人教版八年级数学《三角形》单元测试题(新)

合集下载

人教版八年级数学第十一章《三角形》单元测试题(含答案)

人教版八年级数学第十一章《三角形》单元测试题(含答案)

人教版八年级数学第十一章《三角形》单元测试题(含答案)时间:120分钟满分:120分一、选择题(共10小题,满分30分,每小题3分)1.(3分)如图,在四边形ABCD中,AB>AD,对角线AC平分∠BAD,下列结论正确的是()A.AB﹣AD>|CB﹣CD|B.AB﹣AD=|CB﹣CD|C.AB﹣AD<|CB﹣CD|D.AB﹣AD与|CB﹣CD|的大小关系不确定2.(3分)有两条高在三角形外部的三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不确定3.(3分)如图,为了估计池塘两岸A,B间的距离,在池塘的一侧选取点P,测得P A=15米,PB=11米那么A,B间的距离不可能是()A.5米B.8.7米C.27米D.18米4.(3分)一个三角形的两边长分别为3和4,且第三边长为整数,这样的三角形的周长最大值是()A.11B.12C.13D.145.(3分)如图,在△ABC中,AF平分∠BAC交BC于点F、BE平分∠ABC交AC于点E,AF与BE相交于点O,AD是BC边上的高,若∠C=50°,BE⊥AC,则∠DAF的度数为()A.10°B.12°C.15°D.20°6.(3分)如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF,以下结论:①AD∥BC,②∠ACB=∠ADB,③∠ADC+∠ABD=90°,④∠ADB=45°﹣∠CDB,其中正确的结论有()A.1个B.2个C.3个D.4个7.(3分)如图,在三角形ABC中,AH⊥BC,BF平分∠ABC,BE⊥BF,EF∥BC,以下四个结论:①AH⊥EF;②∠ABF=∠EFB;③AC∥BE;④∠E=∠ABE.其中正确的结论有()A.4个B.3个C.2个D.1个8.(3分)如图,四边形ABCD为一长方形纸带,AD∥BC,将四边形ABCD沿EF折叠,C、D两点分别与C′、D′对应,若∠1=2∠2,则∠3的度数为()A.50°B.54°C.58°D.62°9.(3分)若n边形的内角和与外角和相加为1800°,则n的值为()A.7B.8.C.9D.1010.(3分)如图,大建从A点出发沿直线前进8米到达B点后向左旋转的角度为α,再沿直线前进8米,到达点C后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了72米,则每次旋转的角度α为()A.30°B.40°C.45°D.60°二、填空题(共5小题,满分15分,每小题3分)11.(3分)如图,正六边形ABCDEF的顶点A、F分别在正方形BMGH的边BH、GH上.若正方形BMGH的边长为6,则正六边形ABCDEF的边长为.12.(3分)如图,在△ABC中,∠B=80°,∠C=42°,AD⊥BC于点D,AE平分∠BAC,则∠DAE=.13.(3分)如图,在△ABC中,∠A=65°,则∠1+∠2=°.14.(3分)如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做半高三角形.已知直角三角形ABC是半高三角形,且斜边AB=10,则它的周长等于.15.(3分)如图,在△ABC中,AD是中线,DE⊥AB于E,DF⊥AC于F,若AB=6cm,AC=4cm,则.三、解答题(共10小题,满分75分)16.(7分)如图所示,已知AD,AE分别是△ABC的高和中线,AB=6cm,AC=8cm,BC =10cm,∠CAB=90°.试求:(1)AD的长;(2)△ABE的面积;(3)△ACE和△ABE的周长的差.17.(7分)如图,P为△ABC内任意一点,求证:AB+AC>PB+PC.18.(7分)已知a,b,c分别为△ABC的三边,且满足a+b=3c﹣2,a﹣b=2c﹣6.(1)求c的取值范围;(2)若△ABC的周长为12,求c的值.19.(7分)如图所示,在△ABC中,CD⊥AB于点D,EF⊥CD于点G,∠ADE=∠EFC.(1)证明AB∥EF.(2)请说明∠AED=∠ACB的理由.(3)若∠BDE=2∠B+36°,求∠DEF的度数.20.(7分)已知:在△ABC中,AE平分∠BAC,BF平分∠ABC,AE、BF交于点G.(1)如图1:若∠C=60°,求∠AGB的度数;(2)如图2:点D是AE延长线上一点,连接BD、CD,∠ADC=∠ABG+∠BAG,求证:CD∥BF;(3)如图3:在(2)的条件下,过点G作GK∥AB,交BD于点K,点M在线段DC 的延长线上,连接KM,若∠ACB=∠BDA,∠ABC+∠BAE=2∠DKM,∠M=16°,求∠BAC的度数.21.(7分)如图所示,在△ABC中,AD平分∠BAC交BC于点D,BE平分∠ABC交AD 于点E.(1)若∠C=60°,∠BAC=80°,求∠ADB的度数;(2)若∠BED=60°,求∠C的度数.22.(7分)如图,在三角形ABC中,点D是BC上一点,点F是AC上一点,连接AD、DF,点E是AD上一点,连接EF,且∠1+∠2=180°,∠B=∠3.(1)求证:AB∥DF;(2)若FD平分∠CFE,∠BAD=50°,∠3=70°,求∠CAD的度数.23.(8分)如图,四边形ABCD中,∠A=75°,∠C=105°,BE平分∠ABC,DF平分∠ADC.求:(1)∠ABC+∠ADC的值;(2)∠BED+∠BFD的值.24.(9分)已知如图1,线段AB,CD相交于O点,连接AD,CB,我们把如图1的图形称之为“8字形”.那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥你的聪明才智,解决以下问题:(1)在图1中,请写出∠A,∠B,∠C,∠D之间的数量关系,并说明理由;(2)如图2,计算∠A+∠B+∠C+∠D+∠E+∠F的度数.25.(9分)△ABC中,AD是∠BAC的角平分线,AE是△ABC的高.(1)如图1,若∠B=40°,∠C=60°,求∠DAE的度数;(2)如图2(∠B<∠C),试说明∠DAE与∠B、∠C的数量关系;(3)拓展:如图3,四边形ABDC中,AE是∠BAC的角平分线,DA是∠BDC的角平分线,猜想:∠DAE与∠B、∠C的数量关系是否改变.说明理由.参考答案一、选择题(共10小题,满分30分,每小题3分)1.A;2.C;3.C;4.C;5.C;6.B;7.B;8.B;9.D;10.B;二、填空题(共5小题,满分15分,每小题3分)11.4;12.19°;13.245;14.10+10或610;15.;三、解答题(共10小题,满分75分)16.解:∵∠BAC=90°,AD是边BC上的高,∴AB•AC BC•AD,∴AD 4.8(cm),即AD的长度为4.8cm;(2)方法一:如图,∵△ABC是直角三角形,∠BAC=90°,AB=6cm,AC=8cm,∴S△ABC AB•AC6×8=24(cm2).又∵AE是边BC的中线,∴BE=EC,∴BE•AD EC•AD,即S△ABE=S△AEC,∴S△ABE S△ABC=12(cm2).∴△ABE的面积是12cm2.方法二:因为BE BC=5,由(1)知AD=4.8,所以S△ABE BE•AD5×4.8=12(cm2).∴△ABE的面积是12cm2.(3)∵AE为BC边上的中线,∴BE=CE,∴△ACE的周长﹣△ABE的周长=AC+AE+CE﹣(AB+BE+AE)=AC﹣AB=8﹣6=2(cm),即△ACE和△ABE的周长的差是2cm.17.证明:延长BP交AC于点D,在△ABD中,PB+PD<AB+AD①在△PCD中,PC<PD+CD②①+②得PB+PD+PC<AB+AD+PD+CD,即PB+PC<AB+AC,即:AB+AC>PB+PC.18.解:(1)∵a,b,c分别为△ABC的三边,a+b=3c﹣2,a﹣b=2c﹣6,∴,解得:1<c<6.故c的取值范围为1<c<6;(2)∵△ABC的周长为12,a+b=3c﹣2,∴a+b+c=4c﹣2=12,解得c=3.5.故c的值是3.5.19.解:(1)证明:∵CD⊥AB于点D,EF⊥CD于点G,∴∠BDC=∠FGC,=90°,∴AB∥EF(同位角相等,两直线平行).(2)证明:由(1)得AB∥EF,∴∠B=∠EFC(两直线平行,同位角相等),又∵∠ADE=∠EFC.∴∠B=∠ADE;(3)由(2)得∠B=∠ADE,∴DE∥BC,由(1)得AB∥EF,∴四边形BDEF是平行四边形(两组对边平行的四边形是平行四边形),∴∠DEF=∠B(平行四边形对角相等),∵∠B=∠ADE,∠BDE=2∠B+36°,∴180°﹣∠B=2∠B+36°,∴∠B=48°,∴∠DEF=48°.20.(1)证明:如图1,∵AE、BF分别平分∠BAC与∠ABC,∴,,在△ABC中,∠ABC+∠ACB+∠C=180°,∠C=60°,∴∠ABC+∠BAC=180°﹣60°=120°,∴∠ABF+∠BAE∠ABC∠BAC(∠ABC+∠BAC)120°=60°,∴∠AGB=180°﹣60°=120°;(2)证明:如图2,∵∠BGD是△ABG得一个外角,∴∠BGD=∠BAG+∠ABG,∵∠ADC=∠BAG+∠ABG,∴∠BGD=∠ADC,∴CD∥BF;(3)解:如图3,∵∠BED=∠AEC,∠ACB=∠BDA,∴∠CAE=∠DBE,∵AE平分∠BAC,BF平分∠ABC,设∠ABF=∠CBF=α,∠BAD=∠CAD=∠DBC=β,∴∠AEC=2α+β,∵∠ABC+∠BAE=2∠DKM,∴,∵GK∥AB,∴∠BGK=∠ABG=α,∴∠GKD=∠GBK+∠BGK=2α+β,∴,∵GB∥DM,∠M=16°,∴∠GBK+∠MDK=180°,∵∠GBK+∠GKB+∠BGK+∠MKD+∠KDM+∠M=360°,∠BKG+∠MKD=180°﹣∠GKM,∴180°+180°﹣∠GKM+∠BGK+∠M=360°,∴∠GKM=∠BGK+∠M,∴,∴β=32°,∴∠BAC=2×32°=64°.21.解:(1)∵AD平分∠BAC,∠BAC=80°,∴∠DAC∠BAC=40°,∵∠ADB是△ADC的外角,∠C=60°,∴∠ADB=∠C+∠DAC=100°;(2)∵∠BED是△ABE的外角,∠BED=60°,∴∠BAD+∠ABE=∠BED=60°,∵AD平分∠BAC,BE平分∠ABC,∴∠BAC=2∠BAD,∠ABC=2∠ABE,∴∠BAC+∠ABC=2(∠BAD+∠ABE)=120°,∵∠BAC+∠ABC+∠C=180°,∴∠C=180°﹣(∠BAC+∠ABC)=60°.22.(1)证明:∵∠1+∠2=180°,∠1+∠DEF=180°,∴∠DEF=∠2.∴EF∥BC.∴∠3=∠FDC.∵∠B=∠3,∴∠B=∠FDC.∴AB∥DF.(2)解:∵AB∥DF,∴∠BAD=∠EDF=50°.∵FD平分∠CFE,∴∠EFC=2∠3=140°.∴∠AFE=180°﹣∠EFC=40°,∠1=∠3+∠EDF=70°+50°=120°.∴∠CAD=180°﹣∠1﹣∠AFE=20°.23.解:(1)∵四边形ABCD中,∠A=75°,∠C=105°,∴∠ABC+∠ADC=360°﹣75°﹣105°=180°;(2)如图,∵BE平分∠ABC,DF平分∠ADC,∴∠1∠ABC,∠2∠ADC,∴∠1+∠2(∠ABC+∠ADC)=90°,由三角形外角的性质可得,∠BED=∠1+∠A,∠BFD=∠2+∠A,∴∠BED+∠BFD=∠1+∠A+∠2+∠A=∠1+∠2+2∠A=90°+150°=240°.24.解:(1)在△AOD中,∠AOD=180°﹣∠A﹣∠D,在△BOC中,∠BOC=180°﹣∠B﹣∠C,∵∠AOD=∠BOC(对顶角相等),∴180°﹣∠A﹣∠D=180°﹣∠B﹣∠C,∴∠A+∠D=∠B+∠C;(2)如图3,连接AD,则∠BAD+∠B+∠C+∠ADC=360°,根据“8字形”数量关系,∠E+∠F=∠EDA+∠F AD,所以,∠A+∠B+∠C+∠D+∠E+∠F=360°.25.解:(1)∵∠B=40°,∠C=60°,∠BAC+∠B+∠C=180°,∴∠BAC=80°,∵AD是∠BAC的角平分线,∴∠CAD=∠BAD∠BAC=40°,∵AE是△ABC的高,∴∠AEC=90°,∵∠C=60°,∴∠CAE=90°﹣60°=30°,∴∠DAE=∠CAD﹣∠CAE=10°;(2)∵∠BAC+∠B+∠C=180°,∴∠BAC=180°﹣∠B﹣∠C,∵AD是∠BAC的角平分线,∴∠CAD=∠BAD∠BAC,∵AE是△ABC的高,∴∠AEC=90°,∴∠CAE=90°﹣∠C,∴∠DAE=∠CAD﹣∠CAE∠BAC﹣(90°﹣∠C)(180°﹣∠B﹣∠C)﹣90°+∠C∠C∠B,即∠DAE∠C∠B;(3)不变,理由:连接BC交AD于F,过点A作AM⊥BC于M,过点D作DN⊥BC于N,∵AE是∠BAC的角平分线,AM是高,∴∠EAM(∠ACB﹣∠ABC),同理,∠ADN(∠BCD﹣∠CBD),∵∠AFM=∠DFN,∠AMF=∠DNF=90°,∴∠MAD=∠ADN,∴∠DAE=∠EAM+∠MAD=∠EAM+∠ADN(∠ACB﹣∠ABC)(∠BCD﹣∠CBD)(∠ACD﹣∠ABD).。

人教版八年级数学上册第1章三角形单元测试(含答案)

人教版八年级数学上册第1章三角形单元测试(含答案)

第11章三角形一、选择题1.平行四边形的内角和为()A.180°B.270°C.360°D.640°2.如图,正六边形的每一个内角都相等,则其中一个内角α的度数是()A.240°B.120°C.60°D.30°3.五边形的内角和是()A.180°B.360°C.540°D.600°4.如果一个多边形的内角和是720°,那么这个多边形是()A.四边形B.五边形C.六边形D.七边形5.将一个n边形变成n+1边形,内角和将()A.减少180°B.增加90°C.增加180°D.增加360°6.一个多边形的每个内角均为108°,则这个多边形是()A.七边形B.六边形C.五边形D.四边形7.若一个多边形的内角和是900°,则这个多边形的边数是()A.5 B.6 C.7 D.88.一个多边形的内角和是900°,这个多边形的边数是()A.10 B.9 C.8 D.79.一个多边形的内角和是360°,这个多边形是()A.三角形B.四边形C.六边形D.不能确定10.一个多边形的每个外角都等于60°,则这个多边形的边数为()A.8 B.7 C.6 D.511.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P的度数是()A.60°B.65°C.55°D.50°12.已知正多边形的一个外角等于60°,则该正多边形的边数为()A.3 B.4 C.5 D.613.如果一个多边形的每一个外角都是60°,则这个多边形的边数是()A.3 B.4 C.5 D.614.八边形的内角和等于()A.360°B.1080°C.1440°D.2160°15.一个多边形的内角和是外角和的2倍,则这个多边形是()A.四边形B.五边形C.六边形D.八边形二、填空题16.若一个正多边形的一个内角等于135°,那么这个多边形是正______边形.17.正多边形一个外角的度数是60°,则该正多边形的边数是______.18.正多边形的一个外角等于20°,则这个正多边形的边数是______.19.n边形的每个外角都等于45°,则n=______.20.一个多边形的内角和比外角和的3倍多180°,则它的边数是______.21.一个正多边形的一个外角等于30°,则这个正多边形的边数为______.22.五边形的内角和为______.23.四边形的内角和是______.24.若正多边形的一个外角为40°,则这个正多边形是______边形.25.内角和与外角和相等的多边形的边数为______.26.若正n边形的一个外角为45°,则n=______.27.四边形的内角和为______.28.如图,一个零件的横截面是六边形,这个六边形的内角和为______.29.某正n边形的一个内角为108°,则n=______.30.正多边形的一个外角是72°,则这个多边形的内角和的度数是______.第11章三角形参考答案一、选择题(共15小题)1.C;2.B;3.C;4.C;5.C;6.C;7.C;8.D;9.B;10.C;11.A;12.D;13.D;14.B;15.C;二、填空题(共15小题)16.八;17.六;18.18;19.8;20.9;21.12;22.540°;23.360°;24.九;25.四;26.8;27.360°;28.720°;29.5;30.540°;先制定阶段性目标—找到明确的努力方向每个人的一生,多半都是有目标的,大的目标应该是一个十年、二十年甚至几十年为之奋斗的结果,应该定得比较远大些,这样有利于发挥自己的潜能。

人教版初中八年级上册数学第十一章《三角形》单元达标检测试题及答案

人教版初中八年级上册数学第十一章《三角形》单元达标检测试题及答案

新人教版数学八年级上册第十一章三角形单元达标检测试题一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给的4个选项中,只有一项是符合题目要求的,请将正确答案前的英文字母填在题后括号内)1.三角形三条边大小之间存在一定的关系,以下列各组线段为边,能组成三角形的是( )A.2 cm,3 cm,5 cm B.5 cm,6 cm,10 cmC.1 cm,1 cm,3 cm D.3 cm,4 cm,9 cm2.以长为13cm、10cm、5cm、7cm的四条线段中的三条线段为边,可画三角形的个数是()A.1 B.2 C.3 D.43.对三角形的高、中线和角平分线概念理解错误的是 ( )A.锐角三角形的三条高线、三条中线、三条角平分线分别交于一点B.钝角三角形有两条高线在三角形外部C.直角三角形只有一条高线D.任意三角形都有三条高线、三条中线、三条角平分线4.给出下列命题:①三条线段组成的图形叫三角形;②三角形相邻两边组成的角叫三角形的内角;③三角形的角平分线是射线;④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外;⑤任何一个三角形都有三条高、三条中线、三条角平分线;⑥三角形的三条角平分线交于一点,且这点在三角形内。

正确的命题有()A.1个B.2个C.3个D.4个5.如图,在△ABC中,D,E分别为BC上两点,且BD=DE=EC,则图中面积相等的三角形有( )对.A.4 B.5 C.6 D.75题图6题图7题图6.如图,一面小红旗其中∠A=60°, ∠B=30°,则∠BCA=90°。

