七年级数学上册 1.5有理数的乘法和除法第1课时有理数的乘法习题 ppt课件 湘教版
合集下载
人教版七年级数学上册《有理数的乘除法》课件(共21张PPT)
②(-6) ×(-9)54= ④(-6) ×1-6= ⑥6 ×(-1-)6 = ⑧0×(-6)0=
课堂练习(正误辨析)
你能看出下面计算有误么?
计算: ( 1)(2) 4
--
解:原式=
(1 4
2)
= 1
2
这个解答正确么? 你认为应该怎么 做?答案是多少 呢?
课堂练习(选择题)
1)如果a×b=0,则这两个数
表示是两种符号
的数相乘的话,请判断下面几种图形相乘
所得到的图形结果。
+× + ×+ - ×+ - ×-
==+ ==+
例题学习
计算:
①(-3)×(-9); ②(- )×1
1
;
③7×(-1);
2
3
④ (-0.8)×1.
例题学习
计算:
①(-3)×(-9); ②(- )×1
1
;
③7×(-1);
(2) (-2) ×(+3)
东
-2
-6 -4 -2 0 -6
亦即
(-2)×(+3)=-6
即说明小虫在原来位置的西6米处
(3) (+2)×(-3)
2
东
-6 -4 -2 0 2 -6
亦即: (+2)×(3)=-6
结果:向西运动6米
(4)(-2)×(-3)
-2
东
-2 0
246 6
亦即(-2)×(- 3)=+6
有理数乘法法则:
两数相乘,同号得正,异号得负,并把绝对值相乘;
任何数同0相乘,都得0。
感受法则、理解法则:
有理数乘法法则也秉承了有理数加减的探究思路,即将问题予 以归类处理,分类计算,这样有助于我们问题的解决。
2.6有理数的乘法与除法 第1课时 有理数的乘法-2020秋苏科版七年级数学上册课件(共22张PPT)
第2章 有理数
2.6 有理数的乘法与除法
第1课时 有理数的乘法
新知导入 课程讲授
随堂练习 课堂小结
知识要点
1.有理数的乘法法则 2.有理数乘法运算律 3.倒数
新知导入
试一试:观察下图中图形的运动轨迹,完成下列内容.
B
每次向上移动_3____
格,共运动__3__次,移
动__9__格可以到达 B
的位置 3×3=9
6×(-7)=__-_4_2__ (-7)×6=__-_4_2__ (-6)×(-5)=___3_0__ (-5)×(-6)=___3_0__
乘法交换律仍然适用, 两个数相乘,交换两个因数的位置,积不变.
a×b=b×a
课程讲授
2 有理数乘法运算律
问题1:引入负数之后,乘法的运算律是否仍然适用?
[3×(-5)]×(-2)=___3_0__ 3×[(-5)×(-2)]=___3_0__
课程讲授
1 有理数的乘法法则
(2)水位下降4cm记作_-_4_,3天后记为_+__3,那么3天后 的水位变化是
(- 4)× 3=-12. 类似地, (- 4)×(- 3)=+12. 即3天前的水位比今天高12 cm.
课程讲授
1 有理数的乘法法则
问题1.3:按照上面的过程,写出1天后、2天后、1天前、
(1)(1 1 1 1) 60; 2345
(2() 12.5)( 2.5)( 8) 4.
解:(1)(1 1 1 1) 60
2345
解: (2() 12.5)( 2.5)( 8) 4
=(12.5)( 8)( 2.5) 4
= 1 60 1 60 1 60 1 60 2345
=30-20-15+12
2.6 有理数的乘法与除法
第1课时 有理数的乘法
新知导入 课程讲授
随堂练习 课堂小结
知识要点
1.有理数的乘法法则 2.有理数乘法运算律 3.倒数
新知导入
试一试:观察下图中图形的运动轨迹,完成下列内容.
B
每次向上移动_3____
格,共运动__3__次,移
动__9__格可以到达 B
的位置 3×3=9
6×(-7)=__-_4_2__ (-7)×6=__-_4_2__ (-6)×(-5)=___3_0__ (-5)×(-6)=___3_0__
乘法交换律仍然适用, 两个数相乘,交换两个因数的位置,积不变.
a×b=b×a
课程讲授
2 有理数乘法运算律
问题1:引入负数之后,乘法的运算律是否仍然适用?
