包河区二中2018-2019学年上学期高二数学12月月考试题含解析

合集下载

包河区第二高级中学2018-2019学年高二上学期第二次月考试卷数学

包河区第二高级中学2018-2019学年高二上学期第二次月考试卷数学

包河区第二高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 函数y=2x 2﹣e |x|在[﹣2,2]的图象大致为( )A. B. C.D.2. 极坐标系中,点P ,Q 分别是曲线C 1:ρ=1与曲线C 2:ρ=2上任意两点,则|PQ|的最小值为( ) A .1 B. C. D .23. 以A={2,4,6,7,8,11,12,13}中的任意两个元素分别为分子与分母构成分数,则这种分数是可约分数的概率是( ) A.B.C.D.4. 若复数12,z z 在复平面内对应的点关于y 轴对称,且12i z =-,则复数12z z 在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【命题意图】本题考查复数的几何意义、代数运算等基础知识,意在考查转化思想与计算能力. 5. 数列{a n }的通项公式为a n =﹣n+p ,数列{b n }的通项公式为b n =2n ﹣5,设c n=,若在数列{c n }中c 8>c n (n ∈N *,n ≠8),则实数p 的取值范围是( )A .(11,25)B .(12,16]C .(12,17)D .[16,17)6. 已知函数f (x )的定义域为[a ,b],函数y=f (x )的图象如下图所示,则函数f (|x|)的图象是( )A.B.C.D.7.若某程序框图如图所示,则该程序运行后输出的值是()A.7B.8C. 9D. 10【命题意图】本题考查阅读程序框图,理解程序框图的功能,本质是循环语句循环终止的条件. 8. 复数Z=(i 为虚数单位)在复平面内对应点的坐标是( )A .(1,3)B .(﹣1,3)C .(3,﹣1)D .(2,4)9. 已知等差数列{a n }中,a 6+a 8=16,a 4=1,则a 10的值是( ) A .15B .30C .31D .6410.函数f (x )=ax 2+bx 与f (x )=log x (ab ≠0,|a|≠|b|)在同一直角坐标系中的图象可能是( )A .B .C .D .11.已知条件p :x 2+x ﹣2>0,条件q :x >a ,若q 是p 的充分不必要条件,则a 的取值范围可以是( ) A .a ≥1 B .a ≤1 C .a ≥﹣1D .a ≤﹣312.已知抛物线C :28y x =的焦点为F ,P 是抛物线C 的准线上的一点,且P 的纵坐标为正数,Q 是直线PF 与抛物线C 的一个交点,若2PQ QF =,则直线PF 的方程为( )A .20x y --=B .20x y +-=C .20x y -+=D .20x y ++=二、填空题13.函数f (x )=2a x+1﹣3(a >0,且a ≠1)的图象经过的定点坐标是 .14.已知角α终边上一点为P (﹣1,2),则值等于 .15.设,则的最小值为 。

包河区二中学校2018-2019学年高二上学期二次月考试卷数学

包河区二中学校2018-2019学年高二上学期二次月考试卷数学

包河区第二中学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.“m=1”是“直线(m﹣2)x﹣3my﹣1=0与直线(m+2)x+(m﹣2)y+3=0相互垂直”的()A.必要而不充分条件B.充分而不必要条件C.充分必要条件D.既不充分也不必要条件2.已知α是三角形的一个内角,且,则这个三角形是()A.钝角三角形B.锐角三角形C.不等腰的直角三角形D.等腰直角三角形3.函数f(x)=ax2+2(a﹣1)x+2在区间(﹣∞,4]上为减函数,则a的取值范围为()A.0<a≤B.0≤a≤C.0<a<D.a>4.已知数列{a n}满足a1=1,a2=2,a n+2=(1+cos2)a n+sin2,则该数列的前10项和为()A.89 B.76 C.77 D.355.定义在R上的奇函数f(x)满足f(x+3)=f(x),当0<x≤1时,f(x)=2x,则f (2015)=()A.2 B.﹣2 C.﹣D.6.实数a=0.2,b=log0.2,c=的大小关系正确的是()A.a<c<b B.a<b<c C.b<a<c D.b<c<a7.(2011辽宁)设sin(+θ)=,则sin2θ=()A.﹣B.﹣C.D.8.抛物线x2=4y的焦点坐标是()A.(1,0)B.(0,1)C.()D.()9.等比数列{a n}中,a4=2,a5=5,则数列{lga n}的前8项和等于()A .6B .5C .3D .410.设i 是虚数单位,若z=cos θ+isin θ且对应的点位于复平面的第二象限,则θ位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 11.已知函数f (x )=31+|x|﹣,则使得f (x )>f (2x ﹣1)成立的x 的取值范围是( )A .B .C .(﹣,)D .12.若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如下图所示,则这个棱柱的体积为( )A .B .C .D .6二、填空题13.已知直线l 的参数方程是(t 为参数),曲线C 的极坐标方程是ρ=8cos θ+6sin θ,则曲线C 上到直线l 的距离为4的点个数有 个.14.已知正整数m 的3次幂有如下分解规律:113=;5323+=;119733++=;1917151343+++=;…若)(3+∈N m m 的分解中最小的数为91,则m 的值为 .【命题意图】本题考查了归纳、数列等知识,问题的给出比较新颖,对逻辑推理及化归能力有较高要求,难度中等.15.设数列{a n }的前n 项和为S n ,已知数列{S n }是首项和公比都是3的等比数列,则{a n }的通项公式a n = . 16.若的展开式中含有常数项,则n 的最小值等于 .17.在各项为正数的等比数列{a n }中,若a 6=a 5+2a 4,则公比q= .18.【启东中学2018届高三上学期第一次月考(10月)】已知函数()f x xlnx ax =-+在()0e ,上是增函数,函数()22xa g x e a =-+,当[]03x ln ∈,时,函数g (x )的最大值M 与最小值m 的差为32,则a 的值为______.三、解答题19.永泰青云山特产经营店销售某种品牌蜜饯,蜜饯每盒进价为8元,预计这种蜜饯以每盒20元的价格销售时该店一天可销售20盒,经过市场调研发现每盒蜜饯的销售价格在每盒20元的基础上每减少一元则增加销售4盒,每增加一元则减少销售1盒,现设每盒蜜饯的销售价格为x 元.(1)写出该特产店一天内销售这种蜜饯所获得的利润y (元)与每盒蜜饯的销售价格x 的函数关系式; (2)当每盒蜜饯销售价格x 为多少时,该特产店一天内利润y (元)最大,并求出这个最大值.20.某小区在一次对20岁以上居民节能意识的问卷调查中,随机抽取了100份问卷进行统计,得到相关的数(2)据了解到,全小区节能意识强的人共有350人,估计这350人中,年龄大于50岁的有多少人? (3)按年龄分层抽样,从节能意识强的居民中抽5人,再从这5人中任取2人,求恰有1人年龄在20至50岁的概率.21.已知函数f(x)=lnx+ax2+b(a,b∈R).(Ⅰ)若曲线y=f(x)在x=1处的切线为y=﹣1,求函数f(x)的单调区间;(Ⅱ)求证:对任意给定的正数m,总存在实数a,使函数f(x)在区间(m,+∞)上不单调;(Ⅲ)若点A(x1,y1),B(x2,y2)(x2>x1>0)是曲线f(x)上的两点,试探究:当a<0时,是否存在实数x0∈(x1,x2),使直线AB的斜率等于f'(x0)?若存在,给予证明;若不存在,说明理由.22.我省城乡居民社会养老保险个人年缴费分100,200,300,400,500,600,700,800,900,1000(单位:元)十个档次,某社区随机抽取了50名村民,按缴费在100:500元,600:1000元,以及年龄在20:39岁,4059(2)在缴费100:500元之间抽取的5人中,随机选取2人进行到户走访,求这2人的年龄都在40:59岁之间的概率.23.已知曲线C的参数方程为(y为参数),过点A(2,1)作平行于θ=的直线l 与曲线C分别交于B,C两点(极坐标系的极点、极轴分别与直角坐标系的原点、x轴的正半轴重合).(Ⅰ)写出曲线C的普通方程;(Ⅱ)求B、C两点间的距离.24.已知双曲线过点P(﹣3,4),它的渐近线方程为y=±x.(1)求双曲线的标准方程;(2)设F1和F2为该双曲线的左、右焦点,点P在此双曲线上,且|PF1||PF2|=41,求∠F1PF2的余弦值.包河区第二中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】B【解析】解:当m=0时,两条直线方程分别化为:﹣2x﹣1=0,2x﹣2y+3=0,此时两条直线不垂直,舍去;当m=2时,两条直线方程分别化为:﹣6y﹣1=0,4x+3=0,此时两条直线相互垂直;当m≠0,2时,两条直线相互垂直,则×=﹣1,解得m=1.综上可得:两条直线相互垂直的充要条件是:m=1,2.∴“m=1”是“直线(m﹣2)x﹣3my﹣1=0与直线(m+2)x+(m﹣2)y+3=0相互垂直”的充分不必要条件.故选:B.【点评】本题考查了直线相互垂直的充要条件、充要条件的判定,考查了分类讨论方法、推理能力与计算能力,属于中档题.2.【答案】A【解析】解:∵(sinα+cosα)2=,∴2sinαcosα=﹣,∵α是三角形的一个内角,则sinα>0,∴cosα<0,∴α为钝角,∴这个三角形为钝角三角形.故选A.【点评】把和的形式转化为乘积的形式,易于判断三角函数的符号,进而判断出角的范围,最后得出三角形的形状.3.【答案】B【解析】解:当a=0时,f(x)=﹣2x+2,符合题意当a≠0时,要使函数f(x)=ax2+2(a﹣1)x+2在区间(﹣∞,4]上为减函数∴⇒0<a≤综上所述0≤a≤故选B【点评】本题主要考查了已知函数再某区间上的单调性求参数a的范围的问题,以及分类讨论的数学思想,属于基础题.4.【答案】C【解析】解:因为a1=1,a2=2,所以a3=(1+cos2)a1+sin2=a1+1=2,a4=(1+cos2π)a2+sin2π=2a2=4.一般地,当n=2k﹣1(k∈N*)时,a2k+1=[1+cos2]a2k﹣1+sin2=a2k﹣1+1,即a2k+1﹣a2k﹣1=1.所以数列{a2k﹣1}是首项为1、公差为1的等差数列,因此a2k﹣1=k.当n=2k(k∈N*)时,a2k+2=(1+cos2)a2k+sin2=2a2k.所以数列{a2k}是首项为2、公比为2的等比数列,因此a2k=2k.该数列的前10项的和为1+2+2+4+3+8+4+16+5+32=77故选:C.5.【答案】B【解析】解:因为f(x+3)=f(x),函数f(x)的周期是3,所以f(2015)=f(3×672﹣1)=f(﹣1);又因为函数f(x)是定义R上的奇函数,当0<x≤1时,f(x)=2x,所以f(﹣1)=﹣f(1)=﹣2,即f(2015)=﹣2.故选:B.【点评】本题主要考查了函数的周期性、奇偶性的运用,属于基础题,解答此题的关键是分析出f(2015)=f (3×672﹣1)=f(﹣1).6.【答案】C【解析】解:根据指数函数和对数函数的性质,知log0.2<0,0<0.2<1,,即0<a<1,b<0,c>1,∴b<a<c.故选:C.【点评】本题主要考查函数数值的大小比较,利用指数函数,对数函数和幂函数的性质是解决本题的关键.7.【答案】A【解析】解:由sin(+θ)=sin cosθ+cos sinθ=(sinθ+cosθ)=,两边平方得:1+2sinθcosθ=,即2sinθcosθ=﹣,则sin2θ=2sinθcosθ=﹣.故选A【点评】此题考查学生灵活运用二倍角的正弦函数公式、两角和与差的正弦函数公式及特殊角的三角函数值化简求值,是一道基础题.8.【答案】B【解析】解:∵抛物线x2=4y中,p=2,=1,焦点在y轴上,开口向上,∴焦点坐标为(0,1),故选:B.【点评】本题考查抛物线的标准方程和简单性质的应用,抛物线x2=2py的焦点坐标为(0,),属基础题.9.【答案】D【解析】解:∵等比数列{a n}中a4=2,a5=5,∴a4•a5=2×5=10,∴数列{lga n}的前8项和S=lga1+lga2+…+lga8=lg(a1•a2…a8)=lg(a4•a5)4=4lg(a4•a5)=4lg10=4故选:D.【点评】本题考查等比数列的性质,涉及对数的运算,基本知识的考查.10.【答案】B【解析】解:∵z=cosθ+isinθ对应的点坐标为(cosθ,sinθ),且点(cosθ,sinθ)位于复平面的第二象限,∴,∴θ为第二象限角,故选:B.【点评】本题考查复数的几何意义,考查三角函数值的符号,注意解题方法的积累,属于中档题.11.【答案】A【解析】解:函数f(x)=31+|x|﹣为偶函数,当x≥0时,f(x)=31+x﹣∵此时y=31+x为增函数,y=为减函数,∴当x≥0时,f(x)为增函数,则当x≤0时,f(x)为减函数,∵f(x)>f(2x﹣1),∴|x|>|2x﹣1|,∴x2>(2x﹣1)2,解得:x∈,故选:A.【点评】本题考查的知识点是分段函数的应用,函数的奇偶性,函数的单调性,难度中档.12.【答案】B【解析】解:此几何体为一个三棱柱,棱柱的高是4,底面正三角形的高是,设底面边长为a,则,∴a=6,故三棱柱体积.故选B【点评】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是本棱柱的体积.三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.三视图是新课标的新增内容,在以后的高考中有加强的可能.二、填空题13.【答案】2【解析】解:由,消去t得:2x﹣y+5=0,由ρ=8cosθ+6sinθ,得ρ2=8ρcosθ+6ρsinθ,即x2+y2=8x+6y,化为标准式得(x﹣4)2+(y﹣3)2=25,即C是以(4,3)为圆心,5为半径的圆.又圆心到直线l 的距离是,故曲线C 上到直线l 的距离为4的点有2个, 故答案为:2.【点评】本题考查了参数方程化普通方程,考查了极坐标方程化直角坐标方程,考查了点到直线的距离公式的应用,是基础题.14.【答案】10【解析】3m 的分解规律恰好为数列1,3,5,7,9,…中若干连续项之和,32为连续两项和,33为接下来三项和,故3m 的首个数为12+-m m .∵)(3+∈N m m 的分解中最小的数为91,∴9112=+-m m ,解得10=m .15.【答案】 .【解析】解:∵数列{S n }是首项和公比都是3的等比数列,∴S n =3n. 故a 1=s 1=3,n ≥2时,a n =S n ﹣s n ﹣1=3n﹣3n ﹣1=2•3n ﹣1,故a n =.【点评】本题主要考查等比数列的通项公式,等比数列的前n 项和公式,数列的前n 项的和Sn 与第n 项an 的关系,属于中档题.16.【答案】5【解析】解:由题意的展开式的项为T r+1=C n r (x 6)n ﹣r()r=C n r=C n r令=0,得n=,当r=4时,n 取到最小值5故答案为:5.【点评】本题考查二项式的性质,解题的关键是熟练掌握二项式的项,且能根据指数的形式及题设中有常数的条件转化成指数为0,得到n 的表达式,推测出它的值.17.【答案】 2 .【解析】解:由a 6=a 5+2a 4得,a 4q 2=a 4q+2a 4,即q 2﹣q ﹣2=0,解得q=2或q=﹣1,又各项为正数,则q=2,故答案为:2.【点评】本题考查等比数列的通项公式,注意公比的符号,属于基础题.18.【答案】52【解析】()1ln f x x a =--+',因为()f x 在()0e ,上是增函数,即()0f x '≥在()0e ,上恒成立,ln 1a x ∴≥+,则()max ln 1a x ≥+,当x e =时,2a ≥,又()22xa g x e a =-+,令xt e =,则()[]2,1,32a g t t a t =-+∈, (1)当23a ≤≤时,()()2max 112a g t g a ==-+,()()2min 2a g t g a ==,则()()max min 312g t g t a -=-=,则52a =,(2)当3a >时,()()2max 112a g t g a ==-+,()()2min 332a g t g a ==-+,则()()max min 2g t g t -=,舍。

包河区二中学2018-2019学年高二上学期二次月考试卷数学

包河区二中学2018-2019学年高二上学期二次月考试卷数学

包河区第二中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 数列{a n }满足a n+2=2a n+1﹣a n ,且a 2014,a 2016是函数f (x )=+6x ﹣1的极值点,则log 2(a 2000+a 2012+a 2018+a 2030)的值是( ) A .2 B .3C .4D .5 2. 在等比数列{a n }中,已知a 1=3,公比q=2,则a 2和a 8的等比中项为( )A .48B .±48C .96D .±963. 已知a=,b=20.5,c=0.50.2,则a ,b ,c 三者的大小关系是( )A .b >c >aB .b >a >cC .a >b >cD .c >b >a4. 已知函数f (x )是定义在R 上的奇函数,若f (x )=,则关于x 的方程f (x )+a=0(0<a <1)的所有根之和为( )A .1﹣()aB .()a ﹣1C .1﹣2aD .2a ﹣15. 设f (x )与g (x )是定义在同一区间[a ,b]上的两个函数,若函数y=f (x )﹣g (x )在x ∈[a ,b]上有两个不同的零点,则称f (x )和g (x )在[a ,b]上是“关联函数”,区间[a ,b]称为“关联区间”.若f (x )=x 2﹣3x+4与g (x )=2x+m 在[0,3]上是“关联函数”,则m 的取值范围为( )A .(﹣,﹣2]B .[﹣1,0]C .(﹣∞,﹣2]D .(﹣,+∞)6. 过点),2(a M -,)4,(a N 的直线的斜率为21-,则=||MN ( ) A .10 B .180 C .36 D .567. 若1sin()34πα-=,则cos(2)3πα+=A 、78-B 、14- C 、14 D 、788. 抛物线y=﹣x 2上的点到直线4x+3y ﹣8=0距离的最小值是( )A .B .C .D .39. 如图,△ABC 所在平面上的点P n (n ∈N *)均满足△P n AB 与△P n AC 的面积比为3;1, =﹣(2x n +1)(其中,{x n }是首项为1的正项数列),则x 5等于( )A .65B .63C .33D .3110.已知偶函数f (x )满足当x >0时,3f (x )﹣2f()=,则f (﹣2)等于( )A.B.C.D.11.已知直线l的参数方程为1cos sin x t y t αα=+⎧⎪⎨=⎪⎩(t 为参数,α为直线l 的倾斜角),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为4sin()3πρθ=+,直线l 与圆C 的两个交点为,A B ,当||AB 最小时,α的值为( )A .4πα=B .3πα=C .34πα=D .23πα=12.有一学校高中部有学生2000人,其中高一学生800人,高二学生600人,高三学生600人,现采用分层抽样的方法抽取容量为50的样本,那么高一、高二、高三年级抽取的人数分别为( ) A .15,10,25 B .20,15,15C .10,10,30D .10,20,20二、填空题13.已知函数f (x )=,则关于函数F (x )=f (f (x ))的零点个数,正确的结论是 .(写出你认为正确的所有结论的序号)①k=0时,F (x )恰有一个零点.②k <0时,F (x )恰有2个零点.③k >0时,F (x )恰有3个零点.④k >0时,F (x )恰有4个零点.14.已知正方体ABCD ﹣A 1B 1C 1D 1的一个面A 1B 1C 1D 1在半径为的半球底面上,A 、B 、C 、D 四个顶点都在此半球面上,则正方体ABCD ﹣A 1B 1C 1D 1的体积为 .15.设a 抛掷一枚骰子得到的点数,则方程x 2+ax+a=0有两个不等实数根的概率为 .16.抛物线y 2=6x ,过点P (4,1)引一条弦,使它恰好被P 点平分,则该弦所在的直线方程为 .17.设函数f(x)=则函数y=f(x)与y=的交点个数是.18.如图,△ABC是直角三角形,∠ACB=90°,PA⊥平面ABC,此图形中有个直角三角形.三、解答题19.已知a,b,c分别为△ABC三个内角A,B,C的对边,且满足2bcosC=2a﹣c.(Ⅰ)求B;(Ⅱ)若△ABC的面积为,b=2求a,c的值.20.已知,且.(1)求sinα,cosα的值;(2)若,求sinβ的值.21.如图,在三棱柱ABC﹣A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.(Ⅰ)求证:AA1⊥平面ABC;(Ⅱ)求证二面角A1﹣BC1﹣B1的余弦值;(Ⅲ)证明:在线段BC1上存在点D,使得AD⊥A1B,并求的值.22.(本小题满分12分)2014年7月16日,中国互联网络信息中心发布《第三十四次中国互联网发展状况报告》,报告显示:我国网络购物用户已达3.32亿.为了了解网购者一次性购物金额情况,某统计部门随机抽查了6月1日这一天100名网购者的网购情况,得到如下数据统计表.已知网购金额在2000元以上(不含2000元)的频率为0.4.(Ⅰ)确定x,y,p,q的值;(Ⅱ)为进一步了解网购金额的多少是否与网龄有关,对这100名网购者调查显示:购物金额在2000元以上的网购者中网龄3年以上的有35人,购物金额在2000元以下(含2000元)的网购者中网龄不足3年的有20人.①请将列联表补充完整;(参考公式:()()()()()2n ad bca b c d a c b d-K=++++,其中n a b c d=+++)23.已知等比数列中,。

包河区第二高级中学2018-2019学年高三上学期12月月考数学试卷

包河区第二高级中学2018-2019学年高三上学期12月月考数学试卷

包河区第二高级中学2018-2019学年高三上学期12月月考数学试卷班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知数列的首项为,且满足,则此数列的第4项是( ){}n a 11a =11122n n n a a +=+A .1B . C.D .1234582. 在△ABC 中,AB 边上的中线CO=2,若动点P 满足=(sin 2θ)+(cos 2θ)(θ∈R ),则(+)•的最小值是()A .1B .﹣1C .﹣2D .03. 设F 1,F 2为椭圆=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y 轴上,则的值为()A .B .C .D .4. 已知正△ABC 的边长为a ,那么△ABC 的平面直观图△A ′B ′C ′的面积为( )A .B .C .D .5. 在极坐标系中,圆的圆心的极坐标系是( )。

AB C D6. 用一平面去截球所得截面的面积为2π,已知球心到该截面的距离为1,则该球的体积是( )A .πB .2πC .4πD .π7. 下列哪组中的两个函数是相等函数( )A .B .()()4f x x =g ()()24=,22x f x g x x x -=-+C .D .()()1,01,1,0x f x g x x >⎧==⎨<⎩()()=f x x x =,g 8. 如图甲所示, 三棱锥 的高 ,分别在P ABC -8,3,30PO AC BC ACB ===∠=,M N BC和上,且,图乙的四个图象大致描绘了三棱锥的体积与PO (),203CM x PN x x ==∈(,N AMC -y 的变化关系,其中正确的是()A .B . C. D .1111]9. 设是偶函数,且在上是增函数,又,则使的的取值范围是( )()f x (0,)+∞(5)0f =()0f x >A .或 B .或C .D .或50x -<<5x >5x <-5x >55x -<<5x <-05x <<10.冶炼某种金属可以用旧设备和改造后的新设备,为了检验用这两种设备生产的产品中所含杂质的关系,调查结果如下表所示.杂质高杂质低旧设备37121新设备22202根据以上数据,则()A .含杂质的高低与设备改造有关B .含杂质的高低与设备改造无关C .设备是否改造决定含杂质的高低D .以上答案都不对二、填空题11.已知数列{a n }满足a 1=1,a 2=2,a n+2=(1+cos 2)a n +sin 2,则该数列的前16项和为 .12.已知关于的不等式20x ax b ++<的解集为(1,2),则关于的不等式210bx ax ++>的解集为___________.13.函数的定义域为 .14.已知tan β=,tan (α﹣β)=,其中α,β均为锐角,则α= .15.命题“若1x ≥,则2421x x -+≥-”的否命题为.16.已知x ,y 满足条件,则函数z=﹣2x+y 的最大值是 .三、解答题17.【淮安市淮海中学2018届高三上第一次调研】已知函数.()133x x af x b+-+=+(1)当时,求满足的的取值;1a b ==()3xf x =x (2)若函数是定义在上的奇函数()f x R ①存在,不等式有解,求的取值范围;t R ∈()()2222f t t f t k -<-k ②若函数满足,若对任意,不等式恒成立,()g x ()()()12333xx f x g x -⎡⎤⋅+=-⎣⎦x R ∈()()211g x m g x ≥⋅-求实数的最大值.m 18.如图的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm ).(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;(2)按照给出的尺寸,求该多面体的体积;(3)在所给直观图中连结BC ′,证明:BC ′∥面EFG .19. (本题满分12分)在如图所示的几何体中,四边形为矩形,直线平面,ABCD ⊥AF ABCD ,AB EF //,点在棱上.12,2====EF AF AB AD P DF (1)求证:;BF AD ⊥(2)若是的中点,求异面直线与所成角的余弦值;P DF BE CP(3)若的余弦值.FP =C APD --20.已知函数f (x )=lnx ﹣a (1﹣),a ∈R .(Ⅰ)求f (x )的单调区间;(Ⅱ)若f (x )的最小值为0.(i )求实数a 的值;(ii )已知数列{a n }满足:a 1=1,a n+1=f (a n )+2,记[x]表示不大于x 的最大整数,求证:n >1时[a n ]=2. 21.设集合A={x|0<x﹣m<3},B={x|x≤0或x≥3},分别求满足下列条件的实数m的取值范围.(1)A∩B=∅;(2)A∪B=B.22.如图所示,已知+=1(a>>0)点A(1,)是离心率为的椭圆C:上的一点,斜率为的直线BD交椭圆C于B、D两点,且A、B、D三点不重合.(Ⅰ)求椭圆C的方程;(Ⅱ)求△ABD面积的最大值;(Ⅲ)设直线AB、AD的斜率分别为k1,k2,试问:是否存在实数λ,使得k1+λk2=0成立?若存在,求出λ的值;否则说明理由.包河区第二高级中学2018-2019学年高三上学期12月月考数学试卷(参考答案)一、选择题1.【答案】B【解析】2.【答案】C【解析】解:∵=(sin2θ)+(cos2θ)(θ∈R),且sin2θ+cos2θ=1,∴=(1﹣cos2θ)+(cos2θ)=+cos2θ•(﹣),即﹣=cos2θ•(﹣),可得=cos2θ•,又∵cos2θ∈[0,1],∴P在线段OC上,由于AB边上的中线CO=2,因此(+)•=2•,设||=t,t∈[0,2],可得(+)•=﹣2t(2﹣t)=2t2﹣4t=2(t﹣1)2﹣2,∴当t=1时,(+)•的最小值等于﹣2.故选C.【点评】本题着重考查了向量的数量积公式及其运算性质、三角函数的图象与性质、三角恒等变换公式和二次函数的性质等知识,属于中档题.3.【答案】C【解析】解:F1,F2为椭圆=1的两个焦点,可得F1(﹣,0),F2().a=2,b=1.点P在椭圆上,若线段PF1的中点在y轴上,PF1⊥F1F2,|PF2|==,由勾股定理可得:|PF1|==.==.故选:C.【点评】本题考查椭圆的简单性质的应用,考查计算能力.4.【答案】D【解析】解:∵正△ABC的边长为a,∴正△ABC的高为,画到平面直观图△A′B′C′后,“高”变成原来的一半,且与底面夹角45度,∴△A′B′C′的高为=,∴△A′B′C′的面积S==.故选D.【点评】本题考查平面图形的直观图的性质和应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.5.【答案】B【解析】,圆心直角坐标为(0,-1),极坐标为,选B。