求解的直接依据是()A.三角形内角和定理B.三角形外角和定理C.多边形内角和公式D. 多边形外角和公式7.如图,在直角三角形ABC 中,AC ≠AB ,AD 是斜边上的高,DE ⊥AC ,DF ⊥AB ,垂足分别为E 、F ,则图中与∠C (∠C 除外)相等的角的个数是 ( ) A 、3个 B 、4个 C 、5个 D 、6个8.在△ABC 中,∠C =90°,点D ,E 分别在边AC ,AB 上,若∠B =∠ADE ,则下列结论正确的是 ( )A .∠A 和∠B 互为补角B . ∠B 和∠ADE 互为补角C .∠A 和∠ADE 互为余角D .∠AED 和∠DEB 互为余角9.已知△ABC 中,AB=6,BC=4,那么边AC 的长可能是下列哪个值 ( ) A. 11 B. 5 C. 2 D. 110.n 边形内角和公式是(n-2×180°.则四边形内角和为 ( ) A.180° B.360° C.540° D.720°二、填空题:(本大题共10小题,每小题3分,共30分.把答案写在答题卡中的横线上) 11.已知a ,b ,c 是三角形的三边长,化简:|a -b +c |-|a -b -c |=__________. 12.等腰三角形的周长为20 cm ,一边长为6 cm ,则底边长为__________.13.如果一个多边形的内角和等于它的外角和的3倍,那么这个多边形是______边形. 14.如图,∠A +∠B +∠C +∠D +∠E +∠F =__________.14题图 15题图 16题图15.如图,点D ,B ,C 在同一直线上,∠A =60°,∠C =50°,∠D =25°,则∠1=______. 16.如图,⊿ABC 中,∠A = 40°,∠B = 72°,CE 平分∠ACB ,CD ⊥AB 于D ,DF ⊥CE , 则∠CDF = 。

人教版数学八年级上册《第11章三角形》单元测试题(含答案)

人教版数学八年级上册《第11章三角形》单元测试题(含答案)

三角形章节同步测试题基础卷(满分:100分,时间:45分钟)一、精心选一选(每小题3分,共24分)1.请根据凸多边形的定义,判断下列选项中不是凸多边形的是( )2.小华在计算四个多边形的内角和时,得到下列四个答案,则他计算不对的是( ) A .0720 B .01080 C .01440 D .01900 3.随着一个多边形的边数增加,它的外角和( )A .随着增加B .随着减少C .保持不变D .无法确定4.过多边形的一个顶点的所有对角线把这个多边形分成6个三角形,则这个多边形的内角和等于( )A .0720 B .0900 C .01080 D .012605.若四边形ABCD 中,∠A :∠B :∠C :∠D=1:2:4:5,则∠A+∠D 等于( ) A .030 B .075 C .0180 D .0210 6.能进行镶嵌的正多边形组合是( )A .正三角形和正八边形B .正五边形和正十边形C .正方形和正八边形D .正六边形和正八边形7.如图,∠1,∠2,∠3,∠4是五边形ABCDE 的外角,且∠1=∠2=∠3=∠4=070,则∠AED 的度数是( )A .0110 B .0108 C .0105 D .0100 8.能构成如图所示的图案的基本图形是( )ABCDA B CDC DE4二、细心填一填(每小题4分,共32分)9.正十边形的内角和等于 度,每个内角等于 度. 10.如果正多边形的一个外角为072,那么它的边数是 . 11.如图是三个完全相同正多边形拼成的无缝隙,不重叠图形的一部分,这种正多边形是正 边形.12.“三江”黄金广场用三种不同的正多边形地砖铺设(每种只选一块),其中已知选好了用正方形和正六边形这两种,还需再选用 ,使这三种组合在一起的广场铺满.13.多边形每一个内角都等于0140,则从此多边形一个顶点出发的对角线有 条. 14.若一个多边形的各边长相等,其周长为63厘米,且内角和为0900,那么它的边长为 厘米.15.过a 边形的一个顶点有7条对角线,正b 边形的内角和与外角和相等,c 边形没有对角线,d 边形有d 条对角线,则代数式ab dc )( = .16.小华骑自行车在一个正多边形广场上训练,在训练中小华发现,每5分钟就要转弯一次,当他汽车一圈回到出发点发现正好用了30分钟,则此多边形的内角和为 .三、专心解一解(共44分)17.(5分)小华想:2012年奥运会在伦敦举办,设计一个内角和为02012的多边形图案多有意义,他的想法能实现吗?请说明理由.18.(7分) 小华画了一个八边形,请问: (1)从八边形的一个顶点出发,可以引几条对角线?它们将八边形分成几个三角形?(2)请你求出八边形的内角和是外角和的几倍? 19.(7分)如图,已知五边形ABCDE 中,AE ∥CD ,∠A=0130,∠C=0135,求∠B 的度数.20.(8分)小华从点A 出发向前走10m ,向右转036然后继续向前走10m ,再向右转036,他以同样的方法继续走下去,他能回到点A 吗?若能,当他走回点A 时共走多少米?若不A BCDE第19题图第11题图ADEFGQ P能,写出理由.21.(8分)如图,求∠A+∠B+∠C+∠D+∠E+∠F +∠G 的度数.22.(9分)如图所示,分别在三角形、四边形、五边形的广场各角修建半径为R 的扇形草坪.(1)图1中草坪的周长为 ; (2)图2中草坪的周长为 ; (3)图3中草坪的周长为 ;(4)如果多边形边数为n ,其余条件不变,那么,你认为草坪的周长为 .加强卷(满分:50分,时间:30分钟)一、精心选一选(每小题3分,共15分)1.若一个多边形的每个外角都是锐角,那么这个多边形的边数至少是( ) A .3 B .4 C .5 D .62.鹿鸣社区里有一个五边形的小公园(如图所示),王老师每天晚饭后都要到公园里去散步,已知图中的∠1=095,王老师沿公园边由A 点经B →C →D →E 一直到F 时,他在行程中共转过了( )A .0265 B .0275 C .0360 D .04453.一个多边形的每一个内角都是0144,则它的内角和等于( ) A .01260 B .01440 C .01620 D .018004.四边形ABCD 中,∠A+∠C=∠B+∠D ,∠A 的一个外角为0105,则∠C 的度数为( ) A .075 B .090 C .0105 D .0120 5.一个广场地面的一部分如图所示,地面的中央是一块正六边形的地第22题图图1图2 图31 ABCDE F第2题图砖,周围用正三角形和正方形的大理石地砖拼成,从里往外共10层(不包括中央的正六边形地砖),每一层的外界都围成一个多边形,若中央正六边形地砖的边长是1米,则第10层的外边界围成的多边形的周长是( )A .54B .54C .60D .66 二、细心填一填(每小题3分,共15分)6.若一个多边形的每个外角都等于030,则这个多边形的对角线总条数为 . 0140,7.一个多边形的每一个外角都相等,且比它的内角小则这个多边形的边数是 .8.一个四边形的四个内角中做多有 个钝角,最多有个锐角.9.一个正方形的截取一个角后,得到的图形的内角和可能是 .10.用一条宽相等的足够长的纸条,打一个结,然后轻轻拉紧、压平就可以得到如图所示的正五边形ABCDE ,其中∠BAC= .(提示:由AB=AC ,可得∠BAC=∠BCA )三、专心解一解(共20分)11.(8分)多边形除一个内角外,其余各内角和为01200. (1)求多边形的边数;(2)此多边形必有一外角为多少度?12.(12分)如图,把△ABC 沿DE 折叠,当点A 落在四边形BCDE 内部时,则∠A 、∠1及∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是什么?试说明你找出的规律的正确性.参考答案基础卷一、1~4 ADCA ;5~8 CCDD .二、9.1440,45; 10.5; 11.六; 12.正十二边形; 13.6; 14.9; 15.3; 16.0540.三、17.解:不能,理由如下.设存在n 边形的内角和为02012,有02012180)2(=-n ,解得n ≈13.18.ABCDE第10题图∵多边形的边数不能为小数,∴不存在内角和为02012的多边形.18.解:(1)从八边形的一个顶点出发,可以引5条对角线?它们将八边形分成6个三角形.(2)2360180)28(0=-.故八边形的内角和是外角和的2倍. 19.解:∵AE ∥CD ,∴∠D+∠E=0180.∵ABCDE 是五边形,∴∠A+∠B+∠C+∠D+∠E=0180)25(-. 即0130+∠B 0135++0180=0540,解得∠B=095. 20.解:小华能回到A 点,当他回到A 点时共走了100m . 21.解:∵∠QPE=∠D+∠G ,又∠QPE+∠E+∠F+∠FQP=0360,即∠D+∠G+∠E+∠F+∠FQP=0360. ∴∠D+∠G+∠E+∠F=0360—∠FQP .∵∠A+∠B+∠C+∠AQC=0360,∴∵∠A+∠B+∠C=0360—∠AQC .故∠A+∠B+∠C+∠D+∠G+∠E+∠F=(0360—∠AQC)+(0360—∠FQP )=0720—(∠AQC+∠FQP )=0720—0180=0540.22.解:(1)R π;(2)R π2;(3)R π3;(4)R n π)2(-.加强卷一、1.C ; 2.B ; 3.B ; 4.C ; 5.D .二、6.54; 7.18; 8.3,3; 9.0180,0360或0540; 10.036. 三、11.解:(1)设该多边形的一个内角为0x ,边数为n , 依题意,有01200180)2(x n +=-.∵00012061801200⋅⋅⋅⋅⋅⋅=÷,∴01201806180)2(x n ++⨯=-. 又∵1800<<x ,∴180120=+x ,解60=x .把60=x 代入原方程,得0601200180)2(+=-n ,解得9=x . ∴该多边形的边数为9.(2)∵该多边形有一角为060,∴此多边形必有一外角为0120. 12.解:规律为∠1+∠2=2∠A .∵∠B+∠C=A ∠-0180,∠ADE+∠AED=A ∠-0180,又∠B+∠C+∠CDE+∠DEB=0360,即∠B+∠C+∠2+∠ADE+∠1+∠AED=0360. ∴A ∠-0180+∠1+∠2+A ∠-0180=0360, 整理,得∠1+∠2=2∠A .。

人教版八年级数学上册《第11章三角形》单元测试题含答案

人教版八年级数学上册《第11章三角形》单元测试题含答案

第十一章三角形测试题一、选择题(每小题3分,共30分)1.三角形按边分类可分为( )A.不等边三角形、等边三角形B.等腰三角形、等边三角形C.不等边三角形、等腰三角形、等边三角形D.不等边三角形、等腰三角形2.如图1,图中三角形的个数是( )图1A.6 B.7 C.8 D.93.如图2,AD⊥BC于点D,GC⊥BC于点C,CF⊥AB于点F,下列关于高的说法中错误的是( )图2A.△AGC中,CF是AG边上的高B.△GBC中,CF是BG边上的高C.△ABC中,GC是BC边上的高D.△GBC中,GC是BC边上的高4.如图3,小明做了一个长方形框架,发现很容易变形,请你帮他选择一个最好的加固方案( )图3图45.如图5,在△ABC中,∠ABC,∠ACB的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC的度数为( )图5A.118° B.119° C.120° D.121°6.如图6是六边形ABCDEF,则该图形的对角线的条数是( )图6A.6 B.9 C.12 D.187.如图7,考古学家发现在地下A处有一座古墓,古墓上方是煤气管道,为了不影响管道,准备在B,C处开工挖出“V”字型通道.如果∠DBA=130°,∠ECA=135°,那么∠A的度数是( )图7A.75° B.80° C.85° D.90°8.如图8,在△ABC中,BC边不动,点A竖直向上运动,∠A越来越小,∠B,∠C越来越大.若∠A减小x°,∠B增加y°,∠C增加z°,则x,y,z之间的关系是( )图8A.x=y+z B.x=y-zC.x=z-y D.x+y+z=1809.如图9,已知长方形ABCD,一条直线将该长方形ABCD分割成两个多边形(含三角形).若这两个多边形的内角和分别为M和N,则M+N不可能是( )图9A.360° B.540° C.720° D.630°10.某木材市场上木棒规格与对应价格如下表:规格 1 m 2 m 3 m 4 m 5 m 6 m价格(元/根)101520253035小明的爷爷要做一个三角形的木架养鱼用,现有两根长度分别为3 m和5 m的木棒,还需要到该木材市场上购买一根木棒.则小明的爷爷至少带的钱数应为( )A.10元 B.15元 C.20元 D.25元请将选择题答案填入下表:题号12345678910总分答案第Ⅱ卷(非选择题共70分)二、填空题(每小题3分,共18分)11.已知一个等腰三角形两边的长分别为3和6,则该等腰三角形的周长是________.12.如图10,AD是△ABC的中线,已知△ABD的周长为25 cm,AB比AC长6 cm,则△ACD的周长为________cm.图1013.如图11,直角三角形的两条直角边AC,BC分别经过正九边形的两个顶点,则图中∠1+∠2的度数是________.1114.有一张直角三角形纸片,记作△ABC,其中∠B=90°.按如图12方式剪去它的一个角(虚线部分),在剩下的四边形ADEC中,若∠1=165°,则∠2的度数为________.图1215.有一程序,如果机器人在平地上按如图13所示的步骤行走,那么机器人回到A点处行走的路程是________.图1316.如图14所示,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,D,E分别为垂足.若∠AFD=158°,则∠EDF=________°.图14三、解答题(共52分)17.(6分)如图15,佳佳和音音住在同一小区(A点),每天一块去学校(B点)上学.一天,佳佳要先去文具店(C点)买练习本再去学校,音音要先去书店(D点)买书再去学校.这天两人从家到学校谁走的路远?为什么?图1518.(6分)已知一个多边形的内角和与外角和之比为11∶2.(1)求这个多边形的内角和;(2)求这个多边形的边数.19.(6分)如图16,在△ABC中,BD是∠ABC的平分线,CE是AB边上的高,且∠ACB =60°,∠ADB=97°,求∠A和∠ACE的度数.图1620.(6分)如图17,用钉子把木棒AB,BC和CD分别在端点B,C处连接起来,AB,CD 可以转动,用橡皮筋把AD连接起来,设橡皮筋AD的长是x cm.(1)若AB=5 cm,CD=3 cm,BC=11 cm,求x的最大值和最小值;(2)在(1)的条件下要围成一个四边形,你能求出橡皮筋长x的取值范围吗?图1721.(6分)如图18,它是一个大型模板,设计要求BA与CD相交成20°角,DA与CB 相交成40°角,现测得∠A=145°,∠B=75°,∠C=85°,∠D=55°,就断定这块模板是合格的,这是为什么?图1822.(7分)已知△ABC的周长是20,三边分别为a,b,c.(1)若b是最大边,求b的取值范围;(2)若△ABC是三边均不相等的三角形,b是最大边,c是最小边,且b=3c,a,b,c 均为整数,求△ABC的三边长.23.(7分)如图19,在△ABC中,点E在AC上,∠AEB=∠ABC.(1)如图①,作∠BAC的平分线AD,分别交CB,BE于点D,F.求证:∠EFD=∠ADC;(2)如图②,作△ABC的外角∠BAG的平分线AD,交CB的延长线于点D,反向延长AD 交BE的延长线于点F,则(1)中的结论是否仍然成立?为什么?图1924.(8分)已知:如图20,在四边形ABCD中,∠D=90°,∠ABC=∠BCD,点E在直线BC上,点F在直线CD上,且∠AEB=∠CEF.(1)如图20①,若AE平分∠BAD,求证:EF⊥AE;(2)如图20②,若AE平分四边形ABCD的外角,其余条件不变,则(1)中的结论是否仍然成立?并说明理由.图20答案1.D 2.C 3.C . 4.B . 5.C 6.B . 7.C 8.A . 9.D 10.C 11.15 12.19 13.190° 14.105° . 15.30米 16.68 .17.解:佳佳从家到学校走的路远. 理由:佳佳从家到学校走的路是AC +CD +BD ,音音从家到学校走的路是AD +BD.∵在△ACD 中,AC +CD >AD ,∴AC +CD +BD >AD +BD ,即佳佳从家到学校走的路远.18.解:(1)360°×112=1980°.即这个多边形的内角和为1980°.(2)设该多边形的边数为n,则(n-2)×180°=1980°,解得n=13.即这个多边形的边数为13.19.解:∵∠ADB=∠DBC+∠ACB,∴∠DBC=∠ADB-∠ACB=97°-60°=37°.∵BD是∠ABC的平分线,∴∠ABC=74°,∴∠A=180°-∠ABC-∠ACB=46°.∵CE是AB边上的高,∴∠AEC=90°,∴∠ACE=90°-∠A=44°.20.解:(1)x的最大值是5+3+11=19,最小值是11-3-5=3.(2)由(1)得橡皮筋长x的取值范围为3<x<19.21.解:如图,延长DA,CB相交于点F,延长BA,CD相交于点E.∵∠C+∠ADC=85°+55°=140°,∴∠F=180°-140°=40°.∵∠C+∠ABC=85°+75°=160°,∴∠E=180°-160°=20°.符合设计要求,故这块模板是合格的.22.解:(1)依题意有b≥a,b≥c.∵a +c >b ,∴a +b +c ≤3b 且a +b +c >2b ,则2b <20≤3b ,解得203≤b <10. (2)∵203≤b <10,b 为整数, ∴b =7,8,9.∵b =3c ,且c 为整数,∴b =9,c =3,∴a =20-b -c =8.故△ABC 的三边长分别为a =8,b =9,c =3.23.解:(1)证明:∵AD 平分∠BAC ,∴∠BAD =∠DAC.∵∠EFD =∠DAC +∠AEB ,∠ADC =∠ABC +∠BAD ,且∠AEB =∠ABC ,∴∠EFD =∠ADC.(2)∠EFD =∠ADC 仍然成立.理由:∵AD 平分∠BAG ,∴∠BAD =∠GAD.∵∠FAE =∠GAD ,∴∠FAE =∠BAD.∵∠EFD =∠AEB -∠FAE ,∠ADC =∠ABC -∠BAD ,且∠AEB =∠ABC ,∴∠EFD =∠ADC.24.解:(1)证明:∵∠BAE =180°-∠ABC -∠AEB ,∠EFC =180°-∠BCD -∠CEF ,且∠ABC =∠BCD ,∠AEB =∠CEF ,∴∠BAE =∠EFC.∵AE 平分∠BAD ,∴∠BAE=∠DAE,∴∠EFC=∠DAE.∵∠EFC+∠EFD=180°,∴∠DAE+∠EFD=180°,∴∠AEF+∠D=360°-(∠DAE+∠EFD)=180°.∵∠D=90°,∴∠AEF=90°,∴EF⊥AE.(2)EF⊥AE仍成立.理由如下:如图.∵∠1=∠ABC-∠AEB,∠F=∠BCD-∠CEF,且∠ABC=∠BCD,∠AEB=∠CEF,∴∠1=∠F.∵AE平分四边形ABCD的外角,∴∠1=∠2,∴∠F=∠2.∵∠2+∠EAD=180°,∴∠F+∠EAD=180°,∴∠AEF+∠D=360°-(∠F+∠EAD)=180°.∵∠D=90°,∴∠AEF=90°,∴EF⊥AE.。