[3×(-5)]×(-2)=___3_0__ 3×[(-5)×(-2)]=___3_0__
课程讲授
1 有理数的乘法法则
(2)水位下降4cm记作_-_4_,3天后记为_+__3,那么3天后 的水位变化是
(- 4)× 3=-12. 类似地, (- 4)×(- 3)=+12. 即3天前的水位比今天高12 cm.
课程讲授
1 有理数的乘法法则
问题1.3:按照上面的过程,写出1天后、2天后、1天前、
(1)(1 1 1 1) 60; 2345
(2() 12.5)( 2.5)( 8) 4.
解:(1)(1 1 1 1) 60
2345
解: (2() 12.5)( 2.5)( 8) 4
=(12.5)( 8)( 2.5) 4
= 1 60 1 60 1 60 1 60 2345
=30-20-15+12
七年级数学上册第1章有理数1.5有理数的乘法和除法1.5.1有理数的乘法第2课时乘法的运算律课件新版湘教版
2019/5/25
最新中小学教学课件
23
谢谢欣赏!
2019/5/25
最新中小学教学课件
24
A.abc>0 C.abc=0
B.abc<0 D.无法确定
1. 计算-2×-13×114×(-3)×(-91)所得的正确结果
为( C )
91 A. 7 C.13
B.-13 546
D. 42
2. 计算:18+152×(-24)+12×12-13×32的正确结果是 (B)
6. 下列说法中正确的是( B ) A.几个有理数相乘,当负因数有奇数个时,积为 负 B.几个有理数相乘,当积为负数时,负因数有奇数 个 C.几个有理数相乘,当正因数有奇数个时,积为负 D.几个有理数相乘,当因数有奇数个时,积为负
7. 已知 a,b,c 的位置在数轴上如图所示,则 abc 与 0 的关系是( A )
(2)用规律计算:
21+1 × 13-1 × 14+1 × 15-1 ×…× 20118+1
×20119-1.
解:原式=
1 (1)(1) 1009 个
=-1.
编后语
做笔记不是要将所有东西都写下,我们需要的只是“详略得当“的笔记。做笔记究竟应该完整到什么程度,才能算详略得当呢?对此很难作出简单回答。 课堂笔记,最祥可逐字逐句,有言必录;最略则廖廖数笔,提纲挈领。做笔记的详略要依下面这些条件而定。
全的人,主要是担心漏掉重要内容,影响以后的复习与思考.,这样不仅失去了做笔记的意义,也将课堂“听”与“记”的关系本末倒置了﹙太忙于记录, 便无暇紧跟老师的思路﹚。 如果只是零星记下一些突出的短语或使你感兴趣的内容,那你的笔记就可能显得有些凌乱。 做提纲式笔记因不是自始至终全都埋头做笔记,故可在听课时把时间更多地用于理解所听到的内容.事实上,理解正是做好提纲式笔记的关键。 课堂笔记要注意这五种方法:一是简明扼要,纲目清楚,首先要记下所讲章节的标题、副标题,按要点进行分段;二是要选择笔记语句,利用短语、数 字、图表、缩写或符号进行速记;三是英语、语文课的重点词汇、句型可直接记在书页边,这样便于复习时查找﹙当然也可以记在笔记本上,前提是你 能听懂﹚;四是数理化生等,主要记老师解题的新思路、补充的定义、定理、公式及例题;五是政治、历史等,着重记下老师对问题的综合阐述。
七年级数学上册第1章有理数的乘法除法课件
_
0
5、7.8×(8.1)×0×(-19.6)______
❖几个不是0的数相乘,积的符 号与负因数的个数之间有什么关 系? ❖有一因数为 0 时,积是多少?
几个不是0的数相乘,积的符号由负因数的个数 决定,
负因数的个数是 奇数 时,积是负数; 负因数的个数是 偶数 时,积是正数.
奇负偶正
几个数相乘,如果其中有因数为0,积等于 0 .
青春是有限的,智慧是无穷的,趁短的 青春,去学习无穷的智慧.
