圆柱与圆锥整理和复习课件
合集下载
整理与复习
等体等底的圆锥与长方体,圆锥的高是长方体的3倍
即h锥:h长方体=3:1
h长方体:27÷3=9(cm)
练习
二、选择。
1、用一块长为25.12cm、宽为18.84cm的长方形铁皮,配上下面( A )圆形铁片正好可以做成圆柱形容器。
A、r=3cm
B、r=1cm
C、d=4cm
D、d=2cm
以长方形的长为圆柱的高时,宽就是圆柱的底面周长,已知周长求直径、半径:d=C÷π、r=d÷2
浸水体积问题
圆柱、圆锥
1、圆柱容器中浸入物体:浸水物体的体积等于水面上升部分的体积,即 圆柱形容器的底面积乘以水面上升的高度。 V浸水物体=V上升水域=S底×上升高度
等体积转换问题
圆柱、圆锥
1、圆柱融化后做成圆锥,或者圆锥融化后再做成圆柱,都是 等体积的问题,体积相等,不需要考虑乘以 1 的问题。
2、圆锥的体积公式:
①已知底面积和高:V锥=
1 3
Sh
②已知底面半径和高:V锥=
1 πr²h 3
③已知底面直径和高:V锥=
1 π×(d÷2)²h 3
④已知底面周长和高:V锥=
1 π×(C÷π÷2)²h 3
⑤已知体积和底面积:h=V锥×3÷S
⑥已知体积和高:S=V锥×3÷h
圆锥的切割
圆锥
1、横切:此时切面是一个圆。 2、竖切(过顶点和底面直径):此时切 面是一个等腰三角形,三角形的高就是圆 锥的高,三角形的底是圆锥的底面直径, 圆锥的表面积会增加两个等腰三角形的面 积,即S增=dh=2rh
圆柱的表面积
圆柱
1、圆柱的表面积:圆柱表面的面积叫做这个圆柱的 表面积。 2、圆柱表面积=侧面积+底面积×2 3、圆柱侧面积公式: ①已知底面周长和高:S侧=Ch ②已知底面直径和高:S侧=πdh ③已知底面半径和高:S侧=2πrh ④已知侧面积和底面周长:h=S侧÷C ⑤已知侧面积和高:C=S侧÷h 4、圆柱表面积公式: ①已知侧面积和底面积:S表=S侧+S底×2 ②已知底面半径和高:S表=2πrh+πr²×2 ③已知底面直径和高:S表=πdh+π×(d÷2)²×2 ④已知底面周长和高:S表=Ch+π×(C÷π÷2)²×2
即h锥:h长方体=3:1
h长方体:27÷3=9(cm)
练习
二、选择。
1、用一块长为25.12cm、宽为18.84cm的长方形铁皮,配上下面( A )圆形铁片正好可以做成圆柱形容器。
A、r=3cm
B、r=1cm
C、d=4cm
D、d=2cm
以长方形的长为圆柱的高时,宽就是圆柱的底面周长,已知周长求直径、半径:d=C÷π、r=d÷2
浸水体积问题
圆柱、圆锥
1、圆柱容器中浸入物体:浸水物体的体积等于水面上升部分的体积,即 圆柱形容器的底面积乘以水面上升的高度。 V浸水物体=V上升水域=S底×上升高度
等体积转换问题
圆柱、圆锥
1、圆柱融化后做成圆锥,或者圆锥融化后再做成圆柱,都是 等体积的问题,体积相等,不需要考虑乘以 1 的问题。
2、圆锥的体积公式:
①已知底面积和高:V锥=
1 3
Sh
②已知底面半径和高:V锥=
1 πr²h 3
③已知底面直径和高:V锥=
1 π×(d÷2)²h 3
④已知底面周长和高:V锥=
1 π×(C÷π÷2)²h 3
⑤已知体积和底面积:h=V锥×3÷S
⑥已知体积和高:S=V锥×3÷h
圆锥的切割
圆锥
1、横切:此时切面是一个圆。 2、竖切(过顶点和底面直径):此时切 面是一个等腰三角形,三角形的高就是圆 锥的高,三角形的底是圆锥的底面直径, 圆锥的表面积会增加两个等腰三角形的面 积,即S增=dh=2rh
圆柱的表面积
圆柱
1、圆柱的表面积:圆柱表面的面积叫做这个圆柱的 表面积。 2、圆柱表面积=侧面积+底面积×2 3、圆柱侧面积公式: ①已知底面周长和高:S侧=Ch ②已知底面直径和高:S侧=πdh ③已知底面半径和高:S侧=2πrh ④已知侧面积和底面周长:h=S侧÷C ⑤已知侧面积和高:C=S侧÷h 4、圆柱表面积公式: ①已知侧面积和底面积:S表=S侧+S底×2 ②已知底面半径和高:S表=2πrh+πr²×2 ③已知底面直径和高:S表=πdh+π×(d÷2)²×2 ④已知底面周长和高:S表=Ch+π×(C÷π÷2)²×2
圆柱与圆锥整理复习
项目
知 识 要 点
基 础 练 习
圆 柱
圆 锥
底 面
两个大小 相等的圆
一个圆
1、判断。 (1)圆柱和圆锥都有无数条高。 ( ) (2)底面是两个完全相等的圆,侧面是一个曲面的物体一定是 圆 柱体。 ( ) 2、选择。 圆柱的侧面展开不可能是( )。 A、长方形 B、梯形 C、正方形 D、平行四边形
貳
壹
侧 面
V= sh
圆锥体积等于与它等底等高的圆柱体积的1/3
实 验
圆锥
侧 面
底 面
高
平 面
曲 面
展开
从顶点到底面圆心之间的距离
只有一条
一 个 圆
扇 形
圆柱
底面
平面
两个大小相同的圆
两个底面之间的距离
高
有无数条,长度相等
切拼
V=sh
b=r
h=h
长 方 体
a=
c
S表=s侧+2s底
a=c=h
底面积
高
底面积×高
圆柱与圆锥的体积之间有什么关系?
