数学建模---席位分配

合集下载

席位分配问题数学建模

席位分配问题数学建模

席位分配问题是一个常见的实际问题,涉及到资源的分配和管理。

为了解决这个问题,我们可以使用数学建模的方法,通过建立数学模型来分析和优化席位的分配方案。

一、问题描述假设有一个大型会议,需要分配给不同的参与者席位。

每个参与者可能有不同的资格和需求,我们需要根据一定的规则来分配席位。

具体问题包括:1. 参与者数量和席位数量2. 参与者的资格和需求3. 席位分配的规则和标准二、数学建模为了解决席位分配问题,我们可以使用以下数学模型:1. 参与者集合P:表示所有的参与者。

2. 席位集合S:表示所有的席位。

3. 资格矩阵A:表示每个参与者的资格情况,每一行表示一个参与者,每一列表示一个资格类型(例如,专业、身份等)。

4. 需求矩阵D:表示每个参与者对席位的需求情况,每一行表示一个参与者,每一列表示一个席位类型(例如,地点、时间等)。

5. 分配规则R:表示席位的分配规则和标准,如按照资格优先、按照需求优先、按照公平分配等。

根据以上描述,我们可以建立如下的数学模型:目标函数:最小化席位浪费(即席位数与参与者需求之差)约束条件:1. 资格约束:每个参与者的资格必须满足分配规则的要求。

2. 需求约束:每个参与者所需席位类型必须得到满足。

3. 数量约束:总的席位数必须不超过总席位数量。

4. 可行性约束:分配的席位必须是有效的,即不存在冲突和重复的情况。

三、求解方法根据上述数学模型,我们可以使用以下方法进行求解:1. 枚举法:逐个尝试所有可能的席位分配方案,找到满足约束条件的方案。

这种方法需要大量的计算时间和空间,但在某些情况下可能找到最优解。

2. 优化算法:使用优化算法如遗传算法、粒子群算法等,通过不断迭代找到最优解。

这种方法需要一定的编程知识和技能,但通常能够快速找到满意的解。

3. 启发式算法:使用启发式算法如模拟退火、蚁群算法等,通过不断尝试找到满意解。

这种方法相对简单易行,但可能无法找到最优解。

4. 数学软件求解:使用专门的数学软件如Matlab、Python等,通过编程求解上述数学模型。

数学建模论文 - 席位公平分配问题1

数学建模论文 - 席位公平分配问题1

数学建模论文(席位公平分配问题)席位公平分配问题摘要本文讨论了席位公平分配问题以使席位分配方案达到最公平状态。

我主要根据了各系人数因素对席位获得的影响,首先定义了公平的定义及相对不公平的定义,采用了比例模型、汉丁顿模型和Q值模型制定了一个比较合理的分配方案。

首先,我根据相关资料的查阅,定义了公平的定义和不公平的定义以及不公平程度的定义和相对不公平数的定义以便来检验模型的公平性程度。

其次,我建立了一个比例模型,采用了比例相等的方法,列出一个关于所获席位与总席位数和各系人数与各系总人数的等式,进而求得所获席位数。

同时我建立了一D+Q值模型,通过汉丁顿模型和Q 值模型的结合,最终得出一个比较合理的分配方案。

最后,我用相对不公平数来检验两个模型的公平性程度。

关键词:数学建模公平定义 Q值模型 d'Hondt(汉丁顿)模型目录一、问题重述与分析: (3)1.1问题重述: (3)1.2问题分析: (3)二、模型假设 (4)三、符号说明 (4)四、模型建立: (5)4.1公平的定义: (5)4.2不公平程度的表示: (5)4.3相对不公平数的定义: (5)4.4模型一的建立:(比例分配模型) (6)4.5模型二的建立:(d'hondt模型和Q值模型) (6)五、模型求解 (8)5.1模型一求解: (8)5.2模型二的求解: (8)六、模型分析与检验 (9)七、模型的评价: (11)7.1、优点: (11)7.2、缺点: (11)7.3、改进方向: (11)八、模型优化 (11)九、参考文献 (12)一、问题重述与分析:1.1问题重述:三个系学生共200名(甲系100,乙系60,丙系40),代表会议共20席,按比例分配,三个系分别为10,6,4席。

