新高中人教B版数学必修五课时作业:第3章_单元检测(A)(含答案)

合集下载

高中数学必修5第三章测试题含答案实用资料

高中数学必修5第三章测试题含答案实用资料

高中数学必修5第三章测试题含答案实用资料(可以直接使用,可编辑优秀版资料,欢迎下载)高中数学必修5第三章测试题一、 选择题1.设a ,b ,c ∈R ,则下列命题为真命题的是( ) A .a >b ⇒a -c >b -c B.a >b ⇒ac >bc C.a >b ⇒a 2>b 2 D. a >b ⇒ac 2>bc 2 2.不等式02<-+y x 表示的平面区域在直线20x y +-=的( ) A.右上方 B.左上方 C.右下方 D .左下方 3.不等式5x +4>-x 2的解集是( ) A .{x |x >-1,或x <-4} B.{x |-4<x <-1} C.{x |x >4,或x <1}D. {x |1<x <4}4.设集合{}20<≤=x x M ,集合{}0322<--=x x x N ,则集合N M ⋂等于( )。

A.{}10≤≤x x B .{}20<≤x x C.{}10<≤x x D. {}20≤≤x x 5.函数241xy -=的定义域是( )A .{x |-2<x <2}B.{x |-2≤x ≤2}C.{x |x >2,或x <-2}D. {x |x ≥2,或x ≤-2}6.二次不等式20ax bx c ++> 的解集是全体实数的条件是( ).A .00a >⎧⎨∆>⎩B .00a >⎧⎨∆<⎩C .00a <⎧⎨∆>⎩D .00a <⎧⎨∆<⎩7.已知x 、y 满足约束条件5503x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,则y x z 42+=的最小值为( )。

A.6B.6-C.10D.10- 8.不等式()()023>--x x 的解集是( )A.{}32><x x x 或 B .{}32<<x x C.{}32≠≠x x x 且 D.{}32≠≠x x x 或 9.已知x >0,若x +81x的值最小,则x 为( ). A . 81 B . 9 C . 3 D .1810.已知22ππαβ-≤<≤,则2αβ-的范围是( ).A .(,0)2π-B .[,0]2π-C .(,0]2π-D .[,0)2π- 11.在直角坐标系中,满足不等式x 2-y 2≥0的点(x,y )的集合(用阴影部分来表示)是( )B12.对于10<<a ,给出下列四个不等式( ) ①)11(log )1(log aa a a +<+ ②)11(log )1(log aa a a +>+ ③aaa a 111++<④aaaa111++>其中成立的是 ( ) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案二、 填空题13.已知1<a <3,2<b <4,那么2a -b 的取值范围是________,ba的取值范围是________. 14.已知x ,y ∈R +,且x +4y =1,则xy 的最大值为________.11615.若不等式x 2-ax -b <0的解集为{x |2<x <3},则a +b =________.-116.若x ,y 满足约束条件⎪⎩⎪⎨⎧≤≤≥+-≥+,3003,0x y x y x ,则z =2x -y 的最大值为_ ___.9三、 解答题17.若a >b >0,m >0,判断a b 与ma mb ++的大小关系并加以证明.18.画出下列不等式(组)表示的平面区域:(1)3x +2y +6>0 (2)⎪⎩⎪⎨⎧≥+--≥≤.01,2,1y x y x19.解不等式:(1)255122x x -+>(2)21122log (4)log 3x x -≤20.若关于x 的一元二次方程2(1)0x m x m -+-=有两个不相等的实数根,求m 的取值范围.已知每吨A 产品的利润是7万元,生产每吨B 产品的利润是12万元,现因条件限制,该企业仅有劳动力300个,煤360吨,并且供电局只能供电200千瓦,试问该企业生产A 、B 两种产品各多少吨,才能获得最大利润?解:设生产A 、B 两种产品各为x ,y 吨,利润为z 万元,则:⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+≤+.0,0,20054,36049,300103y x y x y x y x 目标函数z =7x +12y . 作出可行域如图,作直线l 0:7x +2y =0,平行移动直线l 0至直线l ,从图形中可以发现,当直线l 经过点M 时,z 取最大值,点M 是直线4x +5y =200与直线3x +10y =300的交点,解得M (20,24).∴该企业生产A 、B 两种产品分别为20吨和24吨时,才能获得最大利润.22某工厂有甲、乙两种产品,计划每天各产品生产量不少于15 t .已知生产甲产品1 t 需煤9 t ,电力4 kW·h ,劳力3个;生产乙产品1 t 需煤4 t ,电力5 kW·h ,劳力10个;甲产品每吨利润7万元,乙产品每吨利润12万元;但每天用煤不超过300 t ,电力不超过200 kW·h ,劳力只有300个.问每天各生产甲、乙两种产品多少,能使利润总额达到最大?[解] 设每天生产甲、乙两种产品分别为x t ,y t ,利润总额为z 万元,那么⎩⎪⎨⎪⎧9x +4y ≤300,4x +5y ≤200,3x +10y ≤300,x ≥15,y ≥15.作出以上不等式组的可行域,如下图所示.目标函数为z =7x +12y ,整理得y =-712x +z12,得到斜率为-712,在y 轴上截距为z12,且随z 变化的一组平行直线. 由图可以得到,当直线经过可行域上点A 时,截距z12最大,即z 最大,解方程组⎩⎪⎨⎪⎧4x +5y =200,3x +10y =300,得点A 的坐标为(20,24),所以z max =7×20+12×24=428(万元).高一数学月考试题一.选择题(本大题共12小题,每小题5分,共60分)1.已知数列{a n }中,21=a ,*11()2n n a a n N +=+∈,则101a 的值为 ( )A .49B .50C .51D .522121,两数的等比中项是( )A .1B .1C .1 D .123.在三角形ABC 中,如果()()3a b c b c a bc +++-=,那么A 等于( ) A .030 B .060 C .0120 D .0150 4.在⊿ABC 中,BC b c cos cos =,则此三角形为 ( ) A . 直角三角形; B. 等腰直角三角形 C. 等腰三角形 D. 等腰或直角三角形 5.已知n a 是等差数列,且a 2+ a 3+ a 10+ a 11=48,则a 6+ a 7= ( ) A .12 B .16 C .20D .24 6.在各项均为正数的等比数列{}n b 中,若783b b ⋅=,则3132log log b b ++……314log b +等于( ) (A) 5 (B) 6 (C) 7 (D)87.已知b a,满足:a =3,b =2,b a +=4,则b a -=( )A B C .3 D 10 8.一个等比数列}{n a 的前n 项和为48,前2n 项和为60,则前3n 项和为( ) A 、63 B 、108 C 、75 D 、839.数列{a n }满足a 1=1,a n +1=2a n +1(n ∈N +),那么a 4的值为( ).A .4B .8C .15D .3110.已知△ABC 中,∠A =60°,a =6,b =4,那么满足条件的△ABC 的形状大小 ( ).A .有一种情形B .有两种情形C .不可求出D .有三种以上情形11.已知D 、C 、B 三点在地面同一直线上,DC=a ,从C 、D 两点测得A 的点仰角分别为α、β(α>β)则A 点离地面的高AB 等于( )A .)sin(sin sin βαβα-a B .)cos(sin sin βαβα-aC .)sin(cos cos βαβα-a D .)cos(cos cos βαβα-a12.若{a n }是等差数列,首项a 1>0,a 4+a 5>0,a 4·a 5<0,则使前n 项和S n >0成立的最大自然数n 的值为( ).A .4B .5C .7D .8二、填空题(本题共4小题,每小题5分,共20分)13.在数列{a n }中,其前n 项和S n =3·2n +k ,若数列{a n }是等比数列,则常数k 的值为 14.△ABC 中,如果A a tan =B b tan =Cctan ,那么△ABC 是 15.数列{}n a 满足12a =,112n n n a a --=,则n a = ; 16.两等差数列}{n a 和}{n b ,前n 项和分别为n n T S ,,且,327++=n n T S n n则157202b b a a ++等于 _三.解答题 (本大题共6个小题,共70分;解答应写出文字说明、证明过程或演算步骤)17.(10)分已知c b a,,是同一平面内的三个向量,其中a ()1,2=.(1)若52=c ,且c //a ,求c的坐标;(2) 若|b |=,25且b a 2+与b a -2垂直,求a 与b 的夹角θ.18.(12分)△ABC 中,BC =7,AB =3,且B Csin sin =53. (1)求AC ; (2)求∠A .19.(12分) 已知等比数列{}n a 中,45,106431=+=+a a a a ,求其第4项及前5项和.20.(12分)在ABC ∆中,cos ,sin ,cos ,sin 2222C C C C ⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭m n ,且m 和n 的夹角为3π. (1)求角C ;(2)已知c =27,三角形的面积s =,求.a b + 21.(12分)已知等差数列{a n }的前n 项的和记为S n .如果a 4=-12,a 8=-4. (1)求数列{a n }的通项公式;(2)求S n 的最小值及其相应的n 的值;22.(12分)已知等比数列n a 的前n 项和为n S ,且n a 是n S 与2的等差中项, 等差数列n b 中,12b ,点1(,)n n P b b 在一次函数2y x =+的图象上.⑴求1a 和2a 的值;⑵求数列,n n a b 的通项n a 和n b ;⑶ 设n n n b a c ⋅=,求数列{}n c 的前n 项和n T .高一数学月考答案一.选择题。

高中数学北师大版必修5课时作业:第3章 不等式 章末检测 含答案

高中数学北师大版必修5课时作业:第3章 不等式 章末检测 含答案

第三章章末检测班级__________ 姓名__________ 考号__________ 分数__________ 本试卷满分100分,考试时间90分钟.一、选择题:本大题共10题,每题4分,共40分.在下列各题的四个选项中,只有一个选项是符合题目要求的.1.已知a<0,-1<b<0,则( )A. -a<ab<0B. -a>ab>0C. a>ab>ab 2D. ab>a>ab 22.不等式1x -1<x +1的解集为( ) A .{x|x >-3} B .{x|43<x <22} C .{x|x >1} D .{x|x >2或-2<x <1} 3.不等式x 2+2x -3>0的解集是( )A. {x|x<-1或x>3}B. {x|-3<x<1}C. {x|x<-3或x>1}D. {x|-1<x<3}4.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧ x -y +2≥0,x -5y +10≤0,x +y -8≤0,则目标函数z =3x -4y的最大值和最小值分别为( )A. 3,-11B. -3,-11C. 11,-3D. 11,35.已知x>2,则y =x +1x -2的最小值为( )A .3B .4C .5D .66.已知-1≤a +b ≤3且2≤a -b ≤4,则2a +3b 的最小值和最大值分别是( )A .-132,172B .-72,112C .-72,132D .-92,1327.函数f(x)=⎩⎪⎨⎪⎧ x +2,x ≤0,-x +2,x >0,则不等式f(x)≥x 2的解集是( )A .[-1,1]B .[-2,2]C .[-2,1]D .[-1,2]8.某公司租地建仓库,每月土地费用与仓库到车站距离成反比,而每月货物的运输费用与仓库到车站距离成正比.如果在距离车站10 km 处建仓库,则土地费用和运输费用分别为2万元和8万元,那么要使两项费用之和最小,仓库应建在离车站( )A. 5 km 处B. 4 km 处C. 3 km 处D. 2 km 处9.已知log 2(x +y)=log 2x +log 2y ,则x +y 的取值范围是( )A .(0,1]B .[2,+∞)C .(0,4]D .[4,+∞)10.在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧ x +y -1≥0,x -1≤0,ax -y +1≥0(a 为常数)所表示的平面区域的面积等于2,则a 的值为( )A .-5B .1C .2D .3二、填空题:本大题共3小题,每小题4分,共12分.把答案填在题中横线上.11.已知a,b,c是正实数,且a>b>c,则ab、bc、ac、c从小到大的排列顺序是________.12.不等式ax2+4x+a>1-2x2对一切x∈R恒成立,则实数a的取值范围是________.13.已知0<x<6,则(6-x)·x的最大值是________.三、解答题:本大题共5小题,共48分,其中第14小题8分,第15~18小题各10分.解答应写出文字说明、证明过程或演算步骤.14.设集合A={x|ax2-ax+1<0},B={x|x≥1},且A∩B=∅,求实数a 的取值范围.15.医院用甲、乙两种原料为手术后的病人配营养餐.甲种原料每10 g含5单位蛋白质和10单位铁质,售价3元;乙种原料每10 g含7单位蛋白质和4单位铁质,售价2元.若病人每餐至少需要35单位蛋白质和40单位铁质.试问:应如何使用甲、乙两种原料,才能既满足病人的营养需要,又使费用最省?16.(1)已知0<x<1,求y=x(x-3x)的最大值;(2)已知x>0,y>0,且5x+7y=20,求xy的最大值.17.围建一个面积为s m2(s>0)的距形场地,要求矩形场地的一面利用旧墙(旧墙有24 m,利用旧墙需维修),其他三面围墙要新建,在旧墙对面的新墙上要留一个宽度为2 m的进出口.已知旧墙维修费用为45元/m,新墙的造价为180元/m.设利用的旧墙的长度为x(单位:m),修建此矩形场地围墙的总费用为y(单位:元).(1)将y表示为x的函数;。

新课标人教版必修5高中第3章不等式单元检测试卷及答案解析(原始打印版)

新课标人教版必修5高中第3章不等式单元检测试卷及答案解析(原始打印版)

新课标人教版必修5高中数学 第3章 不等式单元检测试卷1.设a b <,c d <,则下列不等式中一定成立的是 ( )A .d b c a ->-B .bd ac >C .d b c a +>+D .c b d a +>+2. “0>>b a ”是“222b a ab +<”的 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.不等式b ax >的解集不可能是 ( )A .φB .RC .),(+∞a bD .),(ab --∞ 4.不等式022>++bx ax 的解集是)31,21(-,则b a -的值等于 ( ) A .-14 B .14 C .-10 D .105.不等式||x x x <的解集是 ( ) A .{|01}x x <<B .{|11}x x -<<C .{|01x x <<或1}x <-D .{|10,1}x x x -<<> 6.若011<<ba ,则下列结论不正确的是 ( ) A .22b a < B .2b ab < C .2>+ba ab D .||||||b a b a +>+7.若13)(2+-=x x x f ,12)(2-+=x x x g ,则)(x f 与)(x g 的大小关系为 ( )A .)()(x g x f >B .)()(x g x f =C .)()(x g x f <D .随x 值变化而变化 8.下列各式中最小值是2的是 ( )A .y x +x yB .4522++x x C .tan x +cot x D . x x -+229.下列各组不等式中,同解的一组是 ( )A .02>x 与0>xB .01)2)(1(<-+-x x x 与02<+xC .0)23(log 21>+x 与123<+x D .112≤--x x 与112≤--x x 10.如果a x x >+++|9||1|对任意实数x 总成立,则a 的取值范围是 ( )A. }8|{<a aB. }8|{>a aC. }8|{≥a aD. }8|{≤a a 11.若+∈R b a ,,则b a 11+与ba +1的大小关系是 .12.函数121lg+-=x xy 的定义域是 . 13.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x = 吨.14. 已知0()1,0x x f x x ≥⎧=⎨-<⎩,, 则不等式3)2(≤+x f 的解集___ _ ____.15.已知()f x 是奇函数,且在(-∞,0)上是增函数,(2)0f =,则不等式()0xf x <的解集是___ _ ____. 16.解不等式:21582≥+-x x x17.已知1<a ,解关于x 的不等式12>-x ax.18.已知0=++c b a ,求证:0≤++ca bc ab 。

人教版新课程高中数学测试题(必修5)含答案(38页)

人教版新课程高中数学测试题(必修5)含答案(38页)

目录:数学5(必修)数学5(必修)第一章:解三角形 [基础训练A组]数学5(必修)第一章:解三角形 [综合训练B组]数学5(必修)第一章:解三角形 [提高训练C组]数学5(必修)第二章:数列 [基础训练A组]数学5(必修)第二章:数列 [综合训练B组]数学5(必修)第二章:数列 [提高训练C组]数学5(必修)第三章:不等式 [基础训练A组]数学5(必修)第三章:不等式 [综合训练B组]数学5(必修)第三章:不等式 [提高训练C组]新课程高中数学训练题组根据最新课程标准,参考独家内部资料,精心编辑而成;本套资料分必修系列和选修系列及部分选修4系列。

欢迎使用本资料!(数学5必修)第一章:解三角形[基础训练A 组]一、选择题1.在△ABC 中,若0030,6,90===B a C ,则b c -等于( )A .1B .1-C .32D .32-2.若A 为△ABC 的内角,则下列函数中一定取正值的是( )A .A sinB .A cosC .A tanD .A tan 13.在△ABC 中,角,A B 均为锐角,且,sin cos B A >则△ABC 的形状是( )A .直角三角形B .锐角三角形C .钝角三角形D .等腰三角形4.等腰三角形一腰上的高是3,这条高与底边的夹角为060,则底边长为( )A .2B .23C .3D .325.在△ABC 中,若B a b sin 2=,则A 等于( )A .006030或B .006045或C .0060120或D .0015030或6.边长为5,7,8的三角形的最大角与最小角的和是( )A .090B .0120C .0135D .0150二、填空题1.在Rt △ABC 中,090C =,则B A sin sin 的最大值是_______________。

2.在△ABC 中,若=++=A c bc b a 则,222_________。

3.在△ABC 中,若====a C B b 则,135,30,200_________。

最新人教版高中数学必修5第三章模块综合测评(附答案)

最新人教版高中数学必修5第三章模块综合测评(附答案)

数学人教B必修5 模块综合测评(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.集合A={y|y=2x,x∈R},B={-1,0,1},则下列结论正确的是().A.A∪B=(0,+∞)B.(R A)∪B=(-∞,0]C.(R A)∩B={-1,0} D.(R A)∩B={1}2.在等差数列{a n}中,若a2+a8=12,S n是数列{a n}的前n项和,则S9等于().A.48B.54C.60D.663.在△ABC中,∠B=135°,∠C=15°,a=5,则此三角形的最大边长为().A.B.C.D.4.已知在△ABC中,sin A∶sin B∶sin C=3∶2∶4,那么cos C的值为().A.14B.23-C.23D.14-5.已知c<d,a>b>0,则下列不等式中必成立的一个是().A.a+c>b+d B.a-c>b-dC.ad>bc D.a b c d >6.在△ABC中,∠B=60°,b2=ac,则这个三角形是().A.等腰三角形B.不等边三角形C.等边三角形D.直角三角形7.设S n为等差数列{a n}的前n项和,若a1=1,公差d=2,S k+2-S k=24,则k=().A.8 B.7 C.6 D.58.已知a,b,c,d成等比数列,且曲线y=x2-2x+3的顶点是(b,c),则ad等于().A.3 B.2 C.1 D.-29.函数y=log2(x+11x-+5)(x>1)的最小值为().A.-3 B.3 C.4 D.-410.已知变量x,y满足约束条件20,1,70,x yxx y-+≤⎧⎪≥⎨⎪+-≤⎩则yx的取值范围是().A.(3,6) B.(95,3)C.[95,6] D.(3,+∞)11.已知x,y为正实数,且x,a1,a2,y成等差数列,x,b1,b2,y成等比数列,则2 1212a ab b (+)的取值范围是().A .RB .(0,4]C .[4,+∞)D .(-∞,0]∪[4,+∞)12.(2011·广东高考)已知平面直角坐标系xOy 上的区域D由不等式组02,,x y x ⎧≤≤⎪≤⎨⎪≤⎩给定.若M (x ,y )为D 上的动点,点A 的坐标为1),则z OM OA =⋅的最大值为( ).A. B. C .4 D .3二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中的横线上) 13.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =1,c =π3C ∠=,则∠A =________.14.若方程x 2+(m +2)x +m +5=0只有正根,则m 的取值范围是__________.15.设{a n }为公比q >1的等比数列,若a 2 009和a 2 010是方程4x 2-8x +3=0的两根,则a 2 011+a 2 012=________.16.已知a ,b ,c 分别为△ABC 的三边,且3a 2+3b 2-3c 2+2ab =0,则tan C =________. 三、解答题(本大题共6小题,共74分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)已知在等差数列{a n }中,a 3+a 4=15,a 2a 5=54,公差d <0. (1)求数列{a n }的通项公式a n ;(2)求数列的前n 项和S n 的最大值及相应的n 的值.18.(本小题满分12分)已知关于x 的不等式2251x x m m+->+. (1)当m >0时,解这个不等式;(2)若此不等式的解集为{x |x >5},试求实数m 的值.19.(本小题满分12分)在△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边长.已知a ,b ,c 成等比数列,且a 2-c 2=ac -bc ,求∠A 的大小及sin b Bc的值. 20.(本小题满分12分)某工厂修建一个长方体形无盖蓄水池,其容积为4 800立方米,深度为3米,池底每平方米的造价为150元,池壁每平方米的造价为120元.设池底长方形长为x 米.(1)求底面积并用含x 的表达式表示池壁面积S ;(2)怎样设计水池能使总造价最低?最低造价是多少? 21.(本小题满分12分)如图所示,有相交成60°角的两条直线ZZ ′,YY ′,交点是O .甲、乙分别在OZ ,OY 上,起初甲在离O 点3 km 的A 点,乙在离O 点1 km 的B 点,后来两人同时用4 km/h 的速度,甲沿ZZ ′方向,乙沿Y ′Y 方向步行.(1)起初两人的距离是多少?(2)用包含t 的式子表示t h 后两人的距离;(3)多长时间后,两人之间的距离最短,最短距离是多少?22.(本小题满分14分)设数列{a n }的前n 项和为S n ,若对于任意的n ∈N +,都有S n =2a n-3n ,(1)求数列{a n }的首项与递推关系式a n +1=f (a n ). (2)先阅读定理:若数列{a n }有递推关系a n +1=Aa n +B ,其中A ,B 为常数,且A ≠1,B ≠0,则数列{1n Ba A-}-是以A 为公比的等比数列.请你在(1)的基础上应用本定理,求数列{a n }的通项公式.(3)求数列{a n }的前n 项和S n .参考答案1. 答案:C ∵A ={y |y >0},∴R A ={y |y ≤0},∴(R A )∩B ={-1,0}.2. 答案:B 192899()9()5422a a a a S ++===. 3. 答案:A 依题意,知三角形的最大边为b .由于∠A =30°,根据正弦定理,得sin sin b a B A =,所以sin 5sin135sin sin30a B b A ︒===︒4. 答案:D ∵a ∶b ∶c =sin A ∶sin B ∶sin C =3∶2∶4, ∴令a =3k ,b =2k ,c =4k (k ≠0),∴22222294161cos 22324a b c k k k C ab k k +-+-===-⋅⋅. 5. 答案:B 由不等式的性质可知,c <d ,∴-c >-d .又∵a >b >0,∴a +(-c )>b +(-d ),即a -c >b -d .6. 答案:C cos B =cos 60°=222221222a cb ac ac ac ac +-+-==, ∴(a -c )2=0.∴a =c .又∵∠B =60°,∴△ABC 为等边三角形.7. 答案:D ∵S k +2-S k =24,∴a k +1+a k +2=24. ∴a 1+kd +a 1+(k +1)d =24. ∴2a 1+(2k +1)d =24. 又a 1=1,d =2,∴k =5.8. 答案:B ∵y =x 2-2x +3的顶点为(1,2),∴b =1,c =2.又∵a ,b ,c ,d 成等比数列,∴12a =,d =4.∴ad =2. 9. 答案:B ∵x >1,∴x -1>0, ∴y =log 2(x +11x -+5)=log 2(x -1+11x -+6)≥log 2(2+6)=log 28=3.当且仅当x -1=11x -,即x =2时等号成立. 10. 答案:C 作出可行域,如图阴影部分所示.目标函数00y y z x x -==-的几何意义是可行域内的点(x ,y )与原点(0,0)间连线的斜率.由图可知k OC ≤z ≤k OB .易求得B (1,6),C (52,92),因为95OC k =,661OB k ==,所以95≤z ≤6.11. 答案:C 原式=222()22x y x x y y x yx y x y y x+++==++,又∵x ,y ∈R +,∴2224x y y x ++≥=,当且仅当x y y x =,即x =y 时等号成立.12. 答案:C z OM OA =⋅=(x ,y1)+y .由02,x y x ⎧≤≤⎪≤⎨⎪≤⎩ 画出可行域,如图阴影部分所示.作直线l 0:y =,平移直线l 0至l 1位置时,z 取得最大值,此时l1过点2),故max 24z =.13. 答案:π6 由正弦定理,得sinsin a cA C=sin 1sin 2a C A c ===,所以∠A =π6. 14. 答案:(-5,-4] 设方程的正根为x 1,x 2,由题意,得21212(2)4(5)0,(2)0,50,m m x x m x x m ⎧∆=+-+≥⎪+=-+>⎨⎪=+>⎩解得-5<m ≤-4.15. 答案:18 ∵a 2 009和a 2 010是方程4x 2-8x +3=0的两根,而方程的两个根是12x =,32x =,又∵{a n }的公比q >1,∴ 2 00912a =, 2 01032a =,∴q =3.∴a 2 011+a 2 012=a 2 009q 2+a 2 010q 2=(a 2 009+a 2 010)q 2=(1322+)×32=18.16. 答案:- 2221cos 23a b c C ab +-==-,所以∠C >90°,sin 3C =.所以sin tan cos CC C==-17. 答案:分析:首先由等差数列的性质得a 2+a 5=a 3+a 4=15,再与a 2·a 5=54联立求出a 2,a 5,进而求出通项a n ,S n ;再由S n 得出S n 的最大值及相应的n 值.解:(1)∵{a n }为等差数列,∴a 2+a 5=a 3+a 4.∴252515,54,0,a a a a d +=⎧⎪=⎨⎪<⎩ 解得259,6,a a =⎧⎨=⎩∴11,10,d a =-⎧⎨=⎩∴a n =11-n .(2)∵a 1=10,a n =11-n ,∴21()121222n n n a a S n n +==-+. 又102-<,对称轴为212,故当n =10或11时,S n 取得最大值,其最大值为55.18. 答案:分析:(1)解含参不等式要就参数的取值范围进行讨论,本题在系数化为1时,要注意m -1的符号.(2)不等式的解集是不等式所有解的集合,必须注意元素的确定性,和恒成立问题不同,从函数、方程、不等式的统一角度来认识,5应是方程2251x x m m+-=+的根.或者根据(1)对m 进行讨论.解:(1)原不等式可化为m (x +2)>m 2+x -5, (m -1)x >m 2-2m -5,若0<m <1,不等式的解集为225{|1m m x x m --<}-;若m =1,则不等式的解集为R ; 若m >1,则不等式的解集为225{|1m m x x m -->}-.(2)由题意和(1)知,m >1且满足225{|{|5}1m m x x x x m -->}=>-,于是22551m m m --=-,解得m =7. 19. 答案:分析:由题意可知b 2=ac ,将此式代入a 2-c 2=ac -bc ,然后利用余弦定理求出∠A ;再由正弦定理或三角形面积公式求出sin b Bc的值. 解:(1)∵a ,b ,c 成等比数列,∴b 2=ac . 又a 2-c 2=ac -bc , ∴b 2+c 2-a 2=bc .在△ABC 中,由余弦定理,得2221cos 22b c a A bc +-==,∴∠A =60°.(2)解法一:在△ABC 中,由正弦定理得sin sin b AB a=. ∵b 2=ac ,∠A =60°,∴2sin sin60sin 60b B b c ac ︒==︒=解法二:在△ABC 中,由三角形面积公式得11sin sin 22bc A ac B =, ∵b 2=ac ,∠A =60°,∴bc sin A =b 2sin B ,∴sin sin 2b B Ac ==. 20. 答案:解:(1)设水池的底面积为S 1,池壁的面积为S ,则有1480016003S ==(平方米), 则池底长方形宽为1600x 米,所以S =6x +6×1600x =6(x +1600x)(x >0).(2)设总造价为y ,则y =150×1 600+120×6(x +1600x)≥240 000+57 600=297 600, 当且仅当1600x x=,即x =40时,等号成立, 即x =40时,总造价最低为297 600元.21. 答案:分析:第(1)问可用余弦定理直接求解,第(2)问分类讨论的依据要把握好,当甲驶过O 点时,甲、乙两人行驶的路线的夹角发生了变化,因此,讨论的依据是t 与34的大小关系.这是本题应注意的一个方面.解:(1)设甲、乙两人起初的位置分别是A 与B ,则AB 2=OA 2+OB 2-2OA ·OB ·cos 60°=32+12-2×3×1×12=7.(2)设甲、乙两人t h 后的位置分别是P ,Q ,则AP =4t ,BQ =4t ,当0≤t ≤34时,PQ 2=(3-4t )2+(1+4t )2-2(3-4t )(1+4t )cos 60°,当34t >时,PQ 2=(4t -3)2+(1+4t )2-2(4t -3)·(1+4t )cos 120°,注意到,上面的两式实际上是统一的.所以PQ 2=48t 2-24t +7,t ∈[0,+∞),即PQ =t ∈[0,+∞).(3)因为PQ 2=48(t -14)2+4,所以当14t =h 时,即在第15 min 末,两人的距离最短,最短距离是2 km.22. 答案:分析:(1)要建立a n 与a n +1之间的关系,可由a n +1=S n +1-S n 得出. (2)给出定理,需认真阅读,考查了观察问题、研究问题的能力. (3)可用拆项法求和.解:(1)令n =1,则S 1=2a 1-3,所以a 1=3.又S n +1=2a n +1-3(n +1),S n =2a n -3n .两式相减得a n +1=2a n +3.(2)按照定理,得A =2,B =3,则31BA=--.所以{a n +3}是公比为2的等比数列,其首项为a 1+3=6,所以a n +3=(a 1+3)·2n -1=6·2n -1,所以a n =6·2n -1-3.(3)S n =a 1+a 2+…+a n =(6·20-3)+(6·2-3)+(6·22-3)+…+(6·2n -1-3)=(6·20+6·21+6·22+…+6·2n -1)-(3+3+…+3)=6(20+21+22+…+2n -1)-3n =6×1212n---3n =6·2n-3n -6.。