人教版八年级上册数学《三角形》单元测试题带答案

人教版八年级上册数学《三角形》单元测试题带答案

人教版数学八年级上学期《三角形》单元测试时间:90分钟总分: 100一、选择题1.能将三角形面积平分的是三角形的..)A.角平分..B...C.中..D.外角平分线2.已知三角形的两边长分别为4cm和9cm, 则下列长度的四条线段中能作为第三边的是.. )A.13c..B.6c..C.5c..D.4cm3.三角形一个外角小于与它相邻的内角, 这个三角形是...)A.直角三角..B.锐角三角..C.钝角三角..D.属于哪一类不能确定4.若一个多边形每一个内角都是135º, 则这个多边形的边数是...)A...B...C.1..D.125.某商店出售下列四种形状的地砖:①正三角形;②正方形;③正五边形;④正六边形.若只选购其中一种地砖镶嵌地面, 可供选择的地砖共有( )A.4..B.3..C.2..D.1种6.一个多边形的外角和是内角和的一半, 则它是. )边形A...B...C...D.47.如图,DE是△ABC的中位线,F是DE的中点,CF的延长线交AB于点G,若△CEF的面积为12cm2,则S △DGF的值为. )学*科*网...学*科*网...A.4cm..B.6cm..C.8cm..D.9cm28.已知△ABC中, ∠A=20°, ∠B=∠C, 那么三角形△ABC是()A.锐角三角..B.直角三角..C.钝角三角..D.正三角形9.试通过画图来判定, 下列说法正确的是()A.一个直角三角形一定不是等腰三角形B.一个等腰三角形一定不是锐角三角形C.一个钝角三角形一定不是等腰三角形D.一个等边三角形一定不是钝角三角形10.如图,BD平分∠ABC,CD⊥BD,D为垂足,∠C=55°,则∠ABC的度数是()A.35..B.55..C.60..D.70°二、填空题11.如果点G是△ABC的重心.AG的延长线交BC于点D.GD=12.那么AG=________.12.如图,将三角尺的直角顶点放在直尺的一边上,∠1= ,∠2= ,则∠3=_____________°.13.若一个多边形的内角和比外角和大360°, 则这个多边形的边数为_______________.14.如图,△ABC中,∠ACB>90°,AD⊥BC,BE⊥AC,CF⊥AB,垂足分别为D.E、F,则线段___是△ABC中AC边上的高.15.一个多边形的内角和是外角和的2倍, 则这个多边形的边数为___.16.十边形的外角和是_____°.17.若三角形的周长是60cm,且三条边的比为3:4:5,则三边长分别为__________.18.如图,⊿ABC中,∠..40°,∠..72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CD.=_________度。

(人教版)八年级上册数学第11章《三角形》单元检测(含答案)

(人教版)八年级上册数学第11章《三角形》单元检测(含答案)

(人教版)八年级上册数学第11章《三角形》练习一.选择题(共19小题)1.(2020春•开福区校级期末)如图,在三角形ABC中,∠A=45°,三角形ABC的高线BD,CE交于点O,则∠BOC的度数()A.120°B.125°C.135°D.145°2.(2020春•永州期末)富有灿烂文化的永州,现今保留着许多具有历史和文化价值的建筑,古朴的建筑物上雕刻的优美图案是我们数学研究的重要内容.图1中的“冰裂纹窗格”图案就是永州古建筑雕刻图案其中的代表,无规则多边形的形状,蕴含了丰富而和谐的数学美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的多边形,根据绘制的图形,则∠1+∠2+∠3+∠4+∠5的度数为()A.72°B.108°C.360°D.540°3.(2020春•雨花区校级期末)以下列各组线段的长为边,能组成三角形的是()A.3cm,6cm,8cm B.3cm,2cm,6cmC.5cm,6cm,11cm D.2cm,7cm,4cm4.(2020春•雨花区期末)在一个直角三角形中,有一个锐角等于25°,则另一个锐角的度数是()A.25°B.55°C.65°D.75°5.(2020春•雨花区期末)如图,已知CD和BE是△ABC的角平分线,∠A=60°,则∠BOC=()A.60°B.100°C.120°D.150°6.(2020春•天心区期末)如图,一副直角三角板图示放置,点C在DF的延长线上,点A在边EF上,AB ∥CD,∠ACB=∠EDF=90°,则∠CAF=()A.10°B.15°C.20°D.25°7.(2019秋•赫山区期末)已知三角形三边长3,4,x,则x的取值范围是()A.x>1B.x<7C.1<x<7D.﹣1<x<78.(2019秋•永定区期末)长度分别为3,7,x的三条线段能组成一个三角形,x的值可以是()A.2B.3C.4D.59.(2020春•天心区期末)△ABC中,若∠A:∠B:∠C=1:2:3,则△ABC的形状是()A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形10.(2020春•天心区期末)已知三角形三边长为2,3,x,则x的取值范围是()A.x>1B.x<5C.1<x<5D.﹣1<x<511.(2020春•岳麓区校级期末)如图,点C在线段AB的延长线上,∠DAC=15°,∠DBC=110°,则∠D的度数是()A.95°B.85°C.100°D.125°12.(2019秋•浏阳市期末)以下列长度的线段为边,可以作一个三角形的是()A.6cm,16cm,21cm B.8cm,16cm,30cmC.6cm,16cm,24cm D.8cm,16cm,24cm13.(2020春•衡阳期末)如果一个多边形的内角和与外角和相等,那么这个多边形是()A.七边形B.六边形C.五边形D.四边形14.(2019秋•永定区期末)如果n边形的内角和是它外角和的3倍,则n等于()A.6B.7C.8D.915.(2020春•赫山区期末)若一个多边形的每个内角都等于150°,则这个多边形的边数是()A.10B.11C.12D.1316.(2020春•长沙期末)△ABC中BC边上的高作法正确的是()A.B.C.D.17.(2019春•永州期末)在Rt△ABC中,若∠A=40°,∠C=90°,则∠B的度数是()A.20°B.30°C.40°D.50°18.(2019春•靖州县期末)下列度数不可能是多边形内角和的是()A.360°B.560°C.720°D.1440°19.(2018秋•江华县期末)以下列各组长度的线段为边,其中a>3,能构成三角形的是()A.2a+7,a+3,a+4B.5a2,6a2,10a2C.3a,4a,a D.a﹣1,a﹣2,3a﹣3二.填空题(共9小题)20.(2020春•涟源市期末)如图,在Rt△ABC中,∠B=90°,∠ACD=130°,则∠A=°.21.(2020春•长沙期末)如图,四边形ABCD中,且∠1,∠2分别是∠BCD和∠BAD的邻补角,若∠1+∠2=150°.则∠B+∠ADC=.22.(2020春•开福区校级期末)已知三条线段长度分别为1、2、4,能否组成三角形?.(填“能”或“不能”).23.(2020春•雨花区期末)如图,若∠A=30°,∠ACD=105°,则∠EBC=°.24.(2020春•衡阳期末)如图,小明从P点出发,沿直线前进5米后向右转α,接着沿直线前进5米,再向右转α,…,照这样走下去,第一次回到出发地点P时,一共走了120米,则α的度数是.25.(2019秋•涟源市期末)如图,∠BDC=130°,∠A=40°,∠B+∠C的大小是.26.(2020春•岳麓区校级期末)如图,AD是△ABC的高,BE是△ABC的角平分线,BE,AD相交于点F,已知∠BAD=42°,则∠BFD=度.27.(2020春•常德期末)如图,两直线AB与CD平行,则∠1+∠2+∠3+∠4+∠5+∠6=°.28.(2019春•开福区校级期末)三角形的两边长分别为5cm和12cm,第三边与前两边中的一边相等,则三角形的周长为.三.解答题(共7小题)29.(2020春•永州期末)如图所示,在四边形ABCD中,∠A=110°,∠ABC=70°,BD⊥CD于点D,EF⊥CD于点F,试说明∠1=∠2.30.(2019秋•双清区期末)如图,点A在MN上,点B在PQ上,连接AB,过点A作AC⊥AB交PQ于点C,过点B作BD平分∠ABC交AC于点D,且∠NAC+∠ABC=90°.(1)求证:MN∥PQ;(2)若∠ABC=∠NAC+10°,求∠ADB的度数.31.(2020春•益阳期末)阅读:如图1,CE∥AB,所以∠1=∠A,∠2=∠B.所以∠ACD=∠1+∠2=∠A+∠B.这是一个有用的结论,请用这个结论,在图2的四边形ABCD内引一条和一边平行的直线,求∠A+∠B+∠C+∠D的度数.32.(2018秋•靖州县期末)已知:如图,△ABC中,AD⊥BC于D,BE是三角形的角平分线,交AD于F.(1)若∠ABC=40°,求∠AFE的度数.(2)若∠BAC是直角,请猜想:△AFE的形状,并写出证明.33.(2019春•雨花区校级期末)如图,AD是△ABC的角平分线,∠B=45°,点E在BC延长线上且EH ⊥AD于H.(1)若∠BAD=30°,求∠ACE的度数.(2)若∠ACB=85°,求∠E的度数.34.(2018秋•安仁县期末)如图,D是△ABC的BC边上的一点,AD=BD,∠ADC=80°.(1)求∠B的度数;(2)若∠BAC=70°,判断△ABC的形状,并说明理由.35.(2019春•天心区校级期末)一个多边形的内角和与外角和的和是1440°,通过计算说明它是几边形.参考答案与试题解析一.选择题(共19小题)1.【解答】解:∵∠A+∠ABC+∠ACB=180°,∠A=45°,∴∠ABC+∠ACB=135°,∵BD⊥AC,CE⊥AB,∴∠ABC+∠BCE=∠ACB+∠CBD=90°,∴∠ABC+∠BCE+∠ACB+∠CBD=180°,∴∠BCE+∠CBD=45°,∵∠BOC+∠BCE+∠DBC=180°,∴∠BOC=135°.故选:C.2.【解答】解:由多边形的外角和等于360度,可得∠1+∠2+∠3+∠4+∠5=360度.故选:C.3.【解答】解:根据三角形的三边关系,A、3+6=9>8,能组成三角形;B、2+3=5<6,不能够组成三角形;C、5+6=11,不能组成三角形;D、4+2=6<7,不能组成三角形.故选:A.4.【解答】解:∵在一个直角三角形中,有一个锐角等于25°,∴另一个锐角的度数是90°﹣25°=65°.故选:C.5.【解答】解:∵∠A=60°,∴∠ABC+∠ACB=180°﹣60°=120°,∵CD和BE是△ABC的角平分线,∴∠OBC+∠OCB=12∠ABC+12∠ACB=12(∠ABC+∠ACB)=60°,∴∠BOC=180°﹣(∠OBC+∠OCB)=120°,故选:C.6.【解答】解:∵AB∥CD,∴∠BAC=∠ACD=30°,∵∠AFD=∠CAF+∠ACF=45°,∴∠CAF=45°﹣30°=15°,故选:B.7.【解答】解:由题意得:4﹣3<x<4+3,即:1<x<7,故选:C.8.【解答】解:7﹣3<x<7+3,4<x<10,只有选项D符合题意.故选:D.9.【解答】解:∵在△ABC中,∠A:∠B:∠C=1:2:3,∴设∠A=x,则∠B=2x,∠C=3x.∵∠A+∠B+∠C=180°,即x+2x+3x=180°,解得x=30°,∴∠C=3x=90°,∴△ABC是直角三角形.故选:A.10.【解答】解:由三角形三边关系可知,3﹣2<x<3+2,∴1<x<5,故选:C.11.【解答】解:∵∠DBC是△ABD的外角,∴∠DBC=∠D+∠A,则∠D=∠DBC﹣∠A=110°﹣15°=95°,故选:A.12.【解答】解:A、∵6+16=22>21,∴6、16、21能组成三角形;B、∵8+16=24<30,∴8、16、30不能组成三角形;C、∵6+16=22<24,∴6、16、24不能组成三角形;D、∵8+16=24,∴8、16、24不能组成三角形.故选:A.13.【解答】解:设多边形的边数为n,根据题意得(n﹣2)•180°=360°,解得n=4.故选:D.14.【解答】解:由题意得:180(n﹣2)=360×3,解得:n=8,故选:C.15.【解答】解:由题意可得:180°•(n﹣2)=150°•n,解得n=12.故多边形是12边形.故选:C.16.【解答】解:为△ABC中BC边上的高的是D选项.故选:D.17.【解答】解:∵∠A=40°,∠C=90°,∴∠B=90°﹣40°=50°,故选:D.18.【解答】解:360°、720°、1440°都是180°的倍数,它们是多边形内角和;560°不是180°的倍数,所以它不可能是多边形内角和;故选:B.19.【解答】解:当a>3时,根据三角形的三边关系,得A、a+3+a+4=2a+7,不能组成三角形;B、5a2+6a2>10a2,能组成三角形;C、a+3a=4a,不能够组成三角形;D、a﹣1+a﹣2=2a﹣3,3a﹣3﹣2a+3=a>3,2a﹣3<3a﹣3,不能组成三角形.故选:B.二.填空题(共9小题)20.【解答】解:∵∠ACD的△ABC的一个外角,∴∠A=∠ACD﹣∠B=130°﹣90°=40°,故答案为:40.21.【解答】解:∵∠1+∠2=150°,∴∠DAB+∠DCB=360°﹣150°=210°,∵∠B+∠D+∠DAB+∠DCB=360°,∴∠B+∠ADC=360°﹣(∠DAB+∠DCB)=150°,故答案为150°.22.【解答】解:根据三角形的三边关系,1+2=3<4,不能组成三角形;故答案为:不能.23.【解答】解:∵∠ACD=∠A+∠ABC,∴105°=30°+∠ABC,∴∠ABC=75°,∴∠EBC=180°﹣∠ABC=105°,故答案为105.24.【解答】解:向左转的次数120÷5=24(次),则左转的角度是360°÷24=15°.故答案是:15°.25.【解答】解:延长BD交AC于H,∵∠BDC=∠DHC+∠C,∠DHC=∠A+∠B,∴∠BDC=∠A+∠B+∠C,∵∠BDC=130°,∠A=40°,∴∠B+∠C=130°﹣40°=90°故答案为90°.26.【解答】解:∵AD是高线,∴∠ADB=90°∵∠BAD=42°,∴∠ABC=48°,∵BE是角平分线,∴∠FBD=24°,在△FBD中,∠BFD=180°﹣90°﹣24°=66°.故答案为:66.27.【解答】解:分别过E点,F点,G点,H点作L1,L2,L3,L4平行于AB 利用内错角和同旁内角,把这六个角转化一下,可得,有5个180°的角,∴180×5=900°.故答案为:900.28.【解答】解:当第三边为5cm时,此时三角形的三边分别为:5cm,5cm和12cm,∵5+5<12,∴不能组成三角形;当第三边为12cm时,此时三角形的三边分别为:5cm,12cm和12cm,∵5+12>12,∴能组成三角形;此时周长为5+12+12=29cm,故答案为:29cm.三.解答题(共7小题)29.【解答】解:∵∠A=110°,∠ABC=70°,∴∠A+∠ABC=180°,∴AD∥BC(同旁内角互补,两直线平行),∴∠1=∠3(两直线平行,内错角相等),∵BD⊥CD,EF⊥CD,∴∠BDC=∠EFC=90°,∴BD∥EF,∴∠2=∠3(两直线平行,同位角相等),∴∠1=∠2(等量代换).30.【解答】(1)证明:∵AC⊥AB,∴∠BAC=90°,∴∠ABC+∠ACB=90°,∵∠NAC+∠ABC=90°,∴∠NAC=∠ACB,∴MN∥PQ;(2)解:∵∠ABC=∠NAC+10°=∠ACB+10°,∵∠ACB+∠ABC=90°,∴∠ACB+∠ACB+10°=90°,∴∠ACB=40°,∴∠ABC=50°,∵BD平分∠ABC,∴∠ABD=12∠ABC=25°,∵∠BAC=90°,∴∠ADB=90°﹣25°=65°.31.【解答】解:作DE∥AB,交BC于E,由题意,∠DEB=∠C+∠EDC,∴∠A+∠ADE=180°,∠B+∠DEB=180°,则∠A+∠B+∠C+∠ADC=∠A+∠B+∠C+∠EDC+∠ADE=∠A+∠B+∠DEB+∠ADE=360°.32.【解答】解:(1)∵AD⊥BC,∴∠ADB=90°,∵∠ABC=40°,BE平分∠ABC,∴∠DBF=12∠ABC=20°,∴∠BFD=90°﹣20°=70°∴∠AFE=∠BFD=70°(2)结论:△AEF是等腰三角形.理由:∵∠BAE=∠ADF=90°,∴∠AEF+∠ABE=90°,∠BFD+∠FBD=90°,∵∠ABE=∠DBF,∴∠AEF=∠BFD,∵∠BFD=∠AFE,∴∠AFE=∠AEF,∴AE=AF,∴△AEF是等腰三角形.33.【解答】解:∵AD是△ABC的角平分线∴∠BAD=∠CAD=12∠BAC(1)∵∠BAD=30°∴∠BAC=2∠BAD=60°∵∠B=45°∴∠ACE=∠B+∠BAC=45°+60°=105°(2)∵∠ACB=85°,∠B=45°,且∠ACB+∠B+∠BAC=180°∴∠BAC=50°∴∠CAD=25°∵∠ACB+∠CAD+∠ADC=180°∴∠ADC=70°∵EH⊥AD∴∠E+∠ADC=90°∴∠E=90°﹣70°=20°.34.【解答】解:(1)∵在△ABD中,AD=BD,∴∠B=∠BAD,∵∠ADC=∠B+∠BAD,∠ADC=80°,∴∠B=12∠ADC=40°;(2)△ABC是等腰三角形.理由:∵∠B=40°,∠BAC=70°,∴∠C=180°﹣∠B﹣∠BAC=70°,∴∠C=∠BAC,∴BA=BC,∴△ABC是等腰三角形.35.【解答】解:设它是n边形,依题意得:(n﹣2)180°+360°=1440°.解得:n=8.答:它是八边形.。

