高二数学下册 7.1 直线的倾斜角和斜率教案人教版
直线的倾斜角和斜率教案
直线的倾斜角和斜率教案教案标题:直线的倾斜角和斜率教案教案目标:1. 了解直线的倾斜角和斜率的概念。
2. 学习如何计算直线的倾斜角和斜率。
3. 掌握直线倾斜角和斜率在实际问题中的应用。
教学步骤:引入活动:1. 引导学生回顾直线的定义,并提问:你们知道直线的倾斜角和斜率是什么吗?知识讲解:2. 解释直线的倾斜角是指直线与水平线之间的夹角,介绍如何通过直线上两点的坐标计算倾斜角。
3. 解释直线的斜率是指直线上任意两点之间的纵坐标差与横坐标差的比值,介绍如何通过直线上两点的坐标计算斜率。
示例演练:4. 给出几个直线的示例,引导学生计算每条直线的倾斜角和斜率。
5. 引导学生思考不同斜率和倾斜角对应的直线形态和特点。
应用实践:6. 提供一些实际问题,要求学生根据给定的直线斜率或倾斜角,解决问题。
- 例如:一辆汽车以每小时60公里的速度行驶,这辆汽车的倾斜角是多少?- 例如:某校田径场的跑道是直线形状,每个标准跑道的长度是400米,倾斜角是多少?拓展练习:7. 提供一些更复杂的直线问题,要求学生应用倾斜角和斜率的概念解决问题。
总结回顾:8. 总结直线的倾斜角和斜率的概念和计算方法。
9. 强调直线倾斜角和斜率在实际问题中的应用。
评估:10. 给学生提供一些练习题,检验他们对直线倾斜角和斜率的理解和应用能力。
教学资源:- 直尺、量角器等测量工具- 白板或投影仪- 实际问题的案例和练习题教学延伸:- 引导学生进一步探究直线的方程与倾斜角、斜率的关系。
- 引导学生研究曲线的倾斜角和斜率。
教学提示:- 在讲解倾斜角和斜率的计算方法时,使用具体的示例来帮助学生理解。
- 鼓励学生积极参与示例演练和应用实践,提高他们的实际运用能力。
- 鼓励学生思考和讨论直线倾斜角和斜率在现实生活中的应用场景。
人教版高中数学必修第二册7.1 直线的倾斜角和斜率2
§7.1.2 直线的倾斜角和斜率一、教学目标:1.深化对直线的方程和方程的直线概念理解,进一步深刻理解直线的倾斜角和斜率的概念,掌握过两点的直线的.2.培养数学的理解能力、辨别能力、公式的应用能力.二、教学重点与难点:重点:直线倾斜角和斜率的概念,过两点的直线的斜率公式.难点:斜率公式的应用,倾斜角的范围..三、教学内容:(一)复习1.直线的倾斜角、斜率、方向向量的概念2.直线的斜率和倾斜角的计算方法.(二)新课1.例题分析:(1).已知直线的倾斜角的取值范围,利用正切函数的性质,讨论直线斜率及其绝对值的变化情况.(10)00〈α〈900(20)900〈α〈1800(2)分别在下列条件下求直线的倾斜角和斜率.(10)直线l的倾斜角的正弦值为3/4(20)直线l的方向向量为ν=(-3,)(3)试证A(-2,3),B(7,6),C(4,5)在同一条直线上.(4)已知直线l过点P(-1,2),且与以A(-2,-3),B(3,0)为端点的线段AB有公共点,求直线l的斜率k的取值范围.(5)设直线l的斜率为k,且-2<k<3,求直线的倾斜角α的取值范围.(6)直线bx+ay=ab(a<0,b<0)的倾斜角是()(93高考)A.arctan(-b/a)B.arctan(-a/b)C.π-arctan(b/a)D.π-arctan(a/b)2.作业1.教材P37-38习题7.1 4-52.直线l的斜率为cosα,则其倾斜角的取值范围是()A.[- π/4,π/4]B.[π/4,3π/4]C.[0,π/4]⋃[3π/4,π]D.[0,π/2] ⋃ [π/2,π]3.若点(a,b)在直线x+2y=1上移动,求ab的最大值.4.已知直线l的方程是y=mx+b,求证:l的斜率为m.5.过原点引直线l,使l与连接A(1,1)和B(1,-1)两点的线段相交,则直线的倾斜角的取值范围是_______6.已知A(cosα,sinα)、B(cosβ,sinβ),并且α、β∈(0,π/2),求直线AB的斜率及倾斜角7.已知定点A(4,2),O为原点,P是线段OA垂直平分线上一点,若∠OPA为锐角,求点P的横坐标x的取值范围.。
直线的倾斜角和斜率教案
直线的倾斜角和斜率教案一、教学目标1. 知识与技能:(1)理解直线的倾斜角的概念,能够求出直线的倾斜角;(2)掌握直线的斜率与倾斜角的关系,能够计算直线的斜率;(3)能够运用直线的倾斜角和斜率解决实际问题。
2. 过程与方法:通过观察实际情境,让学生感受直线的倾斜角和斜率的概念,培养学生的观察能力和思维能力。
3. 情感态度与价值观:培养学生对数学的兴趣,提高学生运用数学知识解决实际问题的能力。
二、教学重点与难点1. 教学重点:(1)直线的倾斜角的概念;(2)直线的斜率与倾斜角的关系;(3)运用直线的倾斜角和斜率解决实际问题。
2. 教学难点:直线的斜率与倾斜角的计算。
三、教学过程1. 导入新课:通过展示实际情境,如倾斜的梯子、斜坡等,引导学生思考直线的倾斜角和斜率的概念。
2. 讲解直线的倾斜角:(1)介绍直线的倾斜角的概念,即直线与水平线之间的夹角;(2)引导学生通过观察和思考,理解直线的倾斜角的大小与直线的斜率之间的关系。
3. 讲解直线的斜率:(1)介绍直线的斜率的概念,即直线的倾斜角的正切值;(2)引导学生通过观察和思考,掌握直线的斜率与倾斜角的关系;(3)举例说明如何计算直线的斜率。
4. 练习与巩固:布置一些有关直线的倾斜角和斜率的练习题,让学生独立完成,巩固所学知识。
四、课后作业1. 请描述直线的倾斜角和斜率的概念,并说明它们之间的关系。
(1)直线y = 2x + 3;(2)直线x = 4。
五、教学反思通过本节课的教学,学生应该能够理解直线的倾斜角和斜率的概念,并掌握它们之间的关系。
在教学过程中,要注意引导学生通过观察和思考,培养学生的观察能力和思维能力。
布置适量的练习题,让学生巩固所学知识。
在课后,要关注学生的学习情况,及时进行教学反思,不断提高教学质量。
六、教学拓展1. 探讨直线的倾斜角与斜率在实际应用中的例子,如建筑设计中的斜屋顶、物理学中的倾斜面等。
2. 引导学生思考直线的倾斜角和斜率在几何图形中的作用,如在三角形、四边形等图形中的运用。
《直线的倾斜角与斜率》教案及说明
《直线的倾斜角与斜率》教案及说明一、教学目标:1. 让学生理解直线的倾斜角的概念,能够求出直线的倾斜角。
2. 让学生掌握直线的斜率的概念,能够求出直线的斜率。
3. 让学生能够运用直线的倾斜角和斜率解决实际问题。
二、教学内容:1. 直线的倾斜角的概念。
2. 直线的斜率的概念。
3. 直线的倾斜角与斜率的关系。
4. 求直线的倾斜角和斜率的方法。
5. 直线的倾斜角和斜率在实际问题中的应用。
三、教学重点与难点:1. 直线的倾斜角的概念。
2. 直线的斜率的概念。
3. 直线的倾斜角与斜率的关系。
四、教学方法:1. 采用讲解法,讲解直线的倾斜角和斜率的概念。
2. 采用案例分析法,分析直线的倾斜角和斜率在实际问题中的应用。
3. 采用互动教学法,引导学生参与课堂讨论,提高学生的思维能力。
五、教学过程:1. 导入:通过生活中的实例,引导学生思考直线的倾斜角和斜率的概念。
2. 讲解直线的倾斜角和斜率的概念,让学生掌握直线的倾斜角和斜率的定义。
3. 通过案例分析,让学生了解直线的倾斜角和斜率在实际问题中的应用。
4. 互动环节:引导学生参与课堂讨论,探讨直线的倾斜角和斜率的关系。
5. 总结:对本节课的内容进行总结,强调直线的倾斜角和斜率的重要性。
6. 作业布置:布置有关直线的倾斜角和斜率的练习题,巩固所学知识。
说明:本教案根据学生的实际情况,采用讲解法、案例分析法和互动教学法,旨在让学生掌握直线的倾斜角和斜率的概念,并能运用到实际问题中。
在教学过程中,注意启发学生的思维,培养学生的动手能力。
六、教学评估:1. 课堂讲解过程中,观察学生对直线的倾斜角和斜率概念的理解程度。
2. 案例分析环节,观察学生对实际问题中直线倾斜角和斜率的应用能力。
3. 课堂互动环节,评估学生对直线倾斜角和斜率关系的掌握情况。
七、教学反思:1. 课后对学生的作业进行批改,总结学生在直线的倾斜角和斜率方面的掌握情况。
2. 针对学生存在的问题,调整教学方法,以便更好地让学生理解和掌握直线的倾斜角和斜率。
高中数学《直线的倾斜角和斜率》教案
高中数学《直线的倾斜角和斜率》教案在平面直角坐标系中,我们用斜率来描述直线的倾斜程度,但是斜率只能描述直线相对于x轴的倾斜程度,无法描述直线相对于y轴的倾斜程度。
因此,引入直线的倾斜角来描述直线的倾斜程度,可以更加全面地描述直线的特征。
2.举例说明:如图,直线L1与x轴的夹角为30度,直线L2与x轴的夹角为60度,直线L3与x轴的夹角为120度。
我们可以发现,直线L1相对于x轴的倾斜程度最小,直线L3相对于x轴的倾斜程度最大。
同时,我们也可以根据倾斜角的大小来判断直线相对于x轴的倾斜方向。
二)直线的斜率1.定义:直线L上两点A(x1,y1)和B(x2,y2)的连线所成的角,叫做直线L的斜率,记作k,即k=tan.2.斜率公式:设直线L上两点A(x1,y1)和B(x2,y2),则直线L的斜率为k=(y2-y1)/(x2-x1).3.举例说明:如图,直线L1过点A(1,2)和点B(3,4),直线L2过点C(2,3)和点D(2,5),直线L3过点E(-1,2)和点F(1,-2)。
我们可以通过斜率公式计算出直线L1的斜率为1,直线L2的斜率为无穷大,直线L3的斜率为-2.三)倾斜角和斜率的关系1.推导过程:设直线L与x轴的夹角为,则tan=k,即=arctan(k)。
2.结论:直线的倾斜角和斜率是互相确定的,知道其中一个就可以求出另一个。
同时,当直线的斜率存在时,直线的倾斜角是唯一确定的。
三、知识拓展一)斜率的性质1.斜率相等的直线平行,斜率相反的直线垂直。
2.斜率为0的直线与x轴平行,斜率不存在的直线与y轴平行。