人教B版高中数学必修五第三章测试.docx

人教B版高中数学必修五第三章测试.docx

第三章测试(时间:90分钟 满分:120分)一、选择题(本大题共10小题,每小题5分,共50分.在下列四个选项中,只有一项是符合题意的)1.不等式x -1x ≥2的解集为( )A .[-1,0)B .[-1,+∞)C .(-∞,-1]D .(-∞,-1]∪(0,+∞)解析 ∵x -1x ≥2⇔x +1x ≤0,∴x ∈[-1,0).答案 A2.已知不等式ax 2-5x +b >0的解集为{x |-3<x <2},则不等式bx 2-5x +a >0的解集为( )A .{x |-13<x <12}B .{x |x <-13,或x >12}C .{x |-3<x <2}D .{x |x <-3,或x >2}解析 ∵-3或2是ax 2-5x +b =0的两根,∴a =-5,b =30.∴bx 2-5x +a =30x 2-5x -5>0.即6x 2-x -1>0,∴x >12或x <-13.答案 B3.下列命题中正确命题的个数是( )①若x >y >z ,则|xy |>|yz |;②若a >b ,c >d ,abcd ≠0,则a c >b d ;③若1a <1b <0,则ab <b 2;④若a >b ,则b a >b -1a -1.A .1B .2C .3D .4解析 当y =0时,①不成立;当a =1,b =-2,c =-1,d =-2时,满足a >b ,c >d ,但a c <b d ,故②不成立;∵1a <1b <0,∴b <a <0,∴ab <b 2,故③成立;b a -b -1a -1=a -b a (a -1),∵a >b ,∴a -b >0,当a (a -1)>0时,即a >1,或a <0,b a -b -1a -1>0,此时b a >b -1a -1;当a (a -1)<0时,即0<a <1时,b a -b -1a -1<0,此时b a <b -1a -1,∴④不正确. 答案 A4.不等式|x +3|-|x -1|≤a 2-3a 对任意实数x 恒成立,则实数a的取值范围为( )A .(-∞,-1]∪[4,+∞)B .(-∞,-2]∪[5,+∞)C .[1,2]D .(-∞,1]∪[2,+∞)解析 ∵|x +3|-|x -1|=⎩⎪⎨⎪⎧ 4 (x ≥1),2x +2 (-3<x <1),-4 (x ≤-3),∴-4≤|x +3|-|x -1|≤4,∴a 2-3a ≥4.∴a ≥4,或a ≤-1.答案 A5.在“家电下乡”活动中,某厂要将100台洗衣机运往邻近的乡镇,现有4辆甲型货车和8辆乙型货车可供使用,每辆甲型货车运输费用400元,可装洗衣机20台;每辆乙型货车运输费用300元,可装洗衣机10台,若每辆至多只运一次,则该厂所花的最少运输费用为( )A .2000元B .2200元C .2400元D .2800元解析 设甲型货车使用x 辆,乙型货车y 辆.则⎩⎪⎨⎪⎧ 0≤x ≤4,0≤y ≤8,20x +10y ≥100,求z =400x +300y 最小值.可求出最优解为(4,2),故z min =2200,故选B.答案 B6.已知函数f (x )=⎩⎪⎨⎪⎧x +2 (x ≤0),-x +2 (x >0),则不等式f (x )≥x 2的解集是( )A .[-1,1]B .[-2,2]C .[-2,1]D .[-1,2]解析 ∵⎩⎪⎨⎪⎧ x ≤0,x +2≥x 2,或⎩⎪⎨⎪⎧x >0,-x +2≥x 2,∴⎩⎪⎨⎪⎧ x ≤0,-1≤x ≤2,或⎩⎪⎨⎪⎧x >0,-2≤x ≤1, ∴-1≤x ≤0,或0<x ≤1,∴-1≤x ≤1.答案 A7.如果a >0>b 且a +b >0,那么以下不等式正确的个数是( )①1a <1b ;②1a >1a +b;③a 3>ab 2;④a 2b <b 3. A .1B .2C .3D .4解析 ∵a >0>b ,∴1a >0>1b ,∴①错;∵a >0>b ,∴a >a +b >0,∴1a <1a +b,②错; a 3-ab 2=a (a -b )(a +b )>0,∴a 3>ab 2,③正确;a 2b -b 3=b (a -b )(a +b )<0,∴a 2b <b 3,④正确,故选B.答案 B8.若函数f (x )是定义在(0,+∞)上的增函数,且对一切x >0,y >0满足f (xy )=f (x )+f (y ),则不等式f (x +6)+f (x )<2f (4)的解集为( )A .(0,2)B .(2,+∞)C .(-8,2)D .(0,+∞)解析 f [x (x +6)]<f (16),∵f (x )在(0,+∞)单增,∴⎩⎪⎨⎪⎧ x +6>0,x >0,x (x +6)<16,∴0<x <2.答案 A9.不等式(a -2)x 2+2(a -2)x -4<0对一切x ∈R 恒成立,则实数a 的取值范围是( )A .(-∞,2)B .[-2,2]C .(-2,2]D .(-∞,-2)解析 当a =2经检验满足题意条件,故排除A 、D 项.当a =-2时,不等式变为-4x 2-8x -4<0,其Δ=64-64=0,∴当a =-2时不成立,故排除B.答案 C10.若不等式组⎩⎪⎨⎪⎧ x ≥0,x +3y ≥4,3x +y ≤4,所表示的平面区域被直线y =kx+43分为面积相等的两部分,则k 的值是( )A.73B.37C.43D.34解析 由图可知,线性规划区域为△ABC 边界及内部,y =kx +43恰过A ⎝ ⎛⎭⎪⎫0,43,y =kx +43将区域平均分成面积相等的两部分,故过BC 的中点D ⎝ ⎛⎭⎪⎫12,52,52=k ×12+43,k =73,故选A 项.答案 A二、填空题(本大题共4小题,每小题5分,共20分)11.已知x ,y 满足⎩⎪⎨⎪⎧ x +3y -7≤0,x ≥1,y ≥1,则z =x +4y 的最大值________.解析 根据约束条件作出可行域(图略),当z =x +4y 经过直线x=1与直线x +3y -7=0的交点(1,2)时,z max =9.答案 912.已知a ≥0,b ≥0,b 22+a 2=1,则a 1+b 2的最大值是________. 解析 由题意,可知2a 2+b 2=2,a 1+b 2=22·(2a )·1+b 2≤22·(2a )2+1+b 22=324.当且仅当2a =1+b 2时等号成立,即a =32,b =22时等号成立.答案 32413.已知关于x 的不等式x -a x 2-3x +2≥0的解集为{x |1<x ≤a ,或x >2},则a 的取值范围是________.解析 ∵x ∈(1,a ]∪(2,+∞),∴1<a <2.答案 (1,2)14.给出下列四个命题:①若a <b ,则a 2<b 2;②若a ≥b >-1,则a 1+a ≥b 1+b ;③若正整数m 和n 满足:m <n ,则m (n -m )≤n 2;④若x >0,且x ≠1,则ln x+1ln x ≥2.其中真命题的序号是____.(请把真命题的序号都填上)解析 a =-3,b =1,①不成立;②③正确;④中当x ∈(0,1)时,ln x <0,∴④不成立.答案 ②③三、解答题(本大题共4小题,共50分,其中15、16、17题每题12分,18题14分.解答应写出文字说明,证明过程或演算步骤)15.(12分)某加工厂需定期购买原材料,已知每千克原材料的价格为1.5元,每次购买原材料需支付运费600元,每千克原材料每天的保管费用为0.03元,该厂每天需要消耗原材料400千克,每次购买的原材料当天即开始使用(即有400千克不需要保管).(1)设该厂每x 天购买一次原材料,试写出每次购买的原材料在x天内总的保管费用y 1关于x 的函数关系式;(2)求该厂多少天购买一次原材料才能使平均每天支付的总费用y 最小,并求出这个最小值.解 (1)每次购买原材料后,当天用掉的400千克原材料不需要保管费,第二天用掉的400千克原材料需保管1天,第三天用掉的400千克原材料需保管2天,第四天用掉的400千克原材料需保管3天,…,第x 天(也就是下次购买原材料的前一天)用掉最后的400千克原材料需保管x -1天.∴每次购买的原材料在x 天内总的保管费用为y 1=400×0.03[1+2+3+…+(x -1)]=6x 2-6x (元).(2)由(1)可知,购买一次原材料的总费用为6x 2-6x +600+1.5×400x (元).∴购买一次原材料平均每天支付的总费用为y =1x (6x 2-6x +600)+1.5×400=600x +6x +594(元).∴y ≥2 600x ·6x +594=714,当且仅当600x =6x .即x =10时,取等号.∴该厂10天购买一次原材料可以使平均每天支付的总费用y 最小,为714元.16.(12分)已知f (x )=-3x 2+a (6-a )x +b .(1)解关于a 的不等式f (1)>0;(2)当不等式f (x )>0的解集为(-1,3)时,求实数a ,b 的值.解 (1)f (1)=-3+a (6-a )+b >0,即a 2-6a +3-b <0.①当Δ=36-4(3-b )≤0,即b ≤-6时,该不等式无解.②当Δ=36-4(3-b )>0,即b >-6时,该不等式的解集为(3-b +6,3+b +6).(2)∵f (x )>0的解集为(-1,3),∴-1,3是f (x )=0的两根.∴⎩⎨⎧-1+3=a (6-a )3,-1×3=-b 3,∴⎩⎪⎨⎪⎧a =3±3,b =9. 17.(12分)已知f (x )是二次函数,不等式f (x )<0的解集是(0,5),且f (x )在区间[-1,4]上的最大值是12.(1)求f (x )的解析式;(2)解关于x 的不等式2x 2+(a -10)x +5f (x )>1(a <0).解 (1)∵f (x )是二次函数,且f (x )<0的解集是(0,5),∴可设f (x )=Ax (x -5)(A >0).∴f (x )的对称轴为x =52且开口向上.∴f (x )在区间[-1,4]上的最大值是f (-1)=6A =12,∴A =2.∴f (x )=2x (x -5)=2x 2-10x .(2)由已知,有ax +52x 2-10x>0,∴x (x -5)(ax +5)>0. 又a <0,∴x (x -5)⎝ ⎛⎭⎪⎫x +5a <0. ①若-1<a <0,则5<-5a .∴x <0,或5<x <-5a .②若a =-1,则x <0.③若a <-1,则-5a <5,∴x <0,或-5a <x <5.综上,可知当-1<a <0时,原不等式的解集为{x |x <0,或5<x <-5a };当a =-1时,原不等式的解集为{x |x <0};当a <-1时,原不等式的解集为{x |x <0,或-5a <x <5}.18.(14分)某种商品原来每件售价为25元,年销售8万件.(1)据市场调查,若价格每提高1元,销售量将相应减少2000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?(2)为了扩大该商品的影响力,提高年销售量,公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到x 元.公司拟投入16(x 2-600)万元作为技改费用,投入50万元作为固定宣传费用,投入15x 万元作为浮动宣传费用.试问:当该商品明年的销售量a至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.解 (1)设每件定价为t 元,由题意,有⎝ ⎛⎭⎪⎫8-t -251×0.2t ≥25×8, 即t 2-65t +1000≤0,解得25≤t ≤40.∴要使销售的总收入不低于原收入,每件定价最多为40元.(2)由题得,x >25时,不等式ax ≥25×8+50+16(x 2-600)+15x 有解,—————————— 新学期 新成绩 新目标 新方向 ——————————桑水 等价于x >25时,a ≥150x +16x +15有解.∵150x +16x ≥2150x ×16x =10(当且仅当x =30时,等号成立),∴a ≥10.2.当该商品明年的销售量a 至少达到10.2万件时,才可能使明年的销售收入不低于原收入与总投入之和,此时该商品的每件定价为30元.。