八年级数学上册《第十一章 三角形》单元测试卷及答案-人教版

八年级数学上册《第十一章 三角形》单元测试卷及答案-人教版

八年级数学上册《第十一章三角形》单元测试卷及答案-人教版学校:___________班级:___________姓名:___________考号:___________一、选择题1.给出下列长度的三条线段,不能构成三角形的是()A.10,8,6 B.4,8,7 C.2,3,4 D.3,4,72.把一副三角板按如图所示平放在桌面上,点E恰好落在CB的延长线上FE⊥CE,则∠BDE的大小为()A.10°B.15°C.20°D.25°3.一个正多边形的每个内角都等于135°,那么它是()A.正六边形B.正十边形C.正八边形D.正十二边形4.如图,点D、E分别是△ABC边BC、AC上一点BD=2CD,AE=CE连接AD、BE交于点F,若△ABC 的面积为12,则△BDF与△AEF的面积之差S△BDF−S△AEF等于()A.1 B.2 C.3 D.45.如图,足球的表面是由正五边形和正六边形拼接而成,其中黑皮的正五边形有12块,白皮的正六边形有20块.如图,足球图片中的一块黑皮正五边形的内角和是()A.180°B.360°C.540°D.720°6.如图AD,AE,AF分别是△ABC的中线、角平分线、高线,下列结论中错误的是()BC B.2∠BAE=∠BACA.CD=12C.∠C+∠CAF=90°D.AE=AC7.如图,在直角三角形ABC中∠BAC=90°,∠B=56°,AD⊥BC,DE//AC则∠ADE的度数为( )A.56°B.46°C.44°D.34°8.某市为了方便市民绿色出行,推出了共享单车服务,图①是某品牌共享单车放在水平地面的实物图,图②是其示意图,其中AB,CD都与地面l平行∠BCD=62°,∠BAC=54°当∠MAC为()度时,AM与CB平行.A.54 B.64 C.74 D.114二、填空题9.若一个三角形两边的长分别为8cm和9cm(三边长均为整厘米数),则这个三角形第三边最长可以是cm.10.已知一个正多边形的一个外角为36°,则这个正多边形的边数是.11.将一副三角板按如图所示的位置摆放,图中∠2−∠1=°.12.如图,将一把直尺摆放在含30°角的三角尺(∠A=30°,∠C=90°)上,其中顶点B在直尺的一边上,已知∠1=55°,则∠2的度数为.13.如图,在△ABC中,AD是BC边上的中线,若S△ABC=12,AC=3则点D到AC的距离为.三、解答题14.如图,在△ABC中,CD是∠ACB的角平分线,CE是AB边上的高,若∠DCE=10°,∠B=60°,求∠A的度数.15.如图,在△ABC中DE∥BC,F是AC上一点,FD的延长线与CB的延长线交于点G.求证:∠DGH>∠AED.16.如图,在△ABC中,D是AB上一点,E是AC上一点,BE、CD相交于点F,∠A=62°,∠ACD= 35°,∠ABE=20°求∠BFD的度数.17.如图,DE∥AB(1)判断AD与BE是否平行,并说明理由.(2)若∠A=∠C=2∠ABC,求∠E的度数.18.如图AC∥EF,∠1+∠3=180°.(1)求证AF∥CD;(2)若AC平分∠FAB,AC⊥EB于点C,∠4=78°求∠BCD的度数.参考答案1.D2.B3.C4.B5.C6.D7.A8.B9.1610.1011.3012.25°13.414.解:∵CE是AB边上的高∴∠A+∠ACE=90°,∠B+∠BCE=90°.∵CD是∠ACB的角平分线∠ACB∴∠ACD=∠BCD= 12又∵∠DCE=10°,∠B=60°∴∠BCE=90°﹣∠B=30°,∠BCD=∠BCE+∠DCE=40°∴∠ACE=∠ACD+∠DCE=∠BCD+∠DCE=50°∴∠A=90°﹣∠ACE=40°.15.证明:∵∠DGH是△DBG的一个外角∴∠DGH>∠DBG∵∠DBG是△ABC的一个外角∴∠DBG>∠C∴∠DGH>∠C∵DE∥BC∴∠AED=∠C∴∠DGH>∠AED.16.解:∵∠A=62°∴∠BDC=∠A+∠ACD=62°+35°=97°在△BDF中∵∠ABE=20°∴∠BFD=180°−∠ABE−∠BDC=180°−20°−97°=63°. 17.(1)解:AD∥BE,理由为:∵DE∥AB∴∠ABE+∠E=180°∵∠ABE+∠CDF=180°∴∠E=∠CDF∴AD∥BE;(2)解:∵∠A=∠C=2∠ABC∴5∠ABC=180°,则∠ABC=36°∴∠A=2∠ABC=72°∴∠E=∠CDF=∠A=72°.18.(1)证明:∵AC∥EF∴∠1+∠2=180°.又∵∠1+∠3=180°∴∠2=∠3.∴AF∥CD.(2)解:∵AC平分∠FAB∴∠2=∠CAD.∵∠2=∠3∴∠CAD=∠3.∵∠4+∠ADC=180°且∠4=78°∴∠ADC=180°−78°=102°.∴∠CAD=∠3=180°−102°=39°2∵AC⊥EB ∴∠ACB=90°.∴∠BCD=90°−∠3=90°−39°=51°.。

新人教版初中数学八年级数学上册第一单元《三角形》测试题(含答案解析)

新人教版初中数学八年级数学上册第一单元《三角形》测试题(含答案解析)

一、选择题1.下列命题中,是假命题的是( ) A .直角三角形的两个锐角互余 B .在同一个平面内,垂直于同一条直线的两条直线平行C .同旁内角互补,两直线平行D .三角形的一个外角大于任何一个内角 2.一个多边形的外角和是360°,这个多边形是( )A .四边形B .五边形C .六边形D .不确定3.下列每组数分别是三根小木棒的长度,不能用它们搭成三角形的是( )A .1cm ,2cm ,3cmB .2cm ,3cm ,4cmC .3cm ,4cm ,5cmD .5cm ,6cm ,7cm 4.已知三角形的两边长分别为1和4,则第三边长可能是( )A .3B .4C .5D .6 5.在多边形的一边上任取一点(不是顶点),将这个点与多边形的各顶点连接起来,可以将多边形分割成8个三角形,则该多边形的边数为( ) A .8B .9C .10D .11 6.下列长度(单位:cm )的三条线段能组成三角形的是( ) A .13,11,12B .3,2,1C .5,12,7D .5,13,57.如图,在ABC ∆中,AD 是ABC ∆的角平分线,DE AC ⊥,若40,60B C ︒︒∠=∠=,则ADE ∠的度数为( )A .30︒B .40︒C .50︒D .60︒ 8.若一个三角形的三个内角的度数之比为11:13:24,那么这个三角形是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等边三角形 9.三角形的两条边长为3和7,那么第三边长可能是( )A .1B .4C .7D .1010.一副透明的三角板,如图叠放,直角三角板的斜边AB 、CE 相交于点D ,则BDC∠的度数是( )A .65︒B .75︒C .85︒D .105︒ 11.正十边形每个外角等于( )A .36°B .72°C .108°D .150°12.如图所示,ABC ∆的边AC 上的高是( )A .线段AEB .线段BAC .线段BD D .线段DA二、填空题13.在一个三角形中,若其中一个内角的度数是另一个内角的2倍,则我们称这个三角形为“倍角三角形”.已知某“倍角三角形”的一个内角的度数为60°,则其它两个内角的度数分别是_______.14.如图,五边形ABCDE 中,//AE BC ,则C D E ∠+∠+∠的度数为__________.15.如图,已知ABC 中,90,50ACB B D ︒︒∠=∠=,为AB 上一点,将BCD △沿CD 折叠后,点B 落在点E 处,且//CE AB ,则ACD ∠的度数是___________.16.将正三角形、正四边形、正五边形按如图所示的位置摆放.如果147∠=︒,220∠=︒,那么3∠= __________.17.如图,∠A +∠B +∠C +∠D +∠E +∠F +∠G +∠H 的度数为___________.18.一个正多边形的每个内角为108°,则这个正多边形所有对角线的条数为_____. 19.ABC 中,,AB AC 边上的高,CE BD 相交于点F ,,ABC ACB ∠∠的角平分线交于点G ,若=125CGB ∠︒,则CFB ∠=______.20.如图,ABC 面积为1,第一次操作:分别延长,,AB BC CA 至点111,,A B C 使111,,A B AB B C BC C A CA ===顺次结111,,A B C ,得到111A B C △,第二次操作:分别延长111111,,A B B C C A 至点222A B C ,使211121112111,,A B A B B C B C C A C A ===,顺次连结222,,A B C ,得到222A B C △…,按此规律,则333A B C △的面积为_______.三、解答题21.已知:如图90MON ∠=︒,与点O 不重合的两点A 、B 分别在OM 、ON 上,BE 平分ABN ∠,BE 所在的直线与OAB ∠的平分线所在的直线相交于点C . (1)当点A 、B 分别在射线OM 、ON 上,且45BAO ∠=︒时,求ACB ∠的度数; (2)当点A 、B 分别在射线OM 、ON 上运动时,ACB ∠的大小是否发生变化?若不变,请给出证明;若发生变化,请求出ACB ∠的范围.22.在ABC ∆中,已知3,7AB AC ==,若第三边BC 的长为偶数,求ABC ∆的周长. 23.已知:180,BDG EFG B DEF ∠+∠=︒∠=∠.(1)如图1,求证://DE BC .(2)如图2,当90A EFG ∠=∠=︒时,请直接写出与C ∠互余的角.24.如图,在ABC 中,点E 在AC 边上,连结BE ,过点E 作//DF BC ,交AB 与点D .若BE 平分ABC ∠,EC 平分BEF ∠.设AED β∠=. (1)当80β=︒时,求DEB ∠的度数. (2)试用含α的代数式表示β.(3)若=k βα(k 为常数),求α的度数(用含k 的代数式表示).25.如图所示,AD 、AE 分别是△ABC 的高和角平分线,∠B=20°,∠C=80°, 求∠EAD 的度数.26.如图,在ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,60BAC ∠=︒,70C ∠=︒.求EAD ∠和∠BOE 的度数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D【分析】利用三角形外角的性质、平行线的性质及直角三角形的性质分别判断后即可确定正确的选项.【详解】解:A. 直角三角形的两个锐角互余,正确,是真命题;B. 在同一个平面内,垂直于同一条直线的两条直线平行,正确,是真命题;C. 同旁内角互补,两直线平行,正确,是真命题;D. 三角形的一个外角大于任何一个内角,错误,是假命题;故选:D.【点睛】本题考查了命题与定理的知识,三角形外角的性质、平行线的性质及直角三角形的性质,熟悉相关性质是解题的关键.2.D解析:D【分析】根据多边形的外角和等于360°判定即可.【详解】∵多边形的外角和等于360°,∴这个多边形的边数不能确定.故选:D.【点睛】本题考查了多边形的外角和定理,注意利用多边形的外角和与边数无关,任何多边形的外角和都是360°是解题的关键.3.A解析:A【分析】根据三角形的三边关系,两边之和大于第三边,即两短边的和大于最长的边,即可作出判断.【详解】解:A、1+2=3,故以这三根木棒不能构成三角形,符合题意;B、2+3>4,故以这三根木棒能构成三角形,不符合题意;C、3+4>5,故以这三根木棒可以构成三角形,不符合题意;D、5+6>7,故以这三根木棒能构成三角形,不符合题意.故选:A.【点睛】本题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边,判断能否组成三角形的方法是看两个较小的和是否大于第三边.4.B【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围.【详解】解:根据三角形的三边关系,设第三边的长为x,∵三角形两边的长分别是1和4,∴4-1<x<4+1,即3<x<5.故选:B.【点睛】此题考查了三角形的三边关系,关键是正确确定第三边的取值范围.5.B解析:B【分析】逐一探究在三角形,四边形,五边形一边上任取一点(不是顶点),将这个点与多边形的各顶点连接起来,得到分割成的三角形的数量,再总结规律,运用规律列方程即可得到答案.【详解】解:如图,探究规律:在三角形的一边上任取一点(不是顶点),将这个点与三角形的各顶点连接起来,可以将三角形分割成2个三角形,在四边形的一边上任取一点(不是顶点),将这个点与四边形的各顶点连接起来,可以将四边形分割成3个三角形,在五边形的一边上任取一点(不是顶点),将这个点与五边形的各顶点连接起来,可以将五边形分割成4个三角形,总结规律:在n边形的一边上任取一点(不是顶点),将这个点与n边形的各顶点连接起来,可以将n边形分割成()1n-个三角形,应用规律:n-=由题意得:18,∴=n9.故选:.B本题考查的是规律探究及规律运用,探究“在n 边形的一边上任取一点(不是顶点),将这个点与n 边形的各顶点连接起来,把n 边形分割成的三角形的数量”是解题的关键.6.A解析:A 【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”进行分析. 【详解】解:根据三角形的三边关系,A 、11+12>13,能组成三角形,符合题意;B 、1+2=3,不能组成三角形,不符合题意;C 、5+7=12,不能组成三角形,不符合题意;D 、5+5<13,不能组成三角形,不符合题意; 故选A . 【点睛】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.7.C解析:C 【分析】根据三角形内角和180︒求出∠BAC ,再由AD 是ABC ∆的角平分线求得∠DAC ,最后利用直角三角形的两个锐角互余求出∠ADE ,问题得到解决. 【详解】解:∵40,60B C ︒︒∠=∠=,∴BAC=180B-C=80∠︒-∠∠︒, ∵AD 是ABC ∆的角平分线, ∴1DAC=BAC=402∠∠︒, ∵DE AC ⊥,∴90DAC=50ADE ∠=︒-∠︒, 故选:C . 【点睛】本题考查了三角形的内角和定理,三角形的角平分线定义,直角三角形的两个锐角互余,正确理解三角形中角之间的关系是解本题的关键.8.B解析:B 【分析】根据角的度数之比,求得最大角的度数,根据最大角的性质判断即可.∵三个内角的度数之比为11:13:24,∴最大角的度数为°24180111324⨯++=90°,∴三角形是直角三角形, 故选B. 【点睛】本题考查了三角形按角的分类,根据度数之比求得最大角的度数是解题的关键.9.C解析:C 【分析】根据三角形的两边之和大于第三边,确定第三边的取值范围即可. 【详解】解:三角形的两条边长为3和7,设第三边为x , 则第三边的取值范围是:7-3<x <7+3, 解得,4<x <10, 故选:C . 【点睛】本题考查了三角形的三边关系,根据两边长确定第三边的取值范围是解题关键.10.B解析:B 【分析】根据三角板的性质以及三角形内角和定理计算即可. 【详解】解:∵∠CEA =60︒,∠BAE =45︒, ∴∠ADE = 180︒−∠CEA −∠BAE =75︒, ∴∠BDC =∠ADE =75︒, 故选:B 【点睛】本题考查三角板的性质,三角形内角和定理等知识,对顶角相等,解题的关键是熟练掌握基本知识,属于中考基础题.11.A解析:A 【分析】根据正十边形的外角和等于360︒,每一个外角等于多边形的外角和除以边数,即可得解. 【详解】3601036︒÷=︒,∴正五边形的每个外角等于36︒,【点睛】本题考查了正多边形的外角和、边数、外角度数之间的关系,熟记正多边形以上三者之间的关系是解题的关键.12.C解析:C【分析】根据三角形的高解答即可,三角形的一个顶点到它的对边所在直线的垂线段叫做这个三角形的高.【详解】A.线段AE是△ABC的边BC上的高,故不符合题意;B.线段BA不是任何边上的高,故不符合题意;C.线段BD是△ABC的边AC边上的高,故符合题意;D.线段DA是△ABD的边BD上的高,故不符合题意;故选C.【点睛】本题考查了三角形的高线,熟练掌握三角形高线的定义是解答本题的关键.二、填空题13.30°90°或40°80°【分析】根据倍角三角形的定义结合三角形的内角和定理分三种情况即可得出结论【详解】在△ABC中不妨设∠A=60①若∠A=2∠C则∠C=30∴∠B=;②若∠C=2∠A则∠C=1解析:30°,90°或40°,80°【分析】根据“倍角三角形”的定义结合三角形的内角和定理分三种情况即可得出结论.【详解】在△ABC中,不妨设∠A=60︒,①若∠A=2∠C,则∠C=30︒,︒-︒-︒=︒;∴∠B=180603090②若∠C=2∠A,则∠C=120︒,︒-︒-︒=︒(不合题意,舍去);∴∠B=180601200=︒-︒=120︒,③若∠B=2∠C,则3∠C18060︒-︒-︒=︒;∴∠C4=0︒,∠B=180604080综上所述,其它两个内角的度数分别是:30︒,90︒或40︒,80︒.【点睛】本题考查了“倍角三角形”的定义以及三角形的内角和等知识,解题的关键是学会用分类讨论的思想解决问题.14.【分析】根据求出根据多边形内角和公式求出五边形的内角和即可得到答案【详解】∵∴∵五边形内角和=∴==故答案为:【点睛】此题考查两直线平行同旁内角互补多边形内角和公式熟记多边形内角和计算公式是解题的关键 解析:360︒【分析】根据//AE BC 求出180A B ∠+∠=︒,根据多边形内角和公式求出五边形ABCDE 的内角和,即可得到答案.【详解】∵//AE BC ,∴180A B ∠+∠=︒,∵五边形内角和=5218540(0)-⨯︒=︒,∴C D E ∠+∠+∠=540180︒-︒=360︒,故答案为:360︒.【点睛】此题考查两直线平行同旁内角互补,多边形内角和公式,熟记多边形内角和计算公式是解题的关键.15.25°【分析】先求出∠A 的度数再根据折叠的性质可得∠E 的度数根据平行线的性质求出∠ADE 的度数进而即可求解【详解】∵∴∠A=40°∵沿折叠后点B 落在点E 处∴∠E=∠B=50°∵∴∠ADE=∠E=50解析:25°【分析】先求出∠A 的度数,再根据折叠的性质可得∠E 的度数,根据平行线的性质求出∠ADE 的度数,进而即可求解.【详解】∵90,50ACB B ︒︒∠=∠=,∴∠A=40°,∵BCD △沿CD 折叠后,点B 落在点E 处,∴∠E=∠B=50°,∵//CE AB ,∴∠ADE=∠E=50°,∴∠BDC=∠EDC=(180°-50°)÷2=65°,∴∠ACD=∠BDC-∠A=65°-40°=25°,故答案是:25°.【点睛】本题主要考查折叠的性质,三角形外角的性质,平行线的性质,直角三角形的性质,掌握平行线的性质以及三角形外角的性质,是解题的关键. 16.35°【分析】先求出等边三角形正方形正五边形的内角度数再根据三角形的外角和为360°即可求解【详解】∵等边三角形的内角度数是60°正方形的度数是90°正五边形的度数是∴∠3=360°-60°-90°解析:35°【分析】先求出等边三角形,正方形,正五边形的内角度数,再根据三角形的外角和为360°,即可求解.【详解】∵等边三角形的内角度数是60°,正方形的度数是90°,正五边形的度数是(52)1801085-⨯︒=︒, ∴∠3=360°-60°-90°-108°-∠1-∠2=360°-60°-90°-108°-47°-20°=35°,故答案是:35°【点睛】本题主要考查正多边形的内角和以及外角和定理,准确分析图形中角的数量关系,是解题的关键.17.360°【分析】根据三角形的外角等于不相邻的两个内角的和以及多边形的内角和即可求解【详解】解:∵∠1=∠A+∠B ∠2=∠C+∠D ∠3=∠E+∠F ∠4=∠G+∠H ∴∠A+∠B+∠C+∠D+∠E +∠F+解析:360°【分析】根据三角形的外角等于不相邻的两个内角的和,以及多边形的内角和即可求解.【详解】解:∵∠1=∠A+∠B ,∠2=∠C+∠D ,∠3=∠E+∠F ,∠4=∠G+∠H ,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=∠1+∠2+∠3+∠4,又∵∠1+∠2+∠3+∠4=360°,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=360°.故选:D ..【点睛】本题考查了三角形的外角的性质以及多边形的外角和定理,正确转化为多边形的外角和是关键.18.【分析】先根据多边形的内角度数得出每个外角的度数再根据外角和为360°求出多边形的边数最后根据n 边形多角线条数为求解即可【详解】∵一个正多边形的每个内角为108°∴每个外角度数为180°﹣108°=解析:【分析】先根据多边形的内角度数得出每个外角的度数,再根据外角和为360°求出多边形的边数,最后根据n 边形多角线条数为(3)2n n -求解即可. 【详解】∵一个正多边形的每个内角为108°,∴每个外角度数为180°﹣108°=72°,∴这个正多边形的边数为360°÷72°=5, 则这个正多边形所有对角线的条数为(3)2n n -=5(53)2⨯-=5, 故答案为:5.【点睛】本题主要考查多边形内角与外角、多边形的对角线,解题的关键是掌握多边形外角和度数为360°,n 边形多角线条数为()32n n -.19.110°【分析】根据三角形的内角和定理求出∠GBC +∠GCB 根据角平分线的定义求出∠ABC +∠ACB 从而求出∠A 根据三角形高的定义可得∠AEC=∠FDC=90°然后根据三角形的内角和定理求出∠ACE解析:110°【分析】根据三角形的内角和定理求出∠GBC +∠GCB ,根据角平分线的定义求出∠ABC +∠ACB ,从而求出∠A ,根据三角形高的定义可得∠AEC=∠FDC=90°,然后根据三角形的内角和定理求出∠ACE ,最后利用三角形外角的性质即可求出结论.【详解】解:∵=125CGB ∠︒∴∠GBC +∠GCB=180°-∠CGB=55°∵,ABC ACB ∠∠的角平分线交于点G ,∴∠ABC=2∠GBC ,∠ACB=2∠GCB∴∠ABC +∠ACB=2∠GBC +2∠GCB=2(∠GBC +∠GCB )=110°∴∠A=180°-(∠ABC +∠ACB )=70°∵,AB AC 边上的高,CE BD 相交于点F ,∴∠AEC=∠FDC=90°,∴∠ACE=180°-∠AEC -∠A=20°∴CFB ∠=∠FDC +∠ACE=110°故答案为:110°.【点睛】此题考查的是三角形内角和定理、三角形外角的性质、三角形的高和角平分线,掌握三角形内角和定理、三角形外角的性质、三角形的高的定义和角平分线的定义是解题关键. 20.343【分析】先根据已知条件求出△A1B1C1及△A2B2C2的面积再根据两三角形的倍数关系求解即可【详解】△ABC 与△A1BB1底相等(AB =A1B )高为1:2(BB1=2BC )故面积比为1:2∵解析:343【分析】先根据已知条件求出△A 1B 1C 1及△A 2B 2C 2的面积,再根据两三角形的倍数关系求解即可.【详解】△ABC 与△A 1BB 1底相等(AB =A 1B ),高为1:2(BB 1=2BC ),故面积比为1:2, ∵△ABC 面积为1,∴112A BB S =△,同理可得11112C B C A C A S S ==△△, ∴1112317A B C S =⨯+=△;同理可证222111749A B C A B C S S ==△△,所以333749343A B C S =⨯=△,故答案为:343.【点睛】本题考查了图形面积的规律探究,准确找到每变化一次之后图形面积的变化规律是解决问题的关键.三、解答题21.(1)45°;(2)不变,45°【分析】(1)由题意,先求出135ABN ∠=︒,由角平分线的定义,求出67.5ABE ∠=︒,22.5∠︒=BAC ,由三角形外角的性质,即可求出答案;(2)由三角形的外角性质,得ACB ABE BAC ∠=∠-∠,再根据角平分线的定义即可求出答案.【详解】解:(1)∵90MON ∠=︒,即90AOB ∠=︒,45BAO ∠=︒,∴135ABN AOB BAO ∠=∠+∠=︒,∵BE 平分ABN ∠,AC 平分BAO ∠, ∴167.52ABE ABN ∠=∠=︒,122.52BAC BAO ∠=∠=︒, ∴67.522.545ACB ABE BAC ∠=∠-∠=︒-︒=︒.(2)ACB ∠的大小不会发生变化,理由如下: ∵BE 平分ABN ∠,AC 平分BAO ∠,∴12ABE ABN ∠=∠,12BAC BAO ∠=∠, ∴ACB ABE BAC ∠=∠-∠1122ABN BAO =∠-∠ ()12ABN BAO =∠-∠12AOB =∠190452=⨯︒=︒. 【点睛】 本题考查了角平分线的定义,三角形的外角性质,解题的关键是熟练掌握所学的知识,正确的得到角的关系.22.周长为16或18.【分析】利用三角形三边关系定理,先确定第三边的范围,再根据第三边BC 的长为偶数求出符合条件的BC 值,即可求出周长.【详解】 解:在ABC ∆中,3,7AB AC ==,∴第三边BC 的取值范围是:410,BC <<∴符合条件的偶数是6或8,∴当6BC =时,ABC ∆的周长为:36716++=;当8BC =时,ABC ∆的周长为:37818++=.ABC ∆∴的周长为16或18.【点睛】此题主要考查了三角形三边关系,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边.23.(1)证明见解析;(2),,B ADE DEF ∠∠∠.【分析】(1)先根据角的和差、等量代换可得EFG ADG ∠=∠,再根据平行线的判定可得//EF AB ,然后根据平行线的性质可得ADE DEF ∠=∠,从而可得B ADE ∠=∠,最后根据平行线的判定即可得证;(2)根据直角三角形的两锐角互余、等量代换即可得.【详解】(1)180,180BDG EFG BDG ADG ∠+∠=︒∠+∠=︒,EFG ADG ∴∠=∠,//EF AB ∴,ADE DEF ∴∠=∠,B DEF ∠=∠,B ADE ∴∠=∠,//DE BC ∴;(2)90A ∠=︒,90B C ∴∠+∠=︒,B DEF ∠=∠,90DEF C ∴∠+∠=︒,由(1)可知,B ADE ∠=∠,90ADE C ∴∠+∠=︒,综上,与C ∠互余的角有,,B ADE DEF ∠∠∠.【点睛】本题考查了直角三角形的两锐角互余、平行线的判定与性质等知识点,熟练掌握平行线的判定与性质是解题关键.24.(1)20︒;(2)1=904βα︒-;(3)360=41k α︒+. 【分析】(1)根据对顶角的性质得到∠CEF =∠AED =80°,根据角平分线的定义即可得到结论; (2)根据角平分线的定义和平行线的性质即可得到结论;(3)根据题意列方程即可得到结论.【详解】解:(1)∵β=80°,∴∠CEF =∠AED =80°,∵EC 平分∠BEF ,∴∠BEC =∠CEF =80°,∴∠DEB =180°﹣80°﹣80°=20°;(2)∵DF ∥BC ,∴∠ADE =∠ABC =α,∵BE 平分∠ABC ,∴∠DEB =∠EBC =12α,∵EC 平分∠BEF ,∴β=∠CEF =12(180°﹣12α) =90°﹣14α; (3)∵β=k α,∴90°﹣14α=k α, 解得:α=36041k ︒+. 【点睛】本题考查了三角形的内角和定理,平行线的性质,熟练掌握三角形的内角和定理是解题的关键.25.30°【分析】由三角形的内角和可求得∠BAC ,则由角平分线定义可求得∠EAC ,三角形的内角和可求得∠DAC 即可.【详解】解:在△ABC 中∵∠B=20°,∠C=80°∴∠BAC=180°-∠B -∠C=180°-20°-80°=80°;∵AE 是△ABC 的角平分线,∴∠EAC=12∠BAC=12×80°=40°; ∵AD 是△ABC 的高∴∠ADC=90°;又∵在△ADC 中,∠C=80°∴∠DAC=180°-∠C -∠ADC=180°-80°-90°=10°;∴∠EAD=∠EAC -∠DAC=40°-10°=30°;【点睛】本题考查了角平分线定义,三角形内角和定理的应用,题目比较好,难度适中. 26.10EAD ∠=︒,55BOE ∠=︒【分析】根据三角形内角和定理求出∠BAC=180°-60°-70°=50°,再由AE 是角平分线,求出∠EAC=12∠BAC=30°,由AD 是高,求出∠CAD=90°-∠C=20°,最后即可求出∠EAD=∠EAC-∠CAD=10°;根据角平分线的性质,得∠OAB=12∠BAC ,∠OBA=12∠ABC ,所以∠BOE=∠OAB+∠OBA=12(∠BAC+∠ABC )=12(180°-∠C )=12×(180°-70°)=55°. 【详解】解:∠B AC =60°,∠C =70°∴∠ABC =180°−∠ABC −∠C =180°−60°-70°=50°,∵AE 是角平分线,∴∠EAC=12∠BAC=12×60°=30°,∵AD是高,∴∠ADC=90°,∴∠CAD=90°−∠C=90°−70°=20°,∴∠DAE=∠EAC−∠CAD=30°−20°=10°;∵AE,BF是角平分线,∴∠OAB=12∠BAC,∠OBA=12∠ABC,∴∠BOE=∠OAB+∠OBA=12(∠BAC+∠ABC)=12(180°−∠C)=12×(180°−70°) =55°.【点睛】本题考查了三角形内角和定理、角平分线性质,解题的关键是明确题意,找出所求问题需要的条件.。

