2018年全国高考陕西省数学(文)试卷及答案【精校版】

合集下载

2018年陕西省高考文科数学试卷及答案

2018年陕西省高考文科数学试卷及答案

2018年普通高等学校招生全国统一考试(陕西卷)文科数学注意事项:1. 本试卷分为两部分, 第一部分为选择题, 第二部分为非选择题.2. 考生领到试卷后, 须按规定在试卷上填写姓名、准考证号,并在答题卡上填涂对应的试卷类型信息.3. 所有解答必须填写在答题卡上指定区域内. 考试结束后, 将本试卷和答题卡一并交回.第一部分(共50分)一、选择题:在每小题给出的四个选项中,只有一项符合题目要求(本大题共10小题,每小题5分,共50分)1. 设全集为R ,函数()f x M , 则C M R 为 (A) (-∞,1) (B) (1, + ∞) (C) (,1]-∞ (D) [1,)+∞2. 已知向量 (1,),(,2)a m b m ==, 若a //b , 则实数m 等于(A)(B)(C)(D) 03. 设a , b , c 均为不等于1的正实数, 则下列等式中恒成立的是 (A) ·log log log a c c b a b = (B) ·log lo log g a a a b a b =(C) ()log ?l g o lo g a a a b c bc = (D) ()log g og o l l a a a b b c c +=+4. 根据下列算法语句, 当输入x 为60时, 输出y 的值为(A) 25 (B) 30 (C) 31(D) 615. 对一批产品的长度(单位: mm )进行抽样检测, 下图喂检测结果的频率分布直方图. 根据标准, 产品长度在区间[20,25)上的为一等品, 在区间[15,20)和区间[25,30)上的为二等品, 在区间[10,15)和[30,35)上的为三等品. 用频率估计概率, 现从该批产品中随机抽取一件, 则其为二等品的概率为(A) 0.09 (B) 0.20 (C) 0.25 (D) 0.45 6. 设z 是复数, 则下列命题中的假命题是(A) 若20z ≥, 则z 是实数 (B) 若20z <, 则z 是虚数(C) 若z 是虚数, 则20z ≥ (D) 若z是纯虚数, 则20z <7. 若点(x ,y )位于曲线y = |x |与y = 2所围成的封闭区域, 则2x -y 的最小值为 (A) -6 (B) -2 (C) 0 (D) 2 8. 已知点M (a ,b )在圆221:O x y +=外, 则直线ax + by = 1与圆O 的位置关系是(A) 相切 (B) 相交 (C) 相离 (D) 不确定9. 设△ABC 的内角A , B , C 所对的边分别为a , b , c , 若cos cos sin b C c B a A +=, 则△ABC 的形状为 (A) 直角三角形 (B) 锐角三角形 (C) 钝角三角形 (D) 不确定 10. 设[x ]表示不大于x 的最大整数, 则对任意实数x , y , 有 (A) [-x ] = -[x ] (B) [x +12] = [x ] (C) [2x ] = 2[x ](D) 1[][][2]2x x x ++=二、填空题:把答案填写在答题卡相应题号后的横线上(本大题共5小题,每小题5分,共25分) 11. 双曲线221169x y -=的离心率为 .12. 某几何体的三视图如图所示, 则其表面积为.13. 观察下列等式: 23(11)21(21)(22)213(31)(32)(33)2135+=⨯++=⨯⨯+++=⨯⨯⨯…照此规律, 第n 个等式可为 .14. 在如图所示的锐角三角形空地中, 欲建一个面积最大的内接矩形花园(阴影部分), 则其边长x 为 (m ).15. (考生请注意:请在下列三题中任选一题作答, 如果多做, 则按所做的第一题计分)A . (不等式选做题) 设a , b ∈R , |a -b |>2, 则关于实数x 的不等式||||2x a x b -+->的解集是 .B . (几何证明选做题) 如图, AB 与CD 相交于点E , 过E 作BC 的平行线与AD 的延长线相交于点P . 已知A C ∠=∠, PD = 2DA = 2, 则PE = . C . (坐标系与参数方程选做题) 圆锥曲线22x t y t ⎧=⎨=⎩(t 为参数)的焦点坐标是 .三、解答题: 解答应写出文字说明、证明过程及演算步骤(本大题共6小题,共75分) 16. (本小题满分12分)已知向量1(cos ,),,cos2),2x x x x =-=∈a b R , 设函数()·f x =a b . (Ⅰ) 求f (x)的最小正周期.(Ⅱ) 求f (x) 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.P17. (本小题满分12分) 设S n 表示数列{}n a 的前n 项和. (Ⅰ) 若{}n a 为等差数列, 推导S n 的计算公式;(Ⅱ) 若11,0a q =≠, 且对所有正整数n , 有11nn q S q-=-. 判断{}n a 是否为等比数列.18. (本小题满分12分)如图, 四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面中心, A 1O ⊥平面ABCD, 1AB AA =1A(Ⅰ) 证明: A 1BD // 平面CD 1B 1;(Ⅱ) 求三棱柱ABD -A 1B 1D 1的体积.19. (本小题满分12分)有7位歌手(1至7号)参加一场歌唱比赛, 由500名大众评委现场投票决定歌手名次, 根据年龄将大众评委分为5组, 各组的人数如下:(Ⅰ) 为了调查评委对7, 其中从B 组中抽取了6人.(Ⅱ) 在(Ⅰ)中, 若A , B 两组被抽到的评委中各有2人支持1号歌手, 现从这两组被抽到的评委中分别任选1人, 求这2人都支持1号歌手的概率.20. (本小题满分13分)已知动点M (x ,y )到直线l :x = 4的距离是它到点N (1,0)的距离的2倍. (Ⅰ) 求动点M 的轨迹C 的方程;(Ⅱ) 过点P (0,3)的直线m 与轨迹C 交于A , B 两点. 若A 是PB 的中点, 求直线m 的斜率.21. (本小题满分14分) 已知函数()e ,x f x x =∈R . (Ⅰ) 求f (x )的反函数的图象上图象上点(1,0)处的切线方程;(Ⅱ) 证明: 曲线y = f (x) 与曲线2112y x x =++有唯一公共点.(Ⅲ) 设a <b , 比较2a b f +⎛⎫⎪⎝⎭与()()f b f a b a --的大小, 并说明理由.答案:1.【答案】B2. 【答案】C3. 【答案】B4. 【答案】C5. 【答案】D6. 【答案】C7. 【答案】A8. 【答案】B9. 【答案】A 10. 【答案】D 11. 【答案】4512. 【答案】π313. 【答案】 )12(5312)()3)(2)(1(-⋅⋅⋅⋅=++++n n n n n n n14. 【答案】20 15. A 【答案】R B 【答案】.6 C 【答案】 (1, 0)16【解】()·f x =a b =)62sin(2cos 212sin 232cos 21sin 3cos π-=-=-⋅x x x x x x 。