新人教版高中数学必修5全册同步课时作业含解析答案

新人教版高中数学必修5全册同步课时作业含解析答案

新人教版高中数学必修5全册同步课时作业(含解析答案)目录课时作业1 正弦定理第1课时课时作业2 正弦定理第2课时课时作业3 余弦定理课时作业4 正、余弦定理习题课课时作业5 应用举例第1课时课时作业6 应用举例第2课时)正、余弦定理的综合应用课时作业7 数列的概念与简单表示法课时作业8 数列的性质和递推公式课时作业9 等差数列第1课时课时作业10 等差数列第2课时课时作业11 等差数列第3课时课时作业12 等差数列的前n项和第1课时课时作业13 等差数列的前n项和第2课时课时作业14 等差数列的前n项和第3课时课时作业15 等比数列第1课时课时作业16 等比数列第2课时课时作业17 等比数列的前n项和第1课时课时作业18 等比数列的前n项和第2课时课时作业19 专题研究一数列通项的求法课时作业20 专题研究二特殊数列求和方法课时作业21 专题研究三数列的实际应用课时作业22 不等关系与不等式课时作业23 一元二次不等式及其解法第1课时课时作业24 一元二次不等式及其解法第2课时课时作业25 二元一次不等式组)表示的平面区域课时作业26 简单的线性规划问题第1课时课时作业27 简单的线性规划问题第2课时课时作业28 简单的线性规划问题课时作业29 基本不等式 ab≤a+b2 第1课时课时作业30 基本不等式 ab≤a+b2 第2课时课时作业31 基本不等式1课时作业32 基本不等式2课时作业1 正弦定理(第1课时)1.在△ABC 中,下列等式中总能成立的是( ) A .a sin A =b sin B B .b sin C =c sin A C .ab sin C =bc sin B D .ab sin C =bc sin A答案 D2.在△ABC 中,a =4,A =45°,B =60°,则边b 的值为( ) A.3+1 B .23+1 C .2 6 D .2+2 3答案 C3.在△ABC 中,sin 2A =sin 2B +sin 2C ,则△ABC 为( ) A .直角三角形 B .等腰直角三角形 C .等边三角形D .等腰三角形答案 A4.在△ABC 中,若sin A a =cos Bb,则∠B 的值为( )A .30°B .45°C .60°D .90°答案 B解析 ∵sin A a =sin B b ,∴cos B b =sin B b,∴cos B =sin B ,从而tan B =1,又0°<B <180°,∴B =45°.5.(2013·湖南)在△ABC 中,若3a =2b sin A ,则B 为( ) A.π3B.π6C.π3或23π D.π6或56π 答案 C解析 由3a =2b sin A ,得3sin A =2sin B ·sin A . ∴sin B =32.∴B =π3或2π3. 6.在△ABC 中,A ∶B ∶C =4∶1∶1,则a ∶b ∶c 为( ) A .3∶1∶1 B .2∶1∶1 C.2∶1∶1 D.3∶1∶1答案 D解析 由已知得A =120°,B =C =30°,根据正弦定理的变形形式,得a ∶b ∶c =sin A ∶sin B ∶sin C =3∶1∶1. 7.以下关于正弦定理的叙述或变形中错误..的是( ) A .在△ABC 中,a ∶b ∶c =sin A ∶sin B ∶sin C B .在△ABC 中,a =b ⇔sin2A =sin2BC .在△ABC 中,a sin A =b +c sin B +sin CD .在△ABC 中,正弦值较大的角所对的边也较大 答案 B解析 对于B 项,当a =b 时,sin A =sin B 且cos A =cos B ,∴sin2A =sin2B ,但是反过来若sin2A =sin2B .2A =2B 或2A =π-2B ,即A =B 或A +B =π2.不一定a =b ,∴B 选项错误.8.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,如果c =3a ,B =30°,那么角C 等于( )A .120°B .105°C .90°D .75°答案 A9.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =2,b =2,sin B +cos B =2,则角A 的大小为________.答案π6解析 由sin B +cos B =2sin(B +π4)=2,得sin(B +π4)=1,所以B =π4.由正弦定理a sin A =b sin B ,得sin A =a sin B b =2·si nπ42=12,所以A =π6或5π6(舍去). 10.已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若a =1,b =3,A +C =2B ,则sin A =________.答案 12解析 由A +C =2B ,且A +B +C =180°,得B =60°,由正弦定理,得3sin60°=1sin A ,∴sin A =12.11.(2012·福建)在△ABC 中,已知∠BAC =60°,∠ABC =45°,BC =3,则AC =________.答案 2解析如图所示,由正弦定理,得AC sin B =BC sin A ,即AC sin45°=3sin60°,即AC22=332,故AC = 2. 12.(2012·北京)在△ABC 中,若a =3,b =3,∠A =π3,则∠C 的大小为________.答案π2解析 由正弦定理,得a sin ∠A =bsin ∠B .从而332=3sin ∠B,即sin ∠B =12.∴∠B =30°或∠B =150°.由a >b 可知∠B =150°不合题意,∴∠B =30°. ∴∠C =180°-60°-30°=90°.13.已知三角形的两角分别是45°、60°,它们夹边的长是1,则最小边长为________. 答案3-114.在△ABC 中,若tan A =13,C =150°,BC =1,则AB =________.答案10215.△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,则a (sin C -sin B )+b (sin A -sin C )+c (sin B -sin A )=________.答案 0解析 ∵a sin A =bsin B ,∴a sin B =b sin A .同理可得a sin C =c sin A 且b sin C =c sin B .∴原式=0.16.已知在△ABC 中,c =10,A =45°,C =30°,求a 、b 和B . 答案 a =10 2 b =5(6+2) B =105°17.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若c =2,b =6,B =120°,求a 的值.答案2解析 由正弦定理,得6sin120°=2sin C ,∴sin C =12.又∵C 为锐角,则C =30°,∴A =30°. ∴△ABC 为等腰三角形,a =c = 2.18.已知在△ABC 中,∠A =45°,a =2,c =6,解此三角形. 解析 由正弦定理a sin A =csin C ,得 sin C =62sin45°=62×22=32. 因为∠A =45°,c >a ,所以∠C =60°或120°. 所以∠B =180°-60°-45°=75° 或∠B =180°-120°-45°=15°. 又因为b =a sin Bsin A,所以b =3+1或3-1. 综上,∠C =60°,∠B =75°,b =3+1 或∠C =120°,∠B =15°,b =3-1. ►重点班·选作题19.下列判断中正确的是( )A .当a =4,b =5,A =30°时,三角形有一解B .当a =5,b =4,A =60°时,三角形有两解C .当a =3,b =2,B =120°时,三角形有一解D .当a =322,b =6,A =60°时,三角形有一解答案 D20.△ABC 的外接圆半径为R ,C =60°,则a +bR的取值范围是( ) A .[3,23] B .[3,23) C .(3,23] D .(3,23)答案 C课时作业2 正弦定理(第2课时)1.在△ABC 中,a =2b cos C ,则这个三角形一定是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形 D .等腰或直角三角形答案 A2.已知△ABC 中,AB =3,AC =1,且B =30°,则△ABC 的面积等于( ) A.32B.34C.32或 3 D.34或32 答案 D3.在△ABC 中,a =15,b =10,A =60°,则cos B =( ) A .-223B.223 C .-63D.63答案 D解析 依题意得0°<B <60°,a sin A =b sin B ,sin B =b sin A a =33,cos B =1-sin 2B =63,选D.4.(2013·山东)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若B =2A ,a =1,b =3,则c =( ) A .2 3 B .2 C. 2 D .1答案 B解析 由正弦定理a sin A =b sin B ,得1sin A =3sin B.又∵B =2A ,∴1sin A =3sin2A =32sin A cos A .∴cos A =32,∴∠A =30°,∴∠B =60°,∠C =90°. ∴c =12+32=2.5.(2013·陕西)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定答案 B解析 ∵b cos C +c cos B =a sin A ,由正弦定理,得sin B cos C +sin C cos B =sin 2A ,∴sin(B +C )=sin 2A ,即sin A =sin 2A .又∵sin A >0,∴sin A =1,∴A =π2,故△ABC 为直角三角形.6.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,已知A =60°,a =3,b =1,则c 等于( )A .1B .2 C.3-1 D. 3答案 B7.已知△ABC 的面积为32,且b =2,c =3,则( )A .A =30°B .A =60°C .A =30°或150°D .A =60°或120° 答案 D8.已知三角形面积为14,外接圆面积为π,则这个三角形的三边之积为( )A .1B .2 C.12 D .4 答案 A9.在△ABC 中,A =60°,a =3,b =2,则B 等于( ) A .45°或135° B .60° C .45° D .135° 答案 C10.若△ABC 的面积为3,BC =2,C =60°,则边AB 的长度为________. 答案 211.△ABC 中,若a cos A 2=b cos B 2=ccos C 2,则△ABC 的形状是________.答案 等边三角形12.在△ABC 中,lg(sin A +sin C )=2lgsin B -lg(sin C -sin A ),则该三角形的形状是________.答案 直角三角形 解析 由已知条件lg(sin A +sin C )+lg(sin C -sin A )=lgsin 2B , ∴sin 2C -sin 2A =sin 2B ,由正弦定理,可得c 2=a 2+b 2. 故三角形为直角三角形.13.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,B =π3,cos A =45,b = 3.(1)求sin C 的值; (2)求△ABC 的面积.答案 (1)3+4310 (2)36+935014.在△ABC 中,若b 2sin 2C +c 2sin 2B =2bc cos B cosC ,试判断三角形的形状. 解析 由正弦定理asin A=bsin B=csin C=2R (R 为△ABC 外接圆半径).将原等式化为8R 2sin 2B sin 2C =8R 2sin B sin C cos B cos C .∵sin B ·sin C ≠0,∴sin B sin C =cos B cos C . 即cos(B +C )=0.∴B +C =90°,即A =90°. 故△ABC 为直角三角形.15.在△ABC 中,求证:cos2A a 2-cos2B b 2=1a 2-1b2.证明 ∵左边=1-2sin 2A a 2-1-2sin 2Bb2=1a 2-1b 2-2(sin 2A a 2-sin 2B b2), 由正弦定理,得a sin A =bsin B ,∴sin 2A a 2-sin 2Bb2=0.∴原式成立. ►重点班·选作题16.在△ABC 中,sin A =34,a =10,边长c 的取值范围是( )A .(152,+∞)B .(10,+∞)C .(0,10)D .(0,403]答案 D17.(2012·浙江)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A =23,sin B=5cos C .(1)求tan C 的值;(2)若a =2,求△ABC 的面积. 解析 (1)因为0<A <π,cos A =23,得sin A =1-cos 2A =53. 又5cos C =sin B =sin(A +C )=sin A cos C +cos A sin C =53cos C +23sin C ,所以tan C = 5. (2)由tan C =5,得sin C =56,cos C =16.于是sin B =5cos C =56.由a =2及正弦定理a sin A =csin C ,得c = 3.设△ABC 的面积为S ,则S =12ac sin B =52.1.在△ABC 中,若b =1,c =3,∠C =2π3,则a =________.答案 1解析 在△ABC 中,由正弦定理,得1sin B=3sin2π3,解得sin B =12,因为b <c ,故角B 为锐角,所以B =π6,则A =π6.再由正弦定理或等腰三角形性质可得a =1.课时作业3 余弦定理1.在△ABC 中,sin 2A =sin 2B +sin B sinC +sin 2C ,则A 等于( ) A .30° B .60° C .120°D .150°答案 C解析 由正弦定理,得a 2=b 2+bc +c 2,由余弦定理,得cos A =b 2+c 2-a 22bc =-bc 2bc =-12.∴A =120°.2.若a ,b ,c 是△ABC 的三边,且c a 2+b2>1,则△ABC 一定是( ) A .直角三角形 B .等边三角形 C .锐角三角形 D .钝角三角形答案 D 解析 ∵c a 2+b2>1,即a 2+b 2<c 2,a 2+b 2-c 2<0,于是cos C =a 2+b 2-c 22ab<0.∴∠C 为钝角,即得△ABC 为钝角三角形.3.边长5、7、8的三角形的最大角与最小角的和是( ) A .90° B .120° C .135° D .150°答案 B解析 设中间的角大小为B ,由余弦定理,求得cos B =a 2+c 2-b 22ac =52+82-722×5×8=12.而0<B <π,∴B =π3.∴最大角与最小角的和是π-π3=2π3=120°.4.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( )A. 6 B .2 C. 3 D. 2答案 D5.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c .若a 2-b 2=3bc ,sin C =23sin B ,则A =( )A .30°B .60°C .120°D .150°答案 A解析 由sin C =23sin B ,可得c =23b ,由余弦定理,得cos A =b 2+c 2-a 22bc=-3bc +c 22bc =32,于是A =30°,故选A.6.在△ABC 中,已知a ∶b ∶c =3∶5∶7,则这个三角形最大角的外角是( ) A .30° B .60° C .90° D .120°答案 B解析 ∵a ∶b ∶c =3∶5∶7,∴可令a =3x ,b =5x ,c =7x (x >0),显然c 边最大.∴cos C =a 2+b 2-c 22ab =9x 2+25x 2-49x 22·3x ·5x =-12.∴C =120°,∴其外角为60°.7.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c .若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为( )A.π6B.π3 C.π6或5π6D.π3或2π3答案 D解析 本题考查边角关系中余弦定理的应用.解斜三角形问题的关键是充分挖掘题中边角特征,选择合理的定理求解.因此(a 2+c 2-b 2)tan B =3ac ,所以由余弦定理cos B =a 2+c 2-b 22ac ,得sin B =32,选D. 8.在△ABC 中,已知a cos A +b cos B =c cos C ,则△ABC 是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形 D .等边三角形答案 B解析 由a cos A +b cos B =c cos C ,得a ·b 2+c 2-a 22bc +b ·a 2+c 2-b 22ac =c ·b 2+a 2-c 22ab,化简得a 4+2a 2b 2+b 4=c 4,即(a 2+b 2)2=c 4.∴a 2+b 2=c 2或a 2+b 2=-c 2(舍去). 故△ABC 是直角三角形.9.若将直角三角形的三边增加同样的长度,则新三角形的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .由增加的长度确定答案 A10.在△ABC 中,已知a =2,b =4,C =60°,则A =________. 答案 30°11.(2012·湖北)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若(a +b -c )(a +b +c )=ab ,则角C =________.答案2π3解析 ∵由(a +b -c )(a +b +c )=ab ,整理可得,a 2+b 2-c 2=-ab ,∴cos C =a 2+b 2-c 22ab=-ab 2ab =-12,∴C =2π3. 12.已知△ABC 的三个内角A ,B ,C ,B =π3且AB =1,BC =4,则边BC 上的中线AD 的长为________.答案3解析 在△ABD 中,B =π3,BD =2,AB =1,则AD 2=AB 2+BD 2-2AB ·BD cos π3=3.所以AD = 3.13.在△ABC 中,三个角A ,B ,C 的对边边长分别为a =3,b =4,c =6,则bc cos A +ca cos B +ab cos C 的值为________.答案612解析 由余弦定理可得bc cos A +ca cos B +ab cos C =b 2+c 2-a 22+c 2+a 2-b 22+a 2+b 2-c 22=a 2+b 2+c 22=32+42+622=612.14.在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,已知b 2=ac ,且a 2-c 2=ac -bc ,求∠A 的大小及b sin Bc的值. 解析 ∵b 2=ac ,又a 2-c 2=ac -bc ,∴b 2+c 2-a 2=bc .在△ABC 中,由余弦定理,得cos A =b 2+c 2-a 22bc =bc 2bc =12,∴∠A =60°.在△ABC 中,由正弦定理,得sin B =b sin Aa. ∵b 2=ac ,∠A =60°,∴b sin B c =b 2sin60°ca =sin60°=32.故∠A =60°,b sin Bc 的值为32. 15.已知锐角三角形ABC 中,边a 、b 是方程x 2-23x +2=0的两根,角A 、B 满足2sin(A +B )-3=0,求角C 的度数,边c 的长度及△ABC 的面积.解析 由2sin(A +B )-3=0,得sin(A +B )=32. ∵△ABC 为锐角三角形,∴A +B =120°,∴C =60°. ∵a 、b 是方程x 2-23x +2=0的两个根, ∴a +b =23,ab =2.∴c 2=a 2+b 2-2ab cos C =(a +b )2-3ab =12-6=6. ∴c =6,S △ABC =12ab sin C =12·2·32=32.►重点班·选作题16.设△ABC 三边长分别为15,19,23,现将三边长各减去x 后,得一钝角三角形,则x 的范围为________.答案 (3,11)解析 由两边之和大于第三边,得 15-x +19-x >23-x ,∴x <11. ① 又因得到的三角形为钝角三角形, ∴(15-x )2+(19-x )2<(23-x )2.即x 2-22x +57<0,(x -3)(x -19)<0,3<x <19.② 由①、②可得3<x <11.17.在△ABC 中,已知c 4-2(a 2+b 2)c 2+a 4+a 2b 2+b 4=0,求角C . 解析 ∵c 4-2(a 2+b 2)c 2+a 4+a 2b 2+b 4=0, ∴[c 2-(a 2+b 2)]2-a 2b 2=0,∴c 2-(a 2+b 2)=±ab .∴cos C =a 2+b 2-c 22ab =±12,∴C =120°或C =60°.1.已知△ABC 的三个内角为A 、B 、C ,所对的三边分别为a 、b 、c ,若三角形ABC 的面积为S =a 2-(b -c )2,则tan A2等于________.答案 14解析 本题考查余弦定理和解三角形等.由S =12bc sin A ,又S =a 2-b 2-c 2+2bc ,由余弦定理知a 2-b 2-c 2=-2bc ·cos A ⇒12bc sin A =-2bc cos A +2bc ⇒sin A =4(1-cos A )⇒2sin A 2cos A 2=4×2sin 2A 2⇒tan A 2=14. 2.在△ABC 中,A 、B 、C 满足A +C =2B ,且最大角与最小角的对边之比为(3+1)∶2,求A 、B 、C 的度数.解析 ∵⎩⎪⎨⎪⎧A +C =2B ,A +B +C =180°,∴B =60°.不妨设最大角为A ,则最小角为C . 由b 2=a 2+c 2-2ac cos B ,得 (b c)2=(a c)2+1-2·a c·cos B . 将a c =3+12及cos B =12代入,得b c =62. ∴sin B sin C =62,∴sin C =22.∵c <b ,∴C =45°,∴A =75°. 3.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,设f (x )=a 2x 2-(a 2-b 2)x -4c 2. (1)若f (1)=0且B -C =π3,求角C 的大小;(2)若f (2)=0,求角C 的取值范围.解析 (1)∵f (1)=0,∴a 2-(a 2-b 2)-4c 2=0. ∴b 2=4c 2,∴b =2c .∴sin B =2sin C . 又B -C =π3,∴sin(C +π3)=2sin C .∴sin C ·cos π3+cos C ·sin π3=2sin C .∴32sin C -32cos C =0,∴sin(C -π6)=0. 又-π6<C -π6<5π6,∴C =π6.(2)若f (2)=0,则4a 2-2(a 2-b 2)-4c 2=0.∴a 2+b 2=2c 2,∴cos C =a 2+b 2-c 22ab =c 22ab.又a 2+b 2-2ab =(a -b )2≥0,∴a 2+b 2≥2ab . 即2c 2=a 2+b 2≥2ab ,∴ab ≤c 2. ∴cos C ≥12,∴0<C ≤π3.课时作业4 正、余弦定理习题课1.在△ABC 中,若a =18,b =24,A =44°,则此三角形的情况为( ) A .无解 B .两解C .一解D .解的个数不确定答案 B2.若△ABC 的内角A 、B 、C 满足6sin A =4sin B =3sin C ,则cos B 等于( ) A.154 B.34 C.31516D.1116 答案 D3.在△ABC 中,若2cos B sin A =sin C ,则△ABC 的形状一定是( ) A .等腰直角三角形 B .直角三角形 C .等腰三角形 D .等边三角形答案 C解析 方法一 在△ABC 中,A +B +C =180°. ∴C =180°-(A +B ),∴sin C =sin(A +B ). ∴已知条件可化为2sin A cos B =sin C =sin(A +B ). ∴sin(A -B )=0.又-π<A -B <π,∴A -B =0,∴A =B .∴△ABC 为等腰三角形.方法二 运用正、余弦定理将角的三角函数式化为边的等式.2·a 2+c 2-b 22ac ·a 2R =c 2R.整理,得a 2-b 2=0,∴a =b .∴△ABC 为等腰三角形.4.在三角形ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,且a >b >c ,若a 2<b 2+c 2,则∠A 的取值范围是( )A .(π2,π)B .(π4,π2)C .(π3,π2)D .(0,π2)答案 C解析 ∵a 2<b 2+c 2,∴b 2+c 2-a 2>0.∴cos A =b 2+c 2-a 22bc>0.∴A <90°.又∵a 边最大,∴A 角最大.∵A +B +C =180°,∴3A >180°. ∴A >60°,∴60°<A <90°.5.在△ABC 中,已知(b +c )∶(c +a )∶(a +b )=4∶5∶6,则sin A ∶sin B ∶sin C 等于( )A .6∶5∶4B .7∶5∶3C .3∶5∶7D .4∶5∶6答案 B解析 设b +c =4k ,c +a =5k ,a +b =6k (k >0),从而解出a =72k ,b =52k ,c =32k ,∴a ∶b ∶c =7∶5∶3.由正弦定理,得sin A ∶sin B ∶sin C =a ∶b ∶c =7∶5∶3.6.在△ABC 中,A ∶B =1∶2,C 的平分线CD 把三角形面积分为3∶2两部分,则cos A =( )A.13 B.12 C.34 D .0答案 C 解析∵CD 是∠C 的平分线,∴S △ACD S △BCD =12AC ·CD sinC 212BC ·CD sin C 2=AC BC =sin B sin A =32. ∵B =2A ,∴sin B sin A =sin2A sin A =2cos A =32.∴cos A =34.7.在钝角△ABC 中,a =1,b =2,则最大边c 的取值范围是( ) A .1<c <3B .2<c<3C.5<c <3 D .22<c <3答案 C8.三角形三边长为a ,b ,a 2+ab +b 2(a >0,b >0),则最大角为________. 答案 120°9.在△ABC 中,AB =2,AC =6,BC =1+3,AD 为边BC 上的高,则AD 的长是________. 答案310.已知△ABC 的面积为23,BC =5,A =60°,则△ABC 的周长是________. 答案 1211.已知等腰三角形的底边长为6,一腰长为12,则它的外接圆半径为________. 答案8155解析 cos A =b 2+c 2-a 22bc =122+122-622×12×12=78,∴sin A =1-cos 2A =158. ∴2R =asin A ,R =a 2sin A =8155. 12.已知△ABC 中,∠A =60°,最大边和最小边的长是方程3x 2-27x +32=0的两实根,那么BC 边长等于________.答案 7解析 ∵A =60°,所求为BC 边的长,而BC 即为角A 的对边,∴BC 边既非最大边也非最小边.不妨设最大边长为x 1,最小边长为x 2, 由题意得:x 1+x 2=9,x 1x 2=323. 由余弦定理,得BC 2=x 21+x 22-2x 1x 2cos A =(x 1+x 2)2-2x 1x 2-2x 1x 2cos A =92-2×323-2×323×cos60°=49.∴BC =7.13.在△ABC 中,已知BC =8,AC =5,三角形面积为12,则cos2C =________. 答案725解析 由题意得S △ABC =12·AC ·BC ·sin C =12,即12×8×5×sin C =12,则sin C =35. cos2C =1-2sin 2C =1-2×(35)2=725.14.在△ABC 中,角A ,B ,C 所对的边为a ,b ,c ,若b =a cos C 且△ABC 的最大边长为12,最小角的正弦值为13.(1)判断△ABC 的形状; (2)求△ABC 的面积. 解析 (1)∵b =a cos C ,由正弦定理,得sin B =sin A cos C . 由A +B +C =π,得sin B =sin[π-(A +C )]=sin(A +C ). ∴sin(A +C )=sin A cos C .∴sin A cos C +cos A sin C =sin A cos C . ∴cos A sin C =0.∵0<A <π,0<C <π,∴sin C >0. ∴cos A =0,∴A =π2.∴△ABC 为直角三角形. (2)∵△ABC 的最大边长为12, 由第(1)问知,斜边a =12. 又∵△ABC 的最小角的正弦值为13,∴Rt △ABC 中最短直角边长为12×13=4.另一直角边长为122-42=8 2. ∴S △ABC =12×4×82=16 2.15.(2013·天津)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知b sin A =3c sin B ,a =3,cos B =23.(1)求b 的值;(2)求sin(2B -π3)的值.解析 (1)在△ABC 中,由a sin A =bsin B,可得b sin A =a sin B .又由b sin A =3c sin B ,可得a =3c ,又a =3,故c =1. 由b 2=a 2+c 2-2ac cos B ,cos B =23,可得b = 6.(2)由cos B =23,得sin B =53,进而得cos2B =2cos 2B -1=-19,sin2B =2sin B cos B =459.所以sin(2B -π3)=sin2B cos π3-cos2B sin π3=45+318.课时作业5 应用举例(第1课时)1.若P在Q的北偏东44°50′,则Q在P的( )A.东偏北45°10′B.东偏北45°50′C.南偏西44°50′ D.西偏南45°50′答案 C2.在某次测量中,在A处测得同一方向的B点的仰角为60°,C点的俯角为70°,则∠BAC等于( )A.10° B.50°C.120° D.130°答案 D3.一只船速为2 3 米/秒的小船在水流速度为2米/秒的河水中行驶,假设两岸平行,要想使过河时间最短,则实际行驶方向与水流方向的夹角为( )A.120° B.90°C.60° D.30°答案 B4.江岸边有一炮台高30 m,江中有两条船,由炮台顶部测得俯角分别为45°和30°,而且两条船与炮台底部连线成30°角,则两条船相距( )A.10 3 m B.100 3 mC.2030 m D.30 m答案 D解析设炮台顶部为A,两条船分别为B、C,炮台底部为D,可知∠BAD=45°,∠CAD =60°,∠BDC=30°,AD=30.分别在Rt△ADB,Rt△ADC中,求得DB=30,DC=30 3.在△DBC中,由余弦定理,得BC2=DB2+DC2-2DB·DC cos30°,解得BC=30.5.某人向正东方向走x km后,他向右转150°,然后朝新方向走3 km,结果他离出发点恰好 3 km,那么x的值为( )A. 3 B.2 3C.23或 3 D.3答案 C6.两座灯塔A和B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东20°,灯塔B在观察站C的南偏东40°,则灯塔A与灯塔B的距离为( )A.a km B.3a kmC.2a km D.2a km答案 B7.海上有A、B、C三个小岛,已知A、B相距10海里,从A岛望C岛和B岛成60°的视角,从B岛望C岛和A岛成75°的视角,则B、C的距离是( )A.10 3 海里 B.1063海里C.5 2 海里D.5 6 海里答案 D8.如图所示,设A、B两点在河的两岸,一测量者在A所在的河岸边选定一点C,测出AC 的距离为50 m,∠ACB=45°,∠CAB=105°后,就可以计算A、B两点的距离为( ) A.50 2 m B.50 3 mC.25 2 m D.2522m答案 A9.一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°方向上,另一灯塔在船的南偏西75°方向上,则这艘船的速度是每小时( )A.5 海里B.5 3 海里C.10 海里D.10 3 海里答案 D10.已知船A在灯塔C北偏东85°且到C的距离为2 km,船B在灯塔C西偏北25°且到C的距离为 3 km,则A,B两船的距离为( )A.2 3 km B.3 2 kmC.15 kmD.13 km答案 D11.一船以24 km/h的速度向正北方向航行,在点A处望见灯塔S在船的北偏东30°方向上,15 min 后到点B 处望见灯塔在船的北偏东65°方向上,则船在点B 时与灯塔S 的距离是________km.(精确到0.1 km)答案 5.212.如图,为了测量河的宽度,在一岸边选定两点A ,B ,望对岸的标记物C ,测得∠CAB =30°,∠CBA =75°,AB =120 m ,则河的宽度是________m.答案 6013.已知船在A 处测得它的南偏东30°的海面上有一灯塔C ,船以每小时30海里的速度向东南方向航行半小时后到达B 点,在B 处看到灯塔在船的正西方向,问这时船和灯塔相距________海里.答案563-1214.A 、B 是海平面上的两个点,相距800 m ,在A 点测得山顶C 的仰角为45°,∠BAD =120°,又在B 点测得∠ABD =45°,其中D 是点C 到水平面的垂足,求山高CD .解析如图,由于CD ⊥平面ABD ,∠CAD =45°,所以CD =AD . 因此,只需在△ABD 中求出AD 即可.在△ABD 中,∠BDA =180°-45°-120°=15°. 由AB sin15°=ADsin45°,得AD =AB ·sin45°sin15°=800×226-24=800(3+1)(m).∵CD ⊥平面ABD ,∠CAD =45°, ∴CD =AD =800(3+1)≈2 186(m). 答:山高CD 为2 186 m.15.如图所示,海中小岛A 周围38海里内有暗礁,一船正向南航行,在B 处测得小岛A 在船的南偏东30°,航行30海里后,在C 处测得小岛在船的南偏东45°,如果此船不改变航向,继续向南航行,有无触礁的危险?思路分析 船继续向南航行,有无触礁的危险,取决于A 到直线BC 的距离与38海里的大小,于是我们只要先求出AC 或AB 的大小,再计算出A 到BC 的距离,将它与38海里比较大小即可.解析 在△ABC 中,BC =30,B =30°,∠ACB =135°, ∴∠BAC =15°.由正弦定理BC sin A =AC sin B ,即30sin15°=AC sin30°.∴AC =60cos15°=60cos(45°-30°)=60(cos45°cos30°+sin45°sin30°)=15(6+2). ∴A 到BC 的距离d =AC sin45°=15(3+1)≈40.98海里>38海里,所以继续向南航行,没有触礁危险.1.一船以4 km/h 的速度沿着与水流方向成120°的方向航行,已知河水流速为2 km/h ,则经过 3 h 后,该船实际航行为( )A .215 kmB .6 km C.84 km D .8 km答案 B 2.如图,为了测量正在海面匀速行驶的某航船的速度,在海岸上选取距离1千米的两个观察点C 、D ,在某天10∶00观察到该航船在A 处,此时测得∠ADC =30°,2分钟后该船行驶至B 处,此时测得∠ACB =60°,∠BCD =45°,∠ADB =60°,则船速为________(千米/分钟).答案64解析 在△BCD 中,∠BDC =30°+60°=90°,CD =1,∠BCD =45°, ∴BC = 2.在△ACD 中,∠CAD =180°-(60°+45°+30°)=45°, ∴CDsin45°=AC sin30°,AC =22.在△ABC 中,AB 2=AC 2+BC 2-2AC ×BC ×cos60°=32,∴AB =62,∴船速为622=64 千米/分钟.3.如图,A ,B 是海面上位于东西方向相距5(3+3)海里的两个观测点.现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距20 3 海里的C 点的救援船立即前往营救,其航行速度为30海里/小时,该救援船到达D 点需要多长时间?答案 救船到达D 点需要1小时.解析 由题意知AB =5(3+3)(海里),∠DBA =90°-60°=30°,∠DAB =90°-45°=45°,∴∠ADB =180°-(45°+30°)=105°. 在△DAB 中,由正弦定理,得DB sin ∠DAB =ABsin ∠ADB.∴DB =AB ·sin∠DAB sin ∠ADB =53+3·sin45°sin105°=53+3·sin45°sin45°cos60°+cos45°sin60°=533+13+12=103(海里).又∠DBC =∠DBA +∠ABC =30°+(90°-60°)=60°,BC =203(海里), 在△DBC 中,由余弦定理,得CD 2=BD 2+BC 2-2BD ·BC ·cos∠DBC=300+1 200-2×103×203×12=900.∴CD =30(海里),则需要的时间t =3030=1(小时).答:救援船到达D 点需要1小时. 4.如图所示,a是海面上一条南北向的海防警戒线,在a上点A处有一个水声监测点,另两个监测点B、C分别在A的正东方20 km处和54 km处.某时刻,监测点B收到发自静止目标P的一个声波,8 s后监测点A、20 s后监测点C相继收到这一信号.在当时的气象条件下,声波在水中的传播速度是1.5 km/s.(1)设A到P的距离为x km,用x表示B,C到P的距离,并求x的值;(2)求静止目标P到海防警戒线a的距离.(结果精确到0.01 km)答案(1)PB=x-12 km,PC=18+x km 132 7(2)17.71 km课时作业6 应用举例(第2课时)正、余弦定理的综合应用1.已知方程x 2sin A +2x sin B +sin C =0有重根,则△ABC 的三边a 、b 、c 满足关系式( ) A .b =ac B .b 2=ac C .a =b =c D .c =ab答案 B解析 由Δ=0,得4sin 2B -4sin A sinC =0,结合正弦定理得b 2=ac . 2.在△ABC 中,已知A =30°,且3a =3b =12,则c 的值为( ) A .4 B .8 C .4或8 D .无解答案 C解析 由3a =3b =12,得a =4,b =43,利用正弦定理可得B 为60°或120°,从而解出c 的值.3.在△ABC 中,A =60°,AB =2,且△ABC 的面积S △ABC =32,则边BC 的长为( ) A. 3 B .3 C.7 D .7答案 A 解析 由S △ABC =32,得12AB ·AC sin A =32. 即12×2AC ×32=32,∴AC =1,由余弦定理,得 BC 2=AB 2+AC 2-2AB ·AC ·cos A =22+12-2×2×1×12=3.∴BC = 3.4.在△ABC 中,2a cos B =c ,则△ABC 是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形 D .等边三角形答案 A解析 方法一 由余弦定理,得2a a 2+c 2-b 22ac=c .所以a 2+c 2-b 2=c 2.则a =b .则△ABC是等腰三角形.方法二 由正弦定理,得2×2R sin A cos B =2R sin C ,即2sin A cos B =sin C .又sin(A +B )+sin(A -B )=2sin A cos B ,所以sin(A +B )+sin(A -B )=sin C .又A +B +C =π,所以sin(A +B )=sin C .所以sin(A -B )=0.又0<A <π,0<B <π,则-π<A -B <π.所以有A =B ,则△ABC 是等腰三角形.讲评 方法一是转化为三角形的边的关系,利用代数运算获得三角形的关系式;方法二是转化为三角形的角的关系,利用三角函数知识获得了三角形的角的关系.方法二中,如果没有想到等式sin(A +B )+sin(A -B )=2sin A cos B ,那么就会陷入困境.由于受三角函数知识的限制,提倡将已知条件等式转化为边的关系来判断三角形的形状.5.(2013·安徽)设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c .若b +c =2a,3sin A =5sin B ,则角C =( )A.π3 B.2π3 C.3π4D.5π6答案 B解析 ∵3sin A =5sin B ,∴3a =5b .① 又b +c =2a ,②∴由①②可得,a =53b ,c =73b .∴cos C =b 2+a 2-c 22ab=b 2+53b 2-73b 22×53b 2=-12.∴C =23π.6.已知锐角三角形的边长分别是3,5,x ,则x 的取值范围是( ) A .1<x < 5 B .4<x <30 C .1<x <4 D .4<x <34答案 D解析 若5最大,则32+x 2-52>0,得x >4. 若x 最大,则32+52-x 2>0,得0<x <34. 又2<x <8,则4<x <34.7.在△ABC 中,已知sin A ∶sin B =2∶1,c 2=b 2+2bc ,则三内角A 、B 、C 的度数依次是________.答案 45°、30°、105°解析 ∵a =2b ,a 2=b 2+c 2-2bc cos A . ∴2b 2=b 2+c 2-2bc cos A ,又∵c 2=b 2+2bc , ∴cos A =22,A =45°,sin B =12,B =30°,∴C =105°.8.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .若(3b -c )cos A =a cos C ,则cos A =______.答案33解析 由正弦定理,得(3sin B -sin C )cos A =sin A cos C . 化简得3sin B cos A =sin(A +C ). ∵0<sin B ≤1,∴cos A =33. 9.设锐角三角形ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,a =2b sin A . (1)求B 的大小;(2)若a =33,c =5,求b .解析 (1)由a =2b sin A ,得sin A =2sin B sin A ,所以sin B =12.由△ABC 为锐角三角形,得B =π6.(2)根据余弦定理,得b 2=a 2+c 2-2a cos B =27+25-45=7,所以b =7.10.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.解析 (1)由已知,根据正弦定理,得2a 2=(2b +c )b +(2c +b )c ,即a 2=b 2+c 2+bc . 由余弦定理,得a 2=b 2+c 2-2bc cos A . 故cos A =-12,又A ∈(0,π),故A =120°.(2)由(1)得sin 2A =sin 2B +sin 2C +sin B sin C . 又sin B +sin C =1,得sin B =sin C =12.因为0°<B <90°,0°<C <90°,故B =C . 所以△ABC 是等腰的钝角三角形.11.在△ABC 中,已知B =45°,D 是BC 边上的一点,AD =10,AC =14,DC =6,求AB 的长.解析 在△ADC 中,AD =10,AC =14,DC =6,由余弦定理,得cos ∠ADC =AD 2+DC 2-AC 22AD ·DC =100+36-1962×10×6=-12.∴∠ADC =120°,∠ADB =60°.在△ABD 中,AD =10,∠B =45°,∠ADB =60°, 由正弦定理,得AB sin ∠ADB =ADsin B. ∴AB =AD ·sin∠ADB sin B =10sin60°sin45°=10×3222=5 6.12.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,设S 为△ABC 的面积,满足S =34(a 2+b 2-c 2). (1)求角C 的大小;(2)求sin A +sin B 的最大值.解析 (1)由题意可知12ab sin C =34·2ab cos C ,所以tan C = 3.因为0<C <π,所以C =π3.(2)由已知sin A +sin B =sin A +sin(π-C -A ) =sin A +sin(2π3-A )=sin A +32cos A +12sin A=3sin(A +π6)≤ 3.当△ABC 为正三角形时取等号, 所以sin A +sin B 的最大值是 3.13.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)求sin B +sin C 的最大值.解析 (1)由已知,根据正弦定理,得2a 2=(2b +c )b +(2c +b )c ,即a 2=b 2+c 2+bc .由余弦定理,得a 2=b 2+c 2-2bc cos A .故cos A =-12,A =120°.(2)由(1),得sin B +sin C =sin B +sin(60°-B ) =32cos B +12sin B =sin(60°+B ). 故当B =30°时,sin B +sin C 取得最大值1. ►重点班·选作题14.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知cos2C =-14.(1)求sin C 的值;(2)当a =2,2sin A =sin C 时,求b 及c 的长.解析 (1)因为cos2C =1-2sin 2C =-14,及0<C <π,所以sin C =104.(2)当a =2,2sin A =sin C 时, 由正弦定理a sin A =csin C,得c =4.由cos2C =2cos 2C -1=-14,及0<C <π得cos C =±64.由余弦定理c 2=a 2+b 2-2ab cos C ,得b 2±6b -12=0,解得b =6或2 6.所以⎩⎨⎧b =6,c =4.或⎩⎨⎧b =26,c =4.1.(2013·辽宁)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a sin B cos C +c sin B cos A =12b ,且a >b ,则∠B =( ) A.π6 B.π3 C.2π3D.5π6答案 A解析 根据正弦定理,得a sin B cos C +c sin B cos A =12b 等价于sin A cos C +sin C cos A =12,即sin(A +C )=12.又a >b ,∴∠A +∠C =5π6,∴∠B =π6.故选A 项.2.(2012·北京)在△ABC 中,若a =2,b +c =7,cos B =-14,则b =________.答案 4解析 由余弦定理,得cos B =a 2+c 2-b 22ac =4+7-b 2-b 22×2×7-b =-14,解得b =4.3.(2011·湖北)设△ABC 的内角,A ,B ,C 所对的边分别为a ,b ,c .若(a +b -c )(a +b +c )=ab ,则角C =________.答案2π3解析 ∵由(a +b -c )(a +b +c )=ab ,整理,可得a 2+b 2-c 2=-ab .∴cos C =a 2+b 2-c 22ab =-ab 2ab =-12,∴C =2π3.4.(2013·北京)在△ABC 中,a =3,b =26,∠B =2∠A . (1)求cos A 的值; (2)若c 的值.解析 (1)因为a =3,b =26,∠B =2∠A , 所以在△ABC 中,由正弦定理,得3sin A =26sin2A. 所以2sin A cos A sin A =263.故cos A =63.(2)由(1)知,cos A =63,所以sin A =1-cos 2A =33. 又因为∠B =2∠A ,所以cos B =2cos 2A -1=13.所以sin B =1-cos 2B =223. 在△ABC 中,sin C =sin(A +B )=sin A cos B +cos A sin B =539.所以c =a sin Csin A=5.5.(2013·江西)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知cos C +(cos A -3sin A )cos B =0.(1)求角B 的大小;(2)若a +c =1,求b 的取值范围.解析 (1)由已知得-cos(A +B )+cos A cos B -3sin A cos B =0,即有sin A sin B -3sin A cos B =0.因为sin A ≠0,所以sin B -3cos B =0.又cos B ≠0,所以tan B =3,又0<B <π,所以B =π3.(2)由余弦定理,有b 2=a 2+c 2-2ac cos B . 因为a +c =1,cos B =12,所以b 2=3(a -12)2+14.又0<a <1,于是有14≤b 2<1,即12≤b <1.6.(2013·四川)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2cos 2A -B2cos B -sin(A -B )sin B +cos(A +C )=-35,(1)求cos A 的值;(2)若a =42,b =5,求向量BA →在BC →方向上的投影. 解析 (1)由2cos2A -B2cos B -sin(A -B )sin B +cos(A +C )=-35,得[cos(A -B )+1]cos B -sin(A -B )sin B -cos B =-35,即cos(A -B )cos B -sin(A -B )sin B =-35.则cos(A -B +B )=-35,即cos A =-35.(2)由cos A =-35,0<A <π,得sin A =45.由正弦定理,有a sin A =b sin B ,所以,sin B =b sin A a =22.由题知a >b ,则A >B ,故B =π4. 根据余弦定理,有(42)2=52+c 2-2×5c ×(-35),解得c =1或c =-7(舍去).。