八年级数学上册《第十一章三角形》单元测试卷-附答案(人教版)

八年级数学上册《第十一章三角形》单元测试卷-附答案(人教版)

八年级数学上册《第十一章三角形》单元测试卷-附答案(人教版)一、单选题(本大题共12小题,每小题3分,共36分)1.下列说法中正确的是( ) A .直角三角形的高只有一条B .锐角三角形的三条高交于三角形内部C .直角三角形的高没有交点D .钝角三角形的三条高所在的直线没有交点 2.如图,在ABC 中,延长BC 至点D ,使CD BC =,记ABC 的面积为1S ,ACD 的面积为2S ,则1S 与2S 的大小关系是( )A .12S S >B .12S S <C .12S SD .不能确定3.现有长度分别为2cm 、4cm 、5cm 、7cm 的木棒,从中任取三根,能组成三角形的个数为( ) A .1 B .2 C .3 D .44.如图,在△ABC 中,∠ABC 与∠ACB 的平分线相交于点O,若∠A=70°,则∠BOC 的度数为( )A .100°B .120°C .125°D .130°5.如图,在ABC 中9065C B ∠=︒∠=︒,,点D 、E 分别在AB AC 、上,将ADE 沿DE 折叠,使点A 落在点F 处.则BDF CEF ∠-∠=( )∠∠A=∠B=2∠C;∠∠A=2∠B=3∠C,能确定△ABC为直角三角形的条件有()A.2个B.3个C.4个D.5个7.下列说法中错误的是().A.三角形的中线、角平分线、高线都是线段B.任意三角形的内角和都是180°C.三角形的一个外角大于任何一个内角D.三角形的三条高至少有一条高在三角形的内部8.一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为()A.8B.7或8C.7或8或9D.8或9或10A.1B.2C.3D.4分别平分ABC的外角2A.∠∠∠B.∠∠∠C.∠∠∠D.∠∠∠∠11.如图,在直角三角形ABC中90∠=︒,AB=3,AC=4,BC=5,DE//BC,若点A到DE的距离是1,则DEA与BC之间的距离是()A.2B.1.4C.3D.2.412.从正多边形一个顶点出发共有7条对角线,则这个正多边形每个外角的度数为()A.36°B.40°C.45°D.60°二、填空题(本大题共8小题,每小题3分,共24分)13.已知三点M 、N 、P 不在同一条直线上,且MN=4厘米,NP=3厘米,M 、P 两点间的距离为x 厘米,那么x 的取值范围是 .14.如图1,为响应国家新能源建设,某市公交站亭装上了太阳能电池板.当地某一季节的太阳光(平行光线)与水平线最大夹角为62︒,如图2,电池板AB 与最大夹角时刻的太阳光线相垂直,此时电池板CD 与水平线夹角为48︒,要使//AB CD ,而将电池板CD 逆时针旋转α度,则α为 .()090α<<15.如图,ABC 中55A ∠=︒,90ACB ∠=︒将ABC 沿过C 点的直线折叠,使A 点落在边BC 上的E 点处,折痕交边AB 于点D ,则BDE ∠= .16.如图,图中x 的值为 .17.三角形的三边长分别为2,5,32x -则x 的取值范围是 .18.如图,在∠ABC 中,AB >AC ,AE∠BC 于E ,AD 为∠BAC 的平分线,则∠DAE 与∠C -∠B 的数量关系 .19.如图中36B ∠=︒,76C ∠=︒且AD 、AF 分别是ABC 的角平分线和高,DAF ∠= .20.在△ABC 中,若A B C ∠=∠-∠,则B ∠的度数为 度.三、解答题(本大题共5小题,每小题8分,共40分)21.如图,△ABC 的面积为21平方厘米,DC =3DB ,AE =ED ,求阴影部分面积.22.如图:已知在ABC 中,AD 平分BAC ∠,AE BC ⊥垂足为E ,38B ∠︒=和70C ∠︒=求DAE ∠的度数.23.如图,在ABC 中,AD 是BAC ∠的平分线,DE AC ∥交AB 于点E 且55B ∠=︒,95ADC ∠=︒求AED ∠的度数.24.如图,AB△CD,AC△BE,△MAC=40,△D=50°,CH平分△ACD,BH平分△ABD(1)求△EBH的角度(2)求△BHC的角度25.如图,在△ABC中,点D是∠ACB与∠ABC的角平分线的交点,BD的延长线交AC于点E.(1)若∠A=80°,求∠BDC的度数;(2)若∠EDC=40°,求∠A的度数;(3)请直接写出∠A与∠BDC之间的数量关系(不必说明理由).参考答案:1.B2.C3.B。

新人教版初中数学八年级数学上册第一单元《三角形》检测卷(含答案解析)

新人教版初中数学八年级数学上册第一单元《三角形》检测卷(含答案解析)