2018陕西高考文科数学试题及答案

2018陕西高考文科数学试题及答案

绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

学@科网 1.()i 23i += A .32i -B .32i +C .32i --D .32i -+2.已知集合{}1,3,5,7A =,{}2,3,4,5B =,则AB =A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,73.函数()2e e x xf x x --=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A .0.6B .0.5C .0.4D .0.36.双曲线22221(0,0)x y a b a b-=>>A .y =B .y =C .y =D .y =7.在ABC △中,cos 2C =1BC =,5AC =,则AB =A .BCD .8.为计算11111123499100S=-+-++-,设计了如图的程序框图,则在空白框中应填入A.1i i=+B.2i i=+C.3i i=+D.4i i=+9.在正方体1111ABCD A B C D-中,E为棱1CC的中点,则异面直线AE与CD所成角的正切值为A B C D10.若()cos sinf x x x=-在[0,]a是减函数,则a的最大值是A.π4B.π2C.3π4D.π11.已知1F,2F是椭圆C的两个焦点,P是C上的一点,若12PF PF⊥,且2160PF F∠=︒,则C的离心率为A.1-B.2C D112.已知()f x是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x-=+.若(1)2f=,则(1)(2)(3)f f f++(50)f++=A.50-B.0C.2D.50二、填空题:本题共4小题,每小题5分,共20分。

2018陕西高考文科数学试题及答案

2018陕西高考文科数学试题及答案

2018陕西高考文科数学试题及答案A.1i i=+B.2i i=+C.3i i=+D.4i i=+9.在正方体1111ABCD A B C D-中,E为棱1CC的中点,则异面直线AE 与CD所成角的正切值为A B C D10.若()cos sinf x x x=-在[0,]a是减函数,则a的最大值是A.π4B.π2C.3π4D.π11.已知1F,2F是椭圆C的两个焦点,P是C上的一点,若12PF PF⊥,且2160PF F∠=︒,则C的离心率为A.1B.2-C D112.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)f f f ++(50)f ++=A .50-B .0C .2D .50二、填空题:本题共4小题,每小题5分,共20分。

13.曲线2ln y x =在点(1,0)处的切线方程为__________. 14.若,x y 满足约束条件250,230,50,x y x y x +-⎧⎪-+⎨⎪-⎩≥≥≤ 则z x y =+的最大值为__________.15.已知5π1tan()45α-=,则tan α=__________. 16.已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30︒,若SAB △的面积为8,则该圆锥的体积为__________.三、解答题:共70分。

解答应写出文字说明、证明过程或演算步骤。

第17~21题为必考题,每个试题考生都必须作答。

第22、23为选考题。

考生根据要求作答。

(一)必考题:共60分。

17.(12分)记n S为等差数列{}n a的前n项和,已知17S=-.a=-,315(1)求{}n a的通项公式;(2)求n S,并求n S的最小值.18.(12分)下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y与时间变量t的两个线性回归模型.根据2000年至2016年的数据(时间变量t的值依次为1,2,,17)建立模型①:ˆ30.413.5=-+;根据2010年至2016年的数y t据(时间变量t 的值依次为1,2,,7)建立模型②:ˆ9917.5yt =+.(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由. 19.(12分)如图,在三棱锥P ABC -中,AB BC ==4PA PB PC AC ====,O 为AC的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且2MC MB =,求点C 到平面POM 的距离. 20.(12分)设抛物线24C yx=:的焦点为F ,过F 且斜率为(0)k k >的直线l与C 交于A ,B 两点,||8AB =. (1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程. 21.(12分) 已知函数()()32113f x xa x x =-++.(1)若3a =,求()f x 的单调区间; (2)证明:()f x 只有一个零点.(二)选考题:共10分。

(完整版)2018年高考全国1卷理科数学试题及答案详细解析(word版_精校版)

(完整版)2018年高考全国1卷理科数学试题及答案详细解析(word版_精校版)

绝密★启用前2018年普通高等学校招生全国统一考试(全国卷Ⅰ)理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上。

写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设1i2i 1iz -=++,则||z = A .0 B .12C .1D .2 2.已知集合2{|20}A x x x =-->,则A =RA .{|12}x x -<<B .{|12}x x -≤≤C {|1}{|2}x x x x <->D .{|1}{|2}x x x x -≤≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番。

为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记n S 为等差数列{}n a 的前n 项和. 若3243S S S =+,12a ,则5aA .12-B .10-C .10D .12 5.设函数32()(1)f x x a x ax =+-+。

若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =A .3144AB AC - B .1344AB AC - C .3144AB AC + D .1344AB AC +7.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .217B .25C .3D .28.设抛物线24C y x :的焦点为F ,过点(2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FNA .5B .6C .7D .89.已知函数e ,0,()ln ,0,x x f x x x ⎧=⎨>⎩≤ ()()g x f x x a =++. 若()g x 存在2个零点,则a 的取值范围是A .[1,0)-B .[0,)+∞C .[1,)-+∞D .[1,)+∞10.下图来自古希腊数学家希波克拉底所研究的几何图形. 此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ。

2018年全国高考新课标1卷文科数学试题(解析版)

2018年全国高考新课标1卷文科数学试题(解析版)

2018年普通高等学校招生全国统一考试新课标1卷文科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A={0,2},B={-2,-1,0,1,2},则A ∩B=A .{0,2}B .{1,2}C .{0}D .{-2,-1,0,1,2} 解析:选A 2.设z=1-i1+i+2i ,则|z|= A .0 B .12 C .1 D . 2解析:选C z=1-i1+i+2i=-i+2i=i3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例 建设后经济收入构成比例则下面结论中不正确的是A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 解析:选A4.已知椭圆C :x 2a 2+y24=1的一个焦点为(2,0),则C 的离心率为A .13B .12C .22D .223解析:选C ∵ c=2,4=a 2-4 ∴a=2 2 ∴e=225.已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A .122πB .12πC .82πD .10π解析:选B 设底面半径为R,则(2R)2=8 ∴R=2,圆柱表面积=2πR ×2R+2πR 2=12π6.设函数f(x)=x 3+(a-1)x 2+ax ,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为 A .y=-2x B .y=-x C .y=2x D .y=x解析:选D ∵f(x)为奇函数 ∴a=1 ∴f(x)=x 3+x f′(x)=3x 2+1 f′(0)=1 故选D 7.在ΔABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB →= A .34AB → - 14AC →B . 14AB → - 34AC →C .34AB → + 14AC →D . 14AB → + 34AC →解析:选A 结合图形,EB →=- 12(BA →+BD →)=- 12BA →-14BC →=- 12BA →-14(AC →-AB →)=34AB → - 14AC →8.已知函数f(x)=2cos 2x-sin 2x+2,则A .f(x)的最小正周期为π,最大值为3B .f(x) 的最小正周期为π,最大值为4C .f(x) 的最小正周期为2π,最大值为3D .f(x)的最小正周期为2π,最大值为4 解析:选B f(x)= 32cos2x+52故选B9.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .217B .2 5C .3D .2 解析:选B 所求最短路径即四份之一圆柱侧面展开图对角线的长10.在长方体ABCD-A 1B 1C 1D 1中,AB=BC=2,AC 1与平面BB 1C 1C 所成的角为300,则该长方体的体积为 A .8 B .6 2 C .8 2 D .8 3解析:选C ∵AC 1与平面BB 1C 1C 所成的角为300,AB=2 ∴AC 1=4 BC 1=2 3 BC=2 ∴CC 1=2 2 V=2×2×22=8 211.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A(1,a),B(2,b),且cos2α=23,则|a-b|= A .15B .55C .255D .1解析:选B ∵cos2α=23 2cos 2α-1=23 cos 2α=56 ∴sin 2α=16 ∴tan 2α=15又|tan α|=|a-b| ∴|a-b|=5512.设函数f(x)= ⎩⎪⎨⎪⎧2-x,x ≤01,x>0,则满足f(x+1)< f(2x)的x 的取值范围是A .(-∞,-1]B .(0,+ ∞)C .(-1,0)D .(-∞,0)解析:选D x ≤-1时,不等式等价于2-x-1<2-2x,解得x<1,此时x ≤-1满足条件-1<x ≤0时,不等式等价于1<2-2x, 解得x<0, 此时-1<x<0满足条件 x>0时,1<1不成立 故选D二、填空题(本题共4小题,每小题5分,共20分)13.已知函数f(x)=log 2(x 2+a),若f(3)=1,则a=________. 解析:log 2(9+a)=1,即9+a=2,故a=-714.若x ,y 满足约束条件⎩⎪⎨⎪⎧x-2y-2≤0x-y+1≥0 y ≤0,则z=3z+2y 的最大值为_____________.解析:答案为615.直线y=x+1与圆x 2+y 2+2y-3=0交于A,B 两点,则|AB|=________.解析:圆心为(0,-1),半径R=2,线心距d=2,|AB|=2R 2-d 2=2 216.△ABC 的内角A,B,C 的对边分别为a,b,c ,已知bsinC+csinB=4asinBsinC ,b 2+c 2-a 2=8,则△ABC 的面积为________.解析:由正弦定理及bsinC+csinB=4asinBsinC 得2sinBsinC=4sinAsinBsinC ∴sinA=12由余弦定理及b 2+c 2-a 2=8得2bccosA=8,则A 为锐角,cosA=32, ∴bc=833∴S=12bcsinA=233三、解答题:共70分。

