第2课时 二次根式的性质

合集下载

二次根式及其性质课件

二次根式及其性质课件

1 •下列式子一定是二次根式的是( C )
知1-练
2 •(中考·武汉)若代数式 C
•则x的取值范围是( )
在实数范围内有意义,
•A.x≥-2 B.x>-2 C.x≥2 D.x≤2
知识点 2 二次根式的性质
知2-导
做一做
(1)计算下列各式,你能得到什么猜想?
4 9 ____, 4 9 _____; 4 _____, 4 _____;

的根指数为2,所以
是二次根式.
• (7)是.理由:因为|x|≥0,且 根式.
的根指数为2,所以
是二次
总结
知1-讲
二次根式是在初始的外在情势上定义的,不能从化 简结果上判断,如 是二次根式. 像 (a≥0)这样的式子只能称为含有二次根式 的式子,不能称为二次根式.
知1-讲
• 例2 当x取怎样的数时,下列各式在实数范围内有意 义?
知识点 1 二次根式的定义
知1-讲
形如 a (a≥0)的式子叫做二次根式. 其中a为整式或分式,a叫做被开方式. 特点:①都是形如 a 的式子,
②a都是非负数.
例1 判断下列各式是否为二次根式,并说明理由.
知1-讲
导引: 判断一个式子是不是二次根式,实质是看它是否具备二次根
式定义的条件,紧扣定义进行辨认.
知3-练
1 (中考·淮安)下列式子为最简二次根式的是( A )
2 在下列根式中,不是最简二次根式的是( D )
1. 当a≥0时, 2. 当a≥0时, •3.
完成教材P43,习题T1-T4
谢谢!
知2-讲
知识点
商的算术平方根再探索 (1)商的算术平方根的性质的实质是逆用二次根式的除法

[初中数学]+二次根式第2课时+二次根式的性质课件+人教版数学八年级下册

[初中数学]+二次根式第2课时+二次根式的性质课件+人教版数学八年级下册

( 3) ( 5 )2 ; ( 4 ) ( 2 2 )2 .
解: ( 3 ) ( 5 )2 5 .
( 4 ) ( 2 2 )2= 22 ( 2 )2 = 42 =8 .
二 a2 的性质
活动2:填一填: a2 =a (a≥0).
a(a≥0) 平方 2 运算
a2
算术平 a2
4 方根
2
0.1
0.01
0.1
和开方)把 数 或 表示数的字母 连接起来的 式子,我们称这样的式子为代数式.单独的一个数 或字母也是代数式.
想一想 到现在为止,初中阶段所学的代数式主要有
哪几类?
整式
代数式 分式
二次根式
练一练
1.在下列各式中,不是代数式的是( B )
A.7
B.3>2
x
C. 2
D.2 x2 y2
3
方法总结:单个的数字或字母也是代数式,代数式
导入新课
什么是二次根式? 一般地,我们把形如 a (a 0) 的式子叫做二
次根式. “ ”称为二次根号.
第十六章 二次根式
16.1 二根次式
第2课时 二次根式的性质
学习目标
1.经历二次根式的性质的发现过程, 2.会运用二次根式的性质进行化简计算.
学习重点
经历二次根式的性质的发现过程.
学习难点
会运用二次根式的性质进行化简计算.
2
4
2
3
9
3
0 ...
0
...
0
...
观察两者有什么关系?
思考:当a<0时, a2 =-?a
a(a<0) 平方 -2 运算
-0.1
2
...3
a2

二次根式的概念、性质(第1、2课时 教案)

二次根式的概念、性质(第1、2课时 教案)