一、选择题1.如图,在△ABC 中,∠ACB=90°,D 在AB 上,将△ABC 沿CD 折叠,点B 落在AC 边上的点B′处,若'20ADB ∠=︒,则∠A 的度数为( )A .25°B .30°C .35°D .40° 2.下列长度的三条线段能构成三角形的是( )A .1,2,3B .5,12,13C .4,5,10D .3,3,63.在多边形的一边上任取一点(不是顶点),将这个点与多边形的各顶点连接起来,可以将多边形分割成8个三角形,则该多边形的边数为( ) A .8 B .9C .10D .114.如图,ABC 中,将A ∠沿DE 翻折,若30A ∠=︒,25BDA '∠=︒,则CEA '∠多少度( )A .60°B .75°C .85°D .90°5.如图,,AD CE 分别是ABC 的中线与角平分线,若,40B ACB BAC ∠=∠∠=︒,则ACE ∠的度数是( )A .20︒B .35︒C .40︒D .70︒6.如图,在ABC 中,AD 是角平分线,AE 是高,已知2BAC B ∠=∠,2B DAE ∠=∠,那么C ∠的度数为( )A .72°B .75°C .70°D .60°7.一副透明的三角板,如图叠放,直角三角板的斜边AB 、CE 相交于点D ,则BDC∠的度数是( )A .65︒B .75︒C .85︒D .105︒8.如图,为估计池塘岸边A 、B 的距离,小方在池塘的一侧选取一点O ,测得OA =15米,OB=10米,A 、B 间的距离不可能是( )A .20米B .15米C .10米D .5米9.现有两根木棒,长度分别为5cm 和13cm ,若不改变木棒的长度,要钉成一个三角形木架,则应在下列四根木棒中选取( ) A .20cm 的木棒 B .18cm 的木棒 C .12cm 的木棒 D .8cm 的木棒 10.设四边形的内角和等于,a 五边形的外角和等于,b 则a 与b 的关系是( ) A .a b = B .120a b =+ C .180b a =+︒ D .360b a =+︒ 11.某多边形的内角和是其外角和的3倍,则此多边形的边数是( ) A .5B .6C .7D .812.具备下列条件的三角形中,不是..直角三角形的是( ) A .A B C ∠+∠=∠ B .12A B C ∠=∠=∠ C .3A B C ∠=∠=∠D .1123A B C ∠=∠=∠ 二、填空题13.若,,a b c 是△ABC 的三边长,试化简a b c a c b +-+--= __________. 14.将一副直角三角尺所示放置,已知//AE BC ,则AFD ∠的度数是__________.15.如图,ACD ∠是ABC 的外角,ABC ∠的平分线与ACD ∠的平分线交于点1A ,1A BC ∠的平分线与1A CD ∠的平分线交于点2A ,…,1n A BC -∠的平分线与1n A CD -∠的平分线交于点n A ,设=A θ∠,则2=A ∠___________,=n A ∠___________.16.用边长相等的正三角形和正六边形铺满地面,一个结点周围有m 块正三角形,n 块正六边形,则m+n =______.17.如图,在ABC 中,点,,D E F 分别在三边上,点E 是AC 的中点,,,AD BE CF 交于一点,283BGDAGEG BD DC S S===,,,则ABC 的面积是________.18.如图,六边形ABCDEF 中,AB ∥DC ,∠1、∠2、∠3、∠4分别是∠BAF 、∠AFE 、∠FED 、∠EDC 的外角,则∠1+∠2+∠3+∠4=_____.19.一副直角,三角板有一个角的顶点如图所示重合,则下列说法中正确的有_________.①如图 1,若 AB ⊥AE ,则∠BFC=75°; ②图 2 中 BD 过点C ,则有∠DAE+∠DCE=45°; ③图 3中∠DAE+∠DFC 等于 135°;④保持重合的顶点不变,改变三角板BAD 的摆放位置,使得D 在边AC 上,则∠BAE=105°.20.如图中,36B ∠=︒,76C ∠=︒,AD 、AF 分别是ABC 的角平分线和高,DAF ∠=________.三、解答题21.如图,已知长方形ABCD 中,10cm AD =,6cm DC =,点F 是DC 的中点,点E 从A 点出发在AD 上以每秒1cm 的速度向D 点运动,运动时间设为t 秒.(假定0t 10<<)(1)当5t =秒时,求阴影部分(即三角形BEF )的面积;(2)用含t 的式子表示阴影部分的面积;并求出当三角形EDF 的面积等于3时,阴影部分的面积是多少?(3)过点E 作//EG AB 交BF 于点G ,过点F 作//FH BC 交BE 于点H ,请直接写出在E 点运动过程中,EG 和FH 的数量关系. 22.阅读下面内容,并解答问题在学习了平行线的性质后,老师请学们证明命题:两条平行线被第三条直线所截,一组同旁内角的平分线互相垂直.小颖根据命题画出图形并写出如下的已知条件.已知:如图1,//AB CD ,直线EF 分别交AB ,CD 于点E ,F ,BEF ∠的平分线与DFE ∠的平分线交于点G .(1)直线EG ,FG 有何关系?请补充结论:求证:“__________”,并写出证明过程; (2)请从下列A 、B 两题中任选一题作答,我选择__________题,并写出解答过程. A .在图1的基础上,分别作BEG ∠的平分线与DFG ∠的平分线交于点M ,得到图2,求EMF ∠的度数.B .如图3,//AB CD ,直线EF 分别交AB ,CD 于点E ,F .点O 在直线AB ,CD 之间,且在直线EF 右侧,BEO ∠的平分线与DFO ∠的平分线交于点P ,请猜想EOF ∠与EPF ∠满足的数量关系,并证明它.23.已知:180,BDG EFG B DEF ∠+∠=︒∠=∠.(1)如图1,求证://DE BC .(2)如图2,当90A EFG ∠=∠=︒时,请直接写出与C ∠互余的角. 24.(问题引入)(1)如图1,△ABC ,点O 是∠ABC 和∠ACB 相邻的外角平分线的交点,若∠A=40°,请求出∠BOC 的度数. (深入探究)(2)如图2,在四边形ABDC 中,点O 是∠BAC 和∠ACD 的角平分线的交点,若∠B+∠D=110°,请求出∠AOC 的度数.(类比猜想)(3)如图3,在△ABC中,∠CBO=13∠DBC,∠BCO= 13∠ECB,∠A=α,则∠BOC=___(用α的代数式表示,直接写出结果,不需要写出解答过程).(4)如果BO,CO分别是△ABC的外角∠DBC,∠ECB的n等分线,它们交于点O,∠CBO=∠1n DBC∠BCO=1n∠ECB,则∠BOC=___(用n、a的代数式表示,直接写出结果,不需要写出解答过程).25.如图所示,AD、AE分别是△ABC的高和角平分线,∠B=20°,∠C=80°,求∠EAD的度数.26.如果一个多边形的内角和是外角和的3倍还多180°,那么这个多边形的边数是多少.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】利用翻折不变性,三角形内角和定理和三角形外角的性质即可解决问题.【详解】∵∠ACB=90°,∴∠A+∠B=90°,∵△CDB′是由△CDB翻折得到,∴∠CB′D=∠B,∵∠CB′D=∠A+∠ADB′=∠A+20°,∴∠A+∠A+20°=90°,解得∠A=35°.故选:C.【点睛】本题考查三角形内角和定理和三角形外角的性质,翻折变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2.B解析:B【分析】根据三角形的三边关系进行分析判断即可.【详解】解:根据三角形任意两边的和大于第三边,得A中,1+2=3,不能组成三角形;B中,5+12=17>13,能组成三角形;C中,4+5=9<10,不能够组成三角形;D中,3+3=6,不能组成三角形.故选:B.【点睛】本题考查了能够组成三角形三边的条件:用两条较短的线段相加,如果大于最长的那条线段就能够组成三角形.3.B解析:B【分析】逐一探究在三角形,四边形,五边形一边上任取一点(不是顶点),将这个点与多边形的各顶点连接起来,得到分割成的三角形的数量,再总结规律,运用规律列方程即可得到答案.【详解】解:如图,探究规律:在三角形的一边上任取一点(不是顶点),将这个点与三角形的各顶点连接起来,可以将三角形分割成2个三角形,在四边形的一边上任取一点(不是顶点),将这个点与四边形的各顶点连接起来,可以将四边形分割成3个三角形,在五边形的一边上任取一点(不是顶点),将这个点与五边形的各顶点连接起来,可以将五边形分割成4个三角形,总结规律:在n 边形的一边上任取一点(不是顶点),将这个点与n 边形的各顶点连接起来,可以将n 边形分割成()1n -个三角形,应用规律: 由题意得:18,n -=9.n ∴=故选:.B 【点睛】本题考查的是规律探究及规律运用,探究“在n 边形的一边上任取一点(不是顶点),将这个点与n 边形的各顶点连接起来,把n 边形分割成的三角形的数量”是解题的关键.4.C解析:C 【分析】根据折叠前后对应角相等可得ADE A DE '∠=∠,AED A ED '∠=∠,再运用平角的定义和三角形内角和定理依次求得ADE ∠、AED ∠,再次运用平角的定义即可求得CEA '∠. 【详解】解:∵将A ∠沿DE 翻折,∴ADE A DE '∠=∠,AED A ED '∠=∠, ∵D 是线段AB 上的点,25BDA '∠=︒,∴180ADE A D B E DA '∠+∠-'∠=︒,即251280ADE ︒=∠-︒, 解得102.5ADE ∠=︒,∵30A ∠=︒,180A AED ADE ∠+∠+∠=︒,∴180180102.53047.5AED ADE A ∠=︒-∠-∠=︒-︒-︒=︒, ∴18018047.547.585CEA AED A ED ''∠=︒-∠-∠=︒-︒-︒=︒. 故选:C . 【点睛】本题考查折叠的性质,三角形内角和定理,平角的定义.理解折叠前后对应角相等是解题关键.5.B解析:B 【分析】由,40B ACB BAC ∠=∠∠=︒,再利用三角形的内角和定理求解ACB ∠,结合三角形的角平分线的定义,从而可得答案. 【详解】 解:,B ACB ∠=∠40BAC ∠=︒,18040702B ACB ︒-︒∴∠=∠==︒, CE 是ABC 角平分线,1352ACE ACB ∴∠=∠=︒,故选:.B 【点睛】本题考查的是三角形的角平分线的定义,三角形的内角和定理,掌握以上知识是解题的关键.6.A解析:A 【分析】利用角平分线的定义和三角形内角和定理,余角即可计算. 【详解】由图可知DAE DAC EAC ∠=∠-∠, ∵AD 是角平分线. ∴12DAC BAC ∠=∠, ∴12DAE BAC EAC ∠=∠-∠, ∵90EAC C ∠=︒-∠,∴1(90)2DAE BAC C ∠=∠-︒-∠ ∵2BAC B ∠=∠,2B DAE ∠=∠,∴14(90)2DAE DAE C ∠=⨯∠-︒-∠, ∴90DAE C ∠=︒-∠∵180C B BAC ∠=︒-∠-∠,∴18024C DAE DAE ∠=︒-∠-∠, ∴1802(90)4(90)C C C ∠=︒-︒-∠-︒-∠, ∴72C ∠=︒. 故选:A . 【点睛】本题主要考查了角平分线的定义和三角形的内角和定理以及余角.根据题意找到角之间的数量关系是解答本题的关键.7.B解析:B 【分析】根据三角板的性质以及三角形内角和定理计算即可.【详解】解:∵∠CEA =60︒,∠BAE =45︒, ∴∠ADE = 180︒−∠CEA −∠BAE =75︒, ∴∠BDC =∠ADE =75︒, 故选:B 【点睛】本题考查三角板的性质,三角形内角和定理等知识,对顶角相等,解题的关键是熟练掌握基本知识,属于中考基础题.8.D解析:D 【分析】连接AB ,根据三角形三边的数量关系得到AB 长的范围,即可得出结果. 【详解】解:如图,连接AB ,∵15AO m =,10OB m =,∴15101510AB -<<+,即525AB <<. 故选:D . 【点睛】本题考查三角形的三边关系,解题的关键是掌握三角形两边之和大于第三边,两边之差小于第三边的性质.9.C解析:C 【分析】设选取的木棒长为xcm ,再根据三角形的三边关系求出x 的取值范围,选出合适的x 的值即可. 【详解】解:设选取的木棒长为xcm ,∵两根木棒的长度分别为5cm 和13cm , ∴13cm-5cm <x <13cm+5cm ,即8cm <x <18cm , ∴12cm 的木棒符合题意. 故选:C . 【点睛】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.10.A解析:A【分析】根据多边形的内角和定理与多边形外角和即可得出结论.【详解】解:∵四边形的内角和等于a ,∴a=(4-2)•180°=360°.∵五边形的外角和等于b ,∴b=360°,∴a=b .故选:A .【点睛】本题考查的是多边形的内角与外角,熟知多边形的内角和定理是解答此题的关键. 11.D解析:D【分析】利用多边形内角和公式和外角和定理,列出方程即可解决问题.【详解】解:根据题意,得:(n-2)×180=360×3,解得n=8.故选:D .【点睛】本题考查了多边形的内角和与外角和,解答本题的关键是根据多边形内角和公式和外角和定理,利用方程法求边数.12.C解析:C【分析】利用三角形的内角和,代入已知条件求出角的度数,逐一判断是否有直角即可.【详解】A :ABC ∠+∠=∠,代入+=180A B C ∠+∠∠︒得:2=180C ︒∠⇒=90C ∠︒,故此选项不符合题意;B :12A B C ∠=∠=∠,代入+=180A B C ∠+∠∠︒得:11++=2=18022C C C C ︒∠∠∠∠⇒=90C ∠︒,故此选项不符合题意; C :3A B C ∠=∠=∠,代入+=180A B C ∠+∠∠︒得:3+3+=180C C C ︒∠∠∠⇒26C ≈︒∠,故此选项符合题意;D :1123A B C ∠=∠=∠代入+=180A B C ∠+∠∠︒得:12++=18033C C C ︒∠∠∠⇒=90C ∠︒,故此选项符合题意; 故答案选:C【点睛】本题主要考查了三角形的内角和,熟悉掌握三角形的内角和运算方式是解题的关键.二、填空题13.2b 【分析】先根据三角形三边关系确定>0<0再去绝对值化简即可【详解】∵是△ABC 的三边长∴>0<0=+=2b 故答案填:2b 【点睛】本题主要考查三角形三边关系绝对值的性质和化简问题根据三角形三边关系解析:2b【分析】先根据三角形三边关系,确定a b c +->0,()a b c -+<0,再去绝对值化简即可.【详解】∵,,a b c 是△ABC 的三边长∴a b c +->0,()a b c -+<0,a b c a c b +-+--=a b c +-+b c a +-=2b ,故答案填:2b .【点睛】本题主要考查三角形三边关系、绝对值的性质和化简问题,根据三角形三边关系定理正确去绝对值是解决本题的关键.14.【详解】根据平行线的性质及三角形内角和定理解答【点睛】解:由三角板的性质可知∠EAD=45°∠C=30°∠BAC=∠ADE=90°∵AE ∥BC ∴∠EAC=∠C=30°∴∠DAF=∠EAD-∠EAC=解析:75︒【详解】根据平行线的性质及三角形内角和定理解答.【点睛】解:由三角板的性质可知∠EAD=45°,∠C=30°,∠BAC=∠ADE=90°.∵AE ∥BC ,∴∠EAC=∠C=30°,∴∠DAF=∠EAD-∠EAC=45°-30°=15°.∴∠AFD=180°-∠ADE-∠DAF=180°-90°-15°=75°.故答案为:75°.本题考查的是平行线的性质及三角形内角和定理,平行线的性质:两直线平行同位角相等,同旁内角互补.三角形内角和定理:三角形的内角和等于180°.15.【分析】根据三角形的外角性质可得∠ACD=∠A+∠ABC ∠A1CD=∠A1+∠A1BC 根据角平分线的定义可得∠A1BC=∠ABC ∠A1CD=∠ACD 整理得到∠A1=∠A 同理可得∠A2=∠A1从而判断 解析:4θ 2n θ 【分析】根据三角形的外角性质可得∠ACD=∠A+∠ABC ,∠A 1CD=∠A 1+∠A 1BC ,根据角平分线的定义可得∠A 1BC=12∠ABC ,∠A 1CD=12∠ACD ,整理得到∠A 1=12∠A ,同理可得∠A 2=12∠A 1,从而判断出后一个角是前一个角的12,然后表示出∠A n 即可得答案. 【详解】∵ACD ∠是ABC 的外角,∠A 1CD 是△A 1BC 的外角,∴∠ACD=∠A+∠ABC ,∠A 1CD=∠A 1+∠A 1BC ,∵ABC ∠的平分线与ACD ∠的平分线交于点1A ,∴∠A 1BC=12∠ABC ,∠A 1CD=12∠ACD , ∴∠A 1=12∠A , 同理可得∠A 2=12∠A 1=14∠A , ∵∠A=θ,∴∠A 2=4θ, 同理:∠A 3=12∠A 2=382θθ=, ∠A 4=12∠A 3=4162θθ= ……∴∠A n =2n θ. 故答案为:4θ,2nθ 【点睛】 本题考查了三角形的外角性质及角平分线的定义,三角形的一个外角等于与它不相邻的两个内角的和;熟记性质并准确识图,求出后一个角是前一个角的12是解题的关键. 16.4或5【分析】先求出正三角形和正六边形的内角大小然后列出关于mn 的二元一次方程然后确定mn 的值最后求m+n 即可【详解】解:∵正三边形和正六边形内角分别为60°120°∴60°m+120°n=360°解析:4或5【分析】先求出正三角形和正六边形的内角大小,然后列出关于m 、n 的二元一次方程,然后确定m 、n 的值,最后求m+n 即可.【详解】解:∵正三边形和正六边形内角分别为60°、120°∴60°m+120°n=360°,即m+2n=6∴当n=1时,m=4;当n=2时,m=2;∴m+n=5或m+n=4.故答案为:4或5.【点睛】本主要考查了正多边形的组合能否进行平面镶嵌,掌握位于同一顶点处的几个角之和能否为360°成为解答本题的关键.17.30【分析】根据部分三角形的高相等由这些三角形面积与底边的比例关系可求三角形ABC 的面积【详解】解:在和中∵∴∴∵点是的中点∴∴∴故答案为:【点睛】本题中由于部分三角形的高相等可根据这些三角形面积的 解析:30【分析】根据部分三角形的高相等,由这些三角形面积与底边的比例关系可求三角形ABC 的面积.【详解】解:在BDG 和GDC 中,∵2BD DC =,∴2BDG GDC SS =,8BGD S =△,∴4GDC S =, ∵点E 是AC 的中点,3AGE S = ∴ 3.GEC AGE SS == ∴84315BEC BDG GDC GEC SS S S =++=++=, ∴230.ABC BEC S S ==故答案为:30.【点睛】本题中由于部分三角形的高相等,可根据这些三角形面积的比等于底边的比例关系来求三角形ABC 的面积是解题关键.18.180°【分析】根据多边形的外角和减去∠B 和∠C 的外角的和即可确定四个外角的和【详解】解:∵AB ∥DC ∴∠B+∠C =180°∴∠B 的外角与∠C 的外角的和为180°∵六边形ABCDEF 的外角和为360解析:180°【分析】根据多边形的外角和减去∠B 和∠C 的外角的和即可确定四个外角的和.【详解】解:∵AB ∥DC ,∴∠B +∠C =180°,∴∠B 的外角与∠C 的外角的和为180°,∵六边形ABCDEF 的外角和为360°,∴∠1+∠2+∠3+∠4=180°,故答案为:180°.【点睛】本题考查了多边形的外角和定理,解题的关键是发现∠B 和∠C 的外角的和为180° 19.①②③④【分析】由可得:再结合:从而可求解于是可得可判断①;由可得:再利用:求解可判断②;由再利用角的和差可得:可判断③;由图4可得:可判断④【详解】解:如图1故①正确;如图2故②正确;如图3故③正解析:①②③④.【分析】由,AB AE ⊥可得:90BAC CAD DAE ∠+∠+∠=︒,再结合:2105BAC CAD DAE ∠+∠+∠=︒,从而可求解CAD ∠,于是可得BFC ∠,可判断①;由90ADB ,∠=︒可得:90DAC ACD ∠+∠=︒,再利用:180CAE E ACE ∠+∠+∠=︒, 45E ∠=°,求解DAE DCE ∠+∠,可判断②;由,DFC D DAF ∠=∠+∠再利用角的和差可得:135DFC DAE D CAE ∠+∠=∠+∠=︒,可判断③;由图4可得:105BAE BAC CAE ∠=∠+∠=︒,可判断④. 【详解】解:如图1,,AB AE ⊥90BAC CAD DAE ∴∠+∠+∠=︒,60BAD BAC CAD ∠=∠+∠=︒,45CAE CAD DAE ∠=∠+∠=︒,2105BAC CAD DAE ∴∠+∠+∠=︒,15CAD ∴∠=︒,90ADB ∠=︒,901575BFC AFD ∴∠=∠=︒-︒=︒,故①正确; 如图2,90ADB ∠=︒,90DAC ACD ∴∠+∠=︒,180CAE E ACE ∠+∠+∠=︒, 45E ∠=°,90ACE ∠=︒, 180CAD DAE ACD DCE E ∴∠+∠+∠+∠+∠=︒,()()180180904545DAE DCE CAD ACD E ∴∠+∠=︒-∠+∠+∠=︒-︒+︒=︒, 故②正确;如图3,,DFC D DAF ∠=∠+∠9045135DFC DAE D DAF DAE D CAE ∴∠+∠=∠+∠+∠=∠+∠=︒+︒=︒,故③正确;如图4,6045BAD CAE ∠=︒∠=︒,,6045105BAE ∴∠=︒+︒=︒,故④正确.故答案为:①②③④.【点睛】本题考查的是三角形的内角和定理,三角形的外角的性质,角的和差,掌握以上知识是解题的关键.20.【分析】根据三角形内角和定理及角平分线的性质求出∠BAD 度数再由三角形内角与外角的性质可求出∠ADF 的度数由AF ⊥BC 可求出∠AFD=90°再由三角形的内角和定理即可解答【详解】∵AF 是的高∴在中∴解析:20︒【分析】根据三角形内角和定理及角平分线的性质求出∠BAD 度数,再由三角形内角与外角的性质可求出∠ADF 的度数,由AF ⊥BC 可求出∠AFD=90°,再由三角形的内角和定理即可解答.【详解】∵AF 是ABC 的高,∴90AFB ∠=︒,在Rt ABF 中,36B ∠=︒,∴90BAF B ∠=︒-∠9036=︒-︒54=︒.又∵在ABC 中,36B ∠=︒,76C ∠=︒,∴18068BAC B C ∠=︒-∠-∠=︒,又∵AD 平分BAC ∠, ∴11683422BAD CAD BAC ∠=∠=∠=⨯=︒, ∴DAF BAF BAD ∠=∠-∠5434=︒-︒20=︒.故答案为:20︒.【点睛】本题考查了三角形内角和定理、三角形的高线、及三角形的角平分线等知识,难度中等.三、解答题21.(1)4522cm ;(2)23302t cm ⎛⎫- ⎪⎝⎭;218cm ;(3)53EG FH = 【分析】(1)由长方形的性质得出10cm BC AD ==,6cm AB DC ==,由5t =得AE=5,DE=10-5=5,根据ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形即可求解;(2)由题意得AE=t ,DE=10-t ,根据ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形表示出阴影部分的面积;由12EDF S DE DF =⋅△求出t 的值,代入计算即可; (3)由长方形ABCD 得AD CD ⊥,根据平行线的性质得EG HF ⊥,根据平行线间的距离相等可得DE ,AE ,DF ,CF 分别等于,,,EGF EGB EHF BHF △△△△的高,由BEF S的面积即可得出结论.【详解】解:(1)∵长方形ABCD 中,10cm AD =,6cm DC =,∴10cm BC AD ==,6cm AB DC ==,∵点F 是DC 的中点,∴3cm DF CF ==,当5t =秒时,AE=5cm ,DE=10-5=5 cm ,∵ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形 =()()()1111066510353222⨯-⨯-⨯-⨯ =156015152---=4522cm ; (2)由题意得AE=t ,DE=10-t ,∵ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形 =()()1111066103310222t t ⨯-⨯-⨯-⨯⨯- =360315152t t ---+=3302t -, ∴用含t 的式子表示阴影部分的面积为:23302t cm ⎛⎫-⎪⎝⎭; 当三角形EDF 的面积等于3时,12EDF S DE DF =⋅△=()13102t ⨯⨯-=3, 解得:8t =, 8t =时,38=30=182S ⨯-阴影2cm ; (3)∵长方形ABCD ∴AD CD ⊥,//,//AB CD AD BC ,∵//EG AB ,//FH BC ,∴EG HF ⊥,,AD EG CD HF ⊥⊥,∴DE ,AE 分别等于,EGF EGB △△的EG 边上的高,DF ,CF 分别等于,EHF BHF △△的FH 边上的高, ∴11112222BEF S EG DE EG AE HF DF HF CF =⋅+⋅=⋅+⋅△, ∴()()1122EG DE AE HF DF CF +=+,即EG AD HF CD ⋅=⋅, ∵10cm AD =,6cm DC =,∴106EG HF =,即53EG FH =.【点睛】本题是一个动点问题,考查了平行线间的距离,三角形面积的计算,解题的关键是熟练掌握平行线的性质和三角形面积的计算方法.22.(1)EG ⊥FG ,证明见解析;(2)A .45;B .2EOF EPF ∠=∠(在A 、B 两题中任选一题即可)【分析】(1)由AB ∥CD ,可知∠BEF 与∠DFE 互补,由角平分线的定义可得90GEF GFE ∠+∠=︒,由三角形内角和定理可得∠G =90︒,则EG FG ⊥; (2)A .由(1)可知90BEG DFG ∠+∠=︒,根据角平分线的定义可得45MEG MFG ∠+∠=︒,故135MEF MFE ∠+∠=︒,根据三角形的内角和即可求出EMF ∠=45︒;B .设OEF α∠=,OFE β∠=,故EOF ∠=180αβ︒--,再得到180BEO DFO αβ∠+∠=--︒,根据角平分线的定义可得190122PEO PFO αβ︒-∠+∠=-,则119022PEF PFE αβ∠+∠=︒++,再求出EPF ∠,即可比较得到结论.【详解】解:(1)由题意可得,求证:“EG ⊥FG”,证明过程如下∵//AB CD∴∠BEF +∠EFD=180° EG 平分BEF ∠,FG 平分DFE ∠,12GEF BEF ∴∠=∠,12GFE DFE ∠=∠, 1111()180902222GEF GFE BEF DFE BEF DFE ∴∠+∠=∠+∠=∠+⨯︒∠==︒. 在EFG 中,180GEF GFE G ∠+∠+∠=︒,180()1809090G GEF GFE ∴∠=-∠+∠=-︒=︒︒︒,EG FG ∴⊥.(2)A .由(1)可知=90BEG DFG GEF GFE ∠+∠=∠+∠︒,∵BEG ∠的平分线与DFG ∠的平分线交于点M∴∠MEG=12∠BEG ,∠MFG=12∠DFG ∴()111190452222MEG MFG BEG DFG BEG DFG ∠+∠=∠+∠=∠+∠=⨯︒=︒ 则4591350MEF MFE ︒+∠︒=+∠=︒, ∴EMF ∠=180135︒-︒=45︒故答案为:A ,45;B.设OEF α∠=,OFE β∠=,∴EOF ∠=180αβ︒--,∵//AB CD∴∠BEF +∠EFD=180°则180BEO DFO αβ∠+∠=--︒∵BEO ∠的平分线与DFO ∠的平分线交于点P ∴190122PEO PFO αβ︒-∠+∠=-, ∴111190902222PEF PFE αβαβαβ∠+∠=︒--++=︒++, ∴EPF ∠=111809022αβ⎛⎫︒-︒++ ⎪⎝⎭=121902αβ︒--, ∵EOF ∠=1118029022αβαβ⎛⎫︒--=︒-- ⎪⎝⎭, 故2EOF EPF ∠=∠故答案为:B ,2EOF EPF ∠=∠.(在A 、B 两题中任选一题即可)【点睛】本题考查了平行线的性质、角平分线的定义、三角形内角和定理,熟练掌握平行线的性质和角平分线的定义是解题的关键.23.(1)证明见解析;(2),,B ADE DEF ∠∠∠.【分析】(1)先根据角的和差、等量代换可得EFG ADG ∠=∠,再根据平行线的判定可得//EF AB ,然后根据平行线的性质可得ADE DEF ∠=∠,从而可得B ADE ∠=∠,最后根据平行线的判定即可得证;(2)根据直角三角形的两锐角互余、等量代换即可得.【详解】(1)180,180BDG EFG BDG ADG ∠+∠=︒∠+∠=︒,EFG ADG ∴∠=∠,//EF AB ∴,ADE DEF ∴∠=∠,B DEF ∠=∠,B ADE ∴∠=∠,//DE BC ∴;(2)90A ∠=︒,90B C ∴∠+∠=︒,B DEF ∠=∠,90DEF C ∴∠+∠=︒,由(1)可知,B ADE ∠=∠,90ADE C ∴∠+∠=︒,综上,与C ∠互余的角有,,B ADE DEF ∠∠∠.【点睛】本题考查了直角三角形的两锐角互余、平行线的判定与性质等知识点,熟练掌握平行线的判定与性质是解题关键.24.(1)70°;(2)55°;(3)120°-13α;(4)()11801n n n α-⨯︒- 【分析】(1)由三角形内角和定理可求得∠ABC+∠ACB ,再利用邻补角可求得∠DBC+∠ECB ,根据角平分线的定义可求得∠OBC+∠OCB ,在△BOC 中利用三角形内角和定理可求得∠BOC ; (2)根据三角形内角和等于180°,四边形内角和等于360°,结合角平分线的定义即可得到∠AOC 与∠B+∠D 之间的关系;(3)根据三角形的内角和等于180°以及三角形的外角性质列式整理即可得∠BOC=120°-3α;(4)根据三角形的内角和等于180°以及三角形的外角性质列式整理即可得∠BOC=()11801n n n α-⨯︒-.【详解】(1)∵∠A=40°,∴∠ABC+∠ACB=180°-∠A=140°,∴∠DBC+∠ECB=180°-∠ABC+180°-∠ACB =360°-(∠ABC+∠ACB)=360°-140°=220°,∵BO、CO分别平分∠DBC和∠ECB,∴∠OBC+∠OCB=12(∠DBC+∠ECB) =12×220°=110°,∴∠BOC=180°-(∠OBC+∠OCB)=180°-110°=70°;(2)∵点O是∠BAC和∠ACD的角平分线的交点,∴∠OAC=12∠CAB,∠OCA=12∠ACD,∴∠AOC=180°-(∠OAC+∠OCA)=180°-12(∠CAB+∠ACD)=180°-12(360°-∠B-∠D)=12(∠B+∠D),∵∠B+∠D=110°,∴∠AOC=12(∠B+∠D)=55°;(3)在△OBC中,∠BOC=180°-(∠OBC+∠OCB)=180°-13(∠DBC+∠ECB)=180°-13(∠A+∠ACB+∠A+∠ABC)=180°-13(∠A+180°)=120°-13α;故答案为:120°-13α;(4)在△OBC中,∠BOC=180°-(∠OBC+∠OCB)=180°-1n(∠DBC+∠ECB)=180°-1n(∠A+∠ACB+∠A+∠ABC)=180°-1n(∠A+180°)=()11801nn nα-⨯︒-.故答案为:()11801nn nα-⨯︒-.【点睛】本题考查了三角形的内角和定理,三角形的外角性质,角平分线的定义,整体思想的利用是解题的关键.25.30°【分析】由三角形的内角和可求得∠BAC,则由角平分线定义可求得∠EAC,三角形的内角和可求得∠DAC即可.【详解】解:在△ABC中∵∠B=20°,∠C=80°∴∠BAC=180°-∠B-∠C=180°-20°-80°=80°;∵AE是△ABC的角平分线,∴∠EAC=12∠BAC=12×80°=40°;∵AD是△ABC的高∴∠ADC=90°;又∵在△ADC中,∠C=80°∴∠DAC=180°-∠C-∠ADC=180°-80°-90°=10°;∴∠EAD=∠EAC-∠DAC=40°-10°=30°;【点睛】本题考查了角平分线定义,三角形内角和定理的应用,题目比较好,难度适中.26.这个多边形的边数是9【分析】多边形的内角和比外角和的3倍多180°,而多边形的外角和是360°,则内角和是1260度.n边形的内角和可以表示成(n−2)•180°,设这个多边形的边数是n,就得到方程,从而求出边数.【详解】设这个多边形的边数为n,根据题意,得(n−2)•180=360×3+180,解得:n=9.则这个多边形的边数是9.【点睛】此题考查了多边形内角与外角,此题要结合多边形的内角和公式寻求等量关系,构建方程即可求解.。