现因学生转系,三系人数为103, 63, 34, 问20席如何分配。

若增加为21席,又如何分配。

因此存在席位公平分配问题,以下针对各系自身人数对所获席位数目的影响建立相关模型,解得最优的席位公平分配方案。

【数学建模】公平席位的分配问题

【数学建模】公平席位的分配问题

【数学建模】公平席位的分配问题基础案列某展会,AB双⽅根据⼈数分配席位:衡量公平的数量指标: p1/n1=p2/n2。

此时对AB均公平。

p1/n1>p2/n2。

此时对A不公平,因为对A放来说,每个席位相对应的⼈数⽐率更⼤。

绝对不公平度定义: p1/n1-p2/n2 = 对A的绝对不公平度问题:/*情况1*/p1=150, n1=10, p1 /n1=15 p2=100, n2=10, p2 /n2=10/*情况2*/ p1=1050, n1=10, p1 /n1=105 p2=1000, n2=10, p2 /n2=100两者对A的不公平度相同,但是很明显后者对A的不公平成都已经⼤⼤降低。

相对不公平度定义:说明:由定义知对某⽅的不公平值越⼩,某⽅在席位分配中越有利,因此可以⽤使不公平值尽量⼩的分配⽅案来减少分配中的不公平使⽤不公平值的⼤⼩确定分配⽅案: 设A, B已分别有n1 , n2 席,若增加1席,问应分给A, 还是B 不妨设分配开始时 p1 /n1> p2 /n2 ,即对A不公平。

分情况讨论: 1. 2.,说明此以⼀席给A后,对B不公平,则计算对B的不公平度。

rB(n1+1,n2). 3.,说明此⼀席给B后,对A不公平,不公平值为,rA(n1,n2+1). 4.p1/n1<p2/n2+1,这种情况不可能出现。

上⾯的分配⽅法在第1和第3种情况可以确定新席位的分配,但在第2种情况时不好确定新席位的分配。

⽤不公平值的公式来决定席位的分配,对于新的席位分配,若有则应该增加给A⼀席,否则则应该增加给B⼀席。

提炼模型: ————>引⼊公式: 于是知道增加的席位分配可以由Qk的最⼤值决定,且它可以推⼴到多个组的⼀般情况。

⽤Qk的最⼤值决定席位分配的⽅法称为Q值法。

(新)大学生建模报告汇总-席位分配_

(新)大学生建模报告汇总-席位分配_

建模报告----论文作者:雷杨,吴开强,李欧洲时间:2006,5,7席位分配---------伯努利实验解决方案摘要:本文围绕席位分配这一问题采用了伯努利实验,采用了比较新型的方法和细致的算法分析,对分配过程中出现的种种情况都一一进行了分析,并依此与其它的现有方法比较。

我们认为该分配方案较简便且比较优越,很大程度上符合公平化原则关键词:伯努利实验公平化原则时间复杂度最大成功次数一问题重述:某学校有3个系共200名学生,其中甲系100名,乙系40名。

若学生代表会议设20个席位,公平而又简单的席位分配方法是按学生人数的比例分配,显然甲乙丙三系分别应占有10,6,4个席位。

现在丙系有6名学生转入甲乙两系,各系人数如表第二列所示。

仍按比例分配时出现了小数,在将取得整数的19席分配完毕后,三系同意剩下的1席参照所谓惯例分配给比例中小数最大的丙系,于是三系仍分别占有10,6,4席。

因为有20个席位的代表会议在表决提案时可能出现10 :10的局面,会议决定下一届增加1席。

他们按照上述方法重新分配席位,计算结果见表。

显然这设第i方人数为p,i=1 , 2,…,m,总人数P=,待分配的席位为N,记q=Np/P原则一,i=1,2,,m,即必须取,二者之一。

原则二,i=1,2,,m,即总席位增加时不应减少。

二模型假设我们把甲乙丙三系分配席位的这个事件看为要从有20个红签180个白签(一共200=人数总和)的盒子里抽红签,对比抽得红签个数的概率大小来求得分配的名额。

三模型的建立与求解解决方案公式i=1,2,…,s(抽得红签个的概率)是分配名额是总人数是第i组的人数k是红签的个数s是小组的个数是每人被抽到的概率由于抽签的伯努利原理,二项分布的极值点在[],其中[]为向下取整函数,抽红签的个数实际上就是最大的成功次数,所以我们的分配方案取值从k=[]( k为整数时取为k-1)开始,首次计算出各个小组的k值,得出第一次要分配的人数为T=,则剩下的人为,,我们会得出以下情况:1.若T<m,我们比较k+1次对应的的大小,从大到小依次分配一个名额,由于T的取值大于m-s+1所以分配完毕。