第十六章二次根式16.1二次根式第1课时二次根式的概念【知识与技能】是一个非负数.【过程与方法】通过新旧知识的联系,培养学生观察、演绎能力,发展学生的归纳概括能力.【情感态度】通过观察一些特殊的情形,获得一般结论,使学生感受归纳的思想方法,进而体验成功的喜悦,并通过合作学习增进终身学习的信念.≥0的基本性质【教学难点】经历知识产生的过程,探索新知识.一、情境导入,初步认识问题(1)一个长方形的围栏,长是宽的3倍,面积为39m2,则它的宽为_______m;(2)面积为S的正方形的边长为_______;(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下的高度h(单位:m)满足关系h=5t2,如果用含h的式子表示t,则t=.______【教学说明】设置上述问题的目的是让学生感受到研究二次根式是实际的需要,二次根式与实际生活联系紧密.教师提出问题后,让学生独立思考,然后相互交流,获得对二次根式的感性认识.二、思考探究,获取新知思考的式子,这些式子有什么特点?【教学说明】教师提出问题,同学生一道分析,体会这些式子的特征,从而引出二次根式的定义.a≥0)形式的式子称.针对上述定义,教师可强调以下几点:(1中,a必须是大于等于0的数或式子,否则它就没有意义了;(2=2,是一个整数,但4仍应称为一个二次根式;(3)当a≥0表示a的算术平方根,而一个非负数的算术平方根必≥0(a≥0)三、典例精析,掌握新知例1下列各式中,一定是二次根式的有_______分析:判断二次根式应关注两点:(1;(2)被开方数必须是非负数.因而在所给出四个式子中,只有②③中的式子同时符合两个要求,故应填②③.例2当x为何值时,下列各式在实数范围内有意义.解:(1)中,由x-2≥0,得x≥2;(2)中,由得2≤x≤3;(3)中,由2x-1>0,得x>1/2.【教学说明】对于例3,教师应引导学生分析题目特征,抓住解决问题的突a中a≥0及a≥0的双重非负性特征.四、运用新知,深化理解1.填空题:(1)形如_______的式子叫二次根式;(2)负数算术平方根________(填“有”或者“没有”)2.当a是怎样的实数时,下列各式在实数范围内有意义:【教学说明】学生自主探究,教师巡视,了解学生对本节课知识的掌握情况,及时予以指导,帮助学生巩固新知.五、师生互动,课堂小结通过这节课的学习,你掌握了哪些新知识,你获得哪些解决二次根式问题的方法?你还有哪些问题?请与同伴交流.【教学说明】学生相互交流,回顾知识,反思问题,共同发展提高.1.布置作业:从教材“习题16.1”中选取.2.完成练习册中本课时练习.1.教师创设情境,给出实例.学生积极主动探索,教师引导与启发,师生互动.体现教师的组织者、引导者与合作者地位.2.注意知识之间的衔接,在温故知新的过程中引导出新知,讲练结合旨在巩固学生对新知的理解.第十六章二次根式16.1二次根式第2课时二次根式的性质【知识与技能】理解并掌握二次根式的性质,正确区分=a(a≥0)与2a=a(a ≥0),并利用它们进行化简和计算.【过程与方法】在探索二次根式性质的学习活动中,进一步增强学生的参与意识,培养学生的计算能力和解决问题的能力.【情感态度】通过创设问题情境,激发学生学习兴趣,培养学生主动探究意识和创新精神,形成良好的心理品质,促进身心健康发展.【教学重点】2a=a(a≥0)2a(a≥0)及其应用.【教学难点】用探究的方法探索2a=a(a≥02a(a≥0)的结论.一、情境导入,初步认识试一试:请根据算术平方根填空,.猜一猜:通过对上述问题的思考,你能猜想出2a(a≥0)的结论是什么?说说你的理由.【教学说明】让学生通过具体实例所展示的特征,猜想出结果,然后再利用算术平方根的意义对所猜测结论进行分析,由感性认识到理性思考,培养学生利用代数语言进行推理的能力.二、思考探究,获取新知在学生相互交流的基础上可归纳出:2=a(a≥0).探究(1)填空:(2)通过(1)的思考,你能确定a≥0)的化简结果吗?说说你的理由.【教学说明】教师应尽力引导学生积极主动进行探究思考,让学生经历知识的发现与完善的过程,深化对所学知识的理解和记忆,最后师生共同完成对知识的归纳总结.(a≥0).最后,教师给出代数式的概念.代数式:用运算符号(加、减、乘、除、乘方和开方)把数和表示数的字母连接起来的式子称为代数式.(代数式的定义只要求学生了解就行,不必深究.)三、典例精析,掌握新知例1计算:(1))2;(2)(2【教学说明】以上例1、例2可由学生自主完成,教师巡视,对有困难的学生及时予以指导,让每个学生都能得到发展.例3教师引导学生看懂数轴,结合数轴确定a、b的符号.四、运用新知,深化理解【教学说明】以上1~3题可试着让学生自主完成,第4题稍有难度,教师适时点拨.(22a进行化简.然后再根据x>2的这个范围,来判断x-2与1-2x的正负,最后化简掉绝对值符号.∵x>2,∴x-2>0,1-2x<0.3.(1)原式=5-5+1=1(2)原式=7+49×2/7=7+14=21(2)首先利用a2=|a|化简掉二次根号,再根据x的取值范围来判断绝对值中的代数式的正负,化掉绝对值的符号.五、师生互动,课堂小结1.本节知识可这样归纳:2.通过这节课的学习,你有哪些收获和体会?与同伴交流.1.布置作业:从教材“习题16.1”中选取.2.完成练习册中本课时练习.1.注意前后知识的联系,在复习旧知的过程中导入本节课的数学内容,按照由特殊到一般的规律,降低学生理解的难度.2.在总结二次根式的性质过程中,由学生经过观察、分析的过程,让学生在交流中体会成功.3.几个例题,旨在帮助学生对二次根式的性质的理解,在练习和作业中都增加了难度,主要给能力较好的学生提供更大的发展空间.。

二次根式的性质与化简-初中数学知识点

二次根式的性质与化简-初中数学知识点

1 / 1 二次根式的性质与化简
1.二次根式的性质与化简
(1)二次根式的基本性质:①0a ≥ ; 0a ≥(双重非负性).②()()2
0a a a =≥ (任何一个非负数都可以写成一个数的平方的形式).③()20a a =≥ (算术平方根的意义)
(2)二次根式的化简:①利用二次根式的基本性质进行化简;②利用积的算术平方根的性质和商的算术平方根的性质进行化简.ab a b =⋅ ab ab =
(3)化简二次根式的步骤:①把被开方数分解因式;②利用积的算术平方根的性质,把被开方数中能开得尽方的因数(或因式)都开出来;③化简后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数2.
【规律方法】二次根式的化简求值的常见题型及方法
1.常见题型:与分式的化简求值相结合.
2.解题方法:
(1)化简分式:按照分式的运算法则,将所给的分式进行化简.
(2)代入求值:将含有二次根式的值代入,求出结果.
(3)检验结果:所得结果为最简二次根式或整式.。

二次根式的两个性质

二次根式的两个性质

二次根式的两个性质:1))0(2≥=a a a ;2))0()(2≥=a a a 即⎪⎩⎪⎨⎧<-=>==)0()0(0)0(2a a a a a a a1)12-x ; 2)x -2; 3)x1; 4)21x + 1)2)3(π- 2)122+-x x ,其中3-=x .化简下列二次根式:1) 被开方数中各因式的指数都为1;2) 被开方数不含分母.同时符合上述两个条件的二次根式,叫做最简二次根式.举例说明:如ab 3、y x +231、)(622b a m +等都是最简二次根式.1)35a 2)a 42 3)324x 4))1()12(32-≥++a a a1))0(423>y y x 2))0())((22≥≥+-b a b a b a3))0(>>-+n m n m n mbabbabbbbaba36)3(63332322==∙∙=.把分母中的根号化去,叫做分母有理化.分母有理化的方法,一般是把分子和分母乘以同一个适当的代数式,使分母不含根号.(1)122⨯(2)baa+÷(3))0(22322>>+÷-bababa例题7如图所示,在面积为2a的正方形ABCD中,截得直角三角形ABE的面积为a33,求BE的长.例题8解下列方程和不等式:(1)22623-=-x(2)xx53365>+(3)xx3262>+(注意判断0)32(<-,不等号方向要变)如图,将一个正方形分割成面积为s(平方单位)和2s(平方单位)的两个小正方形和两个长方形,求图中每个长方形(阴影部分)的面积.B CE(1)3224⨯ (2)b ab 4∙ (3)22abc abc ∙二次根式除法法则:两个二次根式相除,被开方数相除,根指数不变.(1)b a 32÷ (2)v u u 32106÷(u>0)(3)c b c a b a 22-÷+(a>b>0)下列二次根式,那些是同类二次根式:12 ,24,271,b a 4, )0(23>a b a ,)0(3>-a ab1)323132122++-; 2)xy b xy a xy +-3 16.3二次根式的加法和减法合并同类二次根式. 二次根式的相加减的一般过程是:先把各个二次根式化成最简二次根式,再把同类二次根式分别合并.a aa a a a 22250832+-+ 248753+)7581()3125.0(--- m m m 21643932-+x x x x 12463621-+ q p q p -+-8)(50(先判断出(p-q)大于零)27582723++=x 954452->+x x。