等底等高圆柱体积是圆锥体积的3倍
等底等高圆锥体积是圆柱体积的三分之一
圆柱和圆锥的体积计算
V=sh
V=Πr2 h
已知底面积s、高h
已知底面 半径r、高h
圆 锥 体 积
圆柱体积
v= sh
3
1
v= Πr2 h
3
1
联系
圆锥的体积等于与它等底等高的圆柱体积的 。
基 础 练 习
3、在一个底面半径是10厘米的圆柱形杯子中装一些水,再把一个底面半径是3厘米的圆锥形铅锤完全放入水中,水面上升0.3厘米。求铅锤的高。
拓展练习
知 识 要 点
基 础 练 习
圆 柱
圆 锥
底 面
两个大小 相等的圆
一个圆
1、判断。 (1)圆柱和圆锥都有无数条高。 ( ) (2)底面是两个完全相等的圆,侧面是一个曲面的物体一定是 圆 柱体。 ( ) 2、选择。 圆柱的侧面展开不可能是( )。 A、长方形 B、梯形 C、正方形 D、平行四边形
貳
壹
侧 面
V= sh
圆锥体积等于与它等底等高的圆柱体积的1/3
实 验
圆锥
侧 面
底 面
高
平 面
曲 面
展开
从顶点到底面圆心之间的距离
只有一条
一 个 圆
扇 形
圆柱
底面
平面
两个大小相同的圆
两个底面之间的距离
高
有无数条,长度相等
切拼
V=sh
b=r
h=h
长 方 体
a=
c
S表=s侧+2s底
a=c=h
底面积
高
底面积×高
圆柱与圆锥的体积之间有什么关系?
等底等高圆柱体积是圆锥体积的3倍
等底等高圆锥体积是圆柱体积的三分之一
圆柱和圆锥的体积计算
V=sh
V=Πr2 h
已知底面积s、高h
已知底面 半径r、高h
圆 锥 体 积
圆柱体积
v= sh
3
1
v= Πr2 h
3
1
联系
圆锥的体积等于与它等底等高的圆柱体积的 。
基 础 练 习
3、在一个底面半径是10厘米的圆柱形杯子中装一些水,再把一个底面半径是3厘米的圆锥形铅锤完全放入水中,水面上升0.3厘米。求铅锤的高。
拓展练习
人教版六年级数学 下册第6单元《整理和复习》2图形与几何【全单元】课件
12、用圆规画一个周长12.56厘米的圆,圆规两脚之间 的距离是( 2 )厘米,所画圆的面积是( 12.56 ) 平方厘米。
13、圆的半径扩大3倍,直径扩大( 3 )倍,周长扩 大(3 )倍;面积扩大( 9 )倍。
14、小铁环直径6分米,大铁环直径8分米。小铁环和大 铁环半径的比是( 3:4 );周长的比是( 3:4 ); 面积的比是( 9:16 )。如果它们滚过相同的路程, 则转动的圈数的比是( 3:4 )。
(二)复习平面图形的特点及关系
提问:我们先复习平面图形。那对于这些平面图形你又有哪些了解 呀?那这样吧,你可以结合这几个问题,先自己想一想,再和 小伙伴商量商量,建议大家做好相应的记录。如果有困难可以 向老师举手示意。
课件出示: (1)直线、射线和线段有什么联系和区别?同一平面内的两条直
线有哪几种位置关系? (2)我们学过哪些角?在放大镜下看角,它的大小会变化吗? (3)关于三角形,你知道些什么? (4)关于平行四边形,你知道些什么? (5)圆与上面的平面图形有什么不同?圆有哪些特点?
监控:长、正方体的棱长总和 长方体、正方体和圆柱的表面积 长方体、正方体、圆柱和圆锥的体积、容积
(教师随着学生的发言在黑板上梳理出表格)
二、回顾梳理 构建联系
(三)复习立体图形的特征、联系及公式
立体图形 棱长总和 表面积
体积(容积)
长方体
正方体
圆柱
圆锥
二、回顾梳理 构建联系
(三)复习立体图形的特征、联系及公式
课件出示:
二、回顾梳理 构建联系
(三)复习立体图形的特征、联系及公式
提问9:这些图形有没有一个共同的体积计算公式呢? (长方体、正方体和圆柱的体积都可以用底面积乘高,圆锥的体积再 乘 1 即可。)
13、圆的半径扩大3倍,直径扩大( 3 )倍,周长扩 大(3 )倍;面积扩大( 9 )倍。
14、小铁环直径6分米,大铁环直径8分米。小铁环和大 铁环半径的比是( 3:4 );周长的比是( 3:4 ); 面积的比是( 9:16 )。如果它们滚过相同的路程, 则转动的圈数的比是( 3:4 )。
(二)复习平面图形的特点及关系
提问:我们先复习平面图形。那对于这些平面图形你又有哪些了解 呀?那这样吧,你可以结合这几个问题,先自己想一想,再和 小伙伴商量商量,建议大家做好相应的记录。如果有困难可以 向老师举手示意。
课件出示: (1)直线、射线和线段有什么联系和区别?同一平面内的两条直
线有哪几种位置关系? (2)我们学过哪些角?在放大镜下看角,它的大小会变化吗? (3)关于三角形,你知道些什么? (4)关于平行四边形,你知道些什么? (5)圆与上面的平面图形有什么不同?圆有哪些特点?