数学建模---席位

数学建模---席位

第十八次全国人名代表大会人大代表席位分配方案分析修改专业:信息与计算科学学号:201014413姓名:张艺伟摘要2012年11月8日(星期四)上午9时,第十八次全国人民代表大会在人民大会堂正式召开。

人民代表大会制度是我国的根本政体,是我国立国利民之本,它的召开在全国人民心目中都具有举足轻重的地位。

在议政的同时,人大会议中各省人大代表名额的分配原则也是人们广泛关注的焦点。

根据查询数据和相关法律(省、自治区、直辖市根据人口总数计算名额数,即城乡居民每67万人中选取一名人大代表)的分析,我发现现实生活中的席位分配似乎有些不公平。

以河南,山东两省为例。

根据数据查询可知河南省目前人数1.0489万人,山东省现有人口9579.3065人,比河南总人口少0.091万人,但河南省只有人大代表席位159个,山东省拥有人带代表名额162个,比河南省多3个名额。

这个数据的差别让我对全国人民代表大会代表席位分配方法产生了兴趣,以下将对其进行更加全面的资料与数据分析,并给出自己的一点意见与建议。

问题重述探讨全国人民代表大会的席位分配问题。

根据《中华人民共和国宪法》和《中华人民共和国人民代表大会和地方各级人民代表大会选举法》的有关规定,第十届全国人民代表大会第五次会议关于全国人民代表大会代表名额和选举问题的相关规定有:一.全国人民代表大会名额不超过3000人。

二.省、自治区、直辖市根据人口总数计算名额数,即城乡居民每67万人中选取一名人大代表。

三.省、自治区、直辖市拥有基本名额数8名。

四.第十二届全国人民代表大会代表中,少数民族代表应占代表总名额的12%左右,人口特别少的少数民族至少应占有1名名额。

五.香港特别行政区应选全国人民代表大会代表36名。

澳门特别行政区应选全国人民代表大会代表12名。

台湾省暂时选举全国人民代表大会代表13名,由在各省、自治区、直辖市和中国人民解放军的台湾省级同胞中选出。

六.中国人民解放军应选全国人民代表大会代表256名。

席位分配

席位分配

1引言席位分配是一个非常有趣而重要的问题,它在政治学管理和对策论等领域具有广泛的应用价值。

处理的方法最早的有尾数最大法;然后是Q值法;1974年引入了席位分配问题的公理体系研究方法,并于1982年证明了同时满足五个所用的比例分配方法存在较大缺陷分配为11,7,3名额。

其结果是,单位增加一个先进名额后,丙部门反而减少了一个名额。

公理的席位分配方法是不存在的。

后又有一些新的算法,如:新值法,最大熵法,0-1规划法,法,值法最小极差法和最大概率法等。

但有时我们遇到大会上遇到少数情况,某个部门的人数较少,按上述方法分不到席位。

本文讨论的是“少数原则”下解决席位分配问题,在解决“少数原则”情况下较方便。

正文问题:2.1问题:在一次民族代表会中,有一个民族的人口在该国占有极少比例,但大会必须考虑政策给一个席位的分配资格。

如果我们遇到同样的问题该如何处理呢?下面我们给出少数分配的原则,并讨论在该特殊问题下的分配问题。

少数原则:在席位分配中,各部门都有分配资格,当席位数n大于单位(部门)数i时至少分配一个席位。

2.2问题的一般表述一个单位由m个部门组成,其中第i个部门的人数为ai (1)i m≤≤,学校总人数为a。

如果该单位需要召开一个由n个代表参加的代表大会,且每个部门尽可能分配一个名额,组织者必须把n个席位尽可能公平的分配到个部门中去。

记每个部门最后应分配到的席位数为ni ,试问ni是多少?模型假设要解决这样的问题首先必须舍弃原有的公平分配体系,让更多的部门拥有席位分配的资格,建立相对公平的指标。