———— 高尔基
有理数的乘法(二)
1.有理数乘法的法则是怎样的? 2.倒数的意义.
说出下列各数的倒数:
1,-1,1 3
,-
4 3
,
11, -
2
21 4
思考:
(1)若a小于0,b大于0,则ab__<__0. (2)若a小于0,b小于0,则ab__>___0.
3
(3).( 1) ( 5 ) 8 3 ( 2) 0 (1). 4 15 2 3
小试牛刀
(1) ( 8) × ( 7)
(2) 2.9 × ( 0.4)
(3)
1 4
×
8 9
(4) 100 × ( 0.001)
(5) ( 2) × ( 4) × 3
(6) ( 6) × ( 5) × 7
归纳总结
(3)若ab大于0,则a、b应满足什么条件? (4)若ab小于0,则a、b应满足什么条件?
a、b同号 a、b异号
观察下列各式,它们的积是正的还是负的?
1、2×3×4×(-5)__负____
2、2×3×(-4)×(-5)_正_______
3、2×(-3)×(-4)×(-5)__负____
人教版七年级数学上册《有理数的乘方(第1课时)》示范教学课件
0.1×2×2×2=0.8(毫米);
0.1×2×2×…×2
=107 374 182.4(毫米)
=107 374.182 4(米)
共30个2相乘
>8 848.86(米).
因此,连续对折30次后,纸的厚度能超过珠穆朗玛峰.
由此我们又学习了一种新的运算——乘方.
这种是相同因数的乘法,为了简便,我们把30个2相乘记作230,读作“2的30次方”.
奇
偶
正
负
根据有理数的乘法法则可以得出:负数的奇次幂是负数,负数的偶次幂是正数.显然,正数的任何次幂都是正数,0的任何正整数次幂都是0.
乘方运算的两种方法:(1)将乘方转化成乘法,再根据乘法法则计算;(2)先根据乘方运算的符号法则判断幂的符号,再计算幂的绝对值.
例3 用计算器计算(-8)5和(-3)6.
解:(1)(-3)×(-3)×(-3)×(-3)=(-3)4,底数是-3,指数是4.
(2) .
看因数,找底数,定指数.要找底数和指数就要先去找“相同的因数”,相同的因数是哪个数,底数就是哪个数;有几个相同的因数,指数就是几.
例2 计算:
0.1×2×2×…×2(毫米)
共30个2相乘
我们知道,边长为2 cm的正方形的面积是2×2=4(cm2);棱长为2 cm的正方体的体积是2×2×2=8(cm3).
2×2,2×2×2都是相同因数的乘法.
为了简便,我们将它们分别记作22,23.22读作“2的平方”(或“2的二次方”),23读作“2的立方”(或“2的三次方”).
将除法化成乘法
确定积
求出结果
“先乘除,后加减”
的符号
珠穆朗玛峰是世界的最高峰,它的海拔高度是8 848.86米.把一张足够大的、厚度为0.1毫米的纸连续对折30次,它的厚度能超过珠穆朗玛峰吗?
0.1×2×2×…×2
=107 374 182.4(毫米)
=107 374.182 4(米)
共30个2相乘
>8 848.86(米).
因此,连续对折30次后,纸的厚度能超过珠穆朗玛峰.
由此我们又学习了一种新的运算——乘方.
这种是相同因数的乘法,为了简便,我们把30个2相乘记作230,读作“2的30次方”.
奇
偶
正
负
根据有理数的乘法法则可以得出:负数的奇次幂是负数,负数的偶次幂是正数.显然,正数的任何次幂都是正数,0的任何正整数次幂都是0.
乘方运算的两种方法:(1)将乘方转化成乘法,再根据乘法法则计算;(2)先根据乘方运算的符号法则判断幂的符号,再计算幂的绝对值.
例3 用计算器计算(-8)5和(-3)6.
解:(1)(-3)×(-3)×(-3)×(-3)=(-3)4,底数是-3,指数是4.
(2) .
看因数,找底数,定指数.要找底数和指数就要先去找“相同的因数”,相同的因数是哪个数,底数就是哪个数;有几个相同的因数,指数就是几.