监控:长、正方体的棱长总和 长方体、正方体和圆柱的表面积 长方体、正方体、圆柱和圆锥的体积、容积
(教师随着学生的发言在黑板上梳理出表格)
二、回顾梳理 构建联系
(三)复习立体图形的特征、联系及公式
立体图形 棱长总和 表面积
体积(容积)
长方体
正方体
圆柱
圆锥
二、回顾梳理 构建联系
(三)复习立体图形的特征、联系及公式
课件出示:
二、回顾梳理 构建联系
(三)复习立体图形的特征、联系及公式
提问9:这些图形有没有一个共同的体积计算公式呢? (长方体、正方体和圆柱的体积都可以用底面积乘高,圆锥的体积再 乘 1 即可。)
六年级上数学整理和复习图形与几何PPT课件
其他学科中的图形与几何应用
物理:力学、光学中都有广泛的应用。 化学:分子结构、晶体结构与空间几何关系密切。 地理:地球形状、地貌形态都与图形和几何有关。 艺术:建筑设计、雕塑绘画都离不开图形与几何。
07
复习巩固与提高
基础练习题
基础练习题是针对学生已经学过的知识设计的,旨在帮助学生巩固基础知识
添加标题
与其他知识点的联系:观察物体和图形的测量是几 何学中的基础知识点,对于后续学习立体几何、解 析几何等知识点有着重要的影响
组合图形的分析和计算
定义:组合图形是由两个或两个以上的基本图形组成的图形 难点:如何分解组合图形为基本图形,并求出其面积或周长 易错点:忽视组合图形的整体性,直接求出各基本图形的面积或周长 解决方法:采用“分治”策略,将组合图形分解为基本图形后再分别计算
图形与几何初步知识
图形认识:长方体、正方体、圆柱、球等立体图形的认识 图形测量:长方体、正方体、圆柱、球的测量方法及单位换算 图形与变换:平移、旋转等图形的变换方法及实际应用 图形与位置:东、南、西、北等方向的认识及坐标的使用方法
03
梳理与拓展
直线、射线、线段
定义:直线是两 端无限延伸的线, 射线是无限延伸 的线,线段是有 限长度的线。
回顾知识点:回顾图形的认识、周长、面积等知识点 图形分类:根据图形的特点,将图形分为平面图形和立体图形 图形特点:介绍每种图形的特点,如三角形、正方形、长方形等 图形周长与面积:回顾图形的周长和面积的计算方法
几何量及其测量
长度、角度、周长、面积、体积等是几何学中常见的量。 长度、角度、周长、面积、体积等的测量方法和工具各不相同。 对于不同的几何图形,需要采用不同的测量方法来获取相应的几何量。 测量时需要注意单位的统一和精度要求。
北师大版数学六年级下册全册ppt课件 (完整)
北师大版数学六年级 下册全册
第一单元 圆柱与圆锥 第二单元 比例 第三单元 图形的运动 第四单元 正比例与反比例
数学好玩 整理与复习 总复习
北师大版 六年级下册 第一单元 圆柱与圆锥
旋转后会得到哪个图形? 想一想,连一连。
圆柱
圆台
球
圆锥
操作活动:
准备两块橡皮泥,捏成圆柱和 圆锥;用看、滚、剪、切等多种 方式探索圆柱和圆锥的特征。
1.上面一排图形旋转后会得到下面的哪个图形?
2.找一找下面图中的圆柱或圆锥,说说圆柱 和圆锥有什么特点。
如果小麦堆的底面半径为2m,高为1.5m。小麦堆 的体积是多少立方米?
1 3.14 22 1.5 3 =6.28(m3)
答:小麦堆的体积是6.28m3。
1.下图中,圆锥的体积与哪个圆柱的体积相等?说 说你是怎么想的。
北师大版 六年级下册 第二单元 比例
12:6=8:4
内项 外项
12 = 8 64
6:4=3:2
6=3 42
3:2=15:10 2:3=10:15 10:2=15:3 2:10=3:15
1.
⑴分别写出图中两个长
方形长与长的比和宽
与宽的比,判断这两
个比能否组成比例。
⑵分别写出图中每个长
方形与宽的比,判断
新的发现。
12×4=6×8
6×2=4×3
3×10=2×15
10×3=2×15 淘气的发现你同意吗?再写出几个比例验证一下。 在比例里,两个内项的积等于两个外项的积。
3.应用比例内项的积与外项的积的关系,判断下面 哪几组的两个比可以组成比例,并写出组成的比 例。
4.根据下面的两组乘法算式,分别写出两个不同的 比例。
第一单元 圆柱与圆锥 第二单元 比例 第三单元 图形的运动 第四单元 正比例与反比例
数学好玩 整理与复习 总复习
北师大版 六年级下册 第一单元 圆柱与圆锥
旋转后会得到哪个图形? 想一想,连一连。
圆柱
圆台
球
圆锥
操作活动:
准备两块橡皮泥,捏成圆柱和 圆锥;用看、滚、剪、切等多种 方式探索圆柱和圆锥的特征。
1.上面一排图形旋转后会得到下面的哪个图形?