精品【冀教版】初二八年级数学上册《15.1.2 二次根式的性质》课件

精品【冀教版】初二八年级数学上册《15.1.2  二次根式的性质》课件

1
化简:
(1) 125;
(2)
7 14 ;
(3) m 3 n5 (m 0);
(5)
(4) 0.49 x 5 y 6 ( y>0);
2
a
2
b
2
a
2
4
b
3
2

2
(ab>0);
1 (6) 4 y 4 xy x y y> x . 2
知3-导


一般地,如果一个二次根式满足下面两个条件,那
么,我们把这样的二次根式叫做最简二次根式.
(1)被开方数的因数是整数,因式是整式; (2)被开方数中不含能开得尽方的因数或因式.
5 6 9 2 如 3 6, 4 5, , , 都是最简二次根式. 4 2 二次根式的化简过程就是将它化为最简二次根式的
(4) 0.49 x y 0.7
5 6 2
x y
2 2 3 2
2
x
0.7
2
x y
2 2 3
x 0.7 x 2 y 3 x .
(来自《点拨》)
冀教版八年级数学上册
知1-练
(5)
a b a b a b a b a
式,化简时要先分解因式.
(来自《点拨》)
冀教版八年级数学上册
知1-练
解: (1) 125 25 5 25 5 5 5.
(2)
7 14
7 14 2 7 2 2 7 2 7 2.
(3) m 3 n5 m 2 n4 mn m 2 n4 mn mn2 mn .
第十五章
二次根式

人教版数学八年级下册16.1《二次根式的性质》(第2课时)说课稿

人教版数学八年级下册16.1《二次根式的性质》(第2课时)说课稿

人教版数学八年级下册16.1《二次根式的性质》(第2课时)说课稿一. 教材分析人教版数学八年级下册16.1《二次根式的性质》(第2课时)是在学生已经掌握了二次根式的概念、性质和运算法则的基础上进行的一节内容。

本节课的主要内容是进一步探讨二次根式的性质,包括二次根式的乘除运算、合并同类二次根式等。

通过本节课的学习,使学生能够灵活运用二次根式的性质进行各种运算,提高他们的数学思维能力和解决问题的能力。

二. 学情分析在进入本节课的学习之前,学生已经对二次根式有了初步的认识和了解,能够进行一些基本的二次根式运算。

但是,对于一些复杂的二次根式运算,学生可能还存在一定的困难。

因此,在教学过程中,教师需要针对学生的实际情况,采取有效的教学方法,引导学生逐步掌握二次根式的性质,提高他们的运算能力。

三. 说教学目标1.知识与技能目标:使学生掌握二次根式的性质,能够熟练地进行二次根式的乘除运算和合并同类二次根式。

2.过程与方法目标:通过观察、分析、归纳等方法,引导学生自主探索二次根式的性质,培养他们的数学思维能力和解决问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养他们克服困难的勇气和自信心,培养他们的团队协作精神。

四. 说教学重难点1.教学重点:使学生掌握二次根式的性质,能够进行二次根式的乘除运算和合并同类二次根式。

2.教学难点:二次根式的乘除运算和合并同类二次根式的方法。

五. 说教学方法与手段在本节课的教学过程中,我将采用自主探索、合作交流的教学方法,引导学生通过观察、分析、归纳等方法自主学习二次根式的性质。

同时,利用多媒体教学手段,展示二次根式的运算过程,帮助学生更好地理解和掌握二次根式的性质。

六. 说教学过程1.导入:通过复习二次根式的概念和性质,为学生进入本节课的学习做好铺垫。

2.自主探索:引导学生观察、分析、归纳二次根式的性质,使学生能够自主掌握二次根式的性质。

3.合作交流:学生进行小组讨论,分享他们在自主探索过程中得到的二次根式的性质,培养学生团队协作精神。

二次根式的有关概念及性质专题(教案)

二次根式的有关概念及性质专题(教案)
五、教学反思
在今天的教学过程中,我发现学生们对于二次根式的概念和性质的理解存在一些困难。在讲解二次根式的定义时,我意识到需要更多具体的例子来帮助学生形象地理解被开方数和根指数的概念。例如,通过展示√9=3和√(-3)²=3的例子,学生们更能明白被开方数的正负性对于二次根式的意义。
在讲授二次根式的性质时,我发现学生们在运用这些性质进行化简和计算时容易出现混淆。我意识到,除了提供例题,还需要让学生们通过小组讨论和实际操作来加深记忆。比如,在讲解性质(1)√a²=|a|时,可以让同学们通过剪纸活动来直观感受这一性质。
1.培养学生的数学抽象能力:通过二次根式的学习,使学生能够从具体问题中抽象出数学模型,理解并运用二次根式表示实际问题中的数量关系。
2.提高学生的逻辑推理能力:引导学生通过探索二次根式的性质,培养其从特殊到一般的推理方法,并能运用这些性质进行数学证明和解决问题。
3.增强学生的数学运算能力:让学生掌握二次根式的化简与计算方法,提高四则运算的速度和准确性,培养解决实际问题时运用数学运算的能力。
举例:解释为什么√(-3)²=3,而非-3。
(2)二次根式性质的灵活运用:学生在运用二次根式性质进行化简和计算时,容易忘记或混淆性质,导致错误。
举例:在计算√2+√8时,学生可能会直接相加,而忘记化简为√2+2√2。
(3)二次根式的混合运算:学生在进行二次根式的混合运算时,容易出错,如加减乘除运算的顺序和法则。
举例:解释为什么(√2+√3)(√2-√3)=1,而非0。
(4)实际问题中的二次根式应用:学生往往难以将实际问题转化为二次根式的数学模型,从而解决问题。
举例:在求边长为√3的等边三角形面积时,学生可能不知道如何应用二次根式。