建立数量指标首先我们必须讨论总席位数n和总部门数i之间的关系1)当n〈i时,由于不可能保证每个部门都可一分到席位,这时我们尽可能的让更多的部门分到席位,可以由D’Hondt法(备注2)中的ai/1来做比较,由值的大小来决定分配与否(由值的大小由大到小按顺序来排,依次给予一个席位直到分配完)2)当n=i时,由少数原则,每个部门必须分到,刚好每个部门分配一个3)当n〉i时,每个部门至少可以分到一个名额。

数学建模例题及解析

数学建模例题及解析

.例1差分方程——资金(de)时间价值问题1:抵押贷款买房——从一则广告谈起每家人家都希望有一套(甚至一栋)属于自己(de)住房,但又没有足够(de)资金一次买下,这就产生了贷款买房(de)问题.先看一下下面(de)广告(这是1991年1月1日某大城市晚报上登(de)一则广告),任何人看了这则广告都会产生许多疑问,且不谈广告中没有谈住房面积、设施等等,人们关心(de)是:如果一次付款买这栋房要多少钱呢银行贷款(de)利息是多少呢为什么每个月要付1200元呢是怎样算出来(de)因为人们都知道,若知道了房价(一次付款买房(de)价格),如果自己只能支付一部分款,那就要把其余(de)款项通过借贷方式来解决,只要知道利息,就应该可以算出五年还清每月要付多少钱才能按时还清贷款了,从而也就可以对是否要去买该广告中所说(de)房子作出决策了.现在我们来进行数学建模.由于本问题比较简单无需太多(de)抽象和简化.a.明确变量、参数,显然下面(de)量是要考虑(de):需要借多少钱,用记;月利率(贷款通常按复利计)用R记;每月还多少钱用x记;借期记为N个月.b.建立变量之间(de)明确(de)数学关系.若用记第k个月时尚欠(de) 款数,则一个月后(加上利息后)欠款 , 不过我们又还了x元所以总(de)欠款为k=0,1,2,3,而一开始(de)借款为.所以我们(de)数学模型可表述如下(1)c. (1)(de)求解.由(2)这就是之间(de)显式关系.d.针对广告中(de)情形我们来看(1)和(2)中哪些量是已知(de).N=5年=60个月,已知;每月还款x=1200元,已知 A.即一次性付款购买价减去70000元后剩下(de)要另外去借(de)款,并没有告诉你,此外银行贷款利率R也没告诉你,这造成了我们决策(de)困难.然而,由(2)可知60个月后还清,即,从而得(3)A和x之间(de)关系式,如果我们已经知(3)表示N=60,x=1200给定时0A.例如,若R =0.01,则由(3)可算得道银行(de)贷款利息R,就可以算出053946元.如果该房地产公司说一次性付款(de)房价大于70000十53946=123946元(de)话,你就应自己去银行借款.事实上,利用图形计算器或Mathematica这样(de)数学软件可把(3)(de)图形画出来,从而可以进行估算决策.以下我们进一步考虑下面两个问题.注1问题1标题中“抵押贷款”(de)意思无非是银行伯你借了钱不还,因而要你用某种不动产(包括房子(de)产权)作抵押,即万一你还不出钱了,就没收你(de)不动产.例题1某高校一对年青夫妇为买房要用银行贷款60000元,月利率0.01,贷款期25年=300月,这对夫妇希望知道每月要还多少钱,25年就可还清.假设这对夫妇每月可有节余900元,是否可以去买房呢解:现在(de)问题就是要求使 (de)x,由(2)式知现=60000,R=0.01,k=300,算得x=632元,这说明这对夫妇有能力买房.例题2 恰在此时这对夫妇看到某借贷公司(de)一则广告:“若借款60000元,22年还清,只要;(i)每半个月还316元;(ii)由于文书工作多了(de)关系要你预付三个月(de)款,即316×6=1896元.这对夫妇想:提前三年还清当然是好事,每半个月还316元,那一个月不正好是还632元,只不过多跑一趟去交款罢了;要预付18%元,当然使人不高兴,但提前三年还清省下来(de)钱可是22752元哟,是1896元(de)十几倍哪这家公司是慈善机构呢还是仍然要赚我们(de)钱呢这对夫妇请教你给他们一个满意(de)回答.具体解法略.问题2:养老基金今后,当年青人参加工作后就要从其每月工资中扣除一部分作为个人 (de)养老基金,所在单位(若经济效益好(de)话)每月再投入一定数量(de)钱,再存入某种利息较高而又安全(de)“银行”(也可称为货币市场)到60岁退休时可以动用.也就是说,若退休金不足以维持一定(de)生活水平时,就可以动用自己(de)养老基金,每月取出一定(de)款项来补贴不足部分.假设月利率及=0.01不变,还允许在建立养老基金时自己可以一次性地存入A(不论多少),每月存入y元(个人和单位投入(de)总和);通常从一笔钱0三十一岁开始到六十岁就可以动用.这当然是一种简化(de)假设,但作为估算仍可作为一种考虑(de)出发点.