3.斜率为正数的直线向上倾斜,斜率为负数的直线向下倾斜。
4.斜率越大,直线的倾斜程度越大。
二)斜率的应用1.求两点间的距离:设两点A(x1,y1)和B(x2,y2),则AB的距离为d=sqrt[(x2-x1)²+(y2-y1)²]。
2.判断三点共线:设三点A(x1,y1),B(x2,y2)和C(x3,y3),则当AB的斜率等于BC的斜率时,三点共线。
直线的倾斜角和斜率教案
直线的倾斜角和斜率教案一、教学目标1.理解直线的倾斜角和斜率的概念;2.掌握求直线的倾斜角和斜率的方法;3.能够应用直线的倾斜角和斜率解决实际问题。
二、教学重点1.直线的倾斜角和斜率的概念;2.求直线的倾斜角和斜率的方法。
三、教学难点1.直线的倾斜角和斜率的关系;2.应用直线的倾斜角和斜率解决实际问题。
四、教学内容1. 直线的倾斜角和斜率的概念直线的倾斜角是指直线与水平线之间的夹角,用α表示。
直线的斜率是指直线的倾斜程度,用k表示。
2. 求直线的倾斜角和斜率的方法(1)已知直线的解析式设直线的解析式为y=kx+b,其中k为斜率,b为截距。
直线的倾斜角可以用斜率k求得,即tanα=k。
直线的斜率可以用解析式求得,即k=(y2-y1)/(x2-x1)。
(2)已知直线上两点坐标设直线上两点坐标为(x1,y1)和(x2,y2)。
直线的倾斜角可以用斜率k求得,即tanα=k=(y2-y1)/(x2-x1)。
直线的斜率可以用解析式求得,即k=(y2-y1)/(x2-x1)。
3. 应用直线的倾斜角和斜率解决实际问题(1)求两条直线的夹角设两条直线的斜率分别为k1和k2,则两条直线的夹角为α=|tan(k2-k1)/(1+k1k2)|。
(2)求直线的方程已知直线上一点坐标为(x1,y1)和直线的斜率为k,则直线的解析式为y-y1=k(x-x1)。
(3)求直线与坐标轴的交点设直线与x轴的交点坐标为(x,0),则x=-b/k。
设直线与y轴的交点坐标为(0,b),则b=y1-kx1。
五、教学方法1.讲解法:通过讲解直线的倾斜角和斜率的概念、求解直线的倾斜角和斜率的方法以及应用直线的倾斜角和斜率解决实际问题的步骤,让学生掌握相关知识点。
2.案例分析法:通过实际案例,让学生应用所学知识解决实际问题,提高学生的实际应用能力。
3.互动探究法:通过让学生自己探究直线的倾斜角和斜率的关系,提高学生的自主学习能力。
六、教学评价1.课堂练习:通过课堂练习,检查学生对直线的倾斜角和斜率的掌握程度。
直线的倾斜角和斜率教学教案
直线的倾斜角和斜率一教学教案教学目标(1)了解直线方程的概念.(2)正确理解直线倾斜角和斜率概念.理解每条直线的倾斜角是唯一的,但不是每条直线都存在斜率.(3)理解公式的推导过程,掌握过两点的直线的斜率公式.(4)通过直线倾斜角概念的引入和直线倾斜角与斜率关系的揭示,培养学生观察、探究能力,运用数学言语表达能力,数学交流与评价能力.(5)通过斜率概念的建立和斜率公式的推导,援助学生进一步理解数形结合思想,培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神.教学建议1.教材分析(1)知识结构本节内容首先依据一次函数与其图像一一直线的关系导出直线方程的概念;其次为进一步研究直线,建立了直线倾斜角的概念,进而建立直线斜率的概念,从而完成了直线的方向或者说直线的倾斜角这一直线的几何属性向直线的斜率这一代数属性的转变;最后推导出经过两点的直线的斜率公式.这些充分表达了解析几何的思想方法.(2)重点、难点分析①本节的重点是斜率的概念和斜率公式.直线的斜率是后继内容展开的主线,无论是建立直线的方程,还是研究两条直线的位置关系,以及商量直线与二次曲线的位置关系,直线的斜率都发挥着重要作用.因此,正确理解斜率概念,熟练掌握斜率公式是学好这一章的关键.②本节的难点是对斜率概念的理解.学生对于用直线的倾斜角来刻画直线的方向并不难接受,但是,为什么要定义直线的斜率,为什么把斜率定义为倾斜角的正切两个问题却并不简单接受.2.教法建议(1)本节课的教学任务有三大项:倾斜角的概念、斜率的概念和斜率公式.学生思维也对应三个高潮:倾斜角如何定义、为什么斜率定义为倾斜角的正切和斜率公式如何建立.相应的教学过程也有三个阶段①在教学中首先是创设问题情境,然后通过商量明确用角来刻画直线的方向,如何定义这个角呢,学生在商量中逐渐明确倾斜角的概念.②本节的难点是对斜率概念的理解.学生认为倾斜角就可以刻画直线的方向,而且每一条直线的倾斜角是唯一确定的,而斜率却不这样.学生还会认为用弧度制表示倾斜角不是一样可以数量化吗.再有,为什么要用倾斜角的正切定义斜率,而不用正弦、余弦或余切哪要解决这些问题,就要求教师援助学生认识到在直线的方程中表达的不是直线的倾斜角,而是倾斜角的正切,即直线方程(一次函数的形式,下同)中X的系数恰好就是直线倾斜角的正切.为了便于学生更好的理解直线斜率的概念,可以借助几何画板设计:(1)α变化一直线变化一中的系数变化(同时注意的变化(2)中的系数变化一直线变化一Q变化(同时注意的变化〕.运用上述正反两种变化的动态演示充分揭示直线方程中系数与倾斜角正切的内在关系,这对援助学生理解斜率概念是极有好处的.③在进行过两点的斜率公式推导的教学中要注意与前后知识的联系,课前要对平面向量,三角函数等有关内容作肯定的复习打算.④在学习直线方程的概念时要通过举例清楚地指出两个条件,最好能用充要条件表达直线方程的概念,强化直线与相应方程的对应关系.为将来学习曲线方程做好打算.(2)本节内容在教学中宜采纳启发引导法和商量法,设计为启发、引导、探究、评价的教学模式.学生在积极思维的根底上,进行充分的商量、争辩、交流、和评价.倾斜角如何定义、为什么斜率定义为倾斜角的正切和斜率公式的建立,这三项教学任务都是在商量、交流、评价中完成的.在此过程中学生的思维和能力得到充分的开展.教师的任务是创设问题情境,引发争论,组织交流,参与评价.教学设计例如直线的倾斜角和斜率教学目标:(1)了解直线方程的概念,正确理解直线倾斜角和斜率概念,(2)理解公式的推导过程,掌握过两点的直线的斜率公式.(3)培养学生观察、探究能力,运用数学言语表达能力,数学交流与评价能力.(4)援助学生进一步理解数形结合思想,培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神.教学重点、难点:直线斜率的概念和公式教学用具:计算机教学方法:启发引导法,商量法教学过程:(一)直线方程的概念如图1,对于一次函数,和它的图像一一直线有下面关系:(1)有序数对(0,1)满足函数,则直线上就有一点A,它的坐标是(0,1).(2)反过来,直线上点B(1,3),则有序实数对(1,3)就满足.一般地,满足函数式的每一对,的值,都是直线上的点的坐标(,);反之,直线上每一点的坐标都满足函数式,因此,一次函数的图象是一条直线,它是以满足的每一对X,y的值为坐标的点构成的.从方程的角度看,函数也可以看作是二元一次方程,这样满足一次函数的每一对,的值“变成了〃二元一次方程的解,使方程和直线建立了联系.定义:以一个方程的解为坐标的点都是某条直线上的点,反过来,这条直线上的全部点坐标都是这个方程的解,这时,这个方程就叫做这条直线的方程,这条直线就叫做这个方程的直线.以上定义改用集合表述:,的二元一次方程的解为坐标的集合,记作.假设(1) (2),则.问:你能用充要条件表达吗?答:一条直线是一个方程的直线,或者说这个方程是这条直线的方程的充要条件是…….(问题1)请画出以下三个方程所表示的直线,并观察它们的异同.99过定点,方向不同.如何确定一条直线?两点确定一条直线.还有其他方法吗?或者说如果只给出一点,要确定这条直线还应增加什么条件?学生:思考、回忆、答复:这条直线的方向,或者说倾斜程度.(导入)今天我们就共同来研究如何刻画直线的方向.(问题2)在坐标系中的一条直线,我们用怎样的角来刻画直线的方向呢?商量之前我们可以设想这个角应该是怎样的呢?它不仅能解决我们的问题,同时还应该是简单的、自然的.学生:展开商量.学生商量过程中会有错误和不严谨之处,教师注意引导.通过商量认为:应选择α角来刻画直线的方向.依据三角函数的知识,说明一个方向可以有无穷多个角,这里只需一个角即可(开始时可能有学生认为有四个角或两个角),当然用最小的正角.从而得到直线倾斜角的概念.(板书)定义:一条直线1向上的方向与轴的正方向所成的最小正角叫做直线的倾斜角.(教师强调三点:(1)直线向上的方向,(2)轴的正方向,(3)最小正角.)特别地,当与轴平行或重合时,规定倾斜角为0。
直线的倾斜角与斜率教案
直线的倾斜角与斜率教案直线的倾斜角与斜率教案一、教学目标:1. 知识目标:了解直线的倾斜角和斜率的概念;2. 能力目标:能够计算直线的倾斜角和斜率;3. 情感目标:培养学生对数学知识的兴趣和自信心。
二、教学重难点:1. 重点:直线的倾斜角和斜率的概念;2. 难点:直线的斜率的计算方式。
三、教学过程:1. 导入(5分钟):通过给学生出示两条不同斜率的直线,让学生观察并思考,引导学生讨论直线的倾斜角和斜率的关系,激发学生学习的兴趣。
2. 了解直线的倾斜角和斜率(10分钟):通过简单直观的图形,引导学生理解直线的倾斜角和斜率的概念。
并且给出直线的斜率公式:k = tanθ,其中k为直线的斜率,θ为直线的倾斜角。
3. 计算直线的倾斜角和斜率(25分钟):(1)通过给出两个点的坐标,引导学生计算直线的斜率的计算方法:k = (y2 - y1) / (x2 - x1);(2)通过给出直线方程,引导学生计算直线的倾斜角的计算方法:θ = arctank。
4. 练习与巩固(15分钟):让学生进行相关的计算练习,巩固和加深对直线的倾斜角和斜率的理解。
通过多种情况的练习,让学生熟练掌握计算直线斜率和倾斜角的方法。