包河区第一高级中学2018-2019学年上学期高二数学12月月考试题含答案

包河区第一高级中学2018-2019学年上学期高二数学12月月考试题含答案

包河区第一高级中学2018-2019学年上学期高二数学12月月考试题含答案 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知定义域为R 的偶函数)(x f 满足对任意的R x ∈,有)1()()2(f x f x f -=+,且当]3,2[∈x 时,18122)(2-+-=x x x f .若函数)1(log )(+-=x x f y a 在),0(+∞上至少有三个零点,则实数的取值范围是( )111] A .)22,0( B .)33,0( C .)55,0( D .)66,0(2. 设公差不为零的等差数列{}n a 的前n 项和为n S ,若4232()a a a =+,则74S a =( ) A .74 B .145C .7D .14 【命题意图】本题考查等差数列的通项公式及其前n 项和,意在考查运算求解能力.3. 已知直线l 1 经过A (﹣3,4),B (﹣8,﹣1)两点,直线l 2的倾斜角为135°,那么l 1与l 2( ) A .垂直 B .平行 C .重合 D .相交但不垂直 4.设集合,则A ∩B 等于( )A .{1,2,5}B .{l ,2,4,5}C .{1,4,5}D .{1,2,4}5. 满足集合M ⊆{1,2,3,4},且M ∩{1,2,4}={1,4}的集合M 的个数为( ) A .1B .2C .3D .46. 已知函数f (x )=x 3+(1﹣b )x 2﹣a (b ﹣3)x+b ﹣2的图象过原点,且在原点处的切线斜率是﹣3,则不等式组所确定的平面区域在x 2+y 2=4内的面积为( )A. B.C .πD .2π7.已知函数()cos (0)f x x x ωωω+>,()y f x =的图象与直线2y =的两个相邻交点的距离等于π,则()f x 的一条对称轴是( )A .12x π=-B .12x π=C .6x π=-D .6x π=8. 两个随机变量x ,y 的取值表为若x ,y 具有线性相关关系,且y ^=bx +2.6,则下列四个结论错误的是( )A .x 与y 是正相关B .当y 的估计值为8.3时,x =6C .随机误差e 的均值为0D .样本点(3,4.8)的残差为0.659. 已知函数f (x )=⎩⎨⎧a x -1,x ≤1log a1x +1,x >1(a >0且a ≠1),若f (1)=1,f (b )=-3,则f (5-b )=( ) A .-14B .-12C .-34D .-5410.直线2x+y+7=0的倾斜角为( ) A .锐角 B .直角 C .钝角 D .不存在11.函数y=的图象大致是( )A .B .C .D .12.△ABC 中,A (﹣5,0),B (5,0),点C 在双曲线上,则=( )A .B .C .D .± 二、填空题13.已知双曲线的标准方程为,则该双曲线的焦点坐标为, 渐近线方程为 .14.一个正四棱台,其上、下底面均为正方形,边长分别为2cm 和4cm ,侧棱长为2cm ,则其表面积为__________2cm .15.已知关于的不等式20x ax b ++<的解集为(1,2),则关于的不等式210bx ax ++>的解集为___________.16.长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,则这个球的表面积是 .17.无论m 为何值时,直线(2m+1)x+(m+1)y ﹣7m ﹣4=0恒过定点 . 18.若点p (1,1)为圆(x ﹣3)2+y 2=9的弦MN 的中点,则弦MN 所在直线方程为三、解答题19.已知不等式ax 2﹣3x+6>4的解集为{x|x <1或x >b},(1)求a ,b ; (2)解不等式ax 2﹣(ac+b )x+bc <0.20.(本小题满分12分)已知函数2()(21)ln f x x a x a x =-++(a R ∈).(I )若12a >,求)(x f y =的单调区间; (II )函数()(1)g x a x =-,若0[1,]x e ∃∈使得00()()f x g x ≥成立,求实数a 的取值范围.21.【南师附中2017届高三模拟二】如下图扇形AOB 是一个观光区的平面示意图,其中AOB ∠为23π,半径OA 为1km ,为了便于游客观光休闲,拟在观光区内铺设一条从入口A 到出口B 的观光道路,道路由圆弧AC 、线段CD 及线段BD 组成.其中D 在线段OB 上,且//CD AO ,设AOC θ∠=.(1)用θ表示CD的长度,并写出θ的取值范围;(2)当θ为何值时,观光道路最长?22.若数列{a n}的前n项和为S n,点(a n,S n)在y=x的图象上(n∈N*),(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若c1=0,且对任意正整数n都有,求证:对任意正整数n≥2,总有.23.在平面直角坐标系中,△ABC各顶点的坐标分别为:A(0,4);B(﹣3,0),C(1,1)(1)求点C到直线AB的距离;(2)求AB边的高所在直线的方程.24.(1)已知f(x)的定义域为[﹣2,1],求函数f(3x﹣1)的定义域;(2)已知f(2x+5)的定义域为[﹣1,4],求函数f(x)的定义域.包河区第一高级中学2018-2019学年上学期高二数学12月月考试题含答案(参考答案) 一、选择题1. 【答案】B 【解析】试题分析:()()1)2(f x f x f -=+ ,令1-=x ,则()()()111f f f --=,()x f 是定义在R 上的偶函数,()01=∴f ()()2+=∴x f x f .则函数()x f 是定义在R 上的,周期为的偶函数,又∵当[]3,2∈x 时,()181222-+-=x x x f ,令()()1log +=x x g a ,则()x f 与()x g 在[)+∞,0的部分图象如下图,()()1log +-=x x f y a 在()+∞,0上至少有三个零点可化为()x f 与()x g 的图象在()+∞,0上至少有三个交点,()x g 在()+∞,0上单调递减,则⎩⎨⎧-><<23log 10aa ,解得:330<<a 故选A .考点:根的存在性及根的个数判断.【方法点晴】本题是一道关于函数零点的题目,关键是结合数形结合的思想进行解答.根据已知条件推导可得()x f 是周期函数,其周期为,要使函数()()1log +-=x x f y a 在()+∞,0上至少有三个零点,等价于函数()x f 的图象与函数()1log +=x y a 的图象在()+∞,0上至少有三个交点,接下来在同一坐标系内作出图象,进而可得的范围.2. 【答案】C.【解析】根据等差数列的性质,4231112()32(2)a a a a d a d a d=+⇒+=+++,化简得1a d =-,∴1741767142732a dS d a a d d⋅+===+,故选C.3. 【答案】A【解析】解:由题意可得直线l 1的斜率k 1==1,又∵直线l 2的倾斜角为135°,∴其斜率k 2=tan135°=﹣1,显然满足k1•k2=﹣1,∴l1与l2垂直故选A4.【答案】B【解析】解:∵集合,当k=0时,x=1;当k=1时,x=2;当k=5时,x=4;当k=8时,x=5,∴A∩B={1,2,4,5}.故选B.【点评】本题考查集合的交集的运算,是基础题.解题时要认真审题,注意列举法的合理运用.5.【答案】B【解析】解:∵M∩{1,2,4}={1,4},∴1,4是M中的元素,2不是M中的元素.∵M⊆{1,2,3,4},∴M={1,4}或M={1,3,4}.故选:B.6.【答案】B【解析】解:因为函数f(x)的图象过原点,所以f(0)=0,即b=2.则f(x)=x3﹣x2+ax,函数的导数f′(x)=x2﹣2x+a,因为原点处的切线斜率是﹣3,即f′(0)=﹣3,所以f′(0)=a=﹣3,故a=﹣3,b=2,所以不等式组为则不等式组确定的平面区域在圆x2+y2=4内的面积,如图阴影部分表示,所以圆内的阴影部分扇形即为所求.∵k OB =﹣,k OA =,∴tan ∠BOA==1,∴∠BOA=,∴扇形的圆心角为,扇形的面积是圆的面积的八分之一,∴圆x 2+y 2=4在区域D 内的面积为×4×π=,故选:B【点评】本题主要考查导数的应用,以及线性规划的应用,根据条件求出参数a ,b 的是值,然后借助不等式区域求解面积是解决本题的关键.7. 【答案】D 【解析】试题分析:由已知()2sin()6f x x πω=+,T π=,所以22πωπ==,则()2sin(2)6f x x π=+,令 2,62x k k Z πππ+=+∈,得,26k x k Z ππ=+∈,可知D 正确.故选D .考点:三角函数()sin()f x A x ωϕ=+的对称性. 8. 【答案】【解析】选D.由数据表知A 是正确的,其样本中心为(2,4.5),代入y ^=bx +2.6得b =0.95,即y ^=0.95x +2.6,当y ^=8.3时,则有8.3=0.95x +2.6,∴x =6,∴B 正确.根据性质,随机误差e 的均值为0,∴C 正确.样本点(3,4.8)的残差e ^=4.8-(0.95×3+2.6)=-0.65,∴D 错误,故选D. 9. 【答案】【解析】解析:选C.由题意得a -1=1,∴a =2. 若b ≤1,则2b -1=-3,即2b =-2,无解.∴b >1,即有log 21b +1=-3,∴1b +1=18,∴b =7.∴f (5-b )=f (-2)=2-2-1=-34,故选C.10.【答案】C【解析】【分析】设直线2x+y+7=0的倾斜角为θ,则tanθ=﹣2,即可判断出结论.【解答】解:设直线2x+y+7=0的倾斜角为θ,则tanθ=﹣2,则θ为钝角.故选:C.11.【答案】C【解析】解:∵f(﹣x)==﹣f(x),∴函数y=的图象关于原点对称,故排除B,当x→+∞时,y→0,且为正值,故排除A、D,故选C.【点评】本题考查了函数的图象的判断,常利用排除法.12.【答案】D【解析】解:△ABC中,A(﹣5,0),B(5,0),点C在双曲线上,∴A与B为双曲线的两焦点,根据双曲线的定义得:|AC﹣BC|=2a=8,|AB|=2c=10,则==±=±.故选:D.【点评】本题考查了正弦定理的应用问题,也考查了双曲线的定义与简单性质的应用问题,是基础题目.二、填空题13.【答案】(±,0)y=±2x.【解析】解:双曲线的a=2,b=4,c==2,可得焦点的坐标为(±,0),渐近线方程为y=±x,即为y=±2x.故答案为:(±,0),y=±2x.【点评】本题考查双曲线的方程和性质,主要是焦点的求法和渐近线方程的求法,考查运算能力,属于基础题.14.【答案】20 【解析】考点:棱台的表面积的求解. 15.【答案】),1()21,(+∞-∞ 【解析】考点:一元二次不等式的解法.16.【答案】 50π .【解析】解:长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,所以长方体的对角线就是球的直径,长方体的对角线为:,所以球的半径为:;则这个球的表面积是:=50π.故答案为:50π.【点评】本题是基础题,考查球的内接多面体的有关知识,球的表面积的求法,注意球的直径与长方体的对角线的转化是本题的解答的关键,考查计算能力,空间想象能力.17.【答案】(3,1).【解析】解:由(2m+1)x+(m+1)y﹣7m﹣4=0,得即(2x+y﹣7)m+(x+y﹣4)=0,∴2x+y﹣7=0,①且x+y﹣4=0,②∴一次函数(2m+1)x+(m+1)y﹣7m﹣4=0的图象就和m无关,恒过一定点.由①②,解得解之得:x=3 y=1 所以过定点(3,1);故答案为:(3,1)18.【答案】:2x﹣y﹣1=0解:∵P(1,1)为圆(x﹣3)2+y2=9的弦MN的中点,∴圆心与点P确定的直线斜率为=﹣,∴弦MN所在直线的斜率为2,则弦MN所在直线的方程为y﹣1=2(x﹣1),即2x﹣y﹣1=0.故答案为:2x﹣y﹣1=0三、解答题19.【答案】【解析】解:(1)因为不等式ax2﹣3x+6>4的解集为{x|x<1或x>b},所以x1=1与x2=b是方程ax2﹣3x+2=0的两个实数根,且b>1.由根与系的关系得,解得,所以得.(2)由于a=1且b=2,所以不等式ax2﹣(ac+b)x+bc<0,即x2﹣(2+c)x+2c<0,即(x﹣2)(x﹣c)<0.①当c>2时,不等式(x﹣2)(x﹣c)<0的解集为{x|2<x<c};②当c<2时,不等式(x﹣2)(x﹣c)<0的解集为{x|c<x<2};③当c=2时,不等式(x﹣2)(x﹣c)<0的解集为∅.综上所述:当c>2时,不等式ax2﹣(ac+b)x+bc<0的解集为{x|2<x<c};当c <2时,不等式ax 2﹣(ac+b )x+bc <0的解集为{x|c <x <2};当c=2时,不等式ax 2﹣(ac+b )x+bc <0的解集为∅.【点评】本题考查一元二次不等式的解法,一元二次不等式与一元二次方程的关系,属于基础题.20.【答案】【解析】【命题意图】本题考查导数的应用等基础知识,意在考查转化与化归思想的运用和综合分析问题解决问题的能力.请21.【答案】(1)cos ,0,33CD πθθθ⎛⎫=+∈ ⎪⎝⎭;(2)设∴当6πθ=时,()L θ取得最大值,即当6πθ=时,观光道路最长.【解析】试题分析:(1)在OCD ∆中,由正弦定理得:sin sin sin CD OD CO COD DCO CDO==∠∠∠2cos 3CD πθθθ⎛⎫∴=-= ⎪⎝⎭,OD θ=1sin 03OD OB πθθθ<<∴<<<cos ,0,3CD πθθθ⎛⎫∴=∈ ⎪⎝⎭(2)设观光道路长度为()L θ, 则()L BD CD AC θ=++弧的长= 1cos θθθθ+++= cos 1θθθ++,0,3πθ⎛⎫∈ ⎪⎝⎭∴()sin 1L θθθ=-+' 由()0L θ'=得:sin 6πθ⎛⎫+= ⎪⎝⎭,又0,3πθ⎛⎫∈ ⎪⎝⎭6πθ∴=∴当6πθ=时,()L θ取得最大值,即当6πθ=时,观光道路最长.考点:本题考查了三角函数的实际运用点评:对三角函数的考试问题通常有:其一是考查三角函数的性质及图象变换,尤其是三角函数的最大值与最小值、周期。

2018-2019学年上学期高二数学12月月考试题含解析(295)

2018-2019学年上学期高二数学12月月考试题含解析(295)

瑶海区第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1.三个数a=0.52,b=log20.5,c=20.5之间的大小关系是()A.b<a<c B.a<c<b C.a<b<c D.b<c<a2.一个圆的圆心为椭圆的右焦点,且该圆过椭圆的中心交椭圆于P,直线PF1(F1为椭圆的左焦点)是该圆的切线,则椭圆的离心率为()A.B.C.D.3.下列函数在(0,+∞)上是增函数的是()A.B.y=﹣2x+5 C.y=lnx D.y=4.高考临近,学校为丰富学生生活,缓解高考压力,特举办一场高三学生队与学校校队的男子篮球比赛.由于爱好者众多,高三学生队队员指定由5班的6人、16班的8人、33班的10人按分层抽样构成一个12人的篮球队.首发要求每个班至少1人,至多2人,则首发方案数为()A.720 B.270 C.390 D.3005.下列函数在其定义域内既是奇函数又是增函数的是()A. B. C. D.6.在正方体ABCD﹣A′B′C′D′中,点P在线段AD′上运动,则异面直线CP与BA′所成的角θ的取值范围是()A.0<B.0 C.0D.07.已知函数f(x)是定义在R上的奇函数,当x≥0时,.若,f(x-1)≤f(x),则实数a的取值范围为A[]B[]C[]D[]8. 已知,A B 是球O 的球面上两点,60AOB ∠=︒,C 为该球面上的动点,若三棱锥O ABC -体积的最大值为O 的体积为( ) A .81π B .128π C .144π D .288π【命题意图】本题考查棱锥、球的体积、球的性质,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力.9. 已知lga+lgb=0,函数f (x )=a x 与函数g (x )=﹣log b x 的图象可能是( )A .B .C .D .10.如图所示,在三棱锥P ABC -的六条棱所在的直线中,异面直线共有( )111] A .2对 B .3对 C .4对 D .6对11.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求取出的这些卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为( ) A .232 B .252 C .472 D .48412.“双曲线C 的渐近线方程为y=±x ”是“双曲线C 的方程为﹣=1”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .不充分不必要条件二、填空题13.当时,4x<log a x ,则a 的取值范围 .14.阅读如图所示的程序框图,则输出结果S 的值为.【命题意图】本题考查程序框图功能的识别,并且与数列的前n 项和相互联系,突出对逻辑判断及基本运算能力的综合考查,难度中等.15.设集合A={x|x+m ≥0},B={x|﹣2<x <4},全集U=R ,且(∁U A )∩B=∅,求实数m 的取值范围为 .16.设()xxf x e =,在区间[0,3]上任取一个实数0x ,曲线()f x 在点()00,()x f x 处的切线斜率为k ,则随机事件“0k <”的概率为_________.17.【2017-2018第一学期东台安丰中学高三第一次月考】若函数()2,0,{,0x x x f x xlnx x a+≤=->在其定义域上恰有两个零点,则正实数a 的值为______.18.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB=AD=3cm ,AA 1=2cm ,则四棱锥A ﹣BB 1D 1D的体积为 cm 3.三、解答题19.已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,且过点D (2,0). (1)求该椭圆的标准方程; (2)设点,若P 是椭圆上的动点,求线段PA 的中点M 的轨迹方程.20.(本小题满分12分) 在等比数列{}n a 中,3339,22a S ==. (1)求数列{}n a 的通项公式; (2)设2216log n n b a +=,且{}n b 为递增数列,若11n n n c b b +=,求证:12314n c c c c ++++<.21.某校高一(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如图.(Ⅰ)求分数在[50,60)的频率及全班人数;(Ⅱ)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间矩形的高;(Ⅲ)若要从分数在[80,100)之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份分数在[90,100)之间的概率.22.已知三次函数f(x)的导函数f′(x)=3x2﹣3ax,f(0)=b,a、b为实数.(1)若曲线y=f(x)在点(a+1,f(a+1))处切线的斜率为12,求a的值;(2)若f(x)在区间[﹣1,1]上的最小值、最大值分别为﹣2、1,且1<a<2,求函数f (x)的解析式.23.等差数列{a n}的前n项和为S n,已知a1=10,a2为整数,且S n≤S4。

包河区第二中学2018-2019学年上学期高二数学12月月考试题含解析

包河区第二中学2018-2019学年上学期高二数学12月月考试题含解析

包河区第二中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知函数f (x )=2x ,则f ′(x )=( )A .2xB .2x ln2C .2x +ln2D .2. =( ) A .2B .4C .πD .2π3. 如图所示是一样本的频率分布直方图,则由图形中的数据,可以估计众数与中位数分别为( )A .10 13B .12.5 12C .12.5 13D .10 154. 若a >0,b >0,a+b=1,则y=+的最小值是( ) A .2 B .3C .4D .55. (理)已知tan α=2,则=( )A .B .C .D .6. 在抛物线y 2=2px (p >0)上,横坐标为4的点到焦点的距离为5,则该抛物线的准线方程为( ) A .x=1 B .x= C .x=﹣1D .x=﹣7. 已知三棱柱111ABC A B C 的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点, 则异面直线AB 与1CC 所成的角的余弦值为( )A .4 B .4 C.4 D .348. 已知α∈(0,π),且sin α+cos α=,则tan α=( )A .B .C .D .9. 函数f (x )的图象向右平移1个单位长度,所得图象与曲线y=e x 关于y 轴对称,则f (x )=( ) A .e x+1 B .e x ﹣1 C .e ﹣x+1 D .e ﹣x ﹣110.点集{(x ,y )|(|x|﹣1)2+y 2=4}表示的图形是一条封闭的曲线,这条封闭曲线所围成的区域面积是( )A .B .C .D .11.函数f (x ﹣)=x 2+,则f (3)=( ) A .8B .9C .11D .1012.如右图,在长方体中,=11,=7,=12,一质点从顶点A 射向点,遇长方体的面反射(反射服从光的反射原理),将次到第次反射点之间的线段记为,,将线段竖直放置在同一水平线上,则大致的图形是( )ABCD二、填空题13.设集合A={x|x+m ≥0},B={x|﹣2<x <4},全集U=R ,且(∁U A )∩B=∅,求实数m 的取值范围为 . 14.将一张坐标纸折叠一次,使点()0,2与点()4,0重合,且点()7,3与点(),m n 重合,则m n +的 值是 .15.不等式的解集为R ,则实数m 的范围是.16.等比数列{a n }的公比q=﹣,a 6=1,则S 6= .17.设a 抛掷一枚骰子得到的点数,则方程x 2+ax+a=0有两个不等实数根的概率为 .18.1785与840的最大约数为 .三、解答题19.已知中心在坐标原点O 的椭圆C 经过点A (2,3),且点F (2,0)为其右焦点.(1)求椭圆C 的方程;(2)是否存在平行于OA 的直线l ,使得直线l 与椭圆C 有公共点,且直线OA 与l 的距离等于4?若存在,求出直线l 的方程;若不存在,说明理由.20.(本小题满分12分)已知()()2,1,0,2A B 且过点()1,1P -的直线与线段AB 有公共点, 求直 线的斜率的取值范围.21.设椭圆C :+=1(a >b >0)过点(0,4),离心率为.(1)求椭圆C 的方程;(2)求过点(3,0)且斜率为的直线被椭圆所截得线段的中点坐标.22.(本小题满分12分)△ABC 的三内角A ,B ,C 的对边分别为a ,b ,c ,AD 是BC 边上的中线.(1)求证:AD =122b 2+2c 2-a 2;(2)若A =120°,AD =192,sin B sin C =35,求△ABC 的面积.23.在平面直角坐标系xoy中,已知圆C1:(x+3)2+(y﹣1)2=4和圆C2:(x﹣4)2+(y﹣5)2=4(1)若直线l过点A(4,0),且被圆C1截得的弦长为2,求直线l的方程(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,求所有满足条件的点P的坐标.24.如图,在直三棱柱ABC﹣A1B1C1中,AC=3,BC=4,AA1=4,AB=5,点D是AB的中点.(1)求证:AC⊥BC1;(2)求证:AC1∥平面CDB1.包河区第二中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】B【解析】解:f(x)=2x,则f'(x)=2x ln2,故选:B.【点评】本题考查了导数运算法则,属于基础题.2.【答案】A【解析】解:∵(﹣cosx﹣sinx)′=sinx﹣cosx,∴==2.故选A.3.【答案】C【解析】解:众数是频率分布直方图中最高矩形的底边中点的横坐标,∴中间的一个矩形最高,故10与15的中点是12.5,众数是12.5而中位数是把频率分布直方图分成两个面积相等部分的平行于Y轴的直线横坐标第一个矩形的面积是0.2,第三个矩形的面积是0.3,故将第二个矩形分成3:2即可∴中位数是13故选:C.【点评】用样本估计总体,是研究统计问题的一个基本思想方法.频率分布直方图中小长方形的面积=组距×,各个矩形面积之和等于1,能根据直方图求众数和中位数,属于常规题型.4.【答案】C【解析】解:∵a>0,b>0,a+b=1,∴y=+=(a+b)=2+=4,当且仅当a=b=时取等号.∴y=+的最小值是4.故选:C.【点评】本题考查了“乘1法”与基本不等式的性质,属于基础题.5.【答案】D【解析】解:∵tanα=2,∴===.故选D.6.【答案】C【解析】解:由题意可得抛物线y2=2px(p>0)开口向右,焦点坐标(,0),准线方程x=﹣,由抛物线的定义可得抛物线上横坐标为4的点到准线的距离等于5,即4﹣(﹣)=5,解之可得p=2故抛物线的准线方程为x=﹣1.故选:C.【点评】本题考查抛物线的定义,关键是由抛物线的方程得出其焦点和准线,属基础题.7.【答案】D【解析】考点:异面直线所成的角.8.【答案】D【解析】解:将sinα+cosα=①两边平方得:(sinα+cosα)2=1+2sinαcosα=,即2sinαcosα=﹣<0,∵0<α<π,∴<α<π,∴sinα﹣cosα>0,∴(sinα﹣cosα)2=1﹣2sinαcosα=,即sinα﹣cosα=②,联立①②解得:sinα=,cosα=﹣,则tanα=﹣.故选:D.9.【答案】D【解析】解:函数y=e x的图象关于y轴对称的图象的函数解析式为y=e﹣x,而函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x的图象关于y轴对称,所以函数f(x)的解析式为y=e﹣(x+1)=e﹣x﹣1.即f(x)=e﹣x﹣1.故选D.10.【答案】A【解析】解:点集{(x,y)|(|x|﹣1)2+y2=4}表示的图形是一条封闭的曲线,关于x,y轴对称,如图所示.由图可得面积S==+=+2.故选:A.【点评】本题考查线段的方程特点,由曲线的方程研究曲线的对称性,体现了数形结合的数学思想.11.【答案】C【解析】解:∵函数=,∴f(3)=32+2=11.故选C.12.【答案】C【解析】根据题意有:A的坐标为:(0,0,0),B的坐标为(11,0,0),C的坐标为(11,7,0),D的坐标为(0,7,0);A1的坐标为:(0,0,12),B1的坐标为(11,0,12),C1的坐标为(11,7,12),D1的坐标为(0,7,12);E的坐标为(4,3,12)(1)l1长度计算所以:l1=|AE|==13。