2.找一找下面图中的圆柱或圆锥,说说圆柱 和圆锥有什么特点。
如果小麦堆的底面半径为2m,高为1.5m。小麦堆 的体积是多少立方米?
1 3.14 22 1.5 3 =6.28(m3)
答:小麦堆的体积是6.28m3。
1.下图中,圆锥的体积与哪个圆柱的体积相等?说 说你是怎么想的。
北师大版 六年级下册 第二单元 比例
12:6=8:4
内项 外项
12 = 8 64
6:4=3:2
6=3 42
3:2=15:10 2:3=10:15 10:2=15:3 2:10=3:15
1.
⑴分别写出图中两个长
方形长与长的比和宽
与宽的比,判断这两
个比能否组成比例。
⑵分别写出图中每个长
方形与宽的比,判断
新的发现。
12×4=6×8
6×2=4×3
3×10=2×15
10×3=2×15 淘气的发现你同意吗?再写出几个比例验证一下。 在比例里,两个内项的积等于两个外项的积。
3.应用比例内项的积与外项的积的关系,判断下面 哪几组的两个比可以组成比例,并写出组成的比 例。
4.根据下面的两组乘法算式,分别写出两个不同的 比例。
(苏教版)六年级数学下册课件_圆柱和圆锥的整理与复习
3.已知两个体积不同的圆柱, 高相等,它们的底面半径的比 是1:2,那么它们的体积的比是 ( 1:4 )
半 径 底面积 高 体 积
圆柱体1 圆柱体2
1
1 1
2
4 1
1
4
4.如下图,有三块不同的硬纸 片,让它们分别绕PQ边旋转一 周,它们所掠边的空间是圆锥 体的是( B )。
P
A
Q
B
P Q
P
C
Q
5.甲乙两人分别利用一张长20厘米, 宽15厘米的纸用两种不同的方法围成 一个圆柱体(接头处不重叠),那么 围成的圆柱( B )。 A高一定相等 B侧面积一定相等 C侧面积和高都相等D侧面积和高都不 A y 相等
1 圆柱表面积 = 1个侧面积 + 2个底面积 圆锥的体积:V= --Sh
圆柱体积 = 底面积 ×高(V=Sh)
3
1.冬天护林工人给圆 柱形的树干的下端涂 防蛀涂料,那么粉刷 树干的面积是指( B )。 A.底面积 C.表面积 B.侧面积 D.体积
2.一个圆锥的体积是a立 方米,和它等底等高的圆 柱体的体积是( C )立 方米。 A. a÷3 1 C. 3a B. 2a D. a的立方
30
15
8
20
请同学们自己将圆柱和圆锥 的内容整理一遍。
2 2 2
2×3.14×2
10.一个近似圆锥形的 沙堆,底面直径和高 相等,已知底面周长 是15.7米,每立方米沙 重2吨。这堆沙重多少 吨?
1号题
如图,想想办法,你能 否求它的体积?( 单位: 厘米)
4
2 6
2号 一个酒瓶里面深30厘米,底面直 题 径是8厘米,瓶里有酒深15厘米,
把酒瓶塞紧后倒置(瓶口向下), 这时酒深20厘米,你能算出酒瓶 的容积是多少毫升来吗?
圆柱圆锥整理和复习
圆锥体积:36÷2=18(dm³) 圆柱体积:18 × 3=54( dm³)
答:——————。
一个圆锥形的沙堆,底面周长是31.4m, 高是7.2m,每立方米沙重1.5吨,如果用一辆 载重6吨的汽车来运,几次可以运完?
解:底面半径r=31.4÷3.14÷2=5(m) 沙堆的体积: V=1/3 × 3.14 × 5²× 7.2=188.4(m³) 188.4 × 1.5÷6≈48(次) 答:——————————。
9、把一个底面积是6.28平方厘米的圆柱切 成两个大小相同的圆柱,表面积增加了多 少平方厘米?
压路机前轮直径10分米,宽2.5米,前轮转一 周,可以压路多少平方米?如果平均每分前进 50米,这台压路机每时压路多少平方米?
解:10分米=1米 3.14x1x2.5=7.85(平方米)
50x2.5x60=7500(平方米) 答:————————。
答:———————。
作业练习:
1、一个圆锥底面周长是25.12厘米,高是3厘 米,它的体积是多少立方厘米?与它等底等高 的圆柱的体积是多少立方厘米?
2、一个圆柱和一个圆锥体积相等,底面积也 相等,已知圆锥的底面半径是2厘米,高是3厘 米。(1)求圆锥的体积。 (2)求圆柱的侧面积。
1、一个圆锥体与一个圆柱体等底等高, 圆锥的体积是圆柱体积的( ),圆柱体 积是圆锥的( ),圆柱体积比圆锥体 积大( ),圆锥的体积比圆柱体积小 ( )。
13、一个圆柱和一个圆锥等底等高,它 们的体积之和是20立方分米,则圆锥的 体积是( )立方分米。
14、圆锥形小麦堆,底面半径2米,体积 25.12立方米,这堆小麦高几米?
15、一个圆锥体积是47.1立方分米,高 是9分米,圆锥的底面积是多少?
长度单位之间的进率 1km=1000m 1m=10dm 1dm=10cm 1m=100cm 1cm=10mm
答:——————。
一个圆锥形的沙堆,底面周长是31.4m, 高是7.2m,每立方米沙重1.5吨,如果用一辆 载重6吨的汽车来运,几次可以运完?