二次根式的概念和性质

二次根式的概念和性质

【答案】
2 ,9 5
【解析】
2a 2b c 2a 2b c 4 2 5b c 5a 5b c 5a 25 5
3


3 12 3 3 3 12 9 36 3 6 9

12、 (2013 初二上期末大兴区)若最简二次根式
a _________
1 1 5 1 5; 16 4 16 4
4
2
4, ;
7、估计 88 的大小应( ) A.在 9.1~9.2 之间 B.在 9.2~9.3 之间 C.在 9.3~9.4 之间 D.在 9.4~9.5 之间 【答案】 C 【解析】 设 88 9 x( x是小数部分) ;则有: 9 x 88 ,即: x2 18x 7 ,得 18x 7 , x 0.38 ,
二次根式比较大小的方法 (1) a b 0 a b (2)二次根式比较大小:能直接比较大小的直接比较;不能直接比较大小的,先平方再比 较. (3)估算法 (4)分子有理化 (5)倒数法 七、二次根式的乘除 二次根式的乘除法
第 2 页,共 17 页
二次根式
二次根式的乘法法则: a b ab ( a 0 , b 0 ) . 二次根式的除法法则:
3 2 2 a 4与 6a 2 1 是同类二次根式,则 2 3
【答案】 1 【解析】 该题考查的是二次根式. 满足下列两个条件的二次根式,叫做最简二次根式: (1)被开方数的因数是整数,因式是整式; (2)被开方数中不含能开得尽方的因数或因式. 几个二次根式化成最简二次根式后, 如果被开方数相同, 这几个二次根式叫做同类二次根式. 根据题意可列: a2 4 6a2 1 解得: a 1

《16.1 二次根式》教学设计案例(第2课时)

《16.1 二次根式》教学设计案例(第2课时)

《16.1 二次根式》教学设计案例(第2课时)一、内容和内容解析1.内容二次根式的性质。

2.内容解析本节教材是在学生学习二次根式概念的基础上,结合二次根式的概念和算术平方根的概念,通过观察、归纳和思考得到二次根式的两个基本性质.对于二次根式的性质,教材没有直接从算术平方根的意义得到,而是考虑学生的年龄特征,先通过“探究”栏目中给出四个具体问题,让学生学生根据算术平方根的意义,就具体数字进行分析得出结果,再分析这些结果的共同特征,由特殊到一般地归纳出结论.基于以上分析,确定本节课的教学重点为:理解二次根式的性质.二、目标和目标解析1.教学目标(1)经历探索二次根式的性质的过程,并理解其意义;(2)会运用二次根式的性质进行二次根式的化简;(3)了解代数式的概念.2.目标解析(1)学生能根据具体数字分析和算术平方根的意义,由特殊到一般地归纳出二次根式的性质,会用符号表述这一性质;(2)学生能灵活运用二次根式的性质进行二次根式的化简;(3)学生能从已学过的各种式子中,体会其共同特点,得出代数式的概念.三、教学问题诊断分析二次根式的性质是二次根式化简和运算的重要基础.学生根据二次根式的概念和算术平方根的意义,由特殊到一般地得出二次根式的性质后,重在能灵活运用二次根式的性质进行二次根式的化简和解决一些综合性较强的问题.由于学生初次学习二次根式的性质,对二次根式性质的灵活运用存在一定的困难,突破这一难点需要教师精心设计好每一道习题,让学生在练习中进一步掌握二次根式的性质,培养其灵活运用的能力.本节课的教学难点为:二次根式性质的灵活运用.四、教学过程设计1.探究性质1问题1你能解释下列式子的含义吗?,,,.师生活动:教师引导学生说出每一个式子的含义.【设计意图】让学生初步感知,这些式子都表示一个非负数的算术平方根的平方.问题2根据算术平方根的意义填空,并说出得到结论的依据.;;;.师生活动学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质1作铺垫.问题3从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?师生活动:引导学生归纳得出二次根式的性质:(≥0).【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质1,培养学生抽象概括的能力.例2 计算(1);(2).师生活动:学生独立完成,集体订正.【设计意图】巩固二次根式的性质1,学会灵活运用.2.探究性质2问题4你能解释下列式子的含义吗?,,,.师生活动:教师引导学生说出每一个式子的含义.【设计意图】让学生初步感知,这些式子都表示一个数的平方的算术平方根.问题5根据算术平方根的意义填空,并说出得到结论的依据.= ,= ,= ,= .师生活动学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质2作铺垫.问题6从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?师生活动:引导学生归纳得出二次根式的性质:(≥0)【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质2,培养学生抽象概括的能力.例3 计算(1);(2).师生活动:学生独立完成,集体订正.【设计意图】巩固二次根式的性质2,学会灵活运用.3.归纳代数式的概念问题7 回顾我们学过的式子,如,,,,,,,(≥0),这些式子有哪些共同特征?师生活动:学生概括式子的共同特征,得出代数式的概念.【设计意图】学生通过观察式子的共同特征,形成代数式的概念,培养学生的概括能力. 4.综合运用(1)算一算:;;;.【设计意图】设计有一定综合性的题目,考查学生的灵活运用的能力,第(2)、(3)、(4)小题要特别注意结果的符号.(2)想一想:中,的取值范围是什么?当≥0时,等于多少?当时,又等于多少?【设计意图】通过此问题的设计,加深学生对的理解,开阔学生的视野,训练学生的思维. (3)谈一谈你对与的认识.【设计意图】加深学生对二次根式性质的理解.5.总结反思(1)你知道了二次根式的哪些性质?(2)运用二次根式性质进行化简需要注意什么?(3)请谈谈发现二次根式性质的思考过程?(4)想一想,到现在为止,你学习了哪几类字母表示数得到的式子?说说你对代数式的认识.6.布置作业:教科书习题16.1第2,4题.五、目标检测设计1.;;.【设计意图】考查对二次根式性质的理解.2.下列运算正确的是()A. B.C.D. 【设计意图】考查学生运用二次根式的性质进行化简的能力.3.若,则的取值范围是.【设计意图】考查学生对一个数非负数的算术平方根的理解.4.计算:.【设计意图】考查二次根式性质的灵活运用.。