包河区一中2018-2019学年上学期高二数学12月月考试题含解析

包河区一中2018-2019学年上学期高二数学12月月考试题含解析

包河区一中2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知f (x )=m •2x +x 2+nx ,若{x|f (x )=0}={x|f (f (x ))=0}≠∅,则m+n 的取值范围为( ) A .(0,4) B .[0,4) C .(0,5] D .[0,5]2. 已知P (x ,y )为区域内的任意一点,当该区域的面积为4时,z=2x ﹣y 的最大值是( )A .6B .0C .2D .23. 已知函数()sin f x a x x =关于直线6x π=-对称 , 且12()()4f x f x ⋅=-,则12x x +的最小值为A 、6π B 、3πC 、56π D 、23π4. 不等式ax 2+bx+c <0(a ≠0)的解集为R ,那么( )A .a <0,△<0B .a <0,△≤0C .a >0,△≥0D .a >0,△>05. 已知命题p :对任意x ∈R ,总有3x >0;命题q :“x >2”是“x >4”的充分不必要条件,则下列命题为真命题的是( )A .p ∧qB .¬p ∧¬qC .¬p ∧qD .p ∧¬q6. 方程(x 2﹣4)2+(y 2﹣4)2=0表示的图形是( )A .两个点B .四个点C .两条直线D .四条直线7. 已知集合{2,1,1,2,4}A =--,2{|log ||1,}B y y x x A ==-∈,则A B = ( ) A .{2,1,1}-- B .{1,1,2}- C .{1,1}- D .{2,1}-- 【命题意图】本题考查集合的交集运算,意在考查计算能力.8. 已知直线x ﹣y+a=0与圆心为C 的圆x 2+y 2+2x ﹣4y+7=0相交于A ,B 两点,且•=4,则实数a的值为( )A .或﹣B .或3C .或5D .3或59. 设集合M={(x ,y )|x 2+y 2=1,x ∈R ,y ∈R},N={(x ,y )|x 2﹣y=0,x ∈R ,y ∈R},则集合M ∩N 中元素的个数为( ) A .1B .2C .3D .410.如图,函数f (x )=Asin (2x+φ)(A >0,|φ|<)的图象过点(0,),则f (x )的图象的一个对称中心是( )A .(﹣,0)B .(﹣,0)C .(,0)D .(,0)11.两座灯塔A 和B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为( )A .akmB .akm C .2akmD .akm12.sin 3sin1.5cos8.5,,的大小关系为( ) A .sin1.5sin 3cos8.5<< B .cos8.5sin 3sin1.5<< C.sin1.5cos8.5sin 3<<D .cos8.5sin1.5sin 3<<二、填空题13.函数()2log f x x =在点()1,2A 处切线的斜率为 ▲ .14.当下社会热议中国人口政策,下表是中国人民大学人口预测课题组根据我过2000年第五次人口普查预测的线性回归方程为附:回归直线的斜率和截距的最小二乘估计公式分别为: =, =﹣.15.如图所示,在三棱锥C ﹣ABD 中,E 、F 分别是AC 和BD 的中点,若CD=2AB=4,EF ⊥AB ,则EF 与CD 所成的角是 .16.函数()x f x xe =在点()()1,1f 处的切线的斜率是 .17.若函数f (x )=﹣m 在x=1处取得极值,则实数m 的值是 .18.若实数,,,a b c d 满足24ln 220b a a c d +-+-+=,则()()22a cb d -+-的最小值为 ▲ .三、解答题19.设椭圆C:+=1(a>b>0)过点(0,4),离心率为.(1)求椭圆C的方程;(2)求过点(3,0)且斜率为的直线被椭圆所截得线段的中点坐标.20.已知椭圆E的长轴的一个端点是抛物线y2=4x的焦点,离心率是.(1)求椭圆E的标准方程;(2)已知动直线y=k(x+1)与椭圆E相交于A、B两点,且在x轴上存在点M,使得与k的取值无关,试求点M的坐标.21.设A(x0,y0)(x0,y0≠0)是椭圆T:+y2=1(m>0)上一点,它关于y轴、原点、x轴的对称点依次为B,C,D.E是椭圆T上不同于A的另外一点,且AE⊥AC,如图所示.(Ⅰ)若点A横坐标为,且BD∥AE,求m的值;(Ⅱ)求证:直线BD与CE的交点Q总在椭圆+y2=()2上.22.求下列曲线的标准方程:(1)与椭圆+=1有相同的焦点,直线y=x为一条渐近线.求双曲线C的方程.(2)焦点在直线3x﹣4y﹣12=0 的抛物线的标准方程.23.已知A(﹣3,0),B(3,0),C(x0,y0)是圆M上的三个不同的点.(1)若x0=﹣4,y0=1,求圆M的方程;(2)若点C是以AB为直径的圆M上的任意一点,直线x=3交直线AC于点R,线段BR的中点为D.判断直线CD与圆M的位置关系,并证明你的结论.24.已知{}n a 是等差数列,{}n b 是等比数列,n S 为数列{}n a 的前项和,111a b ==,且3336b S =,228b S =(*n N ∈).(1)求n a 和n b ; (2)若1n n a a +<,求数列11n n a a +⎧⎫⎨⎬⎩⎭的前项和n T .包河区一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】B【解析】解:设x1∈{x|f(x)=0}={x|f(f(x))=0},∴f(x1)=f(f(x1))=0,∴f(0)=0,即f(0)=m=0,故m=0;故f(x)=x2+nx,f(f(x))=(x2+nx)(x2+nx+n)=0,当n=0时,成立;当n≠0时,0,﹣n不是x2+nx+n=0的根,故△=n2﹣4n<0,故0<n<4;综上所述,0≤n+m<4;故选B.【点评】本题考查了函数与集合的关系应用及分类讨论的思想应用,同时考查了方程的根的判断,属于中档题.2.【答案】A解析:解:由作出可行域如图,由图可得A(a,﹣a),B(a,a),由,得a=2.∴A(2,﹣2),化目标函数z=2x﹣y为y=2x﹣z,∴当y=2x ﹣z 过A 点时,z 最大,等于2×2﹣(﹣2)=6. 故选:A . 3. 【答案】D【解析】:()sin )(tan f x a x x x ϕϕ==-=12(),()()463f x x k f x f x ππϕπ=-∴=+⋅=- 对称轴为112212min522,2,663x k x k x x πππππ∴=-+=+∴+=4. 【答案】A【解析】解:∵不等式ax 2+bx+c <0(a ≠0)的解集为R , ∴a <0,且△=b 2﹣4ac <0,综上,不等式ax 2+bx+c <0(a ≠0)的解集为的条件是:a <0且故选A .5. 【答案】D【解析】解:p :根据指数函数的性质可知,对任意x ∈R ,总有3x>0成立,即p 为真命题, q :“x >2”是“x >4”的必要不充分条件,即q 为假命题, 则p ∧¬q 为真命题, 故选:D【点评】本题主要考查复合命题的真假关系的应用,先判定p ,q 的真假是解决本题的关键,比较基础6. 【答案】B【解析】解:方程(x 2﹣4)2+(y 2﹣4)2=0则x 2﹣4=0并且y 2﹣4=0,即, 解得:,,,,得到4个点. 故选:B .【点评】本题考查二元二次方程表示圆的条件,方程的应用,考查计算能力.7. 【答案】C【解析】当{2,1,1,2,4}x ∈--时,2log ||1{1,1,0}y x =-∈-,所以A B = {1,1}-,故选C . 8. 【答案】C【解析】解:圆x 2+y 2+2x ﹣4y+7=0,可化为(x+)2+(y ﹣2)2=8.∵•=4,∴2•2cos ∠ACB=4∴cos ∠ACB=, ∴∠ACB=60°∴圆心到直线的距离为,∴=,∴a=或5.故选:C .9. 【答案】B【解析】解:根据题意,M ∩N={(x ,y )|x 2+y 2=1,x ∈R ,y ∈R}∩{(x ,y )|x 2﹣y=0,x ∈R ,y ∈R}═{(x ,y )|} 将x 2﹣y=0代入x 2+y 2=1, 得y 2+y ﹣1=0,△=5>0,所以方程组有两组解,因此集合M ∩N 中元素的个数为2个, 故选B .【点评】本题既是交集运算,又是函数图形求交点个数问题10.【答案】 B【解析】解:由函数图象可知:A=2,由于图象过点(0,),可得:2sin φ=,即sin φ=,由于|φ|<,解得:φ=,即有:f (x )=2sin (2x+).由2x+=k π,k ∈Z 可解得:x=,k ∈Z ,故f (x )的图象的对称中心是:(,0),k ∈Z当k=0时,f (x )的图象的对称中心是:(,0),故选:B .【点评】本题主要考查由函数y=Asin (ωx+φ )的部分图象求函数的解析式,正弦函数的对称性,属于中档题.11.【答案】D【解析】解:根据题意,△ABC 中,∠ACB=180°﹣20°﹣40°=120°,∵AC=BC=akm ,∴由余弦定理,得cos120°=,解之得AB=akm ,即灯塔A 与灯塔B 的距离为akm ,故选:D .【点评】本题给出实际应用问题,求海洋上灯塔A 与灯塔B 的距离.着重考查了三角形内角和定理和运用余弦定理解三角形等知识,属于基础题.12.【答案】B 【解析】试题分析:由于()cos8.5cos 8.52π=-,因为8.522πππ<-<,所以cos8.50<,又()sin3sin 3sin1.5π=-<,∴cos8.5sin 3sin1.5<<. 考点:实数的大小比较.二、填空题13.【答案】1ln 2【解析】试题分析:()()111ln 2ln 2f x k f x ''=∴== 考点:导数几何意义【思路点睛】(1)求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异,过点P 的切线中,点P 不一定是切点,点P 也不一定在已知曲线上,而在点P 处的切线,必以点P 为切点.(2)利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解. 14.【答案】 y=﹣1.7t+68.7【解析】解: =, ==63.6.=(﹣2)×4.4+(﹣1)×1.4+0+1×(﹣1.6)+2×(﹣2.6)=﹣17.=4+1+0+1+2=10.∴=﹣=﹣1.7.=63.6+1.7×3=68.7.∴y 关于t 的线性回归方程为y=﹣1.7t+68.7. 故答案为y=﹣1.7t+68.7.【点评】本题考查了线性回归方程的解法,属于基础题.15.【答案】 30° .【解析】解:取AD 的中点G ,连接EG ,GF 则EG DC=2,GFAB=1,故∠GEF 即为EF 与CD 所成的角. 又∵FE ⊥AB ∴FE ⊥GF ∴在Rt △EFG 中EG=2,GF=1故∠GEF=30°.故答案为:30°【点评】此题的关键是作出AD 的中点然后利用题中的条件在特殊三角形中求解,如果一味的想利用余弦定理求解就出力不讨好了.16.【答案】2e 【解析】试题分析:()(),'x x x f x xe f x e xe =∴=+ ,则()'12f e =,故答案为2e . 考点:利用导数求曲线上某点切线斜率. 17.【答案】﹣2【解析】解:函数f (x )=﹣m 的导数为f ′(x )=mx 2+2x ,由函数f (x )=﹣m 在x=1处取得极值,即有f ′(1)=0,即m+2=0,解得m=﹣2,即有f ′(x )=﹣2x 2+2x=﹣2(x ﹣1)x ,可得x=1处附近导数左正右负,为极大值点.故答案为:﹣2.【点评】本题考查导数的运用:求极值,主要考查由极值点求参数的方法,属于基础题.18.【答案】5 【解析】考点:利用导数求最值【方法点睛】利用导数解答函数最值的一般步骤:第一步:利用f ′(x )>0或f ′(x )<0求单调区间;第二步:解f ′(x )=0得两个根x 1、x 2;第三步:比较两根同区间端点的大小;第四步:求极值;第五步:比较极值同端点值的大小.三、解答题19.【答案】【解析】解:(1)将点(0,4)代入椭圆C 的方程得=1,∴b=4,…由e==,得1﹣=,∴a=5,…∴椭圆C的方程为+=1.…(2)过点(3,0)且斜率为的直线为y=(x﹣3),…设直线与椭圆C的交点为A(x1,y1),B(x2,y2),将直线方程y=(x﹣3)代入椭圆C方程,整理得x2﹣3x﹣8=0,…由韦达定理得x1+x2=3,y1+y2=(x1﹣3)+(x2﹣3)=(x1+x2)﹣=﹣.…由中点坐标公式AB中点横坐标为,纵坐标为﹣,∴所截线段的中点坐标为(,﹣).…【点评】本题考查椭圆的方程与几何性质,考查直线与椭圆的位置关系,考查韦达定理的运用,确定椭圆的方程是关键.20.【答案】【解析】解:(1)由题意,椭圆的焦点在x轴上,且a=,…1分c=e•a=×=,故b===,…4分所以,椭圆E的方程为,即x2+3y2=5…6分(2)将y=k(x+1)代入方程E:x2+3y2=5,得(3k2+1)x2+6k2x+3k2﹣5=0;…7分设A(x1,y1),B(x2,y2),M(m,0),则x1+x2=﹣,x1x2=;…8分∴=(x1﹣m,y1)=(x1﹣m,k(x1+1)),=(x2﹣m,y2)=(x2﹣m,k(x2+1));∴=(k2+1)x1x2+(k2﹣m)(x1+x2)+k2+m2=m2+2m﹣﹣,要使上式与k无关,则有6m+14=0,解得m=﹣;∴存在点M(﹣,0)满足题意…13分【点评】本题考查了直线与圆锥曲线的综合应用问题,也考查了椭圆的标准方程及其几何性质,考查了一定的计算能力,属于中档题.21.【答案】【解析】(Ⅰ)解:∵BD∥AE,AE⊥AC,∴BD⊥AC,可知A(),故,m=2;(Ⅱ)证明:由对称性可知B(﹣x0,y0),C(﹣x0,﹣y0),D(x0,﹣y0),四边形ABCD为矩形,设E(x1,y1),由于A,E均在椭圆T上,则,由②﹣①得:(x1+x0)(x1﹣x0)+(m+1)(y1+y0)(y1﹣y0)=0,显然x1≠x0,从而=,∵AE⊥AC,∴k AE•k AC=﹣1,∴,解得,代入椭圆方程,知.【点评】本题主要考查圆锥曲线的定义的应用,关键是利用椭圆的对称性寻求点的坐标间的关系,体现了整体运算思想方法,是中档题.22.【答案】【解析】解:(1)由椭圆+=1,得a2=8,b2=4,∴c2=a2﹣b2=4,则焦点坐标为F(2,0),∵直线y=x为双曲线的一条渐近线,∴设双曲线方程为(λ>0),即,则λ+3λ=4,λ=1.∴双曲线方程为:;(2)由3x﹣4y﹣12=0,得,∴直线在两坐标轴上的截距分别为(4,0),(0,﹣3),∴分别以(4,0),(0,﹣3)为焦点的抛物线方程为:y2=16x或x2=﹣12y.【点评】本题考查椭圆方程和抛物线方程的求法,对于(1)的求解,设出以直线为一条渐近线的双曲线方程是关键,是中档题.23.【答案】【解析】解:(1)设圆的方程为x2+y2+Dx+Ey+F=0圆的方程为x2+y2﹣8y﹣9=0…(2)直线CD与圆M相切O、D分别是AB、BR的中点则OD∥AR,∴∠CAB=∠DOB,∠ACO=∠COD,又∠CAO=∠ACO,∴∠DOB=∠COD又OC=OB,所以△BOD≌△COD∴∠OCD=∠OBD=90°即OC⊥CD,则直线CD与圆M相切.…(其他方法亦可)24.【答案】(1)21n a n =-,12n n b -=或1(52)3n a n =-,16n n b -=;(2)21n n +. 【解析】试题解析:(1)设{}n a 的公差为d ,{}n b 的公比为,由题意得2(33)36,(2)8,q d q d ⎧+=⎨+=⎩解得2,2,d q =⎧⎨=⎩或2,36.d q ⎧=-⎪⎨⎪=⎩∴21n a n =-,12n n b -=或1(52)3n a n =-,16n n b -=.(2)若+1n n a a <,由(1)知21n a n =-,∴111111()(21)(21)22121n n a a n n n n +==--+-+,∴111111(1)2335212121n n T n n n =-+-++-=-++…. 考点:1、等差数列与等比数列的通项公式及前项和公式;2、裂项相消法求和的应用.。

包河区第二高级中学2018-2019学年上学期高二数学12月月考试题含解析

包河区第二高级中学2018-2019学年上学期高二数学12月月考试题含解析

包河区第二高级中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 集合A={1,2,3},集合B={﹣1,1,3},集合S=A ∩B ,则集合S 的子集有( ) A .2个 B .3 个 C .4 个 D .8个2. “x ≠0”是“x >0”是的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 3. 抛物线x 2=4y 的焦点坐标是( )A .(1,0)B .(0,1)C.()D.()4. 已知函数f (x )=1+x﹣+﹣+…+,则下列结论正确的是( )A .f (x )在(0,1)上恰有一个零点B .f (x )在(﹣1,0)上恰有一个零点C .f (x )在(0,1)上恰有两个零点D .f (x )在(﹣1,0)上恰有两个零点5. 设1m >,在约束条件,,1.y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z x my =+的最大值小于2,则m 的取值范围为( )A.(1,1 B.(1)+∞ C. (1,3) D .(3,)+∞ 6. 在区域内任意取一点P (x ,y ),则x 2+y 2<1的概率是( )A .0B. C. D.7. 经过点()1,1M 且在两轴上截距相等的直线是( ) A .20x y +-= B .10x y +-=C .1x =或1y =D .20x y +-=或0x y -= 8. 函数f (x )=log 2(x+2)﹣(x >0)的零点所在的大致区间是( ) A .(0,1) B .(1,2) C .(2,e ) D .(3,4)9. 数列﹣1,4,﹣7,10,…,(﹣1)n (3n ﹣2)的前n 项和为S n ,则S 11+S 20=( )A .﹣16B .14C .28D .3010.已知f (x )=2sin (ωx+φ)的部分图象如图所示,则f (x )的表达式为( )A .B .C .D .11.若P 是以F 1,F 2为焦点的椭圆=1(a >b >0)上的一点,且=0,tan ∠PF 1F 2=,则此椭圆的离心率为( )A .B .C .D .12.命题“若α=,则tan α=1”的逆否命题是( )A .若α≠,则tan α≠1 B .若α=,则tan α≠1C .若tan α≠1,则α≠D .若tan α≠1,则α=二、填空题13.【启东中学2018届高三上学期第一次月考(10月)】已知函数()f x xlnx ax =-+在()0e ,上是增函数,函数()22xa g x e a =-+,当[]03x ln ∈,时,函数g (x )的最大值M 与最小值m 的差为32,则a 的值为______.14.已知f (x ),g (x )都是定义在R 上的函数,且满足以下条件:①f (x )=a x g (x )(a >0,a ≠1);②g (x )≠0;③f (x )g'(x )>f'(x )g (x );若,则a= .15.设函数则______;若,,则的大小关系是______.16.在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为.17.已知函数f(x)=,若f(f(0))=4a,则实数a=.18.如图是正方体的平面展开图,则在这个正方体中①BM与ED平行;②CN与BE是异面直线;③CN与BM成60 角;④DM与BN是异面直线.以上四个命题中,正确命题的序号是(写出所有你认为正确的命题).三、解答题19.(本小题满分12分)某旅行社组织了100人旅游散团,其年龄均在[10,60]岁间,旅游途中导游发现该旅游散团人人都会使用微信,所有团员的年龄结构按[10,20),[20,30),[30,40),[40,50),[50,60]分成5组,分A B C D E,其频率分布直方图如下图所示.别记为,,,,(Ⅰ)根据频率分布直方图,估计该旅游散团团员的平均年龄;C D E三组中用分层抽样的方法抽取了6名团员负责全团协调,然后从这6名团员中(Ⅱ)该团导游首先在,,随机选出2名团员为主要协调负责人,求选出的2名团员均来自C组的概率.20.已知f(x)是定义在R上的奇函数,当x<0时,f(x)=()x.(1)求当x>0时f(x)的解析式;(2)画出函数f(x)在R上的图象;(3)写出它的单调区间.21.如图,直三棱柱ABC﹣A1B1C1中,D、E分别是AB、BB1的中点,AB=2,(1)证明:BC1∥平面A1CD;(2)求异面直线BC1和A1D所成角的大小;(3)求三棱锥A1﹣DEC的体积.22.已知函数f (x )=(sinx+cosx )2+cos2x (1)求f (x )最小正周期;(2)求f (x )在区间[]上的最大值和最小值.23.【2017-2018第一学期东台安丰中学高三第一次月考】已知函数()2ln f x ax x =+,()21145ln 639f x x x x =++,()22122f x x ax =+,a R ∈ (1)求证:函数()f x 在点()(),e f e 处的切线恒过定点,并求出定点的坐标; (2)若()()2f x f x <在区间()1,+∞上恒成立,求a 的取值范围; (3)当23a =时,求证:在区间()0,+∞上,满足()()()12f x g x f x <<恒成立的函数()g x 有无穷多个.(记ln5 1.61,6 1.79ln ==)24f x=sinωx+φω00φ2π(2)求函数g(x)=f(x)+sin2x的单调递增区间.包河区第二高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】C【解析】解:∵集合A={1,2,3},集合B={﹣1,1,3},∴集合S=A∩B={1,3},则集合S的子集有22=4个,故选:C.【点评】本题主要考查集合的基本运算和集合子集个数的求解,要求熟练掌握集合的交并补运算,比较基础.2.【答案】B【解析】解:当x=﹣1时,满足x≠0,但x>0不成立.当x>0时,一定有x≠0成立,∴“x≠0”是“x>0”是的必要不充分条件.故选:B.3.【答案】B【解析】解:∵抛物线x2=4y中,p=2,=1,焦点在y轴上,开口向上,∴焦点坐标为(0,1),故选:B.【点评】本题考查抛物线的标准方程和简单性质的应用,抛物线x2=2py的焦点坐标为(0,),属基础题.4.【答案】B【解析】解:∵f′(x)=1﹣x+x2﹣x3+…+x2014=(1﹣x)(1+x2+…+x2012)+x2014;∴f′(x)>0在(﹣1,0)上恒成立;故f(x)在(﹣1,0)上是增函数;又∵f(0)=1,f(﹣1)=1﹣1﹣﹣﹣…﹣<0;故f(x)在(﹣1,0)上恰有一个零点;故选B.【点评】本题考查了导数的综合应用及函数零点的个数的判断,属于中档题.5. 【答案】A 【解析】考点:线性规划.【方法点晴】本题是一道关于线性规划求最值的题目,采用线性规划的知识进行求解;关键是弄清楚的几何意义直线z x my =+截距为zm,作0my x :L =+,向可行域内平移,越向上,则的值越大,从而可得当直线直线z x my =+过点A 时取最大值,⎩⎨⎧==+00001m x y y x 可求得点A 的坐标可求的最大值,然后由z 2,>解不等式可求m6.【答案】C【解析】解:根据题意,如图,设O(0,0)、A(1,0)、B(1,1)、C(0,1),分析可得区域表示的区域为以正方形OABC的内部及边界,其面积为1;x2+y2<1表示圆心在原点,半径为1的圆,在正方形OABC的内部的面积为=,由几何概型的计算公式,可得点P(x,y)满足x2+y2<1的概率是=;故选C.【点评】本题考查几何概型的计算,解题的关键是将不等式(组)转化为平面直角坐标系下的图形的面积,进而由其公式计算.7.【答案】D【解析】考点:直线的方程.8.【答案】B【解析】解:∵f(1)=﹣3<0,f(2)=﹣=2﹣>0,∴函数f(x)=log2(x+2)﹣(x>0)的零点所在的大致区间是(1,2),9.【答案】B【解析】解:∵a n=(﹣1)n(3n﹣2),∴S11=()+(a2+a4+a6+a8+a10)=﹣(1+7+13+19+25+31)+(4+10+16+22+28)=﹣16,S20=(a1+a3+…+a19)+(a2+a4+…+a20)=﹣(1+7+...+55)+(4+10+ (58)=﹣+=30,∴S11+S20=﹣16+30=14.故选:B.【点评】本题考查数列求和,是中档题,解题时要认真审题,注意分组求和法和等差数列的性质的合理运用.10.【答案】B【解析】解:∵函数的周期为T==,∴ω=又∵函数的最大值是2,相应的x值为∴=,其中k∈Z取k=1,得φ=因此,f(x)的表达式为,故选B【点评】本题以一个特殊函数求解析式为例,考查由y=Asin(ωx+φ)的部分图象确定其解析式、三角函数的图象与性质,周期与相位等概念,属于基础题.11.【答案】A【解析】解:∵∴,即△PF1F2是P为直角顶点的直角三角形.∵Rt △PF 1F 2中,,∴=,设PF 2=t ,则PF 1=2t∴=2c ,又∵根据椭圆的定义,得2a=PF 1+PF 2=3t∴此椭圆的离心率为e====故选A【点评】本题给出椭圆的一个焦点三角形为直角三角形,根据一个内角的正切值,求椭圆的离心率,着重考查了椭圆的基本概念和简单几何性质,属于基础题.12.【答案】C【解析】解:命题“若α=,则tan α=1”的逆否命题是“若tan α≠1,则α≠”.故选:C .二、填空题13.【答案】52【解析】()1ln f x x a =--+',因为()f x 在()0e ,上是增函数,即()0f x '≥在()0e ,上恒成立,ln 1a x ∴≥+,则()max ln 1a x ≥+,当x e =时,2a ≥,又()22xa g x e a =-+,令xt e =,则()[]2,1,32a g t t a t =-+∈, (1)当23a ≤≤时,()()2max 112a g t g a ==-+,()()2min 2a g t g a ==,则()()max min 312g t g t a -=-=,则52a =,(2)当3a >时,()()2max 112a g t g a ==-+,()()2min 332a g t g a ==-+,则()()max min 2g t g t -=,舍。