例2 计算:
0.1×2×2×…×2(毫米)
共30个2相乘
我们知道,边长为2 cm的正方形的面积是2×2=4(cm2);棱长为2 cm的正方体的体积是2×2×2=8(cm3).
2×2,2×2×2都是相同因数的乘法.
为了简便,我们将它们分别记作22,23.22读作“2的平方”(或“2的二次方”),23读作“2的立方”(或“2的三次方”).
将除法化成乘法
确定积
求出结果
“先乘除,后加减”
的符号
珠穆朗玛峰是世界的最高峰,它的海拔高度是8 848.86米.把一张足够大的、厚度为0.1毫米的纸连续对折30次,它的厚度能超过珠穆朗玛峰吗?
1.5.1 第2课时 有理数乘法的运算律课件 (共24张PPT)湘教版(2024)数学七年级上册
.
(_2_4_)_13_ (_24_)_ __34_ _(_2_4_)_16_ (_2_4)____85
=-8+18-4+15 =-12+33 =21.
特别提醒: 1.不要漏掉符号; 2.不要漏乘.
想一想
问题:利用有理数的乘法运算律计算: (-1)×a= -a .
(-1)×a+a
= (-1)×a+1×a
知识要点
一般地,有理数的乘法满足乘法对加法的分配律: a×(b+c)= a×b+a×c , (b+c)×a= b×a+c×a .
即一个有理数与两个有理数的和相乘,等于把这 个数分别与这两个数相乘,再把积相加.
合作探究
(1) 先填空,再判断下面两组算式的结果是否分别相等.
①
3
1 6
=
1 6
=[(-1)+1]×a =0×a =0.
因此 (-1)×a 与 a 互为相反数, 即 (-1)×a=-a.
2 多个有理数相乘
探究:观察下列各式,它们的积是正的还是负的? 2×3×4×(-5); 2×3×(-4)×(-5); 2×(-3)×(-4)×(-5); (-2)×(-3)×(-4)×(-5).
算式
得数 负因数的个数
2×3×4×(-5)
-120
1
2×3×(-4)×(-5)
120
2
2×(-3)×(-4)×(-5)
-120
3
(-2)×(-3)×(-4)×(-5)
120
4
思考:(1)几个不为 0 的数相乘,积的符号与负数的
个数之间有什么关系?
(2)有一个因数为 0 时,积是多少?
归纳总结
几个不等于 0 的数相乘, 当有_偶__数__个负数时,积为正数; 当有_奇__数__个负数时,积为负数. 有一个因数为 0 时,积是 0.
有理数的除法(第1课时有理数除法法则)课件(共39张PPT) 七年级数学上册(人教版2024)
这两个法则分别在什么情况下使用?
如果两数相除,能够整除的就选择法则2,不能够整除的就选择用法则1.
总结归纳
思考:
到现在为止我们有了两个除法法则,那么两
个法则是不是都可以用于解决两数相除呢?
要点归纳:
1.两个法则都可以用来求两个有理数相除.
2.如果两数相除,能够整除的就选择法则二,
不能够整除的就选择用法则一.
(3)原式=1 8÷(-54)=- ;(4)原式=-[(-9)÷3 6 ]=-(- )= .
练一练
4.化简:
-
(1)
; 解:原式=-9;
-
(2)
;
-
56 7
原式=48=6;
-
(3)
; 原式=-30=-2;
45
3
-
(4) ;
.
原式=-30.
总结归纳
一般地,根据有理数的除法,形如 (p,q 是整数, q ≠0)的数都是
4/5
(-12/25)×(-5/3)=___
-8
-72×(1/9)=___
问题:上面各组数计算结果有什么关系?由此你能
得到有理数的除法法则吗?
观察下列两组式子,你能找到它们的共同点吗?
“÷”变“×”
(1)(+6)÷(+2)= +3
6
1
=
2
+3
互为倒数
“÷”变“×”
(2)(+6)÷(-2)= -3
分层练习-巩固
11. 下列四名同学的说法中,正确的是(
A
)
A. 墨墨:0除以任何一个不等于0的数都得0
有理数的乘除(第3课时 有理数的除法) 课件(共43张PPT) 沪科版(2024)七年级数学上册
情景导入
倒数的定义你还记得吗?