二次根式第二课时教案

二次根式第二课时教案

二次根式第二课时教案一、教学目标:知识与技能:1. 理解二次根式的性质,掌握二次根式的化简方法。

2. 学会运用二次根式解决实际问题。

过程与方法:2. 运用分组讨论、合作交流的方式,提高学生解决问题的能力。

情感态度与价值观:1. 激发学生对数学的兴趣,培养积极的学习态度。

2. 培养学生团队协作精神,增强自信心。

二、教学重点与难点:重点:1. 二次根式的性质。

2. 二次根式的化简方法。

难点:1. 二次根式在实际问题中的应用。

三、教学准备:教师准备:1. 相关教学素材。

2. PPT课件。

学生准备:1. 预习教材。

2. 准备好笔记本、文具。

四、教学过程:环节一:复习导入(5分钟)1. 复习上节课的内容,提问学生二次根式的定义及特点。

2. 引导学生回顾二次根式的基本性质。

环节二:知识讲解(15分钟)1. 讲解二次根式的性质,如:二次根式具有非负性、可加性、可乘性等。

2. 教授二次根式的化简方法,如:提取公因数、应用平方差公式等。

环节三:实例分析(15分钟)1. 给出几个实际问题,让学生运用二次根式进行解决。

环节四:课堂练习(10分钟)1. 布置几道有关二次根式的练习题,让学生独立完成。

2. 挑选部分学生的作业进行点评,指出优点和不足。

2. 布置课后作业,要求学生巩固所学知识。

五、教学反思:本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高学生对二次根式的理解和运用能力。

关注学生在学习过程中的困惑和问题,及时给予解答和指导。

六、教学评价:教学评价是教学过程中的重要环节,通过对学生的学习情况进行评估,可以了解学生对二次根式知识的掌握程度。

评价方式包括课堂表现、作业完成情况、练习题的正确率等。

对于表现优秀的学生,要及时给予表扬和鼓励,增强其自信心;对于学习有困难的学生,要个别辅导,帮助他们解决问题,提高他们的学习兴趣和成绩。

七、教学拓展:为了提高学生的学习兴趣和拓展知识面,可以结合二次根式的教学,介绍一些相关的数学历史和背景知识,如二次根式的起源、发展以及它在科学技术领域的应用等。

二次根式的两个基本性质

二次根式的两个基本性质

根式和无理式
由整数和根号组成的式子。
二次根式的衍生概念:高次根式、虚 数、复数等
高次根式
指数大于 2 的根式。
虚数
不能表示为实数(如 √-1)或由实数与虚数相加减而成的数。
复数
包含实部和虚部的数。
二次根式的重要应用领域:工程、计 算机科学等
1 结构工程
用于材料力学等领域的计算。
2 计算机科学
用于加密算法和图形图像处理中。
3 面积计算
三角形、矩形、梯形等的 面积计算公式。
二次根式的历史渊源
古代数学
毕达哥拉斯学派和柏拉图学派。
欧几里得几何学
《几何原本》中包含了许多二次根式的计算方法和 应用。
二次根式的相关概念:有理数、无理数、 根式、无理式等
有理数
可以表示为一个整数除以另一个 整数的数。
无理数
不能表示为两个整数之商的数。
2
乘法运算
将二次根式的根号外的数相乘,根号内的数相乘,然后合并。
3
除法运算
有理化分母,分子可以进行乘法运算。
二次根式与指数的关系
指数的运算法则
指数相同的幂,底数相乘。
指数与二次根式的关系
将指数开方,结果可以是二次根式。
二次根式与三角函数的关系
三角函数的定义
正弦函数、余弦函数、正切 函数等。
角度的单位
弧度制和度制。
三角函数与二次根式的 关系
三角函数的值可以是二次根 式,例如 sin 30°=1/2。
二次根式的图像及性质
图像
二次根式的图线表现为一个大致 抛物线形状。
性质
非负实数的平方根是一个实数。
非平方数
非负数和负数的平方根都是无理 数。

16.1 二次根式(第二课时 二次根式的性质)(练习)(解析版)2021学年八年级数学下册(人教版)

16.1 二次根式(第二课时 二次根式的性质)(练习)(解析版)2021学年八年级数学下册(人教版)