2018年高考试题——数学文(陕西卷) 精品

2018年高考试题——数学文(陕西卷) 精品

数学(文)参考答案说明1,本解答列出试题的一种或几种解法,如果考生的解法与所列解法不同.可参照解答中评分标准的精神进行评分.2.评阅试卷,应坚持每题阅到底,不要因为考生的解答中出现错误而中断对该题的评阅,当考生的解答在某一步出现错误,影响了后继部分,但该步以后的解答未改变这一题的内容和难度时,可视影响程度决定后面部分的给分,这时原则上不应超过后面部分应给分数之半,如果有较严重的概念性错误,就不给分. 一、(第1题至第12题)1.14-x2.x =0 3.11 4.x +2y -4=0 5.π 6.1411- 7.1208022=+y x 8.73 9.x +2y -2=0 10.3 11.31<<k 12.3150<<a 二、(第13题至16题) 13.A 14.B 15.B 16.C 三、(第17题至第22题)17.[解]联结B 1C ,由M 、N 分别是BB 1和BC 的中点,得B 1C//MN∴∠DB 1C 就是异面直线B 1D 与MN 所成的角.联结BD ,在Rt △ABD 中,可得52=BD , 又BB 1⊥平面ABCD.∠B 1DB 是B 1D 与平面ABCD 的所成的角, ∴∠B 1DB=60°.在Rt △B 1BD 中,BB 1=BDtan60°=152, 又DC ⊥平面BB 1C 1C , ∴DC ⊥B 1C , 在Rt △CB 1C 中,21tan 21211=+==∠BB BC DC CB DCC DB ∴∠DB 1C=,21arctan即异面直线B 1D 与MN 所成角的大小为21arctan . 18.解:原方程化简为i i z z z -=++1)(||2设),,(R y x yi x z ∈+=代入上述方程得,121,122222⎩⎨⎧-==+∴-=++x y x i xi y x解得,2321⎪⎪⎩⎪⎪⎨⎧±=-=y x ∴原方程的解是.2321i z ±-= 19.解:(1)由已知得},{),,0(),0,(b kbAB b B k b A =-则 于是 .21,22⎩⎨⎧==∴⎪⎩⎪⎨⎧==b k b k b(2)由,62),()(2-->+>x x x x g x f 得 即 ,42,0)4)(2(<<-<-+x x x 得,521225)(1)(2-+++=+--=+x x x x x x f x g由于3)(1)(,02-≥+>+x f x g x 则,其中等号当且仅当x +2=1,即x =-1时成立,∴)(1)(x f x g +时的最小值是-3. 20.解:(1)设中低价房面积形成数列{}n a ,由题意可知{}n a 是等差数列,其中a 1=250,d=50,则 ,22525502)1(2502n n n n n S n +=⨯-+= 令,4750225252≥+n n 即.10,,019092≥∴≥-+n n n n 是正整数而 ∴到2018年底,该市历年所建中低价房的累计面积将首次不少于4750万平方米. (2)设新建住房面积形成数列{b n },由题意可知{b n }是等比数列,其中b 1=400,q=1.08, 则b n =400·(1.08)n -1 由题意可知n n b a 85.0>有250+(n -1)50>400 · (1.08)n -1 · 0.85.由计算器解得满足上述不等式的最小正整数n=6, ∴到2009年底,当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%.21.解:(1)抛物线.2,524,222=∴=+-==p pp x px y 于是的准线为 ∴抛物线方程为y 2= 4x .(2)∵点A 的坐标是(4,4), 由题意得B (0,4),M (0,2), 又∵F (1,0), ∴,43,;34-=∴⊥=MN FA k FA MN k则FA 的方程为y=34(x -1),MN 的方程为.432x y -=-解方程组).54,58(5458,432)1(34N y x x y x y ∴⎪⎪⎩⎪⎪⎨⎧==⎪⎪⎩⎪⎪⎨⎧-=--=得(3)由题意得,圆M 的圆心是点(0,2),半径为2.当m=4时,直线AK 的方程为x =4,此时,直线AK 与圆M 相离, 当m ≠4时,直线AK 的方程为),(44m x my --=即为,04)4(4=---m y m x 圆心M (0,2)到直线AK 的距离2)4(16|82|-++=m m d ,令1,2>>m d 解得1>∴m 当时,直线AK 与圆M 相离;当m=1时,直线AK 与圆M 相切; 当1<m 时,直线AK 与圆M 相交.22.解(1)⎩⎨⎧-∞∈-+∞∈-+-=)1,(2),1[)2)(32()(x x x x x x h(2)当.81)47(2672)2)(32()(,122+--=-+-=-+-=≥x x x x x x h x 时.81)(,47,1)(,1;81)(取得最大值是时当时当x h x x h x x h =∴-<<≤∴(3)[解法一]令,2,cos sin )(πα=+=x x x f则,sin cos )2cos()2sin()()(x x x x x f x g -=+++=+=ππα于是.2cos )sin )(cos sin (cos )()()(x x x x x x f x f x h =-+=+⋅=α [解法二]令πα=+=,sin 21)(x x f ,则,sin 21)sin(21)()(x x x f x g -=++=+=πα于是.2cos sin 21)sin 21)(sin 21()()()(2x x x x x f x f x h =-=-+=+⋅=α。