包河区民族中学2018-2019学年高二上学期二次月考试数学

包河区民族中学2018-2019学年高二上学期二次月考试数学

包河区民族中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.若函数f(x)=﹣2x3+ax2+1存在唯一的零点,则实数a的取值范围为()A.[0,+∞)B.[0,3] C.(﹣3,0] D.(﹣3,+∞)2.如图,直三棱柱ABC﹣A1B1C1中,侧棱AA1⊥平面ABC.若AB=AC=AA1=1,BC=,则异面直线A1C 与B1C1所成的角为()A.30°B.45°C.60°D.90°3.(m+1)x2﹣(m﹣1)x+3(m﹣1)<0对一切实数x恒成立,则实数m的取值范围是()A.(1,+∞)B.(﹣∞,﹣1)C.D.4.如图是七位评委为甲,乙两名参赛歌手打出的分数的茎叶图(其中m,n为数字0~9中的一个),则甲歌手得分的众数和乙歌手得分的中位数分别为a和b,则一定有()A.a>b B.a<bC.a=b D.a,b的大小与m,n的值有关5.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也,又以高乘之,三十六成一,该术相当于给出了由圆锥的底面周长L与高h,计算其体积V的近似公式V≈L2h,它实际上是将圆锥体积公式中的圆周率π近似取为3,那么,近似公式V≈L2h相当于将圆锥体积公式中的π近似取为()A.B.C. D.6. 函数的最小正周期不大于2,则正整数k 的最小值应该是( )A .10B .11C .12D .137. 下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的是( ) A .B .y=x 2C .y=﹣x|x|D .y=x ﹣28. 设函数)(x f 是定义在)0,(-∞上的可导函数,其导函数为)('x f ,且有2')()(2x x xf x f >+,则不等式0)2(4)2014()2014(2>--++f x f x 的解集为A 、)2012,(--∞ B 、)0,2012(- C 、)2016,(--∞ D 、)0,2016(- 9. 已知在平面直角坐标系xOy 中,点),0(n A -,),0(n B (0>n ).命题p :若存在点P 在圆1)1()3(22=-++y x 上,使得2π=∠APB ,则31≤≤n ;命题:函数x xx f 3log 4)(-=在区间 )4,3(内没有零点.下列命题为真命题的是( )A .)(q p ⌝∧B .q p ∧C .q p ∧⌝)(D .q p ∨⌝)( 10.高三(1)班从4名男生和3名女生中推荐4人参加学校组织社会公益活动,若选出的4人中既有男生又有女生,则不同的选法共有( )A .34种B .35种C .120种D .140种11.若向量(1,0,x )与向量(2,1,2)的夹角的余弦值为,则x 为( )A .0B .1C .﹣1D .212.下列判断正确的是( )A .①不是棱柱B .②是圆台C .③是棱锥D .④是棱台二、填空题13.已知线性回归方程=9,则b= .14.当0,1x ∈()时,函数()e 1x f x =-的图象不在函数2()g x x ax =-的下方,则实数a 的取值范围是___________.【命题意图】本题考查函数图象间的关系、利用导数研究函数的单调性,意在考查等价转化能力、逻辑思维能力、运算求解能力.15.一个椭圆的长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是 .16.在ABC ∆中,90C ∠=,2BC =,M 为BC 的中点,1sin 3BAM ∠=,则AC 的长为_________. 17.已知向量,满足42=,2||=,4)3()(=-⋅+,则与的夹角为 .【命题意图】本题考查向量的数量积、模及夹角知识,突出对向量的基础运算及化归能力的考查,属于容易题. 18.已知[2,2]a ∈-,不等式2(4)420x a x a +-+->恒成立,则的取值范围为__________.三、解答题19.已知复数z=.(1)求z 的共轭复数;(2)若az+b=1﹣i ,求实数a ,b 的值.20.某校在一次趣味运动会的颁奖仪式上,高一、高二、高三各代表队人数分别为120人、120人、n 人.为了活跃气氛,大会组委会在颁奖过程中穿插抽奖活动,并用分层抽样的方法从三个代表队中共抽取20人在前排就坐,其中高二代表队有6人. (1)求n 的值;(2)把在前排就坐的高二代表队6人分别记为a ,b ,c ,d ,e ,f ,现随机从中抽取2人上台抽奖.求a 和b 至少有一人上台抽奖的概率.(3)抽奖活动的规则是:代表通过操作按键使电脑自动产生两个[0,1]之间的均匀随机数x ,y ,并按如图所示的程序框图执行.若电脑显示“中奖”,则该代表中奖;若电脑显示“谢谢”,则不中奖,求该代表中奖的概率.21.已知圆C:(x﹣1)2+y2=9内有一点P(2,2),过点P作直线l交圆C于A,B两点.(1)当l经过圆心C时,求直线l的方程;(2)当弦AB被点P平分时,求直线l的方程.22.2015年9月3日,抗战胜利70周年纪念活动在北京隆重举行,受到全国人民的瞩目.纪念活动包括举行纪念大会、阅兵式、招待会和文艺晚会等,据统计,抗战老兵由于身体原因,参加纪念大会、阅兵式、招待会(Ⅱ)某医疗部门决定从这些抗战老兵中(其中参加纪念活动的环节数为3的抗战老兵数大于等于3)随机抽取3名进行体检,设随机抽取的这3名抗战老兵中参加三个环节的有ξ名,求ξ的分布列和数学期望.23.已知函数.(1)求f (x )的周期和及其图象的对称中心;(2)在△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,满足(2a ﹣c )cosB=bcosC ,求函数f (A )的取值范围.24.(本小题满分10分)选修4-5:不等式选讲 已知函数()()f x x a a R =-∈.(1)当1a =时,解不等式()211f x x <--;(2)当(2,1)x ∈-时,121()x x a f x ->---,求的取值范围.包河区民族中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】解:令f(x)=﹣2x3+ax2+1=0,易知当x=0时上式不成立;故a==2x﹣,令g(x)=2x﹣,则g′(x)=2+=2,故g(x)在(﹣∞,﹣1)上是增函数,在(﹣1,0)上是减函数,在(0,+∞)上是增函数;故作g(x)=2x﹣的图象如下,,g(﹣1)=﹣2﹣1=﹣3,故结合图象可知,a>﹣3时,方程a=2x﹣有且只有一个解,即函数f(x)=﹣2x3+ax2+1存在唯一的零点,故选:D.2.【答案】C【解析】解:因为几何体是棱柱,BC∥B1C1,则直线A1C与BC所成的角为就是异面直线A1C与B1C1所成的角.直三棱柱ABC﹣AB1C1中,侧棱AA1⊥平面ABC.若AB=AC=AA1=1,BC=,BA1=,1CA1=,三角形BCA1是正三角形,异面直线所成角为60°.故选:C.3.【答案】C【解析】解:不等式(m+1)x2﹣(m﹣1)x+3(m﹣1)<0对一切x∈R恒成立,即(m+1)x2﹣(m﹣1)x+3(m﹣1)<0对一切x∈R恒成立若m+1=0,显然不成立若m+1≠0,则解得a.故选C.【点评】本题的求解中,注意对二次项系数的讨论,二次函数恒小于0只需.4.【答案】C【解析】解:根据茎叶图中的数据,得;甲得分的众数为a=85,乙得分的中位数是b=85;所以a=b.故选:C.5.【答案】B【解析】解:设圆锥底面圆的半径为r,高为h,则L=2πr,∴=(2πr)2h,∴π=.故选:B.6.【答案】D【解析】解:∵函数y=cos(x+)的最小正周期不大于2,∴T=≤2,即|k|≥4π,则正整数k的最小值为13.故选D【点评】此题考查了三角函数的周期性及其求法,熟练掌握周期公式是解本题的关键.7.【答案】D【解析】解:函数为非奇非偶函数,不满足条件;函数y=x2为偶函数,但在区间(0,+∞)上单调递增,不满足条件;函数y=﹣x|x|为奇函数,不满足条件;函数y=x﹣2为偶函数,在区间(0,+∞)上单调递减,满足条件;故选:D【点评】本题考查的知识点是函数的单调性与函数的奇偶性,是函数图象和性质的综合应用,难度不大,属于基础题.8.【答案】C.【解析】由,得:,即,令,则当时,,即在是减函数,,,,在是减函数,所以由得,,即,故选9. 【答案】A【解析】试题分析:命题p :2π=∠APB ,则以AB 为直径的圆必与圆()()11322=-++y x 有公共点,所以121+≤≤-n n ,解得31≤≤n ,因此,命题p 是真命题.命题:函数()xxx f 3log 4-=,()0log 1443<-=f ,()0log 34333>-=f ,且()x f 在[]4,3上是连续不断的曲线,所以函数()x f 在区间()4,3内有零点,因此,命题是假命题.因此只有)(q p ⌝∧为真命题.故选A .考点:复合命题的真假.【方法点晴】本题考查命题的真假判断,命题的“或”、“且”及“非”的运算性质,同时也考查两圆的位置关系和函数零点存在定理,属于综合题.由于点P 满足2π=∠APB ,因此在以AB 为直径的圆上,又点P 在圆1)1()3(22=-++y x 上,因此P 为两圆的交点,利用圆心距介于两圆半径差与和之间,求出的范围.函数x xx f 3log 4)(-=是单调函数,利用零点存在性定理判断出两端点异号,因此存在零点.10.【答案】A【解析】解:从7个人中选4人共种选法,只有男生的选法有种,所以既有男生又有女生的选法有﹣=34种. 故选:A .【点评】本题考查了排列组合题,间接法是常用的一种方法,属于基础题11.【答案】A【解析】解:由题意=,∴1+x=,解得x=0故选A【点评】本题考查空间向量的夹角与距离求解公式,考查根据公式建立方程求解未知数,是向量中的基本题型,此类题直接考查公式的记忆与对概念的理解,正确利用概念与公式解题是此类题的特点.12.【答案】C【解析】解:①是底面为梯形的棱柱;②的两个底面不平行,不是圆台; ③是四棱锥; ④不是由棱锥截来的, 故选:C .二、填空题13.【答案】 4 .【解析】解:将代入线性回归方程可得9=1+2b ,∴b=4故答案为:4【点评】本题考查线性回归方程,考查计算能力,属于基础题.14.【答案】[2e,)-+∞【解析】由题意,知当0,1x ∈()时,不等式2e 1xx ax -≥-,即21e x x a x +-≥恒成立.令()21e xx h x x+-=,()()()211e 'x x x h x x-+-=.令()1e x k x x =+-,()'1e x k x =-.∵()0,1x ∈,∴()'1e 0,xk x =-<∴()k x 在()0,1x ∈为递减,∴()()00k x k <=,∴()()()211e '0x x x h x x-+-=>,∴()h x 在()0,1x ∈为递增,∴()()12e h x h <=-,则2e a ≥-.15.【答案】.【解析】解:由题意可得,2a ,2b ,2c 成等差数列 ∴2b=a+c∴4b 2=a 2+2ac+c 2①∵b 2=a 2﹣c 2②①②联立可得,5c 2+2ac ﹣3a 2=0∵∴5e 2+2e ﹣3=0∵0<e <1∴故答案为:【点评】本题主要考查了椭圆的性质的应用,解题中要椭圆离心率的取值范围的应用,属于中档试题16.【答案】2【解析】考点:1、正弦定理及勾股定理;2诱导公式及直角三角形的性质.【方法点睛】本题主要考查正弦定理及勾股定理、诱导公式及直角三角形的性质,属于难题,高考三角函数的考查主要以三角恒等变形,三角函数的图象和性质,利用正弦定理、余弦定理解三角形为主,难度中等,因此只要掌握基本的解题方法与技巧即可,对于三角函数与解三角形相结合的题目,要注意通过正余弦定理以及面积公式实现边角互化,求出相关的边和角的大小,有时也要考虑特殊三角形的特殊性质(如正三角形,直角三角形等).217.【答案】3【解析】18.【答案】(,0)(4,)-∞+∞【解析】试题分析:把原不等式看成是关于的一次不等式,在2],[-2a ∈时恒成立,只要满足在2],[-2a ∈时直线在轴上方即可,设关于的函数44)2(24)4(x f(x)y 22+-+-=-+-+==x x a x a x a 对任意的2],[-2a ∈,当-2a =时,044)42(x )2(f(a)y 2>++--+=-==x f ,即086x )2(2>+-=-x f ,解得4x 2x ><或;当2a =时,044)42(x )2(y 2>-+-+==x f ,即02x )2(2>-=x f ,解得2x 0x ><或,∴的取值范围是{x|x 0x 4}<>或;故答案为:(,0)(4,)-∞+∞.考点:换主元法解决不等式恒成立问题.【方法点晴】本题考查了含有参数的一元二次不等式得解法,解题时应用更换主元的方法,使繁杂问题变得简洁,是易错题.把原不等式看成是关于的一次不等式,在2],[-2a ∈时恒成立,只要满足在2],[-2a ∈时直线在轴上方即可.关键是换主元需要满足两个条件,一是函数必须是关于这个量的一次函数,二是要有这个量的具体范围.三、解答题19.【答案】【解析】解:(1).∴=1﹣i .(2)a (1+i )+b=1﹣i ,即a+b+ai=1﹣i ,∴,解得a=﹣1,b=2.【点评】该题考查复数代数形式的乘除运算、复数的基本概念,属基础题,熟记相关概念是解题关键.20.【答案】【解析】解:(1)由题意可得,∴n=160;(2)高二代表队6人,从中抽取2人上台抽奖的基本事件有(a ,b ),(a ,c ),(a ,d ),(a ,e ),(a ,f ),(b ,c ),(b ,d ),(b ,e ),(b .f ),(c ,d ),(c ,e ),(c ,f ),(d ,e ),(d ,f ),(e ,f )共15种,其中a 和b 至少有一人上台抽奖的基本事件有9种,∴a 和b 至少有一人上台抽奖的概率为=;(3)由已知0≤x ≤1,0≤y ≤1,点(x ,y )在如图所示的正方形OABC 内,由条件得到的区域为图中的阴影部分由2x﹣y﹣1=0,令y=0可得x=,令y=1可得x=1∴在x,y∈[0,1]时满足2x﹣y﹣1≤0的区域的面积为=∴该代表中奖的概率为=.21.【答案】【解析】【分析】(1)求出圆的圆心,代入直线方程,求出直线的斜率,即可求直线l的方程;(2)当弦AB被点P平分时,求出直线的斜率,即可写出直线l的方程;【解答】解:(1)已知圆C:(x﹣1)2+y2=9的圆心为C(1,0),因为直线l过点P,C,所以直线l的斜率为2,所以直线l的方程为y=2(x﹣1),即2x﹣y﹣2=0.(2)当弦AB被点P平分时,l⊥PC,直线l的方程为,即x+2y﹣6=0.22.【答案】【解析】解:(Ⅰ)设“这2名抗战老兵参加纪念活动的环节数不同”为事件M,则“这2名抗战老兵参加纪念活动的环节数相同”为事件,根据题意可知P()==,由对立事件的概率计算公式可得,故这2名抗战老兵参加纪念活动的环节数不同的概率为.(Ⅱ)根据题意可知随机变量ξ的可能取值为0,1,2,3,,P(ξ=1)==,P (ξ=2)==,P (ξ=4)=()3=,则数学期望.【点评】本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.23.【答案】【解析】解:(1)由,∴f (x )的周期为4π.由,故f (x )图象的对称中心为.(2)由(2a ﹣c )cosB=bcosC ,得(2sinA ﹣sinC )cosB=sinBcosC ,∴2sinAcosB ﹣cosBsinC=sinBcosC ,∴2sinAcosB=sin (B+C ),∵A+B+C=π,∴sin (B+C )=sinA ,且sinA ≠0,∴.∴,故函数f (A )的取值范围是.24.【答案】(1){}11x x x ><-或;(2)(,2]-∞-.【解析】试题解析:(1)因为()211f x x <--,所以1211x x -<--, 即1211x x ---<-,当1x >时,1211x x --+<-,∴1x -<-,∴1x >,从而1x >; 当112x ≤≤时,1211x x --+<-,∴33x -<-,∴1x >,从而不等式无解;当12x <时,1211x x -+-<-,∴1x <-,从而1x <-; 综上,不等式的解集为{}11x x x ><-或.(2)由121()x x a f x ->---,得121x x a x a -+->--, 因为1121x x a x a x x a -+-≥-+-=--,所以当(1)()0x x a --≥时,121x x a x a -+-=--; 当(1)()0x x a --<时,121x x a x a -+->--记不等式(1)()0x x a --<的解集为A ,则(2,1)A -⊆,故2a ≤-, 所以的取值范围是(,2]-∞-.考点:1.含绝对值的不等式;2.分类讨论.。

合肥市第二高级中学2018-2019学年上学期高二数学12月月考试题含解析

合肥市第二高级中学2018-2019学年上学期高二数学12月月考试题含解析

合肥市第二高级中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知函数f (x )=2x ﹣+cosx ,设x 1,x 2∈(0,π)(x 1≠x 2),且f (x 1)=f (x 2),若x 1,x 0,x 2成等差数列,f ′(x )是f (x )的导函数,则( ) A .f ′(x 0)<0B .f ′(x 0)=0C .f ′(x 0)>0D .f ′(x 0)的符号无法确定2. 已知A={﹣4,2a ﹣1,a 2},B={a ﹣5,1﹣a ,9},且A ∩B={9},则a 的值是( )A .a=3B .a=﹣3C .a=±3D .a=5或a=±33. 设函数()y f x =对一切实数x 都满足(3)(3)f x f x +=-,且方程()0f x =恰有6个不同的实根,则这6个实根的和为( )A.18B.12C.9D.0【命题意图】本题考查抽象函数的对称性与函数和方程等基础知识,意在考查运算求解能力. 4. 设集合M={x|x ≥﹣1},N={x|x ≤k},若M ∩N ≠¢,则k 的取值范围是( )A .(﹣∞,﹣1]B .[﹣1,+∞)C .(﹣1,+∞)D .(﹣∞,﹣1)5. 设i 是虚数单位,则复数21ii-在复平面内所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限6. 函数f (x )=sin ωx (ω>0)在恰有11个零点,则ω的取值范围( ) A . C . D .时,函数f (x )的最大值与最小值的和为( )A .a+3B .6C .2D .3﹣a7. 阅读如图所示的程序框图,运行相应的程序.若该程序运行后输出的结果不大于20,则输入的整数i 的最大值为( )A.3 B.4 C.5 D.68.若某算法框图如图所示,则输出的结果为()A.7 B.15 C.31 D.639.与圆C1:x2+y2﹣6x+4y+12=0,C2:x2+y2﹣14x﹣2y+14=0都相切的直线有()A.1条B.2条C.3条D.4条1,2,3的真子集共有()10.集合{}A.个B.个C.个D.个11.如图在圆O中,AB,CD是圆O互相垂直的两条直径,现分别以OA,OB,OC,OD为直径作四个圆,在圆O内随机取一点,则此点取自阴影部分的概率是()A .π1B .π21 C .π121- D .π2141- 【命题意图】本题考查几何概型概率的求法,借助圆这个载体,突出了几何概型的基本运算能力,因用到圆的几何性质及面积的割补思想,属于中等难度.12.若函数f (x )=﹣2x 3+ax 2+1存在唯一的零点,则实数a 的取值范围为( ) A .[0,+∞) B .[0,3]C .(﹣3,0]D .(﹣3,+∞)二、填空题13.若tan θ+=4,则sin2θ= .14.若a ,b 是函数f (x )=x 2﹣px+q (p >0,q >0)的两个不同的零点,且a ,b ,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q 的值等于 .15.设抛物线24y x =的焦点为F ,,A B 两点在抛物线上,且A ,B ,F 三点共线,过AB 的中点M 作y 轴的垂线与抛物线在第一象限内交于点P ,若32PF =,则M 点的横坐标为 . 16.已知M N 、为抛物线24y x =上两个不同的点,F 为抛物线的焦点.若线段MN 的中点的纵坐标为2,||||10MF NF +=,则直线MN 的方程为_________.17.直线ax ﹣2y+2=0与直线x+(a ﹣3)y+1=0平行,则实数a 的值为 .18.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()ln 4f x x x =+-的零点在区间()1k k +,内,则正整数k 的值为________. 三、解答题19.【常熟中学2018届高三10月阶段性抽测(一)】已知函数()()()3244f x x a x a b x c =+--++(),,R a b c ∈有一个零点为4,且满足()01f =.(1)求实数b 和c 的值;(2)试问:是否存在这样的定值0x ,使得当a 变化时,曲线()y f x =在点()()00,x f x 处的切线互相平行?若存在,求出0x 的值;若不存在,请说明理由; (3)讨论函数()()g x f x a =+在()0,4上的零点个数.DABCO20.已知函数f(x)=alnx+x2+bx+1在点(1,f(1))处的切线方程为4x﹣y﹣12=0.(1)求函数f(x)的解析式;(2)求f(x)的单调区间和极值.21.已知椭圆C:=1(a>2)上一点P到它的两个焦点F1(左),F2(右)的距离的和是6.(1)求椭圆C的离心率的值;(2)若PF2⊥x轴,且p在y轴上的射影为点Q,求点Q的坐标.22.已知f(x)=x2+ax+a(a≤2,x∈R),g(x)=e x,φ(x)=.(Ⅰ)当a=1时,求φ(x)的单调区间;(Ⅱ)求φ(x)在x∈[1,+∞)是递减的,求实数a的取值范围;(Ⅲ)是否存在实数a,使φ(x)的极大值为3?若存在,求a的值;若不存在,请说明理由.23.已知函数2(x)1ax f x =+是定义在(-1,1)上的函数, 12()25f =(1)求a 的值并判断函数(x)f 的奇偶性(2)用定义法证明函数(x)f 在(-1,1)上是增函数;24.已知函数()x f x e x a =-+,21()x g x x a e=++,a R ∈. (1)求函数()f x 的单调区间;(2)若存在[]0,2x ∈,使得()()f x g x <成立,求的取值范围; (3)设1x ,2x 是函数()f x 的两个不同零点,求证:121x x e +<.合肥市第二高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题1. 【答案】 A【解析】解:∵函数f (x )=2x ﹣+cosx ,设x 1,x 2∈(0,π)(x 1≠x 2),且f (x 1)=f (x 2),∴,∴存在x 1<a <x 2,f '(a )=0,∴,∴,解得a=,假设x 1,x 2在a 的邻域内,即x 2﹣x 1≈0.∵,∴,∴f (x )的图象在a 的邻域内的斜率不断减少小,斜率的导数为正, ∴x 0>a ,又∵x >x 0,又∵x >x 0时,f ''(x )递减,∴.故选:A .【点评】本题考查导数的性质的应用,是难题,解题时要认真审题,注意二阶导数和三阶导数的性质的合理运用.2. 【答案】B【解析】解:∵A={﹣4,2a ﹣1,a 2},B={a ﹣5,1﹣a ,9},且A ∩B={9},∴2a ﹣1=9或a 2=9,当2a ﹣1=9时,a=5,A ∩B={4,9},不符合题意;当a 2=9时,a=±3,若a=3,集合B 违背互异性;∴a=﹣3. 故选:B .【点评】本题考查了交集及其运算,考查了集合中元素的特性,是基础题.3. 【答案】A.【解析】(3)(3)()(6)f x f x f x f x +=-⇔=-,∴()f x 的图象关于直线3x =对称,∴6个实根的和为3618⋅=,故选A. 4. 【答案】B【解析】解:∵M={x|x≥﹣1},N={x|x≤k},若M∩N≠¢,则k≥﹣1.∴k的取值范围是[﹣1,+∞).故选:B.【点评】本题考查了交集及其运算,考查了集合间的关系,是基础题.5.【答案】B【解析】因为所以,对应的点位于第二象限故答案为:B【答案】B6.【答案】A【解析】A. C. D.恰有11个零点,可得5π≤ω•<6π,求得10≤ω<12,故选:A.7.【答案】B【解析】解:模拟执行程序框图,可得s=0,n=0满足条件n<i,s=2,n=1满足条件n<i,s=5,n=2满足条件n<i,s=10,n=3满足条件n<i,s=19,n=4满足条件n<i,s=36,n=5所以,若该程序运行后输出的结果不大于20,则输入的整数i的最大值为4,有n=4时,不满足条件n<i,退出循环,输出s的值为19.故选:B.【点评】本题主要考查了循环结构的程序框图,属于基础题.8.【答案】D【解析】解:模拟执行算法框图,可得 A=1,B=1满足条件A ≤5,B=3,A=2 满足条件A ≤5,B=7,A=3 满足条件A ≤5,B=15,A=4 满足条件A ≤5,B=31,A=5 满足条件A ≤5,B=63,A=6不满足条件A ≤5,退出循环,输出B 的值为63. 故选:D .【点评】本题主要考查了程序框图和算法,正确得到每次循环A ,B 的值是解题的关键,属于基础题.9. 【答案】C【解析】【分析】先求出两圆的圆心和半径,判断两个圆的位置关系,从而确定与它们都相切的直线条数.【解答】解:∵圆C 1:x 2+y 2﹣6x+4y+12=0,C 2:x 2+y 2﹣14x ﹣2y+14=0的方程可化为,;; ∴圆C 1,C 2的圆心分别为(3,﹣2),(7,1);半径为r 1=1,r 2=6.∴两圆的圆心距=r 2﹣r 1; ∴两个圆外切,∴它们只有1条内公切线,2条外公切线. 故选C . 10.【答案】C 【解析】考点:真子集的概念. 11.【答案】C【解析】设圆O 的半径为2,根据图形的对称性,可以选择在扇形OAC 中研究问题,过两个半圆的交点分别向OA ,OC 作垂线,则此时构成一个以1为边长的正方形,则这个正方形内的阴影部分面积为12-π,扇形OAC 的面积为π,所求概率为πππ12112-=-=P . 12.【答案】 D【解析】解:令f(x)=﹣2x3+ax2+1=0,易知当x=0时上式不成立;故a==2x﹣,令g(x)=2x﹣,则g′(x)=2+=2,故g(x)在(﹣∞,﹣1)上是增函数,在(﹣1,0)上是减函数,在(0,+∞)上是增函数;故作g(x)=2x﹣的图象如下,,g(﹣1)=﹣2﹣1=﹣3,故结合图象可知,a>﹣3时,方程a=2x﹣有且只有一个解,即函数f(x)=﹣2x3+ax2+1存在唯一的零点,故选:D.二、填空题13.【答案】 .【解析】解:若tan θ+=4,则sin2θ=2sin θcos θ=====,故答案为.【点评】本题主要考查了二倍角公式,以及齐次式的应用,同时考查了计算能力,属于中档题.14.【答案】 9 .【解析】解:由题意可得:a+b=p ,ab=q , ∵p >0,q >0, 可得a >0,b >0,又a ,b ,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,可得①或②.解①得:;解②得:.∴p=a+b=5,q=1×4=4, 则p+q=9. 故答案为:9.15.【答案】2【解析】由题意,得2p =,(1,0)F ,准线为1x =-,设11(,)A x y 、22(,)B x y ,直线AB 的方程为(1)y k x =-,代入抛物线方程消去y ,得2222(24)0k x k x k -++=,所以212224k x x k ++=,121x x =.又设00(,)P x y ,则01212112()[(1)(1)]22y y y k x k x k =+=-+-=,所以021x k =,所以212(,)P k k.因为0213||112PF x k =+=+=,解得22k =,所以M 点的横坐标为2.16.【答案】20x y --=【解析】解析: 设1122(,)(,)M x y N x y 、,那么12||||210MF NF x x +=++=,128x x +=,∴线段MN 的中点坐标为(4,2).由2114y x =,2224y x =两式相减得121212()()4()y y y y x x +-=-,而1222y y +=,∴12121y y x x -=-,∴直线MN 的方程为24y x -=-,即20x y --=.17.【答案】1【解析】 【分析】利用两直线平行的条件,一次项系数之比相等,但不等于常数项之比,求得实数a 的值. 【解答】解:直线ax ﹣2y+2=0与直线x+(a ﹣3)y+1=0平行,∴,解得 a=1.故答案为 1. 18.【答案】2【解析】三、解答题19.【答案】(1)1,14b c ==;(2)答案见解析;(3)当1a <-或0a >时,()g x 在()0,4有两个零点;当10a -≤≤时,()g x 在()0,4有一个零点. 【解析】试题分析:(1)由题意得到关于实数b ,c 的方程组,求解方程组可得1,14b c ==;(3)函数()g x 的导函数()()2132444g x x a x a ⎛⎫=+--+ ⎪⎝⎭',结合导函数的性质可得当1a <-或0a >时,()g x 在()0,4有两个零点;当10a -≤≤时,()g x 在()0,4有一个零点.试题解析:(1)由题意()()01{ 440f c f b c =+=-+=,解得1{ 41b c ==;(2)由(1)可知()()324f x x a x =+--1414a x ⎛⎫++ ⎪⎝⎭,∴()()2132444f x x a x a ⎛⎫=+--+⎪⎝⎭'; 假设存在0x 满足题意,则()()2000132444f x x a x a ⎛⎫=+--+⎪⎝⎭'是一个与a 无关的定值, 即()2000124384x a x x -+--是一个与a 无关的定值, 则0240x -=,即02x =,平行直线的斜率为()1724k f ==-'; (3)()()()324g x f x a x a x =+=+-1414a x a ⎛⎫-+++ ⎪⎝⎭, ∴()()2132444g x x a x a ⎛⎫=+--+⎪⎝⎭', 其中()21441244a a ⎛⎫∆=-++= ⎪⎝⎭()224166742510a a a ++=++>,设()0g x '=两根为1x 和()212x x x <,考察()g x 在R 上的单调性,如下表1°当0a >时,()010g a =+>,()40g a =>,而()152302g a =--<, ∴()g x 在()0,2和()2,4上各有一个零点,即()g x 在()0,4有两个零点; 2°当0a =时,()010g =>,()40g a ==,而()15202g =-<, ∴()g x 仅在()0,2上有一个零点,即()g x 在()0,4有一个零点;3°当0a <时,()40g a =<,且13024g a ⎛⎫=->⎪⎝⎭, ①当1a <-时,()010g a =+<,则()g x 在10,2⎛⎫ ⎪⎝⎭和1,42⎛⎫⎪⎝⎭上各有一个零点,即()g x 在()0,4有两个零点;②当10a -≤<时,()010g a =+≥,则()g x 仅在1,42⎛⎫⎪⎝⎭上有一个零点, 即()g x 在()0,4有一个零点;综上:当1a <-或0a >时,()g x 在()0,4有两个零点; 当10a -≤≤时,()g x 在()0,4有一个零点.点睛:在解决类似的问题时,首先要注意区分函数最值与极值的区别.求解函数的最值时,要先求函数y=f (x)在[a,b]内所有使f′(x)=0的点,再计算函数y=f(x)在区间内所有使f′(x)=0的点和区间端点处的函数值,最后比较即得.20.【答案】【解析】解:(1)求导f′(x)=+2x+b,由题意得:f′(1)=4,f(1)=﹣8,则,解得,所以f(x)=12lnx+x2﹣10x+1;(2)f(x)定义域为(0,+∞),f′(x)=,令f′(x)>0,解得:x<2或x>3,所以f(x)在(0,2)递增,在(2,3)递减,在(3,+∞)递增,故f(x)极大值=f(2)=12ln2﹣15,f(x)极小值=f(3)=12ln3﹣20.21.【答案】【解析】解:(1)根据椭圆的定义得2a=6,a=3;∴c=;∴;即椭圆的离心率是;(2);∴x=带入椭圆方程得,y=;所以Q(0,).22.【答案】【解析】解:(I)当a=1时,φ(x)=(x2+x+1)e﹣x.φ′(x)=e﹣x(﹣x2+x)当φ′(x)>0时,0<x<1;当φ′(x)<0时,x>1或x<0∴φ(x)单调减区间为(﹣∞,0),(1,+∞),单调增区间为(0,1);(II )φ′(x )=e ﹣x [﹣x 2+(2﹣a )x]∵φ(x )在x ∈[1,+∞)是递减的, ∴φ′(x )≤0在x ∈[1,+∞)恒成立,∴﹣x 2+(2﹣a )x ≤0在x ∈[1,+∞)恒成立,∴2﹣a ≤x 在x ∈[1,+∞)恒成立, ∴2﹣a ≤1 ∴a ≥1∵a ≤2,1≤a ≤2;(III )φ′(x )=(2x+a )e ﹣x ﹣e ﹣x (x 2+ax+a )=e ﹣x [﹣x 2+(2﹣a )x]令φ′(x )=0,得x=0或x=2﹣a :由表可知,φ(x )极大=φ(2﹣a )=(4﹣a )e a ﹣2设μ(a )=(4﹣a )e a ﹣2,μ′(a )=(3﹣a )e a ﹣2>0,∴μ(a )在(﹣∞,2)上是增函数,∴μ(a )≤μ(2)=2<3,即(4﹣a )e a ﹣2≠3,∴不存在实数a ,使φ(x )极大值为3.23.【答案】(1)1a =,()f x 为奇函数;(2)详见解析。