你能很快地说出下列各数的倒数吗?
原数
-5
9
8
7
倒数
1
5
8
9
1
7
0
2
1 1
3
3
-1
5
问题 小学中你学过的除法运算法则是什么?
除法是已知两个因数的积与其中一个因数,
求另一个因数的运算.除法是乘法的逆运算.
思考
该法则对有理数也适用吗?
新知探究
1.有理数的除法
1
36 6
6 ____
12 3 4
25 5 5
4
12 5
5
25 3 ____
72 9 8
1
72 8
9 ____
观察与发现:
互为倒数
1
8 4 8
.
16
(5)原式 = 0 .
2
(6)原式 =
.
15
4.填空:
(1)(-5)+( 6 )=1
1
(3)(-5)×(− )=1
5
(2)(-5)-( -6 )=1
(2)(-5)÷( -5 )=1
5.计算:
1
−
5
4
1
× − ÷ −2
7
3
7
5
4
1
5
4
15
0
0÷(-6)=____,
零除以任何非零数得零
概念归纳
有理数的除法法则1
1.两数相除,同号得
正 ,异号得
《有理数的除法》有理数PPT课件
巩固练习
3.计算
(1) (
3
1
1
) (1 ) (2 )
4
2
4
1
3 3 4
解:原式= - = – 2
4 2 9
(2) (3) [(
2
1
) ( )]
5
4
2
5
15
解:原式= (3) ( 4) 3
8
8
5
巩固练习
连 接 中 考
1.(苏州中考)(–21)÷7的结果是( B )
1
25 25
7
7
(2) 2.5
5
1
( )
8
4
5 8 1
2 5 4
解:原式
1
探究新知
归纳总结
1.有理数除法化为有理数乘法以后,可以利用有理数
乘法的运算律简化运算.
2.乘除混合运算往往先将除法化为乘法,然后确定积的
符号,最后求出结果(乘除混合运算按从左到右的顺
序进行计算).
12
3
12
5 4
) ( ) ( ) ( ) .
25
5
25
3 5
巩固练习
1.计算:
(1)24 ( 6);
1
( 2)( 4) ;
2
3
(3)0 ;
4
7
4
( 4)( ) ( ).
8
7
答案(1)–4
(2)–8
(3)0
49
(4)32
探究新知
素养考点 2 有理数的化简
–2
8÷(–4)=___
6×(–6)= –36
2024年湘教版七年级数学上册 1.5 有理数的乘法和除法(课件)
乘法对加法
的分配律 (简称分配 律)
一个有理数与两个有理数的和相乘, 等于把这个数分别与这两个数相乘, 再把积相加
知2-讲
用字母表示 a×b=b×a
(a×b) ×c=a× (b×c)
a× (b+c) =a×b+a×c
感悟新知
知2-讲
特别解读 1. 有理数的乘法交换律和乘法结合律一般不
单独用,交换的目的是为了更好地结合 . 2. 运用乘法的运算律进行计算,是为了简化运
解:原式
=
2 3
×(-60)-
11 12
×(-60)-
14 15
×(-60)
=-40+55+56
=71.
感悟新知
知2-练
误区警示:用分配律展开算式,相乘时括号里的 每个数都要带上它前面的符号,且不 要漏乘括号中的任何一项 .
感悟新知
4-1.计算:(-24)×(-23
+
3 4
+
1 12
).
解:原式=-4.
知1-练
解题秘方:先根据两个数的积的符号判断出两个 数是同号还是异号,再根据两个数和 (差)的符号,判断两个数的正负性 .
感悟新知
(1) a+b<0, ab>0; 解: 因为 ab>0,所以 a, b 同号 . 又因为 a+b<0,所以 a, b 同为负 .
(2) a - b<0, ab<0. 因为 ab<0,所以 a, b 异号 . 又因为 a-b<0,所以 a<b, 所以 a 为负, b 为正 .