2018年普通高考全国1卷文科数学(含答案)排好版

2018年普通高考全国1卷文科数学(含答案)排好版

2018年普通高等学校招生全国统一考试 (新课标Ⅰ卷)文科数学一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合,,则()A.B.C.D.2.设,则()A.0B.C.D3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.已知椭圆:的一个焦点为,则的离心率()A.B.C.D.5.已知圆柱的上、下底面的中心分别为,,过直线的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( ){}02A=,{}21012B=--,,,,A B={}02,{}12,{}0{}21012--,,,,121iz ii-=++z=121C22214x ya+=()2,0C1312231O2O12O OA .B .C .D .6.设函数.若为奇函数,则曲线在点处的切线方程为( ) A . B . C . D .7.在中,为边上的中线,为的中点,则( ) A .B .C .D .8.已知函数,则( ) A .的最小正周期为,最大值为3 B .的最小正周期为,最大值为4C .的最小正周期为,最大值为3D .的最小正周期为,最大值为49.某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为( ) A .B .C .D .210.在长方体中,,与平面所成的角为,则该长方体的体积为( ) A .B .C .D .11.已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上有两点,,122π12π82π10π()()321f x x a x ax =+-+()f x ()y f x =()00,2y x =-y x =-2y x =y x =ABC △AD BC E AD EB =3144AB AC -1344AB AC -3144AB AC +1344AB AC +()222cos sin 2f x x x =-+()f x π()f x π()f x 2π()f x 2πM A N B M N 2172531111ABCD A B C D -2AB BC ==1AC 11BB C C 30︒8628283αx ()1,A a ()2,B b且,则( ) A .B .C .D .12.设函数,则满足的的取值范围是( )A .B .C .D .二、填空题(本题共4小题,每小题5分,共20分)13.已知函数,若,则________.14.若满足约束条件,则的最大值为________.15.直线与圆交于两点,则 ________.16.的内角的对边分别为,已知,,则的面积为________.三、解答题(共70分。

2018年高考文科数学(3卷)答案详解(附试卷)

2018年高考文科数学(3卷)答案详解(附试卷)

2018年普通高等学校招生全国统一考试文科数学3卷 答案详解一、选择题:本题共12小题,每小题5分,共60分。

在每小题给的四个选项中,只有一项是符合题目要求的。

1.已知集合,,则A .B .C .D .【解析】∵}1|{≥=x x A ,}2,1{=B A . 【答案】C 2. A .B .C .D .【解析】i i i +=-+3)2)(1(. 【答案】D3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是【解析】看不见的线应该用虚线表示. 【答案】A 4.若,则cos2α= {|10}A x x =-≥{0,1,2}B =A B ={0}{1}{1,2}{0,1,2}(1i)(2i)+-=3i --3i -+3i -3i+1sin 3α=A .B .C .D . 【解析】227cos212sin 199αα=-=-=. 【答案】B5.若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为 A .0.3B .0.4C .0.6D .0.7【解析】只用现金支付、既用现金支付也用非现金支付、不用现金支付,三者是互斥事件,所以不用现金支付的概率为10.450.15=0.4--.【答案】B 6.函数2tan ()1tan xf x x=+的最小正周期为A .B .C .D .【解析】∵222222tan tan cos sin cos 1()sin cos sin 21tan (1tan )cos cos sin 2x x x x x f x x x x x x x x x ⋅=====++⋅+, ∴()f x 的最小正周期为 π .【答案】C7.下列函数中,其图像与函数的图像关于直线对称的是 A .B .C .D .【解析】解法一:从图A7中可以看出,函数)In(x y -=向右平移2个单位得到的图像,就是函数的图像关于直线对称的图像,其函数表达式为)2In(+-=x y .897979-89-4π2ππ2πln y x =1x =ln(1)y x =-ln(2)y x =-ln(1)y x =+ln(2)y x =+ln y x =1x =图A7解法一:(特殊值法)由题意可知,所求函数与函数的图像上的对应点关于对称. 在函数的图像任取一点(1,0),其关于对称的点为(1,0),即点(1,0)一定在所求的函数图像上,只有选项B 符合.【答案】B8.直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是 A .B .C .D .【解析】如图所示,由题意可知)0,2(-A 、)0,2(-B ,∴22||=AB .过点P 作△ABP 的高PH ,由图可以看出,当高PH 所在的直线过圆心)0,2(时,高PH 取最小值或最大值. 此时高PH 所在的直线的方程为02=-+y x .将02=-+y x 代入,得到与圆的两个交点:)1,1(-N 、)1,3(M ,因此22|211|min =+-=|PM|,232|213|max =++=|PM|. 所以222221min=⨯⨯=S ,6232221max =⨯⨯=S. ln y x =1x =ln y x =1x =20x y ++=x y A B P 22(2)2x y -+=ABP △[2,6][4,8]22(2)2x y -+=图A8【答案】A9.函数的图像大致为【解析】设2)(24++-==x x y x f ,∵02)0(>=f ,因此排除A 、B ;)12(224)(23--=+-='x x x x x f ,由0)(>'x f 得22-<x 或220<<x ,由此可知函数)(xf 422y x x =-++在),(220内为增函数,因此排除C.【答案】D10.已知双曲线C :22221(0,0)x y a b a b-=>>(4,0)到C 的渐近线的距离为AB.C .D .【解析】由题意可知c =,∴b a ==,渐近线方程为y x =±,即0x y ±=.∴ 点(4,0)到C 的渐近线的距离为222|4|=. 【答案】D11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若△ABC 的面积为4222c b a -+,则C =A .B .C .D .【解析】由已知和△ABC 的面积公式有,4sin 21222c b a C ab -+=,解得C ab c b a sin 2222=-+.∴ C abCab ab c b a C sin 2sin 22cos 222==-+=,又∵1cos sin 22=+C C ,∴22sin cos ==C C ,4π=C . 【答案】C12.设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为39,则三棱锥D -ABC 体积的最大值为 A .312B .318C .324D .354【解析】如图A12所示,球心为O ,△ABC 的外心为O ′,显然三棱锥D -ABC 体积最大时D 在O′O 的延长线与球的交点.△ABC 为为等边三角形且其面积为39,因此有39432=⨯AB ,解得AB =6. 222π3π4π6π∴3260sin 32=⋅⨯=' AB C O ,2)32(42222=-='-='O O OC O O , ∴642=+='D O .∴ 三棱锥D -ABC 体积的最大值为31863931=⨯⨯=V .图A12【答案】B二、填空题:本题共4小题,每小题5分,共20分。