包河区三中2018-2019学年上学期高二数学12月月考试题含解析

包河区三中2018-2019学年上学期高二数学12月月考试题含解析

包河区三中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 若集合A ={-1,1},B ={0,2},则集合{z|z =x +y ,x ∈A ,y ∈B}中的元素的个数为( )A5 B4 C3 D22. 已知e 是自然对数的底数,函数f (x )=e x +x ﹣2的零点为a ,函数g (x )=lnx+x ﹣2的零点为b ,则下列不等式中成立的是( )A .a <1<bB .a <b <1C .1<a <bD .b <1<a3. 函数2-21y x x =-,[0,3]x ∈的值域为( ) A. B. C. D.4. 若等式(2x ﹣1)2014=a 0+a 1x+a 2x 2+…+a 2014x 2014对于一切实数x 都成立,则a 0+1+a 2+…+a 2014=( )A .B .C .D .05. 曲线y=在点(1,﹣1)处的切线方程为( )A .y=x ﹣2B .y=﹣3x+2C .y=2x ﹣3D .y=﹣2x+16. 设a ,b ∈R ,i 为虚数单位,若2+a i 1+i =3+b i ,则a -b 为( )A .3B .2C .1D .07. 已知函数f (x )的图象如图,则它的一个可能的解析式为( )A .y=2B .y=log 3(x+1)C .y=4﹣D .y=8. 设集合,,则( )A BCD9. 设m 是实数,若函数f (x )=|x ﹣m|﹣|x ﹣1|是定义在R 上的奇函数,但不是偶函数,则下列关于函数f (x )的性质叙述正确的是( )A .只有减区间没有增区间B .是f (x )的增区间C .m=±1D .最小值为﹣310.如图,1111D C B A ABCD -为正方体,下面结论:① //BD 平面11D CB ;② BD AC ⊥1;③ ⊥1AC 平面11D CB .其中正确结论的个数是( )A .B .C .D .11.函数f (x )=Asin (ωx+φ)(A >0,ω>0,)的部分图象如图所示,则函数y=f (x )对应的解析式为( )A .B .C .D .12.方程1x -=表示的曲线是( )A .一个圆B . 两个半圆C .两个圆D .半圆二、填空题13.【启东中学2018届高三上学期第一次月考(10月)】已知函数()f x xlnx ax =-+在()0e ,上是增函数,函数()22xa g x e a =-+,当[]03x ln ∈,时,函数g (x )的最大值M 与最小值m 的差为32,则a 的值为______.14.已知平面向量a ,b 的夹角为3π,6=-b a ,向量c a -,c b -的夹角为23π,23c a -=,则a 与c的夹角为__________,a c ⋅的最大值为 .【命题意图】本题考查平面向量数量积综合运用等基础知识,意在考查数形结合的数学思想与运算求解能力. 15.定义在(﹣∞,+∞)上的偶函数f (x )满足f (x+1)=﹣f (x ),且f (x )在[﹣1,0]上是增函数,下面五个关于f (x )的命题中: ①f (x )是周期函数;②f (x ) 的图象关于x=1对称; ③f (x )在[0,1]上是增函数; ④f (x )在[1,2]上为减函数; ⑤f (2)=f (0).正确命题的个数是 .16.正六棱台的两底面边长分别为1cm ,2cm ,高是1cm ,它的侧面积为 .17.设f ′(x )是奇函数f (x )(x ∈R )的导函数,f (﹣2)=0,当x >0时,xf ′(x )﹣f (x )>0,则使得f(x )>0成立的x 的取值范围是 .18.已知点M (x ,y )满足,当a >0,b >0时,若ax+by 的最大值为12,则+的最小值是 .三、解答题19.(本小题满分12分)已知两点)0,1(1-F 及)0,1(2F ,点P 在以1F 、2F 为焦点的椭圆C 上,且1PF 、21F F 、 2PF 构成等差数列. (I )求椭圆C 的方程;(II )设经过2F 的直线m 与曲线C 交于P Q 、两点,若22211PQ F P F Q =+,求直线m 的方程.20.(本小题满分10分)选修41-:几何证明选讲如图所示,已知PA 与⊙O 相切,A 为切点,过点P 的割线交圆于C B ,两点,弦AP CD //,BC AD ,相 交于点E ,F 为CE 上一点,且EC EF DE ⋅=2. (Ⅰ)求证:P EDF ∠=∠;(Ⅱ)若2,3,2:3:===EF DE BE CE ,求PA 的长.【命题意图】本题考查相交弦定理、三角形相似、切割线定理等基础知识,意在考查逻辑推理能力.21.设F 是抛物线G :x 2=4y 的焦点.(1)过点P (0,﹣4)作抛物线G 的切线,求切线方程;(2)设A ,B 为抛物线上异于原点的两点,且满足FA ⊥FB ,延长AF ,BF 分别交抛物线G 于点C ,D ,求四边形ABCD 面积的最小值.22.已知函数f (x )=alnx+,曲线y=f (x )在点(1,f (1))处的切线方程为y=2.(I )求a 、b 的值;(Ⅱ)当x >1时,不等式f (x )>恒成立,求实数k 的取值范围.23.【徐州市第三中学2017~2018学年度高三第一学期月考】为了制作广告牌,需在如图所示的铁片上切割出一个直角梯形,已知铁片由两部分组成,半径为1的半圆O 及等腰直角三角形EFH ,其中FE FH ⊥,为裁剪出面积尽可能大的梯形铁片ABCD (不计损耗),将点,A B 放在弧EF 上,点,C D 放在斜边EH 上,且////AD BC HF ,设AOE θ∠=.(1)求梯形铁片ABCD 的面积S 关于θ的函数关系式;(2)试确定θ的值,使得梯形铁片ABCD 的面积S 最大,并求出最大值.24.已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,且过点D (2,0).(1)求该椭圆的标准方程; (2)设点,若P 是椭圆上的动点,求线段PA 的中点M 的轨迹方程.包河区三中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】C【解析】由已知,得{z|z =x +y ,x ∈A ,y ∈B}={-1,1,3},所以集合{z|z =x +y ,x ∈A ,y ∈B}中的元素的个数为3. 2. 【答案】A【解析】解:由f (x )=e x +x ﹣2=0得e x =2﹣x ,由g (x )=lnx+x ﹣2=0得lnx=2﹣x ,作出计算y=e x ,y=lnx ,y=2﹣x 的图象如图:∵函数f (x )=e x +x ﹣2的零点为a ,函数g (x )=lnx+x ﹣2的零点为b ,∴y=e x 与y=2﹣x 的交点的横坐标为a ,y=lnx 与y=2﹣x 交点的横坐标为b ,由图象知a <1<b , 故选:A .【点评】本题主要考查函数与方程的应用,利用函数转化为两个图象的交点问题,结合数形结合是解决本题的关键.3. 【答案】A 【解析】试题分析:函数()222112y x x x =--=--在区间[]0,1上递减,在区间[]1,3上递增,所以当x=1时,()()min 12f x f ==-,当x=3时,()()max 32f x f ==,所以值域为[]2,2-。

包河区第二中学2018-2019学年高二上学期第二次月考试卷数学(1)

包河区第二中学2018-2019学年高二上学期第二次月考试卷数学(1)

包河区第二中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知数列{a n }满足log 3a n +1=log 3a n+1(n ∈N *),且a 2+a 4+a 6=9,则log (a 5+a 7+a 9)的值是( )A.﹣ B .﹣5 C .5D.2. 设a ,b为正实数,11a b+≤23()4()a b ab -=,则log a b =( )A.0B.1-C.1 D .1-或0【命题意图】本题考查基本不等式与对数的运算性质等基础知识,意在考查代数变形能与运算求解能力. 3. 已知等差数列的公差且成等比数列,则( )A .B .C .D .4. 已知22(0)()|log |(0)x x f x x x ⎧≤=⎨>⎩,则方程[()]2f f x =的根的个数是( )A .3个B .4个C .5个D .6个 5.定义运算,例如.若已知,则=( )A.B.C.D.6. 设集合A ={1,2,3},B ={4,5},M ={x|x =a +b ,a ∈A ,b ∈B},则M 中元素的个数为( )。

A3 B4 C5 D67. 已知一元二次不等式f (x )<0的解集为{x|x <﹣1或x>},则f (10x )>0的解集为( ) A .{x|x <﹣1或x >﹣lg2} B .{x|﹣1<x <﹣lg2} C .{x|x >﹣lg2} D .{x|x <﹣lg2}8. 若抛物线y 2=2px 的焦点与双曲线﹣=1的右焦点重合,则p 的值为( )A .﹣2B .2C .﹣4D .49. 如果执行右面的框图,输入N=5,则输出的数等于( )A .B .C .D .10.设集合3|01x A x x -⎧⎫=<⎨⎬+⎩⎭,集合(){}2|220B x x a x a =+++>,若 A B ⊆,则的取值范围 ( )A .1a ≥B .12a ≤≤ C.a 2≥ D .12a ≤<11.已知三棱柱111ABC A B C - 的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点, 则异面直线AB 与1CC 所成的角的余弦值为( )A B D .3412.执行如图所示程序框图,若使输出的结果不大于50,则输入的整数k 的最大值为( )A.4 B.5 C.6 D.7二、填空题13.如图,在长方体ABCD﹣A1B1C1D1中,AB=AD=3cm,AA1=2cm,则四棱锥A﹣BB1D1D的体积为cm3.14.设为单位向量,①若为平面内的某个向量,则=||•;②若与平行,则=||•;③若与平行且||=1,则=.上述命题中,假命题个数是.15.如图,是一回形图,其回形通道的宽和OB1的长均为1,回形线与射线OA交于A1,A2,A3,…,若从点O到点A3的回形线为第1圈(长为7),从点A3到点A2的回形线为第2圈,从点A2到点A3的回形线为第3圈…依此类推,第8圈的长为.16.已知,x y 满足41y xx y x ≥⎧⎪+≤⎨⎪≥⎩,则22223y xy x x -+的取值范围为____________. 17.记等比数列{a n }的前n 项积为Πn ,若a 4•a 5=2,则Π8= .18.定义在R 上的可导函数()f x ,已知()f x y e =′的图象如图所示,则()y f x =的增区间是 ▲ .S n =2a n ﹣n 2+3n+2(n ∈N *)n }的前n 项和; (Ⅲ)设C n =﹣,数列{C n }的前n 项和为P n ,求证:P n <.20.选修4﹣4:坐标系与参数方程极坐标系与直角坐标系xOy 有相同的长度单位,以原点O 为极点,以x 轴正半轴为极轴.已知直线l 的参数方程为,(t 为参数),曲线C 的极坐标方程为ρsin 2θ=8cos θ.(Ⅰ)求C 的直角坐标方程;(Ⅱ)设直线l 与曲线C 交于A 、B 两点,求弦长|AB|.21.已知中心在坐标原点O 的椭圆C 经过点A (2,3),且点F (2,0)为其右焦点.(1)求椭圆C 的方程;(2)是否存在平行于OA 的直线l ,使得直线l 与椭圆C 有公共点,且直线OA 与l 的距离等于4?若存在,求出直线l 的方程;若不存在,说明理由.22.(本小题满分10分)选修41-:几何证明选讲如图所示,已知PA 与⊙O 相切,A 为切点,过点P 的割线交圆于C B ,两点,弦AP CD //,BC AD ,相 交于点E ,F 为CE 上一点,且EC EF DE ⋅=2. (Ⅰ)求证:P EDF ∠=∠;(Ⅱ)若2,3,2:3:===EF DE BE CE ,求PA 的长.【命题意图】本题考查相交弦定理、三角形相似、切割线定理等基础知识,意在考查逻辑推理能力.23.解关于x的不等式12x2﹣ax>a2(a∈R).24.已知二次函数f(x)的图象过点(0,4),对任意x满足f(3﹣x)=f(x),且有最小值是.(1)求f(x)的解析式;(2)求函数h(x)=f(x)﹣(2t﹣3)x在区间[0,1]上的最小值,其中t∈R;(3)在区间[﹣1,3]上,y=f(x)的图象恒在函数y=2x+m的图象上方,试确定实数m的范围.包河区第二中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】B【解析】解:∵数列{a n }满足log 3a n +1=log 3a n+1(n ∈N *),∴a n+1=3a n >0,∴数列{a n }是等比数列,公比q=3. 又a 2+a 4+a 6=9, ∴=a 5+a 7+a 9=33×9=35,则log(a 5+a 7+a 9)==﹣5.故选;B .2. 【答案】B.【解析】2323()4()()44()a b ab a b ab ab -=⇒+=+,故11a b a b ab++≤⇒≤2322()44()1184()82()()a b ab ab ab ab ab ab ab ab++⇒≤⇒=+≤⇒+≤,而事实上12ab ab +≥=, ∴1ab =,∴log 1a b =-,故选B.3. 【答案】A【解析】 由已知,,成等比数列,所以,即所以,故选A答案:A4. 【答案】C【解析】由[()]2f f x =,设f (A )=2,则f (x )=A,则2log 2x =,则A=4或A=14,作出f (x )的图像,由数型结合,当A=14时3个根,A=4时有两个交点,所以[()]2f f x =的根的个数是5个。

包河区高级中学2018-2019学年高二上学期第二次月考试卷数学

包河区高级中学2018-2019学年高二上学期第二次月考试卷数学

包河区高级中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 函数y=的图象大致为( )A .B .C .D .2. 将正方形的每条边8等分,再取分点为顶点(不包括正方形的顶点),可以得到不同的三角形个数为( ) A .1372 B .2024 C .3136 D .44953. 如图,三行三列的方阵中有9个数a ij (i=1,2,3;j=1,2,3),从中任取三个数,则至少有两个数位于同行或同列的概率是( )A .B .C .D .4. 已知角α的终边上有一点P (1,3),则的值为( )A .﹣B .﹣C .﹣D .﹣45. 设复数1i z =-(i 是虚数单位),则复数22z z+=( ) A.1i - B.1i + C. 2i + D. 2i -【命题意图】本题考查复数的有关概念,复数的四则运算等基础知识,意在考查学生的基本运算能力.6. 双曲线()222210,0x y a b a b-=>>的左右焦点分别为12F F 、,过2F 的直线与双曲线的右支交于A B 、两点,若1F AB ∆是以A 为直角顶点的等腰直角三角形,则2e =( )A .1+B .4-C .5-D .3+7. 已知向量=(2,1),=10,|+|=,则||=( )A .B .C .5D .258. 如图可能是下列哪个函数的图象( )A .y=2x ﹣x 2﹣1B .y= C .y=(x 2﹣2x )e xD .y=9. 若f (x )=sin (2x+θ),则“f (x )的图象关于x=对称”是“θ=﹣”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 10.如果过点M (﹣2,0)的直线l与椭圆有公共点,那么直线l 的斜率k 的取值范围是( )A.B.C.D.11.由两个1,两个2,两个3组成的6位数的个数为( ) A .45B .90C .120D .36012.设f (x )是定义在R 上的恒不为零的函数,对任意实数x ,y ∈R ,都有f (x )•f (y )=f (x+y ),若a 1=,a n =f (n )(n ∈N *),则数列{a n }的前n 项和S n 的取值范围是( ) A .[,2) B .[,2] C .[,1) D .[,1]二、填空题13.将一枚质地均匀的骰子先后抛掷两次,若第一次朝上一面的点数为a ,第二次朝上一面的点数为b ,则函数y=ax 2﹣2bx+1在(﹣∞,2]上为减函数的概率是 .14.方程(x+y ﹣1)=0所表示的曲线是 .15.设变量y x ,满足约束条件22022010x y x y x y --≤⎧⎪-+≥⎨⎪+-≥⎩,则22(1)3(1)z a x a y =+-+的最小值是20-,则实数a =______.【命题意图】本题考查线性规划问题,意在考查作图与识图能力、逻辑思维能力、运算求解能力.16.函数f (x )=x 3﹣3x+1在闭区间[﹣3,0]17.若全集,集合,则18.已知向量(1,),(1,1),a x b x ==-若(2)a b a -⊥,则|2|a b -=( )A .2B .3C .2D 【命题意图】本题考查平面向量的坐标运算、数量积与模等基础知识,意在考查转化思想、方程思想、逻辑思维能力与计算能力.三、解答题19.已知p :“直线x+y ﹣m=0与圆(x ﹣1)2+y 2=1相交”;q :“方程x 2﹣x+m ﹣4=0的两根异号”.若p ∨q 为真,¬p 为真,求实数m 的取值范围.20.2015年第7届女足世界杯在加拿大埃德蒙顿联邦体育场打响,某连锁分店销售某种纪念品,每件纪念品的成本为4元,并且每件纪念品需向总店交3元的管理费,预计当每件纪念品的售价为x 元(7≤x ≤9)时,一年的销售量为(x ﹣10)2万件.(Ⅰ)求该连锁分店一年的利润L (万元)与每件纪念品的售价x 的函数关系式L (x );(Ⅱ)当每件纪念品的售价为多少元时,该连锁分店一年的利润L 最大,并求出L 的最大值.21.在直角坐标系xOy 中,已知一动圆经过点(2,0)且在y 轴上截得的弦长为4,设动圆圆心的轨 迹为曲线C .(1)求曲线C 的方程;111](2)过点(1,0)作互相垂直的两条直线,,与曲线C 交于A ,B 两点与曲线C 交于E ,F 两点,线段AB,EF的中点分别为M,N,求证:直线MN过定点P,并求出定点P的坐标.22.已知f(x)是定义在R上的奇函数,当x<0时,f(x)=()x.(1)求当x>0时f(x)的解析式;(2)画出函数f(x)在R上的图象;(3)写出它的单调区间.23.已知角α的终边在直线y=x上,求sinα,cosα,tanα的值.24.已知斜率为2的直线l被圆x2+y2+14y+24=0所截得的弦长为,求直线l的方程.包河区高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】解:令y=f(x)=,∵f(﹣x)==﹣=﹣f(x),∴函数y=为奇函数,∴其图象关于原点对称,可排除A;又当x→0+,y→+∞,故可排除B;当x→+∞,y→0,故可排除C;而D均满足以上分析.故选D.2.【答案】C【解析】【专题】排列组合.【分析】分两类,第一类,三点分别在三条边上,第二类,三角形的两个顶点在正方形的一条边上,第三个顶点在另一条边,根据分类计数原理可得.【解答】解:首先注意到三角形的三个顶点不在正方形的同一边上.任选正方形的三边,使三个顶点分别在其上,有4种方法,再在选出的三条边上各选一点,有73种方法.这类三角形共有4×73=1372个.另外,若三角形有两个顶点在正方形的一条边上,第三个顶点在另一条边上,则先取一边使其上有三角形的两个顶点,有4种方法,再在这条边上任取两点有21种方法,然后在其余的21个分点中任取一点作为第三个顶点.这类三角形共有4×21×21=1764个.综上可知,可得不同三角形的个数为1372+1764=3136.故选:C.【点评】本题考查了分类计数原理,关键是分类,还要结合几何图形,属于中档题.3.【答案】D【解析】古典概型及其概率计算公式. 【专题】计算题;概率与统计.【分析】利用间接法,先求从9个数中任取3个数的取法,再求三个数分别位于三行或三列的情况,即可求得结论.【解答】解:从9个数中任取3个数共有C 93=84种取法,三个数分别位于三行或三列的情况有6种;∴所求的概率为=故选D .【点评】本题考查计数原理和组合数公式的应用,考查概率的计算公式,直接解法较复杂,采用间接解法比较简单.4. 【答案】A【解析】解:∵点P (1,3)在α终边上, ∴tan α=3,∴====﹣.故选:A .5. 【答案】A 【解析】6. 【答案】C 【解析】试题分析:设1A F A B m==,则12,2,22B F m A F m B F m a==--,因为22AB AF BF m =+=,所以22m a a m --=,解得4a =,所以212AF m ⎛⎫=- ⎪ ⎪⎝⎭,在直角三角形12AF F 中,由勾股定理得22542c m ⎛= ⎝,因为4a =,所以225482c a ⎛=⨯ ⎝,所以25e =-考点:直线与圆锥曲线位置关系.【思路点晴】本题考查直线与圆锥曲线位置关系,考查双曲线的定义,考查解三角形.由于题目给定的条件是等腰直角三角形,就可以利用等腰直角三角形的几何性质来解题.对于圆锥曲线的小题,往往要考查圆锥曲线的定义,本题考查双曲线的定义:动点到两个定点距离之差的绝对值为常数.利用定义和解直角三角形建立方程,从而求出离心率的平方]7.【答案】C【解析】解:∵|+|=,||=∴(+)2=2+2+2=50,得||=5故选C.【点评】本题考查平面向量数量积运算和性质,根据所给的向量表示出要求模的向量,用求模长的公式写出关于变量的方程,解方程即可,解题过程中注意对于变量的应用.8.【答案】C【解析】解:A中,∵y=2x﹣x2﹣1,当x趋向于﹣∞时,函数y=2x的值趋向于0,y=x2+1的值趋向+∞,∴函数y=2x﹣x2﹣1的值小于0,∴A中的函数不满足条件;B中,∵y=sinx是周期函数,∴函数y=的图象是以x轴为中心的波浪线,∴B中的函数不满足条件;C中,∵函数y=x2﹣2x=(x﹣1)2﹣1,当x<0或x>2时,y>0,当0<x<2时,y<0;且y=e x>0恒成立,∴y=(x2﹣2x)e x的图象在x趋向于﹣∞时,y>0,0<x<2时,y<0,在x趋向于+∞时,y趋向于+∞;∴C中的函数满足条件;D中,y=的定义域是(0,1)∪(1,+∞),且在x∈(0,1)时,lnx<0,∴y=<0,∴D中函数不满足条件.故选:C.【点评】本题考查了函数的图象和性质的应用问题,解题时要注意分析每个函数的定义域与函数的图象特征,是综合性题目.9.【答案】B【解析】解:若f(x)的图象关于x=对称,则2×+θ=+kπ,解得θ=﹣+kπ,k∈Z,此时θ=﹣不一定成立,反之成立,即“f(x)的图象关于x=对称”是“θ=﹣”的必要不充分条件,故选:B【点评】本题主要考查充分条件和必要条件的判断,结合三角函数的对称性是解决本题的关键.10.【答案】D【解析】解:设过点M(﹣2,0)的直线l的方程为y=k(x+2),联立,得(2k2+1)x2+8k2x+8k2﹣2=0,∵过点M(﹣2,0)的直线l与椭圆有公共点,∴△=64k4﹣4(2k2+1)(8k2﹣2)≥0,整理,得k2,解得﹣≤k≤.∴直线l的斜率k的取值范围是[﹣,].故选:D.【点评】本题考查直线的斜率的取值范围的求法,是基础题,解题时要认真审题,注意根的判别式的合理运用.11.【答案】B【解析】解:问题等价于从6个位置中各选出2个位置填上相同的1,2,3,所以由分步计数原理有:C62C42C22=90个不同的六位数,故选:B.【点评】本题考查了分步计数原理,关键是转化,属于中档题.12.【答案】C【解析】解:∵对任意x,y∈R,都有f(x)•f(y)=f(x+y),∴令x=n,y=1,得f(n)•f(1)=f(n+1),即==f(1)=,∴数列{a n}是以为首项,以为等比的等比数列,∴a n=f(n)=()n,∴S n==1﹣()n∈[,1).故选C.【点评】本题主要考查了等比数列的求和问题,解题的关键是根据对任意x,y∈R,都有f(x)•f(y)=f(x+y)得到数列{a n}是等比数列,属中档题.二、填空题13.【答案】.【解析】解:由题意,函数y=ax2﹣2bx+1在(﹣∞,2]上为减函数满足条件.∵第一次朝上一面的点数为a,第二次朝上一面的点数为b,∴a取1时,b可取2,3,4,5,6;a取2时,b可取4,5,6;a取3时,b可取6,共9种∵(a,b)的取值共36种情况∴所求概率为=.故答案为:.14.【答案】两条射线和一个圆.【解析】解:由题意可得x2+y2﹣4≥0,表示的区域是以原点为圆心的圆的外部以及圆上的部分.由方程(x+y﹣1)=0,可得x+y﹣1=0,或x2+y2=4,故原方程表示一条直线在圆外的地方和一个圆,即两条射线和一个圆,故答案为:两条射线和一个圆.【点评】本题主要考查直线和圆的方程的特征,属于基础题.15.【答案】2【解析】16.【答案】3,﹣17.【解析】解:由f′(x)=3x2﹣3=0,得x=±1,当x<﹣1时,f′(x)>0,当﹣1<x<1时,f′(x)<0,当x>1时,f′(x)>0,故f(x)的极小值、极大值分别为f(﹣1)=3,f(1)=﹣1,而f(﹣3)=﹣17,f(0)=1,故函数f(x)=x3﹣3x+1在[﹣3,0]上的最大值、最小值分别是3、﹣17.17.【答案】{|0<<1}【解析】∵,∴{|0<<1}。

包河区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析

包河区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析

第 3 页,共 14 页
23.(本小题满分 13 分) 在四棱锥 P ABCD 中, 底面 ABCD 是直角梯形, AB / / DC , ABC (Ⅰ)在棱 PB 上确定一点 E ,使得 CE / / 平面 PAD ; (Ⅱ)若 PA PD

2
, AD 2 2 , AB 3DC 3 .
13.【答案】 3 1
1 1 1 1 1 1 1 3 2 (n 1) n 2 nA n 1 , S n 1 2 2 … 2 2 2 2 2 2 2 1 1 1 1 1 1 1 n2 n2 (n 1) n 1 n n ,两式相减,得 S n 1 2 n 1 n n 2 n ,所以 S n 4 n 1 , 2 2 2 2 2 2 2 2 2 2 | 4 n 1 对一切 n N 恒成立,得 | 1 于是由不等式 | 1 | 2 ,解得 3 1 . 2
第 4 页,共 14 页
第 5 页,共 14 页
包河区第二中学 2018-2019 学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题
1. 【答案】A 【解析】解:由奇函数的定义可知:若 f(x)为奇函数, 则任意 x 都有 f(﹣x)=﹣f(x),取 x=0,可得 f(0)=0; 而仅由 f(0)=0 不能推得 f(x)为奇函数,比如 f(x)=x2, 显然满足 f(0)=0,但 f(x)为偶函数. 由充要条件的定义可得:“函数 f(x)是奇函数”是“f(0)=0””的充分不必要条件. 故选:A. 2. 【答案】C 【解析】解:由于 f(x)=x2﹣2ax 的对称轴是直线 x=a,图象开口向上, 故函数在区间(﹣∞,a]为减函数,在区间[a,+∞)上为增函数, 又由函数 f(x)=x2﹣2ax,x∈[1,+∞)是增函数,则 a≤1. 故答案为:C 3. 【答案】 【解析】解析:选 A.sin 15°-2 sin 80° sin 5° sin(10°+5°) = -2cos 10°= sin 5° sin 10°cos 5°+cos 10°sin 5°-2 cos 10°sin 5° sin 5° sin 10°cos 5°-cos 10°sin 5° sin(10°-5°) = = =1,选 A. sin5 ° sin 5° 4. 【答案】A 解析:抛物线 C: x 8 y 的焦点为 F(0,2),准线为 l :y=﹣2,