5. 拓展(10分钟):通过给学生展示各种曲线的斜率和倾斜角的计算方法,引导学生思考如何计算曲线的斜率和倾斜角。
通过观察各种曲线的特点,引导学生发现曲线斜率和倾斜角的规律。
6. 总结(5分钟):对刚才的学习内容进行总结,帮助学生回顾和巩固所学知识。
引导学生思考直线斜率和倾斜角的重要性以及实际应用。
四、教学反思:本节课通过以具体的图形为例,引导学生理解直线倾斜角和斜率的概念,通过具体的计算方法,让学生能够实际计算直线的斜率和倾斜角。
同时,通过拓展的内容引导学生思考更加复杂形状的曲线的斜率和倾斜角的计算方法,培养学生的综合应用能力。
针对学生的不同水平,提供了多种练习,巩固学生对知识的掌握,创设了有利于学生自主思考和交流的氛围。
《直线的倾斜角和斜率》教学设计和教案
1.教师对本节课进行总结,强调直线的倾斜角和斜率的重要性。
2.学生针对本节课的内容进行复习,理清思路。
五、教学资源
1.图像展示:直线的示意图;
2.课件:直线倾斜角和斜率的计算方法;
3.习题:直线倾斜角和斜率的练习题。
六、教学评价
1.课堂练习评价:通过学生的课堂练习来评价他们对直线倾斜角和斜率的掌握情况;
《直线的倾斜角和斜率》教学设计和教案
教学设计:
一、教学目标
1.通过学习,使学生了解直线的倾斜角和斜率的概念;
2.能够掌握直线的倾斜角和斜率的计算方法;
3.能够应用斜率和倾斜角的概念解决实际问题;
4.培养学生的逻辑思维能力和解决问题的能力。
二、教学内容
直线的倾斜角和斜率。
三、教学重难点
直线的倾斜角和斜率的计算方法,以及应用。
Step 4 斜率与倾斜角的关系: (10分钟)
1.教师引导学生思考斜率和倾斜角的关系。
2.教师通过示例,讲解斜率和倾斜角的关系。
3.学生进行课堂练习,巩固所学内容。
4.教师对学生练习结果进行讲解和评价。
Step 5 应用实际问题: (15分钟)
1.教师提供一些实际问题,引导学生利用斜率和倾斜角解决问题。
1.教师引导学生思考斜率和倾斜角的关系。
2.教师通过示例,讲解斜率和倾斜角的关系。
3.学生进行课堂练习,巩固所学内容。
4.教师对学生练习结果进行讲解和评价。
步骤五:应用实际问题(15分钟)
1.教师提供一些实际问题,引导学生利用斜率和倾斜角解决问题。
2.学生进行课堂讨论,解决实际问题。
3.教师对学生解决问题的方法和结果进行讲解和评价。
高中数学《直线的倾斜角和斜率》教案
高中数学《直线的倾斜角和斜率》教案一、教学目标1. 理解直线的倾斜角的概念,能够求出直线的倾斜角。
2. 掌握直线的斜率与倾斜角的关系,能够计算直线的斜率。
3. 能够运用直线的倾斜角和斜率解决实际问题。
二、教学内容1. 直线的倾斜角的概念2. 直线的斜率与倾斜角的关系3. 直线的倾斜角和斜率的计算4. 直线的倾斜角和斜率在实际问题中的应用三、教学重点与难点1. 教学重点:直线的倾斜角的概念,直线的斜率与倾斜角的关系,直线的倾斜角和斜率的计算。
2. 教学难点:直线的倾斜角和斜率的计算,直线的倾斜角和斜率在实际问题中的应用。
四、教学方法1. 采用问题驱动法,引导学生通过探究直线的倾斜角和斜率的概念及关系,提高学生的思维能力。
2. 利用数形结合法,结合图形讲解直线的倾斜角和斜率,增强学生的直观理解。
3. 通过实例分析,让学生学会运用直线的倾斜角和斜率解决实际问题。
五、教学过程1. 导入:通过复习初中阶段学习的直线的倾斜角的概念,引导学生思考直线的倾斜角与斜率的关系。
2. 新课讲解:(1)讲解直线的倾斜角的概念,介绍直线的倾斜角的定义及求法。
(2)讲解直线的斜率与倾斜角的关系,引导学生理解斜率与倾斜角之间的联系。
(3)讲解直线的倾斜角和斜率的计算方法,让学生掌握计算直线的倾斜角和斜率的技巧。
3. 实例分析:运用直线的倾斜角和斜率解决实际问题,如计算直线的倾斜角和斜率,分析直线在坐标系中的位置等。
4. 课堂练习:布置一些有关直线的倾斜角和斜率的练习题,让学生巩固所学知识。
5. 总结:对本节课的内容进行总结,强调直线的倾斜角和斜率的概念及计算方法。
6. 作业布置:布置一些有关直线的倾斜角和斜率的练习题,让学生课后巩固所学知识。
六、教学策略1. 案例分析:通过分析具体直线图形,让学生理解直线的倾斜角和斜率在实际问题中的应用。
2. 小组讨论:组织学生进行小组讨论,分享各自对直线倾斜角和斜率的理解,互相学习,提高理解。
名师教学设计《直线的倾斜角和斜率》完整教学教案
2.如何探究直线的斜率坐标计算公式。
三、学习者特征分析
学生掌握了平面内两点确定一条直线,以及在平面直角坐标系中点用坐标表示。直线如何表示直线的几何问题如何转化成代数问题从而研究几何性质是学生第一次学习,通过联系实际激发学生的学习兴趣、满足求知欲和好奇心。
学生小组讨论
理解斜率计算的代数式结构与坐标顺序无关,而且培养学生分类讨论的数学思想
六、教学评价设计
1.本节课从实际生活出发,引导学生通过观察抽象出直线的几何要素以及代数表示,让学生理解抽象的定义。
2.在教学过程中,借助多媒体加强动态演示,渗透解析几何从常量到变量转变的观点。通过合作探究让学生成为学习主体,有助于培养学习数学的兴趣,增强克服困难的自信心。
并且当直线 与 轴平行或重合时,规定它的倾斜角为 。
2.直线斜率的定义
直线斜率的定义:我们把一条直线的倾斜角 的正切值叫做这条直线的斜率.斜率通常用小写的字母k表示,所以
k= ( ≠ , = 正切值不存在)
3.直线斜率的两点坐标计算公式
两点间斜率的计算公式 (x1≠x2)
(三)巩固新知
例题:已知A(3, 2), B(-4, 1), C(0, -1),求直线AB, BC, CA的斜率,并判断它们的倾斜角是钝角还是锐角.
2. (x1≠x2)
八、教学反思
1.知识的讲解尽量联系实际,体现数学的应用性;
2.在数学能力方面应多强调;
3.加强学生教学生的合作交流意识;
4.应提高学生的求知欲。
四、教学过程
(一)情景引入:在直角坐标系中,点用坐标表示,直线如何表示呢初中时我们知道确定一条直线的方法是:两点确定一条直线,那么在直角坐标系中除了两点确定一条直线外还有其他的方法吗这就是我们本节课研究的主要内容。
人教版高中数学直线的倾斜角和斜率教案
人教版高中数学直线的倾斜角和斜率教案一、教学目标1. 理解直线的倾斜角的概念,掌握直线的倾斜角与斜率的关系。
2. 学会用斜率公式计算直线的斜率,能运用斜率解决实际问题。
3. 培养学生的逻辑思维能力,提高学生分析问题和解决问题的能力。
二、教学内容1. 直线的倾斜角:直线与x轴正方向的夹角,范围为[0,π)。
2. 斜率公式:k = tanθ,其中θ为直线的倾斜角。
3. 斜率的计算:给定直线上两点的坐标,计算斜率。
4. 斜率的应用:解决实际问题,如计算直线的倾斜角度数。
三、教学重点与难点1. 重点:直线的倾斜角的概念,斜率公式的运用。
2. 难点:斜率的计算,斜率在实际问题中的应用。
四、教学方法1. 采用问题驱动法,引导学生探究直线的倾斜角与斜率的关系。
2. 利用几何画板软件,动态展示直线的倾斜角和斜率的变化。
3. 案例分析法,通过实际问题,培养学生运用斜率解决问题的能力。
五、教学步骤1. 导入新课:复习初中所学直线的倾斜角的概念,引导学生思考直线的倾斜角与斜率的关系。
2. 讲解直线的倾斜角:介绍直线的倾斜角的定义,讲解直线的倾斜角与x轴正方向的夹角的关系。
3. 引入斜率公式:讲解斜率公式的推导过程,让学生理解斜率与倾斜角的关系。
4. 斜率的计算:给出直线上两点的坐标,引导学生运用斜率公式计算斜率。
5. 斜率的应用:结合实际问题,让学生运用斜率解决实际问题,如计算直线的倾斜角度数。
6. 课堂练习:布置相关练习题,让学生巩固所学知识。
8. 作业布置:布置课后作业,巩固所学知识。
9. 课堂反馈:课后收集学生作业,了解学生掌握情况,为下一步教学做好准备。
10. 教学反思:根据学生掌握情况,调整教学策略,提高教学效果。
六、教学评价1. 课后作业:布置有关直线的倾斜角和斜率的练习题,考察学生对知识的掌握情况。
2. 课堂练习:学生在课堂上独立完成练习,教师进行即时评价,了解学生的学习进度。
3. 小组讨论:组织学生进行小组讨论,鼓励学生发表自己的观点,提高学生的合作能力。
直线的倾斜角与斜率教案
《直线的倾斜角和斜率》教案一、教学目标(一)知识与技能1、理解直线的倾斜角和斜率的定义,掌握倾斜角与斜率的关系;2、掌握过两点的直线的斜率公式和应用。
(二)过程与方法1、通过直线倾斜角概念的引入和直线倾斜角与斜率关系的揭示,体验用代数方法刻画直线倾斜程度的过程,以提高学生分析、比较、概括,化归的数学能力,培养学生综合运用知识解决问题的能力。
2、、通过对直线斜率公式的分类讨论帮助学生进一步了解分类思想、数形结合思想,在教学中充分揭示“数”与“形”的内在联系,(三)情感、态度与价值观1、通过对倾斜角等概念的导入让学生体会到数学知识的产生来源于实际问题的需要,从而进一步端正学习态度,激发学习数学的兴趣。
2、在教学过程中对学生装进行对立统一的辩证唯物主义观点的教育,培养学生勇于探索,勇于创新的科学精神。
二、教学重点直线的倾斜角与斜率的概念,过两点的直线斜率公式。
三、教学难点对直线倾斜角与斜率概念的理解,直线的斜率与它的倾斜角之间的关系。
四、教学方法发启式教学法、自主研讨法五、教学用具利用多媒体辅助教学六、教学过程(一)情境引入,提出问题播放视频,通过中国著名的水利工程——三峡大坝,引入迎水坡与背水坡的坡度知识,抽出大坝某处的横断面(梯形)的两条腰,提出问题“腰所在直线的位置怎样确定,如何定量地研究它们的倾斜程度,引入坐标法。
(二)知识探索,分析理解问题 在直角坐标系中如何确定该两条线段所在直线的位置呢? 答:在平面直角坐标系中,确定直线位置的几何条件是:(1)两点确定一条直线;(2)已知直线上的一个点和这条直线的方向。