人教版八年级上册数学《三角形》单元检测题(含答案)

人教版八年级上册数学《三角形》单元检测题(含答案)

人教版数学八年级上学期《三角形》单元测试(时间:90分钟满分:120分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1. 在△AB C中,∠A=95°,∠B=40°,则∠C的度数是()A. 35°B. 40°C. 45°D. 50°2. 若一个多边形的每个内角都为135°,则它的边数为( )A. 6B. 8C. 5D. 103. 在△AB C中,∠A=20°,∠B=60°,则△ABC的形状是( )A. 等边三角形B. 锐角三角形C. 直角三角形D. 钝角三角形4. 已知三角形三边长分别为2,x,7,若x为正整数,则这样的三角形个数有( )A. 2个B. 3个C. 5个D. 7个5. 用形状、大小完全相等的下列图形不能进行密铺的是()A. 等腰三角形B. 平行四边形C. 正五边形D. 正六边形6. 如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为()A. 180°B. 360°C. 540°D. 720°7. 如图,在△AB C中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E,若∠E=35°,则∠BAC的度数为()A. 40°B. 45°C. 60°D. 70°8. 如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(-3,2),(b,m),(c,m).则点E的坐标是()A. (2,-3)B. (2,3)C. (3,2)D. (3,-2)9. 下列长度的三条线段能组成钝角三角形的是()A. 3,4,4B. 3,4,5C. 3,4,6D. 3,4,710. 已知△AB C中,∠A=80°,∠B、∠C的平分线的夹角是()A.130°B.60°C.130°或50°D.60°或120°二、填空题(本大题共10小题,每小题3分,共30分)11.如图,AD⊥BC于D,那么图中以AD为高的三角形有________个.12.长度为2cm、3cm、4cm和5cm的4根木棒,从中任取3根,可搭成________种不同的三角形.13.下列图形中具有稳定性有________ (填序号)14.三角形纸片AB C中,∠A=55°,∠B=75°,将纸片的一角折叠,使点C落在△ABC内(如图),则∠1+∠2的度数为________ 度.15.一个三角形的两边长分别是2和7,另一边长a为偶数,且2<a<8,则这个三角形的周长为________.16.要使六边形木架不变形,至少再钉上________根木条.17.如图,点D是△ABC的边BC上任意一点,点E、F分别是线段AD、CE的中点,且△ABC的面积为16cm2,则△BEF的面积:________ cm2.18.如图,∠1,∠2,∠3,∠4是五边形ABCDE的外角,且∠1=∠2=∠3=∠4=70°,则∠AED的度数是________.19.如图,将△ABC沿直线DE折叠,使点C与点A重合,已知AB=7,BC=6,则△BCD的周长为________.20. 如图,在△AB C中,已知D,E,F分别为BC,AD,CE的中点,且S△ABC=4 cm2,则阴影部分的面积为________.三、解答题(本大题共8小题,共60分.解答应写出文字说明、证明过程或演算步骤)21. 已知一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数.22.如图,在△AB C中,AD是高线,点M在AD上,且∠BAD=∠DCM,求证:CM⊥AB.23. 在△AB C中,∠ABC的平分线与在∠ACE的平分线相交于点D.已知∠ABC=70°,∠ACB=30°,求∠A和∠D的度数.24. 如图,△AB C中,∠A=30°,∠B=70°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,求∠CDF的度数.25. 如图,∠BAD=∠CAD,则AD是△ABC的角平分线,对吗?说明理由.26. 如图,在△ABC中,∠B=32°,∠C =48°,AD⊥BC于点D,AE平分∠BAC交BC于点E,DF⊥AE于点F,求∠ADF的度数.27.如图,BD、CD分别是△ABC的两个外角∠CBE、∠BCF的平分线,试探索∠BDC与∠A之间的数量关系.28.(1)如图①,△ABC是锐角三角形,高BD、CE相交于点H,找出∠BHC和∠A之间存在何种等量关系;(2)如图②,若△ABC是钝角三角形,∠A>90°,高BD、CE所在的直线相交于点H,把图②补充完整,并指出此时(1)中的等量关系是否仍然成立?参考答案一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1. 在△AB C中,∠A=95°,∠B=40°,则∠C的度数是()A. 35°B. 40°C. 45°D. 50°【答案】C【解析】∵三角形的内角和是180°,又∠A=95°,∠B=40°∴∠C=180°-∠A-∠B=180°-95°-40°=45°,故选C.2. 若一个多边形的每个内角都为135°,则它的边数为( )A. 6B. 8C. 5D. 10【答案】B【解析】一个正多边形的每个内角都为135°,这个正多边形的每个外角都为:180°﹣135°=45°,这个多边形的边数为:360°÷45°=8.故选B.3. 在△AB C中,∠A=20°,∠B=60°,则△ABC的形状是( )A. 等边三角形B. 锐角三角形C. 直角三角形D. 钝角三角形【答案】D【解析】根据三角形的内角和定理求出∠C,即可判定△ABC的形状:∠A=20°,∠B=60°,∠C=180°﹣∠A﹣∠B=180°﹣20°﹣60°=100°,△ABC是钝角三角形。

人教版八年级上册数学《三角形》单元测试题带答案

 人教版八年级上册数学《三角形》单元测试题带答案

人教版八年级上册数学《三角形》单元测试题带答案一、选择题1. 下列关于三角形的说法中,错误的是()。

A. 三角形的内角和为180度B. 一个三角形有三个顶点C. 三角形的三条边互相垂直D. 三角形的一个外角等于另外两个内角的和答案:C2. 在直角三角形ABC中,已知∠A=30°,∠B=60°,则∠C=()。

A. 60°B. 30°C. 90°D. 120°答案:C3. 三角形的一个内角是60°,一个外角是120°,则另一个内角是()。

A. 60°B. 120°C. 90°D. 150°答案:D4. 已知在三角形ABC中,∠A=50°,∠B=70°,AB=BC,则AC的大小为()。

A. 50°B. 70°C. 60°D. 80°答案:D5. 若两个三角形的对应角相等,则这两个三角形是()。

A. 相似三角形B. 对称三角形C. 同位角三角形D. 直角三角形答案:A二、填空题1. 三角形的外角是()。

答案:两个不相邻的内角的和2. 一个三角形的外角等于一个角的两个不相邻内角的和,这个角是一个()。

答案:内角3. 相似三角形对应角相等,对应边(比例/成比例)。

答案:成比例4. 三角形的一个内角为60度,则这个角的补角是()。

答案:120度5. 等边三角形的三个角都是()。

答案:60度三、计算题1. 已知在三角形ABC中,∠B=50°,∠C=60°,AC=7cm,求BC的长度。

答案:由三角形内角和的性质可得∠A=180°-50°-60°=70°。

由正弦定理可得:$\frac{BC}{\sin 50^\circ}=\frac{7}{\sin 70^\circ}$,解得BC=6cm。

人教版八年级上册数学第11章《三角形》单元测试卷(含答案解析)

人教版八年级上册数学第11章《三角形》单元测试卷(含答案解析)