人教B版高中数学必修5同步练习题及答案全册汇编

人教B版高中数学必修5同步练习题及答案全册汇编

人B版高中数学必修5同步习题目录第1章1.1.1第一课时同步练习第1章1.1.1第二课时同步练习第1章1.1.2第一课时同步练习第1章1.1.2第二课时同步练习第1章1.2同步练习第1章章末综合检测第2章2.1.1同步练习第2章2.1.2同步练习第2章2.2.1第一课时同步练习第2章2.2.1第二课时同步练习第2章2.2.2第一课时同步练习第2章2.2.2第二课时同步练习第2章2.3.1第一课时同步练习第2章2.3.1第二课时同步练习第2章2.3.2第一课时同步练习第2章2.3.2第二课时同步练习第2章章末综合检测第3章3.1.1同步练习第3章3.1.2第一课时同步练习第3章3.1.2第二课时同步练习第3章3.2第一课时同步练习第3章3.2第二课时同步练习第3章3.3第一课时同步练习第3章3.3第二课时同步练习第3章3.4同步练习第3章3.5.1同步练习第3章3.5.2第一课时同步练习第3章3.5.2第二课时同步练习第3章章末综合检测人教B 版必修5同步练习1.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( ) A .1∶5∶6 B .6∶5∶1 C .6∶1∶5 D .不确定解析:选A.由正弦定理知sin A ∶sin B ∶sin C =a ∶b ∶c =1∶5∶6.2.在△ABC 中,A =60°,a =13,则a +b +csin A +sin B +sin C等于( )A.8381B.2393C.393D .27 解析:选B.由比例的运算性质知a +b +c sin A +sin B +sin C =a sin A =b sin B =c sin C ,故a sin A =1332=2393. 3.已知△ABC 中,AB =3,AC =1,∠B =30°,则△ABC 的面积为( )A.32B.34C.32或 3D.34或32解析:选D.AB sin C =AC sin B ,求出sin C =32,∵AB >AC ,∴∠C 有两解,即∠C =60°或120°,∴∠A =90°或30°.再由S △ABC =12AB ·AC sin A 可求面积.4.在△ABC 中,a =2b cos C ,则△ABC 的形状为________. 解析:由正弦定理,得a =2R ·sin A ,b =2R ·sin B , 代入式子a =2b cos C ,得 2R sin A =2·2R ·sin B ·cos C , 所以sin A =2sin B ·cos C , 即sin B ·cos C +cos B ·sin C =2sin B ·cos C , 化简,整理,得sin(B -C )=0. ∵0°<B <180°,0°<C <180°, ∴-180°<B -C <180°, ∴B -C =0°,B =C . 答案:等腰三角形5.在△ABC 中,已知b =16,A =30°,B =120°,求边a 及S △ABC .解:由正弦定理,得a =b sin A sin B =16×sin30°sin120°=1633.又C =180°-(A +B )=180°-(30°+120°)=30°,∴S △ABC =12ab sin C =12×1633×16×12=6433.1.在△ABC 中,若AB =3,∠ABC =75°,∠ACB =60°,则BC 等于( ) A.3 B .2 C. 5 D. 6解析:选D.∠BAC =180°-75°-60°=45°,由正弦定理得BC sin ∠BAC =ABsin ∠ACB,∴BC =AB sin ∠BAC sin ∠ACB=3×sin 45°sin 60°= 6.2.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( )A. 6 B .2 C. 3 D. 2解析:选D.由正弦定理得6sin120°=2sin C,∴sin C =12.又∵C 为锐角,则C =30°,∴A =30°, △ABC 为等腰三角形,a =c = 2.3.在△ABC 中,若cos A cos B =ba,则△ABC 是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰三角形或直角三角形解析:选D.∵b a =sin B sin A ,∴cos A cos B =sin Bsin A,sin A cos A =sin B cos B ,∴sin2A =sin2B即2A =2B 或2A +2B =π,即A =B ,或A +B =π2.4.三角形的两边长为3 cm 、5 cm ,其夹角的余弦值是方程5x 2-7x -6=0的根,则此三角形的面积是( )A .6 cm 2B .152cm 2C .8 cm 2D .10 cm 2 解析:选A.设其夹角为θ,由方程得cos θ=-35,∴sin θ=45,∴S =12×3×5×45=6(cm 2).5.在△ABC 中,sin A ∶sin B ∶sin C =m ∶(m +1)∶2m ,则m 的取值范围是( ) A .m >2 B .m <0C .m >-12D .m >12解析:选D.由已知和正弦定理可得:a ∶b ∶c =m ∶(m +1)∶2m .令a =mk ,b =(m +1)k ,c =2mk (k >0),则a ,b ,c 满足三角形的三边关系,即⎩⎪⎨⎪⎧a +b >c ,a +c >b ,b +c >a .得m >12.6.△ABC 中,若sin A a =cos B b =cos Cc,则△ABC 中最长的边是( )A .aB .bC .cD .b 或c解析:选A.cos B b =cos Cc,∴tan B =tan C ,∴B =C , sin A a =cos B b =cos B a sin B sin A=sin A ·cos Ba sin B,∴tan B =1,∴B =4=π4,A =π2,故a 最长.7.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +csin A +sin B +sin C=________,c =________.解析:由正弦定理得a +b +c sin A +sin B +sin C =a sin A =63sin60°=12,又S △ABC =12bc sin A ,∴12×12×sin60°×c =183,∴c =6.答案:12 68.已知△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,a =1,则a -2b +csin A -2sin B +sin C=________.解析:由∠A ∶∠B ∶∠C =1∶2∶3得,∠A =30°,∠B =60°,∠C =90°,∴2R =a sin A =1sin30°=2,又∵a =2R sin A ,b =2R sin B ,c =2R sin C ,∴a -2b +c sin A -2sin B +sin C =2R (sin A -2sin B +sin C )sin A -2sin B +sin C =2R =2. 答案:29.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________.解析:依题意,sin C =223,S △ABC =12ab sin C =43,解得b =2 3. 答案:2 310.△ABC 中,ab =603,sin B =sin C ,△ABC 的面积为153,求边b 的长.解:由S =12ab sin C 得,153=12×603×sin C ,∴sin C =12,∴∠C =30°或150°.又sin B =sin C ,故∠B =∠C . 当∠C =30°时,∠B =30°,∠A =120°.又∵ab =603,a sin A =bsin B,∴b =215.当∠C =150°时,∠B =150°(舍去). 故边b 的长为215.11.已知△ABC 中,A 、B 、C 分别是三个内角,a 、b 、c 分别是A 、B 、C 的对边,△ABC 的外接圆半径为12,且C =π3,求△ABC 面积S 的最大值.解:S △ABC =12ab sin C =12·2R sin A ·2R sin B ·sin C =3R 2sin A sin B =32R 2[cos(A -B )-cos(A +B )]=32R 2[cos(A -B )+12]. 当cos(A -B )=1,即A =B 时,(S △ABC )max =334R 2=334×144=108 3.12.在平面四边形OAPB 中,∠AOB =120°,OA ⊥AP ,OB ⊥BP ,且AB =23,求OP 的长.解:如图,在平面四边形OAPB 中,∵OA ⊥AP ,OB ⊥BP ,∴O 、A 、B 、P 四点共圆.∴OP 的长就是四边形OAPB 外接圆的直径.∵a sin A =b sin B =c sin C=2R , 在△AOB 中,∠AOB =120°,AB =23,∴2R =AB sin ∠AOB =23sin 120°=4,∴△AOB 外接圆的直径为4, 即OP 的长为4.人教B 版必修5同步练习1.(2011年开封高二检测)在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( ) A.6 B. 2 C. 3 D .2 6解析:选A.应用正弦定理得:a sin A =b sin B ,求得b =a sin Bsin A= 6.2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( ) A .4 2 B .4 3C .4 6 D.323解析:选C.A =45°,由正弦定理得b =a sin Bsin A =4 6.3.在△ABC 中,∠B =45°,c =22,b =433,则∠A 的大小为( )A .15°B .75°C .105°D .75°或15°解析:选D.∵∠B 为锐角,又c sin B <b <c ,∴三角形有两解.4.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π3,则A=________.解析:由正弦定理得:a sin A =csin C,所以sin A =a ·sin C c =12.又∵a <c ,∴A <C =π3,∴A =π6.答案:π65.如图所示,货轮在海上以40 km/h 的速度沿着方位角(指从正北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时后船到达C 点,观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少?解:在△ABC 中,BC =40×12=20,∠ABC =140°-110°=30°, ∠ACB =(180°-140°)+65°=105°, 所以∠A =180°-(30°+105°)=45°, 由正弦定理得AC =BC ·sin ∠ABC sin A=20sin30°sin45°=102(km). 即货轮到达C 点时,与灯塔A 的距离是10 2 km.1.在△ABC 中,一定成立的等式是( ) A .a sin A =b sin B B .a sin B =b sin A C .a cos A =b cos B D .a cos B =b cos A解析:选B.由正弦定理得:a sin A =b sin B,故a sin B =b sin A . 2.(2009年高考广东卷)已知△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c .若a =c =6+2,且∠A =75°,则b =( )A .2 B.6- 2 C .4-2 3 D .4+2 3解析:选A.sin A =sin75°=sin(30°+45°)=sin30°cos45°+cos30°sin45°=2+64.由a =c =6+2可知,∠C =75°,所以∠B =30°,sin B =12,由正弦定理得b =asin A ·sin B =2+62+64×12=2,故选A. 3.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( )A .45°或135°B .135°C .45°D .以上答案都不对解析:选C.由正弦定理a sin A =b sin B 得:sin B =b sin A a =22,又∵a >b ,∴B <60°,∴B =45°.4.(2011年青岛高二检测)在△ABC 中,∠A =π3,BC =3,则△ABC 的两边AC +AB的取值范围是( )A .[33,6]B .(2,43)C .(33,43]D .(3,6]解析:选D.在△ABC 中,AC =BC ·sin B sin A =3·sin Bsin π3=23sin B ,AB =23sin C ,∴AC +AB =23sin B +23sin C =23(sin B +sin C )=23[sin B +sin(2π3-B )]=23(sin B +sin 2π3cos B -cos 2π3sin B )=23(32sin B +32cos B )=23×3(32sin B +12cos B )=6sin(B +π6),∵0<B <2π3,∴π6<B +π6<5π6,∴sin(B +π6)∈(12,1],∴AC +AB =6sin(B +π6)∈(3,6].5.在△ABC 中,∠B =30°,∠C =60°,a =1,则最短边的边长是( )A.63B.62C.12D.32解析:选C.由a sin A =b sin B 得,b =a sin B sin A =12,∵∠B 最小,∴最小边是b .6.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( )A .1 B.12 C .2D.14解析:选A.C =180°-105°-45°=30°,由b sin B =csin C 得c =2×sin 30°sin45°=1.7.在△ABC 中,已知a =433,b =4,A =30°,则sin B =________.解析:由正弦定理得a sin A =bsin B⇒sin B =b sin A a =4×12433=32.答案:328.(2011年盐城高二检测)在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________.解析:C =180°-120°-30°=30°,∴a =c ,由a sin A =bsin B 得,a =12×sin30°sin120°=43, ∴a +c =8 3. 答案:8 39.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解.解析:∵b sin C =43×12=23且c =2,∴c <b sin C ,∴此三角形无解. 答案:010.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若a =23,sin C 2cos C 2=14,sinB sinC =cos 2A2,求A 、B 及b 、c .解:由sin C 2cos C 2=14,得sin C =12,又C ∈(0,π),所以C =π6或C =5π6.由sin B sin C =cos 2A2,得sin B sin C =12[1-cos(B +C )],即2sin B sin C =1-cos(B +C ),即2sin B sin C +cos(B +C )=1,变形得 cos B cos C +sin B sin C =1,即cos(B -C )=1,所以B =C =π6,B =C =5π6(舍去),A =π-(B +C )=2π3.由正弦定理a sin A =b sin B =csin C,得b =c =a sin Bsin A =23×1232=2.故A =2π3,B =π6,b =c =2.11.(2009年高考四川卷)在△ABC 中,A 、B 为锐角,角A 、B 、C 所对应的边分别为a 、b 、c ,且cos 2A =35,sin B =1010.(1)求A +B 的值;(2)若a -b =2-1,求a ,b ,c 的值.解:(1)∵A 、B 为锐角,sin B =1010,∴cos B =1-sin 2B =31010.又cos 2A =1-2sin 2A =35,∴sin A =55,cos A =255,∴cos(A +B )=cos A cos B -sin A sin B =255×31010-55×1010=22.又0<A +B <π,∴A +B =π4.(2)由(1)知,C =3π4,∴sin C =22.由正弦定理:a sin A =b sin B =csin C得5a =10b =2c ,即a =2b ,c =5b .∵a -b =2-1,∴2b -b =2-1,∴b =1. ∴a =2,c = 5.12.在△ABC 中,三个内角A 、B 、C 所对的边分别为a 、b 、c ,已知2B =A +C ,a +2b =2c ,求sin C 的值.解:因为2B =A +C ,A +B +C =180°, 所以B =60°,A +C =120°. 所以0°<A <120°,0°<C <120°.又因为a +2b =2c ,所以sin A +2sin B =2sin C , 所以sin(120°-C )+2sin60°=2sin C ,所以3sin C -cos C =2,即sin(C -30°)=22.又因为0°<C <120°且sin(C -30°)>0, 所以0°<C -30°<90°. 所以C -30°=45°,C =75°.所以sin C =sin75°=6+24.人教B 版必修5同步练习1.在△ABC 中,A 、B 、C 的对边分别为a 、b 、c ,若c 2-a 2-b22ab>0,则△ABC ( )A .一定是锐角三角形B .一定是直角三角形C .一定是钝角三角形D .是锐角或直角三角形解析:选C.∵cos C =a 2+b 2-c22ab<0,∴C 为钝角,∴△ABC 是钝角三角形. 2.如果满足∠ABC =60°,AC =12,BC =k 的三角形恰有一个,那么k 的取值范围是( ) A .k =8 3 B .0<k ≤12 C .k ≥12 D .0<k ≤12或k =8 3 解析:选D.设AB =x ,由余弦定理得 122=x 2+k 2-2kx cos60°,化简得x 2-kx +k 2-144=0,因为方程的两根之和x 1+x 2=k >0,故方程有且只有一个根,等价于k 2-4(k 2-144)=0或k 2-144≤0,解得0<k ≤12或k =8 3.3.在△ABC 中,若a cos 2C 2+c cos 2A 2=32b ,那么a 、b 、c 的关系是( )A .a +b =cB .a +c =2bC .b +c =2aD .a =b =c解析:选B.cos 2C 2=1+cos C 2,cos 2A 2=1+cos A2,代入已知条件等式,得a +c +a cos C +c cos A =3b ,a +c +a ×a 2+b 2-c 22ab +c ×b 2+c 2-a 22bc=3b ,整理,得a +c =2b .4.已知△ABC 的三边长分别是a 、b 、c ,且面积S =a 2+b 2-c 24,则角C =________.解析:12ab sin C =S =a 2+b 2-c 24=a 2+b 2-c 22ab ·ab 2=12ab cos C ,∴sin C =cos C ,∴tan C =1,∴C =45°. 答案:45°5.在△ABC 中,BC =5,AC =3,sin C =2sin A . (1)求AB 的值;(2)求sin(2A -π4)的值.解:(1)在△ABC 中,由正弦定理AB sin C =BCsin A,得AB =sin Csin ABC =2BC =2 5.(2)在△ABC 中,根据余弦定理,得cos A =AB 2+AC 2-BC 22AB ·AC =255,于是sin A =1-cos 2A =55.从而sin 2A =2sin A cos A =45,cos 2A =cos 2 A -sin 2 A =35.所以sin(2A -π4)=sin 2A cos π4-cos 2A sin π4=210.1.在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B =3ac ,则∠B 的值为( )A.π6B.π3C.π6或5π6D.π3或2π3解析:选D.由(a 2+c 2-b 2)tan B =3ac ,联想到余弦定理,代入得cos B =a 2+c 2-b 22ac =32·1tan B =32·cos B sin B .显然∠B ≠π2,∴sin B =32.∴∠B =π3或2π3.2.在△ABC 中,a 、b 、c 分别是A 、B 、C 的对边,则a cos B +b cos A 等于( ) A .a B .b C .c D .以上均不对解析:选C.a ·a 2+c 2-b 22ac +b ·b 2+c 2-a 22bc =2c 22c=c .3.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .由增加的长度决定 解析:选A.设三边长分别为a ,b ,c 且a 2+b 2=c 2. 设增加的长度为m ,则c +m >a +m ,c +m >b +m ,又(a +m )2+(b +m )2=a 2+b 2+2(a +b )m +2m 2>c 2+2cm +m 2=(c +m )2, ∴三角形各角均为锐角,即新三角形为锐角三角形.4.已知锐角三角形ABC 中,|AB →|=4,|AC →|=1,△ABC 的面积为3,则AB →·AC →的值为( ) A .2 B .-2 C .4 D .-4解析:选A.S △ABC =3=12|AB →|·|AC →|·sin A=12×4×1×sin A , ∴sin A =32,又∵△ABC 为锐角三角形,∴cos A =12,∴AB →·AC →=4×1×12=2.5.已知△ABC 的三个内角∠A ,∠B ,∠C 所对的三边分别为a ,b ,c ,若△ABC 的面积S =c 2-(a -b )2,则tan C2等于( )A.12B.14C.18D .1 解析:选B.依题意知S =c 2-(a -b )2=c 2-a 2-b 2+2ab =2ab -2ab cos C =12ab sin C ,得sin C +4cos C =4,即2sin C 2cos C 2+4(2cos 2C2-1)=4,即2sin C 2cos C 2+8cos 2C 2sin 2C 2+cos 2C 2=8,得2tan C 2+8tan 2C 2+1=8.解得tan C 2=14或tan C2=0(舍去).6.边长为5、7、8的三角形的最大角与最小角的和是( ) A .90° B .120° C .135° D .150°解析:选B.设中间角为θ,则cos θ=52+82-722×5×8=12,θ=60°,180°-60°=120°即为所求.7.已知a 、b 、c 是△ABC 的三边,S 是△ABC 的面积,若a =4,b =5,S =53,则边c 的值为________.解析:S =12ab sin C ,sin C =32,∴C =60°或120°.∴cos C =±12,又∵c 2=a 2+b 2-2ab cos C ,∴c 2=21或61,∴c =21或61. 答案:21或618.在△ABC 中,sin A ∶sin B ∶sin C =2∶3∶4,则cos A ∶cos B ∶cos C =________. 解析:由正弦定理a ∶b ∶c =sin A ∶sin B ∶sin C =2∶3∶4, 设a =2k (k >0),则b =3k ,c =4k ,cos B =a 2+c 2-b 22ac =(2k )2+(4k )2-(3k )22×2k ×4k=1116,同理可得:cos A =78,cos C =-14,∴cos A ∶cos B ∶cos C =14∶11∶(-4). 答案:14∶11∶(-4)9.在△ABC 中,a =32,cos C =13,S △ABC =43,则b =________.解析:∵cos C =13,∴sin C =223.又S △ABC =12ab sin C =43,即12·b ·32·223=43, ∴b =2 3. 答案:2 310.在△ABC 中,已知(a +b +c )(a +b -c )=3ab ,且2cos A sin B =sin C ,确定△ABC 的形状.解:由正弦定理,得sin C sin B =cb.由2cos A sin B =sin C ,有cos A =sin C 2sin B =c2b.又根据余弦定理,得cos A =b 2+c 2-a 22bc ,所以c 2b =b 2+c 2-a22bc,即c 2=b 2+c 2-a 2,所以a =b .又因为(a +b +c )(a +b -c )=3ab ,所以(a +b )2-c 2=3ab ,所以4b 2-c 2=3b 2, 所以b =c ,所以a =b =c , 因此△ABC 为等边三角形.11.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且A =60°,c =3b .求: (1)ac的值; (2)cot B +cot C 的值.解:(1)由余弦定理得a 2=b 2+c 2-2bc cos A =(13c )2+c 2-2·13c ·c ·12=79c 2,故a c =73.(2)cot B +cot C =cos B sin C +cos C sin B sin B sin C =sin (B +C )sin B sin C =sin Asin B sin C,由正弦定理和(1)的结论得sin A sin B sin C =1sin A ·a 2bc=23·79c 213c ·c =1433=1439,故cot B +cot C =1439.12.在三角形ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c .求证:a 2-b 2c 2=sin (A -B )sin C.证明:法一:右边=sin A cos B -cos A sin Bsin C=a ·cos B -cos A ·b c=a ·a 2+c 2-b 22ac -b 2+c 2-a 22bc·bc=a 2+c 2-b 2-b 2-c 2+a 22c c =a 2-b 2c 2=左边.法二:左边=sin 2A -sin 2Bsin 2C=1-cos 2A 2-1-cos 2B2sin 2C=cos 2B -cos 2A 2sin 2C=-2sin (B +A )sin (B -A )2sin 2C=sin C ·sin (A -B )sin 2C =sin (A -B )sin C=右边.人教B 版必修5同步练习1.在△ABC 中,如果BC =6,AB =4,cos B =13,那么AC 等于( )A .6B .2 6C .3 6D .4 6 解析:选A.由余弦定理,得 AC =AB 2+BC 2-2AB ·BC cos B= 42+62-2×4×6×13=6.2.在△ABC 中,a =2,b =3-1,C =30°,则c 等于( ) A. 3 B. 2 C. 5 D .2解析:选B.由余弦定理,得c 2=a 2+b 2-2ab cos C =22+(3-1)2-2×2×(3-1)cos30° =2, ∴c = 2.3.在△ABC 中,a 2=b 2+c 2+3bc ,则∠A 等于( ) A .60° B .45° C .120° D .150°解析:选D.cos ∠A =b 2+c 2-a 22bc =-3bc 2bc =-32,∵0°<∠A <180°,∴∠A =150°.4.已知△ABC 的三个内角满足2B =A +C ,且AB =1,BC =4,则边BC 上的中线AD 的长为________.解析:∵2B =A +C ,A +B +C =π,∴B =π3.在△ABD 中,AD =AB 2+BD 2-2AB ·BD cos B= 1+4-2×1×2×12= 3.答案: 35.△ABC 中,sin A ∶sin B ∶sin C =(3-1)∶(3+1)∶10,求最大角的度数. 解:∵sin A ∶sin B ∶sin C =(3-1)∶(3+1)∶10, ∴a ∶b ∶c =(3-1)∶(3+1)∶10.设a =(3-1)k ,b =(3+1)k ,c =10k (k >0), ∴c 边最长,即角C 最大.由余弦定理,得cos C =a 2+b 2-c 22ab =-12,又C ∈(0°,180°),∴C =120°.1.在△ABC 中,a =7,b =43,c =13,则△ABC 的最小角为( ) A.π3 B.π6 C.π4 D.π12解析:选B.易知c 最小,cos C =a 2+b 2-c 22ab=72+(43)2-(13)22×7×43=32. 又∵0<C <π,∴C =π6.2.在不等边三角形中,a 是最大的边,若a 2<b 2+c 2,则角A 的取值范围是( )A .(π2,π)B .(π4,π2)C .(π3,π2)D .(0,π2)解析:选C.因为a 是最大的边,所以A >π3.又a 2<b 2+c 2,由余弦定理cos A =b 2+c 2-a 22bc>0,所以A <π2,故π3<A <π2.3.在△ABC 中,b =3,c =3,B =30°,则a 为( ) A. 3 B .2 3 C.3或2 3 D .2解析:选C.在△ABC 中,由余弦定理得b 2=a 2+c 2-2ac cos B ,即3=a 2+9-33a , ∴a 2-33a +6=0,解得a =3或2 3.4.在△ABC 中,已知a 4+b 4+c 4=2c 2(a 2+b 2),则角C 等于( ) A .30° B .60° C .45°或135° D .120°解析:选C.由a 4+b 4+c 4=2c 2(a 2+b 2), 得(a 2+b 2-c 2)2=2a 2b 2,所以cos C =a 2+b 2-c 22ab =±22,所以C =45°或135°.5.在△ABC 中,已知a 2=b 2+bc +c 2,则角A 为( ) A.π3 B.π6 C.2π3 D.π3或2π3解析:选C.由a 2=b 2+bc +c 2得b 2+c 2-a 2=-bc , 即b 2+c 2-a 22bc =-12,联想到余弦定理,∴cos A =-12,∴∠A =2π3.6.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b 2=ac 且c =2a ,则cos B 等于( ) A.14 B.34 C.24 D.22解析:选B.由b 2=ac ,又c =2a ,所以cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 24a 2=34.7.已知△ABC 的三边长分别为AB =7,BC =5,AC =6,则AB →·BC →的值为________.解析:在△ABC 中,cos B =AB 2+BC 2-AC 22AB ·BC=49+25-362×7×5=1935, ∴AB →·BC →=|AB →|·|BC →|·cos(π-B )=7×5×(-1935)=-19. 答案:-198.(2011年广州调研)三角形的三边为连续的自然数,且最大角为钝角,则最小角的余弦值为________.解析:设三边长为k -1,k ,k +1(k ≥2,k ∈N ),则⎩⎪⎨⎪⎧k 2+(k -1)2-(k +1)2<0k +k -1>k +1⇒2<k <4, ∴k =3,故三边长分别为2,3,4,∴最小角的余弦值为32+42-222×3×4=78.答案:789.设△ABC 中,AB →=(1,2),AC →=(-x,2x )(x >0).若△ABC 的周长为65时,则x 的值为________.解析:c =5,b =5x ,∴a =(5-x )5,由余弦定理得cos A =5x -12x ,又cos A =AB →·AC→|AB →||AC →|=35, ∴x =3011.答案:301110.在△ABC 中,边a ,b 的长是方程x 2-5x +2=0的两个根,C =60°,求边c 的长. 解:由题意得a +b =5,ab =2,∴a 2+b 2=(a +b )2-2ab =25-4=21, ∴c 2=a 2+b 2-2ab cos C =a 2+b 2-ab =21-2=19. ∴c =19.11.在△ABC 中,BC =a ,AC =b ,a ,b 是方程x 2-23x +2=0的两根,且2cos(A +B )=1,求AB 的长.解:∵A +B +C =π且2cos(A +B )=1,∴cos(π-C )=12,即cos C =-12.又∵a ,b 是方程x 2-23x +2=0的两根, ∴a +b =23,ab =2. ∴AB 2=AC 2+BC 2-2AC ·BC ·cos C=a 2+b 2-2ab (-12)=a 2+b 2+ab =(a +b )2-ab =(23)2-2=10, ∴AB =10.12.已知△ABC 的周长为2+1,且sin A +sin B =2sin C . (1)求边AB 的长;(2)若△ABC 的面积为16sin C ,求角C 的度数.解:(1)由题意及正弦定理得AB +BC +AC =2+1,BC +AC =2AB , 两式相减,得AB =1.(2)由△ABC 的面积12BC ·AC ·sin C =16sin C ,得BC ·AC =13,由余弦定理得cos C =AC 2+BC 2-AB22AC ·BC=(AC +BC )2-2AC ·BC -AB 22AC ·BC =12,所以C =60°.人教B 版必修5同步练习1.如图,在河岸AC 测量河的宽度BC ,测量下列四组数据,较适宜的是( )A .a 和cB .c 和bC .c 和βD .b 和α解析:选D.在河的一岸测量河的宽度,关键是选准基线,在本题中AC 即可看作基线,在△ABC 中,能够测量到的边角分别为b 和α.2.如图所示,已知两座灯塔A 和B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为( )A .a km B.3a km C.2a km D .2a km 解析:选B.利用余弦定理解△ABC .易知∠ACB =120°,在△ABC 中,由余弦定理得AB 2=AC 2+BC 2-2AC ·BC cos120°=2a 2-2a 2×(-12)=3a 2.∴AB =3a .3.在200 m 的山顶上,测得山下一塔的塔顶与塔底的俯角分别为30°、60°,则塔高为( )A.4003 mB.40033mC.20033 mD.2003m解析:选A.如图,设塔高为AB ,山顶为C ,在Rt △CDB 中,CD =200,∠BCD =90°-60°=30°,∴BC =200cos30°=40033.在△ABC 中,∠ABC =∠ACB =30°,∴∠BAC =120°,BC sin120°=ABsin30°,∴AB =BC ·sin30°32=4003(m).4.一河两岸有A 、B 两地,为了测出AB 的距离,在河岸上选取一点C ,测得∠CAB =60°,∠ACB =45°,AC =60 m ,则AB ≈________.(精确到1 m).解析:在△ABC 中,先由三角形的内角和定理求出∠B ,再由正弦定理求出AB . 答案:44 m5.已知A 、B 两点的距离为100海里,B 在A 的北偏东30°方向,甲船从A 点以50海里/小时的速度向B 航行,同时乙船从B 点以30海里/小时的速度沿方位角150°方向航行,问航行几小时,两船之间的距离最小?解:如图所示,设航行x 小时以后,甲船到达C 点,乙船到达D 点,在△BCD 中,BC =100-50x (海里)(0≤x ≤2),BD =30x (海里),∠CBD =60°,由余弦定理得: CD 2=(100-50x )2+(30x )2-2(100-50x )·30x ·cos60° =4900x 2-13000x +10000, 作为二次函数考虑,当x =130002×4900=6549(小时)时,CD 2最小,从而得CD 最小.故航行6549小时,两船之间距离最小.1.海面上有A ,B 两个小岛,相距10海里,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成30°的视角,则B 岛与C 岛之间的距离是( )A .10 3 海里 B.1063海里C .5 2 海里D .5 3 海里解析:选D.在由A ,B ,C 三岛组成的△ABC 中,∠C =180°-∠A -∠B =90°, 所以BC =AB ·sin60°=5 3.2.如图所示,已知两座灯塔A 和B 与海洋观察站C 的距离相等,灯塔A 在观察站C 的北偏东40°,灯塔B 在观察站C 的南偏东60°,则灯塔A 在灯塔B 的( )A .北偏东10°B .北偏西10°C .南偏东10°D .南偏西10°解析:选B.∠ACB =180°-40°-60°=80°,又∵AC =BC ,∴∠ABC =∠BAC =180°-80°2=50°,又90°-50°-30°=10°, ∴塔A 在塔B 的北偏西10°.3.如图,D 、C 、B 在地平面同一直线上,DC =10 m ,从D 、C 两地测得A 点的仰角分别为30°和45°,则A 点离地面的高AB 等于( )A .10 mB .5 3 mC .5(3-1)mD .5(3+1) m解析:选D.在△ACD 中,由DC sin (45°-30°)=ACsin30°得AC =10×12sin (45°-30°)=56-24=5(6+2).在△ABC 中,AB =AC ·sin45°=5(6+2)×22=5(3+1).4. 如图所示,有一广告气球,直径为6 m ,放在公司大楼的上空,当行人仰望气球的中心的仰角∠BAC =30°时,测得气球的视角θ为2°,若θ的弧度数很小时,可取sin θ为θ的弧度数,由此可估计该气球的高BC 约为( )A .70 mB .86 mC .102 mD .118 m解析:选B.由题意,知∠BAC =30°,所以BC =12AC .又圆的半径为3 m ,sin1°=sinπ180≈π180,所以AC ≈3×180π,即BC =12AC ≈270π≈86 (m).5.(2011年温州质检)北京2008年第29届奥运会开幕式上举行升旗仪式,在坡度15°的看台上,同一列上的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离为106米(如图所示).旗杆底部与第一排在一个水平面上,若国歌长度为50秒,升旗手应以多少米/秒的速度升旗( )A.15B.35C.35D.65 解析:选B.∠ABC =180°-60°-15°=105°, ∠CAB =180°-105°-45°=30°.∴AB =BC sin ∠CAB ·sin ∠BCA =106sin 30°·sin 45°=20 3.在Rt △OAB 中,OA =AB sin ∠ABO =203·sin 60°=30.∴v =3050=35(米/秒).故选B.6.在某个位置测得某山峰的仰角为θ,对着山峰在地面上前进600 m 后,测得仰角为原来的2倍,继续在地面上前进200 3 m 后,测得山峰的仰角为原来的4倍,则该山峰的高度为( )A .200 mB .300 mC .400 mD .100 m解析:选B.如图所示,在三角形ABC 中,BC =AC =600.在三角形ADC 中,DC =AD =2003,所以AD sin2θ=AC sin (180°-4θ)=ACsin4θ,所以2003sin2θ=6002sin2θcos2θ,所以cos2θ=32,2θ=30°,所以在三角形ADE 中,AE =AD sin4θ=2003×32=300(m).7.一船以每小时15 km 的速度向东航行,船在A 处看到一个灯塔M 在北偏东60°方向,行驶4 h 后,船到B 处,看到这个灯塔在北偏东15°方向,这时船与灯塔的距离为________.解析:如图所示,AB =60 km ,∠MAB =30°,∠AMB =180°-30°-105°=45°.由MB sin30°=AB sin45°,得MB =30 2 km. 答案:30 2 km8.某观测站C 在城A 的南偏西20°的方向(如图),由城A 出发的一条公路,走向是南偏东40°.在C 处测得距C 为31里的公路上有一人正沿公路向A 城走去,走了20里之后,到达D 处,此时CD 间的距离为21里,问此人还要走__________里路可到达A 城.解析:在△CDB 中,由余弦定理得cos ∠DBC =DB 2+BC 2-CD 22·DB ·BC =2331,∴sin ∠DBC =12331,∴sin ∠ACB =sin[π-(∠DBC +∠DAC )]=sin(∠DBC +π3)=35362,在△CAB 中,由正弦定理得AB =BC ·sin ∠ACBsin ∠CAB=35,∴AD =35-20=15. 答案:159.如图所示的是曲柄连杆结构示意图,当曲柄OA 在水平位置时,连杆端点P 在Q 的位置,当OA 自OB 按顺时针旋转α角时,P 和Q 之间的距离为x ,已知OA =25 cm ,AP =125 cm ,若OA ⊥AP ,则x =________(精确到0.1 cm).解析:x =PQ =OA +AP -OP =25+125-252+1252 ≈22.5(cm). 答案:22.5 cm10.在2008年北京奥运会垒球比赛前,C 国教练布置战术时,要求击球手以与连结本垒及游击手的直线成15°的方向把球击出.由经验及测速仪的显示,通常情况下球速为游击手最大跑速的4倍,问游击手在这种布置下能否接着球?解:假设游击手能接着球,接球点为B ,游击手从A 点跑出,本垒为O 点,球速为v ,如图所示,则∠AOB =15°,OB =v t ,AB ≤v t4.在△AOB 中,由正弦定理,得OB sin ∠OAB =ABsin15°,所以sin ∠OAB =OB sin15°AB≥v t v t 4·6-24=6- 2. 因为(6-2)2=8-43>8-4×1.73>1, 即sin ∠OAB >1,所以∠OAB 不存在,即游击手不能接着球. 11.甲船在A 处发现乙船在北偏东60°的B 处,乙船正以a n mile/h 的速度向北行驶.已知甲船的速度是 3a n mile/h ,问甲船应沿着什么方向前进,才能最快与乙船相遇?解:如图,设经过t h 两船在C 点相遇, 则在△ABC 中,BC =at ,AC =3at ,B =90°+30°=120°,由BC sin ∠CAB =AC sin B, 得sin ∠CAB =BC sin BAC=at ·sin120°3at =323=12.∵0°<∠CAB <90°, ∴∠CAB =30°, ∴∠DAC =60°-30°=30°. 即甲船应沿北偏东30°的方向前进,才能最快与乙船相遇.12.(2011年济南调研)A ,B ,C 是一条直路上的三点,AB =BC =1 km ,从这三点分别遥望一座电视发射塔P ,在A 处看见塔在东北方向,在B 处看见塔在正东方向,在C 处看见塔在南偏东60°方向,求塔到直路的距离.解:如图所示,设BN =x,则PQ =x ,P A =2x ,∵AB =BC ,∴CM =2BN =2x ,PC =2PQ =2x . 在△P AC 中,由余弦定理,得: AC 2=P A 2+PC 2-2P A ·PC ·cos 75°,即4=2x 2+4x 2-42x 2·6-24,解得x 2=2(4+3)13.过P 作PD ⊥AC ,垂足为D ,则线段PD 的长即为塔到直路的距离.在△P AC 中,由12AC ·PD =12P A ·PC sin 75°,得PD =P A ·PC ·sin 75°AC =22x 2·sin 75°2=2·2(4+3)13 ·6+24=7+5313.故塔到直路的距离为7+5313km.人教B 版必修5第1章章末综合检测(时间:120分钟;满分:150分)一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2011年福州高二检测)在△ABC 中,a =1,∠A =30°,∠B =60°,则b 等于( )A.32B.12C. 3 D .2解析:选C.由a sin A =b sin B 得,b =a sin B sin A =1·sin60°sin30°= 3.2.在△ABC 中,a =80,b =100,∠A =45°,则此三角形解的情况是( ) A .一解 B .两解 C .一解或两解 D .无解解析:选B.由a sin A =bsin B得sin B =100×sin45°80=528<1,又∵a <b , ∴B 有两解.故三角形有两解.3.(2011年临沂高二检测)在△ABC 中,若a =7,b =8,cos C =1314,则最大角的余弦值是( )A .-15B .-16C .-17D .-18解析:选C.c 2=72+82-2×7×8×1314=9,∴c =3,∴B 最大.cos B =72+32-822×7×3=-17.4.在三角形ABC 中,AB =5,AC =3,BC =7,则∠BAC 的大小为( ) A.2π3 B.5π6 C.3π4 D.π3解析:选A.由余弦定理cos ∠BAC =AB 2+AC 2-BC 22×AB ×AC =52+32-722×5×3=-12,所以∠BAC =2π3.5.在△ABC 中,∠B =60°,最大边与最小边之比为(3+1)∶2,则最大角为( ) A .45° B .60° C .75° D .90°解析:选 C.设最大角为∠A ,最小角为∠C .由∠B =60°得∠A +∠C =120°.根据正弦定理,得a c =sin A sin C =sin (120°-C )sin C =3+12,所以2sin(120°-C )=(3+1)·sin C ,即3cos C +sin C=3sin C +sin C ,所以tan C =1,又0°<∠C <180°,所以∠C =45°,所以∠A =75°.6.在△ABC 中,a 2+b 2-ab =c 2=23S △ABC ,则△ABC 一定是( )A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形解析:选B.由a 2+b 2-ab =c 2得:cos C =a 2+b 2-c 22ab =12,∴∠C =60°,又23S △ABC =a 2+b 2-ab ,∴23×12ab ·sin 60°=a 2+b 2-ab ,得2a 2+2b 2-5ab =0, 即a =2b 或b =2a .当a =2b 时,代入a 2+b 2-ab =c 2得a 2=b 2+c 2; 当b =2a 时,代入a 2+b 2-ab =c 2得b 2=a 2+c 2. 故△ABC 为直角三角形. 7.如图所示为起重机装置示意图.支杆BC =10 m ,吊杆AC =15 m ,吊索AB =519 m ,起吊的货物与岸的距离AD 为( )A .30 m B.1523 mC .15 3 mD .45 m 解析:选B.在△ABC 中,由余弦定理,得cos ∠ACB =AC 2+BC 2-AB 22AC ·BC=152+102-(519)22×15×10=-12,∴∠ACB =120°,∴∠ACD =180°-120°=60°.∴AD =AC ·sin60°=1532(m).8.在△ABC 中,b 2-bc -2c 2=0,a =6,cos A =78,则△ABC 的面积S 为( )A. 152B.15C .2D .3解析:选A.∵b 2-bc -2c 2=0, ∴(b -2c )(b +c )=0.∵b +c ≠0,∴b -2c =0.∴b =2c .∴6=c 2+4c 2-2c ·2c ×78,∴c =2,b =4.∴S =12bc sin A =12×2×4×1-4964=152.9.锐角三角形ABC 中,b =1,c =2,则a 的取值范围是( ) A .1<a <3 B .1<a < 5 C.3<a < 5 D .不确定 解析:选C.因为△ABC 为锐角三角形, 所以cos A >0,cos B >0,cos C >0, 所以b 2+c 2-a 2>0,a 2+c 2-b 2>0, a 2+b 2-c 2>0,所以1+4-a 2>0, a 2+4-1>0,a 2+1-4>0,即3<a 2<5,所以3<a < 5. 又c -b <a <b +c ,即1<a <3.由⎩⎨⎧3<a <5,1<a <3.得3<a < 5.10.△ABC 中,a ,b ,c 分别是A 、B 、C 的对边,且满足2b =a +c ,B =30°,△ABC 的面积为0.5,那么b 为( )A .1+ 3B .3+ 3 C.3+33D .2+ 3解析:选C.2b =a +c ,12ac ·12=12⇒ac =2,a 2+c 2=4b 2-4,∴b 2=a 2+c 2-2ac ·32⇒b 2=4+233⇒b =3+33.11.在△ABC 中,下列结论:①a 2>b 2+c 2,则△ABC 为钝角三角形;②a 2=b 2+c 2+bc ,则A 为60°;③a 2+b 2>c 2,则△ABC 为锐角三角形;④若A ∶B ∶C =1∶2∶3,则a ∶b ∶c =1∶2∶3.其中正确的个数为( ) A .1 B .2 C .3 D .4解析:选A.①a 2>b 2+c 2⇒b 2+c 2-a 2<0⇒b 2+c 2-a 22bc<0⇒cos A <0⇒A 为钝角⇒△ABC为钝角三角形;②a 2=b 2+c 2+bc ⇒b 2+c 2-a 2=-bc ⇒b 2+c 2-a 22bc =-12⇒cos A =-12⇒A =120°;③与①同理知cos C >0,∴C 是锐角,但△ABC 不一定是锐角三角形. ④A ∶B ∶C =1∶2∶3⇒A =30°,B =60°,C =90° ⇒a ∶b ∶c =1∶3∶2.12.锐角三角形ABC 中,a 、b 、c 分别是三内角A 、B 、C 的对边,设B =2A ,则ba的取值范围是( )A .(-2,2)B .(0,2)C .(2,2)D .(2,3)解析:选D.∵b a =sin B sin A =sin2Asin A=2cos A ,又∵△ABC 是锐角三角形,∴⎩⎪⎨⎪⎧B =2A <90°A +2A >90°,∴30°<A <45°,则ba=2cos A ∈(2,3).二、填空题(本大题共4小题,把答案填在题中横线上) 13.在△ABC 中,若A =120°,AB =5,BC =7,则AC =________.解析:在△ABC 中,由余弦定理,得cos A =cos120°=AB 2+AC 2-BC 22×AB ×AC ,即25+AC 2-492×5×AC=-12.解得AC =-8(舍去)或AC =3. 答案:3。

