌电视机月销量的折线:(3)为跟踪调查电视机的使用情况,从该商店第四个月售出的电视机中,随机抽取一台,抽到A品牌和抽到B品牌电视机的可能性哪个大?请说明理由.参考答案与试题解析一.选择题1.【解答】解:A、2月份有31天,是不可能事件;B、一个等腰三角形中,有两条边相等,是必然事件;C、明天的太阳从西边出来,是不可能事件;D、投掷一枚质地均匀的骰子,出现6点朝上,是随机事件;故选:B.2.【解答】解:A、端午节我们有吃棕子的习俗,为了保证大家吃上放心的棕子,质监部门对广安市市场上的棕子实行抽样调查,本选项说法错误,不符合题意;B、一组数据﹣1,2,5,7,7,7,4的众数是7,中位数是6,本选项说法错误,不符合题意;C、海底捞月是不可能事件,本选项说法错误,不符合题意;D、甲、乙两名同学各跳远10次,若他们跳远成绩的平均数相同,甲同学跳远成绩的方差为1.2,乙同学跳远成绩的方差为1.6,则甲同学发挥比乙同学稳定,本选项说法正确,符合题意;故选:D.3.【解答】解:∵抛掷一枚质地均匀的普通骰子,朝上一面共有6种等可能结果,其中点数1朝上的只有1种结果,∴第7次抛掷,点数1朝上的概率是,故选:A.4.【解答】解:设袋中白球有x个,根据题意得:=0.75,解得:x=5,经检验:x=5是分式方程的解,故袋中白球有5个.故选:A.5.【解答】解:水中捞月是不可能事件,故选项A不符合题意;B、水滴石穿是必然事件,故选项B不符合题意;C、瓮中捉鳖是必然事件,故选项C不符合题意;D、守株待兔是随机事件,故选项D符合题意;故选:D.6.【解答】解:∵由图可知,黑色方砖2块,共有9块方砖,∴黑色方砖在整个地板中所占的面积的比值=,∴米粒停在黑色区域的概率是.故选:B.7.【解答】解:画树状图为:共有6种等可能的结果数,能构成等腰三角形的结果数为2,所以能构成等腰三角形的概率==.故选:C.8.【解答】解:画树状图如下:由树状图可知共有16种等可能结果,其中他们选取的诗句恰好相同的结果有4种,∴他们选取的诗句恰好相同的概率为=,故选:B.9.【解答】解:根据题意列表如下:白蓝红红(红,白)(红,蓝)(红,红)蓝(蓝,白)(蓝,蓝)(蓝,红)上面等可能出现的6种结果中,有2种情况可能得到紫色,故配成紫色的概率是=,故选:C.10.【解答】解:∵一位专家指出:在未来的20年,A市发生地震的机会是三分之二,∴未来20年内,A市发生地震的可能性比没有发生地震的可能性大;不能确定在未来20年,A城市是否会发生地震,故选:D.二.填空题(共5小题)11.【解答】解:∵袋中装有6个黑球和n个白球,∴袋中一共有球(6+n)个,∵从中任摸一个球,恰好是黑球的概率为,∴=,解得:n=2.故答案为:2.12.【解答】解:列树状图如图所示,共12种情况;∵点P(a,b)在平面直角坐标系中第一象限内,∴a>0,b>0,∴符合条件的有①a=1,b=2,②a=2,b=1,共2种情况,∴点P(a,b)在平面直角坐标系中第一象限内的概率是=.故答案为:.13.【解答】解:树状图如图所示,摸到的两个球都是红球的概率==,故答案为14.【解答】解:如图所示:所有等可能的情况有12种,其中两个数字之积为负数的情况有8种,P==,故答案为:.15.【解答】解:∵AB=15,BC=12,AC=9,∴AB2=BC2+AC2,∴△ABC为直角三角形,∴△ABC的内切圆半径==3,=ACBC=×12×9=54,∴S△ABCS=9π,圆∴小鸟落在花圃上的概率=,故答案为:三.解答题(共4小题)16.【解答】解:画出树状图得:∵共有6种等可能的结果,甲比乙先出场的有3种情况,∴甲比乙先出场的概率为=.17.【解答】解:用列表法表示所有可能出现的结果如下:共有16种结果,每种结果出现的可能性相同,选中的两个人刚好是一个家庭的有4种,选中的两人刚好是同一个家庭的概率为=.18.【解答】解:(1)则该顾客至多可得到购物券:50+20=70(元);故答案为:70;(2)画树状图得:∵共有12种等可能的结果,该顾客所获得购物券的金额不低于60元的有4种情况,∴该顾客所获得购物券的金额不低于60元的概率为:=.19.【解答】解:(1)根据题意得:400×(1﹣15%﹣30%﹣25%)=120(台),答:第四个月两品牌电视机的销售量是120台;(2)三月份的销售额是:400×25%=100(台),则三月份B品牌电视机销量是100﹣50=50(台),四月份B品牌电视机销量是400×30%﹣40=80(台),补图如下:(3)∵第四个月售出的电视机共有120台,其中销售A品牌有40台,B品牌有80台,∴抽到A品牌的概率是=,抽到B品牌电视机的概率是=,∴抽到B品牌电视机的可能性大.11 / 11。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《概率》单元检测题
班级姓名学号_________ 得分
一、选择题:(每题5分,共25分)
1、下列事件中是必然事件的是()
(A)打开电视机,正在播广告
(B)掷一枚质地均匀的骰子,骰子停止后朝上的点数是6
(C)地球总是绕着太阳转
(D)今年12月1日,中山市一定会下雨
2、一个不透明的袋中装有除颜色外的其余均相同的5个红球和3个黄球,从中
随机摸出一个,则摸到黄球的概率是()
A.1
8
B.