第十六章 二次根式16.1 二次根式(第二课时 二次根式的性质)精选练习答案一、单选题(共10小题)1.(2020·江苏淮安市·9﹣m ,则实数m 的取值范围是( ) A .m >9B .m <9C .m ≥9D .m ≤9 【答案】D【分析】根据算数平方根的定义可知9-m 是非负数,所以可得9﹣m≥0,求解不等式即可得出结果.【详解】根据二次根式的性质以及绝对值的意义,列不等式求解即可.|9﹣m |=9﹣m , ∴9﹣m ≥0,∴m ≤9,故选:D .【点睛】此题考查二次根式的性质,注意被开方数和开方的结果都是非负数是关键. 2.(2020·陕西西安市八年级期中)已知a 、b 、c 是三角形的三边长,如果满足()26100a c --=,则三角形的形状是( )A .底与腰不相等的等腰三角形B .等边三角形C .钝角三角形D .直角三角形【答案】D【分析】根据非负性求解出a ,b ,c 的具体值,再由勾股定理的逆定理判断即可.【详解】∵()260a -≥0≥,100c -≥,又∵()26100a c -+-=,∴60a -=,80b -=,100c -=,解得:6a =,8b =,10c =,∵22268366410010,∴是直角三角形.故选:D .【点睛】本题考查绝对值,二次根式,完全平方式的非负性,及勾股定理的逆定理,熟练掌握相关代数式的非负性是解题关键.3.(2020·金华市七年级期中)已知非零实数a ,b 满足212a b a -+-=-则a -b 等于( )A .−1B .0C .1D .2【答案】D【分析】先由条件得出20a -≥,然后即可将原式去掉一个绝对值,从而即可求出a 、b 的值,可得到答案.【详解】解:由212a b a -+-=-可知,20a -≥,∴212a b a -+-=-,即10b -=∴10b -=, 30a -=,∴1b =, 3a =,∴312a b -=-=,故选:D .【点睛】本题考查了绝对值和算术平方根的非负性,得到20a -≥是解题的关键.4.(2020·辽宁阜新蒙古族自治县八年级期末)实数a ,b 在数轴上对应点的位置如图所示,则化简代数式2-a b a +的结果是( ).A .-bB .2aC .-2aD .-2a-b【答案】A【分析】根据数轴得b<a<0,判断a+b<0,即可化简绝对值及二次根式,计算加减法即可得到答案.【详解】由数轴得b<a<0,∴a+b<0,∴2-a b a +=-a-b+a=-b ,故选:A .【点睛】 此题考查数轴与数的表示,利用数轴比较数的大小,化简绝对值,化简二次根式,依据数轴化简绝对值及二次根式是解题的关键.5.(2020·广东揭阳市·3 ) A .3B 3C 3D 3【答案】D【分析】 直接利用倒数的定义分析和二次根式的化简即可得出答案;相乘为1的两个数即为倒数; 【详解】3 3 =33. 故选:D .【点睛】本题考查了二次根式的化简、倒数的定义,正确化简二次根式是解题的关键;6.(2020·甘肃白银市·八年级期中)当1<a <2+|a ﹣1|的值是( ) A .1B .﹣1C .2a ﹣3D .3﹣2a 【答案】A【分析】 根据二次根式的化简方法将原式化简成21a a -+-,再根据a 的取值范围化简绝对值.【详解】解:∵12a <<,∴20a -<,10a ->, ∴原式21211a a a a =-+-=-+-=.故选:A .【点睛】本题考查绝对值的化简和二次根式的化简,解题的关键是掌握绝对值和二次根式的化简方法.7.(2020·=则x 可取的整数值有( ).A .1个B .2个C .3个D .4个【答案】B【分析】根据二次根式有意义的条件列出不等式,求出x 的范围,得到答案.【详解】解:由题意得,40x -≥,50x -≥,解得,45x ≤≤,则x 可取的整数是4、5,共2个,故选:B .【点睛】本题考查了二次根式有意义的条件,掌握二次根式有意义的条件是被开方数是非负数是解题的关键.8.(2020·清远市八年级期中)下列四个数中,是负数的是( )A .2-B .2(2)-C .2-D .2(2)-【答案】C【分析】 先根据绝对值的性质,有理数的乘方,二次根式的性质对各式化简,再利用正数和负数的定义对各选项分析判断后利用排除法求解.【详解】A 、220-=>,不符合题意;B 、()2240-=>,不符合题意;C 、20-<,符合题意;D 、()2220-=>,不符合题意;故选:C .9.(2020·吉林长春市·九年级期中)2(3)-等于( ) A .3B .-3C .±3D .9【答案】A【分析】根据实数的性质即可化简.【详解】 2(3)-3-=3故选A .【点睛】此题主要考查实数的性质,解题的关键是熟知实数的运算法则.10.(2020·西安市八年级期中)当2a <3(2)a a - )A .(2)a a -B .(2)a a a --C .(2)a a a -D .(2)a a a --【答案】B【分析】根据二次根式的性质即可化简.【详解】解:∵2a <∴a 20-<-故选:B .【点睛】此题主要考查二次根式的化简,解题的关键是熟练掌握二次根式的性质.二、填空题(共5小题)11.(2020·_____.1.【分析】直接根据二次的性质进行化简即可.【详解】>1,|1(11=-=1.【点睛】()(0)0(0)a a a a a a a >⎧⎪===⎨⎪-<⎩是解答此题的关键.12.(2020·=_____.【答案】【分析】根据二次根式的性质计算,即可得到答案.【详解】故答案为:43. 【点睛】 本题考查了二次根式的知识;解题的关键是熟练掌握二次根式的性质,从而完成求解. 13.(2020·西青区八年级期中)写出m n -的一个有理化因式:_______.【答案】m n -【分析】平方根与平方是互逆运算,据此解题.【详解】2()m n m n m n -⋅-=-m n ∴-的一个有理化因式是m n -,故答案为:m n -.【点睛】本题考查二次根式的有理化,是基础考点,难度较易,掌握相关知识是解题关键. 14.(2020·高台县八年级期末)已知实数a 、b 在数轴上的位置如图所示,化简2()a b a b -++=_____________【答案】2a -【分析】先根据数轴的定义可得0a b <<,从而可得0,0a b a b -<+<,再化简绝对值和二次根式,然后计算整式的加减即可得.【详解】由数轴的定义得:0a b <<,则0,0a b a b -<+<,因此2()()a b a b b a a b -+=-+--,b a a b =---,2a =-,故答案为:2a -.【点睛】本题考查了数轴、绝对值、二次根式、整式的加减,熟练掌握数轴的定义是解题关键.15.(2020·)0y >=______.【答案】2【分析】根据二次根式的性质进行化简根式即可.【详解】2x =∵0y >,2=故答案为2【点睛】本题主要考查二次根式的化简,熟练掌握二次根式的性质是解题的关键.三、解答题(共2小题)16.(2020·福建三明市八年级期中)先阅读下列解答过程,然后再解答:小芳同学在研究化437+=,4312⨯=,即:227+=, =2=== 问题:(1=__________=____________﹔(2a ,b (a b >),使a b m +=,ab n =,即22m +==2m n ±=__________. (3)化简:415-(请写出化简过程) 【答案】(1)31+,3-2;(2)()a b a b ±>;(3)106- 【分析】(1)根据题目所给的方法将根号下的数凑成完全平方的形式进行计算;(2)根据题目给的a ,b 与m 、n 的关系式,用一样的方法列式算出结果;(3)将15写成1524,4写成3522+,就可以凑成完全平方的形式进行计算. 【详解】解:(1)()242331233131+=++=+=+; 5-26=23-223+⨯()2=3-2=3-2; (2)()()()22222()m n a b a b a b a b a b ±=+±⨯=±=±>;(3)415-15=424-3535=22222+-⨯=210622⎛⎫- ⎪ ⎪⎝⎭=106-22. 【点睛】本题考查二次根式的计算和化简,解题的关键是掌握二次根式的运算法则.17.(2020·福建泉州市·泉州七中八年级期中)已如实数a 、b 在数轴上的位置如图所示,请化简()()22a 1ab 1b +-++-【答案】0【分析】由题意可得:2-<a <1-,0<b <1,从而可得:1a +<0, +a b <0, 1b ->0, 再利()()22a 1a b 1b ++-11a a b b =+-++-,从而可得答案.【详解】解:由题意得:2-<a <1-,0<b <1,1a ∴+<0,+a b <0, 1b ->0,1b -11a a b b =+-++-11a a b b =--+++-0.=【点睛】本题考查的是实数的大小比较,二次根式的性质,二次根式的化简,绝对值的化简,合并同类项,掌握以上知识是解题的关键.。

二次根式的定义及性质

二次根式的定义及性质

二次根式的定义及性质1、二次根式的定义形如)0(≥a a 的代数式叫二次根式(1)式子中含有二次根号“”;(2)a 可以表示数也可以表示代数式(3)二次根式)0(≥a a 表示非负数a 的算术平方根,0≥a ,即二次根式的两个非负性 二次根式的两个非负性:)0(≥a a ;0≥a ,具有非负性的还有02≥a ;0≥a ;几个非负数的和等于零,那么这几个非负数均为零。

2、二次根式的主要性质 (1)())0(2≥=a a a (2)⎪⎩⎪⎨⎧<-=>==)0()0(0)0(2a a a aa a a3、分母有理化:把分母中的根号化去,叫做分母有理化.方法:①单项二次根式:利用a =来确定.②两项二次根式:利用平方差公式()()22b a b a ba -=-+来确定.如: aa4、最简二次根式:被开方数中不含分母,并且被开方数中不含开的尽方的因数或因式叫最简二次根式 最简二次根式的条件①号内不含有开的尽方的因数或因式,②根号内不含有分母,③分母不含有根号。