解:底面半径r=31.4÷3.14÷2=5(m) 沙堆的体积: V=1/3 × 3.14 × 5²× 7.2=188.4(m³) 188.4 × 1.5÷6≈48(次) 答:——————————。
9、把一个底面积是6.28平方厘米的圆柱切 成两个大小相同的圆柱,表面积增加了多 少平方厘米?
压路机前轮直径10分米,宽2.5米,前轮转一 周,可以压路多少平方米?如果平均每分前进 50米,这台压路机每时压路多少平方米?
解:10分米=1米 3.14x1x2.5=7.85(平方米)
50x2.5x60=7500(平方米) 答:————————。
答:———————。
作业练习:
1、一个圆锥底面周长是25.12厘米,高是3厘 米,它的体积是多少立方厘米?与它等底等高 的圆柱的体积是多少立方厘米?
2、一个圆柱和一个圆锥体积相等,底面积也 相等,已知圆锥的底面半径是2厘米,高是3厘 米。(1)求圆锥的体积。 (2)求圆柱的侧面积。
1、一个圆锥体与一个圆柱体等底等高, 圆锥的体积是圆柱体积的( ),圆柱体 积是圆锥的( ),圆柱体积比圆锥体 积大( ),圆锥的体积比圆柱体积小 ( )。
13、一个圆柱和一个圆锥等底等高,它 们的体积之和是20立方分米,则圆锥的 体积是( )立方分米。
14、圆锥形小麦堆,底面半径2米,体积 25.12立方米,这堆小麦高几米?
15、一个圆锥体积是47.1立方分米,高 是9分米,圆锥的底面积是多少?
长度单位之间的进率 1km=1000m 1m=10dm 1dm=10cm 1m=100cm 1cm=10mm
部编版六年级数学下册第三单元《圆锥》(复习课件)
得到的是圆锥。 (1)以6 cm长的边所在直线为轴旋转一周时, d=16 cm,h=6 cm。 (2)以8 cm长的边所在直线为轴旋转一周时, d=12 cm,h=8 cm。
8.用如图所示的扇形纸片和圆形纸片能否制作成一个圆 锥?请通过计算说明理由。
扇形圆弧的长:3.14×2×2×34=9.42(cm) 圆的周长:3.14×3=9.42(cm) 扇形圆弧的长和圆的周长相等,所以能制作成一个圆锥。
3 圆柱与圆锥
圆锥 整理复习
圆柱和圆锥的关系
当圆柱的上底面的面积等于0时,就变成了圆锥。
圆锥体积的推导
圆锥的体积等于与它等底 等高圆柱体积的三分之一。
圆锥的体积= 13× 底面积×高
Ⅴ 圆锥 =
13Ⅴ
圆柱=
1 Sh 3
填一填。
(1)一个圆柱的体积是75.36m³,与它等底等高的圆锥的体积 是(25.12)m³。
一定时间内,降落在水平地面上的水,在未经蒸发、渗漏、流失情况下, 所及的深度称为降水量(通常以毫米为单位)。测定降水量常用雨量器 和量筒。我国气象上规定按24小时的降水量为标准,降水级别如下表:
级别 降水量/mm
小雨 10以下
中雨
大雨
暴雨
大暴雨
10-24.9 25-49.9 50-99.9 100-199.9
知识点 2 运用圆锥的体积公式计算
2.计算下面各圆锥的体积。
(1) 13×36×5=60(cm3)
(2)
3.14×42×12×31=200.96(cm3)
(3)
3.14×(4÷2)2×5.4×13=22.608(cm3)
易错辨析
3.判断。(对的画“√”,错的画“×”) (1)圆柱的体积是圆锥体积的3倍。
新人教版小学数学六年级下册课件:《整理和复习》(共18张ppt)
3.正确选择。
A
B
综合应用
(3)甲乙两人分别利用一张长20厘米,宽15厘米的纸用两种不同的方法围成一个圆柱体(接头处不重叠),那么围成的圆柱( )。 A. 高一定相等 B. 侧面积一定相等 C. 侧面积和高都相等 D. 侧面积和高都不相等
综合应用
问题一
底面
底面
底面的周长
底面
底面
高
长方形的长=圆柱底面的周长,宽=圆柱的高。
圆柱的展开图
底面的周长
圆锥的特征
从圆锥的顶点到底面圆心的距离是圆锥的高。
底面
O
r
h
高
圆锥的底面是个圆, 侧面是一个扇形。
问题一
顶点
问题二
圆柱的侧面积与表面积
底面
底面
高
侧 面
底面
底面
高
底面的周长
S表面积=S侧面积+2×S底面积
综合应用
(1)做一个圆柱形烟囱要用多少铁皮,是求圆柱的( )。 A.侧面积 B.表面积 C.体积 (2)一个圆柱形水箱,底面周长是12.56分米,给这个水箱配一个盖子,应选铁皮为( )。(单位:分米) A. B. C.