包河区高中2018-2019学年高二上学期第二次月考试卷数学

包河区高中2018-2019学年高二上学期第二次月考试卷数学

包河区高中2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.函数f(x)=e ln|x|+的大致图象为()A.B.C.D.2.二项式(x2﹣)6的展开式中不含x3项的系数之和为()A.20 B.24 C.30 D.363.已知定义在R上的可导函数y=f(x)是偶函数,且满足xf′(x)<0,=0,则满足的x的范围为()A.(﹣∞,)∪(2,+∞)B.(,1)∪(1,2)C.(,1)∪(2,+∞) D.(0,)∪(2,+∞)4.=()A.2 B.4 C.πD.2π5.已知函数f(x)=Asin(ωx﹣)(A>0,ω>0)的部分图象如图所示,△EFG是边长为2 的等边三角形,为了得到g(x)=Asinωx的图象,只需将f(x)的图象()A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位6. 设函数f (x )=的最小值为﹣1,则实数a 的取值范围是( )A .a ≥﹣2B .a >﹣2C .a ≥﹣D .a >﹣7. 已知椭圆(0<b <3),左右焦点分别为F 1,F 2,过F 1的直线交椭圆于A ,B 两点,若|AF 2|+|BF 2|的最大值为8,则b 的值是( )A .B .C .D .8. 设函数()()21x f x e x ax a =--+,其中1a <,若存在唯一的整数,使得()0f t <,则的 取值范围是( )A .3,12e ⎡⎫-⎪⎢⎣⎭ B .33,24e ⎡⎫-⎪⎢⎣⎭ C .33,24e ⎡⎫⎪⎢⎣⎭ D .3,12e ⎡⎫⎪⎢⎣⎭1111] 9. 已知双曲线2222:1(0,0)x y C a b a b-=>>,12,F F 分别在其左、右焦点,点P 为双曲线的右支上的一点,圆M 为三角形12PF F 的内切圆,PM 所在直线与轴的交点坐标为(1,0),与双曲线的一条渐,则双曲线C 的离心率是( )A B .2 C D10.设集合M={x|x 2+3x+2<0},集合,则M ∪N=( )A .{x|x ≥﹣2}B .{x|x >﹣1}C .{x|x <﹣1}D .{x|x ≤﹣2}11.一个几何体的三个视图如下,每个小格表示一个单位, 则该几何体的侧面积为( )A.4πB.C. 5πD. 2π+【命题意图】本题考查空间几何体的三视图,几何体的侧面积等基础知识,意在考查学生空间想象能力和计算能力.12.已知两条直线12:,:0L y x L ax y =-=,其中为实数,当这两条直线的夹角在0,12π⎛⎫⎪⎝⎭内变动时,的取值范围是( )A . ()0,1B .3,3⎛⎫ ⎪ ⎪⎝C .()3,11,3⎛⎫⎪ ⎪⎝⎭D .()1,3二、填空题13.设R m ∈,实数x ,y 满足23603260y m x y x y ≥⎧⎪-+≥⎨⎪--≤⎩,若182≤+y x ,则实数m 的取值范围是___________.【命题意图】本题考查二元不等式(组)表示平面区域以及含参范围等基础知识,意在考查数形结合的数学思想与运算求解能力. 14.下列命题:①集合{},,,a b c d 的子集个数有16个; ②定义在R 上的奇函数()f x 必满足(0)0f =;③2()(21)2(21)f x x x =+--既不是奇函数又不是偶函数; ④A R =,B R =,1:||f x x →,从集合A 到集合B 的对应关系f 是映射; ⑤1()f x x=在定义域上是减函数. 其中真命题的序号是 .15.如图,在三棱锥P ABC -中,PA PB PC ==,PA PB ⊥,PA PC ⊥,PBC △为等边三角形,则PC 与平面ABC 所成角的正弦值为______________.【命题意图】本题考查空间直线与平面所成角的概念与计算方法,意在考查学生空间想象能力和计算能力. 16.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式为y=()t ﹣a (a 为常数),如图所示,据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过 小时后,学生才能回到教室.17.若直线x ﹣y=1与直线(m+3)x+my ﹣8=0平行,则m= . 18.在ABC ∆中,90C ∠=,2BC =,M 为BC 的中点,1sin 3BAM ∠=,则AC 的长为_________. 三、解答题19.求点A (3,﹣2)关于直线l :2x ﹣y ﹣1=0的对称点A ′的坐标.20.从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,计算得x i =80,y i =20,x i y i =184,x i 2=720.(1)求家庭的月储蓄对月收入的回归方程; (2)判断月收入与月储蓄之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.21.已知等差数列{a n }中,a 1=1,且a 2+2,a 3,a 4﹣2成等比数列. (1)求数列{a n }的通项公式;(2)若b n=,求数列{b n}的前n项和S n.22.十八届四中全会明确提出“以法治手段推进生态文明建设”,为响应号召,某市红星路小区的环保人士向该市政府部门提议“在全市范围内禁放烟花、炮竹”.为此,红星路小区的环保人士对该小区年龄在[15,75)(2)若从年龄在[55,65)、[65,75)的被调查者中各随机选取两人进行追踪调查,记被选4人中不赞成“禁放烟花、炮竹”的人数为ξ,求随机变量ξ的分布列和数学期望.23.如图,四棱锥P﹣ABCD中,PD⊥平面ABCD,底面ABCD为正方形,BC=PD=2,E为PC的中点,.求证:PC⊥BC;(Ⅱ)求三棱锥C﹣DEG的体积;(Ⅲ)AD边上是否存在一点M,使得PA∥平面MEG.若存在,求AM的长;否则,说明理由.24.已知数列{a n}满足a1=﹣1,a n+1=(n∈N*).(Ⅰ)证明:数列{+}是等比数列;(Ⅱ)令b n=,数列{b n}的前n项和为S n.①证明:b n+1+b n+2+…+b2n<②证明:当n≥2时,S n2>2(++…+)包河区高中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】C【解析】解:∵f(x)=e ln|x|+∴f(﹣x)=e ln|x|﹣f(﹣x)与f(x)即不恒等,也不恒反,故函数f(x)为非奇非偶函数,其图象不关于原点对称,也不关于y轴对称,可排除A,D,当x→0+时,y→+∞,故排除B故选:C.2.【答案】A【解析】解:二项式的展开式的通项公式为T r+1=•(﹣1)r•x12﹣3r,令12﹣3r=3,求得r=3,故展开式中含x3项的系数为•(﹣1)3=﹣20,而所有系数和为0,不含x3项的系数之和为20,故选:A.【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.3.【答案】D【解析】解:当x>0时,由xf′(x)<0,得f′(x)<0,即此时函数单调递减,∵函数f(x)是偶函数,∴不等式等价为f(||)<,即||>,即>或<﹣,解得0<x<或x>2,故x的取值范围是(0,)∪(2,+∞)故选:D【点评】本题主要考查不等式的求解,根据函数奇偶性和单调性之间的关系是解决本题的关键.4.【答案】A【解析】解:∵(﹣cosx﹣sinx)′=sinx﹣cosx,∴==2.故选A.5.【答案】A【解析】解:∵△EFG是边长为2的正三角形,∴三角形的高为,即A=,函数的周期T=2FG=4,即T==4,解得ω==,即f(x)=Asinωx=sin(x﹣),g(x)=sin x,由于f(x)=sin(x﹣)=sin[(x﹣)],故为了得到g(x)=Asinωx的图象,只需将f(x)的图象向左平移个长度单位.故选:A.【点评】本题主要考查三角函数的图象和性质,利用函数的图象确定函数的解析式是解决本题的关键,属于中档题.6.【答案】C【解析】解:当x≥时,f(x)=4x﹣3≥2﹣3=﹣1,当x=时,取得最小值﹣1;当x<时,f(x)=x2﹣2x+a=(x﹣1)2+a﹣1,即有f(x)在(﹣∞,)递减,则f(x)>f()=a﹣,由题意可得a﹣≥﹣1,解得a≥﹣.故选:C.【点评】本题考查分段函数的运用:求最值,主要考查指数函数的单调性和二次函数的值域的求法,属于中档题.7. 【答案】D【解析】解:∵|AF 1|+|AF 2|=|BF 1|+|BF 2|=2a=6,|AF 2|+|BF 2|的最大值为8,∴|AB|的最小值为4,当AB ⊥x 轴时,|AB|取得最小值为4,∴=4,解得b 2=6,b=.故选:D .【点评】本题考查了椭圆的标准方程及其性质,考查了推理能力与计算能力,属于中档题.8. 【答案】D 【解析】考点:函数导数与不等式.1 【思路点晴】本题主要考查导数的运用,涉及划归与转化的数学思想方法.首先令()0f x =将函数变为两个函数()()()21,xg x e x h x ax a =-=-,将题意中的“存在唯一整数,使得()g t 在直线()h x 的下方”,转化为存在唯一的整数,使得()g t 在直线()h x ax a =-的下方.利用导数可求得函数的极值,由此可求得m 的取值范围.9. 【答案】C 【解析】试题分析:由题意知()1,0到直线0bx ay -=的距离为22=,得a b =,则为等轴双曲.故本题答案选C. 1 考点:双曲线的标准方程与几何性质.【方法点睛】本题主要考查双曲线的标准方程与几何性质.求解双曲线的离心率问题的关键是利用图形中的几何条件构造,,a b c 的关系,处理方法与椭圆相同,但需要注意双曲线中,,a b c 与椭圆中,,a b c 的关系不同.求双曲线离心率的值或离心率取值范围的两种方法:(1)直接求出,a c 的值,可得;(2)建立,,a b c 的齐次关系式,将用,a c 表示,令两边同除以或2a 化为的关系式,解方程或者不等式求值或取值范围.10.【答案】A【解析】解:∵集合M={x|x 2+3x+2<0}={x|﹣2<x <﹣1},集合={x|2﹣x ≤22}={x|﹣x ≤2}={x|x ≥﹣2},∴M ∪N={x|x ≥﹣2}, 故选A .【点评】本题考查集合的运算,解题时要认真审题,仔细解答.11.【答案】B12.【答案】C 【解析】1111]试题分析:由直线方程1:L y x =,可得直线的倾斜角为045α=,又因为这两条直线的夹角在0,12π⎛⎫⎪⎝⎭,所以直线2:0L ax y -=的倾斜角的取值范围是003060α<<且045α≠,所以直线的斜率为00tan 30tan 60a <<且0tan 45α≠31a <<或13a << C. 考点:直线的倾斜角与斜率.二、填空题13.【答案】[3,6]-. 【解析】14.【答案】①② 【解析】试题分析:子集的个数是2n,故①正确.根据奇函数的定义知②正确.对于③()241f x x =-为偶函数,故错误.对于④0x =没有对应,故不是映射.对于⑤减区间要分成两段,故错误. 考点:子集,函数的奇偶性与单调性.【思路点晴】集合子集的个数由集合的元素个数来决定,一个个元素的集合,它的子集的个数是2n 个;对于奇函数来说,如果在0x =处有定义,那么一定有()00f =,偶函数没有这个性质;函数的奇偶性判断主要根据定义()()()(),f x f x f x f x -=-=-,注意判断定义域是否关于原点对称.映射必须集合A 中任意一个元素在集合B 中都有唯一确定的数和它对应;函数的定义域和单调区间要区分清楚,不要随意写并集.115.【答案】7【解析】16.【答案】0.6【解析】解:当t>0.1时,可得1=()0.1﹣a∴0.1﹣a=0a=0.1由题意可得y≤0.25=,即()t﹣0.1≤,即t﹣0.1≥解得t≥0.6,由题意至少需要经过0.6小时后,学生才能回到教室.故答案为:0.6【点评】本题考查函数、不等式的实际应用,以及识图和理解能力.易错点:只单纯解不等式,而忽略题意,得到其他错误答案.17.【答案】 .【解析】解:直线x ﹣y=1的斜率为1,(m+3)x+my ﹣8=0斜率为两直线平行,则=1解得m=﹣.故应填﹣.18. 【解析】考点:1、正弦定理及勾股定理;2诱导公式及直角三角形的性质.【方法点睛】本题主要考查正弦定理及勾股定理、诱导公式及直角三角形的性质,属于难题,高考三角函数的考查主要以三角恒等变形,三角函数的图象和性质,利用正弦定理、余弦定理解三角形为主,难度中等,因此只要掌握基本的解题方法与技巧即可, 对于三角函数与解三角形相结合的题目,要注意通过正余弦定理以及面积公式实现边角互化,求出相关的边和角的大小,有时也要考虑特殊三角形的特殊性质(如正三角形,直角三角形等).三、解答题19.【答案】【解析】解:设点A(3,﹣2)关于直线l:2x﹣y﹣1=0的对称点A′的坐标为(m,n),则线段A′A的中点B(,),由题意得B在直线l:2x﹣y﹣1=0上,故2×﹣﹣1=0 ①.再由线段A′A和直线l垂直,斜率之积等于﹣1得×=﹣1 ②,解①②做成的方程组可得:m=﹣,n=,故点A′的坐标为(﹣,).【点评】本题考查求一个点关于直线的对称点的坐标的方法,注意利用垂直及中点在轴上两个条件.20.【答案】【解析】解:(1)由题意,n=10,=x=8,=y i=2,i∴b==0.3,a=2﹣0.3×8=﹣0.4,∴y=0.3x﹣0.4;(2)∵b=0.3>0,∴y与x之间是正相关;(3)x=7时,y=0.3×7﹣0.4=1.7(千元).21.【答案】【解析】解:(1)由a2+2,a3,a4﹣2成等比数列,∴=(a2+2)(a4﹣2),(1+2d)2=(3+d)(﹣1+3d),d2﹣4d+4=0,解得:d=2,∴a n=1+2(n﹣1)=2n﹣1,数列{a n}的通项公式a n=2n﹣1;(2)b n===(﹣),S n=[(1﹣)+(﹣)+…+(﹣)],=(1﹣),=,数列{b n}的前n项和S n,S n=.22.【答案】【解析】(1)解:赞成率为,被调查者的平均年龄为20×0.12+30×0.2+40×0.24+50×0.24+60×0.1+70×0.1=43(2)解:由题意知ξ的可能取值为0,1,2,3,,,,,∴ξ的分布列为:ξ0 1 2 3P∴.【点评】本题考查相互独立事件概率、离散型随机变量的分布列及数学期望等基础知识,考查数据处理能力,考查化归与转化思想,是中档题.23.【答案】【解析】解:(I)证明:∵PD⊥平面ABCD,∴PD⊥BC,又∵ABCD是正方形,∴BC⊥CD,∵PDICE=D,∴BC⊥平面PCD,又∵PC⊂面PBC,∴PC⊥BC.(II)解:∵BC⊥平面PCD,∴GC是三棱锥G﹣DEC的高.∵E是PC的中点,∴.∴.(III)连接AC,取AC中点O,连接EO、GO,延长GO交AD于点M,则PA∥平面MEG.下面证明之:∵E为PC的中点,O是AC的中点,∴EO∥平面PA,又∵EO⊂平面MEG,PA⊄平面MEG,∴PA∥平面MEG,在正方形ABCD中,∵O是AC中点,∴△OCG≌△OAM,∴,∴所求AM的长为.【点评】本题主要考查线面平行与垂直关系、多面体体积计算等基础知识,考查空间想象能、逻辑思维能力、运算求解能力和探究能力、考查数形结合思想、化归与转化思想.24.【答案】【解析】(Ⅰ)证明:∵数列{a n}满足a1=﹣1,a n+1=(n∈N*),∴na n=3(n+1)a n+4n+6,两边同除n(n+1)得,,即,也即,又a1=﹣1,∴,∴数列{+}是等比数列是以1为首项,3为公比的等比数列.(Ⅱ)(ⅰ)证明:由(Ⅰ)得,=3n﹣1,∴,∴,原不等式即为:<,先用数学归纳法证明不等式:当n≥2时,,证明过程如下:当n=2时,左边==<,不等式成立假设n=k时,不等式成立,即<,则n=k+1时,左边=<+=<,∴当n=k+1时,不等式也成立.因此,当n≥2时,,当n≥2时,<,∴当n≥2时,,又当n=1时,左边=,不等式成立故b n+1+b n+2+…+b2n<.(ⅱ)证明:由(i)得,S n=1+,当n≥2,=(1+)2﹣(1+)2==2﹣,,…=2•,将上面式子累加得,﹣,又<=1﹣=1﹣,∴,即>2(),∴当n≥2时,S n2>2(++…+).【点评】本题考查等比数列的证明,考查不等式的证明,解题时要认真审题,注意构造法、累加法、裂项求和法、数学归纳法、放缩法的合理运用,综合性强,难度大,对数学思维能力的要求较高.。

包河区二中2018-2019学年高二上学期数学期末模拟试卷含解析

包河区二中2018-2019学年高二上学期数学期末模拟试卷含解析

包河区二中2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 为了解决低收入家庭的住房问题,某城市修建了首批108套住房,已知C B A ,,三个社区分别有低收入家 庭360户,270户,180户,现采用分层抽样的方法决定各社区所分配首批经济住房的户数,则应从C 社 区抽取低收入家庭的户数为( )A .48B .36C .24D .18【命题意图】本题考查分层抽样的概念及其应用,在抽样考查中突出在实际中的应用,属于容易题. 2. 函数()f x 在定义域R 上的导函数是'()f x ,若()(2)f x f x =-,且当(,1)x ∈-∞时,'(1)()0x f x -<,设(0)a f =,b f =,2(log 8)c f =,则( )A .a b c <<B .a b c >>C .c a b <<D .a c b << 3. “a >b ,c >0”是“ac >bc ”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4. 函数的定义域是( )A .(﹣∞,2)B .[2,+∞)C .(﹣∞,2]D .(2,+∞)5. 复数z=在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限6. 已知幂函数y=f (x )的图象过点(,),则f (2)的值为( )A .B .﹣C .2D .﹣27. 已知集合M={x|x 2<1},N={x|x >0},则M ∩N=( )A .∅B .{x|x >0}C .{x|x <1}D .{x|0<x <1}可.8. 设f (x )=(e -x -e x )(12x +1-12),则不等式f (x )<f (1+x )的解集为( )A .(0,+∞)B .(-∞,-12)C .(-12,+∞)D .(-12,0)9. 函数y=的图象大致是( )A .B .C .D .10.如图,在平面直角坐标系中,锐角α、β及角α+β的终边分别与单位圆O 交于A ,B ,C 三点.分别作AA'、BB'、CC'垂直于x 轴,若以|AA'|、|BB'|、|CC'|为三边长构造三角形,则此三角形的外接圆面积为( )A .B .C .D .π11.+(a ﹣4)0有意义,则a 的取值范围是( )A .a ≥2B .2≤a <4或a >4C .a ≠2D .a ≠412.已知函数f (x )=log 2(x 2+1)的值域为{0,1,2},则满足这样条件的函数的个数为( )A .8B .5C .9D .27二、填空题13.经过A (﹣3,1),且平行于y 轴的直线方程为 .14.81()x x-的展开式中,常数项为___________.(用数字作答)【命题意图】本题考查用二项式定理求指定项,基础题.15.直线ax ﹣2y+2=0与直线x+(a ﹣3)y+1=0平行,则实数a 的值为 .16.已知关于的不等式20x ax b ++<的解集为(1,2),则关于的不等式210bx ax ++>的解集 为___________.17.【盐城中学2018届高三上第一次阶段性考试】函数f (x )=x ﹣lnx 的单调减区间为 . 18.若函数()f x 的定义域为[]1,2-,则函数(32)f x -的定义域是 .三、解答题19.(本小题满分12分)如图,在四棱锥P ABCD -中,底面ABCD 是菱形,且120ABC ∠=︒.点E 是棱PC 的中点,平面ABE 与棱PD 交于点F . (1)求证://AB EF ;(2)若2PA PD AD ===,且平面PAD ⊥平面ABCD ,求平面PAF 与平面AFE 所成的锐二面角的余 弦值.【命题意图】本小题主要考查空间直线与平面,直线与直线垂直的判定,二面角等基础知识,考查空间想象能力,推理论证能力,运算求解能力,以及数形结合思想、化归与转化思想.20.(本小题满分12分)设函数()()2741201x xf x a a a --=->≠且. (1)当a =时,求不等式()0f x <的解集; (2)当[]01x ∈,时,()0f x <恒成立,求实数的取值范围.21.已知二次函数f (x )的图象过点(0,4),对任意x 满足f (3﹣x )=f (x ),且有最小值是. (1)求f (x )的解析式;(2)求函数h (x )=f (x )﹣(2t ﹣3)x 在区间[0,1]上的最小值,其中t ∈R ;(3)在区间[﹣1,3]上,y=f (x )的图象恒在函数y=2x+m 的图象上方,试确定实数m 的范围.22.(本小题满分10分)已知函数f (x )=|x -a |+|x +b |,(a ≥0,b ≥0). (1)求f (x )的最小值,并求取最小值时x 的范围; (2)若f (x )的最小值为2,求证:f (x )≥a +b .23.(本题12分)如图,D 是Rt BAC ∆斜边BC 上一点,AC . (1)若22BD DC ==,求AD ; (2)若AB AD =,求角B .24.已知集合A={x|2≤x≤6},集合B={x|x≥3}.(1)求C R(A∩B);(2)若C={x|x≤a},且A C,求实数a的取值范围.包河区二中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1. 【答案】C【解析】根据分层抽样的要求可知在C 社区抽取户数为2492108180270360180108=⨯=++⨯.2. 【答案】C 【解析】考点:函数的对称性,导数与单调性.【名师点睛】函数的图象是研究函数性质的一个重要工具,通过函数的图象研究问题是数形结合思想应用的不可或缺的重要一环,因此掌握函数的图象的性质是我们在平常学习中要重点注意的,如函数()f x 满足:()()f a x f a x +=-或()(2)f x f a x =-,则其图象关于直线x a =对称,如满足(2)2()f m x n f x -=-,则其图象关于点(,)m n 对称. 3. 【答案】A【解析】解:由“a >b ,c >0”能推出“ac >bc ”,是充分条件,由“ac >bc ”推不出“a >b ,c >0”不是必要条件,例如a=﹣1,c=﹣1,b=1,显然ac >bc ,但是a <b ,c <0, 故选:A .【点评】本题考查了充分必要条件,考查了不等式的性质,是一道基础题4. 【答案】D【解析】解:根据函数有意义的条件可知∴x >2 故选:D5. 【答案】A【解析】解:∵z===+i ,∴复数z 在复平面上对应的点位于第一象限.故选A .【点评】本题考查复数的乘除运算,考查复数与复平面上的点的对应,是一个基础题,在解题过程中,注意复数是数形结合的典型工具.6. 【答案】A【解析】解:设幂函数y=f (x )=x α,把点(,)代入可得=α,∴α=,即f (x )=,故f (2)==,故选:A .7. 【答案】D【解析】解:由已知M={x|﹣1<x <1}, N={x|x >0},则M ∩N={x|0<x <1}, 故选D .【点评】此题是基础题.本题属于以不等式为依托,求集合的交集的基础题,8. 【答案】【解析】选C.f (x )的定义域为x ∈R ,由f (x )=(e -x -e x )(12x +1-12)得f (-x )=(e x -e -x )(12-x +1-12)=(ex-e -x )(-12x +1+12) =(e -x -e x )(12x +1-12)=f (x ),∴f (x )在R 上为偶函数,∴不等式f (x )<f (1+x )等价于|x |<|1+x |,即x 2<1+2x +x 2,∴x >-12,即不等式f (x )<f (1+x )的解集为{x |x >-12},故选C.9. 【答案】A【解析】解:∵函数∴函数的零点呈周期性出现,且法自变量趋向于正无穷大时,函数值在x轴上下震荡,幅度越来越小,而当自变量趋向于负无穷大时,函数值在x轴上下震荡,幅度越来越大,A选项符合题意;B选项振幅变化规律与函数的性质相悖,不正确;C选项是一个偶函数的图象,而已知的函数不是一个偶函数故不正确;D选项最高点离开原点的距离的变化趋势不符合题意,故不对.综上,A选项符合题意故选A10.【答案】A【解析】(本题满分为12分)解:由题意可得:|AA'|=sinα、|BB'|=sinβ、|CC'|=sin(α+β),设边长为sin(α+β)的所对的三角形内角为θ,则由余弦定理可得,cosθ==﹣cosαcosβ=﹣cosαcosβ=sinαsinβ﹣cosαcosβ=﹣cos(α+β),∵α,β∈(0,)∴α+β∈(0,π)∴sinθ==sin(α+β)设外接圆的半径为R,则由正弦定理可得2R==1,∴R=,∴外接圆的面积S=πR2=.故选:A.【点评】本题主要考查了余弦定理,三角函数恒等变换的应用,同角三角函数基本关系式,正弦定理,圆的面积公式在解三角形中的综合应用,考查了转化思想和数形结合思想,属于中档题.11.【答案】B【解析】解:∵+(a﹣4)0有意义,∴,解得2≤a<4或a>4.故选:B.12.【答案】C【解析】解:令log2(x2+1)=0,得x=0,令log2(x2+1)=1,得x2+1=2,x=±1,令log(x2+1)=2,得x2+1=4,x=.2则满足值域为{0,1,2}的定义域有:{0,﹣1,﹣},{0,﹣1,},{0,1,﹣},{0,1,},{0,﹣1,1,﹣},{0,﹣1,1,},{0,﹣1,﹣,},{0,1,﹣,},{0,﹣1,1,﹣,}.则满足这样条件的函数的个数为9.故选:C.【点评】本题考查了对数的运算性质,考查了学生对函数概念的理解,是中档题.二、填空题13.【答案】x=﹣3.【解析】解:经过A(﹣3,1),且平行于y轴的直线方程为:x=﹣3.故答案为:x=﹣3.14.【答案】70【解析】81()x x -的展开式通项为8821881()(1)r r r r r rr T C x C x x--+=-=-,所以当4r =时,常数项为448(1)70C -=.15.【答案】1【解析】 【分析】利用两直线平行的条件,一次项系数之比相等,但不等于常数项之比,求得实数a 的值. 【解答】解:直线ax ﹣2y+2=0与直线x+(a ﹣3)y+1=0平行,∴,解得 a=1.故答案为 1.16.【答案】),1()21,(+∞-∞ 【解析】考点:一元二次不等式的解法. 17.【答案】(0,1)【解析】考点:本题考查函数的单调性与导数的关系 18.【答案】1,22⎡⎤⎢⎥⎣⎦【解析】试题分析:依题意得11322,,22x x ⎡⎤-≤-≤∈⎢⎥⎣⎦. 考点:抽象函数定义域. 三、解答题19.【答案】【解析】∵BG ⊥平面PAD ,∴)0,3,0(=GB 是平面PAF 的一个法向量,20.【答案】(1)158⎛⎫-∞ ⎪⎝⎭,;(2)()11128a ⎫∈⎪⎪⎝⎭,,. 【解析】试题分析:(1)由于122a -==⇒()14127222x x ---<⇒()127412x x -<--⇒158x <⇒原不等式的解集为158⎛⎫-∞ ⎪⎝⎭,;(2)由()()274144227lg241lg lg lg 0128x x a a x x a x a --<⇒-<-⇒+<.设()44lg lg 128a g x x a =+,原命题转化为()()1012800g a g <⎧⎪<<⎨<⎪⎩⇒又0a >且1a ≠⇒()11128a ⎫∈⎪⎪⎝⎭,,.考点:1、函数与不等式;2、对数与指数运算.【方法点晴】本题考查函数与不等式、对数与指数运算,涉及函数与不等式思想、数形结合思想和转化化高新,以及逻辑思维能力、等价转化能力、运算求解能力与能力,综合性较强,属于较难题型. 第一小题利用函数与不等式思想和转化化归思想将原不等式转化为()127412x x -<--,解得158x <;第二小题利用数学结合思想和转化思想,将原命题转化为()()1012800g a g <⎧⎪<⎨<⎪⎩,进而求得:()11128a ⎫∈⎪⎪⎝⎭,,. 21.【答案】【解析】解:(1)二次函数f (x )图象经过点(0,4),任意x 满足f (3﹣x )=f (x )则对称轴x=,f (x )存在最小值,则二次项系数a >0设f (x )=a (x ﹣)2+.将点(0,4)代入得:f (0)=,解得:a=1∴f (x )=(x ﹣)2+=x 2﹣3x+4.(2)h (x )=f (x )﹣(2t ﹣3)x=x 2﹣2tx+4=(x ﹣t )2+4﹣t 2,x ∈[0,1].当对称轴x=t ≤0时,h (x )在x=0处取得最小值h (0)=4;当对称轴0<x=t <1时,h (x )在x=t 处取得最小值h (t )=4﹣t 2;当对称轴x=t ≥1时,h (x )在x=1处取得最小值h (1)=1﹣2t+4=﹣2t+5.综上所述:当t ≤0时,最小值4;当0<t <1时,最小值4﹣t 2;当t ≥1时,最小值﹣2t+5.∴.(3)由已知:f (x )>2x+m 对于x ∈[﹣1,3]恒成立,∴m <x 2﹣5x+4对x ∈[﹣1,3]恒成立,∵g (x )=x 2﹣5x+4在x ∈[﹣1,3]上的最小值为,∴m <.22.【答案】【解析】解:(1)由|x -a |+|x +b |≥|(x -a )-(x +b )|=|a +b |得,当且仅当(x -a )(x +b )≤0,即-b ≤x ≤a 时,f (x )取得最小值,∴当x ∈[-b ,a ]时,f (x )min =|a +b |=a +b .(2)证明:由(1)知a +b =2, (a +b )2=a +b +2ab ≤2(a +b )=4, ∴a +b ≤2,∴f (x )≥a +b =2≥a +b ,即f (x )≥a +b .23.【答案】(1)2=AD ;(2)3π=B .【解析】考点:正余弦定理的综合应用,二次方程,三角方程.【方法点晴】本题主要考查三角形中的解三角形问题,解题的关键是合理选择正、余弦定理..当有三边或两边及其夹角时适合选择余弦定理,当有一角及其对边时适合选择正弦定理求解,解此类题要特别注意,在没有明确的边角等量关系时,要研究三角形的已知条件,组建等量关系,再就是根据角的正弦值确定角时要结合边长关系进行取舍,这是学生们尤其要关注的地方.24.【答案】【解析】解:(1)由题意:集合A={x|2≤x≤6},集合B={x|x≥3}.那么:A∩B={x|6≥x≥3}.∴C R(A∩B)={x|x<3或x>6}.(2)C={x|x≤a},∵A C,∴a≥6∴故得实数a的取值范围是[6,+∞).【点评】本题主要考查集合的基本运算,比较基础.。