通过方法二导出250角和1500角分别就是直线l 1和l 2的倾斜角,引出直线倾斜角的定义。
(三)师生互动,抽象概括 1、直线的倾斜角定义在平面直角坐标系中,对于一条与x 轴相交的直线l ,把 x 轴(正方向)按逆时针方向绕着交点旋转到和直线l 重合所成的角,叫做直线l 的倾斜角.通常倾斜角用α表示.规定:当直线l 和x 轴平行时它的倾斜角为00 动画演示倾斜角的变化过程(见课件)由此推导在直角坐标系中,直线绕直线与x 轴交点旋转,它对x 轴正方向有四种情形。
(完整版)直线的倾斜角和斜率教案
《直线的倾斜角和斜率》教案教学目的:1。
了解“坐标法”2.理解直线的倾斜角和斜率概念,掌握过两点的直线的斜率公式并牢记斜率公式的特点及适用范围;3。
已知直线的倾斜角,求直线的斜率4。
已知直线的斜率,求直线的倾斜角5.培养学生“数形结合”的数学思想.教学重点: 斜率概念,用代数方法刻画直线斜率的过程.教学难点: 1直线的斜率与它的倾斜角之间的关系。
2运用两点坐标计算直线的斜率授课类型:新授课课时安排: 1课时教具:多媒体教学过程:一。
知识背景与课题的引入1.从本章起,我们研究什么?怎样研究?解析几何是17世纪法国数学家笛卡尔和费马创立的,解析几何的创立是数学发展史上的一个里程碑,数学从此由常量数学进入变量数学时期。
解析几何由此成为近代数学的基础之一。
在解析几何学中,我们常常用一种方法:坐标法. 研究几何图形的性质.坐标法是以坐标系为基础,把几何问题转化成代数问题,通过代数运算研究几何图形性质的方法,它是解析几何中最基本的研究方法.本章首先在平面直角坐标系中,建立直线的方程。
然后通过方程,研究直线的交点、点到直线的距离等.2.课题的引入下面就让我们就一起踏着前人的足迹去学习和体会这一门科学的思想方法,用坐标法研究几何问题时,我们首先研究最简单的几何对象-—直线,学习直线的倾斜角和斜率.二。
新课1问题1对于平面直角坐标系内的一条直线它的位置由哪些条件可以确定呢?一个点可以确定一条直线的位置吗?分析:对,两点可以确定一条直线,过一个点可以画出无数条直线,这些直线都与轴正向成一定的角度,我们把直线向上的方向与轴正方向所成的最小正角叫做这条直线的倾斜角,于是可以这样确定一条直线,过个定点,确定一个倾斜角便可以确定一条直线;这种方法与两点确定一条直线的方法是一致的.先固定个点,再确定另外一点相当于确定这条直线的方向,确定了方向也就等同于确定了该直线的倾斜角.注:平行于轴或于轴重合的直线的倾斜角为0°问题2直线倾斜角的范围是多少?这样在平面直角坐标系内每一条直线都有一个确定的倾斜角,倾斜角刻画了直线倾斜的程度,且倾斜程度相同的直线,其倾斜角相等,倾斜程度不相同的直线,其倾斜角也不相等.问题3(斜率的概念)日常生活中我们可以用一个比值表示倾斜程度的量:例如:坡度(比)= 升高量/前进量能否用一个比值刻画斜率呢?如果是一条直线的倾斜角,我们把倾斜角的正切值叫做这条直线的斜率(slop)记作:tank问题4(1)是不是所有的直线都有倾斜角?是(2)是不是直线都有斜率?倾斜角为90°时没有斜率, 因为90°的正切不存在。
高二数学教案直线的倾斜角和斜率 人教版 教案
高二数学教案直线的倾斜角和斜率【基础知识精讲】课本从此节开始较系统地介绍平面直角坐标系内直线的表示及其性质的运用,建议同学们先复习一次函数的图像与性质,以及正切函数的定义与性质,向量的坐标表示,便于更好地学习本节知识.本节知识要点:1.直线的方程和方程的直线的概念.2.直线的倾斜角的概念,倾斜角X 围:0°≤α°<180°.3.斜率的概念,k =tanα.(0°≤α<180°且α≠90°).4.过两点的直线的斜率公式k =1212x x y y --.5.当直线不垂直于x 轴时,其方向向量的坐标为(1,k). 本节学习要求坐标系的建立,使得平面内的点和坐标、曲线和方程等联系起来,为我们运用代数的方法研究几何问题架起了一座“桥梁”,达到了形和数的结合.坐标法是我们研究直线的一种重要方法,也是广泛应用于其它领域的重要数学方法.本节的斜率公式就是通过直线上两点的坐标对直角坐标平面内的直线相对于x 轴的倾斜程度的定量刻画.学习过程中注意体会数形结合的数学思想,逐步学会运用观察、分析、联想、转化等数学方法解决问题.【重点难点解析】本小节的重点是直线的倾斜角和斜率概念,过两点的直线的斜率公式,难点是斜率概念的学习和过两点的直线的斜率公式的建立.1.倾斜角和斜率都是反映直线相对于x 轴正方向的倾斜程度的.倾斜角是直接反映这种倾斜程度的,斜率等于倾斜角的正切值.2.过两点的直线的斜率公式是对斜率的定义式的坐标化.关于斜率公式,应弄清以下几点:(1)斜率公式与两点的顺序无关,即两点的纵坐标和横坐标在公式中的前后次序可以同时颠倒;(2)斜率公式表明,直线对于x 轴的倾斜程度,可以通过直线上任意两点的坐标表示,而不需求出直线的倾斜角,因而,使用时较方便;(3)当x 1=x 2,y 1≠y 2(即直线和x 轴垂直)时,直线的倾斜角α等于90°,没有斜率;(4)当α=0°时,k =tanα=0,斜率公式仍适用,只不过此时不必再用公式求得.例1 经过两点(2,3)和(4,-5)的直线的倾斜角是( )解:由斜率公式k =1212x x y y --=42)5(3---=-4知,直线的倾斜角为钝角,因正切值为-4的相应钝角是π-arctan4,故选C.例2 设直线的斜率为k ,且-3<k<33,则直线的倾斜角α的取值X 围是.解:由斜率的X 围,求倾斜角的X 围必须注意倾斜角应在[0,π]内取值.答:α∈[0,6π)∪(32π,π]例3 直线l 过点A(1,2)、B(m,3),求l 的斜率和倾斜角. 分析 这里m 的X 围不足,求l 的斜率和倾斜角需分类讨论求解. 解:设直线l 的斜率为k ,倾斜角为α.(1)当m =1时,直线l 与x 轴垂直,斜率k 不存在,倾斜角α=2π.(2)当m≠1时,k =tanα=123--m =11-m . 1°当m>1时,α=arctan 11-m 2°当m<1时,α=π-arctan 11-m .【难题巧解点拨】例1 (1)如果AC<0且BC<0,那么直线Ax+By+C =0不通过( )解:直线方程可变形为y =-B A x-B C由BC<0知该直线在y 轴上的截距-B C>0.由AC<0,BC<0得ABC 2>0,∴AB>0,故该直线的斜率k<0,倾斜角为钝角.作出该直线的示意图知该直线不经过第三象限,选C.(2)对于直线xcosα+y+1=0,其倾斜角θ的取值X 围是( )A.[-4π,4π] B.[4π,43π]C.[0,4π]∪[π43,π)D.[0,4π]∪[2π,π)解:斜率为-cosα∈[-1,1]∴选C.(3)过点A(-1,2)作直线l ,使它在x 轴、y 轴上的截距相等,则这样的直线( )解:过原点和斜率为-1的两条直线满足题意,选B.例2 已知3x+5y+14=0,其中x∈[-3,2],求:|12++x y |的最小值.解:由已知得线段:3x+5y+14=0,x∈[-3,2]的两个端点A(-3,-1),B(2,4),而|12++x y |可以看作线段AB 上的点与点(-1,-2)连线斜率的绝对值,记P(-1,-2),则k PA =-21,k PB =-32,当3x+5y+14=0,x∈[-3,2]时,k =12++x y ,x∈[-32,-21],∴|k |min =21.即|12++x y |的最小值是21.【命题趋势分析】本节考点为直线倾斜角的概念、X 围,过两点的直线的斜率公式及简单应用,考题通常是与直线方程、三角函数的性质、公式等相联系的综合题.预测考题:1.如果AC<0且BC<0,那么直线Ax+By+C =0,不通过( )的起点A 和终点B 的坐标分别为A(-1,1)和B(2,2),过点(0,-1)的直线l与有向线段不相交,则直线l 的斜率的取值X 围是.【典型热点考题】例1 已知一条直线的倾角是arcsin 53,且它与两坐标轴围成的三角形的面积为6,求此直线方程.解:因为所求直线的倾角是arcsin 5343,所以直线的斜率为43. 设所求直线的方程为y =43x+b直线与坐标轴的交点分别是(-34b,0)和(0,b)由题意得21|b |·|-34b |=6∴|b 2|=9 即b 2=9 ∴b=±3∴所求直线的方程为y =43x±3即3x-4y+12=0和3x-4y-12=0例2 已知直线l 经过点P(2,1),且它的倾斜角等于已知直线l ′:3x-4y-17=0的倾斜角的21,求l 的方程.分析 求l 的方程可借助求一次函数解析式的方法,用待定系数法由已知倾斜角的关系求斜率,用已知线上的点求纵截距.解:设直线l ′的倾角为α,则l 的倾角为2α.∴tanα=43>0,0<x<2π, ∴cosα=α2tan 11+=54∴tan 2α=ααcos 1cos 1+-=541541+-=31故所求直线方程为x-3y+1=0 说明:求半角的正切值,根据2α所在象限确定符号,只取正值得一解.如果求出的tanα=-3或tanα=31有二解,从而忽视了对α所在象限的讨论,不会舍去tanα=-3而多解. 【同步达纲练习】A 级一、选择题1.经过两点M(6,8)、N(9,4)的直线的倾斜角为( )3434C.arctan(-3434l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则有( )1<k 2<k 33<k 1<k 2 C.k 3<k 2<k 11<k 3<k 23.若三点A(3,1),B(-2,b),C(8,11)在同一直线上,则实数b 等于( ) A.2 B.3 C4.直线ax+by =ab(a>0,b<0)的倾斜角是( )A.arctan(-b a b ab aD. 2π+arctan b a5.若α是直线的倾斜角,则sin(4π-α)的取值X 围是( )A.[-1,22]B.(-1,22)C.