人教B版高中数学必修5同步章节训练题及答案全册汇编

人教B版高中数学必修5同步章节训练题及答案全册汇编

人教B版高中数学必修5同步章节训练题及答案全册汇编高中数学人教B版必修5同步练习目录1.1.1《正弦定理》测试题 1.1.2《余弦定理》测试题 1.2《正余弦定理的应用》测试2.1《数列》同步练习 2.2.1《等差数列》例题解析2.2.2《等差数列前n项和》例题解析 2.3.1《等比数列》例题解析 2.3.1《等比数列》测试3.1.1《不等关系与不等式》测试题 3.1.2《不等式的性质》测试题 3.2《均值不等式》测试题 3.2《均值不等式》测试题3.3《一元二次不等式的解法》测试题 3.3《一元二次不等式的解法》测试题3.4《不等式的实际应用》测试题3.4《不等式的实际应用》测试题〔人教B版必修5〕 3.5.1《二元一次不等式〔组〕所表示的平面区域》测试题3.5.2《简单线性规划》测试题高中数学人教B版必修5同步练习1.1.1正弦定理测试题【能力达标】一、选择题1. 不解三角形,以下判断正确的选项是〔〕ooA. a=7,b=14,A=30,有两解.B. a=30,b=25,A=150,有一解.ooC. a=6,b=9,A=45,有两解.D. a=9,b=10,A=60,无解. 2.在?ABC中acosA=bcosB,那么?ABC是( ) A.等腰三角形 B.直角三角形C.等边三角形D.等腰或直角三角形3.在?ABC中,a=52,c=10,∠A=30,那么∠B等于〔〕oA.105B. 60C. 15D.105或154.在?ABC中,a(sinB-sinC)+b(sinC-sinA)+c(sinA-sinB)的值是〔〕oo o oo1 B.0 C.1 D.? 25. 在?ABC中以下等式总成立的是〔〕A.A. a cosC=c cosAB. bsinC=c sinAC. absinC=bc sinBD. asinC=c sinA 6. 在ΔABC中,∠A=45,∠B=60,a=2,那么b=( ) A.6 B.26 C.36 D.46 7.在ΔABC中,∠A=45, a=2,b=2,那么∠B=〔〕00A.300 B.300或1500 C.600 D.600或1200 二、填空题8.在ΔABC中,a=8,B=1050,C=150,那么此三角形的最大边的长为。

最新人教版高中数学必修5第三章模块测试卷(附答案)1

最新人教版高中数学必修5第三章模块测试卷(附答案)1

数学数学人教新课标B 版高中必修5模块测试卷(附答案)一、选择题(本大题共12个小题,每小题5分,共60分) 1.在△ABC 中,∠B =135°,∠C =15°,a =5,则此三角形的最大边长为( ). A. B. C. D.2.在△ABC 中,∠A =60°,a =b =4,那么满足条件的△ABC ( ).A .有一个解B .有两个解C .无解D .不能确定3.已知{a n }是等比数列,a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1等于( ). A .16(1-4-n ) B .16(1-2-n )C .323(1-4-n ) D .32(1-4-n ) .4.(2011黑龙江哈尔滨九中高三期末)已知10101x y x y y +-≤⎧⎪-+≥⎨⎪≥-⎩,,,且u =x 2+y 2-4x -4y +8,则u的最小值为( ).A.2B .92C.2D .125.已知直线a 2x +y -2=0与直线bx -(a 2+1)y -1=0互相垂直,则|ab |的最小值为( ).A .5B .4C .2D .16.已知0<x <1,则x (3-3x )取最大值时x 的值为( ). A .12 B .34 C .23 D .257.若关于x 的方程x 2-x +a =0和x 2-x +b =0(a ≠b )的四个根可组成首项为14的等差数列,则a +b 的值是( ).A .38 B .1124 C .1324 D .31728.设a >b >0,则211a ab a a b ++(-)的最小值是( ). A .1 B .2 C .3 D .49.(2011四川高考,理9)某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙型卡车.某天需运往A 地至少72吨的货物,派用的每辆车需满载且只运送一次.派用的每辆甲型卡车需配2名工人,运送一次可得利润450元;派用的每辆乙型卡车需配1名工人,运送一次可得利润350元.该公司合理计划当天派用两类卡车的车辆数,可得最大利润z =( ).A .4 650元B .4 700元C .4 900元D .5 000元10.已知关于x 的不等式x a x b x c(-)(-)-≥0的解为-3≤x <-2或x ≥4,则点A (a +b ,c )位于坐标平面内( ).A .第一象限B .第二象限C .第三象限D .第四象限11.已知x ,y 为正实数,且x ,a 1,a 2,y 成等差数列,x ,b 1,b 2,y 成等比数列,则21212a ab b (+)的取值范围是( ).A .RB .(0,4]C .[4,+∞)D .(-∞,0]∪[4,+∞)12.已知等差数列{a n }中,|a 3|=|a 9|,公差d <0,则使等差数列{a n }前n 项和S n 取最大值的正整数n 是( ).A .4或5B .5或6C .6或7D .8或9 二、填空题(本大题共4个小题,每小题4分,共16分)13.△ABC 的内角∠A ,∠B ,∠C 的对边边长分别为a ,b ,C .若=2a ,∠A =2∠B ,则cos B 的值为 __________.14.已知-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则212a ab -的值是__________.15.数列{(-1)n +2}的前n 项和为S n ,则S 2 011=__________.16.不等式22>032x x x -++的解集是__________.三、解答题(本大题共6个小题,共74分)17.(12分)在△ABC 中,∠A ,∠B ,∠C 所对的边长分别为a ,b ,c ,设a ,b ,c 满足条件b 2+c 2-bc =a 2和1=2c b A 和tan B 的值. 18.(12分)已知数列{a n },构造一个新数列:a 1,(a 2-a 1),(a 3-a 2),…,(a n -a n -1),…,此数列是首项为1,公比为13的等比数列. (1)求数列{a n }的通项;(2)求数列{a n }的前n 项和S n . 19.(12分)已知关于x 的不等式2251x x m m+->+. (1)当m >0时,解这个不等式;(2)若此不等式的解集为{x |x >5},试求实数m 的值.20.(12分)如图,位于A 处的信息中心获悉:在其正东方向相距40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C 处的乙船,现乙船按北偏东θ的方向沿直线CB 前往B 处救援,求cos θ的值.21.(12分)设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=21,S 15=-75,T n 为数列n S n ⎧⎫⎨⎬⎩⎭的前n 项和,求T n 的最大值. 22.(14分)(2011福建福州期末)某货轮匀速行驶在相距300海里的甲、乙两地间运输货物,运输成本由燃料费用和其他费用组成,已知该货轮每小时的燃料费用与其航行速度的平方成正比(比例系数为0.5),其他费用为每小时800元,且该货轮的最大航行速度为50海里/小时.(1)请将从甲地到乙地的运输成本y (元)表示为航行速度x (海里/小时)的函数; (2)要使从甲地到乙地的运输成本最少,该货轮应以多大的航行速度行驶?参考答案1. 答案:A解析:依题意,知三角形的最大边为B .由于∠A =30°,根据正弦定理,得sin 5sin135sin sin30a B b A ︒===︒2. 答案:C解析:由正弦定理得sin sin 1b A B a ==>,无解. 3. 答案:C解析:设{a n }公比为q ,35218a q a ==,∴12q =,a 1=4.设b n =a n ·a n +1=1111144=8224n nn --⎛⎫⎛⎫⎛⎫⨯⨯⨯⨯ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,∴{b n }是首项为8,公比为14的等比数列,∴181432==(14)1314n n n S -⎡⎤⎛⎫-⎢⎥⎪⎝⎭⎢⎥⎣⎦-- 4. 答案:B解析:不等式组所表示的平面区域是如图中的△ABC 边界及其内部,2u =表示区域内点(x ,y )与点(2,2)间距离的平方,根据题意,只能是点(2,2)到直线x +y -1=0的距离最小,,故所求的最小值是92.5. 答案:C解析:由于两直线垂直,则a 2b -(a 2+1)=0,所以221a b a +=.所以2111===2a ab a a a a a+++≥.当且仅当|a |=1,b =2时取等号,所以|ab |的最小值为2. 6. 答案:A解析:∵0<x <1, ∴1-x >0,则x (3-3x )=3[x (1-x )]≤2133=24x x +-⎛⎫⨯ ⎪⎝⎭,当且仅当x =1-x ,即12x =时取等号.7. 答案:D解析:设14为方程x 2-x +a =0的一个根,则另一根为34, ∴316a =. 由于方程x 2-x +b =0的两根x 1,x 2(x 1<x 2)满足x 1+x 2=1,故四根的排列顺序为14,x 1,x 2,34. 由31344d =+,得1=6d . ∴x 1=512,x 2=712,b =x 1x 2=35144.∴a +b =3172.8. 答案:D解析:∵a >b >0,∴211a ab a a b ++(-)=2222222224=42a a a a a ab a ab a ab a ab +≥++≥(-)⎛⎫+- ⎪⎝⎭,当且仅当a =2b“=”.9. 答案:C解析:由题意设派甲,乙分别为x ,y 辆,则利润z =450x +350y ,约束条件08,07,12,10672,219,,,x y x y x y x y x y ≤≤≤≤+≤+≥+≤∈∈N N 画出可行域,如图.由12,219,x y x y +=⎧⎨+=⎩得7,5.x y =⎧⎨=⎩易知当直线z =450x +350y 过点(7,5)时z 取最大值z max =450×7+350×5=4 900. 10. 答案:D解析:由题意知c =-2,而a +b =-3+4=1,∴A (a +b ,c )即A (1,-2),位于第四象限.11. 答案:C解析:原式=2x y xy(+)=2222x xy y x y xy y x++=++,又∵x ,y ∈R +,∴222=4x y y x ++≥, 当且仅当=x yy x,即x =y 时等号成立. 12. 答案:B解析:由|a 3|=|a 9|得(a 1+2d )2=(a 1+8d )2, 所以a 1=-5D .a n =a 1+(n -1)d =(n -6)d ,因为d <0,所以当n ≤6时,a n ≥0,当n ≥7时,a n <0,所以前5项或前6项的和最大.13.答案:解析:∵a ,∠A =2∠B ,∴=sin sina bA B ,2=sin2sin bB B,即2=2sin cos sin b BB B⋅.∴cos B .14. 答案:12解析:由题意,得a 2-a 1=d =413--(-)=-1,22b =(-1)×(-4)=4且b 2应与-1,-4的符号一致,故b 2=-2, ∴21211==22a ab ---.15. 答案:-1解析:由题知,数列{(-1)n +2}的首项为-1,公比为-1, ∴S 2 011=-1.16. 答案:{x |-2<x <-1或x >2} 解析:原不等式化为2>012x x x -(+)(+),由穿根法知,解集为{x |-2<x <-1或x >2}.17. 解:由余弦定理,得2221cos ===222b c a bc A bc bc +-,因此∠A =60°,在△ABC 中,∠C =180°-(∠A +∠B )=120°-∠B ,由正弦定理,得1sin sin 120==2sin sin c C B b B B (︒-∠)=sin120cos cos120sin sin B B B ︒-︒1=cot +22B ,即2B cot B =2,tan B =12.18. 解:(1)a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=21111113131+113332313nn n -⎛⎫- ⎪⎡⎤⎛⎫⎛⎫⎛⎫⎝⎭++⋅⋅⋅+==-⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦-.(2)S n =a 1+a 2+a 3+…+a n =2331313131111123232323n⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-+-+-+⋅⋅⋅+-⎢⎥⎢⎥⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦=2131111123333n n -⎧⎫⎡⎤⎪⎪⎛⎫⎛⎫-+++⋅⋅⋅⎢⎥⎨⎬ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎪⎪⎣⎦⎩⎭11313313112224313nn n n ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭-⋅=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-= =1311(21)+443n n -⎛⎫- ⎪⎝⎭.19. 解:(1)原不等式可化为m (x +2)>m 2+x -5, (m -1)x >m 2-2m -5,若0<m <1,不等式的解集为2251m m x x m ⎧⎫--⎪⎪<⎨⎬-⎪⎪⎩⎭;若m =1,则不等式的解集为R ;若m >1,则不等式的解集为2251m m x x m ⎧⎫--⎪⎪>⎨⎬-⎪⎪⎩⎭.(2)由题意和(1)知,m >1且满足2251m m x x m ⎧⎫--⎪⎪>⎨⎬-⎪⎪⎩⎭={x |x >5},于是2251m m m ---=5,解得m =7.20. 解:如图所示,在△ABC 中,AB =40,AC =20,∠BAC =120°,由余弦定理知,BC 2=AB 2+AC 2-2AB ·AC cos 120°=402+202-2×40×20×12⎛⎫- ⎪⎝⎭=2 800.∴BC=. 由正弦定理,得sin ABACB∠=sin BCBAC∠,∴sin ∠ACB =AB BC ·sin ∠BAC407. 由∠BAC =120°,则∠ACB 为锐角, ∴cos ∠ACB. 由θ=∠ACB +30°,则cos θ=cos(∠ACB +30°)=cos ∠ACB ·cos 30°-sin ∠ACB ·sin 30°=17214-=. 21. 解:设等差数列{a n }公差为d ,则S n =na 1+12n (n -1)d . ∵S 7=21,S 15=-75,∴1172121,1510575,a d a d +=⎧⎨+=-⎩即1133,75,a d a d +=⎧⎨+=-⎩解得a 1=9,d =-2. ∴112n n n S na d (-)=+=9n -(n 2-n )=10n -n 2.则10nS n n =-. ∵111n n S Sn n+-=-+, ∴数列n S n ⎧⎫⎨⎬⎩⎭是以9为首项,公差为-1的等差数列.则2[910]119+222n n n T n n ⋅+(-)==- =2119361228n ⎛⎫--+ ⎪⎝⎭∵n ∈N +,∴当n =9或n =10时,T n 有最大值45.22. 解:(1)由题意,每小时的燃料费用为0.5x 2(0<x ≤50),从甲地到乙地所用的时间为300x 小时,则从甲地到乙地的运输成本23003000.5+800y x x x=⋅⋅(0<x ≤50), 故所求的函数为23003000.5+800y x x x=⋅⋅=1600150x x ⎛⎫+ ⎪⎝⎭(0<x ≤50).(2)由(1)1600150150y x x ⎛⎫=+≥⨯ ⎪⎝⎭,当且仅当1600x x =,即x =40时取等号.故当货轮航行速度为40海里/小时时,能使该货轮运输成本最少.。