知2-练
感悟新知
例5 计算:
知2-练
(-
47.65)×
有理数的乘除混合运算PPT授课课件
核心笔记
我国东部濒临渤海、黄海、东海、南海,领海宽度为 12海里,渤海和琼州海峡是我国的内海。台湾岛是我 国第一大岛,东北部的钓鱼岛及其附属岛屿是我国固 有的领土。
训基础
3.下列国家中,与我国陆上为邻的是( C ) A.日本 B.美国 C.越南 D.菲律宾
【点拨】选项中日本、菲律宾与我国隔海相望,越南与我 国既陆上相邻又隔海相望,美国与我国既不陆上相邻又不 隔海相望。
图1-1-6
训基础
6.渤海和琼州海峡位于我国领海基线向内一侧,属于 我国的( C ) A.毗连区 B.领海 C.内海 D.专属经济区
练拔高
(1) 中国的陆地总面积约为___9_6_0___万平方千米,形状非常 像一只大公鸡,大公鸡头顶① ___俄__罗__斯_____(国家),背 驮②___蒙__古___(国家)。
2.有理数的乘、除混合运算往往先将除法转化成___乘__法___,然 后按照___乘__法___法则确定积的符号,最后求出结果.
1.下列运算中,结果为负数的是( B ) A.1×(-3)÷(-5) B.1×3÷(-5) C.(-1)×(-3)×4 D.1÷(-3)×0
2.计算-47÷-134÷-23的结果是( B )
A.1
B.36
C.-1
D.6
【点拨】原式=16×(-6)×(-6)×6=36.
11.计算:0×(-2 020)-36191÷|-9|=-__4_1_11____.
12.如图是一个运算程序,若输入的 x 为-5,则输出的 y 的值 为__-__1_2___.
13.某同学把 6×(-3)错抄为 6+(-3),抄错后算得答案为 y,若 正确答案为 x,则 x÷y×(-6)=___3_6____.
1.5有理数的乘法和除法(1)
1 (3 ) (2) 4 1 解:原式= (3 2) 4
计算: =
1 3 2
1)如果a×b=0,则这两个数
A 都等于0, B 有一个等于0,另一个不等于0; D 互为相反数 C 至少有一个等于0
(C )
2)已知-3a是一个负数,则
A a>0 B a<0 C a≥0 D a≤0
( A)
这个问题用乘法来解答为:53
= 15
-5
0
5
10
15
即小丽位于原来位置的东方15米处
问题2:想一想
我们把向东走的路程记为正数.如果小丽从点O出发, 以5km/h的速度向西行走3h后,小丽从O点向哪个方向 行走了多少千米?
也用算式和数轴的方式该怎样解答呢?
3(5) = 15
-15 -10 -5 0 5
用正负数表示气温的变化量,上升为正,下降为负,登山队攀登一座山峰,每 登高1km,气温的变化量为-6℃,向上攀登3km后,气温有什么变化? 继续向 上攀 登-3km之后 ,气温又如何变化?此时登山队位于何处?
解:(1) (- 6) ×3= - 18 答:气温下降18 C。 (2)(-6)×(-3)=18 答:气温上升180C ,此时 登山队回到原出发点。
所以有(-6)×4= -(24)的结果
四 例题示范,初步运用
例1.计算: ①(-5)×(-6); ②
解:
(-5)×(-6)
=+( =30
1 1 ( ) 2 4
解:
1 1 ( ) 2 4
5×6)
1 1 ( ) 2 4
1 8
五、分层练习,形成能力
你能看出下面计算有误么?你能给出正确结果吗?
2.2.1 有理数的乘法第1课时 有理数的乘法法则 课件 人教版(2024)数学七年级上册
练一练
解:(-5)×60=-300(元)答:销售额减少300元.
当堂练习
当堂反馈
即学即用
被乘数
乘数
积的符号
积的绝对值
结果
-5
7
15
6
-30
-6
4
-25
1.填表:
-
35
-35
+
90
90
+
180
180
-
100
-100
解:
2.计算:
(4)原式=0.
3.气象观测统计资料表明,在一般情况下,高度每上升1km,气温下降6℃.已知甲地现在地面气温为21℃,求甲地上空9km处的气温大约是多少?