(- 22,22)D.[-22,22)二、填空题6.若ab<0,则方程ax+by =1表示的直线的倾斜角的取值X 围是.7.已知点P(3,-1),MP 连线的倾斜角为arctan 43,且|MP |=3,则点M 的坐标为.3,则此直线的倾斜角为.三、解答题9.已知A(-3,2)、B(a,3),求直线AB 的斜率与倾斜角.AA 级一、选择题1.下列说法中正确的是( )A.一条直线和x 轴的正方向所成的正角,叫做这条直线的倾斜角.B.直线的倾斜角α的取值X 围是第一或第二象限角.C.和x 轴平行的直线,它的倾斜角为180°.D.每一条直线都存在倾斜角,但并非每一条直线都存在斜率. 2.下列多组点中,三点共线的是( )A.(1,4),(-1,2),(3,5)B.(-2,-5),(7,6),(-5,3)C.(1,0),(0,-31),(7,2)D.(0,0),(2,4),(-1,3)l 1的方程是ax-y+b =0,l 2的方程是bx-y-a =0(ab≠0,a≠b),则下列各示意图形中,正确的是( )4.设点A(2,-3),B(-3,-2),直线l 过点P(1,1)且与线段AB 相交,则l 的斜率k 的取值X 围是( )A.k≥43或k≤-4B.k≥43或k≤-41C.-4≤k≤43D.- 43≤k≤4l ,使l 与连接A(1,1)和B(1,-1)两点的线段相交,则直线l 倾斜角的取值X 围是.6.已知A(-3sinθ,cos 2θ),B(0,1)是相异两点,则直线AB 的倾斜角的取值X 围是.7.要使三点A(2,cos 2θ),B(sin 2θ,- 32),C(-4,-4)共线,则角θ的值为.8.已知直线(2a 2-7a+3)x+(a 2-9)y+3a 2=0的倾斜角为4π,则实数a =.【素质优化训练】1.已知点M(rcosα,rsinα),N(rcosβ,rsinβ),(-2π< 2βα+ <2π),则直线MN 的倾斜角为( )A.2βαπ++ B.2βα+ C.2πβα-+ D.α+β-π1(2,3),P 2(3,a),P 3(4,b)共线,则( )A.a =4,b =5B.b-a =1C.2a-b =3D.a-2b =33.在直角坐标系中,△ABC 的三个顶点是A(0,3)、B(3,3)、C(2,0),若直线x =a 将△ABC 分成面积相等的两部分,则实数a 的值为( )A.3B.1+22C.1+33224.点(a+b,c)、(b+c,a)和(c+a,b)的位置关系是( )l 的倾斜角,且满足:sin α+cosα=51,则直线l 的斜率为( ) A. 4343或-34C. 34D.- 346.过点P(-1,2)的直线l 与x 轴和y 轴分别交于A 、B 两点,若P 分AB 所成的比PB AP =21,求直线l 的斜率和倾斜角.补充题:1.如果AC<0且BC<0,那么直线Ax+By+C =0,不通过( )的起点A 和终点B 的坐标分别为A(-1,1)和B(2,2),过点(0,-1)的直线l与有向线段不相交,则直线l 的斜率的取值X 围是.参考答案【同步达纲练习】A 级1.D2.D3.D4.A5.A6.(0,2π)7.( 527,54)或(53,-514) 8.60°或120 9.解:a=-3时,斜率不存在,倾斜角为2π;a≠-3时,斜率k=323+-a =31+a .当a >-3时,倾斜角为arctan 31+a ;当a<-3时,倾斜角为π+arctan 31+aAA 级1.D2.C3.D4.A5.[0, 4π]∪[43π,π]6.(0, 6π)∪[65π,π] 7.θ=2πk 32【素质优化训练】6.解:设A(x,0),B(0,y),则⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧++=+•+=-21121022110211y x ∴⎪⎩⎪⎨⎧=-=623y x 即得A(-23,0),B(0,6)∴k AB=)23(006---=4,倾斜角α=arctan4.a 补充题:1.C2.(-2,23)。
人教版必修二 直线的倾斜角和斜率(教案)
直线的倾斜角和斜率(教案)一、内容和内容解析内容:直线倾斜角与斜率的概念,斜率公式。
内容解析:本课是人教版数学必修2第一节直线的倾斜角与斜率的第一课时,是高中解析几何内容的开始。
直线倾斜角和斜率是解析几何的重要概念之一,是刻画直线倾斜程度的几何要素与代数表示,是用坐标法研究直线性质的基础。
本课不仅要理解两个概念、得到一个公式,更要了解几何问题代数化的过程,渗透解析几何的基本思想方法。
本课有着开启全章,奠定基调,渗透方法的作用。
倾斜角从几何角度描述了直线的倾斜程度。
课本结合具体图形,在探索确定直线位置的几何要素中给出倾斜角概念。
斜率从代数角度描述了直线的倾斜程度。
课本借助“坡度”引出斜率概念。
定义给出了直线的斜率与倾斜角的关系,沟通了刻画直线倾斜程度的几何要素与代数表示的关系。
直线可由两点来确定,坐标平面内的点由其坐标确定,因此直线的斜率就可以用直线上两点的坐标来表示,这就是经过两点直线的斜率公式。
“坐标法”与数形结合思想是本课内容蕴含的核心思想。
教学重点:斜率概念及公式。
二.目标和目标解析目标:理解直线的倾斜角和斜率的概念,并能结合三角函数掌握它们之间的关系;掌握过两点的直线的斜率公式。
目标解析:1.在平面直角坐标系中,结合具体的图形,探索确定直线位置的几何要素,引出直线的倾斜角概念。
结合动画演示,明确倾斜角的取值范围。
2.借助坡度概念引出斜率概念,让学生体验数形结合思想和转化思想的意义和价值,发展学生对变量数学的认识。
3.能根据斜率的概念,掌握倾斜角和斜率之间的关系,并能根据斜率的两个计算公式,求出直线的斜率。
4.初步了解坐标平面内的图形是如何进行量化和代数化的,了解“坐标法”。
三.教学问题诊断分析1.两点确定一条直线是学生知道的。
但如何认识直角坐标系这一“参照系”下确定直线的几何要素,对学生来说有点困难。
所以在教学过程中可以引导学生先观察过一点的直线之间的不同点,再类比实际生活中描述航线的实际例子,从而发现需要增加的量,以及如何描述这个量,最后形成倾斜角的概念。
人教版必修二 直线的倾斜角与斜率-教学设计
直线的倾斜角与斜率-教学设计一、学习目标1、知识与技能:理解直线的倾斜角和斜率的概念,结合三角函数掌握它们之间的关系;掌握直线斜率的坐标公式,会求已知直线的斜率;培养学生观察、探索能力,运用数学语言表达能力,数学交流与评价能力。
2、过程与方法:通过实例,体验直线倾斜角和斜率的概念引入过程,进一步理解数形结合思想和转化思想的意义和价值,发展学生对变量数学和坐标法的认识。
3、情感、态度与价值观:以数学文化教育影响学生认识问题、认识世界的态度,培养学生树立辩证统一的观点,形成严谨的科学态度和求简的数学精神。
二、教学重点直线的倾斜角和斜率概念及斜率公式。
三、教学过程(一)问题情景问题1:(1) 确定一条直线;过一点有 条直线;(2)一个点能否确定一条直线?问题2:确定平面直角坐标系中的一条直线位置的几何要素有哪些?(3)用什么能刻画直线的倾斜程度。
(二)建构数学生活中,有表示倾斜程度的量吗?直线的倾斜程度的几何刻划:直线的倾斜角:当直线l 与x 轴相交时,x 轴正方向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角。
问题3:任何一条直线都有倾斜角吗?直线倾斜角的取值范围是什么?直线的倾斜程度的代数刻划:直线的斜率定义:直线的倾斜角α(90α≠)的正切值。
即tan k α=【数学实践】(1)若直线的倾斜角为60,则k = 。
(2)已知当α为锐角时,tan(180)tan -α=-α,若直线的倾斜角为150,则k = 。
斜率公式:平面直角坐标系中,已知两点),(),,(2211y x Q y x P ,如果21x x ≠,那么直线PQ 的斜率为121212tan (0)y y y k x x x xx x α-∆====≠∆≠∆-纵坐标的增量即横坐标的增量问题4:已知两点),(),,(2211y x Q y x P ,如果21x x =,则直线PQ 的斜率和倾斜角分别怎样?(三)数学应用例题:四条直线4321,,,l l l l 都经过P (2,3),又4321,,,l l l l 分别经过点)5,2(),3,5(),1,4(),1,2(4321Q Q Q Q -- ,讨论4321,,,l l l l 斜率的是否存在,如存在,分别求出直线的斜率和倾斜角。
人教版高中数学《直线的倾斜角和斜率》教案