——
0.5cm
4.5m
——
10dm
1m
40cm
2dm
1cm
314dm3
6280cm3
1.1775m3
2.198m3
10.048dm3
282.6dm2
3140cm2
10.676m2
综合应用
1. 计算下面各图形的体积。
8.5×4×3=102 (dm3)
( )2×3.14×5=251.2(cm3)
8 2
综合应用
A
B
综合应用
(3)甲乙两人分别利用一张长20厘米,宽15厘米的纸用两种不同的方法围成一个圆柱体(接头处不重叠),那么围成的圆柱( )。 A. 高一定相等 B. 侧面积一定相等 C. 侧面积和高都相等 D. 侧面积和高都不相等
综合应用
问题一
底面
底面
底面的周长
底面
底面
高
长方形的长=圆柱底面的周长,宽=圆柱的高。
圆柱的展开图
底面的周长
圆锥的特征
从圆锥的顶点到底面圆心的距离是圆锥的高。
底面
O
r
h
高
圆锥的底面是个圆, 侧面是一个扇形。
问题一
顶点
问题二
圆柱的侧面积与表面积
底面
底面
高
侧 面
底面
底面
高
底面的周长
S表面积=S侧面积+2×S底面积
综合应用
(1)做一个圆柱形烟囱要用多少铁皮,是求圆柱的( )。 A.侧面积 B.表面积 C.体积 (2)一个圆柱形水箱,底面周长是12.56分米,给这个水箱配一个盖子,应选铁皮为( )。(单位:分米) A. B. C.
——
0.5cm
4.5m
——
10dm
1m
40cm
2dm
1cm
314dm3
6280cm3
1.1775m3
2.198m3
10.048dm3
282.6dm2
3140cm2
10.676m2
综合应用
1. 计算下面各图形的体积。
8.5×4×3=102 (dm3)
( )2×3.14×5=251.2(cm3)
8 2
综合应用
人教版《圆柱与圆锥》(完美版)PPT课件1
解答此类题的关键是明确长方形的长(宽)或 正方形的边长等于圆柱的底面周长,根据公式 C=2πr 或C=πd求出圆的周长,然后与长方形 的长(宽)或正方形的边长进行比较即可确定 答案。
规范解答:选择①和B、②和A或②和C都恰好 能做成圆柱形的盒子。
1.把圆柱的侧面沿高展开,得到一个(长方形),它 的长等于圆柱底面的(周长),宽等于圆柱的 ( 高 )。
思路分析:塔的顶端呈圆锥形,求塔的顶端的体积就
是求圆锥的体积。计算时先根据公式S底=π
求
出圆锥的底面积,再根据公式V
求出圆锥的体
积。
规范解答::圆锥的底面积: 3.14×(18.84÷3.14÷2)²
=3.14×9 =28.26(m²) 圆锥的体积:
×28.26×6 =2×28.26 =56.52(m³) 答:塔的顶端的体积是 56.52立方米。
20×2×3.14×60+202×3.14=8792(cm²) 答:做这个水桶至少需要8792平方厘米铁皮。
例3 一根钢管,长50厘米,外圆直径是10厘米, 钢管厚2cm(如下图)。铸造这样一根钢管需要 钢材多少立方厘米?
思路分析:求铸造这样一根钢管需要钢材的体积, 就是用大圆柱的体积减去中空的小圆柱的体积。
思路分析:瓶子正放和倒放时的容积与饮料的体积不
变,所以瓶子空余部分的容积相等。因此,饮料瓶的
容积就相当于一个高为(20+4)cm 的圆柱形容器的
容积,可推知饮料体积占瓶子容积的
,即
480mL的
。
确定瓶中饮料的体积占瓶子容积的几分之几是解答
此题的关键。
规范解答:20+4=24(cm) 480× =400(mL) 答:瓶内现有饮料400毫升。
3.一个内半径是10cm的饮料瓶里,饮料的高度为 4cm,把瓶盖拧紧倒置放平,无水部分是圆柱形, 高度为16cm,这个瓶子的容积是多少?
人教版六年级数学下册第三单元第11课《整理和复习》课件
少立方分米?(结果保留一位小数) 24÷12=2(dm) 3.14×(2÷2)2×2×13≈2.1(dm3) 答:削成的圆锥的体积约是 2.1 dm3。
6.乐乐先用橡皮泥做了一个圆柱,再在圆柱中凿了四 个相同的圆柱形孔,剩余部分的体积是多少立方厘 米?(大圆柱的底面直径为24 cm,小圆柱的底面直径 为 38.1c4m×,(2高4÷都2是)2×151c5m-)3.14×(8÷2)2×15×4=3768(cm3) 答:剩余部分的体积是3768 cm3。
(1)这个进料漏斗大约能装多少千克稻谷? (稻谷不超出漏斗上沿,得数保留整数。)
先求这个进料漏斗的体积 × 每立方分米稻谷质量
圆锥的体积 圆柱的体积
3.14×(4÷2)2×4.2×
1 3
+
3.14×(4÷2)2×2
一种水稻磨米机的进料漏斗由圆柱和圆锥两部分组成。 圆柱和圆锥的底面直径都是4dm,圆柱高2dm,圆锥高 4.2dm。每立方分米稻谷大约重0.65kg。
×2
S表= 2πrh+2πr2
V=πr2h
图形 圆柱
底面半径 底面直径
5dm
10dm
1m
2m
20cm
40cm
高 4dm 0.7m 5cm
表面积 282.6dm2 10.676m2
3140cm2
体积 314dm3 2.198m3 6280cm3