5、 同类二次根式:被开方数相同的最简二次根式叫做同类二次根式6、 乘法公式:)0,0______(≥≥=⋅b a b a ;反之:)0,0_______(≥≥=b a ab7、除法公式:)0,0______(>≥=b a ba ;反之:)0,0______(>≥=b a b a 8、合并同类二次根式:__________________;=-=+a n a m a n a m形如)0(≥a a 的代数式叫二次根式例1、下列式子中二次根式的个数有( )(1)31(2)3-(3)12+-x (4)38(5)2)31(-(6))1(1>-x x A.2个 B.3个 C.4个 D.5个【变式练习】1、下列各式中,一定是二次根式的有______________________________① a ;②z y +;③6a ;④32+x ;⑤962++x x ;⑥12-x2、222++a a 是不是二次根式?___________(填“是”或“否”)二次根式)0(≥a a 表示非负数a 的算术平方根,0≥a ,即二次根式的两个非负性例2、(2012.德阳)使代数式12-x x 有意义的x 的取值范围是( ) A.0≥x B.21≠x C.210≠≥x x 且 D.一切实数 例3、 函数1213-+-=x x y 的自变量x 的取值范围是_______________【变式练习】1、 使12--x x 在实数范围内有意义的x 的取值范围是______________ 2、(2012.杭州)已知0)3(<-a a ,若a b -=2,则b 的取值范围是___________3、若2)(11y x x x +=---,则______=-y x())0(2≥=a a a例4、计算: (1) (2) (3) (4)(b ≥0) (5)【变式练习】计算: (1); (2); (3); (4). ⎪⎩⎪⎨⎧<-=>==)0()0(0)0(2a a a a a a a例5、化简: (1); (2); (3); (4).例6、2x =,则x 的取值范围是 。

二次根式的性质(第2课时 商的算术平方根的性质及最简二次根式)

二次根式的性质(第2课时 商的算术平方根的性质及最简二次根式)
的算术平方根.
我们可以运用它来进行二次根式的解题和化简,化去根号
内的分母.
例1
化简:
(1)
解:(1)
3
25
;(2)
3
3
3
= .
5
25
25
(2)
=
45
.
169
45
45
9×5 3 5
=
= 2= .
169
169
13
13
议一议
如何化去

根号内的分母?

1
可以先利用分式的基本性质将 的分子与分母同乘2
2
,使分母成为完全平方数,再利用商的算术平方根
A. 7
B. C.
D.
3
1
2
2

3.化简:
解:
3
(1)
;
100
75
(2)
;
27
3
3
3
(1)
=
=
.
100
100 10
75
(2)
=
27
补充解法:
52 × 3
52 5
=
= .
2
2
3 ×3
3
3
5 3 5
75
75
=
= .
=
27
3 3 3
27
81
(3)
>0 ;
2
25
还有其他解法
吗?
81
(3)
>0 ;
2
2 二次根式的性质
第2课时 商的算术平方根的性质及最简二次根式
学习目标
1.理解商的算术平方根的性质. (重点)

二次根式的性质教案

二次根式的性质教案

二次根式的性质教案教案:二次根式的性质一、教学目标:1.知道二次根式的定义和概念;2.掌握二次根式的乘法和除法运算规则;3.了解二次根式的性质,并能运用到实际问题中。

二、教学内容:1.二次根式的定义和概念;2.二次根式的乘法和除法运算规则;3.二次根式的性质及其应用。

三、教学过程:步骤一:导入新知1.引入问题:“怎样才能将根号下面的数化为整数?”2.学生进行讨论,引导学生思考。

3.引出二次根式。

步骤二:概念讲解与运算规则1.定义二次根式:如果a和b是非负实数,且b≠0,则称形如√(a/b)的表达式为二次根式。

2.二次根式的运算规则:-乘法:√(a/b)*√(c/d)=√((a*c)/(b*d))-除法:√(a/b)/√(c/d)=√((a*d)/(b*c))步骤三:性质讲解1.定理一:若a和b是非负实数,则√(a*b)=√a*√b。