人教版八年级上册数学第11章《三角形》单元测试卷班级_________ 姓名__________ 考号_____________ 得分____________一、选择题(每小题3分,共30分)1.以下列各组线段为边,能组成三角形的是()A.2cm,5 cm,8cm B.3 cm,3 cm,6 cmC.3 cm,4 cm,5 cm D.1 cm,2cm,3 cm2.在△ABC中,∠A=80°,∠B=50°,则∠C的余角是()A.130°B.50°C.40°D.20°3.如第3题图,∠C=25°,∠AED=150°,则∠CDE为()第3题图A.100°B.115°C.125°D.155°4.如第4题图,在△ABC中,∠C=90°,∠B=40°,AD是∠BAC的平分线,则∠ADC的大小为()第4题图A.25°B.50°C.65°D.70°5.如第5 题图,工人师傅砌门时,常用木条EF固定长方形门框,使其不变形,这样做的根据是()第5题图A.三角形具有稳定性B.两点确定一条直线C.两点之间线段最短D.三角形内角和180°6.如果将一副三角板按如第6题图方式叠放,那么∠1=()第6题图A.90°B.100°C.105°D.135°7.给出下列命题:①三条线段组成的图形叫三角形;②三角形相邻两边组成的角叫三角形的内角;③三角形的角平分线是射线;④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外;⑤任何一个三角形都有三条高、三条中线、三条角平分线;⑥三角形的三条角平分线交于一点,且这点在三角形内.正确的命题有()A.1个B.2个C.3个D.4个8.一个正多边形的一个内角是它相邻外角的5倍,则这个正多边形的边数是()A.12 B.10 C.8 D.69.如第9题图,将△ABC沿DE、EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠CDO+∠CFO=100°,则∠C的度数为()第9题图A.40°B.41°C.42°D.43°10.在△ABC中,∠A=150°.第一步:在△ABC上方确定一点A1,使∠A1BA=∠ABC,∠A1CA=∠ACB,如第10题图1.第二步:在△A1BC上方确定一点A2,使∠A2BA1=∠A1BA,∠A2CA1=∠A1CA,如第10题图2.照此下去,至多能进行()步.第10题图1 第10题图2A.3 B.4 C.5 D.6二、填空题(每小题4分,共24分)11.如果三角形的一个外角等于与它相邻的内角的4倍,等于与它不相邻的一个内角的2倍,则此三角形最小内角的度数是.12.如第12题图,∠A+∠B+∠C+∠D+∠E+∠F=度.第12题图13.下列第13题图1、图2、图3中,具有稳定性的是图.图1 图2 图3第13题图14.如第14题图是由射线AB、BC、CD、DE、EA组成的平面图形,则∠1+∠2+∠3+∠4+∠5=.。

人教版八年级上册数学第1章《三角形》单元测试卷(含答案)

人教版八年级上册数学第1章《三角形》单元测试卷(含答案)

人教版八年级上册数学第1章《三角形》单元测试卷满分120分姓名:___________班级:___________学号:___________一.选择题(共10小题,满分30分,每小题3分)1.下列图形中,具有稳定性的是()A.B.C.D.2.下列长度的三条线段,能组成三角形的是()A.2,3,5 B.6,6,13 C.5,8,2 D.6,8,103.下列四个图形中,线段BE是△ABC的高的图形是()A.B.C.D.4.若AD是△ABC的中线,则以下结论正确的是()A.AD⊥BC B.∠BAD=∠CAD C.BD=CD D.以上答案都正确5.一个多边形的外角和是内角和的,这个多边形的边数是()A.7 B.8 C.9 D.106.如图,在△ABC中,∠B=45°,∠C=30°,延长线段BA至点E,则∠EAC的度数为()A.105°B.75°C.70°D.60°7.如图,在△ABC中,将△ABC沿直线m翻折,点B落在点D的位置,若∠1﹣∠2=60°,则∠B的度数是()A.30°B.32°C.35°D.60°8.如图,六边形ABCDEF内部有一点G,连结BG、DG.若∠1+∠2+∠3+∠4+∠5=440°,则∠BGD的大小为()A.60°B.70°C.80°D.90°9.在直角三角形ABC中,∠A:∠B:∠C=2:m:4,则m的值是()A.3 B.4 C.2或6 D.2或410.若一个多边形截去一个角后,变成十四边形,则原来的多边形的边数可能为()A.14或15 B.13或14 C.13或14或15 D.14或15或16 二.填空题(共8小题,满分32分,每小题4分)11.空调安装在墙上时,一般都会采用如图所示的方法固定,这种方法应用的几何原理是.12.已知一个三角形的两边长分别是2cm和4cm,当这个三角形的第三条边长为偶数时,其长度是cm.13.中国人民银行下发通知,自2019年4月30日停止兑换第四套人民币中菊花1角硬币.如图所示,则该硬币边缘镌刻的正多边形的外角的度数为度.。

人教版数学八年级上册:第十一章《三角形》单元测试题(附参考答案)

人教版数学八年级上册:第十一章《三角形》单元测试题(附参考答案)

第十一章《三角形》单元测试题(时间:120分钟 满分:150分)一、选择题(每小题4分,共40分)1.下列图形中具有稳定性的是( )A .正三角形B .正方形C .正五边形D .正六边形2.如图,能说明∠1>∠2的是( )3.如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )A B C D4.一个多边形的一个内角和是900°,则这个正多边形的边数为( )A .5B .6C .7D .85.下列条件中,能判定△ABC 为直角三角形的是( )A .∠A =2∠B =3∠C B .∠A +∠B =2∠CC .∠A =∠B =30°D .∠A =12∠B =13∠C6.如图,在△ABC 中,∠ACB =90°,CD 是AB 边上的高.如果∠A =50°,那么∠DCB =( )A .50°B .45°C .40°D .25°7.从长为10 cm ,7 cm ,5 cm ,3 cm 的四条线段中任选三条,能构成三角形的选法有( )A .1种B .2种C .3种D .4种8.如图,在△ABC 中,∠C =90°,D ,E 为AC 边上的两点,且AE =DE ,BD 平分∠EBC ,则下列说法不正确的是() A .BC 是△ABE 的高 B .BE 是△ABD 的中线C .BD 是△EBC 的角平分线 D .∠ABE =∠EBD =∠DBC第8题图第9题图第10题图9.小鹏用家中多余的硬纸板做了一个如图所示的多边形飞镖游戏盘,则该游戏盘的内角和比外角和多( ) A.1 080° B.720° C.540° D.360°10.如图,在5×4的方格纸中,每个小正方形边长为1个单位长度,点O,A,B在方格纸的交点(格点)上,在第四象限内的格点上找点C,使△ABC的面积为3,则这样的点C共有( )A.2个 B.3个 C.4个 D.5个二、填空题(每小题3分,共30分)11.如图,在△ABC中,∠A=80°,点D是BC延长线上一点,∠ACD=150°,则∠B=____________.第11题图第15题图第16题图第17题图12.已知△ABC的两条边长分别为2和5,且第三边长为整数,则第三边的长可能为____________.(填一个符合题意的答案)13.已知在△ABC中,∠A∶∠B∶∠C=1∶3∶5,则△ABC是____________三角形.14.一个正八边形每个内角的度数为____________.15.如图所示,直线a∥b,直线c与直线a,b分别相交于点A,B,AM⊥b,垂足为点M.若∠1=58°,则∠2=____________.16.如果将一副三角板按如图方式叠放,那么∠1=____________.17.如图,已知BD是△ABC的中线,AB=5,BC=3,则△ABD与△BCD的周长的差是____________.18.如图,在△ABC中,AE是∠BAC的角平分线,AD是BC边上的高线,且∠B=50°,∠C=60°,则∠EAD的度数是____________.第18题图第19题图第20题图19.如图,△ABC中,D,E,F分别是BC,CA,AB的中点,作△DEF.若△ABC的面积是12,则△DEF的面积是____________.20.如图,已知在△OAB中,∠AOB=70°,∠OAB的平分线与△OBA的外角∠ABN的平分线所在的直线交于点D,则∠ADB的大小为____________.三、(本大题12分)21.如图,在△ABC中,AD,AE分别是边BC上的中线和高,AE=3 cm,S△ABC=12 cm2.求BC和DC的长.四、(本大题12分)22.某工程队准备开挖一条隧道,为了缩短工期,必须在山的两侧同时开挖,为了确保两侧开挖的隧道在同一条直线上,测量人员在如图所示的同一高度定出了两个开挖点P和Q,然后在左边定出开挖的方向线AP,为了准确定出右边开挖的方向线BQ,测量人员取一个可以同时看到点A,P,Q的点O,测得∠A=28°,∠AOC=100°,那么∠QBO应等于多少度才能确保BQ与AP在同一条直线上?五、(本大题14分)23.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.六、(本大题14分)24.将一副三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB;(2)求∠DFC的度数.七、(本大题12分)25.如图,在△ABC中,∠B=30°,∠ACB=110°,AD是BC边上高线,AE平分∠BAC,求∠DAE的度数.八、(本大题16分)26.已知:如图1,线段AB,CD相交于点O,连接AD,CB,我们把形如图1的图形称之为“8字形”.试解答下列问题:(1)在图1中,请直接写出∠A,∠B,∠C,∠D之间的数量关系:________________;(2)仔细观察,在图2中“8字形”的个数有____________个;(3)在图2中,若∠D=40°,∠B=36°,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD,AB分别相交于点M,N.利用(1)的结论,试求∠P的度数;(4)如果图2中∠D和∠B为任意角时,其他条件不变,试问∠P与∠D,∠B之间存在着怎样的数量关系.(直接写出结论即可)参考答案:第十一章《三角形》单元测试题1.A2.C3.A4.C5.D6.A7.B8.D9.B10.B11.70°12.答案不唯一,如:4或5或613.钝角14.13515.32°16.105°17.218.5°19.320.35°21.∵S∵ABC=2BC·AE=12cm2,AE=3cm,∵BC=8cm.∵AD是BC边上的中线,∵DC=BC=4cm22.在∵AOB中,∵QBO=180°∵A-∵O=180°-28°-100°=52°即∵QBO应等于52才能确保BQ与AP在同一条直线上23.设∵1=∵2=x,则∵3=∵4=2x.∵∵BAC=63°,∵∵2+∵4=117°, 即x+2x=117°∵x=39°∵∵3=∵4=78°∵∵DAC=180°-∵3∵4=24°24.(1)证明:由三角板的性质,可知∵D=30°,∵3=45°,∵DCE=90°∵CF平分∵DCE,∵∵1=∵2=∵DCE=45°∵∵1=∵3.∵CF∵AB.(2)由三角形内角和,可得∵DFC=180°-∵1-∵D=180°-45°-30°=105°.25.∵∵B=30°,∵ACB=110°,∵∵BAC=1830°—110°=40°∵AE平分∵BAC,∵∵BAE=∵BAC=×40°=20°∵∵B=30°,AD是BC边上高线,∵∵BAD=90°30°=60°∵∵DAE=∵BAD∵BAE=60°-20°=40°26.(1)∵A+∵D=∵B+∵C.(2)6.(3)∵∵D=40°,∵B=36°,∵∵OAD+40°=∵OCB+36°∵∵OCB-∵OAD=4°∵AP、CP分别是∵DAB和∵BCD的平分线,∵∵DAM=∵OAD,∵PCM=2∵OCB.∵∵DAM+∵D=∵PCM+∵P,∵∵P=∵DAM+∵D-∵PCM=2(∵OAD-∵OCB)+∵D=2X(-4)+40=38°.(4)根据“8字形”数量关系,得∵OAD+∵D=∵OCB+∵B ∵DAM+∵D=∵PCM+∵P,所以∵OCB=∵OAD=∵D=∵B, ∵PCM-∵DAM=∵D-∵PAP、CP分别是∵DAB和∵BCD的平分线,∵∵DAM=∵OAD,∵PCM=∵OCB∵2(∵D∵B)=∵D-∵P.整理,得2∵P=∵B+∵D。

人教版数学八年级上册 第十一章《三角形》单元测试题(配套练习附答案)

人教版数学八年级上册 第十一章《三角形》单元测试题(配套练习附答案)
∴∠C=60°,
∵BD平分∠ABC,
∴∠DBC=35° ,
∴∠BDC=180°﹣60°﹣35°=85°.
故答案为85°.
17.若n边形的内角和是它的外角和的2倍,则n=.
【答案】6
【解析】
此题涉及多边形内角和和外角和定理
多边形内角和=180(n-2),外角和=360º
所以,由题意可得180(n-2)=2×360º
16.如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是_____.
【答案】85°.
【解析】
【分析】
根据三角形内角和得出∠C=60°,再利用角平分线得出∠DBC=35°,进而利用三角形内角和得出∠BDC的度数.
【详解】∵在△ABC中,∠A=50°,∠ABC=70°,
【答案】2cm2
【解析】
【分析】
由点E为AD的中点,可得△ABC与△BCE的面积之比,同理可得,△BCE和△EFC的面积之比,即可解答出.
【解析】
解:如图2,连接BE,由对顶三角形可得,∠C+∠D=∠CBE+∠DEB.∵五边形ABEFG中,∠A+∠ABE+∠BEF+∠F+∠G=540°,即∠A+∠ABC+∠CBE+∠BED+∠DEF+∠F+∠G=540°,∴∠A+∠ABC+∠C+∠D+∠DEF+∠F+∠G=540°.故答案为540.
点睛:本题主要考查了多边形内角和定理的运用,解决问题的关键是作辅助线构造“对顶三角形”以及五边形,并得出∠C+∠D=∠CBE+∠DEB.解题时注意,五边形的内角和为540°.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学《三角形》单元测试题
一、选择题:
1.下列长度的三条线段中,能组成三角形的是()
A、3cm,5cm ,8cm
B、8cm,8cm,18cm
C、0.1cm,0.1cm,0.1cm
D、3cm,40cm,8cm 2.若三角形两边长分别是4、5,则周长c的范围是()
A. 1<c<9
B. 9<c<14
C. 10<c<18
D. 无法确定
3.若一个三角形的三边长是三个连续的自然数,其周长m满足22
10<
<m,则这样的三角形有() A. 2个 B. 3个 C. 4个 D. 5个
4.一个多边形内角和是10800,则这个多边形的边数为()A 、6 B、 7 C、 8 D、 9 5.已知,如图,AB∥CD,∠A=70°,∠B=40°,则∠ACD=()
A、 55°
B、 70°
C、 40°
D、 110°
6.如图所示,已知△ABC为直角三角形,∠B=90°,若沿图中虚线剪去∠B,则∠1+∠2 等于()A、90° B、135° C、270° D、315°
7.如图所示,在△ABC中,CD、BE分别是AB、AC边上的高,并且CD、BE交于,点P,若∠A=500 ,则∠BPC等于()A、90° B、130° C、270° D、315°
8.如图,点O是△ABC内一点,∠A=80°,∠1=15°,
∠2=40°,则∠BOC等于()A. 95° B. 120°C. 135° D.无法确定
9.在△ABC中,D,E分别为BC上两点,且BD=DE=EC,
则图中面积相等的三角形有() A.4对 B.5对 C.6对 D.7对
10.能把一个任意三角形分成面积相等的两部分是()
A.角平分线
B.中线
C.高
D..A、B、C都可以
11.一个三角形三个内角的度数之比为2:3:7,这个三角形一定是()
A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形
12.如图四个图形中,线段BE是△ABC的高的图是()
第5题图
D
C
B
A
第7题图
第6题图
A
D
B E
E
C
A
E
B
A
E
C
B
A
E
B
A
13.三角形的一个外角是锐角,则此三角形的形状是( ) A.锐角三角形 B.钝角三角形 C.直角三角形 D.无法确定
14. 下列判断:①三角形的三个内角中最多有一个钝角,②三角形的三个内角中至少有两个锐角,③有两个内角为500和200的三角形一定是钝角三角形,④直角三角形中两锐角的和为900,其中判断正确的有( )A.1个 B.2个 C.3个 D.4个
15.若一个多边形除了一个内角外,其余各内角之和为2570°,则这个内角的度数为( ) A.90° B.105° C.130° D.120° 二、填空题:
1. 锐角三角形的三条高都在 ,钝角三角形有 条高在三角形外,直角三角形有两条高恰是它的 。

2. 若等腰三角形的两边长分别为3cm 和8cm ,则它的周长是 。

3. 要使六边形木架不变形,至少要再钉上 根木条。

4. 在△ABC 中,若∠A=∠C=13
∠B ,则∠A= _,∠B= _,这个三角形是 。

5. 如图2,在△ABC 中,AD ⊥BC 于点D ,BE=ED=DC ,∠1=∠2,则

1AD 是△ABC 的边 上的高,也是 的边BD 上的高, 还是△ABE 的边 上的高;

2AD 既是 的边 上的中线,又是边 上的高,还是 的角平分线。

6. 若三角形的两条边长分别为6cm 和8cm ,且第三边的边长为偶数,则第三边长为 。

7.已知a 、b 、c 是三角形的三边长,化简:|a -b +c|+|a -b-c|=_____________。

8.等腰三角形的两边的长分别为2cm 和7cm ,则三角形的周长是 .
9.在下列条件中:①∠A+∠B=∠C ,②∠A ∶∠B ∶∠C=1∶2∶3,③∠A=90°-∠B ,④∠A=
∠B=∠C 中,能确定△ABC 是直角三角形的条件有 10.如图,∠1+∠2+∠3+∠ 4的值为
11.如图,若∠A =70°,∠ABD =120°,则∠ACE =
12.如图,AB ∥CD ,∠BAE=∠DCE=45°,则∠E=
13、三角形的三边长分别为5,1+2x ,8,则x 的取值范围是________.
1
2
3
4
第10题图
第11题图
B
E
A
C D
图2
C
D
E
14.一个多边形的剪去一个角后,所得新的多边形的内角和为2160度,则原来这个多边形的边数是_____ 三、解答下列各题
1.如图直线AD 和BC 相交于O ,AB ∥CD ,∠AOC=95°,∠B=50°,求∠A 和∠D 。

(7分)
2.如图,△ABC 中,∠A=40°,∠B=72°,CE 平分∠ACB , CD ⊥AB 于D,DF ⊥CE 于F,求∠CDF 的度数。

3. 如图在△ABC ,AD 是高线,AE 、BF 是角平分线,它们相交于点O
∠BAC=50°,∠C=70°,求∠DAC 与∠BOA 的度数。

4 如图,△ABC 中,BD 是∠ABC 的角平分线,DE ∥BC , 交AB 于E ,∠A =60°,∠BDC =95°,求△BDE 各内角的度数.
5.已知△ABC 的周长是24cm ,三边a 、b 、c 满足c+a =2b ,c -a =4cm ,求a 、b 、c 的长
D
A E
C
A
B
D
E
F A
B
C
D
O
G
F
E
D
B
A C
6. 如图,在△ABC 中,∠C=90°,外角∠EAB,
∠ABF 的平分线AD 、BD 相交于点D ,求∠D 的度数.
7.如图:∠ACD 是△ABC 的外角,BE 平行∠ABC ,CE 平分∠ACD , 且BE 、CE 交于点E 。

求证:(1)∠E =
1
2
∠A . (2)若BE 、CE 是△ABC 两外角平分线且交于点E ,则∠E 与∠A 又有什么关系?
8.如图、四边形ABCD 中,∠A =∠C =90°,BE 、CF 分别是∠B 、∠D 的平分线.(1)∠1与∠2有何关系,为什么?
(2)BE 与DF 有何关系?请说明理由.
9.如图,∠ECF =900,线段AB 的端点分别在CE 和CF 上,BD 平分∠CBA ,并与 ∠CAB 的外角平分线AG 所在的直线交于一点D ,
(1)∠D 与∠C 有怎样的数量关系?(直接写出关系及大小)
(2)点A 在射线CE 上运动,(不与点C 重合)时,其它条件不变, (1)中结论还成立吗?说说你的理由。

F
E
C
B
A
D
4
3
2
1
E
D
C
B
A
3
2
1
F
E
D
C
B A。

相关文档
最新文档