2018年高考数学试卷(文科)(全国新课标Ⅰ)-教师用卷

2018年高考数学试卷(文科)(全国新课标Ⅰ)-教师用卷

2018年高考数学试卷(文科)(全国新课标Ⅰ)一、选择题(本大题共12小题,共60.0分)1.已知集合,0,1,,则A. B.C. D. 0,1,【答案】A【解析】解:集合,0,1,,则.故选:A.直接利用集合的交集的运算法则求解即可.本题考查集合的基本运算,交集的求法,是基本知识的考查.2.设,则A. 0B.C. 1D.【答案】C【解析】解:,则.故选:C.利用复数的代数形式的混合运算化简后,然后求解复数的模.本题考查复数的代数形式的混合运算,复数的模的求法,考查计算能力.3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【答案】A【解析】【分析】设建设前经济收入为a,建设后经济收入为通过选项逐一分析新农村建设前后,经济收入情况,利用数据推出结果本题主要考查事件与概率,概率的应用,命题的真假的判断,考查发现问题解决问题的能力.【解答】解:设建设前经济收入为a,建设后经济收入为2a.A项,种植收入,故建设后,种植收入增加,故A项错误.B项,建设后,其他收入为,建设前,其他收入为,故,故B项正确.C项,建设后,养殖收入为,建设前,养殖收入为,故,故C项正确.D项,建设后,养殖收入与第三产业收入总和为,经济收入为2a,故,故D项正确.因为是选择不正确的一项,故选A.4.已知椭圆C:的一个焦点为,则C的离心率为A. B. C. D.【答案】C【解析】解:椭圆C:的一个焦点为,可得,解得,,.故选:C.利用椭圆的焦点坐标,求出a,然后求解椭圆的离心率即可.本题考查椭圆的简单性质的应用,考查计算能力.5.已知圆柱的上、下底面的中心分别为,,过直线的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A. B. C. D.【答案】D【解析】解:设圆柱的底面直径为2R,则高为2R,圆柱的上、下底面的中心分别为,,过直线的平面截该圆柱所得的截面是面积为8的正方形,可得:,解得,则该圆柱的表面积为:.故选:D.利用圆柱的截面是面积为8的正方形,求出圆柱的底面直径与高,然后求解圆柱的表面积.本题考查圆柱的表面积的求法,考查圆柱的结构特征,截面的性质,是基本知识的考查.6.设函数,若为奇函数,则曲线在点处的切线方程为.A. B. C. D.【答案】D【解析】【分析】利用函数的奇偶性求出a,求出函数的导数,求出切线的向量然后求解切线方程.本题考查函数的奇偶性以及函数的切线方程的求法,考查计算能力.【解答】解:函数,若为奇函数,可得,所以函数,可得,曲线在点处的切线的斜率为:1,则曲线在点处的切线方程为:.故选D.7.在中,AD为BC边上的中线,E为AD的中点,则A. B. C. D.【答案】A【解析】解:在中,AD为BC边上的中线,E为AD的中点,,故选:A.运用向量的加减运算和向量中点的表示,计算可得所求向量.本题考查向量的加减运算和向量中点表示,考查运算能力,属于基础题.8.已知函数,则A. 的最小正周期为,最大值为3B. 的最小正周期为,最大值为4C. 的最小正周期为,最大值为3D. 的最小正周期为,最大值为4【答案】B【解析】解:函数,,,,,,故函数的最小正周期为,函数的最大值为,故选:B.首先通过三角函数关系式的恒等变换,把函数的关系式变形成余弦型函数,进一步利用余弦函数的性质求出结果.本题考查的知识要点:三角函数关系式的恒等变换,余弦型函数的性质的应用.9.某圆柱的高为2,底面周长为16,其三视图如图圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为A. B. C. 3 D. 2【答案】B【解析】解:由题意可知几何体是圆柱,底面周长16,高为:2,直观图以及侧面展开图如图:圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度:.故选:B.判断三视图对应的几何体的形状,利用侧面展开图,转化求解即可.本题考查三视图与几何体的直观图的关系,侧面展开图的应用,考查计算能力.10.在长方体中,,与平面所成的角为,则该长方体的体积为A. 8B.C.D.【答案】C【解析】解:长方体中,,与平面所成的角为,即,可得.可得.所以该长方体的体积为:.故选:C.画出图形,利用已知条件求出长方体的高,然后求解长方体的体积即可.本题考查长方体的体积的求法,直线与平面所成角的求法,考查计算能力.11.已知角的顶点为坐标原点,始边与x轴的非负半轴重合,终边上有两点,,且,则A. B. C. D. 1【答案】B【解析】解:角的顶点为坐标原点,始边与x轴的非负半轴重合,终边上有两点,,且,,解得,,,.故选:B.推导出,从而,进而由此能求出结果.本题考查两数差的绝对值的求法,考查二倍角公式、直线的斜率等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.12.设函数,则满足的x的取值范围是A. B. C. D.【答案】D【解析】解:函数,的图象如图:满足,可得:或,解得.故选:D.画出函数的图象,利用函数的单调性列出不等式转化求解即可.本题考查分段函数的应用,函数的单调性以及不等式的解法,考查计算能力.二、填空题(本大题共4小题,共20.0分)13.已知函数,若,则______.【答案】【解析】解:函数,若,可得:,可得.故答案为:.直接利用函数的解析式,求解函数值即可.本题考查函数的解析式的应用,函数的零点与方程根的关系,是基本知识的考查.14.若x,y满足约束条件,则的最大值为______.【答案】6【解析】【分析】作出不等式组对应的平面区域,利用目标函数的几何意义进行求解即可本题主要考查线性规划的应用,利用目标函数的几何意义以及数形结合是解决本题的关键.【解答】解:作出不等式组对应的平面区域如图:由得,平移直线,由图象知当直线经过点时,直线的截距最大,此时z最大,最大值为,故答案为:615.直线与圆交于A,B两点,则__________.【答案】【解析】解:圆的圆心,半径为:2,圆心到直线的距离为:,所以.故答案为:.求出圆的圆心与半径,通过点到直线的距离以及半径、半弦长的关系,求解即可.本题考查直线与圆的位置关系的应用,弦长的求法,考查计算能力.16.的内角A,B,C的对边分别为a,b,已知,,则的面积为______.【答案】【解析】解:的内角A,B,C的对边分别为a,b,c.,利用正弦定理可得,由于,,所以,所以,则或由于,则:,当时,,解得,所以.当时,,解得不合题意,舍去.故:.故答案为:.直接利用正弦定理求出A的值,进一步利用余弦定理求出bc的值,最后求出三角形的面积.本体考察的知识要点:三角函数关系式的恒等变换,正弦定理和余弦定理的应用及三角形面积公式的应用.三、解答题(本大题共7小题,共82.0分)17.已知数列满足,,设.求,,;判断数列是否为等比数列,并说明理由;求的通项公式.【答案】解:数列满足,,则:常数,由于,故:,数列是以为首项,2为公比的等比数列.整理得:,所以:,,.数列是为等比数列,由于常数;由得:,根据,所以:.【解析】直接利用已知条件求出数列的各项.利用定义说明数列为等比数列.利用的结论,直接求出数列的通项公式.本题考查的知识要点:数列的通项公式的求法及应用.18.如图,在平行四边形ABCM中,,,以AC为折痕将折起,使点M到达点D的位置,且.证明:平面平面ABC;为线段AD上一点,P为线段BC上一点,且,求三棱锥的体积.【答案】解:证明:在平行四边形ABCM中,,,又且,面ADC,又面ABC,平面平面ABC;,,,,由得,又,面ABC,三棱锥的体积.【解析】可得,且,即可得面ADC,平面平面ABC;首先证明面ABC,再根据,可得三棱锥的高,求出三角形ABP的面积即可求得三棱锥的体积.本题考查面面垂直,考查三棱锥体积的计算,考查学生分析解决问题的能力,属于中档题.19.某家庭记录了未使用节水龙头50天的日用水量数据单位:和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表使用了节水龙头天的日用水量频数分布表作出使用了节水龙头50天的日用水量数据的频率分布直方图;估计该家庭使用节水龙头后,日用水量小于的概率;估计该家庭使用节水龙头后,一年能节省多少水?一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表【答案】解:根据使用了节水龙头50天的日用水量频数分布表,作出使用了节水龙头50天的日用水量数据的频率分布直方图,如下图:根据频率分布直方图得:该家庭使用节水龙头后,日用水量小于的概率为:.由题意得未使用水龙头50天的日均水量为:,使用节水龙头50天的日均用水量为:,估计该家庭使用节水龙头后,一年能节省:.【解析】根据使用了节水龙头50天的日用水量频数分布表能作出使用了节水龙头50天的日用水量数据的频率分布直方图.根据频率分布直方图能求出该家庭使用节水龙头后,日用水量小于的概率.由题意得未使用水龙头50天的日均水量为,使用节水龙头50天的日均用水量为,能此能估计该家庭使用节水龙头后,一年能节省多少水.本题考查频率分由直方图的作法,考查概率的求法,考查平均数的求法及应用等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.20.设抛物线C:,点,,过点A的直线l与C交于M,N两点.当l与x轴垂直时,求直线BM的方程;证明:.【答案】解:当l与x轴垂直时,,代入抛物线解得,所以或,直线BM的方程:,或:.证明:设直线l的方程为l:,,,联立直线l与抛物线方程得,消x得,即,,则有,所以直线BN与BM的倾斜角互补,.【解析】当时,代入求得M点坐标,即可求得直线BM的方程;设直线l的方程,联立,利用韦达定理及直线的斜率公式即可求得,即可证明.本题考查抛物线的性质,直线与抛物线的位置关系,考查韦达定理,直线的斜率公式,考查转化思想,属于中档题.21.已知函数.设是的极值点,求a,并求的单调区间;证明:当时,.【答案】解:函数.,,是的极值点,,解得,,,当时,,当时,,在单调递减,在单调递增.证明:当时,,设,则,当时,,当时,,是的最小值点,故当时,,当时,.【解析】推导出,,由是的极值点,解得,从而,进而,由此能求出的单调区间.当时,,设,则,由此利用导数性质能证明当时,.本题考查函数的单调性、导数的运算及其应用,同时考查逻辑思维能力和综合应用能力,是中档题.22.在直角坐标系xOy中,曲线的方程为以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.求的直角坐标方程;若与有且仅有三个公共点,求的方程.【答案】解:曲线的极坐标方程为,转换为直角坐标方程为:,转换为标准式为:.由于曲线的方程为,则:该直线关于y轴对称,且恒过定点,由于该直线与曲线的极坐标有且仅有三个公共点,所以:必有一直线相切,一直线相交,则:圆心到直线的距离等于半径2,故:,解得:或舍去故C的方程为:.【解析】直接利用转换关系,把参数方程和极坐标方程与直角坐标方程进行转化.利用直线在坐标系中的位置,再利用点到直线的距离公式的应用求出结果.本题考察知识要点:参数方程和极坐标方程与直角坐标方程的转化,直线和曲线的位置关系的应用,点到直线的距离公式的应用.23.已知.当时,求不等式的解集;若时不等式成立,求a的取值范围.【答案】解:当时,,因为,或,解得,故不等式的解集为;当时不等式成立,,即,即,,,,,,,,,故a的取值范围为.【解析】去绝对值,化为分段函数,即可求出不等式的解集;当时不等式成立,转化为,即,转化为,且,即可求出a的范围.本题考查了绝对值不等式的解法和含参数的取值范围,考查了运算能力和转化能力,属于中档题.。