想一想:圆柱的侧面积、表面积怎样计算?圆柱、圆锥 的体积公式是怎样导出的?再填写下表。
7.一管鞋油的出口直径为5 mm,爸爸每天挤出 20 mm长的鞋油擦鞋,这管鞋油可用36天。这 管鞋油有多少立方毫米? 3.14×(5÷2)2×20×36=14130(mm3) 答:这管鞋油有14130 mm3。
6.乐乐先用橡皮泥做了一个圆柱,再在圆柱中凿了四 个相同的圆柱形孔,剩余部分的体积是多少立方厘 米?(大圆柱的底面直径为24 cm,小圆柱的底面直径 为 38.1c4m×,(2高4÷都2是)2×151c5m-)3.14×(8÷2)2×15×4=3768(cm3) 答:剩余部分的体积是3768 cm3。
(1)这个进料漏斗大约能装多少千克稻谷? (稻谷不超出漏斗上沿,得数保留整数。)
先求这个进料漏斗的体积 × 每立方分米稻谷质量
圆锥的体积 圆柱的体积
3.14×(4÷2)2×4.2×
1 3
+
3.14×(4÷2)2×2
一种水稻磨米机的进料漏斗由圆柱和圆锥两部分组成。 圆柱和圆锥的底面直径都是4dm,圆柱高2dm,圆锥高 4.2dm。每立方分米稻谷大约重0.65kg。
×2
S表= 2πrh+2πr2
V=πr2h
图形 圆柱
底面半径 底面直径
5dm
10dm
1m
2m
20cm
40cm
高 4dm 0.7m 5cm
表面积 282.6dm2 10.676m2
3140cm2
体积 314dm3 2.198m3 6280cm3
想一想:圆柱的侧面积、表面积怎样计算?圆柱、圆锥 的体积公式是怎样导出的?再填写下表。
7.一管鞋油的出口直径为5 mm,爸爸每天挤出 20 mm长的鞋油擦鞋,这管鞋油可用36天。这 管鞋油有多少立方毫米? 3.14×(5÷2)2×20×36=14130(mm3) 答:这管鞋油有14130 mm3。
人教版六年级数学下册第三单元第4课《圆柱的表面积》整理复习课件
一个圆柱的侧面积是188.4 dm2,底面半径是2 dm。 它的高是多少?
根据3.14×圆柱的底面半径×2×高=圆柱的侧面积
188.4÷(3.14×2×2)=15(dm)
侧面积 ÷ 底面周长 = 高
答:这个圆柱的高是15dm。
一根圆柱形木料的底面半径是0.5m,长是2m。如图所示, 将它截成4段,这些木料的表面积之和比原木料的表面积增 加了多少平方米?
正方形的边长
圆柱的底面周长 =圆柱的高
解:设圆柱的底面直径为d,底面周长为dπ。 直径与高的比 d∶πd =1∶π
答:这个圆柱底面直径与高的比是1∶π。
这节课你们都学会了哪些知识?
圆柱的表面积计算 1.计算方法:
圆柱的表面积=侧面积+两个底面积
2πrh
2×πr2
2.解决问题时要根据实际情况判断。
圆柱表面积的意义 1.填一填。 (1)圆柱的表面积是指圆柱的( 侧面积 )和
求用了多少彩纸,需要用圆 柱的表面积减去上下底面中 间留出的口的面积。
(1)侧面积:3.14×20×30=1884(cm2 ) (2)两个底面的面积:3.14×(20÷2)2 ×2=628(cm2 ) (3)需要用的彩纸:1884+628-78.5×2=2355(cm2 )
答:他用了2355cm2的彩纸。
3 圆柱与圆锥
练习四
说一说:圆柱展开图是什么样的。
用手摸一摸,圆的表面积是哪Fra bibliotek? 圆柱的表面积是指圆柱的侧面积和两个底面积 的面积和。
用字母怎么表示呢?
圆柱的表面积=侧面积+两个底面积
底面是圆形 S底= πr 2
S表=S侧 +2S底
长方形的面积= 长 × 宽
圆柱与圆锥整理与复习课件
求各圆柱的表面积和体积。
6分米
15分米
把一个棱长是6厘米的正方体木块, 加工成一个最大的圆锥体,圆锥的 体积是多少立方厘米?
北师大版六年级数学下册
1、有两个底面:
面积相等
2、一个侧面:
高宽
长=底面周长
长
1、有两个底面:
面积相等
2、一个侧面:
高宽
ቤተ መጻሕፍቲ ባይዱ长=底面周长
长
圆锥有一个底面,
:
高
圆柱的表面由上、下两个底面和一个侧面组成。
圆柱的表面积=侧面积+两个底面的面积
一个圆柱的高是15厘米,底面半径是 5厘米,它的表面积是多少?
(1)侧面积:2 ×3.14 ×5 ×15=471(平方厘米) (2)底面积:3.14 ×52 =78.5(平方厘米) (3)表面积:471+78.5 × 2=628(平方厘米)
小结:
(1)在实际应用中计算圆柱形物体的 表面积,要根据实际情况计算各部分 的面积。
(2)求用料多少,一般采用进一法取 近似值,以保证材料够用。
圆柱体积=底面积×高
V=sh =∏r2h
20厘米 25厘米
(1)水桶的底面积:3.14×( 220)2=314(cm2) (2)水桶的容积: 314×25=7850(cm3)
圆锥的体积V等于和它等底等高 的圆柱体积的三分之一
V圆柱=sh
V=
1 3
sh
打谷场上,有一个近似于圆锥的小麦堆, 测得底面直径是4米,高是1.2米。每立方米小 麦约重735千克,这堆小麦大约有多少千克? (得数保留整数)
第一步:求麦堆底面积
每二步:求麦堆的体积
第三步:求小麦重量
返回
努 力 吧 !