高中数学必修五第三章测试题(有详细答案)

高中数学必修五第三章测试题(有详细答案)

第三章能力检测满分150分.考试时间120分钟.一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设M =2a (a -2)+7,N =(a -2)(a -3),则有( ) A .M >N B .M ≥N C .M <N D .M ≤N【答案】A【解析】M -N =(2a 2-4a +7)-(a 2-5a +6)=a 2+a +1=⎝⎛⎭⎫a +122+34>0,∴M >N . 2.下列结论成立的是( ) A .若ac >bc ,则a >b B .若a >b ,则a 2>b 2C .若a >b ,c <d ,则a +c >b +dD .若a >b ,c >d ,则a -d >b -c 【答案】D【解析】对于A ,当c <0时,不成立;对于B ,取a =-1,b =-2,不成立;对于C ,取a =2,b =1,c =0,d =3,不成立;对于D ,∵c >d ,∴-d >-c ,又a >b ,∴a -d >b -c ,因此成立.故选D .3.不等式x 2-x -6x -1>0的解集为( )A .{x |x <-2或x >3}B .{x |x <-2或1<x <3}C .{x |-2<x <1或x >3}D .{x |-2<x <1或1<x <3} 【答案】C【解析】原不等式可化为(x +2)(x -1)(x -3)>0,则该不等式的解集为{x |-2<x <1或x >3}.4.(2017年四川自贡模拟)设集合A ={x |x 2-3x <0},B ={x |x 2>4},则A ∩B =( ) A .(-2,0) B .(-2,3) C .(0,2) D .(2,3)【答案】D【解析】A ={x |x 2-3x <0}={x |0<x <3},B ={x |x 2>4}={x |x >2或x <-2},则A ∩B ={x |2<x <3}.故选D.5.若不等式x 2+ax +1≥0对于一切x ∈⎝⎛⎦⎤0,12成立,则a 的取值范围是( ) A .(-∞,-2] B .⎝⎛⎦⎤-∞,-52 C .⎣⎡⎭⎫-52,+∞ D .[2,+∞)【答案】C 【解析】x 2+ax +1≥0对于一切x ∈⎝⎛⎦⎤0,12成立⇔a ≥-x 2-1x对于一切x ∈⎝⎛⎦⎤0,12成立⇔a ≥-x -1x 对于一切x ∈⎝⎛⎦⎤0,12成立.∵y =-x -1x 在区间⎝⎛⎦⎤0,12上是增函数,∴-x -1x ≤-12-2=-52.∴a ≥-52.故选C . 6.(2017年上海校级联考)已知函数f (x )=x +px -1(p 为常数且p >0),若f (x )在(1,+∞)上的最小值为4,则实数p 的值为( )A .92B .94C .2D .4【答案】B【解析】由题意得x -1>0,f (x )=x -1+px -1+1≥2p +1,当且仅当(x -1)2=p 即x =p +1时取等号.∵f (x )在(1,+∞)上的最小值为4,∴2p +1=4,解得p =94.7.若关于x 的不等式2x 2-8x -4-a ≥0在1≤x ≤4内有解,则实数a 的取值范围是( ) A .(-∞,-4] B .[-4,+∞) C .[-12,+∞) D .(-∞,-12] 【答案】A【解析】∵y =2x 2-8x -4(1≤x ≤4)在x =4时,取最大值-4,∴当a ≤-4时,2x 2-8x -4≥a 在[1,4]内有解.8.某工厂生产甲、乙两种产品,已知生产每吨甲种产品要用A 原料3吨,B 原料2吨;生产每吨乙种产品要用A 原料1吨,B 原料3吨.该工厂每天生产甲、乙两种产品的总量不少于2吨且每天消耗的A 原料不能超过10吨,B 原料不能超过9吨.如果设每天甲种产品的产量为x 吨,乙种产品的产量为y 吨,则在坐标系xOy 中,满足上述条件的x ,y 的可行域用阴影部分表示正确的是( )A BC D【答案】A【解析】由题可知⎩⎪⎨⎪⎧x +y ≥2,3x +y ≤10,2x +3y ≤9,x ≥0,y ≥0.故选A .9.(2016年广东佛山模拟)若a >b >0,c <d <0,则一定有( )A .a d >bcB .a d <b cC .a c >bdD .a c <b d【答案】B【解析】∵c <d <0,∴1d <1c <0,∴-1d >-1c >0.而a >b >0,∴-a d >-b c >0,∴a d <bc .故选B .10.下列函数中,最小值是4的函数是( ) A .y =x +4xB .y =sin x +4sin x(0<x <π) C .y =e x +4e -x D .y =log 3x +log x 81 【答案】C【解析】当x <0时,y =x +4x ≤-4,排除A ;∵0<x <π,∴0<sin x ≤1,y =sin x +4sin x >4,排除B ;e x >0,y =e x +4e -x ≥4,等号在e x =4e x 即e x =2时成立;若0<x <1,则log 3x<0,log x 81<0,排除D .故选C .11.关于x 的不等式px 2+qx +r >0的解集是{x |α<x <β}(β>α>0),那么另一个关于x 的不等式rx 2-qx +p >0的解集应该是( )A .⎩⎨⎧⎭⎬⎫x ⎪⎪1α<x <1β B .⎩⎨⎧⎭⎬⎫x ⎪⎪1β<x <1α C .⎩⎨⎧⎭⎬⎫x ⎪⎪ -1β<x <-1α D .⎩⎨⎧⎭⎬⎫x ⎪⎪-1α<x <-1β 【答案】D【解析】因为关于x 的不等式px 2+qx +r >0的解集是{x |α<x <β},所以α和β可看作方程px 2+qx +r =0的两个根且p <0,则α+β=-q p ,α·β=rp .因为0<α<β,p <0,所以r<0.所以rx 2-qx +p >0,即r p x 2-q p x +1<0,即α·βx 2+(α+β)x +1<0,解得-1α<x <-1β.故选D .12.已知实数x ,y 满足⎩⎪⎨⎪⎧(x -y )(x +y -2)≥0,1≤x ≤4,则x +2y 的取值范围为( )A .[12,+∞)B .[0,3]C .[0,12]D .[3,12]【答案】C【解析】作出不等式组表示的平面区域如图,作直线l 0:x +2y =0,平移l 0可见当经过可行域内的点A ,B 时,z =x +2y 分别取得最大值与最小值,∴z max =12,z min =0,故选C .二、填空题(本大题共4个小题,每小题5分,共20分.将正确答案填在题中横线上) 13.若关于x 的不等式ax 2-6x +a 2<0的解集是(1,m ),则m =________. 【答案】2【解析】由题意知a >0且1是方程ax 2-6x +a 2=0的一个根,∴a =2.∴不等式为2x 2-6x +4<0,即x 2-3x +2<0.∴1<x <2.∴m =2.14.(2016年湖南郴州二模)记不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域为D .若直线y=a (x +1)与D 有公共点,则a 的取值范围是__________.【答案】⎣⎡⎦⎤12,4【解析】满足约束条件⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4的平面区域如图所示.因为y =a (x +1)过定点(-1,0),所以当y =a (x +1)过点B (0,4)时,得到a =4;当y =a (x +1)过点A (1,1)时,得到a =12.又因为直线y =a (x +1)与平面区域D 有公共点,所以12≤a ≤4.15.已知二次不等式ax 2+2x +b >0的解集为⎩⎨⎧x ⎪⎪⎭⎬⎫x ≠-1a 且a >b ,则a 2+b 2a -b 的最小值为________.【答案】22【解析】∵二次不等式ax 2+2x +b >0的解集为⎩⎨⎧x ⎪⎪⎭⎬⎫x ≠-1a ,∴a >0且对应方程有两个相等的实根-1a .由根与系数的关系得-1a ·⎝⎛⎭⎫-1a =ba ,即ab =1,故a 2+b 2a -b =(a -b )2+2a -b =(a -b )+2a -b .∵a >b ,∴a -b >0.由基本不等式可得(a -b )+2a -b ≥2(a -b )2a -b=22,当且仅当a -b =2时取等号,故a 2+b 2a -b的最小值为2 2.16.某校今年计划招聘女教师a 名,男教师b 名,若a ,b 满足不等式组⎩⎪⎨⎪⎧2a -b ≥5,a -b ≤2,a <7.设这所学校今年计划招聘教师最多x 名,则x =______.【答案】13【解析】由题意得x =a +b ,如图所示,画出约束条件所表示的可行域,作直线l :b +a =0,平移直线l ,再由a ,b ∈N ,可知当a =6,b =7时,x 取最大值,∴x =a +b =13.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)设x 1,x 2是关于x 的一元二次方程x 2-2kx +1-k 2=0的两个实根,求x 21+x 22的最小值.【解析】由题意,得x 1+x 2=2k ,x 1x 2=1-k 2. Δ=4k 2-4(1-k 2)≥0,∴k 2≥12.∴x 21+x 22=(x 1+x 2)2-2x 1x 2=4k 2-2(1-k 2) =6k 2-2≥6×12-2=1.∴x 21+x 22的最小值为1.18.(本小题满分12分)(1)比较(x +5)(x +7)与(x +6)2两个代数式值的大小,并说明理由; (2)解关于x 的不等式56x 2+ax -a 2<0.【解析】(1)∵(x +5)(x +7)-(x +6)2=(x 2+12x +35)-(x 2+12x +36)=-1<0, ∴(x +5)(x +7)<(x +6)2.(2)∵56x 2+ax -a 2<0,∴(7x +a )(8x -a )<0,即⎣⎡⎦⎤x -⎝⎛⎭⎫-a 7⎝⎛⎭⎫x -a 8<0. ①当a =0时,-a 7=a8,不等式化为x 2<0,解得x ∈∅.②当a >0时,-a 7<a8,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪ -a 7<x <a 8.③当a <0时,-a 7>a8,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪a 8<x <-a 7.19.(本小题满分12分)已知函数f (x )=x 2+(lg a +2)x +lg b 满足f (-1)=-2且对于任意x ∈R ,恒有f (x )≥2x 成立.(1)求实数a ,b 的值; (2)解不等式f (x )<x +5.【解析】(1)由f (-1)=-2知lg b -lg a +1=0, 所以ab=10.又f (x )≥2x 恒成立,即f (x )-2x ≥0恒成立, 则有x 2+x ·lg a +lg b ≥0恒成立, 故Δ=(lg a )2-4lg b ≤0,所以(lg b +1)2-4lg b ≤0,即(lg b -1)2≤0. 故lg b =1,即b =10,a =100.(2)由(1)知f (x )=x 2+4x +1,f (x )<x +5, 即x 2+4x +1<x +5,所以x 2+3x -4<0,解得-4<x <1, 因此不等式的解集为{x |-4<x <1}.20.(本小题满分12分)某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为1.2万元/辆,年销售量为1 000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为x (0<x <1),则出厂价相应的提高比例为0.75x ,同时预计年销售量增加的比例为0.6x .已知年利润=(出厂价-投入成本)×年销售量.(1)写出本年度预计的年利润y (万元)与投入成本增加的比例x 的关系式;(2)为使本年度的年利润比上年度有所增加,问投入成本增加的比例x 应在什么范围内? 【解析】(1)依题意得y =[1.2×(1+0.75x )-1×(1+x )]×1 000×(1+0.6x )(0<x <1), 整理,得y =-60x 2+20x +200(0<x <1). ∴本年度年利润与投入成本增加的比例的关系式为 y =-60x 2+20x +200(0<x <1).(2)要保证本年度的年利润比上年度有所增加,当且仅当⎩⎪⎨⎪⎧y -(1.2-1)×1 000>0,0<x <1,即⎩⎪⎨⎪⎧-60x 2+20x >0,0<x <1,解得0<x <13,∴为保证本年度的年利润比上年度有所增加,投入成本增加的比例x 应满足0<x <13.21.(本小题满分12分)已知函数f (x )=ax 2+bx -a +2.(1)若关于x 的不等式f (x )>0的解集是(-1,3),求实数a ,b 的值; (2)若b =2,a >0,解关于x 的不等式f (x )>0. 【解析】(1)∵不等式f (x )>0的解集是(-1,3), ∴-1,3是方程ax 2+bx -a +2=0的两根且a <0.∴⎩⎪⎨⎪⎧ a -b -a +2=0,9a +3b -a +2=0,解得⎩⎪⎨⎪⎧a =-1,b =2.(2)当b =2时,f (x )=ax 2+2x -a +2=(x +1)(ax -a +2),∵a >0,∴(x +1)⎝⎛⎭⎪⎫x -a -2a >0.①若-1=a -2a ,即a =1,解集为{x |x ≠-1}.②若-1>a -2a,即0<a <1,解集为⎩⎪⎨⎪⎧ x ⎪⎪⎪⎭⎪⎬⎪⎫x <a -2a 或x >-1.③若-1<a -2a,即a >1,解集为⎩⎪⎨⎪⎧x ⎪⎪⎪⎭⎪⎬⎪⎫x <-1或x >a -2a .22.(本小题满分12分)某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙型卡车.某天需运往A 地至少72吨的货物,派用的每辆车需满载且只运送一次,派用的每辆甲型卡车需配2名工人,运送一次可得利润450元;派用的每辆乙型卡车需配1名工人,运送一次可得利润350元.该公司该如何合理计划当天派用两类卡车的车辆数,可得最大利润,最大利润是多少元?【解析】设派用甲型卡车x 辆,乙型卡车y 辆,获得的利润为z 元,z =450x +350y .由题意,x ,y 满足关系式⎩⎪⎪⎨⎪⎪⎧0≤x ≤8,0≤y ≤7,x +y ≤12,10x +6y ≥72,2x +y ≤19,x ,y ∈N ,作出相应的平面区域如图阴影部分所示.z =450x +350y =50(9x +7y ),由⎩⎪⎨⎪⎧x +y =12,2x +y =19得交点(7,5),∴当x =7,y =5时,450x +350y 有最大值4 900. 答:该公司派用甲型卡车7辆,乙型卡车5辆,获得的利润最大,最大利润为4 900元.。

2017-2018学年高中数学人教B版必修5课时作业:第三章

2017-2018学年高中数学人教B版必修5课时作业:第三章
其解集为{x|-2<x<3}.
11.你能用一根长为100 m的绳子围成一个面积大于600 m2的矩形吗?当长、宽分别为多少m时,所围成的矩形的面积最大?
解:设矩形一边的长为xm,则另一边的长为(50-x) m,0<x<50.由题意,得x(50-x)>600,即x2-50x+600<0.解得20<x<30.所以,当矩形一边的长在(20,30)的范围内取值时,能围成一个面积大于600 m2的矩形.
D.(-∞,-1)∪
解析:B={x|(2x-1)(x+1)>0}= ,
所以A∩B= ,即 .
答案:B
3.不等式 ≥0的解集是()
A.[-1,+∞)
B.(-1,1)∪(1,+∞)
C.(-∞,-1]∪(1,+∞)
D.(-∞,-1]∪[1,+∞)
解析:原不等式等价于(x+1)(x-1)≥0,且x-1≠0,解得x>1或x≤-1.
课时作业(十八)一元二次不等式及其解法
A组
(限时:10分钟)
1.不等式-x2-5x+6≤0的解集为()
A.{x|x≥6或x≤-1}
B.{x|-1≤x≤6}
C.{x|-6≤x≤1}
D.{x|x≤-6或x≥1}
解析:由-x2-5x+6≤0得x2+5x-6≥0,即(x+6)(x-1)≥0,
∴x≥1或x≤-6.
解析:∵函数f(x)为奇函数,且x>0时,f(x)=x2-4x,则f(x)=
∴原不等式等价于 或
由此可解得x>5或-5<x<0.
故应填(-5,0)∪(5,+∞).
答案:(-5,0)∪(5,+∞)
9.已知关于x的不等式x2-ax+2a>0在R上恒成立,则实数a的取值范围是________.

高一数学人教B版必修5同步课时作业3

高一数学人教B版必修5同步课时作业3

2020-2021学年高一数学人教B 版必修5同步课时作业3.5二元一次不等式(组)与简单的线性规划问题1.若实数,x y 满足不等式组103x y x y +≥⎧⎪≥⎨⎪+≤⎩,则2x y -的最大值是( ). A.9-B.1-C.3D.72.若,x y 满足约束条件30,20,1,x y x y x ++⎧⎪-+⎨⎪⎩则2z x y =+的最小值为( )A.5B.2-C.6-D.112-3.不等式组03434x x y x y ≥⎧⎪+≥⎨⎪+≤⎩所表示的平面区域的面积等于( )A.32B.23C.43D.344.已知实数,x y 满足342y x x y x ≥⎧⎪+≤⎨⎪≥-⎩,则3z x y =+的最大值是( )A. 2B. 4C. 6D. 85.已知,x y 满足约束条件01010y x y x y ⎧⎪-+⎨⎪+-⎩,则2z x y =-的最大值是( )A.2-B.1-C.1D.26.若,x y 满足约束条件0,20,1,x y x y x +≥⎧⎪-≥⎨⎪≤⎩,则32z x y =+的最大值为( )A.7B.8C.9D.107.若实数x y ,满足约束条件22124x y x y x y +⎧⎪--⎨⎪-⎩,则1y z x +=的取值范围是( )A.[0,2]B.[1,2]C.1,12⎡⎤⎢⎥⎣⎦D.1,22⎡⎤⎢⎥⎣⎦8.若,x y 满足约束条件11030x x y x y ≥⎧⎪--≤⎨⎪+-≤⎩,2z x y a =++的最大值为1,则实数a =( )A .4B .4-C .2D .2-9.已知变量,x y 满足约束条件2240240x y x y x y +≥⎧⎪-+≥⎨⎪--≤⎩,若222x y x k ++≥恒成立,则实数k 的最大值为 ( ) A .40B .9C .8D .7210.已知x y ,满足约束条件20626x x y x y -⎧⎪+≤⎨⎪-⎩,则目标函数442y z x +=+的最大值为( )A .6B .5C .2D .1-11.若,x y 满足约束条件30201x y x y x ++⎧⎪-+⎨⎪⎩,则2z x y =+的最小值为___________.12.设,x y 满足约束条件10,230,10,x y x y x y +-⎧⎪-+⎨⎪--⎩则2z y x =-的最小值为________.13.设,x y 满足约束条件1020330x y x y x y -+≥⎧⎪-≤⎨⎪+-≤⎩,则3y z x =+的最大值为____________.14.某花店计划包装甲、乙两种花束,数量分别是(),,x y x y ∈N 束.包装甲种花束需要3枝百合花、9枝玫瑰花,包装乙种花束需要6枝百合花、6枝玫瑰花.已知店里库存的百合花、玫瑰花分别有30枝、63枝,包装甲、乙两种花束的利润分别是20元/束、30元/束.若包装好的甲、乙两种花束都能全部卖出,则该花店包装甲、乙两种花束最多能获得的利润为________元.15.已知实数,x y 满足0,1,24,x x y x y ≥⎧⎪+≤⎨⎪-≤⎩则该不等式组所表示的平面区域的面积为________,z x y =-的取值范围为__________.答案以及解析1.答案:C解析:作出可行域如图所示:令2t x y =-,则平移直线122ty x =-,当经过点(3,0)时,t 最大,3t =, 故选:C. 2.答案:D解析:解法一 作出不等式组表示的平面区域,如图中阴影部分所示,作出直线20x y +=并平移,数形结合可知当平移后的直线经过直线30x y ++=与直线20x y -+=的交点51,22A ⎛⎫-- ⎪⎝⎭时,2z x y =+取得最小值,则min 51112222z ⎛⎫=⨯--=- ⎪⎝⎭.解法二 由30,20,x y x y ++=⎧⎨-+=⎩得5,21,2x y ⎧=-⎪⎪⎨⎪=-⎪⎩此时112z =-;由30,1,x y x ++=⎧⎨=⎩得1,4,x y =⎧⎨=-⎩此时2z =-;由1,20,x x y =⎧⎨-+=⎩得1,3,x y =⎧⎨=⎩此时5z =.综上所述,min 112z =-.3.答案:C解析:由“直线定界,特殊点定域”画出可行域,可求出可行域的三顶点坐标分别为(1,1),4(0,4),0,3⎛⎫⎪⎝⎭,其面积为144123s ⎛⎫=⨯-⨯ ⎪⎝⎭,答案选C.4.答案:D解析:解:如图所示,不等式组342y xx y x ≥⎧⎪+≤⎨⎪≥-⎩所表示的区域为图中阴影部分:其中()2,2A --,()1,1B ,()2,2C -,()|322|8max z =⨯--=, 故选:D . 5.答案:C解析:作出不等式组表示的平面区域如图中阴影部分所示.作出直线20x y -=并平移,结合图形可知,当平移后的直线过点A 时,2z x y =-取得最大值.由010y x y =⎧⎨+-=⎩,得10x y =⎧⎨=⎩,所以1,0A(),故max 1201z =-⨯=.6.答案: A解析:不等式组所表示的可行域如图因为32z x y =+,所以322x z y =-+,易知截距2z越大,则z 越大, 平移直线32x y =-,当322x zy =-+经过A 点时截距最大,此时z 最大,由21y x x =⎧⎨=⎩,得12x y =⎧⎨=⎩即()1,2A所以max 31227z =⨯+⨯=. 故选:A. 7.答案:D解析:作出约束条件22124x y x y x y +⎧⎪--⎨⎪-⎩,所表示的平面区域,为如图所示的ABC 区域(包含边界).1y z x+=表示阴影区域内的点与点(01)P -,连线的斜率.结合图形可知,点(1,1)C 与点P 的连线的斜率最大,且2PC k =,点2,0A()与点P 的连线的斜率最小,且12PA k =,因此,1y z x +=的取值范围是1,22⎡⎤⎢⎥⎣⎦,故选D.8.答案:B解析:根据题意,作出不等式组表示的可行域如图中阴影部分所示.2z x y a =++可化为1222z a y x =-+-,作出直线12y x =-,平移该直线,当平移后的直线经过可行域内的点(1,2)A 时,z 取得最大值1, 把1,2,1x y z ===代入2z x y a =++,得4a =-. 9.答案:D解析:作出可行域如图中阴影部分所示,设22222(1)1z x y x x y =++=++-表示可行域内点(,)P x y 与点(1,0)A -距离的平方减去1,由题知min z k ≤,过A 作直线20x y +-=的垂线,由图可知,垂足在线段BC 上,因为点A 到直线的20x y +-==,所以2min 712z =-=,故选D.10.答案:B解析:x y ,满足约束条件20626x x y x y -≥⎧⎪+<⎨⎪-⎩,表示的可行域如图:目标函数441422y yzx x++==⨯++,目标函数的几何意义是可行域的点与()2,1--斜率的4倍,由题意可知:DA的斜率最大.由26xx y=⎧⎨+=⎩,可得()2,4A,则目标函数442yzx+=+的最大值为:444522⨯+=+.故选:B.11.答案:11 2 -解析:解法一:作出不等式组表示的平面区域,如图中阴影部分所示,作出直线20x y+=并平移,数形结合可知当平移后的直线经过点A时,2z x y=+取得最小值.由3020x yx y++=⎧⎨-+=⎩,解得5212xy⎧=-⎪⎪⎨⎪=-⎪⎩,得51,22A⎛⎫--⎪⎝⎭,则min51112222z⎛⎫=⨯--=-⎪⎝⎭.解法二:由3020x yx y++=⎧⎨-+=⎩,得5212xy⎧=-⎪⎪⎨⎪=-⎪⎩,此时112z=-;由301x yx++=⎧⎨=⎩,得14xy=⎧⎨=-⎩,此时2z=-;由120x x y =⎧⎨-+=⎩,得13x y =⎧⎨=⎩,此时5z =.综上可知,min 112z =-.12.答案:6-解析:解法一 作出可行域如图中ABC △所表示的阴影区域(包含边界),作出直线2 0y x -=,并平移,易知当平移后的直线经过点B 时z 取得最小值.由230,10,x y x y -+=⎧⎨--=⎩解得5,4,x y =⎧⎨=⎩所以min (5,4),4256B z =-⨯=-.解法二 由10,230,x y x y +-=⎧⎨-+=⎩解得1,34,3x y ⎧=-⎪⎪⎨⎪=⎪⎩此时412233z ⎛⎫=-⨯-= ⎪⎝⎭;由10,10,x y x y +-=⎧⎨--=⎩解得1,0,x y =⎧⎨=⎩此时0212z =-⨯=-;由230,10,x y x y -+=⎧⎨--=⎩解得5,4,x y =⎧⎨=⎩,此时4256z =-⨯=-,所以2z y x =-的最小为6-.13.答案:1解析: 由约束条件作出可行域,可知z 恒大于等于0,则目标函数3yz x =+的几何意义是可行域内(包括边界)的点与点()3,0-连线的斜率的绝对值的取值范围,由可行域可知直线3(1)0111,0(2)303AB AC k k ----====----, 故答案为1 .14.答案:170解析:设获得的利润为z 元,则2030z x y =+.由题意知,x y 满足约束条件0,,0,,3630,9663,x x y y x y x y ≥∈⎧⎪≥∈⎪⎨+≤⎪⎪+≤⎩N N 作出可行域,为图中阴影部分内的整数点,作出直线23y x =-并平移,由图可知,当平移后的直线过点()4,3时,z 取得最大值,max 170z =,故最多能获得的利润为170元.15.答案:3;[1,3]-解析:作出不等式组0,1,24,x x y x y ≥⎧⎪+≤⎨⎪-≤⎩所表示的平面区域,如图中阴影部分所示,其中()()()2,1,0,1,0,2A B C --,所以该不等式组所表示的平面区域的面积为13232⨯⨯=.作出直线0x y -=并平移,结合图形可知,当平移后的直线经过点()0,1B 时,z x y =-取得最小值,min 011z =-=-,当平移后的直线经过点()2,1A -时,z x y =-取得最大值,故()max 213z =--=,故z x y =-的取值范围为[1,3]-.。

高中数学人教B版必修5习题 第3章 不等式 3.1 第2课时(含答案)

高中数学人教B版必修5习题 第3章 不等式 3.1 第2课时(含答案)