本问题实际上有两个阶段,即退休前和退休后,其数学模型为其中x为每月要从养老基金中提出(de)款项.习题1 某大学年青教师小李从31岁开始建立自己(de)养老基金,他把已有(de)积蓄1万元也一次性地存入,已知月利率为0.01 (以复利计),每月存入300元,试问当小李60岁退休时,他(de)退休基金有多少又若,他退休后每月要从银行提取l000元,试问多少年后他(de)退休基金将用完你能否根据你了解(de)实际情况建立一个较好(de)养老基金(de)数学模型及相应(de)算法和程取软件).习题2 渔业(林业)管理问题设某养鱼池(或某海域)一开始有某种鱼条,鱼(de)平均年净繁殖率为R,每年捕捞x条,记第N年有鱼条,则池内鱼数按年(de)变化规律为注意,在实际渔业经营中并不按条数计算而是以吨记数(de).若对某海域(de)渔业作业中=100000吨,R=0.02,x=1000吨,试问会不会使得若干年后就没有鱼可捕捞了(资源枯竭了)例2比例分析法——席位分配问题:某学校有三个系联合成立学生会,(1)试确定学生会席位分配方案.(2)若甲系有100名,乙系60名,丙系40名.学生会设20个席位,分配方案如何(3)若丙系有3名学生转入甲系,3名学生转入乙系,分配方案有何变化(4)因为有20个席位(de)代表会议在表决提案时有可能出现10: 10(de)平局,会议决定下一届增加1席,若在第(3)问中将学生会席位增加一席呢(5)试确定一数量指标衡量席位分配(de)公平性,并以此检查(1)—(4).公平而又简单(de)席位分配办法是按人数(de)比例分配,若甲系有100名,乙系60名,丙系40名.学生会设20个席位,三个系分别应有10,6,4个席位.如果丙系有6名学生转入其他两系学习,各系人数如表所示系别学生人数所占比例(%)按比例分配(de)席位按惯例分配(de)席位甲10310乙636第二列所示,按比例分配席位时,出现了小数(见表中第四列).在将取得整数(de)19席分配完毕后,剩下(de)1席按照惯例分给余数最大(de)丙系,于是三个系仍分别占有10、6、4个席位.因为有20个席位(de)代表会议在表决提案时有可能出现10:10(de)平局,会议决定下一届增加1席,于是他们按照上述惯例重新分配席位,计算(de)结果令人吃惊:总席位增加1席,丙系反而减少1席,见下表.看来,要解决这个矛盾,必须重新研究所谓惯例分配方法,提出更加“公平”(de)办法.下面就介绍这样一个席位分配模型.设A、B两方人数分别是p1 和p2,分别占有n1 和n2 个席位,则两方每个席位所代表(de)人数分别是p1 /n12和p2/n2.很明显,仅当这两个数值相等时,席位(de)分配才是公平(de).但是,通常它们不会相等,这时席位分配得不公平.不公平(de)程度可以用数值来表示,它衡量(de)是“绝对不公平”.从下表所举(de)例子来看,A、B之间(de)“绝对不公平”与C、D之间是一样(de).但是从常识(de)角度看,A、B之间显然比C、D之间存在着更加严重(de)不公平.所以“绝对不公平”不是一个好(de)衡量标准.p n p/n p1/n1-p2/n2 A120101212-10=2B1001010C102010102102-100=2D100010100为了改进绝对标准,我们自然想到用相对标准.因为p/n越大,每个席位代表(de)人数越多,或者说,总人数一定时分配(de)席位越少.所以,如果p1/n13>p2/n2,则A方是吃亏(de),或者说,对A是不公平(de),由此,我们这样定义“相对不公平”:若p1/n1>p2/n2,则称为对A(de)相对不公平值,记做若p1/n1<p2/n2,则称为对B(de)相对不公平值,记做假设A、B两方已分别占有n1和n2个席位,我们利用相对不公平(de)城念来讨论,当总席位再增加1席时,应该给且A方还是B方不失一般性,可设p1/n1>p2/n2,即此时对A方不公平, ,有定义.当再分配1个席位时,关于p/n(de)不等式有以下三种可能:1)p1/(n1十1)>p2/n2,这说明即使A方增加1席,仍然对A不公平,所以这1席当然应给A方;2)p1/(n1十1)<p2/n2,说明当A方增加1席位,将对B不公平,此时应参照式,计算对B(de)相对不公平值3)说明当B方增加1席时,将对A方不公平,此时计算得对A (de)相对不公平值是(注意:在p1/n1p2/n2(de)假设下,不可能出现p1/n1<p2/(n2+1)(de)情况因为公平(de)席位分配方法应该使得相对不公平(de)数值尽量地小,所以如果则这1席应给A方;反之应给B方.根据(3)、(4)两式,(5)式等价于并且不难证明1从上述第1)种情况(de)p1/(n1十1)>p2/p2也可推出. 于是我们(de)结论是:当(6)式成立时,增加(de)1席应分配A方;反之,应分配给B方.