圆柱和圆锥整理与复习课件
1、一根圆柱形木材长20分米,把它 截成4个相等的圆柱体. 表面积增加 了18.84平方分米.截后每段圆柱体 积是多少立方分米?
横截面积:18.84÷6=3.14(平方分米)
每段长度:20÷4=5(分米)
每段体积:3.14×5=15.7(立方分米)
2.你能求出下面这个直角三角 形沿AB边旋转一周形成的图 形的体积吗?
二、判断,对的打√ ,错的打×
1.圆柱的侧面展开一定是长方形 。(
×
)
)
2.圆锥的体积是圆柱体积的⅓。(
×
3.一个圆柱的高扩大2倍,底面积缩小2倍,它的体积不 变。( √ )
4.长方体、正方体、圆柱体的体积都可以用底面积乘高 来计算。( √ ) 5. 用两张完全相同的长方形纸围成两个不同的圆柱体 (接头处不重叠),那么围成的圆柱侧面积和高都相等。 (× )
义务教育课程标准实验教科书六年级下册
我们把圆柱沿底面直径平均切成若干等份,拼 成一个近似长方体,分的份数越多,拼成的图 形越接近长方体。 长方体的底面积等于圆柱的( 底面积 )
高等于圆柱的( 高
长方体的体积=底面积×高
)
圆柱的体积=( 底面积×高 )
一、你会求下面图形的表面积 或体积吗?只列式,不计算。 1.一个圆柱底面半径是6厘米,高是5厘 米,求它的表面积和体积。 2.一个圆锥底面积是25平方分米,高是 9分米,求它的体积。
AHale Waihona Puke 5 厘 米 B C3厘米
2.你能求出下面这个直角三角 形沿AB边旋转一周形成的图 形的体积吗?
A
5 厘 米
C
B 3厘米
现在你知道了吗?
1、妈妈给小明的水壶做 了一个布套(有盖), 至少用了多少布料?这 个水壶大约能装多少升 水?(水壶的厚度忽略 不计)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
=9420(立方分米)
2019/3/24
20cm
X
4、把这个圆柱形的木头削成最大
的圆锥形,这个圆锥形的体积是多 少?削去的体积是多少?
2019/3/24
20÷2=10(cm) 3.14X102 X30X 1 3
=3.14 X10 00
=3140(立方分米) 3140X2=6280(立方分米)
2019/3/24
2019/3/24
7、如果一个圆 锥与这个圆
柱的体积和
?dm
20cm
底面积均相 等,那么这
个圆锥的高
是多少?
2019/3/24
8、如果一个圆 锥与这个圆
20cm
柱的体积和
高均相等, 那么这个圆
锥的底面积
是多少?
2019/3/24
20cm
9、如果截去4厘米高的一 截,它的表面积会有什么 变化呢?
20cm
5、如果沿着底面直径把这个圆柱切
开,那么,它的表面积增加了多少 ?
20X30X2 =600X2 =1200(平方厘米)
2019/3/24
20cm
6、把这个圆柱切成四段,它的
表面积增加了多少?
2019/3/24
20cm
6、把这个圆柱切成四段,它的
表面积增加了多少?
20÷2=10(cm) 3.14X102 X6=1884(平方厘米)
6、做4个圆柱体需要多少硬纸。 (表面积) 7、给圆柱形池塘抹水泥。
2019/3/24
(表面积)
仔细观察这根木头,结 合圆柱和圆锥的知识,以
20cm
及我们的生活实际,展开
你们想象的翅膀,看看你
能提出什么样的实际问题
来。
2019/3/24
20cm
1、把这个木头横着放,滚动一圈,滚
动的面积是多少?
3.14X20X30
=1884(平方厘米)
2019/3/24
20cm
2、把这根木头全都刷上油漆,刷 油漆的面积有多大?
3.14X20X30+ 3.14X ( 20÷2 ) X2
2
=1884 + 628
2019/3/24
=2512(平方厘米)
20cm
3、这个木头的体积是多少?
3.14X ( 20÷2 ) X30
=3.14 X3000
2019/3/24
1.从上面看以下几个立体图形,分别 看到的是什么图形?请用线连一连。
2019/3/24
2、说出下列各题与圆柱的哪些知识有关。
1、做圆柱形烟囱需要多少铁皮。(侧面积)
2、大厅里圆形柱子的占地面积。(底面积) (容积)
3、圆柱形水池可蓄多少吨水。
(体积) 4、一根圆柱形的木料重多少千克。 5、压路机前轮滚过的面积。 (侧面积)
它的体积?( 单位:厘办法,你能否求
它的体积?( 单位:分米)
4 2
6 2 4
6
2÷2=1(分米)
3.14X12X(4+6)÷2 =15.7(立方分米)
20X3.14X4=251.2(平方厘米)
2019/3/24
10、如果木头浮在水面上,正好一半露 出水面,这根木头与水接触面的面积是 多少?
3.14X20X30÷2=942(平方厘米)
3.14X102 =314(平方厘米)
942+314=1256(平方厘米)
2019/3/24
思考题 如图,想想办法,你能否求
表面积
体积
2019/3/24
圆柱的特征:
1、有两个底面:
面积相等
2、一个侧面: 长=底面周长
高宽
2019/3/24
长
圆锥的特征:
h
侧面展开
扇形
圆形
底面
从圆锥的顶点到底面圆心的 距离叫做圆锥的高。
2019/3/24
侧面积= 底面周长×高
表面积= 侧面积+底面积
体积= 底面积×高
V=sh 体积= 底面积×高÷3 V=sh÷3