课题:直线的倾斜角和斜率教材:普通高中课程标准实验教科书(人教版)数学第3章第1节一、教学目标:1、知识及能力:(1)理解直线的倾斜角和斜率的概念.(2)掌握过两点的直线的斜率公式,会求直线的斜率和倾斜角.(3)理解直线的倾斜角和斜率之间的相互关系.2、过程及方法:(1)经历直线倾斜角概念的形成过程,理解直线倾斜角和斜率之间的关系.(2)从数及形两方面让学生明白,倾斜角和斜率都是刻画直线相对于x轴的倾斜程度.渗透数形结合思想.(3)通过问题,层层设疑,提高学生分析、比较、概括、化归的数学思维能力,使学生初步了解用代数方程研究几何问题的思路.3、情感态度及价值观:1.从生活中的坡度,自然迁移到数学中直线的斜率,让学生感受数学来源于生活,渗透辩证唯物主义世界观.2.帮助学生进一步了解分类思想、数形结合思想,在教学中充分揭示“数”及“形”的内在联系,体现数、形的统一,激发学生学习数学的兴趣,培养学生勇于探索、勇于创新的精神.二、教学重点:直线的倾斜角和斜率的概念,直线的斜率公式推导和应用.三、教学难点:倾斜角概念的形成,斜率公式的推导四、教学方法及手段:计算机辅助教学及发现法相结合.即在多媒体课件支持下,创设情境问题,层层设疑,制造认知冲突,引发争论,让学生在教师引导下,积极探索,亲身经历概念的发现及形成过程,体验公式的推导过程,主动建构自己的认知结构.【教学过程】一、知识导入在初中,我们学过了函数的图象,知道在直角坐标系中,点可以用有序实数对)x来表示和确定.则直线呢?在平面直角坐标系中,(y,问题:经过一点P的直线L的位置能确定吗预案:不能.如图, 过一点P就可以作无数多条直线.则,问题:这些直线之间又有什么联系和区别呢短暂思考和讨论后,学生可以回答预案:(1)它们都经过点P.(2)它们的“倾斜程度”不同.则,我们应该怎样描述这种不同直线的“倾斜程度”呢?〖设计意图〗学生刚刚学完立体几何,对解析几何已经有些陌生.所以从简单问题入手,便于激发学生学习热情,同时又能引入倾斜角的概念,起到承上启下的作用.二、知识探索(一)直线倾的斜角1.定义:直线L及x轴相交时,我们取x轴作为基准,x轴正向及直线L向上的方向之间所成的角 叫做直线L的倾斜角.教师指出:对于定义的理解,我们强调的是x轴正向及直线L向上的方向所成的角.为了帮助学生加深理解,此时,可以借助几何画板来直观呈现.如下图所示:教师在演示的过程中再次向学生强调:从x轴正方向出发,到直线向上的方向之间所成角α就是直线L的倾斜角.〖设计意图〗学生开始对倾斜角概念还有些模糊,再此数形结合,向学生动态、直观的展示给定直线倾斜角的形成过程,加深学生对概念的理解.【快速练习一】1.下列四图中,表示直线的倾斜角的是( )A B C D2.请标出下列直线L的倾斜角α.〖设计意图〗该题组的设计均为加深学生对倾斜角概念的理解.第一题比较简单,通过PPT 展示出来后,让学生集体回答即可.第二题稍难一些,在实际授课时,教师将四个图形画到黑板上,请一个同学到黑板上来画.这个题目看起来简单,而实际上,题目中设置了一些问题,图(4)情况的倾斜角学生找一会儿,可就是找不到的!这样就给学生的制造了一定的认知冲突,激发了学生学习探究的兴趣,同时加深了学生对图(4)这种特殊情况下倾斜角的记忆.教师一边巡查一边指导.待学生完成后指出,图(1)的倾斜角是锐角,图(2)是钝角,图(3)是直角.那图(4)呢?问题:为什么图(4)的倾斜角我们没能标出来呢?则它到底应该是多少呢?学生可能难以回答.此时让学生再看到倾斜角的定义,然后学生可以发现:预案:定义中的倾斜角是要求直线L及x轴相交的,而图(4)中的直线L却是及x轴平行的.教师指出:因此,对于图(4)的直线的倾斜角并不能用该定义标出.所以,我们对于此类直线,也就是当直线L及x轴平行或是重合时,我们规定它们的倾斜角均为00.所以,根据上述四种情况,我们可以得到直线L倾斜角的范围为:00≤α<1800.〖设计意图〗至此,直线倾斜角的定义从引入到解读基本完成.由易到难,由旧到新,符合学生的认知过程.学生很自然的完成了知识的过渡,并通过动态演示、认知冲突加深了对倾斜角这个概念的理解,让学生明白了“直线的倾斜角通俗的讲就是直线对x轴正方向的倾斜程度.”为了更加深直线和倾斜角之间的关系,我们继续提问:问题:在平面坐标系中,每一条直线有多少个倾斜角呢?预案:有且只有一个.问题:一个倾斜角对应的直线有多少条呢?预案:无数条.它们都是互相平行的.如右图.所以仅有倾斜角是不能确定直线的!问题:倾斜角再加什么条件就可以确定直线呢?预案:再加一个点.即一个点P和倾斜角α可以唯一确定一条直线.〖设计意图〗每提出一个问题,让学生自己先行思考,或是合作讨论,老师再加以点评.以加深对直线倾斜角的理解,明晰直线和倾斜角之间的关系.(二)直线的斜率问题:除了倾斜角外,我们还有没有其他表示倾斜程度的量呢?学生可能难以回答此问题.老师可以慢慢引导.在日常生活中,我们还会遇到一个叫“坡度”的概念,坡度即是坡面的铅直高度和水平长度之比(如右图).其实坡度的实际就是倾斜角α的正切.用类似的方法我们可以定义一个新的量来刻画直线的倾斜程度.1.直线斜率的定义:我们把直线的倾斜角α的正切值叫做这条直线的斜率.用小写字母 k 表示,即αtan =k .【快速练习二】已知直线的倾斜角如下,分别求出其斜率.(1)030=α (2)060=α (3)090=α (4)0120=α〖设计意图〗学生对于初中学过的特殊角的三角函数值已经有些陌生,在此既复习特殊角的三角函数值,又熟悉直线斜率的求法.对于(4)要告诉同学们公式0tan(180)tan αα-=-(α是锐角).同时,根据题目可以总结出一些结论,承上启下.教师:从上面的运算或是正切的计算可以得到:(设直线的倾斜角为α)我们也可以通过几何画板来直观演示斜率的正负和倾斜角的关系,请大家看屏幕.(略) 问题:任何一条直线都有斜率吗?预案:倾斜角为900的直线没有斜率.教师:所以,我们要知道,所有的直线都有倾斜角,但是并不是所有的直线都有斜率的. 〖设计意图〗加深对倾斜角和斜率之间的关系的理解.2.过两点的直线斜率的公式学习了斜率之后, 我们又可以用斜率来表示直线的倾斜程度了.我们知道,如果给定直线的倾斜角α()︒≠90α,我们当然可以根据斜率的定义αtan =k 求出直线的斜率.我们也知道,两点确定一条直线,也就是给定直线上两点坐标,直线就确定了,倾斜角也就确定了,则怎么求出该直线的斜率呢?也就是:问题:已知直线L 上两个点的坐标),(),,(222111y x P y x P ,21x x ≠,如何求直线L 的斜率呢? 对于这个问题,学生一下难以回答.教师可以先给出一个图形(图一),一定要让学生结合图形思考,先让学生提出思路,教师启发引导,最后共同完成公式的推导(图二),得出1212x x y y k --=. 图一 图二图三教师:我们知道倾斜角还有可以是钝角,则当α为钝角时,公式还成立吗?在此老师要适当引导学生,得出0180αθ+=(如图三),再利用诱导公式0tan(180)tan αα-=-钝角的情况转化为锐角来求解.具体过程由同学们自己推导.让一个学生到黑板上推导.〖设计意图〗整个斜率的推导过程体现了数形结合和分类讨论的思想,教学中一定要向学生不断渗透这些数学思想.师生共同完成了倾斜角为锐角的推导过程,而倾斜角为钝角的推导则通过教师引导,由学生自己完成,让学生真正体会到知识的形成过程,并利用这一过程将外在的知识点内化成自身知识体系的一部分,完成知识飞跃,完善知识结构.问题:当α=00时,公式1212x x y y k --=还成立吗? 预案:当α=00时,直线及x 轴平行或重合.000=tan .12y y =,此时0=k ,所以当α=00时公式依然成立.问题:及P 1,P 2在直线上的顺序有关吗?让学生思考,讨论.学生开始会觉得及顺序有关,但是后来有觉得应该是没有关系的,但说不出具体的利用.此时教师结合几何画板,再结合图象,拖动点P 1,P 2的位置,让学生直观发现直线L 的斜率并没有因P 1,P 2位置的改变而改变.详细推导过程留给学生课外完成.预案:无关.即21y y ,和21x x ,在公式中的前后次序可以同时交换, 但分子、分母不能交换. 问题:从几何角度怎样理解公式中要求21x x ≠呢?预案:当21x x =,直线垂直x 轴,倾斜角为900,此时斜率不存在.所以一定要注意公式适用的范围.〖设计意图〗通过问题引导,层层推进,分解公式难点,挖掘公式中的隐含知识点.同时结合几何画板,加深对公式的理解.留下一定的思考题,将课堂内容延伸到课外,培养学生合作探究的能力和习惯.教师:到现在为止,我们用代数的方法刻画出了直线的斜率公式.我们也有两种方式来求直线的斜率了.一是利用倾斜角,二是利用直线上两点的坐标.而且我们还可以先利用直线上两点的坐标算出斜率,进而求得直线的倾斜角.三、知识应用例1:关于直线的倾斜角和斜率,下列哪些说法是正确的:(1)任一条直线都有倾斜角,也都有斜率 ( )(2)直线的倾斜角越大,它的斜率就越大 ( )(3)平行于x 轴的直线的倾斜角是00或1800( )(4)两直线的倾斜角相等,它们的斜率也相等 ( )〖设计意图〗斜率及倾斜角概念的辨析题,巩固对斜率及倾斜角的理解.例2:已知A(3,2),B(-4,1),C(0,1),求直线AB 、BC 、CA 的斜率,并判断这些直线的倾斜任意拖动改变P1,P2位置斜率k 的大小并没有改变角是锐角还是钝角.〖设计意图〗斜率公式的直接应用和斜率的正负及倾斜角之间的关系.练习:1.求经过点A(2,-1)和点B(a ,-2)的直线L 的斜率,并讨论a 为何值时,直线L 的倾斜角是锐角、钝角、直角?〖设计意图〗例2知识点的延伸,同时隐含了分类讨论的思想.2.已知三点A(a ,2),B(3,7),C(-2,-9a )在一条直线上,求实数a 的值.〖设计意图〗加深对斜率公式的理解,让学生明白斜率的求得及直线上的点的选择无关.同时此题也是用斜率研究三点共线问题,为后面的学习做铺垫.〖题组设计意图〗整个练习的设计围绕斜率和倾斜角展开,由浅入深.同时注意了知识的承上启下和数学思想的渗透.四、知识小结1、直线的倾斜角定义及其范围:00≤α<18002、倾斜角和斜率k 之间的关系:3、直线斜率的两种求法:①若已知倾斜角)(090≠αα时,αtan =k②若知直线过两点),(),,(222111y x P y x P 且21x x ≠,1212x x y y k --=五、板书设计 教案说明全课以化归思想为主线,达到化未知为已知,化难为易,化几何问题为代数问题的目的.通过利用多媒体课件辅助教学,帮助学生变抽象为具体,破解教学难点.本节课在教法上力求通过设置问题,层层递进,揭示知识的形成发展过程,讲清知识的来龙去脉,突出知识的本质特征,整节课突出“问题解决”.从而使学生对所学的知识理解得更加深刻.(一)设置层层疑问,促进学生探究在教学过程中按照“教、学、研同步协调原则”,充分发挥教师的主导作用和学生的主体地位.借助提问,给学生营造一个思考情境,促进学生探究,给每个学生提供思考、创造、表现及获得成功的机会,使学生在民主开放、和谐愉悦的教学氛围中获取新知识,提高能力,发展自我.(二)引导学生反思,渗透数学思想.数学思想方法是数学问题的灵魂.解析几何是用代数方法研究几何问题,坐标法思想则是解析几何的核心思想.本节课注重了启发学生思维,引导学生反思思维过程,注重了数学思想方法的渗透.在贯穿坐标法思想的同时渗透了数形结合思想、转化化归思想、分类讨论思想等.(三)灵活应用多媒体,突破教学难点多媒体的灵活运用,很好的帮助学生突破了难点.倾斜角概念的形成、斜率公式的得到以及倾斜角和斜率之间的关系等,都是本节课知识的难点.借助几何画板,直观、动态演示了形成过程和变化趋势,很好的帮助学生解决了难点,内化了知识.。