第三章 3.1 第2课时一、选择题1.已知a 、b 、c 、d 均为实数,有下列命题 ①若ab <0,bc -ad >0,则c a -db >0;②若ab >0,c a -db >0,则bc -ad >0;③若bc -ad >0,c a -db >0,则ab >0.其中正确命题的个数是( ) A .0 B .1 C .2 D .3[答案] C[解析] ①∵ab <0,∴1ab<0,又∵bc -ad >0∴1ab ·(bc -ad )<0即c a -db <0,∴①错;②∵ab >0,c a -db >0,∴ab (c a -db )>0,即:bc -ad >0, ∴②正确;③∵c a -db >0∴bc -ad ab >0,又∵bc -ad >0∴ab >0∴③正确.2.若a <b <0,则下列不等式不能成立的是( ) A .1a >1bB .2a >2bC .|a |>|b |D .(12)a >(12)b[答案] B[解析] ∵a <b ,∴2a <2b ,故选B .3.设a +b <0,且a >0,则( ) A .a 2<-ab <b 2 B .b 2<-ab <a 2 C .a 2<b 2<-ab D .ab <b 2<a 2[答案] A[解析] ∵a +b <0,且a >0,∴0<a <-b , ∴a 2<-ab <b 2.4.已知a 2+a <0,那么a ,a 2,-a ,-a 2的大小关系是( ) A .a 2>a >-a 2>-a B .-a >a 2>-a 2>a C .-a >a 2>a >-a 2 D .a 2>-a >a >-a 2 [答案] B[解析] ∵a 2+a <0,∴0<a 2<-a ,∴0>-a 2>a , ∴a <-a 2<a 2<-a ,故选B .[点评] 可取特值检验,∵a 2+a <0,即a (a +1)<0,令a =-12,则a 2=14,-a 2=-14,-a =12,∴12>14>-14>-12,即-a >a 2>-a 2>a ,排除A 、C 、D ,选B . 5.已知|a |<1,则1a +1与1-a 的大小关系为( )A .1a +1<1-aB .1a +1>1-aC .1a +1≥1-aD .1a +1≤1-a [答案] C[解析] 解法一:检验法:令a =0,则1a +1=1-a ,排除A 、B ;令a =12,则1a +1>1-a ,排除D ,故选C .解法二:∵|a |<1,∴1+a >0, ∴11+a -(1-a )=a 21+a ≥0, ∴1a +1≥1-a . 6.若a >b >0,则下列不等式中总成立的是( )A .b a >b +1a +1B .a +1a >b +1bC .a +1b >b +1aD .2a +b a +2b >ab[答案] C[解析] 解法一:由a >b >0⇒0<1a <1b ⇒a +1b >b +1a,故选C .解法二:(特值法)令a =2,b =1,排除A 、D ,再令a =12,b =13,排除B .二、填空题7.已知三个不等式:①ab >0;②c a >db ;③bc >ad .以其中两个作条件,余下一个为结论,写出两个能成立的不等式命题________.[答案]⎭⎪⎬⎪⎫①②⇒③, ⎭⎪⎬⎪⎫①③⇒②,⎭⎪⎬⎪⎫②③⇒①中任选两个即可. [解析]c a >d b ⇒bc -ad ab>0.若③成立,则①成立∴②③⇒①;若③成立即bc >ad ,若①成立,则bc ab >ad ab ,∴c a >db∴①③⇒②;若①与②成立显然有③成立.8.实数a 、b 、c 、d 满足下列两个条件:①d >c ;②a +d <b +c .则a 、b 的大小关系为________. [答案] a <b[解析] ∵d >c ,∴d -c >0, 又∵a +d <b +c , ∴b -a >d -c >0, ∴b >a . 三、解答题9.(1)已知c >a >b >0.求证:a c -a >b c -b.(2)已知a 、b 、m 均为正数,且a <b ,求证:a +m b +m >ab .[解析] (1)∵c >a >b >0∴c -a >0,c -b >0,⎭⎪⎬⎪⎫由a >b >0⇒1a <1bc >0⇒c a <c b⎭⎬⎫⇒c -a a <c -bbc -a >0c -b >0⇒a c -a >bc -b .(2)证法一:a +m b +m -a b =m (b -a )b (b +m ),∵0<a <b ,m >0,∴m (b -a )b (b +m )>0,∴a +m b +m >ab .证法二:a +m b +m =a +b +m -b b +m =1+a -b b +m =1-b -ab +m >1-b -a b =ab.证法三:∵a 、b 、m 均为正数,∴要证a +m b +m >a b ,只需证(a +m )b >a (b +m ), 只需证ab +bm >ab +am , 只要证bm >am ,要证bm >am ,只需证b >a ,又已知b >a , ∴原不等式成立.10.已知2<m <4,3<n <5,求下列各式的取值范围. (1)m +2n ; (2)m -n ; (3)mn ; (4)m n. [解析] (1)∵3<n <5,∴6<2n <10. 又∵2<m <4,∴8<m +2n <14. (2)∵3<n <5,∴-5<-n <-3. 又∵2<m <4,∴-3<m -n <1. (3)∵2<m <4,3<n <5,∴6<mn <20.(4)∵3<n <5,∴15<1n <13.由2<m <4,可得25<m n <43.一、选择题1.已知a 、b 为非零实数,且a <b ,则下列命题成立的是( ) A .a 2<b 2 B .ab 2<a 2b C .1ab 2<1a 2bD .b a <ab[答案] C[解析] 对于A 可举反例,如-2<1,可得(-2)2>12故A 错,对于B 要使ab 2<a 2b 成立,即ab (b -a )<0成立,而此时ab 的符号不确定,故B 错.对于D 要使b a <ab 成立,即b 2-a 2ab <0成立,ab 的符号也不确定.故D 错.2.若-π2<α<β<π2,则α-β的取值范围是( )A .(-π,π)B .(0,π)C .(-π,0)D .{0}[答案] C[解析] ∵-π2<β<π2,∴-π2<-β<π2,又-π2<α<π2,∴-π<α-β<π,又α<β,∴α-β<0,∴-π<α-β<0.3.已知函数f (x )=x 3,x 1、x 2、x 3∈R ,x 1+x 2<0,x 2+x 3<0,x 3+x 1<0,那么f (x 1)+f (x 2)+f (x 3)的值( )A .一定大于0B .一定小于0C .等于0D .正负都有可能[答案] B[解析] ∵f (x )=x 3是单调递增函数,x 1<-x 2,x 2<-x 3,x 3<-x 1,∴f (x 1)<f (-x 2),f (x 2)<f (-x 3),f (x 3)<f (-x 1),又∵f (x )为奇函数,∴f (x 1)<-f (x 2),f (x 2)<-f (x 3),f (x 3)<-f (x 1), ∴f (x 1)+f (x 2)<0,f (x 2)+f (x 3)<0,f (x 3)+f (x 1)<0 ∴f (x 1)+f (x 2)+f (x 3)<0.4.若1a <1b <0,给出下列不等式:①a +b <ab ;②|a |>|b |;③a <b ;④b a +ab >2.其中正确的有( )A .1个B .2个C .3个D .4个[答案] B[解析] ∵1a <1b <0,∴a <0,b <0,a >b ,故③错;∴ab >0,∴a +b <0<ab ,故①成立; 又0>a >b ,∴|a |<|b |.∴②错;∵b a +a b =b 2+a 2ab =(a -b )2+2ab ab =(a -b )2ab+2 且a -b <0,ab >0,∴b a +ab >2,∴④成立.∴①④正确.选B . 二、填空题5.若a >0,b >0则a +b ________a +b (填上适当的等号或不等号). [答案] >[解析] ∵a >0,b >0,∴(a +b )2=a +b +2ab , (a +b )2=a +b ,∴(a +b )2>(a +b )2,即a +b >a +b .6.设a >b >0,m >0,n >0,则p =b a ,q =ab ,r =b +m a +m ,s =a +n b +n 的大小顺序是________________.[答案] p <r <s <q[解析] 取a =4,b =2,m =3,n =1,则p =12,q =2,r =57,s =53则p <r <s <q (特值探路).具体比较如下:p -r =b a -b +m a +m =(b -a )m a (a +m )<0,∴p <r .∵a >b >0,m >0,n >0, ∴a +m >b +m >0.a +n >b +n >0, ∴b +m a +m <1,a +n b +n>1,∴r <s . 或r -s =b +m a +m -a +n b +n =(b -a )(b +a +m +n )(a +m )(b +n )<0.∴r <s .s -q =a +n b +n -a b =(b -a )·nb (b +n )<0,∴s <q .∴p <r <s <q . 三、解答题7.如果30<x <42,16<y <24.分别求x +y 、x -2y 及xy 的取值范围.[解析] 46<x +y <66;-48<-2y <-32; ∴-18<x -2y <10;∵30<x <42,124<1y <116,∴3024<x y <4216,即54<x y <218. 8.已知a >0,b >0,a ≠b ,n ∈N 且n ≥2,比较a n +b n 与a n -1b +ab n-1的大小.[解析] (a n +b n )-(a n -1b +ab n -1)=a n -1(a -b )+b n -1(b -a )=(a -b )(a n -1-b n -1), (1)当a >b >0时,a n -1>b n -1,∴(a -b )(a n -1-b n -1)>0, (2)当0<a <b 时,a n -1<b n -1,∴(a -b )(a n -1-b n -1)>0,∴对任意a >0,b >0,a ≠b ,总有(a -b )(a n -1-b n -1)>0.∴a n +b n >a n -1b +ab n -1. 9. 某单位组织职工去某地参观学习,需包车前往.甲车队说:“如领队买全票一张,其余人可享受7.5折优惠.”乙车队说:“你们属团体票,按原价的8折优惠.”这两车队的收费标准、车型都是一样的,试根据此单位去的人数,比较两车队的收费哪家更优惠.[解析] 设该单位职工有n 人(n ∈N *),全票价为x 元,坐甲车需花y 1元,坐乙车需花y 2元,则y 1=x +34x ·(n -1)=14x +34xn ,y 2=45xn ,y 1-y 2=14x +34xn -45xn=14x -120xn =14x (1-n5). 当n =5时,y 1=y 2;当n >5时,y 1<y 2; 当n <5时,y 1>y 2.因此,当此单位去的人数为5人时,两车队收费相同;多于5人时,选甲车队更优惠;少于5人时,选乙车队更优惠.。

高中数学人教B版必修5习题 第3章 不等式 3.5 第3课时(含答案)

高中数学人教B版必修5习题 第3章 不等式 3.5 第3课时(含答案)

第三章 3.5 第3课时一、选择题1.已知O 为坐标原点,点M (3,1),若N (x ,y )满足不等式组⎩⎪⎨⎪⎧x ≥1y ≥0x +y ≤4,则OM →·ON →的最大值为( )A .6B .8C .10D .12[答案] D[解析] 目标函数为z =OM →·ON →=3x +y ,作出不等式组⎩⎨⎧x ≥1y ≥0x +y ≤4表示的可行域,如图所示.作出直线l 0:3x +y =0,再将直线l 0平移,当l 0的平行线l 1经过点A (4,0)时,z 取得最大值12,即OM →·ON →的最大值为12.2.设变量x 、y 满足约束条件⎩⎪⎨⎪⎧x +y ≤3x -y ≥-1y ≥1,则目标函数z =4x +2y 的最大值为( )A .12B .10C .8D .2[答案] B[解析] 画出可域如图中阴影部分所示,目标函数z =4x +2y 可转化为y =-2x +z2,作出直线y =-2x 并平移,显然当其过点A 时纵截距z2最大.解方程组⎩⎪⎨⎪⎧x +y =3y =1得A (2,1),∴z max =10.3.变量x 、y 满足下列条件⎩⎪⎨⎪⎧2x +y ≥122x +9y ≥362x +3y =24x ≥0,y ≥0,则使z =3x +2y 最小的(x ,y )是( )A .(4,4)B .(3,6)C .(9,2)D .(6,4)[答案] B[解析] 检验法:将A 、B 、C 、D 四选项中x ,y 代入z =3x +2y 按从小到大依次为A 、B 、D 、C .然后按A →B →D →C 次序代入约束条件中,A 不满足2x +3y =24,B 、C 、D 全部满足,经检验,只有(3,6)使z =3x +2y 最小,故选B .4.已知x 、y 满足约束条件⎩⎪⎨⎪⎧2x +y ≤4x +2y ≤4x ≥0,y ≥0,则z =x +y 的最大值是( )A .43B .83C .2D .4[答案] B[解析] 画出可行域为如图阴影部分.由⎩⎪⎨⎪⎧x +2y =42x +y =4,解得A (43,43),∴当直线z =x +y 经过可行域内点A 时,z 最大,且z max =83.5.某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3 t 、B 原料2 t ;生产每吨乙产品要用A 原料1 t 、B 原料3 t .销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元,该企业在一个生产周期内消耗A 原料不超过13 t ,B 原料不超过18 t ,那么该企业可获得最大利润是()A .12万元B .20万元C .25万元D .27万元[答案] D[解析] 设生产甲产品x t ,乙产品y t ,则获得的利润为z =5x +3y .由题意,得⎩⎪⎨⎪⎧x ≥0,y ≥03x +y ≤132x +3y ≤18,可行域如图阴影所示.由图可知当x 、y 在A 点取值时, z 取得最大值,此时x =3,y =4, z =5×3+3×4=27(万元).6.不等式组⎩⎪⎨⎪⎧|x +y |≤1|x -y |≤1表示的平面区域内整点的个数是( )A .0B .2C .4D .5[答案] D[解析] 不等式组 ⎩⎪⎨⎪⎧ |x +y |≤1|x -y |≤1变形为⎩⎪⎨⎪⎧-1≤x +y ≤1-1≤x -y ≤1,即⎩⎪⎨⎪⎧x +y ≤1x +y ≥-1x -y ≤1x -y ≥-1作出其平面区域如图.可见其整点有:(-1,0)、(0,1)、(0 ,0)、(0,-1)和(1,0)共五个.二、填空题7.设x 、y 满足约束条件⎩⎪⎨⎪⎧x +y ≤1y ≤xy ≥0,则z =2x +y 的最大值是________.[答案] 2[解析] 可行域如图,当直线z =2x +y 即y =-2x +z 经过点A (1,0)时,z max =2.8.若实数x 、y 满足不等式组⎩⎪⎨⎪⎧x +y ≥22x -y ≤4x -y ≥0,则2x +3y 的最小值是________.[答案] 4[解析] 画出可行域如图所示(图中阴影部分):当直线l 0平移到过A (2,0)点时,2x +3y 取最小值. (2x +3y )min =2×2+0=4. 三、解答题9.某工厂家具车间造A 、B 型两类桌子,每张桌子需木工和漆工两道工序完成.已知木工做一张A 、B 型桌子分别需要1 h 和2 h ,漆工油漆一张A 、B 型桌子分别需要3 h 和1 h ;又知木工、漆工每天工作分别不得超过8 h 和9 h ,而工厂造一张A 、B 型桌子分别获利润2千元和3千元,试问工厂每天应生产A 、B 型桌子各多少张,才能获得利润最大?[解析] 设每天生产A 型桌子x 张,B 型桌子y 张,则 ⎩⎪⎨⎪⎧x +2y ≤83x +y ≤9x ≥0,y ≥0(x ∈N ,y ∈N ),目标函数z =2x +3y .作出可行域如图所示.作直线l 0:2x +3y =0,平移直线l 0,当l 0经过可行域内的点M 时,目标函数z =2x +3y 取最大值.由⎩⎪⎨⎪⎧x +2y =83x +y =9,得M (2,3).答:每天应生产A 型桌子2张,B 型桌子3张才能获得最大利润.一、选择题1.若变量x 、y 满足⎩⎪⎨⎪⎧2x +y ≤40x +2y ≤50x ≥0y ≥0,则z =3x +2y 的最大值是( )A .90B .80C .70D .40[答案] C[解析] 由⎩⎨⎧2x +y ≤40x +2y ≤50x ≥0y ≥0得可行域如图所示.将l 0:3x +2y =0在可行域内平行移动,移动到经过B 点时,z =3x +2y 取最大值.由⎩⎪⎨⎪⎧x +2y =502x +y =40,得B 点坐标为(10,20), ∴z max =3×10+2×20=70,故选C . 2.已知x 、y 满足⎩⎪⎨⎪⎧x +2y -5≤0x ≥1y ≥0x +2y -3≥0,则yx的最值是( )A .最大值是2,最小值是1B .最大值是1,最小值是0C .最大值是2,最小值是0D .有最大值无最小值[答案] C[解析] 作出不等式组⎩⎨⎧x +2y -5≤0x ≥1y ≥0x +2y -3≥0表示的平面区域如图.yx表示可行域内点与原点连线的斜率.显然在A (1,2)处取得最大值2.在x 轴上的线段BC 上时取得最小值0,∴选C .二、填空题3.若x 、y 满足约束条件⎩⎪⎨⎪⎧x +y ≥0x -y +3≥00≤x ≤3,则z =2x -y 的最大值为________.[答案] 9[解析] 约束条件⎩⎨⎧x +y ≥0x -y +3≥00≤x ≤3的可行域为如图所示.作l 0:y =2x 在平面域内平移到A (3,-3)处时,z 取最大值9. 4.已知点P (x ,y )的坐标,满足条件⎩⎪⎨⎪⎧x +y ≤4y ≥xx ≥1,点O 为坐标原点,那么|PO |的最小值等于__________,最大值等于__________.[答案]2 10[解析] 点P (x ,y )满足的可行域为△ABC 区域.A (1,1),C (1,3).由图可得,|PO |min =|AO |=2;|PO |max =|CO |=10.三、解答题5.某公司招收男职员x 名,女职员y 名,x 和y 需满足约束条件⎩⎪⎨⎪⎧5x -11y ≥-222x +3y ≥92x ≤11,求目标函数z =10x +10y 的最大值.[解析] 画出不等式组⎩⎨⎧5x -11y ≥-222x +3y ≥92x ≤11表示的平面区域如图.由⎩⎪⎨⎪⎧x =1125x -11y =-22,解得A (112,92).而由题意知x 和y 必须是正整数.直线y =-x +z10由经过A 点向下平移经过的第一个整点为(5,4).∴z =10x +10y 的最大值为90.6. 关于x 的方程x 2+ax +2b =0的两根分别在区间(0,1)与(1,2)内,求b -2a -1的取值范围.[解析] b -2a -1可以转化为点(a ,b )与M (1,2)连线的斜率.由题知x 2+ax +2b =0两根在(0,1)与(1,2)内,可令f (x )=x 2+ax +2b .必满足f (0)>0、f (1)<0,f (2)>0,即⎩⎨⎧b >01+a +2b <02+a +b >0,由线性规划可知:点M (1,2)与阴影部分连线的斜率k 的取值范围为k AM <k <k BM , ∵A (-3,1)、B (-1,0), ∴14<b -2a -1<1.。

高中数学人教B版必修5习题 第3章 不等式 3.5 第1课时(含答案)

高中数学人教B版必修5习题 第3章 不等式 3.5 第1课时(含答案)

第三章 3.5 第1课时一、选择题1.不等式组⎩⎪⎨⎪⎧x >2x -y +3<0表示的平面区域是()[答案] D2.不等式x 2-y 2≥0表示的平面区域是()[答案] B3.完成一项装修工程,木工和瓦工的比例为23,请木工需付工资每人50 元,请瓦工需付工资每人40元,现有工资预算2 000元,设木工x 人,瓦工y 人,请工人数的约束条件是( )A .⎩⎪⎨⎪⎧2x +3y ≤5x 、y ∈N *B .⎩⎪⎨⎪⎧50x +40y ≤2000x y =23C .⎩⎪⎨⎪⎧5x +4y ≤200x y =23x 、y ∈N*D .⎩⎪⎨⎪⎧5x +6y <100x y =23[答案] C[解析] 因为请木工每人工资50元,瓦工每人工资40元,工资预算为2 000元,∴50x +40y ≤2 000即5x +4y ≤200.x 、y 表示人数∴x 、y ∈N *,∴答案为C .4.(2016·山东潍坊高二测试)不等式组⎩⎪⎨⎪⎧(x -y +1)(x +y +1)≥0-1≤x ≤4表示的平面区域是( ) A .两个三角形 B .一个三角形 C .梯形 D .等腰梯形[答案] B[解析] 如图,∵(x -y +1)(x +y +1)≥0表示如图A 所示的对角形区域.且两直线交于点A (-1,0).故添加条件-1≤x ≤4后表示的区域如图B .5.已知点(-3,-1)和(4,-6)在直线3x -2y -a =0的两侧,则a 的取值范围为( ) A .(-24,7) B .(-7,24)C .(-∞,-7)∪(24,+∞)D .(-∞,-24)∪(7,+∞) [答案] B[解析] ∵Ax +By +C >0与Ax +By +C <0分别表示直线Ax +By +C =0两侧的点的集合.∴(-9+2-a )·(12+12-a )<0∴-7<a <24.6.图中阴影部分表示的区域对应的二元一次不等式组为( )A .⎩⎪⎨⎪⎧x +y -1≥0x -2y +2≥0B .⎩⎪⎨⎪⎧x +y -1≤0x -2y +2≤0C .⎩⎪⎨⎪⎧x +y -1≥0x -2y +2≤0D .⎩⎪⎨⎪⎧x +y -1≤0x -2y +2≥0[答案] A[解析] 取原点O (0,0)检验满足x +y -1≤0,故异侧点应为x +y -1≥0,排除B 、D . O 点满足x -2y +2≥0,排除C . ∴选A . 二、填空题7.不等式|2x -y +m |<3表示的平面区域内包含点(0,0)和点(-1,1),则m 的取值范围是________.[答案] 0<m <3[解析] 将点(0,0)和(-1,1)代入不等式中解出0<m <3.8.用三条直线x +2y =2,2x +y =2,x -y =3围成一个三角形,则三角形内部区域(不包括边界)可用不等式表示为________.[答案] ⎩⎪⎨⎪⎧x +2y <22x +y >2x -y <3三、解答题9.画出不等式组⎩⎪⎨⎪⎧x +y -6≥0x -y ≥0y ≤3x <5表示的平面区域.[解析] 不等式x +y -6≥0表示在直线x +y -6=0上及右上方的点的集合,x -y ≥0表示在直线x -y =0上及右下方的点的集合,y ≤3表示在直线y =3上及其下方的点的集合,x<5表示直线x =5左方的点的集合,所以不等式组⎩⎪⎨⎪⎧x +y -6≥0x -y ≥0y ≤3x <5表示的平面区域为如图阴影部分.一、选择题1.在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧x +y -1≥0x -1≤0ax -y +1≥0(a 为常数)所表示的平面区域的面积等于2,则a 的值为( )A .-5B .1C .2D .3[答案] D[解析] 由⎩⎪⎨⎪⎧y =ax +1x =1,得A (1,a +1),由⎩⎪⎨⎪⎧ x =1x +y -1=0,得B (1,0), 由⎩⎪⎨⎪⎧y =ax +1x +y -1=0,得C (0,1). ∵S △ABC =2,且a >-1, ∴S △ABC =12|a +1|=2,∴a =3.2.若A 为不等式组⎩⎪⎨⎪⎧x ≤0y ≥0y -x ≤2表示的平面区域,则当a 从-2连续变化到1时,动直线x +y =a 扫过A 中的那部分区域的面积为( )A .34B .1C .74D .2[答案] C[解析] 如图所示,区域A 表示的平面区域为△OBC 内部及其边界组成的图形,当a 从-2连续变化到1时扫过的区域为四边形ODEC 所围成的区域.S 四边形ODEC =S △OBC -S △BDE =2-14=74.二、填空题3.点P (1,a )到直线x -2y +2=0的距离为355,且点P 在3x +y -3>0表示的区域内,则a =________.[答案] 3[解析] 由题意,得|1-2a +2|5=355,∴a =0或3,又点P 在3x +y -3>0表示区域内, ∴3+a -3>0,∴a >0,∴a =3.4.(2014·安徽文,13)不等式组⎩⎪⎨⎪⎧x +y -2≥0x +2y -4≤0x +3y -2≥0表示的平面区域的面积为________.[答案] 4[解析] 不等式组表示的平面区域如图阴影部分所示,由⎩⎪⎨⎪⎧x +3y -2=0x +2y -4=0,得A (8,-2).由x +y -2=0得B (0,2).又|CD |=2, 故S 阴影=12×2×2+12×2×2=4.三、解答题5.画出不等式组⎩⎪⎨⎪⎧x -2y +1>0x +2y +1≥01<|x -2|≤3表示的平面区域.[解析] 不等式x -2y +1>0表示直线x -2y +1=0右下方的点的集合; 不等式x +2y +1≥0表示直线x +2y +1=0上及其右上方的点的集合;不等式1<|x -2|≤3可化为-1≤x <1或3<x ≤5,它表示夹在两平行线x =-1和x =1之间或夹在两平行线x =3和x =5之间的带状区域,但不包括直线x =1和x =3上的点.所以,原不等式表示的区域如下图所示.6.求不等式组⎩⎪⎨⎪⎧x <32y ≥x3x +2y ≥63y <x +9表示的平面区域的面积.[解析] 不等式x <3表示直线x =3左侧点的集合.不等式2y ≥x ,即x -2y ≤0表示直线x -2y =0上及左上方点的集合.不等式3x +2y ≥6,即3x +2y -6≥0表示直线3x +2y -6=0上及右上方点的集合. 不等式3y <x +9即x -3y +9>0表示直线x -3y +9=0右下方点的集合. 综上可得,不等式组表示的平面区域如图阴影部分所示.因为平面区域为四边形形状,设顶点分别为A 、B 、C 、D ,如图. 可知A (0,3)、B (32,34)、C (3,32)、D (3,4)S 四边形ABCD =S 梯形AOED -S △COE -S △AOB =12(OA +DE )·OE -12OE ·CE -12OA ·x B =12×(3+4)×3-12×3×32-12×3×32=6.。

高中数学人教B版必修5习题第3章不等式3.3第1课时(含答案)

高中数学人教B版必修5习题第3章不等式3.3第1课时(含答案)