(完整版)2018年高考全国卷1文科数学试题及含答案

(完整版)2018年高考全国卷1文科数学试题及含答案

2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己の姓名和准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目の答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出の四个选项中,只有一项是符合题目要求の。

1.已知集合{}02A =,,{}21012B =--,,,,,则A B =I A .{}02,B .{}12,C .{}0D .{}21012--,,,, 2.设1i2i 1iz -=++,则z = A .0B .12C .1D .23.某地区经过一年の新农村建设,农村の经济收入增加了一倍.实现翻番.为更好地了解该地区农村の经济收入变化情况,统计了该地区新农村建设前后农村の经济收入构成比例.得到如下饼图:则下面结论中不正确の是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入の总和超过了经济收入の一半4.已知椭圆C :22214x y a +=の一个焦点为(20),,则C の离心率为A .13B .12C .22D .2235.已知圆柱の上、下底面の中心分别为1O ,2O ,过直线12O O の平面截该圆柱所得の截面是面积为8の正方形,则该圆柱の表面积为 A .122πB .12πC .82πD .10π6.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处の切线方程为A .2y x =-B .y x =-C .2y x =D .y x =7.在△ABC 中,AD 为BC 边上の中线,E 为AD の中点,则EB =u u u rA .3144AB AC -u u ur u u u r B .1344AB AC -u u ur u u u r C .3144AB AC +u u ur u u u rD .1344AB AC +u u ur u u u r8.已知函数()222cos sin 2f x x x =-+,则 A .()f x の最小正周期为π,最大值为3 B .()f x の最小正周期为π,最大值为4 C .()f x の最小正周期为2π,最大值为3 D .()f x の最小正周期为2π,最大值为49.某圆柱の高为2,底面周长为16,其三视图如右图.圆柱表面上の点M 在正视图上の对应点为A ,圆柱表面上の点N 在左视图上の对应点为B ,则在此圆柱侧面上,从M 到N の路径中,最短路径の长度为 A .217 B .25 C .3D .210.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成の角为30︒,则该长方体の体积为 A .8B .62C .82D .8311.已知角αの顶点为坐标原点,始边与x 轴の非负半轴重合,终边上有两点()1A a ,,()2B b ,,且 2cos 23α=,则a b -=A .15BCD .112.设函数()201 0x x f x x -⎧=⎨>⎩,≤,,则满足()()12f x f x +<のx の取值范围是A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,二、填空题(本题共4小题,每小题5分,共20分)13.已知函数()()22log f x x a =+,若()31f =,则a =________.14.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+の最大值为________.15.直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB =________.16.△ABC の内角A B C ,,の对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则△ABC の面积为________.三、解答题:共70分。

2018年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)

 2018年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)

2018年全国统一高考数学试卷(文科)(全国新课标Ⅰ)一、选择题目:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知集合A={0,2},B={﹣2,﹣1,0,1,2},则A∩B=()A.{0,2}B.{1,2}C.{0}D.{﹣2,﹣1,0,1,2}2.(5分)设z=+2i,则|z|=()A.0B.C.1D.3.(5分)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.(5分)已知椭圆C:+=1的一个焦点为(2,0),则C的离心率为()A.B.C.D.5.(5分)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A.12πB.12πC.8πD.10π6.(5分)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x7.(5分)在△ABC中,AD为BC边上的中线,E为AD的中点,则=()A.﹣B.﹣C.+D.+ 8.(5分)已知函数f(x)=2cos2x﹣sin2x+2,则()A.f(x)的最小正周期为π,最大值为3B.f(x)的最小正周期为π,最大值为4C.f(x)的最小正周期为2π,最大值为3D.f(x)的最小正周期为2π,最大值为49.(5分)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3D.210.(5分)在长方体ABCD﹣A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C 所成的角为30°,则该长方体的体积为()A.8B.6C.8D.811.(5分)已知角α的顶点为坐标原点,始边与x轴的非负半轴重合,终边上有两点A(1,a),B(2,b),且cos2α=,则|a﹣b|=()A.B.C.D.112.(5分)设函数f(x)=,则满足f(x+1)<f(2x)的x的取值范围是()A.(﹣∞,﹣1]B.(0,+∞)C.(﹣1,0)D.(﹣∞,0)二、填空题目:本题共4小题,每小题5分,共20分。

(完整版)2018年高考全国1卷理科数学试题及答案详细解析(word版_精校版)

(完整版)2018年高考全国1卷理科数学试题及答案详细解析(word版_精校版)