包河区高级中学2018-2019学年高二上学期第一次月考试卷数学

包河区高级中学2018-2019学年高二上学期第一次月考试卷数学

包河区高级中学2018-2019学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 平面向量与的夹角为60°,=(2,0),||=1,则|+2|=( )A .B .C .4D .122. 给出下列命题:①多面体是若干个平面多边形所围成的图形;②有一个平面是多边形,其余各 面是三角形的几何体是棱锥;③有两个面是相同边数的多边形,其余各面是梯形的多面体是棱台.其中 正确命题的个数是( )A .0B .1C .2D .3 3. 已知定义在实数集R 上的函数f (x )满足f (1)=3,且f (x )的导数f ′(x )在R 上恒有f ′(x )<2(x ∈R ),则不等式f (x )<2x+1的解集为( ) A .(1,+∞) B .(﹣∞,﹣1)C .(﹣1,1)D .(﹣∞,﹣1)∪(1,+∞)4. 已知函数f (x )=,则的值为( )A .B .C .﹣2D .35. 对于任意两个正整数m ,n ,定义某种运算“※”如下:当m ,n 都为正偶数或正奇数时,m ※n=m+n ;当m ,n 中一个为正偶数,另一个为正奇数时,m ※n=mn .则在此定义下,集合M={(a ,b )|a ※b=12,a ∈N *,b ∈N *}中的元素个数是( ) A .10个 B .15个 C .16个 D .18个6. 某程序框图如图所示,则输出的S 的值为( )A .11B .19C .26D .577. 若关于x 的不等式07|2||1|>-+-++m x x 的解集为R ,则参数m 的取值范围为( )A .),4(+∞B .),4[+∞C .)4,(-∞D .]4,(-∞【命题意图】本题考查含绝对值的不等式含参性问题,强化了函数思想、化归思想、数形结合思想在本题中的应用,属于中等难度.8. 在△ABC 中,若2cosCsinA=sinB ,则△ABC 的形状是( ) A .直角三角形B .等边三角形C .等腰直角三角形D .等腰三角形9. 在△ABC 中,已知D 是AB 边上一点,若=2,=,则λ=( )A .B .C .﹣D .﹣10.下列函数中,与函数()3x xe ef x --=的奇偶性、单调性相同的是( )A .(ln y x =B .2y x =C .tan y x =D .x y e = 11.如图所示,程序执行后的输出结果为( )A .﹣1B .0C .1D .212.已知数列{}n a 为等差数列,n S 为前项和,公差为d ,若201717100201717S S -=,则d 的值为( ) A .120 B .110C .10D .20 二、填空题13.(x ﹣)6的展开式的常数项是 (应用数字作答).14.曲线C 是平面内到直线l 1:x=﹣1和直线l 2:y=1的距离之积等于常数k 2(k >0)的点的轨迹.给出下列四个结论:①曲线C 过点(﹣1,1); ②曲线C 关于点(﹣1,1)对称;③若点P 在曲线C 上,点A ,B 分别在直线l 1,l 2上,则|PA|+|PB|不小于2k ;④设p 1为曲线C 上任意一点,则点P 1关于直线x=﹣1、点(﹣1,1)及直线y=1对称的点分别为P 1、P 2、P 3,则四边形P 0P 1P 2P 3的面积为定值4k 2.其中,所有正确结论的序号是 .15.已知()212811f x x x -=-+,则函数()f x 的解析式为_________. 16.函数()2log f x x =在点()1,2A 处切线的斜率为 ▲ . 17.如图所示是y=f (x )的导函数的图象,有下列四个命题: ①f (x )在(﹣3,1)上是增函数; ②x=﹣1是f (x )的极小值点;③f (x )在(2,4)上是减函数,在(﹣1,2)上是增函数; ④x=2是f (x )的极小值点.其中真命题为 (填写所有真命题的序号).18.计算sin43°cos13°﹣cos43°sin13°的值为 .三、解答题19.设函数()xf x e =,()lng x x =.(Ⅰ)证明:()2e g x x≥-; (Ⅱ)若对所有的0x ≥,都有()()f x f x ax --≥,求实数a 的取值范围.20.数列{a n }满足a 1=,a n ∈(﹣,),且tana n+1•cosa n =1(n ∈N *).(Ⅰ)证明数列{tan 2a n }是等差数列,并求数列{tan 2a n }的前n 项和;(Ⅱ)求正整数m ,使得11sina 1•sina 2•…•sina m =1.21.已知数列{a n }和{b n }满足a 1•a 2•a 3…a n =2(n ∈N *),若{a n }为等比数列,且a 1=2,b 3=3+b 2.(1)求a n 和b n ;(2)设c n =(n ∈N *),记数列{c n }的前n 项和为S n ,求S n .22.(本小题满分10分)选修4-4:坐标系与参数方程:在直角坐标系中,以原点为极点,x 轴的正半轴为极轴,以相同的长度单位建立极坐标系.已知直线l 的极坐标方程为cos sin 2ρθρθ-=,曲线C 的极坐标方程为2sin 2cos (0)p p ρθθ=>.(1)设t 为参数,若22x =-+,求直线l 的参数方程; (2)已知直线l 与曲线C 交于,P Q ,设(2,4)M --,且2||||||PQ MP MQ =⋅,求实数p 的值.23.函数f (x )=Asin (ωx+φ)(A >0,ω>0,|φ|<)的一段图象如图所示.(1)求f (x )的解析式;(2)求f (x )的单调减区间,并指出f (x )的最大值及取到最大值时x 的集合;(3)把f (x )的图象向左至少平移多少个单位,才能使得到的图象对应的函数为偶函数.24.已知数列{a n }是各项均为正数的等比数列,满足a 3=8,a 3﹣a 2﹣2a 1=0. (Ⅰ)求数列{a n }的通项公式(Ⅱ)记b n =log 2a n ,求数列{a n •b n }的前n 项和S n .包河区高级中学2018-2019学年高二上学期第一次月考试卷数学(参考答案)一、选择题1.【答案】B【解析】解:由已知|a|=2,|a+2b|2=a2+4ab+4b2=4+4×2×1×cos60°+4=12,∴|a+2b|=.故选:B.【点评】本题是对向量数量积的考查,根据两个向量的夹角和模之间的关系,根据和的模两边平方,注意要求的结果非负,舍去不合题意的即可.两个向量的数量积是一个数量,它的值是两个向量的模与两向量夹角余弦的乘积,结果可正、可负、可以为零,其符号由夹角的余弦值确定.2.【答案】B【解析】111]试题分析:由题意得,根据几何体的性质和结构特征可知,多面体是若干个平面多边形所围成的图形是正确的,故选B.考点:几何体的结构特征.3.【答案】A【解析】解:令F(x)=f(x)﹣2x﹣1,则F′(x)=f′(x)﹣2,又∵f(x)的导数f′(x)在R上恒有f′(x)<2,∴F′(x)=f′(x)﹣2<0恒成立,∴F(x)=f(x)﹣2x﹣1是R上的减函数,又∵F(1)=f(1)﹣2﹣1=0,∴当x>1时,F(x)<F(1)=0,即f(x)﹣2x﹣1<0,即不等式f(x)<2x+1的解集为(1,+∞);故选A.【点评】本题考查了导数的综合应用及利用函数求解不等式的方法应用,属于中档题.4.【答案】A【解析】解:∵函数f(x)=,∴f()==﹣2,=f(﹣2)=3﹣2=.故选:A.5.【答案】B【解析】解:a※b=12,a、b∈N*,若a和b一奇一偶,则ab=12,满足此条件的有1×12=3×4,故点(a,b)有4个;若a和b同奇偶,则a+b=12,满足此条件的有1+11=2+10=3+9=4+8=5+7=6+6共6组,故点(a,b)有2×6﹣1=11个,所以满足条件的个数为4+11=15个.故选B6.【答案】C【解析】解:模拟执行程序框图,可得S=1,k=1k=2,S=4不满足条件k>3,k=3,S=11不满足条件k>3,k=4,S=26满足条件k>3,退出循环,输出S的值为26.故选:C.【点评】本题主要考查了程序框图和算法,依次写出每次循环得到的k,S的值是解题的关键,属于基本知识的考查.7.【答案】A8.【答案】D【解析】解:∵A+B+C=180°,∴sinB=sin(A+C)=sinAcosC+sinCcosA=2cosCsinA,∴sinCcosA﹣sinAcosC=0,即sin(C﹣A)=0,∴A=C 即为等腰三角形.故选:D.【点评】本题考查三角形形状的判断,考查和角的三角函数,比较基础.9. 【答案】A【解析】解:在△ABC 中,已知D 是AB 边上一点∵=2,=,∴=,∴λ=, 故选A .【点评】经历平面向量分解定理的探求过程,培养观察能力、抽象概括能力、体会化归思想,基底给定时,分解形式唯一,字母系数是被基底唯一确定的数量.10.【答案】A 【解析】试题分析:()()f x f x -=-所以函数为奇函数,且为增函数.B 为偶函数,C 定义域与()f x 不相同,D 为非奇非偶函数,故选A.考点:函数的单调性与奇偶性. 11.【答案】B【解析】解:执行程序框图,可得 n=5,s=0满足条件s <15,s=5,n=4 满足条件s <15,s=9,n=3 满足条件s <15,s=12,n=2 满足条件s <15,s=14,n=1 满足条件s <15,s=15,n=0 不满足条件s <15,退出循环,输出n 的值为0.故选:B .【点评】本题主要考查了程序框图和算法,正确判断退出循环时n 的值是解题的关键,属于基础题.12.【答案】B 【解析】试题分析:若{}n a 为等差数列,()()111212nn n na S d a n nn -+==+-⨯,则n S n ⎧⎫⎨⎬⎩⎭为等差数列公差为2d ,2017171100,2000100,201717210S S d d ∴-=⨯==,故选B. 考点:1、等差数列的通项公式;2、等差数列的前项和公式.二、填空题13.【答案】 ﹣160【解析】解:由于(x﹣)6展开式的通项公式为 T r+1=•(﹣2)r •x 6﹣2r ,令6﹣2r=0,求得r=3,可得(x﹣)6展开式的常数项为﹣8=﹣160,故答案为:﹣160.【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于基础题.14.【答案】 ②③④ .【解析】解:由题意设动点坐标为(x ,y ),则利用题意及点到直线间的距离公式的得:|x+1||y ﹣1|=k 2,对于①,将(﹣1,1)代入验证,此方程不过此点,所以①错;对于②,把方程中的x 被﹣2﹣x 代换,y 被2﹣y 代换,方程不变,故此曲线关于(﹣1,1)对称.②正确;对于③,由题意知点P 在曲线C 上,点A ,B 分别在直线l 1,l 2上,则|PA|≥|x+1|,|PB|≥|y ﹣1| ∴|PA|+|PB|≥2=2k ,③正确;对于④,由题意知点P 在曲线C 上,根据对称性,则四边形P 0P 1P 2P 3的面积=2|x+1|×2|y ﹣1|=4|x+1||y ﹣1|=4k 2.所以④正确.故答案为:②③④.【点评】此题重点考查了利用直接法求出动点的轨迹方程,并化简,利用方程判断曲线的对称性,属于基础题.15.【答案】()2245f x x x =-+ 【解析】试题分析:由题意得,令1t x =-,则1x t =+,则()222(1)8(1)11245f t t t t t =+-++=-+,所以函数()f x 的解析式为()2245f x x x =-+.考点:函数的解析式.16.【答案】1ln 2【解析】 试题分析:()()111ln 2ln 2f x k f x ''=∴== 考点:导数几何意义【思路点睛】(1)求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异,过点P 的切线中,点P 不一定是切点,点P 也不一定在已知曲线上,而在点P 处的切线,必以点P 为切点.(2)利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解. 17.【答案】 ①【解析】解:由图象得:f (x )在(1,3)上递减,在(﹣3,1),(3,+∞)递增, ∴①f (x )在(﹣3,1)上是增函数,正确, x=3是f (x )的极小值点,②④不正确;③f (x )在(2,4)上是减函数,在(﹣1,2)上是增函数,不正确, 故答案为:①.18.【答案】 .【解析】解:sin43°cos13°﹣cos43°sin13°=sin (43°﹣13°)=sin30°=,故答案为.三、解答题19.【答案】【解析】(Ⅰ)令e e ()()2ln 2F x g x x x x =-+=-+,221e e ()x F x x x x-'∴=-=由()0e F x x '>⇒> ∴()F x 在(0,e]递减,在[e,)+∞递增,∴ min e ()(e)ln e 20e F x F ==-+= ∴()0F x ≥ 即e()2g x x≥-成立. …… 5分(Ⅱ) 记()()()x xh x f x f x ax e e ax -=---=--, ∴ ()0h x ≥在[0,)+∞恒成立,()e x xh x e a -'=+-, ∵ ()()e 00x x h x e x -''=-≥≥,∴ ()h x '在[0,)+∞递增, 又(0)2h a '=-, …… 7分 ∴ ① 当 2a ≤时,()0h x '≥成立, 即()h x 在[0,)+∞递增, 则()(0)0h x h ≥=,即 ()()f x f x ax --≥成立; …… 9分 ② 当2a >时,∵()h x '在[0,)+∞递增,且min ()20h x a '=-<, ∴ 必存在(0,)t ∈+∞使得()0h t '=.则(0,)x t ∈时,()0h t '<,即 (0,)x t ∈时,()(0)0h t h <=与()0h x ≥在[0,)+∞恒成立矛盾,故2a >舍去. 综上,实数a 的取值范围是2a ≤. …… 12分 20.【答案】【解析】(Ⅰ)证明:∵对任意正整数n ,a n ∈(﹣,),且tana n+1•cosa n =1(n ∈N *).故tan 2a n+1==1+tan 2a n ,∴数列{tan 2a n }是等差数列,首项tan 2a 1=,以1为公差.∴=.∴数列{tan 2a n }的前n 项和=+=.(Ⅱ)解:∵cosa n >0,∴tana n+1>0,.∴tana n =,,∴sina 1•sina 2•…•sina m =(tana 1cosa 1)•(tana 2•cosa 2)•…•(tana m •cosa m ) =(tana 2•cosa 1)•(tana 3cosa 2)•…•(tana m •cosa m ﹣1)•(tana 1•cosa m )=(tana 1•cosa m )==,由,得m=40.【点评】本题考查了等差数列的通项公式及其前n 项和公式、同角三角函数基本关系式,考查了推理能力与计算能力,属于难题.21.【答案】【解析】解:(1)设等比数列{a n }的公比为q ,∵数列{a n }和{b n }满足a 1•a 2•a 3…a n =2(n ∈N *),a 1=2,∴,,,∴b 1=1,=2q >0,=2q 2,又b 3=3+b 2.∴23=2q 2,解得q=2.∴a n=2n.∴=a1•a2•a3…a n=2×22×…×2n=,∴.(2)c n===﹣=,∴数列{c n}的前n项和为S n=﹣+…+=﹣2=﹣2+=﹣﹣1.【点评】本题考查了等差数列与等比数列的通项公式及其前n项和公式、递推式的应用、“裂项求和”,考查了推理能力与计算能力,属于中档题.22.【答案】【解析】【命题意图】本题主要考查抛物线极坐标方程、直线的极坐标方程与参数方程的互化、直线参数方程的几何意义的应用,意在考查逻辑思维能力、等价转化的能力、运算求解能力,以及方程思想、转化思想的应用.23.【答案】【解析】解:(1)由函数的图象可得A=3,T==4π﹣,解得ω=.再根据五点法作图可得×+φ=0,求得φ=﹣,∴f(x)=3sin(x﹣).(2)令2kπ﹣≤x﹣≤2kπ+,k∈z,求得5kπ﹣π≤x≤5kπ+,故函数的增区间为[5kπ﹣π,5kπ+],k∈z.函数的最大值为3,此时,x﹣=2kπ+,即x=5kπ+,k∈z,即f(x)的最大值为3,及取到最大值时x的集合为{x|x=5kπ+,k∈z}.(3)设把f(x)=3sin(x﹣)的图象向左至少平移m个单位,才能使得到的图象对应的函数为偶函数[即y=3sin(x+)].则由(x+m)﹣=x+,求得m=π,把函数f(x)=3sin(x﹣)的图象向左平移π个单位,可得y=3sin(x+)=3cos x 的图象.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,正弦函数的单调性和最值,函数y=Asin (ωx+φ)的图象变换规律,属于基础题.24.【答案】【解析】解:(Ⅰ)设数列{a n}的公比为q,由a n>0可得q>0,且a3﹣a2﹣2a1=0,化简得q2﹣q﹣2=0,解得q=2或q=﹣1(舍),∵a3=a1•q2=4a1=8,∴a1=2,∴数列{a n}是以首项和公比均为2的等比数列,∴a n=2n;(Ⅱ)由(I)知b n=log2a n==n,∴a n b n=n•2n,∴S n=1×21+2×22+3×23+…+(n﹣1)×2n﹣1+n×2n,2S n=1×22+2×23+…+(n﹣2)×2n﹣1+(n﹣1)×2n+n×2n+1,两式相减,得﹣S n=21+22+23+…+2n﹣1+2n﹣n×2n+1,∴﹣S n=﹣n×2n+1,∴S n=2+(n﹣1)2n+1.【点评】本题考查等比数列的通项公式,错位相减法求和等基础知识,考查推理论证能力、运算求解能力、数据处理能力,考查函数与方程思想、化归与转化思想,注意解题方法的积累,属于中档题.。