1
3
C.
3
8
D.
3
5
3、在拼图游戏中,从图1中的四张纸片中,任取两张纸片,能拼成“小房子”
(如图2)的概率等于()
A.1 B.1
2 C.1
3
D.2
3
4、如图所示的两个圆盘中,指针落在每一个数上的机会均等,那么两个指针同
时落在偶数上的概率是()
A.191065
...
25252525
B C D
5、下列事件:
①打开电视机,它正在播广告;
②从只装有红球的口袋中,任意摸出一个球,恰好是白球;
③两次抛掷正方体骰子,掷得的数字之和小于13;
④抛掷硬币1000次,第1000次正面向上
其中是可能事件的为() A.①③ B.①④ C.②③ D.②④
二、填空题:(每题5分,共25分)
6、明明的学校有30个班,每班50名学生,学校要从每班各抽出1名学生参加
社会实践活动,则明明被选中的概率是________
7、一套书共有上、中、下三册,将它们任意摆放到书架的同一层上,这三册书
从左向右恰好成上、中、下顺序的概率为_______.
8、在“石头、剪子、布”的游戏中,两人做同样手势的概率是________.
9、将两张形状相同,内容不同的卡片对开剪成四张小图片,闭上眼睛随机抽出两张,则它们正好能拼成原图的概率为_____.
10、小明参加夏令营,一天夜里熄灯了,伸手不见五指,想到明天去八达岭长城天不亮就出发,想把袜子准备好,而现在又不能开灯。
袋子里有尺码相同的3双黑袜子和1双白袜子,混放在一起,只能摸黑去拿出2只。
摸出的2只恰好是一双的可能性为______.
三、解答题:(11、12题10分,13、14题15分,共50分)
11、小红手里有梅花1,2,3,4,5,6,7,8,9九张牌,从中抽取一张牌,观察牌上的数字,求下列事件的概率:
(1)牌上的数字为2;
(2)牌上的数字为奇数;
(3)牌上的数字大于1且不大于5。
12、小明拿了两组牌,第一组牌面的数字分别为1、2、3,第二组牌面的数字分别为5、6、7,那么从每组牌中各摸出一张牌,两张牌的牌面数字之和为奇数的概率是多少?
13、某射击运动员在同一条件下练习射击,结果如下表所示:
(1)计算表中击中靶心的各个频率并填入表中;
(2)这个运动员射击一次,击中靶心的概率约是多少?
(3)按你估计的概率,这名运动员射击1000次,击中靶心次数是多少?
14、有四张背面相同的纸牌A,B,C,D,其正面分别画有四个不同的几何图形(如图),小华将这4张牌背面朝上洗匀后,摸出一张,放回洗匀后再摸一张.(1)用树状图表示两次摸牌所有可能出现的结果(纸牌可用A,B,C,D表示);(2)求摸出两张牌面图形都是中心对称图形的纸牌的概率.
四、附加题(20分)
15、(2006年广州市)如图,甲转盘被分成3个面积相等的扇形,乙转盘被分成2•个面积相等的扇形.小夏和小秋利用它们来做决定获胜与否的游戏.规定小夏转甲盘一次,小秋转乙盘一次为一次游戏(当指针指在边界线上时视为无效,重转).
(1)小夏说:“如果两个指针所指区域内的数之和为6或7,则我获胜;否则你获胜.”按小夏设计的规则.请你写出两人获胜的可能性分别是多少?
(2)请你对小夏和小秋玩的这种游戏设计一种公平的游戏规则,并用一种合适的方法(例如:树状图,列表)说明其公平性.。