绝密★启用前2018年普通高等学校招生全国统一考试(全国卷Ⅰ)理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设1i2i 1iz -=++,则||z = A .0 B .12 C .1 D .22.已知集合2{|20}A x x x =-->,则A =R ðA .{|12}x x -<<B .{|12}x x -≤≤C {|1}{|2}x x x x <->UD .{|1}{|2}x x x x -U ≤≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番. 为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记n S 为等差数列{}n a 的前n 项和. 若3243S S S =+,12a =,则5a = A .12- B .10- C .10 D .125.设函数32()(1)f x x a x ax =+-+. 若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为A .2y x =-B .y x =-C .2y x =D .y x = 6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =uu rA .3144AB AC -uu u r uuu r B .1344AB AC -uuu r uuu rC .3144AB AC +uu u r uuu rD .1344AB AC +uuu r uuu r7.某圆柱的高为2,底面周长为16,其三视图如右图. 圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .217B .25C .3D .28.设抛物线24C y x =:的焦点为F ,过点(2,0)-且斜率为23的直线与C 交于M ,N 两点,则FM FN?uuu r uuu r A .5B .6C .7D .89.已知函数e ,0,()ln ,0,x x f x x x ⎧=⎨>⎩≤ ()()g x f x x a =++. 若()g x 存在2个零点,则a 的取值范围是 A .[1,0)-B .[0,)+∞C .[1,)-+∞D .[1,)+∞10.下图来自古希腊数学家希波克拉底所研究的几何图形. 此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ. 在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则A .12p p =B .13p p =C .23p p =D .123p p p =+11.已知双曲线2213x C y :-=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N . 若OMN △为直角三角形,则||MN = A .32B .3C .23D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为 A .33B .23C .32D .3二、填空题:本题共4小题,每小题5分,共20分。

(精校版)2018陕西高考理科数学试题及答案

(精校版)2018陕西高考理科数学试题及答案

(ⅱ)从计算结果看,相对于 2016 年的环境基础设施投资额 220 亿元,由模型①得到的预测 值 226。1 亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理。说明利用模 型②得到的预测值更可靠。
以上给出了 2 种理由,考生答出其中任意一种或其他合理理由均可得分.
19。(12 分)
解:(1)由题意得 F (1, 0) ,l 的方程为 y k(x 1)(k 0) .
0, b
0) 的离心率为
3 ,则其渐近线方程为
A. y 2x
B. y 3x
C. y 2 x
2
D. y 3 x
2
6.在 △ABC 中, cos C 5 , BC 1 , AC 5 ,则 AB
25
A. 4 2
B. 30
C. 29
D. 2 5
7.为计算 S 1 1 1 1 … 1 1 ,设计了右侧的程序
A.9
B.8
3.函数
f
x
ex
ex x2
的图像大致为
C.5
D.4
(直打版)2018 陕西高考理科数学试题及答案(word 版可编辑修改)
4.已知向量 a , b 满足 | a | 1 , a b 1 ,则 a (2a b)
A.4
B.3
C.2
D.0
5.双曲线
x2 a2
y2 b2
1 (a
(2)利用模型②得到的预测值更可靠。
理由如下:
( ⅰ) 从 折 线 图 可 以 看 出 ,2000 年 至 2016 年 的 数 据 对 应 的 点 没 有 随 机 散 布 在 直 线 y 30.4 13.5t 上下.这说明利用 2000 年至 2016 年的数据建立的线性模型①不能很好地描 述环境基础设施投资额的变化趋势。2010 年相对 2009 年的环境基础设施投资额有明显增 加,2010 年至 2016 年的数据对应的点位于一条直线的附近,这说明从 2010 年开始环境基 础设施投资额的变化规律呈线性增长趋势,利用 2010 年至 2016 年的数据建立的线性模型 yˆ 99 17.5t 可以较好地描述 2010 年以后的环境基础设施投资额的变化趋势,因此利用模 型②得到的预测值更可靠。学.科网

2018年全国高考新课标1卷文科数学试题(解析版)

2018年全国高考新课标1卷文科数学试题(解析版)

2018年普通高等学校招生全国统一考试新课标1卷文科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A={0,2},B={-2,-1,0,1,2},则A ∩B=A .{0,2}B .{1,2}C .{0}D .{-2,-1,0,1,2} 解析:选A2.设z=1-i1+i+2i ,则|z|=A .0B .12 C .1 D . 2解析:选C z=1-i1+i+2i=-i+2i=i3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例 建设后经济收入构成比例则下面结论中不正确的是A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 解析:选A4.已知椭圆C :x 2a 2+y24=1的一个焦点为(2,0),则C 的离心率为A .13B .12C .22D .223解析:选C ∵ c=2,4=a 2-4 ∴a=2 2 ∴e=225.已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为 A .122πB .12πC .82πD .10π解析:选B 设底面半径为R,则(2R)2=8 ∴R=2,圆柱表面积=2πR ×2R+2πR 2=12π6.设函数f(x)=x 3+(a-1)x 2+ax ,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为 A .y=-2x B .y=-x C .y=2x D .y=x解析:选D ∵f(x)为奇函数 ∴a=1 ∴f(x)=x 3+x f′(x)=3x 2+1 f′(0)=1 故选D 7.在ΔABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB →= A .34AB → - 14AC →B . 14AB → - 34AC →C .34AB → + 14AC →D . 14AB → + 34AC →解析:选A 结合图形,EB →=- 12(BA →+BD →)=- 12BA →-14BC →=- 12BA →-14(AC →-AB →)=34AB → - 14AC →8.已知函数f(x)=2cos 2x-sin 2x+2,则A .f(x)的最小正周期为π,最大值为3B .f(x) 的最小正周期为π,最大值为4C .f(x) 的最小正周期为2π,最大值为3D .f(x)的最小正周期为2π,最大值为4 解析:选B f(x)= 32cos2x+52故选B9.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .217B .2 5C .3D .2 解析:选B 所求最短路径即四份之一圆柱侧面展开图对角线的长10.在长方体ABCD-A 1B 1C 1D 1中,AB=BC=2,AC 1与平面BB 1C 1C 所成的角为300,则该长方体的体积为 A .8 B .6 2 C .8 2 D .8 3解析:选C ∵AC 1与平面BB 1C 1C 所成的角为300,AB=2 ∴AC 1=4 BC 1=2 3 BC=2 ∴CC 1=2 2 V=2×2×22=8 2 11.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A(1,a),B(2,b),且cos2α=23,则|a-b|= A .15B .55C .255D .1解析:选B ∵cos2α=23 2cos 2α-1=23 cos 2α=56 ∴sin 2α=16 ∴tan 2α=15又|tan α|=|a-b| ∴|a-b|=5512.设函数f(x)= ⎩⎪⎨⎪⎧2-x,x ≤01,x>0,则满足f(x+1)< f(2x)的x 的取值范围是A .(-∞,-1]B .(0,+ ∞)C .(-1,0)D .(-∞,0)解析:选D x ≤-1时,不等式等价于2-x-1<2-2x,解得x<1,此时x ≤-1满足条件-1<x ≤0时,不等式等价于1<2-2x, 解得x<0, 此时-1<x<0满足条件 x>0时,1<1不成立 故选D二、填空题(本题共4小题,每小题5分,共20分)13.已知函数f(x)=log 2(x 2+a),若f(3)=1,则a=________. 解析:log 2(9+a)=1,即9+a=2,故a=-714.若x ,y 满足约束条件⎩⎪⎨⎪⎧x-2y-2≤0x-y+1≥0 y ≤0 ,则z=3z+2y 的最大值为_____________.解析:答案为615.直线y=x+1与圆x 2+y 2+2y-3=0交于A,B 两点,则|AB|=________.解析:圆心为(0,-1),半径R=2,线心距d=2,|AB|=2R 2-d 2=2 216.△ABC 的内角A,B,C 的对边分别为a,b,c ,已知bsinC+csinB=4asinBsinC ,b 2+c 2-a 2=8,则△ABC 的面积为________.解析:由正弦定理及bsinC+csinB=4asinBsinC 得2sinBsinC=4sinAsinBsinC ∴sinA=12由余弦定理及b 2+c 2-a 2=8得2bccosA=8,则A 为锐角,cosA=32, ∴bc=833∴S=12bcsinA=233三、解答题:共70分。