甲水库
第一天
乙水库
第二天
第三天
第四天
第一天
第二天
第三天
第四天
讲授新课
典例精讲
归纳总结
1,
﹣1,
3,
-
例2 用正负数表示气温的变化量,上升为正,下降为负.登山队攀登一座山峰,每登高1km,气温的变化量为-6℃,攀登3km后,气温有什么变化?
解:(-6)×3=-18答:气温下降18℃.
商店降价销售某种商品,每件降5元,售出60件后,与按原价销售同样数量的商品相比,销售额有什么变化?
(-2)×(-3)=
(4)
+6
答:结果都是仍在原处,即结果都是 , 若用式子表达:
探究5
(5)原地不动或运动时间为零,结果是什么?
0×3=0;0×(-3)=0;2×0=0;(-2)×0=0.
0
O
1.正数乘正数积为__数;负数乘负数积为__数;2.负数乘正数积为__数;正数乘负数积为__数;3.乘积的绝对值等于各乘数绝对值的__.
解:(-5)×60=-300(元)答:销售额减少300元.
当堂练习
当堂反馈
即学即用
被乘数
乘数
积的符号
积的绝对值
结果
-5
7
15
6
-30
-6
4
-25
1.填表:
-
35
-35
+
90
90
+
180
180
-
100
-100
解:
2.计算:
(4)原式=0.
3.气象观测统计资料表明,在一般情况下,高度每上升1km,气温下降6℃.已知甲地现在地面气温为21℃,求甲地上空9km处的气温大约是多少?
甲水库
第一天
乙水库
第二天
第三天
第四天
第一天
第二天
第三天
第四天
讲授新课
典例精讲
归纳总结
1,
﹣1,
3,
-
例2 用正负数表示气温的变化量,上升为正,下降为负.登山队攀登一座山峰,每登高1km,气温的变化量为-6℃,攀登3km后,气温有什么变化?
解:(-6)×3=-18答:气温下降18℃.
商店降价销售某种商品,每件降5元,售出60件后,与按原价销售同样数量的商品相比,销售额有什么变化?
(-2)×(-3)=
(4)
+6
答:结果都是仍在原处,即结果都是 , 若用式子表达:
探究5
(5)原地不动或运动时间为零,结果是什么?
0×3=0;0×(-3)=0;2×0=0;(-2)×0=0.
0
O
1.正数乘正数积为__数;负数乘负数积为__数;2.负数乘正数积为__数;正数乘负数积为__数;3.乘积的绝对值等于各乘数绝对值的__.
人教版七年级数学上册1.有理数的除法法则(第1课时)课件
a÷b=a
1
·b
(b≠0).
注意:除法在运算时有 2 个要素要产生变化。
1 除变 乘 2 除数 变 倒数
72÷9=__8__,
同号两数相除得正
(-12)÷(-4)=_3___, , 并把绝对值相除
(-6) ÷2=_-__3_, 12÷(-4)=_-__3_,
异号两数相除得负 , 并把绝对值相除
0÷(-6)=__0__, 零除以任何非零数得零
3.计算:(-4)÷-12=__8__. 4.计算-176÷43×-34的结果是__97___.
22
5.若一个数的倒数和这个数的相反数的和是 0,则这个数是( D )
A.1
B.-1
C.0
D.1 或-1
6.我们把 2÷2÷2 记作 2③,(-4)÷(-4)记作(-4)②,那么计算 9×(-3)④的结果为
二、有理数除法化为有理数乘法以后,可以利 用有理数乘法的运算律简化运算
三、乘除混合运算往往先将除法化为乘法, 然后确定积的符号,最后求出结果(乘除混合运 算按从左到右的顺序进行计算)
七年级上册数学人教版
第1章有理数
1.4.2 有理数的除法法则 (第1课时)
目 录
0 有理数的除法及分数化
1
简
02 有 理 数 乘 除 混 合 运 算
学习目标
1.认识有理数的除法,经历除法的运算过程. 2.理解除法法则,体验除法与乘法的转化关系. 3.掌握有理数的除法及乘除混合运算.(重点、难 点)
中考链接
1. (–21) ÷7的结果是( B )
A.3 B.–3
C.
1 3
D. – 1
3
2. 计算:(–12) ÷ 3= –4 .
相关主题