若记,则增加(de)1席位应分配给Q值较大(de)一方.将上述方法可以推广到有m方分配席位(de)情况.下面用这个方法,重新讨论本节开始时提出(de),三个系分配21个席位(de)问题.首先每系分配1席,然后计算:甲系n1=1,乙系, n2=1,丙系,n3=1,因为最大,所以第4席应分配给甲系,继续计算:甲系n1=2,将与上面(de)相比,最大,第5席应分给乙系,继续计算.如此继续,直到第21席分配给某个系为止(详见列表).n甲系乙系丙系1(4)(5)578(9)2(6)(8)(15)3(7)(12)(21)4(10)(14)5(11)(18)6(13)7(16)8(17)9(19)10(20)11可以看出,用Q值法,丙系保住了它险些丧失(de)1席.你觉得这个方法公平吗习题:学校共1000名学生,235入住在A宿合,333人住在B宿合,432人住在C宿合.学生们要组织一个10人(de)委员会,试用下列办法分配各宿舍(de)委员数.1)惯例(de)方法,印按比例分配完整数名额后,剩下名额给余数最大者. 2)Q值方法.如果委员会从10人增至15人,分配名额将发生什么变化 ,例3 状态转移问题——常染色体遗传模型随着人类(de)进化,人们为了揭示生命(de)奥秘,越来越注重遗传学(de)研究,特别是遗传特征(de)逐代传播,引起人们(de)注意.无论是人,还是动植物都会将本身(de)特征遗传给下一代,这主要是因为后代继承了双亲(de)基因,形成自己(de)基因对,基因对将确定后代所表现(de)特征.下面,我们来研究两种类型(de)遗传:常染色体遗传和x—链遗传.根据亲体基因遗传给后代(de)方式,建立模型,利用这些模型可以逐代研究一个总体基因型(de)分布.在常染色体遗传中,后代从每个亲体(de)基因对中各继承一个基因,形成自己(de)基因对,基因对也称基因型.如果我们所考虑(de)遗传特征是有两个基因A和控制(de),那么就有三种基因对,记为AA,A,.例如,金草鱼由两个遗传基因决定花(de)颜色,基因型是AA(de)金鱼草开红花,型(de)开粉红色花,而型(de)开白花.又如人类(de)眼睛(de)颜色也是提高通过常染色体遗传控制(de).基因型是(de)人,眼睛是棕色,基因型是(de)人,眼睛是兰色.这里因为都表示了同一外部特征,我们认为基因A 支配基因,也可以认为基因对于A 来说是隐性(de)农场(de)植物园中某种植物(de)基因型为AA,A 和.农场计划采用AA 型(de)植物与每种基因型植物相结合(de)方案培育植物后代.那么经过若干年后,这种植物(de)任一代(de)三种基因型分布如何 第一步:假设:令 ,2,1,0=n .(1) 设n n b a ,和n c 分别表示第n 代植物中,基因型为AA,Aa 和aa(de)植物占植物总数(de)百分率.令)(n x 为第n 代植物(de)基因型分布:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n n n n c b a x )(当n=0时⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=000)0(c b a x表示植物基因型(de)初始分布(即培育开始时(de)分布),显然有1000=++c b a(2) 第n 代(de)分布与第n-1代(de)分布之间(de)关系是通过上表确定(de).第二步:建模根据假设(2),先考虑第n 代中(de)AA 型.由于第n-1代(de)AA 型与AA 型结合,后代全部是AA 型;第n-1代(de)Aa 型与AA 型结合,后代是AA 型(de)可能性为1/2,第n-1代(de)aa 型与AA 型结合,后代不可能是AA 型.因此,当 ,2,1,0=n 时11102/1---•++•=n n n n c b a a即2/11--+=n n n b a a 类似可推出2/11--+=n n n b c a 0=n c将式相加,得111---++=++n n n n n n c b a c b a根据假设(1),有1000=++=++c b a c b a n n n对于式、式和式,我们采用矩阵形式简记为,2,1,)1()(==-n Mx x n n其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=00012/1002/11M ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n n n n c b a x )(式递推,得)0()2(2)1()(x M x M Mx x n n n n ====--式给出第代基因型(de)分布与初始分布(de)关系.