包河区实验中学2018-2019学年高二上学期第二次月考试卷数学

包河区实验中学2018-2019学年高二上学期第二次月考试卷数学

包河区实验中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 对于函数f (x ),若∀a ,b ,c ∈R ,f (a ),f (b ),f (c )为某一三角形的三边长,则称f (x )为“可构造三角形函数”,已知函数f (x )=是“可构造三角形函数”,则实数t 的取值范围是( )A . C . D .2. 已知数列{n a }满足nn n a 2728-+=(*∈N n ).若数列{n a }的最大项和最小项分别为M 和m ,则=+m M ( ) A .211 B .227 C . 32259 D .324353. 若变量x ,y 满足:,且满足(t+1)x+(t+2)y+t=0,则参数t 的取值范围为( )A .﹣2<t <﹣B .﹣2<t ≤﹣C .﹣2≤t ≤﹣D .﹣2≤t <﹣4. 将函数)63sin(2)(π+=x x f 的图象向左平移4π个单位,再向上平移3个单位,得到函数)(x g 的图象, 则)(x g 的解析式为( )A .3)43sin(2)(--=πx x g B .3)43sin(2)(++=πx x g C .3)123sin(2)(+-=πx x g D .3)123sin(2)(--=πx x g【命题意图】本题考查三角函数的图象及其平移变换理论,突出了对函数图象变换思想的理解,属于中等难度.5. △ABC 的外接圆圆心为O ,半径为2, ++=,且||=||,在方向上的投影为( )A .﹣3B .﹣C .D .36. 命题“若α=,则tan α=1”的逆否命题是( )A .若α≠,则tan α≠1 B .若α=,则tan α≠1C .若tan α≠1,则α≠D .若tan α≠1,则α=7. 如图,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体体积为( )A .B .4C .D .2 8. 已知函数f (x )=⎩⎨⎧a x -1,x ≤1log a1x +1,x >1(a >0且a ≠1),若f (1)=1,f (b )=-3,则f (5-b )=( ) A .-14B .-12C .-34D .-549. 下列命题中正确的是( ) (A )若p q ∨为真命题,则p q ∧为真命题( B ) “0a >,0b >”是“2b aa b+≥”的充分必要条件 (C ) 命题“若2320x x -+=,则1x =或2x =”的逆否命题为“若1x ≠或2x ≠,则2320x x -+≠”(D ) 命题:p 0R x ∃∈,使得20010x x +-<,则:p ⌝R x ∀∈,使得210x x +-≥10.如果集合 ,A B ,同时满足{}{}{}{}1,2,3,41,1,1A B B A B =≠≠,A =,就称有序集对(),A B 为“ 好集对”. 这里有序集对(),A B 是指当A B ≠时,(),A B 和(),B A 是不同的集对, 那么“好集对” 一共有( )个A .个B .个C .个D .个11.已知角α的终边上有一点P (1,3),则的值为( )A .﹣B .﹣C .﹣D .﹣412.定义某种运算S=a⊗b,运算原理如图所示,则式子+的值为()A.4 B.8 C.10 D.13二、填空题13.已知双曲线的一条渐近线方程为y=x,则实数m等于.14.【盐城中学2018届高三上第一次阶段性考试】函数f(x)=x﹣lnx的单调减区间为.15.若“x<a”是“x2﹣2x﹣3≥0”的充分不必要条件,则a的取值范围为.16.若非零向量,满足|+|=|﹣|,则与所成角的大小为.17.数列{ a n}中,a1=2,a n+1=a n+c(c为常数),{a n}的前10项和为S10=200,则c=________.18.已知α为钝角,sin(+α)=,则sin(﹣α)=.三、解答题19.2008年奥运会在中国举行,某商场预计2008年从1日起前x个月,顾客对某种奥运商品的需求总量p(x)件与月份x的近似关系是且x≤12),该商品的进价q(x)元与月份x的近似关系是q(x)=150+2x,(x∈N*且x≤12).(1)写出今年第x月的需求量f(x)件与月份x的函数关系式;(2)该商品每件的售价为185元,若不计其他费用且每月都能满足市场需求,则此商场今年销售该商品的月利润预计最大是多少元?20.在等比数列{a n}中,a2=3,a5=81.(Ⅰ)求a n;(Ⅱ)设b n=log3a n,求数列{b n}的前n项和S n.21.对于定义域为D的函数y=f(x),如果存在区间[m,n]⊆D,同时满足:①f(x)在[m,n]内是单调函数;②当定义域是[m,n]时,f(x)的值域也是[m,n].则称[m,n]是该函数的“和谐区间”.(1)证明:[0,1]是函数y=f(x)=x2的一个“和谐区间”.(2)求证:函数不存在“和谐区间”.(3)已知:函数(a∈R,a≠0)有“和谐区间”[m,n],当a变化时,求出n﹣m的最大值.22.已知向量=(x,y),=(1,0),且(+)•(﹣)=0.(1)求点Q(x,y)的轨迹C的方程;(2)设曲线C 与直线y=kx+m 相交于不同的两点M 、N ,又点A (0,﹣1),当|AM|=|AN|时,求实数m 的取值范围.23.(本小题满分14分)设函数2()1cos f x ax bx x =++-,0,2x π⎡⎤∈⎢⎥⎣⎦(其中a ,b R ∈).(1)若0a =,12b =-,求()f x 的单调区间; (2)若0b =,讨论函数()f x 在0,2π⎡⎤⎢⎥⎣⎦上零点的个数.【命题意图】本题主要考查利用导数研究函数的单调性,最值、通过研究函数图象与性质,讨论函数的零点个数,考查考生运算求解能力、转化能力和综合应用能力,是难题.24.已知集合A={x|x <﹣1,或x >2},B={x|2p ﹣1≤x ≤p+3}.(1)若p=,求A ∩B ;(2)若A ∩B=B ,求实数p 的取值范围.包河区实验中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】D【解析】解:由题意可得f (a )+f (b )>f (c )对于∀a ,b ,c ∈R 都恒成立,由于f (x )==1+,①当t ﹣1=0,f (x )=1,此时,f (a ),f (b ),f (c )都为1,构成一个等边三角形的三边长, 满足条件.②当t ﹣1>0,f (x )在R 上是减函数,1<f (a )<1+t ﹣1=t , 同理1<f (b )<t ,1<f (c )<t ,由f (a )+f (b )>f (c ),可得 2≥t ,解得1<t ≤2. ③当t ﹣1<0,f (x )在R 上是增函数,t <f (a )<1, 同理t <f (b )<1,t <f (c )<1,由f (a )+f (b )>f (c ),可得 2t ≥1,解得1>t ≥.综上可得,≤t ≤2,故实数t 的取值范围是[,2],故选D .【点评】本题主要考查了求参数的取值范围,以及构成三角形的条件和利用函数的单调性求函数的值域,同时考查了分类讨论的思想,属于难题.2. 【答案】D 【解析】试题分析: 数列n n n a 2728-+=,112528++-+=∴n n n a ,11252722n n n nn n a a ++--∴-=- ()11252272922n n n n n ++----+==,当41≤≤n 时,n n a a >+1,即12345a a a a a >>>>;当5≥n 时,n n a a <+1,即...765>>>a a a .因此数列{}n a 先增后减,32259,55==∴a n 为最大项,8,→∞→n a n ,2111=a ,∴最小项为211,M m +∴的值为3243532259211=+.故选D.考点:数列的函数特性. 3. 【答案】C【解析】解:作出不等式组对应的平面区域如图:(阴影部分).由(t+1)x+(t+2)y+t=0得t (x+y+1)+x+2y=0,由,得,即(t+1)x+(t+2)y+t=0过定点M (﹣2,1),则由图象知A ,B 两点在直线两侧和在直线上即可, 即[2(t+2)+t][﹣2(t+1)+3(t+2)+t]≤0, 即(3t+4)(2t+4)≤0,解得﹣2≤t ≤﹣,即实数t 的取值范围为是[﹣2,﹣], 故选:C .【点评】本题主要考查线性规划的应用,利用数形结合是解决本题的关键.综合性较强,属于中档题.4. 【答案】B【解析】根据三角函数图象的平移变换理论可得,将)(x f 的图象向左平移4π个单位得到函数)4(π+x f 的图象,再将)4(π+x f 的图象向上平移3个单位得到函数3)4(++πx f 的图象,因此=)(x g 3)4(++πx f3)43sin(23]6)4(31sin[2++=+++=πππx x .5. 【答案】C【解析】解:由题意,++=,得到,又||=||=||,△OAB 是等边三角形,所以四边形OCAB 是边长为2的菱形,所以在方向上的投影为ACcos30°=2×=;故选C .【点评】本题考查了向量的投影;解得本题的关键是由题意,画出图形,明确四边形OBAC的形状,利用向量解答.6.【答案】C【解析】解:命题“若α=,则tan α=1”的逆否命题是“若tan α≠1,则α≠”.故选:C.7.【答案】C【解析】解:由已知中该几何中的三视图中有两个三角形一个菱形可得这个几何体是一个四棱锥由图可知,底面两条对角线的长分别为2,2,底面边长为2故底面棱形的面积为=2侧棱为2,则棱锥的高h==3故V==2故选C8.【答案】【解析】解析:选C.由题意得a-1=1,∴a=2.若b≤1,则2b-1=-3,即2b=-2,无解.∴b >1,即有log 21b +1=-3,∴1b +1=18,∴b =7.∴f (5-b )=f (-2)=2-2-1=-34,故选C.9. 【答案】D【解析】对选项A ,因为p q ∨为真命题,所以,p q 中至少有一个真命题,若一真一假,则p q ∧为假命题,故选项A 错误;对于选项B ,2baab+≥的充分必要条件是,a b 同号,故选项B 错误;命题“若2320x x -+=,则1x =或2x =”的逆否命题为“若1x ≠且2x ≠,则2320x x -+≠”,故选项C 错误;故选D .10.【答案】B 【解析】试题分析:因为{}{}{}{}1,2,3,41,1,1AB B A B =≠≠,A =,所以当{1,2}A =时,{1,2,4}B =;当{1,3}A =时,{1,2,4}B =;当{1,4}A =时,{1,2,3}B =;当{1,2,3}A =时,{1,4}B =;当{1,2,4}A =时,{1,3}B =;当{1,3,4}A =时,{1,2}B =;所以满足条件的“好集对”一共有个,故选B.考点:元素与集合的关系的判断.【方法点晴】本题主要考查了元素与集合关系的判断与应用,其中解答中涉及到集合的交集和集合的并集运算与应用、元素与集合的关系等知识点的综合考查,着重考查了分类讨论思想的应用,以及学生分析问题和解答问题的能力,试题有一定的难度,属于中档试题,本题的解答中正确的理解题意是解答的关键.1111]11.【答案】A【解析】解:∵点P (1,3)在α终边上, ∴tan α=3,∴====﹣.故选:A .12.【答案】 C【解析】解:模拟执行程序,可得,当a ≥b 时,则输出a (b+1),反之,则输出b (a+1),∵2tan =2,lg =﹣1,∴(2tan )⊗lg=(2tan)×(lg+1)=2×(﹣1+1)=0,∵lne=1,()﹣1=5,∴lne ⊗()﹣1=()﹣1×(lne+1)=5×(1+1)=10,∴+=0+10=10. 故选:C .二、填空题13.【答案】 4 .【解析】解:∵双曲线的渐近线方程为 y=x , 又已知一条渐近线方程为y=x ,∴ =2,m=4,故答案为4.【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,求得渐近线方程为 y=x ,是解题的关键.14.【答案】(0,1)【解析】考点:本题考查函数的单调性与导数的关系 15.【答案】 a ≤﹣1 .【解析】解:由x 2﹣2x ﹣3≥0得x ≥3或x ≤﹣1,若“x <a ”是“x 2﹣2x ﹣3≥0”的充分不必要条件,则a ≤﹣1, 故答案为:a ≤﹣1.【点评】本题主要考查充分条件和必要条件的应用,根据条件求出不等式的等价是解决本题的关键.16.【答案】 90° .【解析】解:∵∴=∴∴α与β所成角的大小为90° 故答案为90°【点评】本题用向量模的平方等于向量的平方来去掉绝对值.17.【答案】【解析】解析:由a 1=2,a n +1=a n +c ,知数列{a n }是以2为首项,公差为c 的等差数列,由S 10=200得 10×2+10×92×c =200,∴c =4.答案:418.【答案】 ﹣ .【解析】解:∵sin (+α)=,∴cos (﹣α)=cos[﹣(+α)]=sin (+α)=,∵α为钝角,即<α<π,∴<﹣,∴sin (﹣α)<0,∴sin (﹣α)=﹣=﹣=﹣, 故答案为:﹣.【点评】本题考查运用诱导公式求三角函数值,注意不同角之间的关系,正确选择公式,运用平方关系时,必须注意角的范围,以确定函数值的符号.三、解答题19.【答案】【解析】解:(1)当x=1时,f(1)=p(1)=37.当2≤x≤12时,且x≤12)验证x=1符合f(x)=﹣3x2+40x,∴f(x)=﹣3x2+40x(x∈N*且x≤12).该商场预计销售该商品的月利润为g(x)=(﹣3x2+40x)(185﹣150﹣2x)=6x3﹣185x2+1400x,(x∈N*且x≤12),令h(x)=6x3﹣185x2+1400x(1≤x≤12),h'(x)=18x2﹣370x+1400,令h'(x)=0,解得(舍去).>0;当5<x≤12时,h'(x)<0.∴当x=5时,h(x)取最大值h(5)=3125.max=g(5)=3125(元).综上,5月份的月利润最大是3125元.【点评】本题考查利用函数知识解决应用题的有关知识.新高考中的重要的理念就是把数学知识运用到实际生活中,如何建模是解决这类问题的关键.同时要熟练地利用导数的知识解决函数的求最值问题.20.【答案】【解析】解:(Ⅰ)设等比数列{a n}的公比为q,由a2=3,a5=81,得,解得.∴;(Ⅱ)∵,b n=log3a n,∴.则数列{b n}的首项为b1=0,由b n﹣b n﹣1=n﹣1﹣(n﹣2)=1(n≥2),可知数列{b n}是以1为公差的等差数列.∴.【点评】本题考查等比数列的通项公式,考查了等差数列的前n项和公式,是基础的计算题.21.【答案】【解析】解:(1)∵y=x2在区间[0,1]上单调递增.又f(0)=0,f(1)=1,∴值域为[0,1],∴区间[0,1]是y=f(x)=x2的一个“和谐区间”.(2)设[m,n]是已知函数定义域的子集.∵x≠0,[m,n]⊆(﹣∞,0)或[m,n]⊆(0,+∞),故函数在[m,n]上单调递增.若[m,n]是已知函数的“和谐区间”,则故m、n是方程的同号的相异实数根.∵x2﹣3x+5=0无实数根,∴函数不存在“和谐区间”.(3)设[m,n]是已知函数定义域的子集.∵x≠0,[m,n]⊆(﹣∞,0)或[m,n]⊆(0,+∞),故函数在[m,n]上单调递增.若[m,n]是已知函数的“和谐区间”,则故m、n是方程,即a2x2﹣(a2+a)x+1=0的同号的相异实数根.∵,∴m,n同号,只须△=a2(a+3)(a﹣1)>0,即a>1或a<﹣3时,已知函数有“和谐区间”[m,n],∵,∴当a=3时,n﹣m取最大值22.【答案】【解析】解:(1)由题意向量=(x,y),=(1,0),且(+)•(﹣)=0,∴,化简得,∴Q 点的轨迹C 的方程为.…(2)由得(3k 2+1)x 2+6mkx+3(m 2﹣1)=0,由于直线与椭圆有两个不同的交点,∴△>0,即m 2<3k 2+1.①…(i )当k ≠0时,设弦MN 的中点为P (x P ,y P ),x M 、x N 分别为点M 、N 的横坐标,则,从而,,…又|AM|=|AN|,∴AP ⊥MN .则,即2m=3k 2+1,②将②代入①得2m >m 2,解得0<m <2,由②得,解得,故所求的m 的取值范围是(,2).…(ii )当k=0时,|AM|=|AN|,∴AP ⊥MN ,m 2<3k 2+1,解得﹣1<m <1.…综上,当k ≠0时,m 的取值范围是(,2), 当k=0时,m 的取值范围是(﹣1,1).…【点评】本题考查轨迹方程,考查直线与椭圆的位置关系,考查小时分析解决问题的能力,属于中档题.23.【答案】【解析】(1)∵0a =,12b =-, ∴1()1cos 2f x x x =-+-,1()sin 2f x x '=-+,0,2x π⎡⎤∈⎢⎥⎣⎦. (2分) 令()0f x '=,得6x π=.当06x π<<时,()0f x '<,当62x ππ<<时,()0f x '>,所以()f x 的单调增区间是,62ππ⎡⎤⎢⎥⎣⎦,单调减区间是0,6π⎡⎤⎢⎥⎣⎦. (5分)若112a -<<-π,则()102f a π'=π+<,又()(0)0f f θ''>=,由零点存在定理,00,2θπ⎛⎫∃∈ ⎪⎝⎭,使0()0f θ'=,所以()f x 在0(0,)θ上单调增,在0,2θπ⎛⎫⎪⎝⎭上单调减.又(0)0f =,2()124f a ππ=+. 故当2142a -<≤-π时,2()1024f a ππ=+≤,此时()f x 在0,2π⎡⎤⎢⎥⎣⎦上有两个零点; 当241a -<<-ππ时,2()1024f a ππ=+>,此时()f x 在0,2π⎡⎤⎢⎥⎣⎦上只有一个零点.24.【答案】【解析】解:(1)当p=时,B={x|0≤x≤},∴A∩B={x|2<x≤};(2)当A∩B=B时,B⊆A;令2p﹣1>p+3,解得p>4,此时B=∅,满足题意;当p≤4时,应满足,解得p不存在;综上,实数p的取值范围p>4.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

包河区二中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 命题“∃x ∈R ,使得x 2<1”的否定是( )A .∀x ∈R ,都有x 2<1B .∃x ∈R ,使得x 2>1C .∃x ∈R ,使得x 2≥1D .∀x ∈R ,都有x ≤﹣1或x ≥12. 如图所示是一个几何体的三视图,其中正视图是一个正三角形,则这个几何体的表面积是( )A. B. C.+ D.++13. 如果命题p ∨q 是真命题,命题¬p 是假命题,那么( )A .命题p 一定是假命题B .命题q 一定是假命题C .命题q 一定是真命题D .命题q 是真命题或假命题4. 若方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( )A .(0,+∞)B .(0,2)C .(1,+∞)D .(0,1)5. 在ABC ∆中,b =3c =,30B =,则等于( )AB. C或 D .26. 已知直线l :2y kx =+过椭圆)0(12222>>=+b a by a x 的上顶点B 和左焦点F ,且被圆224x y +=截得的弦长为L,若5L ≥e 的取值范围是( ) (A ) ⎥⎦⎤⎝⎛550, ( B )05⎛ ⎝⎦, (C ) ⎥⎦⎤ ⎝⎛5530, (D ) ⎥⎦⎤⎝⎛5540, 7. 若函数y=x 2+(2a ﹣1)x+1在区间(﹣∞,2]上是减函数,则实数a 的取值范围是( ) A .[﹣,+∞) B .(﹣∞,﹣] C .[,+∞)D .(﹣∞,]8. 已知一三棱锥的三视图如图所示,那么它的体积为( )A .13 B .23C .1D .2 9. 已知函数f (x+1)=3x+2,则f (x )的解析式是( )A .3x ﹣1B .3x+1C .3x+2D .3x+410.O 为坐标原点,F 为抛物线的焦点,P 是抛物线C 上一点,若|PF|=4,则△POF 的面积为( )A .1B .C .D .211.函数f (x )=kx +b x +1,关于点(-1,2)对称,且f (-2)=3,则b 的值为( )A .-1B .1C .2D .412.在△ABC 中,,则这个三角形一定是( )A .等腰三角形B .直角三角形C .等腰直角三角D .等腰或直角三角形二、填空题13.下列命题:①集合{},,,a b c d 的子集个数有16个; ②定义在R 上的奇函数()f x 必满足(0)0f =;③2()(21)2(21)f x x x =+--既不是奇函数又不是偶函数; ④A R =,B R =,1:||f x x →,从集合A 到集合B 的对应关系f 是映射; ⑤1()f x x=在定义域上是减函数. 其中真命题的序号是 .14.已知点F 是抛物线y 2=4x 的焦点,M ,N 是该抛物线上两点,|MF|+|NF|=6,M ,N ,F 三点不共线,则△MNF的重心到准线距离为 .15.若函数f (x ),g (x )满足:∀x ∈(0,+∞),均有f (x )>x ,g (x )<x 成立,则称“f (x )与g (x )关于y=x 分离”.已知函数f (x )=a x 与g (x )=log a x (a >0,且a ≠1)关于y=x 分离,则a 的取值范围是 .16.已知数列{a n }满足a 1=1,a 2=2,a n+2=(1+cos 2)a n +sin2,则该数列的前16项和为 .17.已知直线l :ax ﹣by ﹣1=0(a >0,b >0)过点(1,﹣1),则ab 的最大值是 . 18.如图所示是y=f (x )的导函数的图象,有下列四个命题:①f (x )在(﹣3,1)上是增函数; ②x=﹣1是f (x )的极小值点;③f (x )在(2,4)上是减函数,在(﹣1,2)上是增函数; ④x=2是f (x )的极小值点.其中真命题为 (填写所有真命题的序号).三、解答题19.(本小题满分10分)选修41-:几何证明选讲如图所示,已知PA 与⊙O 相切,A 为切点,过点P 的割线交圆于C B ,两点,弦AP CD //,BC AD ,相 交于点E ,F 为CE 上一点,且EC EF DE ⋅=2. (Ⅰ)求证:P EDF ∠=∠;(Ⅱ)若2,3,2:3:===EF DE BE CE ,求PA 的长.【命题意图】本题考查相交弦定理、三角形相似、切割线定理等基础知识,意在考查逻辑推理能力.20.如图,在四边形ABCD 中,,,3,2,45AD DC AD BC AD CD AB DAB ⊥===∠=, 四 边形绕着直线AD 旋转一周.(1)求所成的封闭几何体的表面积; (2)求所成的封闭几何体的体积.21.某班50名学生在一次数学测试中,成绩全部介于50与100之间,将测试结果按如下方式分成五组:第一组[50,60),第二组[60,70),…,第五组[90,100].如图所示是按上述分组方法得到的频率分布直方图. (Ⅰ)若成绩大于或等于60且小于80,认为合格,求该班在这次数学测试中成绩合格的人数;(Ⅱ)从测试成绩在[50,60)∪[90,100]内的所有学生中随机抽取两名同学,设其测试成绩分别为m 、n ,求事件“|m ﹣n|>10”概率.22.设f (x )=ax 2﹣(a+1)x+1 (1)解关于x 的不等式f (x )>0;(2)若对任意的a ∈[﹣1,1],不等式f (x )>0恒成立,求x 的取值范围.23.已知{a n}为等比数列,a1=1,a6=243.S n为等差数列{b n}的前n项和,b1=3,S5=35.(1)求{a n}和{B n}的通项公式;(2)设T n=a1b1+a2b2+…+a n b n,求T n.24.已知函数f(x)=•,其中=(2cosx,sin2x),=(cosx,1),x∈R.(1)求函数y=f(x)的单调递增区间;(2)在△ABC中,角A,B,C所对的边分别为a,b,c,f(A)=2,a=,且sinB=2sinC,求△ABC的面积.包河区二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】D【解析】解:命题是特称命题,则命题的否定是∀x∈R,都有x≤﹣1或x≥1,故选:D.【点评】本题主要考查含有量词的命题的否定,比较基础.2.【答案】D【解析】解:由三视图可知:该几何体是如图所示的三棱锥,其中侧面PAC⊥面ABC,△PAC是边长为2的正三角形,△ABC是边AC=2,边AC上的高OB=1,PO=为底面上的高.于是此几何体的表面积S=S+S△ABC+2S△PAB=××2+×2×1+2×××=+1+.△PAC故选:D【点评】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.3.【答案】D【解析】解:∵命题“p或q”真命题,则命题p与命题q中至少有一个命题为真命题,又∵命题“非p”也是假命题,∴命题p为真命题.故命题q为可真可假.故选D【点评】本题考查的知识点是命题的真假判断与应用,其中熟练掌握复合命题真值表是解答本题的关键.4.【答案】D【解析】解:∵方程x 2+ky 2=2,即表示焦点在y 轴上的椭圆∴故0<k <1故选D .【点评】本题主要考查了椭圆的定义,属基础题.5. 【答案】C 【解析】考点:余弦定理.6. 【答案】 B【解析】依题意,2, 2.b kc ==设圆心到直线l 的距离为d ,则L =解得2165d ≤。

又因为d =,所以2116,15k ≤+解得214k ≥。

于是222222211c c e a b c k ===++,所以240,5e <≤解得0e <≤故选B . 7. 【答案】B【解析】解:∵函数y=x 2+(2a ﹣1)x+1的图象是方向朝上,以直线x=为对称轴的抛物线又∵函数在区间(﹣∞,2]上是减函数,故2≤解得a ≤﹣ 故选B .8. 【答案】 B【解析】解析:本题考查三视图与几何体的体积的计算.如图该三棱锥是边长为2的正方体1111ABCD A B C D -中的一个四面体1ACED ,其中11ED =,∴该三棱锥的体积为112(12)2323⨯⨯⨯⨯=,选B .9. 【答案】A【解析】∵f (x+1)=3x+2=3(x+1)﹣1∴f (x )=3x ﹣1 故答案是:A【点评】考察复合函数的转化,属于基础题.10.【答案】C【解析】解:由抛物线方程得准线方程为:y=﹣1,焦点F (0,1),又P 为C 上一点,|PF|=4, 可得y P =3,代入抛物线方程得:|x P|=2,∴S △POF=|0F|•|x P |=.故选:C .11.【答案】【解析】解析:选B.设点P (m ,n )是函数图象上任一点,P 关于(-1,2)的对称点为Q (-2-m ,4-n ),则⎩⎪⎨⎪⎧n =km +b m +14-n =k (-2-m )+b -1-m ,恒成立.由方程组得4m +4=2km +2k 恒成立, ∴4=2k ,即k =2,∴f (x )=2x +b x +1,又f (-2)=-4+b -1=3,∴b =1,故选B. 12.【答案】A 【解析】解:∵, 又∵cosC=,∴=,整理可得:b 2=c 2,∴解得:b=c .即三角形一定为等腰三角形. 故选:A .二、填空题13.【答案】①② 【解析】试题分析:子集的个数是2n ,故①正确.根据奇函数的定义知②正确.对于③()241f x x =-为偶函数,故错误.对于④0x =没有对应,故不是映射.对于⑤减区间要分成两段,故错误. 考点:子集,函数的奇偶性与单调性.【思路点晴】集合子集的个数由集合的元素个数来决定,一个个元素的集合,它的子集的个数是2n 个;对于奇函数来说,如果在0x =处有定义,那么一定有()00f =,偶函数没有这个性质;函数的奇偶性判断主要根据定义()()()(),f x f x f x f x -=-=-,注意判断定义域是否关于原点对称.映射必须集合A 中任意一个元素在集合B 中都有唯一确定的数和它对应;函数的定义域和单调区间要区分清楚,不要随意写并集.114.【答案】 .【解析】解:∵F 是抛物线y 2=4x 的焦点,∴F (1,0),准线方程x=﹣1, 设M (x 1,y 1),N (x 2,y 2), ∴|MF|+|NF|=x 1+1+x 2+1=6, 解得x 1+x 2=4,∴△MNF 的重心的横坐标为,∴△MNF 的重心到准线距离为.故答案为:.【点评】本题考查解决抛物线上的点到焦点的距离问题,利用抛物线的定义将到焦点的距离转化为到准线的距离.15.【答案】 (,+∞) .【解析】解:由题意,a >1.故问题等价于a x>x (a >1)在区间(0,+∞)上恒成立. 构造函数f (x )=a x ﹣x ,则f ′(x )=a xlna ﹣1,由f ′(x )=0,得x=log a (log a e ),x >log a (log a e )时,f ′(x )>0,f (x )递增;0<x<log a(log a e),f′(x)<0,f(x)递减.则x=log a(log a e)时,函数f(x)取到最小值,故有﹣log a(log a e)>0,解得a>.故答案为:(,+∞).【点评】本题考查恒成立问题关键是将问题等价转化,从而利用导数求函数的最值求出参数的范围.16.【答案】546.【解析】解:当n=2k﹣1(k∈N*)时,a2k+1=a2k﹣1+1,数列{a2k﹣1}为等差数列,a2k﹣1=a1+k﹣1=k;当n=2k(k∈N*)时,a2k+2=2a2k,数列{a2k}为等比数列,.∴该数列的前16项和S16=(a1+a3+…+a15)+(a2+a4+…+a16)=(1+2+...+8)+(2+22+ (28)=+=36+29﹣2=546.故答案为:546.【点评】本题考查了等差数列与等比数列的通项公式及前n项和公式、“分类讨论方法”,考查了推理能力与计算能力,属于中档题.17.【答案】.【解析】解:∵直线l:ax﹣by﹣1=0(a>0,b>0)过点(1,﹣1),∴a+b﹣1=0,即a+b=1,∴ab≤=当且仅当a=b=时取等号,故ab的最大值是故答案为:【点评】本题考查基本不等式求最值,属基础题.18.【答案】①【解析】解:由图象得:f (x )在(1,3)上递减,在(﹣3,1),(3,+∞)递增, ∴①f (x )在(﹣3,1)上是增函数,正确,x=3是f (x )的极小值点,②④不正确;③f (x )在(2,4)上是减函数,在(﹣1,2)上是增函数,不正确,故答案为:①.三、解答题19.【答案】【解析】(Ⅰ)∵EC EF DE ⋅=2,DEF DEF ∠=∠∴DEF ∆∽CED ∆,∴C EDF ∠=∠……………………2分又∵AP CD //,∴C P ∠=∠, ∴P EDF ∠=∠.(Ⅱ)由(Ⅰ)得P EDF ∠=∠,又PEA DEF ∠=∠,∴EDF ∆∽EPA ∆, ∴EDEP EF EA =,∴EP EF ED EA ⋅=⋅,又∵EB CE ED EA ⋅=⋅,∴EP EF EB CE ⋅=⋅. ∵EC EF DE ⋅=2,2,3==EF DE ,∴ 29=EC ,∵2:3:=BE CE ,∴3=BE ,解得427=EP . ∴415=-=EB EP BP .∵PA 是⊙O 的切线,∴PC PB PA ⋅=2 ∴)29427(4152+⨯=PA ,解得4315=PA .……………………10分20.【答案】(1)(8π+;(2)203π. 【解析】考点:旋转体的概念;旋转体的表面积、体积.21.【答案】【解析】解:(I)由直方图知,成绩在[60,80)内的人数为:50×10×(0.18+0.040)=29.所以该班在这次数学测试中成绩合格的有29人.(II)由直方图知,成绩在[50,60)内的人数为:50×10×0.004=2,设成绩为x、y成绩在[90,100]的人数为50×10×0.006=3,设成绩为a、b、c,若m,n∈[50,60)时,只有xy一种情况,若m,n∈[90,100]时,有ab,bc,ac三种情况,事件“|m﹣n|>10”所包含的基本事件个数有6种∴.【点评】在频率分布直方图中,每一个小矩形都是等宽的,即等于组距,高是,所以有:×组距=频率;即可把所求范围内的频率求出,进而求该范围的人数.22.【答案】【解析】解:(1)f(x)>0,即为ax2﹣(a+1)x+1>0,即有(ax﹣1)(x﹣1)>0,当a=0时,即有1﹣x>0,解得x<1;当a<0时,即有(x﹣1)(x﹣)<0,由1>可得<x<1;当a=1时,(x﹣1)2>0,即有x∈R,x≠1;当a>1时,1>,可得x>1或x<;当0<a<1时,1<,可得x<1或x>.综上可得,a=0时,解集为{x|x<1};a<0时,解集为{x|<x<1};a=1时,解集为{x|x∈R,x≠1};a>1时,解集为{x|x>1或x<};0<a<1时,解集为{x|x<1或x>}.(2)对任意的a∈[﹣1,1],不等式f(x)>0恒成立,即为ax2﹣(a+1)x+1>0,即a(x2﹣1)﹣x+1>0,对任意的a∈[﹣1,1]恒成立.设g(a)=a(x2﹣1)﹣x+1,a∈[﹣1,1].则g(﹣1)>0,且g(1)>0,即﹣(x2﹣1)﹣x+1>0,且(x2﹣1)﹣x+1>0,即(x﹣1)(x+2)<0,且x(x﹣1)>0,解得﹣2<x<1,且x>1或x<0.可得﹣2<x<0.故x的取值范围是(﹣2,0).23.【答案】【解析】解:(Ⅰ)∵{a n}为等比数列,a1=1,a6=243,∴1×q5=243,解得q=3,∴.∵S n为等差数列{b n}的前n项和,b1=3,S5=35.∴5×3+d=35,解得d=2,b n=3+(n﹣1)×2=2n+1.(Ⅱ)∵T n=a1b1+a2b2+…+a n b n,∴①②①﹣②得:,整理得:.【点评】本题考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意错位相减法的合理运用.24.【答案】【解析】解:(1)f(x)=•=2cos2x+sin2x=sin2x+cos2x+1=2sin(2x+)+1,令﹣+2kπ≤2x+≤+2kπ,解得﹣+kπ≤x≤+kπ,函数y=f(x)的单调递增区间是[﹣+kπ,+kπ],(Ⅱ)∵f(A)=2∴2sin(2A+)+1=2,即sin(2A+)=….又∵0<A<π,∴A=.…∵a=,由余弦定理得a2=b2+c2﹣2bccosA=(b+c)2﹣3bc=7 ①…∵sinB=2sinC∴b=2c ②…由①②得c2=.…∴S△ABC=.…。

相关文档
最新文档