第三章 3.3 第 1课时一、选择题1.若会合A= { x|x2-x<0} , B= { x|0<x<3} ,则 A∩ B 等于 ()A . { x|0<x<1}B . { x|0<x<3}C. { x|1<x<3} D .?[答案 ]A[分析 ]∵A= { x|x2- x<0} = { x|0<x<1} ,B= { x|0<x<3} ,∴A∩ B= { x|0<x<1} .2.不等式 (1- x)(3+ x)>0 的解集是 ()A . (- 3,1)B . (-∞,- 3)∪ (1,+∞ ) C. (- 1,3) D . (-∞,- 1)∪ (3,+∞ ) [答案 ]A[分析 ]由 (1- x)(3+ x)>0 ,得(x- 1)(x+ 3)<0 ,∴-3< x<1,应选 A.3.不等式 x2+ 2x- 3≥ 0 的解集为 ()A . { x|x≤- 1 或 x≥3}B . { x|- 1≤ x≤3}C. { x|x≤- 3 或 x≥1} D . { x|- 3≤ x≤ 1}[答案 ]C[分析 ]由 x2+ 2x- 3≥ 0,得 (x+ 3)(x- 1)≥ 0,∴x≤- 3 或 x≥ 1,应选 C.4.不等式 x2- 4x- 5>0 的解集是 ()A . { x|x≥ 5 或 x≤- 1}B . { x|x>5 或 x<-1}C. { x|-1< x<5} D . { x|- 1≤ x≤ 5}[答案 ]B[分析 ]由 x2- 4x- 5>0,得 x>5 或 x<- 1,应选 B.5.不等式- x2≥x- 2 的解集为 ()A . { x|x≤- 2 或 x≥1}B . { x|- 2<x<1}C. { x|-2≤ x≤ 1} D .?[答案 ]C[分析 ]原不等式可化为x2+ x- 2≤ 0,即 (x+2)(x- 1)≤0,∴-2≤ x≤ 1.应选 C.6.(2016 大·连高二检测11},则 a、 c 的值为 () )不等式 ax2+ 5x+ c>0 的解集为 { x| <x<23A . a= 6, c= 1B . a=- 6, c=- 1C. a= 1, c= 1 D .a=- 1, c=- 6[答案 ]B1111511c[分析 ]由已知得 a<0 且3、2为方程 ax2+ 5x+ c= 0 的两根,故3+2=-a,3×2=a.解得 a=- 6, c=- 1,应选 B.二、填空题7.不等式 x2+ x-2<0 的解集为 ________.[答案 ]{ x|- 2<x<1}[分析 ]由 x2+ x- 2<0 ,得 (x+ 2)(x- 1)<0 ,∴-2<x<1,故原不等式的解集为 { x|- 2<x<1} .8.不等式 0≤ x2- 2x- 3<5 的解集为 ________.[答案 ]{ x|- 2< x≤- 1 或 3≤ x< 5}[分析 ]由 x2- 2x- 3≥ 0 得: x≤ -1 或 x≥ 3;由 x2- 2x- 3< 5 得- 2< x<4,∴-2< x≤ - 1 或 3≤ x< 5.∴原不等式的解集为{ x|- 2< x≤ - 1 或 3≤ x<5} .三、解答题9.若不等式ax2+ bx+ c>0 的解集为 { x|- 3<x<4} ,求不等式bx2+ 2ax- c- 3b<0 的解集.[分析 ]∵ax2+bx+c>0的解集为{ x|-3<x<4},∴a<0 且- 3 和 4 是方程 ax2+ bx+ c= 0 的两根,b-3+ 4=-a∴,c-3×4=ab=- a解得.c=- 12a- 2 -∴不等式 bx2+ 2ax-c- 3b<0可化为- ax2+ 2ax+ 15a<0,即 x2- 2x- 15<0,∴-3<x<5,∴所求不等式的解集为{ x|- 3<x<5} .10.解以下对于x 的不等式:(1)(5- x)(x+ 1)≥ 0;(2)- 4x2+ 18x-81≥ 0;4(3)-12x2+ 3x-5>0 ;(4)- 2x2+ 3x-2<0.[分析 ] (1) 原不等式化为(x-5)( x+ 1)≤ 0,∴-1≤ x≤ 5.∴故所求不等式的解集为{ x|-1≤ x≤ 5} .(2)原不等式化为4x2- 18x+814≤ 0,即(2x-9)2≤0,29∴x=4.9故所求不等式的解集为{ x|x=4} .(3)原不等式化为x2- 6x+10<0,即( x- 3)2+ 1<0,∴x∈ ?.故所求不等式的解集为?.(4)原不等式化为2x2- 3x+ 2>0 ,27即2(x-4) +8>0,∴x∈R .3故所求不等式的解集为R .一、选择题1.假如 ax2+ bx+ c>0 的解集为 { x|x<- 2或 x>4} ,那么对于函数f(x)= ax2+ bx+c 有 () A . f(5)< f(2)< f(- 1) B . f(2)< f(5)< f(- 1)C. f(2)< f(- 1)< f(5) D . f(- 1)< f(2)< f(5)[答案 ]C[分析 ]∵ax2+bx+ c>0 的解集为 { x<- 2或 x>4} .则 a>0且- 2 和 4 是方程 ax2+ bx+ c=0 的两根,b c∴-a= 2,a=- 8.∴函数 f(x)= ax2+ bx+c 的图象张口向上,对称轴为bx=-2a=1,∴f(5)> f(- 1)> f(2) ,应选 C.2.不等式 2x2+mx+ n>0 的解集是 { x|x>3 或 x<- 2} ,则 m、 n 的值分别是 () A . 2,12B.2,- 2C. 2,- 12 D .- 2,- 12[答案 ]D由题意知- 2、 3 是方程 2x2+mx+ n= 0 的两个根,因此-m[分析 ]2+ 3=-2,-2×3=n2,∴m=- 2,n=- 12.3.函数 y=log 12) 2x - 1 的定义域是 (A . [- 2,- 1)∪ (1, 2]B.[- 2,- 1)∪ (1, 2)C. [- 2,- 1)∪(1,2] D . (-2,- 1)∪ (1,2)[答案 ]A122[分析 ]∵log 2( x - 1)≥ 0,∴0< x-1≤ 1,∴1< x2≤ 2,∴1< x≤ 2或- 2≤ x<- 1.4.已知会合 A= { x|3x- 2- x2< 0} , B= { x|x- a< 0} 且 B A,则 a 的取值范围是 () A . a≤ 1 B . 1< a≤ 2C. a> 2 D .a≤ 2[答案 ]A[分析 ]A= { x|x< 1或 x> 2} , B= { x|x< a} ,∵B A,∴a≤ 1.二、填空题5.若对于 x 的不等式x2- ax- a≤- 3 的解集不是空集,则实数 a 的取值范围是 ________.[答案 ]a≤- 6 或 a≥ 2[分析 ]∵x2-ax-a≤ -3的解集不是空集,∴y= x2- ax- a+ 3 的图象与x 轴有交点,则=( -a) 2-4× 1× (- a+ 3)≥ 0,解得 a≤ - 6 或 a≥ 2.6.对于实数 x,当且仅当n≤ x<n+ 1(n∈ N +)时,规定 [x]= n,则不等式4[x] 2- 36[ x] + 45<0的解集为 ________.[答案 ]{ x|2≤ x<8}[分析 ]由4[x]2-36[ x]+45<0,3得2<[ x]<7.5 ,即 1.5<[ x]<7.5 ,故 2≤ [x]≤ 7,∴2≤ x<8.三、解答题7.已知不等式x2- 2x- 3<0 的解集为A,不等式x2+ x-6<0 的解集为B.(1)求 A∩ B;(2)若不等式x2+ ax+ b<0 的解集为 A∩B,求不等式ax2+ x+ b<0 的解集.[分析 ](1) 由 x2-2x- 3<0 ,得- 1<x<3 ,∴A= (- 1,3).由 x2+ x- 6<0 ,得- 3< x<2,∴B= (- 3,2),∴A∩ B= (- 1,2).1- a+b= 0(2)由题意,得,4+ 2a+ b= 0a=- 1解得.b=- 2∴-x2+ x-2<0 ,∴x2- x+2>0 ,∴不等式 x 2- x + 2>0 的解集为 R .8.已知不等式 ax 2+ bx +c>0 的解集为 { x|α<x<β} ,此中 β>α>0,求不等式 cx 2+ bx + a<0的解集.[分析 ]∵ax 2+bx + c>0 的解集为 { x|α<x<β},∴α、 β是方程 ax 2+ bx +c = 0 的两根,且a<0.cb∴αβ=a , α+β=- a ,∴c = a αβ, b =- a(α+ β).2 2∵cx + bx + a<0,∴a αβx-a(α+ β)x + a<0.2整理,得αβx- (α+ β)x + 1>0.1 1∵β>α>0,∴αβ>0, > ,∴x 2- (1+ 1)x + 1>0.α β αβ1 11的两根为11∵方程 x 2-( +)x += 0、.α βαβα β11111 , ∴x 2- ( + )x +>0 的解集为 { x|x> ,或 x< } α βαβ α β11 即不等式 cx 2+ bx + a<0 的解集为 { x|x> ,或 x< } .αβ。

高中数学人教B版必修5习题 第3章 不等式 3.1 第1课时(含答案)

高中数学人教B版必修5习题 第3章 不等式 3.1 第1课时(含答案)

第三章 3.1 第1课时一、选择题1.实数m 不超过2,是指( ) A .m >2 B .m ≥ 2 C .m <2 D .m ≤ 2[答案] D[解析] “不超过”就是“小于等于”,故选D . 2.设M =x 2,N =-x -1,则M 与N 的大小关系是( ) A .M >N B .M =N C .M <N D .与x 有关 [答案] A[解析] M -N =x 2+x +1=(x +12)2+34>0,∴M >N .3.已知a =2-5,b =5-2,c =5-25,那么下列各式正确的是( ) A .a <b <c B .a <c <b C .b <a <c D .c <a <b [答案] A[解析] ∵a <0,b >0,∴a <b .又∵c -b =7-35>0,∴c >b ,∴a <b <c .4. 如图,y =f (x )反映了某公司的销售收入y 万元与销量x 之间的函数关系,y =g (x )反映了该公司产品的销售成本与销售量之间的函数关系.当销量x 满足什么条件时,该公司赢利( )A .x >aB .x <aC .x ≥aD .0≤x ≤a[答案] A5.已知a <b <c ,且a +b +c =0,则( ) A .b 2-4ac >0B .b 2-4ac =0C .b 2-4ac <0D .b 2-4ac 的正负不确定[答案] A[解析] ∵a <b <c 且a +b +c =0,∴a <0,c >0 ∴ac <0,∴b 2-4ac >0.6.已知P =1a 2+a +1,Q =a 2-a +1,则P 、Q 的大小关系为( )A .P >QB .P <QC .P ≤QD .无法确定[答案] C[解析] P -Q =1a 2+a +1-a 2+a -1=1-a 4-a 3-a 2+a 3+a 2+a -a 2-a -1a 2+a +1=-a 4-a 2a 2+a +1=-a 2(a 2+1)a 2+a +1, ∵a 2+a +1=(a +12)2+34>0,-a 2(a 2+1)≤0,∴-a 2(a 2+1)a 2+a +1≤0,∴P ≤Q . 二、填空题7.设m =2a 2+2a +1,n =(a +1)2,则m 、n 的大小关系是________. [答案] m ≥n[解析] m -n =2a 2+2a +1-(a +1)2=a 2≥0.8.若(a +1)2>(a +1)3(a ≠-1),则实数a 的取值范围是________. [答案] a <0且a ≠-1[解析] ∵(a +1)2-(a +1)3=(a +1)2(-a ) =-a (a +1)2>0, ∴a <0且a ≠-1 三、解答题9.某矿山车队有4辆载重为10 t 的甲型卡车和7辆载重为6 t 的乙型卡车,有9名驾驶员.此车队每天至少要运360 t 矿石至冶炼厂,已知甲型卡车每辆每天往返6次,乙型卡车每辆每天可往返8次,写出满足上述所有不等关系的不等式.[解析] 设每天派出甲型卡车x 辆,乙型卡车y 辆,由题意,得⎩⎪⎨⎪⎧ x +y ≤910×6x +6×8y ≥3600≤x ≤40≤y ≤7x ∈N y ∈N,即⎩⎪⎨⎪⎧x +y ≤95x +4y ≥300≤x ≤40≤y ≤7x ∈N y ∈N.10.已知a >b >0,试比较a 2-b 2a 2+b2与a -ba +b 的大小.[解析] (作商法)∵a 2-b 2a 2+b 2>0,a -ba +b >0,a 2-b 2a 2+b 2a -b a +b=(a +b )2a 2+b 2=1+2aba 2+b 2>1, ∴a 2-b 2a 2+b 2>a -b a +b.一、选择题1.某电脑用户计划使用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘.根据需要,软件至少买3片,磁盘至少买2盒,则不同的选购方式有多少种?( )A .5种B .6种C .7种D .8种[答案] C[解析] 设购买软件、磁盘x 片、y 盒.依题意得⎩⎨⎧60x +70y ≤500x ≥3y ≥2x 、y ∈N*,即⎩⎨⎧6x +7y ≤50x ≥3y ≥2x 、y ∈N*.(1)当x =3时,7y ≤32,y ≤327,∵y ∈N +,∴y =2,y =3,y =4, 此时有3种选购方式. (2)当x =4时,7y ≤26,y ≤267, ∵y ∈N +,∴y =2,y =3, 此时有2种选购方式.(3)当x =5时,y ≤207,∵y ∈N +,∴y =2此时有1种选购方式.(4)当x =6时,y =2,此时有1种选购方式. ∴共有7种选购方式.2.如图,在一个面积为200 m 2的矩形地基上建造一个仓库,四周是绿地,仓库的长a 大于宽b 的4倍,则表示上面叙述的不等关系正确的是( )A .a >4bB .(a +4)(b +4)=200C .⎩⎪⎨⎪⎧a >4b (a +4)(b +4)=200D .⎩⎪⎨⎪⎧a >4b4ab =200[答案] C[解析] ∵仓库的长a 大于宽b 的4倍, ∴a >4b ,又∵矩形仓库的面积为200 m 2, ∴(a +4)(b +4)=200,故选C . 二、填空题3.若a >b ,则a 3与b 3的大小关系是________. [答案] a 3>b 3[解析] a 3-b 3=(a -b )(a 2+ab +b 2)24∵a >b ,∴a -b >0,(a +b 2)2+34b 2>0,∴a 3-b 3>0,∴a 3>b 3.4.若x =(a +3)(a -5),y =(a +2)(a -4),则x 与y 的大小关系是________. [答案] x <y[解析] x -y =(a +3)(a -5)-(a +2)(a -4)=(a 2-2a -15)-(a 2-2a -8)=-7<0,∴x <y .三、解答题5.已知a 、b 为正实数,试比较a b +ba与a +b 的大小. [解析] 解法一:(a b +b a )-(a +b )=(a b -b )+(ba -a )=a -b b +b -a a=(a -b )(a -b )ab=(a +b )(a -b )2ab.∵a 、b 为正实数,∴a +b >0,ab >0,(a -b )2≥0. ∴(a +b )(a -b )2ab ≥0,当且仅当a =b 时,等号成立.∴a b +ba≥a +b ,当且仅当a =b 时取等号. 解法二:(a b +b a )2=a 2b +b 2a +2ab ,(a +b )2=a +b +2ab ,∴(a b +b a )2-(a +b )2=a 2b +b 2a +2ab -(a +b +2ab )=a 3+b 3-ab (a +b )ab=(a +b )(a 2-ab +b 2)-ab (a +b )ab=(a +b )(a -b )2ab.∵a 、b 为正实数,∴(a +b )(a -b )2ab≥0,b a 又∵a b +ba>0,a +b >0, ∴a b +ba≥a +b ,当且仅当a =b 时取等号. 6.某粮食收购站分两个等级收购小麦.一级小麦价格为a (元/kg),二级小麦价格为b (元/kg)(b <a ),现有一级小麦m (kg),二级小麦n (kg),若以两种价格的平均数收购,是否合理?为什么?[解析] 若以a (元/kg)的价格收购小麦m (kg),以b (元/kg)的价格收购小麦n (kg),所需钱数设为x (元),那么x =am +bn .若以两种价格的平均数收购,所需钱数记为y (元),那么y =a +b 2(m +n ).则x -y =(am +bn )-a +b2(m +n )=12(a -b )(m -n ), 所以当m >n 时,x >y ,合理; 当m <n 时,x <y ,不合理; 当m =n 时,花钱一样多.7. (2016·广东模拟)设f (x )=1+log x 3,g (x )=2log x 2,其中x >0且x ≠1,试比较f (x )与g (x )的大小.[解析] f (x )-g (x )=(1+log x 3)-2log x 2 =log x (3x )-log x 4=log x 3x 4.(1)当x >43时,log x 3x4>0,故f (x )>g (x );(2)当x =43时,log x 3x4=0,故f (x )=g (x );(3)当1<x <43时,log x 3x4<0,所以f (x )<g (x );(4)当0<x <1时,log x 3x4>0,所以f(x)>g(x).综上知:当x>4或0<x<1时,f(x)>g(x);3时,f(x)<g(x);当1<x<43时,f(x)=g(x).当x=43。

高二数学必修五第三章单元测试题(附答案)

高二数学必修五第三章单元测试题(附答案)

高二数学必修五第三章单元测试题(附答案)数学在科学发展和现代生活生产中的应用特别宽泛,小编准备了高二数学必修五第三章单元测试,希望你喜爱。

第Ⅰ卷 (选择题共60分)一、选择题: (共 12 小题,每题 5 分,共 60 分 )在以下各小题的四个选项中,只有一项为哪一项切合题目要求的.请将选项前的字母填入下表相应的空格内.3.若实数 a、b 知足 a+b=2,是的最小值是( )A.18 B.6 C.2 D.24.假如不等式ax2+bx+c0) 的解集是 ,那么( )A.a0,且 b2-4acB.a0 且 b2-4ac0C.a0 且 b2-4acD.a0 且 b2-4ac05.若角,知足 - , - 则 2+的取值范围是 ( )A.(- , 0)B.(-)C.(-,)D.(-,)6.有以下四个命题,此中真命题为( )A. 原点与点 (2,3)在直线 2x+y+3=0 异侧B.点 (2,3)与点 (3,2) 在直线 x-y=0 的同侧C.原点与点 (2,1) 在直线 y-3x+2 =0 的异侧D.原点与点 (2,1)在直线 y-3x+2 =0 的同侧7.不等式 3x-2y-60 表示的地区在直线3x-2y-6=0的( )A. 右上方B.右下方C.左上方D.左下方8.由所确立的平面地区内整点的个数是( )A.3 个B.4 个C.5 个D.6 个9.已知 x、 y 知足拘束条件,Z=2x+y的最大值是( )A.-5B.C.3D.510.以下选项正确的选项是( )A. 函数 y=sin2a+ 4/sin2a 的最小值是4B.函数 y=sina+ 1/sina 的最小值是2C.++D.58 31211.若不等式ax2+bx+20 的解集是 {x| - } ,则 a + b 的值为( )A.-10B.-14C.10D. 1412.某厂生产甲、乙两种产品,产量分别为45 个、 50 个,所用原料为 A 、B 两种规格的金属板,每张面积分别为 2m2、3 m2,用 A 种金属板可造甲产品 3 个,乙产品 5 个,用 B 种金属板可造甲、乙产品各 6 个,则 A 、 B 两种金属板各取多少张时,能达成计划并能使总用料面积最省 ? A.A用3张,B用6张B.A 用4张,B用5张 C.A 用2张,B用6张D.A 用3张,B用5张第 II 卷(非选择题共 90 分)二、填空题: (共 4 小题,每题 5 分,共 20 分)请将答案直接添在题中的横线上.13.若 x5/4 ,则 y=4x-1+的最小值是___________14.已知: 015.已知等比数列 {an }中, a1+a2=9,a1a2a3=27,则 {an }的前 n 项和Sn= ___________16.已知,则不等式的解集是__________三、解答题: (共 6 小题,共 70 分 )解答应写出文字说明,证明过程或演算步骤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 不等式(A)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.原点和点(1,1)在直线x +y =a 两侧,则a 的取值范围是( ) A .a<0或a>2 B .0<a<2 C .a =0或a =2 D .0≤a≤22.若不等式ax 2+bx -2>0的解集为⎩⎨⎧⎭⎬⎫x|-2<x<-14,则a +b 等于( )A .-18B .8C .-13D .1 3.如果a ∈R ,且a 2+a<0,那么a ,a 2,-a ,-a 2的大小关系是( ) A .a 2>a>-a 2>-a B .-a>a 2>-a 2>a C .-a>a 2>a>-a 2 D .a 2>-a>a>-a 2 4.不等式1x <12的解集是( )A .(-∞,2)B .(2,+∞)C .(0,2)D .(-∞,0)∪(2,+∞)5.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y≤3,x -y≥-1,y≥1,则目标函数z =4x +2y 的最大值为( )A .12B .10C .8D .26.已知a 、b 、c 满足c<b<a ,且ac<0,那么下列选项中不一定成立的是( ) A .ab>ac B .c(b -a)>0 C .ab 2>cb 2 D .ac(a -c)<07.已知集合M ={x|x 2-3x -28≤0},N ={x|x 2-x -6>0},则M∩N 为( ) A .{x|-4≤x<-2或3<x≤7} B .{x|-4<x≤-2或3≤x<7} C .{x|x≤-2或x>3} D .{x|x<-2或x≥3}8.在R 上定义运算⊗:x ⊗y =x(1-y),若不等式(x -a)⊗(x +a)<1对任意实数x 成立,则( )A .-1<a<1B .0<a<2C .-12<a<32D .-32<a<129.在下列各函数中,最小值等于2的函数是( ) A .y =x +1xB .y =cos x +1cos x (0<x<π2)C .y =x 2+3x 2+2D .y =e x +4ex -210.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y≥1x -y≥-12x -y≤2,目标函数z =ax +2y 仅在点(1,0)处取得最小值,则a 的取值范围是( )A .(-1,2)B .(-4,2)C .(-4,0]D .(-2,4)11.若x ,y ∈R +,且2x +8y -xy =0,则x +y 的最小值为( ) A .12 B .14 C .16 D .1812.若实数x ,y 满足⎩⎪⎨⎪⎧x -y +1≤0,x>0,则yx -1的取值范围是( )A .(-1,1)B .(-∞,-1)∪(1,+∞)C .(-∞,-1)D .[1,+∞)二、填空题(本大题共4小题,每小题5分,共20分)13.若A =(x +3)(x +7),B =(x +4)(x +6),则A 、B 的大小关系为________. 14.不等式x -1x 2-x -30>0的解集是___________________________________________.15.如果a>b ,给出下列不等式:①1a <1b ;②a 3>b 3;③a 2>b 2;④22ac >22bc ; ⑤ab>1;⑥a 2+b 2+1>ab +a +b. 其中一定成立的不等式的序号是________.16.一批货物随17列货车从A 市以v 千米/小时匀速直达B 市,已知两地铁路线长400千米,为了安全,两列货车的间距不得小于⎝⎛⎭⎫v 202千米,那么这批货物全部运到B 市,最快需要________小时.三、解答题(本大题共6小题,共70分)17.(10分)若不等式(1-a)x2-4x+6>0的解集是{x|-3<x<1}.(1)解不等式2x2+(2-a)x-a>0;(2)b为何值时,ax2+bx+3≥0的解集为R.18.(12分)解关于x的不等式56x2+ax-a2<0.19.(12分)证明不等式:a,b,c∈R,a4+b4+c4≥abc(a+b+c).20.(12分)某投资人打算投资甲、乙两个项目,根据预测,甲、乙项目可能的最大盈利率分别为100%和50%,可能的最大亏损率分别为30%和10%,投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元,问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?21.(12分)设a∈R,关于x的一元二次方程7x2-(a+13)x+a2-a-2=0有两实根x1,x2,且0<x1<1<x2<2,求a的取值范围.22.(12分)某商店预备在一个月内分批购买每张价值为20元的书桌共36台,每批都购入x台(x是正整数),且每批均需付运费4元,储存购入的书桌一个月所付的保管费与每批购入书桌的总价值(不含运费)成正比,若每批购入4台,则该月需用去运费和保管费共52元,现在全月只有48元资金可以用于支付运费和保管费.(1)求该月需用去的运费和保管费的总费用f(x);(2)能否恰当地安排每批进货的数量,使资金够用?写出你的结论,并说明理由.第三章 不等式(A)答案1.B2.C [∵-2和-14是ax 2+bx -2=0的两根.∴⎩⎨⎧-2+⎝⎛⎭⎫-14=-b a -⎝⎛⎭⎫-14=-2a,∴⎩⎪⎨⎪⎧a =-4b =-9.∴a +b =-13.]3.B [∵a 2+a<0,∴a(a +1)<0, ∴-1<a<0.取a =-12,可知-a>a 2>-a 2>a.]4.D [1x <121x -12<02-x2x<0x -22x>0x<0或x>2.]5.B[画出可行域如图中阴影部分所示,目标函数z =4x +2y 可转化为y =-2x +z2,作出直线y =-2x 并平移,显然当其过点A 时纵截距z2最大.解方程组⎩⎪⎨⎪⎧x +y =3,y =1得A(2,1),∴z max =10.]6.C [∵c<b<a ,且ac<0,∴a>0,c<0.而b 与0的大小不确定,在选项C 中,若b =0, 则ab 2>cb 2不成立.]7.A [∵M ={x|x 2-3x -28≤0}={x|-4≤x≤7},N ={x|x 2-x -6>0}={x|x<-2或x>3}, ∴M∩N ={x|-4≤x<-2或3<x≤7}.] 8.C [(x -+a)=(x -a)(1-x --x 2+x +(a 2-a -1)<0恒成立Δ=1+4(a 2-a -1)<0-12<a<32.] 9.D [选项A 中,x>0时,y≥2,x<0时,y≤-2;选项B 中,cos x≠1,故最小值不等于2;选项C 中,x 2+3x 2+2=x 2+2+1x 2+2=x 2+2+1x 2+2,当x =0时,y min=322.] 10.B [作出可行域如图所示,直线ax +2y =z 仅在点(1,0)处取得最小值, 由图象可知-1<-a2<2,即-4<a<2.]11.D [由2x +8y -xy =0,得y(x -8)=2x , ∵x>0,y>0,∴x -8>0,得到y =2xx -8,则μ=x +y =x +2xx -8=x +-+16x -8=(x -8)+16x -8+10≥2-16x -8+10=18, 当且仅当x -8=16x -8,即x =12,y =6时取“=”.]12.B[可行域如图阴影,yx -1的几何意义是区域内点与(1,0)连线的斜率,易求得y x -1>1或yx -1<-1.]13.A<B14.{x|-5<x<1或x>6} 15.②⑥解析 ①若a>0,b<0,则1a >1b ,故①不成立;②∵y =x 3在x ∈R 上单调递增,且a>b.∴a 3>b 3,故②成立;③取a =0,b =-1,知③不成立;④当c =0时,ac 2=bc 2=0,2ac 2=2bc 2,故④不成立; ⑤取a =1,b =-1,知⑤不成立;⑥∵a 2+b 2+1-(ab +a +b)=12[(a -b)2+(a -1)2+(b -1)2]>0,∴a 2+b 2+1>ab +a +b ,故⑥成立. 16.8解析 这批货物从A 市全部运到B 市的时间为t ,则 t =400+16⎝⎛⎭⎫v 202v =400v +16v 400≥2400v ×16v400=8(小时), 当且仅当400v =16v400,即v =100时等号成立,此时t =8小时.17.解 (1)由题意知1-a<0且-3和1是方程(1-a)x 2-4x +6=0的两根,∴⎩⎨⎧1-a<041-a=-261-a =-3,解得a =3.∴不等式2x 2+(2-a)x -a>0即为2x 2-x -3>0,解得x<-1或x>32.∴所求不等式的解集为⎩⎨⎧⎭⎬⎫x|x<-1或x>32.(2)ax 2+bx +3≥0,即为3x 2+bx +3≥0,若此不等式解集为R ,则b 2-4×3×3≤0,∴-6≤b≤6. 18.解 原不等式可化为(7x +a)(8x -a)<0, 即⎝⎛⎭⎫x +a 7⎝⎛⎭⎫x -a8<0. ①当-a 7<a 8,即a>0时,-a 7<x<a 8;②当-a 7=a8,即a =0时,原不等式解集为;③当-a 7>a 8,即a<0时,a 8<x<-a7.综上知,当a>0时,原不等式的解集为⎩⎨⎧⎭⎬⎫x|-a 7<x<a 8;当a =0时,原不等式的解集为; 当a<0时,原不等式的解集为⎩⎨⎧⎭⎬⎫x|a8<x<-a 7.19.证明 ∵a 4+b 4≥2a 2b 2,b 4+c 4≥2b 2c 2,c 4+a 4≥2c 2a 2, ∴2(a 4+b 4+c 4)≥2(a 2b 2+b 2c 2+c 2a 2) 即a 4+b 4+c 4≥a 2b 2+b 2c 2+c 2a 2.又a 2b 2+b 2c 2≥2ab 2c ,b 2c 2+c 2a 2≥2abc 2,c 2a 2+a 2b 2≥2a 2bc. ∴2(a 2b 2+b 2c 2+c 2a 2)≥2(ab 2c +abc 2+a 2bc), 即a 2b 2+b 2c 2+c 2a 2≥abc(a +b +c). ∴a 4+b 4+c 4≥abc(a +b +c).20.解 设投资人分别用x 万元、y 万元投资甲、乙两个项目,由题意知⎩⎪⎨⎪⎧x +y≤10,0.3x +0.1y≤1.8,x≥0,y≥0.目标函数z =x +0.5y.上述不等式组表示的平面区域如图所示,阴影部分(含边界)即可行域.作直线l 0:x +0.5y =0,并作平行于直线l 0的一组直线x +0.5y =z ,z ∈R ,与可行域相交,其中有一条直线经过可行域上的M 点,且与直线x +0.5y =0的距离最大,这里M 点是直线x +y =10和0.3x +0.1y =1.8的交点.解方程组⎩⎪⎨⎪⎧x +y =10,0.3x +0.1y =1.8,得x =4,y =6,此时z =1×4+0.5×6=7(万元). ∵7>0,∴当x =4,y =6时,z 取得最大值.答 投资人用4万元投资甲项目、6万元投资乙项目,才能在确保亏损不超过1.8万元的前提下,使可能的盈利最大.21.解 设f(x)=7x 2-(a +13)x +a 2-a -2. 因为x 1,x 2是方程f(x)=0的两个实根, 且0<x 1<1,1<x 2<2,所以⎩⎪⎨⎪⎧,,⎩⎪⎨⎪⎧a 2-a -2>0,7-++a 2-a -2<0,28-++a 2-a -2>0⎩⎪⎨⎪⎧a 2-a -2>0,a 2-2a -8<0,a 2-3a>0⎩⎪⎨⎪⎧a<-1或a>2,-2<a<4,a<0或a>3-2<a<-1或3<a<4.所以a 的取值范围是{a|-2<a<-1或3<a<4}.22.解 (1)设题中比例系数为k ,若每批购入x 台,则共需分36x 批,每批价值20x.由题意f(x)=36x ·4+k·20x ,由x =4时,y =52,得k =1680=15.∴f(x)=144x +4x (0<x≤36,x ∈N +).(2)由(1)知f(x)=144x +4x (0<x≤36,x ∈N +).∴f(x)≥2144x·4x =48(元). 当且仅当144x =4x ,即x =6时,上式等号成立.故只需每批购入6张书桌,可以使资金够用.。

相关文档
最新文档