为了计算出n M ,我们将M 对角化,即求出可逆矩阵P 和对角阵D,使1-=PDP M因而有,2,1,1==-n P PD M n n其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n n nnn D 321321000000000λλλλλλ这里321,,λλλ是矩阵M(de)三个特征值.对于式中(de)M,易求得它(de)特征值和特征向量:0,2/1,1321===λλλ因此⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=00002/10001D ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=0011 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=0112 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=1213 所以[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==100210111321P通过计算1-=P P ,因此有)0(1)0()(x P PD x M x n n n -==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=0001002101110000)21(0010100210111c b a n 即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=--00011)(000)2/1()2/1(0)2/1(1)2/1(11c b a c b a x n n n n n n n n ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--++=--0)2/1()2/1()2/1()2/1(010010000c b c b c b a n n n n所以有⎪⎩⎪⎨⎧=+=--=--0)2/1()2/1()2/1()2/1(1010010n n n n n n n c c b b c b a当∞→n 时0)2/1(→n,所以从式得到0,1→→n n b a 和n c =0即在极限(de)情况下,培育(de)植物都是AA 型. 第三步:模型讨论若在上述问题中,不选用基因AA 型(de)植物与每一植物结合,而是将具有相同基因型植物相结合,那么后代具有三代基因型(de)概率如下表:并且)0()(x M xn n =,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=14/1002/1004/11M M(de)特征值为2/1,1,1321===λλλ通过计算,可以解出与21,λλ相对应(de)两个线性无关(de)特征向量1 和2 ,及与3λ相对应(de)特征向量3 :⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=1011 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1002 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=1213 因此[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==111200101321P⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-02/1011102/111P)0(1)0()(x P PD x M x n n n -==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=00002/1011102/11)2/1(0001001111200101c b a n n所以有⎪⎩⎪⎨⎧-+==++=++010000100)2/1()2/1()2/1()2/1()2/1(bb c c b b b b a a n nn n n n当∞→n 时0)2/1(→n,所以从式得到0,)2/1(00→+→n n b b a a 和00)2/1(b c c n +→因此,如果用基因型相同(de)植物培育后代,在极限情况下,后代仅具有基因AA 和aa. 例4 合作对策模型在经济或社会活动中,几个社会实体(个人、公司、党派、国家)相互合作或结成联盟,常能获得比他们单独行动更多(de)经济或社会效益.这样合理地分配这些效益是合作对策要研究(de)问题.请看下面(de)例子.问题一:经商问题甲、乙、丙三人经商,若单干,每人仅能获利1元;甲乙合作可获利7元;甲丙合作可获利5元;乙丙合作可获利4元;三人合作可获利10元,问三人合作时如何分配10元(de)收入.