2018年高考(陕西省)真题数学(文)试题及答案解析

2018年高考(陕西省)真题数学(文)试题及答案解析

2018年陕西高考数学试题(文)
一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合2{|0,},{|1,}M x x x R N x x x R =≥∈=<∈,则M N = ( )
.[0,1]A .(0,1)B .(0,1]C .[0,1)D
2.函数()cos(2)4f x x π
=+的最小正周期是( )
.2A π
.B π .2C π .4D π
3.已知复数2z i =-,则z z ⋅的值为( )
.5A
B .3C
4.根据右边框图,对大于2的整数N ,输出的数列的通项公式是( )
.2n Aa n = .2(1)n B a n =- .2n n C a = 1
.2n n D a -=
输出a 1,a 2,...,a N
结束


i >N
i =i +1
S =a i
S =1,i =1
输入N
开始
a i =2*S
5.将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积为( )
.4A π .3B π .2C π .D π
6.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离小于该正方形边长的概率为( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
21.(本小题满分13分)
设函数 .
(1)当 ( 为自然对数的底数)时,求 的最小值;
(2)讨论函数 零点的个数;
(3)若对任意 恒成立,求 的取值范围.
参考答案
1. 2. 3. 4. 5. 6. 7. 8. 9. 10.
11. 12. 13. 14. 15. 3 1
16.(1) 成等差数列
由正弦定理得
所以样本中车辆中新司机车主获赔金额为4000元的频率为
由频率估计概率得
20.(1)由题意可得
解得
椭圆的方程为
(2)由题意可得以 为直径的圆的方程为
圆心到直线 的距离为
由 ,即 ,可得

联立
整理得
由求根公式可得: ,
解方程得 ,且满足
直线 的方程为 或
21.(1)由题设,当 时,
易得函数 的定义域为
当 时, ,此时 在 上单调递减;
A.(不等式选做题)设 ,且 ,则 的最
小值为______.
B.(几何证明选做题)如图, 中, ,以 为直径的半圆分别交
于点 ,若 ,则 =_______.
C.(坐标系与参数方程选做题)在极坐标系中,点 到直线 的距
离是_______.
三、解答题.
16.(本小题满分12分)
的内角 所对的边分别为 .
令 ,由图可知,当直线 过点 时, 取得最大值1,故 的最大值为1.
19.(1)设 表示事件“赔付金额为3000元”, 表示事件“赔付金额为4000元”,以频率估计概率得:
, ,
由于投保金额为2800,赔付金额大于投保金额对应的情形时3000元和4000元,所以其概率为:
(2)设 表示事件“投保车辆中新司机获赔4000元”,由已知,样本车辆中车主为新司机的有 ,而赔付金额为4000元的车辆中车主为新司机的有 辆
6.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离小于该正方形边长的概率为()
7.下了函数中,满足“ ”的单调递增函数是()
(A) (B) (C) 1/2(D)
8.原命题为“若 , ,则 为递减数列”,关于逆命题,否命题,逆
否命题真假性的判断依次如下,正确的是()
(A)真,真,真(B)假,假,真(C)真,真,假(D)假,假,假
(A) (B)
(C) (D)
2、填空题:把答案填写在答题卡相应题号后的横线上(本大题共5小题,每小题5分,共
25分).
11.抛物线 的准线方程为________.
12.已知 , ,则 ________.
13.设 ,向量 ,若 ,则 ______.
14.已知 ,若 ,则 的
表达式为________.
15.(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
(2)在样本车辆中,车主是新司机的占 ,在赔付金额为4000元的样本车辆中,车主是新司机的占 ,估计在已投保车辆中,新司机获赔金额为4000元的概率.
20.(本小题满分13分)
已知椭圆 经过点 ,离心率为 ,左右焦点分别为 .
(1)求椭圆的方程;
(2)若直线 与椭圆交于 两点,与以 为直径的圆交于 两点,且满足 ,求直线 的方程.
③当 时,函数 有两个零点;
④ 时,函数 有且只有一个零点;
综上所述,当 时,函数 无零点;当 或 时,函数 有且仅有一个零点;当 时,函数 有两个零点.
(3)对任意 恒成立
等价于 恒成立

在 上单调递减
在 恒成立
恒成立
(对 , 仅在 时成立),
的取值范围是
9.某公司 位员工的月工资(单位:元)为 , ,…, ,其均值和方差分别为 和 ,若从下月起每位员工的月工资增加 元,则这 位员工下月工资的均值和方差分别为()
(A) , (B) ,
(C) , (D) ,
10.如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连续(相切),已知环湖弯曲
路段为某三次函数图像的一部分,则该函数的解析式为()
(2)由题设有b2=ac,c=2a, b= ,
由余弦定理得
17.(1)由该四面体的三视图可知:

平面
四面体体积
(2)因为 ∥平面 ,
平面 平面 ,平面 平面
∥ , ∥ , ∥ .
同理 ∥ , ∥ , ∥ .
四边形 是平行四边形
又因为 平面
∥ , ∥
四边形 是矩形
18.(1)因为 , ,
=
(2)

两式相减得:
(1)若 成等差数列,证明: ;
(2)若 成等比数列,且 ,求 的值.
17.(本小题满分12分)
四面体 及其三视图如图所示,平行于棱 的平面分别交四面体的棱
于点 .
(1)求四面体 的体积;
(2)证明:四边形 是矩形.
18.(本小题满分12分)
在直角坐标系 中,已知点 ,点 在 三边围成的区域(含边界)上,且 .
(1)若 ,求 ;
(2)用 表示 ,并求 的最大值.
19.(本小题满分12分)
某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:
赔付金额(元)
0
1000
2000
3000
4000
车辆数(辆)
500
130
100
150
120
(1)若每辆车的投保金额均为2800元,估计赔付金额大于投保金额的概率;
2018年陕西高考数学试题(文)
一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合 ,则 ()
2.函数 的最小正周期是()
3.已知复数 ,则 的值为()
4.根据右边框图,对大于2的整数 ,输出的数列的通项公式是()
5.将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积为()
当 时, ,此时 在 上单调递增;
当 时, 取得极小值
的极小值为2
(2) 函数
令 ,得

当 时, ,此时 在 上单调递增;
当 时, ,此时 在 上单调递减;
所以 是 的唯一极值点,且是极大值点,因此x=1也是 的最大值点,
的最大值为
又 ,结合y= 的图像(如图),可知
1当 时,函数 无零点;
②当 时,函数 有且仅有一个零点;
相关文档
最新文档