高中数学 7.1直线的倾斜角和斜率(第一课时) 大纲人教版必修
第七章直线和圆的方程§直线的倾斜角和斜率课时安排2课时从容说课1.本小节内容包括直线的方程和方程的直线的概念,直线的倾斜角和斜率概念,过两点的直线的斜率公式.2.本小节的重、难点.本小节的重点是直线的倾斜角和斜率的概念,过两点的直线的斜率公式.难点是斜率概念的学习和过两点的直线的斜率公式的建立.3.本小节在教材中的地位.首先,初步了解“直线的方程〞和“方程的直线〞的概念,为今后学习曲线和方程的概念作准备;其次,正确理解斜率的概念,掌握过两点的直线的斜率公式,是学习直线方程,研究直线的位置关系等许多问题的关键,也是学好本章内容的关键.4.本小节重、难点的处理.引导学生认识到之所以引入直线在平面直角坐标系中的倾斜角和斜率概念,是由于进一步研究直线方程的需要.倾斜角和斜率都是反映直线相对于x轴正方向的倾斜程度的.倾斜角是直线反映这种倾斜程度的,而斜率等于倾斜角的正切值.直线的倾斜角分两种情况定义:第一种是对于x轴相交的直线,把x轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角叫直线的倾斜角;第二种是当直线和x轴平行或重合时,规定直线的倾斜角为0°.斜率是倾斜角对应的正切值,在讲解倾斜角变化所引起的斜率变化时,要根据正切函数y=tanx(0°≤a<180°)的图象,并结合图象指出,倾斜角为90°的直线无斜率.同时,使学生回顾和巩固正切函数的图象和性质.第一课时●课题§直线的倾斜角和斜率(一)●教学目标(一)教学知识点1.“直线的方程〞与“方程的直线〞的概念.2.直线的倾斜角和斜率.3.斜率公式(二)能力训练要求1.了解“直线的方程〞和“方程的直线〞的概念.2.理解直线的倾斜角和斜率的定义.3.直线的倾斜角,会求直线的斜率.4.直线的斜率,会求直线的倾斜角.(三)德育渗透目标1.认识事物之间的相互联系.2.用联系的观点看问题.●教学重点直线的倾斜角和斜率概念.●教学难点斜率概念理解与斜率公式.●教学方法学导式本小节从一个具体的一次函数与它的图象入手,引入直线的方程与方程的直线概念,注重了由浅及深的学习规律,并表达了由特殊到一般的研究方法.引导学生认识到之所以引入直线在平面直角坐标系中的倾斜角和斜率概念,是由于进一步研究直线方程的需要.在直线倾斜角和斜率学习过程中,要引导学生注重导求倾斜角与斜率的相互联系,以及它们与三角函数知识的联系.在对倾斜角及斜率这两个概念进行辨析时,应以倾斜角与斜率的相互变化作为突破口.●教具准备投影片三X第一X:“直线的方程〞与“方程的直线〞概念〔记作§7.1.1 A〕第二X:斜率公式推导过程〔记作§ B〕第三X:本节例题〔记作§7.1.1 C〕●教学过程Ⅰ.课题导入[师]在初中,我们已经学习过一次函数,并接触过一次函数的图象,现在,请同学们作一下回顾,一次函数的图象有何特点?[生]一次函数形如y=kx+b,它的图象是一条直线.[师]如果我们现在对于一给定函数y=2x+1,如何作出它的图象.[生]由于两点确定一条直线,所以在直线上任找两点即可.[师]这两点与函数式y=2x+1有何关系?[生]这两点就是满足函数式的两对x,y值.[师]好,这一同学回答的完全正确.从上述作图过程可以看出,满足函数式y=2x+1的每一对x,y的值都是函数y=2x+1的图象上的点,也就是一条直线上的点;同样,这条直线上的每一点的坐标都满足函数式y=2x+1.因此,我们可以得到这样一个结论:一般地,一次函数y=kx+b的图象是一条直线,它是以满足y=kx+b的每一对x、y的值为坐标的点构成的.由于函数式y=kx+b也可以看作二元一次方程.所以我们可以说,这个方程的解和直线上的点也存在这样的对应关系.[师]有了上述基础,我们也就不难理解“直线的方程〞和“方程的直线〞的基本概念.Ⅱ.讲授新课1.直线方程的概念:(给出投影片§7.1.1 A)以一个方程的解为坐标的点都是某条直线上的点,反过来,这条直线上的点的坐标都是这个方程的解,这时,这个方程就叫做这条直线的方程,这条直线叫做这个方程的直线.[师]在平面直角坐标系中研究直线时,就是利用直线与方程的这种关系,建立直线的方程的概念,并通过方程来研究直线的有关问题.为此,我们先研究直线的倾斜角和斜率.下面,请同学们通过自学了解直线的倾斜角与斜率的有关概念,并注意它们的变化X 围.2.直线的倾斜角与斜率:在平面直角坐标系中,对于一条与x轴相交的直线,如果把x轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α,那么α就叫做直线的倾斜角.当直线和x 轴平行或重合时,我们规定直线的倾斜角为0°. [师]因此,根据定义,我们可以得到倾斜角的取值X 围是0°≤α<180°.倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率,常用k 表示. 为使大家巩固倾斜角和斜率的概念,我们来看下面的概念辨析题.关于直线的倾斜角和斜率,以下哪些说法是正确的.A.任一条直线都有倾斜角,也都有斜率;B.直线的倾斜角越大,它的斜率就越大;C.平行于x 轴的直线的倾斜角是0或π;D.两直线的倾斜角相等,它们的斜率也相等.E.直线斜率的X 围是(-∞,+∞).[生]上述说法中,E 正确,其余均错误,原因如下:A.与x 轴垂直的直线倾斜角为2π,但斜率不存在;B.举反例说明,120°>30°,但tan120°=-3<tan30°=33;C.平行于x 轴的直线的倾斜角为0;D.如果两直线的倾斜角都是2π,但斜率不存在,也就谈不上相等.[师]通过上面的练习,我们可以总结出如下几点(板书)说明:①当直线和x 轴平行或重合时,我们规定直线的倾斜角为0°;②直线倾斜角的取值X 围是0°≤α<180°;③倾斜角是90°的直线没有斜率.[师]下面我们对于“两点确定一条直线〞这一事实,研究怎样用两点的坐标来表示直线的斜率.3.斜率公式:经过两点P 1(x 1,y 1),P 2〔x 2,y 2〕的直线的斜率公式:k =1212x x y y --〔x 1≠x 2〕 (给出投影片§ B)推导:设直线P 1P 2的倾斜角是α,斜率是k ,向量21P P 的方向是向上的(如上图所示).向量21P P 的坐标是(x 2-x 1,y 2-y 1).过原点作向量21P P OP =,那么点P 的坐标是(x 2-x 1,y 2-y 1),而且直线OP 的倾斜角也是α,根据正切函数的定义,tan α=1212x x y y --〔x 1≠x 2〕 即k =1212x x y y --〔x 1≠x 2〕同样,当向量12P P 的方向向上时也有同样的结论. [师]下面通过例题讲评逐步熟悉斜率公式.4.例题讲解:[例1]如图,直线l 1的倾斜角α1=30°,直线l 1⊥l 2,求l 1、l 2的斜率.分析:对于直线l 1的斜率,可通过计算tan30°直接获得,而直线l 2的斜率那么需要先求出倾斜角α2,而根据平面几何知识,α2=α1+90°,然后再求tan α2即可.解:l 1的斜率k 1=tan α1=tan30°=33,∵l 2的倾斜角α2=90°+30°=120°,∴l 2的斜率k 2=tan120°=tan 〔180°-60°〕=-tan60°=-3.评述:此题要求学生掌握直线的倾斜角求斜率,其中涉及到三角函数的诱导公式及特殊角正切值的确定.[例2]直线经过点A (sin70°,cos70°),B 〔cos 40°,sin 40°〕,那么直线l 的倾斜角为( )A.20°B.40°C.50°或70°D.120°参考公式:sin α-sin β=2cos 2βα+sin 2βα-, cos α-cos β=-2sin 2βα+si n2βα-. 分析:假设想求出l 的倾斜角,那么应先由斜率公式求出l 的斜率.思路较为明确,但关键在于运用斜率公式后三角函数的变形.考虑到这一点,题目给出两个参考公式,但仍对学生解题的灵活性有一定要求,其中,假设想利用参考公式,需要对分子、分母进行函数名的统一、希望给予学生一定的启示.解:设l 的倾斜角为α,那么tan α=︒-︒︒-︒40cos 70sin 40sin 70cos 3)10sin(30sin 2)10sin(30cos 240cos 20cos 40sin 20sin -=︒-︒-︒-︒=︒-︒︒-︒=又 α∈[0,π] ∴α=120°应选D.[师]接下来,我们通过练习来熟悉直线的倾斜角求斜率,并明确倾斜角变化时,斜率的变化情况.Ⅲ.课堂练习1.直线的倾斜角,求直线的斜率:(1)α=0°;〔2〕α=60°(3)α=90°;〔4〕α=43π 分析:通过此题训练,意在使学生熟悉特殊角的斜率.解:(1)∵tan0°=0∴倾斜角为0°的直线斜率为0;(2)∵tan60°=3∴倾斜角为60°的直线斜率为3;(3)∵tan90°不存在∴倾斜角为90°的直线斜率不存在;(4)∵tan 43π=tan 〔π-4π〕=-tan 4π=-1,∴倾斜角为43π的直线斜率为-1. 2.直线的倾斜角的取值X 围,利用正切函数的性质,讨论直线斜率及其绝对值的变化情况:(1)0°<α<90°解:作出y =tan α在(0°,90°〕区间内的函数图象;由图象观察可知:当α∈〔0°,90°〕,y =tan α>0,并且随着α的增大,y 不断增大,|y |也不断增大.