例子:√8=√(4*2)=√4*√2=2√22.定理二:若a和b是非负实数,则√(a/b)=(√a)/(√b)。

例子:√(8/2)=(√8)/(√2)=2√2/√2=23.定理三:若a是非负实数,则√a*√a=a。

步骤四:例题训练1.讲解例题,让学生进行解答和思考。

2.引导学生用性质和运算规则解答例题。

步骤五:拓展应用1.分组讨论,要求学生找到二次根式在实际问题中的应用。

2.学生展示自己的思考结果,进行讨论和交流。

四、巩固练习:1.让学生进行课后作业题的解答。

2.学生互相批改,讲解答案和解题思路。

五、课堂小结:1.总结二次根式的定义、概念、运算规则和性质;2.强调二次根式的应用价值。

六、教学反思:通过本节课的教学,学生了解了二次根式的定义和概念,掌握了二次根式的乘法和除法运算规则。

通过讲解二次根式的性质及其应用,激发了学生的兴趣,并培养了他们应用数学知识解决实际问题的能力。

然而,需要注意的是,性质的讲解要简明扼要,例题要与课堂内容贴近,能够帮助学生更好地理解概念和运算规则。

人教初中数学八下 16.1 二次根式(第2课时)教案 【经典教学设计合编】

人教初中数学八下 16.1 二次根式(第2课时)教案 【经典教学设计合编】

16.1 二次根式(第2课时)教学内容本节课主要学习二次根式的性质a(a≥0)是一个非负数与(a)2=a及其运用。

教学目标一、知识技能理解a(a≥0)是一个非负数和(a)2=a(a≥0),并利用它们进行计算和化简。

二、数学思考乘方与开方互为逆运算在推导结论(a)2=a(a≥0)中的应用。

三、解决问题利用二次根式的非负性和(a)2=a(a≥0)解题。

四、情感态度通过利用乘方与开方互为逆运算推导结论(a)2=a(a≥0),使学生感受到数学知识的内在联系。

重难点、关键重点:a(a≥0)是一个非负数;(a)2=a(a≥0)及其运用。

难点:理解二次根式a(a≥0)是一个非负数与(a)2=a。

关键:用分类思想的方法导出a(a≥0)是一个非负数;•用探究的方法导出(a)2=a(a≥0)。

教学准备教师准备:制作课件,精选习题。

学生准备:复习有关知识,预习本节课内容。

教学过程一、复习引入【提出问题】1、什么叫二次根式?2、当a≥0时,a表示什么?当a<0时,a有意义吗?【活动方略】教师给出题目。

学生根据所学知识回答问题。

【设计意图】复习二次根式的概念及算术平方根的基本形式.为二次根式的性质引入作好铺垫。

二、探索新知【问题】a (a ≥0)有没有可能小于零?为什么?教师提出问题。

学生总结出二次根式的性质1: a (a ≥0)是一个非负数. 【设计意图】使学生归纳出二次根式的性质1:a (a ≥0)是一个非负数。

【探究】根据算术平方根的意义填空:(4)2=_______;(2)2=_______;(13)2=______;(0)2=_______。

教师给出题目。

学生口答结果后总结有何规律。

老师点评:是4的算术平方根,根据算术平方根的意义,4是一个平方等于4的非负数,因此有(4)2=4。

4同理可得:(2)2=2,132=13,0)2=0,所以(a )2=a (a ≥0)【设计意图】归纳出二次根式的性质2:a 2=a (a ≥0)三、范例点击 例1 已知3+x +5-y =0,求xy 的值是多少? 解:∵3+x +5-y =0,∴3+x ≥0且5-y ≥0, ∴3+x =0且5-y =0;即x +3=0且y -5=0解得x =-3,y =5 ∴xy =-15【设计意图】使学生掌握二次根式的性质1,理解非负式的应用。

初中数学二次根式的性质

初中数学二次根式的性质

初中数学二次根式的性质
二次根式具有多种性质,以下是其中一些主要的性质:
1.非负性:对于任意的实数a,如果a≥0,那么√a是一个非
负数。

也就是说,二次根式的结果总是非负的。

这个性质在二次根式的运算中非常重要,因为它可以帮助我们确定结果的符号。

2.定义域:二次根式有意义的条件是被开方数必须是非负
数。

也就是说,如果我们要对一个数进行开方运算,那么这个数必须是大于或等于0的。

否则,二次根式就没有意义。

3.运算性质:二次根式满足一些基本的运算性质,如加法、
减法、乘法和除法。

这些性质与整数的运算性质类似,但需要注意的是,二次根式的运算结果可能需要进行化简。

4.化简性质:在二次根式中,我们可以利用一些公式和性质
进行化简。

例如,我们可以利用平方差公式将√(a^2 -
b^2)化简为√a^2 - √b^2,或者利用完全平方公式将√(a^2 + 2ab + b^2)化简为√(a + b)^2。

以上是二次根式的一些主要性质,这些性质在解二次根式方程和不等式,以及进行二次根式的运算时都非常重要。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a≥0
a→ a→( a )2
a为任 意实数
算术平方 根之门
问题2:两扇门交换位置,你还会走吗? 全部都能通过
算术平方 根之门
a→a2)的性质
填一填:
a(a≥0)
算术平 方根
a
0 0
平方运算
( a )2
0 1
0
1
1 1
1 1 4 2
观察:两者有什么 关系?
讲授新课

a 2 (a 0) 的性质
a
平方运算
填一填:
a2
算术平 方根
a2
-4
0
1
(-4)2=16
02=0 12=1 (-1)2=1
1 1 16 4
2
4 0 1 1
观察:两 者有什么 关系?
-1
思考:根据前面得出的结论填一填,并说明理由.
22 =
2 2 2 ; 0.1 = 0.1 ; = 3 3
C. 4
D.-4
(x 3)2 2. 当1<x<3时, 的值为( D ) x 3 A.3 B.-3 C.1 D.-1
3.化简:
(1)
(3)
9=


; (2) (4) 2 =
;(4)
4 ;
2
7
2

3.14
3.14.
4. 实数a在数轴上的位置如图所示,则化简 a 2 (a 1) 2
的结果是 5.利用 a =
1
.
-1
0
1a 2
( a)
2
( a ≥0),把下列非负数分别写成
一个非负数的平方的形式: (1) 9 ; (2)5 ; (3) 2.5 ;
5 2
2
1 4
1 (4) 0.25 ; (5) ; 22 2
1 2
2
2
; 02 =
0
.
如何用字母表示你所得的公式呢?
归纳总结
a 2 (a 0) 的性质
一般地,
a2 =a (a≥0).
思考:当a<0时,a 2 =?
例3:化简
你还有其他 解法吗?
(1) 16
解:(1) 16 42 4; 想一想:如何化简 a 呢?
2
(2) ( 5) 2
(2) (5) 25 5.
2
(5)2 52 5.
a (a≥ 0);
a
2
=|a| =
-a (a<0).
辨一辨:请同学们快速分辨下列各题的对错.
( ×) (×) (√ ) (√ )
2 ( a ) 议一议:如何区别 与 a2 ?
( a )2
a2
从运算顺序看 先开方,后平方
先平方,后开方
从取值范围看
a≥0
a取任何实数
从运算结果看
思考:根据前面得出的结论填一填,并说明理由.
4
2
4
1 3
2 2
2

1 3
2
0 0
2
2 是2的算术平方 根,根据算术平方
根的意义, 负数.
2 是
一个平方等于2的非
你能把所得的公式用字母表示出来吗?
归纳总结
( a )2 (a 0) 的性质:
( 9)
2
( 5)2
(6)0 .
( 0)2
课堂小结
( a
性 质
2

) a
(a
a2 =a (a ≥0).
二次根式
拓展性质
a2 |a|(a为全体实数)
a
|a|
三 代数式的定义
概念学习 用基本运算符号(包括加、减、乘、除、乘方和开方) 把_ 数 或 表示数的字母 连接起来的式子,我们称这样
的式子为代数式. 想一想:到现在为止,初中阶段所学的代数式主要有哪几类? 整式 代数式 分式 二次根式
当堂练习
1.化简 16 得( C )
A. ±4
B. ±2
学练优八年级数学下(RJ) 教学课件
第十六章 二次根式
16.1 二根次式
第2课时 二次根式的性质
学习目标
情境引入
1.理解二次根式的两个性质.(重点) 2.运用二次根式的两个性质进行化简计算.(难点)
导入新课
算一算: 数字旅行 问题1:你能将下列数字顺利通过下面两扇门吗?
4
0
1
-1
1 4 1 0、 1、 4
一般地, (
a ) =a
2
(a ≥0).
典例精析 例1 计算:
想一想:此小题 用到了幂的哪条 基本性质呢?
(1) ( 1.5)2 ;
2
(2) (2 5)2 .
解: (1) ( 1.5) 1.5;
积的乘方:
(ab)2=a2b2
(2) (2 5)2 22 ( 5)2 4 5 20.
相关文档
最新文档