所以,当α∈〔0°,90°〕时,随着倾斜角α的不断增大,直线斜率不断增大,直线斜率的绝对值也不断增大.(2)90°<α<180°解:作出y =tan α在(90°,180°〕区间内的函数图象,由图象观察可知:当α∈(90°,180°〕,y =tan α<0,并且随着α的增大,y=tan α不断增大,|y |不断减小.所以当α∈〔90°,180°)时,随着倾斜角α的不断增大,直线的斜率不断增大,但直线斜率的绝对值不断减小.[师]针对此题结论,虽然有当α∈〔0°,90°〕,随着α增大直线斜率不断增大;当α∈〔90°,180°〕,随着α增大直线斜率不断增大,但是当α∈〔0°,90°〕∪〔90°,180°〕时,随着α的增大直线斜率不断增大却是一错误结论.原因在于正切函数y =tan α在区间(0,90°〕内为单调增函数,在区间(90°,180°〕内也是单调增函数,但在(0°,90°〕∪〔90°,180°)区间内,却不具有单调性.Ⅳ.课时小结通过本节学习,要求大家掌握直线的倾斜角求斜率,理解斜率公式的推导,为下一节斜率公式的应用打好基础.Ⅴ.课后作业(一)课本P 37习题7.11.在同一坐标平面内,画出以下方程的直线:l 1:2x +3y -6=0 l 3:2x +3y +6=0l 2:2x -3y +6=02.直线的倾斜角,求直线的斜率:(1)α=30°;〔2〕α=45°;〔3〕α=65π; 〔4〕α=32π;〔5〕α=89°;〔6〕α=2. 解:(1)∵tan30°=33, ∴直线斜率为33; (2)∵tan 45°=1,∴直线的斜率为1;(3)∴tan 65π=-tan 6π=-33, ∴直线斜率为-33; (4)∵tan 32π=-tan 3π=-3, ∴直线斜率为-3;(5)∵tan 89°=57.29,∴直线的斜率为57.29.(6)∵tan2=-2.184,∴直线的斜率为-2.184.(二)1.预习内容:斜率公式2.预习提纲:尝试总结斜率公式的特点.●板书设计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课 题: 7.1直线的倾斜角和斜率(一)
教学目的:
1.了解“直线的方程”和“方程的直线”的概念
2.理解直线的倾斜角和斜率的定义
3.已知直线的倾斜角,会求直线的斜率
4.已知直线的斜率,会求直线的倾斜角
5.认识事物之间的相互联系, 用联系的观点看问题
教学重点:直线的倾斜角和斜率概念
教学难点:斜率概念理解与斜率公式
授课类型:新授课
课时安排:1课时
教 具:多媒体、实物投影仪
内容分析:
的直线概念,注重了由浅及深的学习规律,并体现了由特殊到一般的研究方法.
引导学生认识到之所以引入直线在平面直角坐标系中的倾斜角和斜率概念,是由于进一步研究直线方程的需要.
在直线倾斜角和斜率学习过程中,要引导学生注重导求倾斜角与斜率的相互联系,以及它们与三角函数知识的联系.在对倾斜角及斜率这两个概念进行辨析时,应以倾斜角与斜率的相互变化作为突破口
教学过程:
一、复习引入:
在初中,我们已经学习过一次函数,并接触过一次函数的图象,现在,请同学们作一下回顾:
1.一次函数的图象特点:一次函数形如b kx y +=,它的图象是一条直线.
2.对于一给定函数12+=x y ,作出它的图象的方法:由于两点确定一条直线,所以在直线上任找两点即可.
3.这两点与函数式的关系:这两点就是满足函数式的两对y x ,值.
因此,我们可以得到这样一个结论:一般地,一次函数b kx y +=的图象是一条直线,它是以满足b kx y +=的每一对y x ,的值为坐标的点构成的.
由于函数式b kx y +=也可以看作二元一次方程.所以我们可以说,这个方程的解和直线上的点也存在这样的对应关系.
有了上述基础,我们也就不难理解“直线的方程”和“方程的直线”的基本概念
二、讲解新课:
1.直线方程的概念:以一个方程的解为坐标的点都是某条直线上的点,反过来,这条直线上的点的坐标都是这个方程的解,这时,这个方程就叫做这条直线的方程,这条直线叫做这个方程的直线
在平面直角坐标系中研究直线时,就是利用直线与方程的这种关系,建立直线的方程的概念,并通过方程来研究直线的有关问题.为此,我们先研究直线的倾斜角和斜率
2.直线的倾斜角与斜率:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α,那么α就叫做直线的倾斜角.
当直线和x 轴平行或重合时,我们规定直线的倾斜角为0° 因此,根据定义,我们可以得到倾斜角的取值范围是0°≤α<180°
倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率,常用k 表示. 倾斜角是︒90的直线没有斜率
3.概念辨析:为使大家巩固倾斜角和斜率的概念,我们来看下面的题. 关于直线的倾斜角和斜率,下列哪些说法是正确的:
A.任一条直线都有倾斜角,也都有斜率;
B.直线的倾斜角越大,它的斜率就越大;
C.平行于x 轴的直线的倾斜角是0或π;
D.两直线的倾斜角相等,它们的斜率也相等.
E.直线斜率的范围是(-∞,+∞).
辨析:上述说法中,E 正确,其余均错误,原因是:A.与x 轴垂直的直线倾斜角为2
π,但斜率不存在;B.举反例说明,120°>30°,但0120tan =-3<3330tan 0=
;C.平行于x 轴的直线的倾斜角为0;D.如果两直线的倾斜角都是2
π,但斜率不存在,也就谈不上相等. 说明:①当直线和x 轴平行或重合时,我们规定直线的倾斜角为0°;②
直线倾斜角的取值范围是001800<≤α;③倾斜角是90°的直线没有斜率.
4.已知直线的倾斜角的取值范围,利用正切函数的性质,讨论直线斜率及其绝对值的变化情况:
(1)0
0900<≤α
作出αtan =y 在)90,0[00)90,0[00,αtan =y >0,并且随着α的增大,y 大.
所以,当α∈)90,0[00时,随着倾斜角α线斜率不断增大,直线斜率的绝对值也不断增大.
(2) 0
018090<<α
作出αtan =y 在)180,90(00区间内的函数图象,察可知:当α∈)180,90(00,αtan =y <0,并且随着α大,αtan =y 不断增大,||y 不断减小.
所以当α∈)180,90(00时,随着倾斜角α线的斜率不断增大,但直线斜率的绝对值不断减小. 针对以上结论,虽然有当α∈)90,0[00,随着α当α∈)180,90(00,随着α增大直线斜率不断增大. )180,90(00时,随着α的增大直线斜率不断增大却是一正切函数αtan =y 在区间)90,0[00是单调增函数,但在)90,0[00∪)180,90(00三、讲解范例:
例1 如图,直线1l 的倾斜角1α=30°,直线1l ⊥2l 分析:对于直线1l 的斜率,可通过计算030tan 则需要先求出倾斜角2α,而根据平面几何知识, 01290+=αα,然后再求2tan α即可.
解:1l 的斜率1k =tan 1α=tan30°=3
3, ∵2l 的倾斜角2α=90°+30°=120°,
∴2l 的斜率2k =tan120°=tan (180°-60°)=-tan60°=3-. 评述:此题要求学生掌握已知直线的倾斜角求斜率,其中涉及到三角函数的诱导公式及特殊角正切值的确定.
例2 已知直线的倾斜角,求直线的斜率:
(1) α=0°;(2)α=60°;(3) α=90°;(4)α=
4
3π 分析:通过此题训练,意在使学生熟悉特殊角的斜率.
解:(1)∵tan0°=0 ∴倾斜角为0°的直线斜率为0;
(2)∵tan60°=3 ∴倾斜角为60°的直线斜率为3;
(3)∵tan90°不存在 ∴倾斜角为90°的直线斜率不存在; (4)∵π43tan =)4tan(ππ-=-tan 4
π=-1, ∴倾斜角为43π的直线斜率为-1.
四、课堂练习:
1.直线l 经过原点和点(-1,-1),则它的倾斜角是( ) A.4π B. 45π C.4π或45π D.-4
π 2.过点P (-2,m )和Q (m ,4)的直线的斜率等于1,则m 的值为( )
A.1
B.4
C.1或3
D.1或4
3.已知A (2,3)、B (-1,4),则直线AB 的斜率是 .
4.已知M (a,b )、N (a,c )(b ≠c ),则直线MN 的倾斜角是 .
5.已知O (0,0)、P (a,b )(a ≠0),直线OP 的斜率是 .
6.已知),(),,(222111y x P y x P ,当21x x ≠时,直线21P P 的斜率k = ;当21x x ≠且21y y =时,直线21P P 的斜率为 ,倾斜角为 . 参考答案:
1.A
2.A
3.-31
4.90°
5.a
b 6.1212x x y y --;0;0°
五、小结 :通过本节学习,要求大家掌握已知直线的倾斜角求斜率,理解斜率公式的推导,为下一节斜率公式的应用打好基础
六、课后作业:
(一)课本习题7.1 1.在同一坐标平面内,画出下列方程的直线: x y l =:1 ; 632:2=+y x l ; 0632:3=++y x l ;0632:4=+-y x l 2.已知直线的倾斜角,求直线的斜率:
(1) α=30°;(2)α=45°;(3)α=65π
;
(4)α=32π
;(5)α=89°;(6)α=2.
解:(1)∵tan30°=33,∴直线斜率为33
; (2)∵tan45°=1,∴直线的斜率为1; (3)∴tan 65π=-tan 6π=33-,∴直线斜率为33
-;
(4)∵tan 32π
=-tan 3π
=3-,∴直线斜率为3-;
(5)∵tan89°=57.29,∴直线的斜率为57.29.
(6)∵tan2=-22.184,∴直线的斜率为-2.184
七、板书设计(略)。