甲(de)收入应按照甲对各种形式(de)合作(de)贡献来确定.对于某一合作(de)贡献定义为:有甲参加时这个合作(de)收入与无甲参加时这个合作(de)收入之差.例如甲对甲乙二人合作(de)贡献是7—1=6 (因为甲乙合作获利7元,而乙单干仅获利1元).甲可以参加(de),合作有四个:甲自己(单干视为合作(de)特例)、甲乙、甲丙、甲乙丙.甲对这些合作(de)贡献分别是甲:1一0=1元;甲乙:7—1=6元;甲内:5—1=4元;甲乙丙:10—4=6元,甲应分得(de)收入是这四个贡献(de)加权平均值,加权因子将由下面(de)一般模型给出.这个问题叫做3人合作对策,是对策论(de)一部分,这里介绍它(de)一种解法.一般(de)n人合作对策模型可以叙述如下:记n人集合为I=,如果对于I中 (de)任一子集,都对应一个实值函数v(s),满足则称为定义在I上(de)特征函数.所谓合作对策是指定义了特征函数(de)I中n个人(de)合作结果,用向量值函数来表示.在实际问题中.常可把I中各种组合(de)合作获得(de)利益定义为特征函数,上式表示合作规模扩大时,获利不会减少.不难看出,如将三人经商问题中合作(de)获利定义为特征函数v,v是满足(1)、(2)(de).为了确定,Shapley在1953年首先制定了一组应该满足(de)公理,然后证明了满足这组公理(de)(de)唯一解是其中是I中包含{i}(de)所有子集,是集合s中(de)人数,是加权因子,由确定.(3)式中可看作成员{i}对合作s(de)贡献;表示对所有包含{i}(de)集合求和.称为由v定义(de)合作(de)Shapley值.我们用(3)、(4)计算三人经商问题中各个人应得到(de)收入.甲、乙、丙分别记作{1},{2},{3},包含{1}(de)集合有{1}、{1,2}、{1,3}、{1,2,3},计算结果列入下表.S{1}{1,2}{1,3}{1,2,3}V(s)17510V(s-{1})0114V(s)- V(s-{1})1 6 4 612 23 W()1/31/61/61/3W()[V(s)-V(s-{1})]1/31 2/3 2.同样可以算出乙、丙应得收入为=3.5元,=元.问题二:三城镇(de)污水处理方案沿河有三城镇1、2和3,地理位置如图4;6所示.污水需处理后才能排入河中.三城镇或者单独建立污水处理厂,或者联合建厂,用管道将污水集中处理(污水应于河流(de)上游城镇向下游城镇输送).以Q 表示污水量(吨/秒),工表示管道长度(公里).按照经验公式,建立处理厂(de)费用为712.0173Q P =,铺设管道(de)费用为LQ P 51.0266.0=.今已知三城镇(de)污水量分别为5,3,5321===Q Q Q .L(de)数值38,202312==L L .试从节约总投资(de)角度为三城镇制定污水处理方案;包括是单独还是联合建厂;如果联合,如何分担投资额等.三城镇或单干或不同形式(de)联合,共有五种方案.下面一一计算所需(de)投资.方案一 三城镇都单干.投资分别为总投资:方案二城1、2合作.这时城1、2将从节约投资(de)角度对联合还是分别建厂作出决策,所以城1、2(de)投资为:=3500C(3)=2300总投资:方案三城2、3合作.C(1)=2300总投资:方案四城1、3合作.C(2)=1600总投资:方案五三城镇合作=5560总投资:比较五个方案可知,应该选择三城合作,联合建厂(de)方案. 下面(de)问题是如何分担总额为5560(de)费用.城3(de)负责人提出,联合建厂(de)费用按三城(de)污水量之比5:3:5分担,铺设管道费应由城1、2担负.城2(de)负责人同意,并提出从城2到城3(de)管道费由城1、2按污水量之比5:3分担;从城1到城2(de)管道费理应由城1自己担负.城1(de)负责人觉得他们(de)提议似乎是合理(de),但因事关重大,他没有马上表示同意;而是先算了一笔账.联合建厂(de)费用是4530)535(73712.0=++,城2到城3(de)管道费是730,城1到城2(de)管道费是300,按上述办法分配时,城3负担(de)费用为1740,城2(de)费用为1320,域1(de)费用为2500.结果出乎意料之外,城3和城2(de)费用都比单独建厂时少,而城1(de)费用却比单独建厂时(de)C(1)还要多.城1(de)负责人当然不能同意这个方法,但是一时他又找不出公平合理(de)解决办法.为了促成联合(de)实现,你能为他们提供一个满意(de)分担费用(de)方案吗首先,应当指出,城3和城2负责人提出(de)办法是不合理(de):从前面(de)计算我们知道,三城联合,才能使总投资节约了640(de)效益应该分配给三城,使三城分配(de)费用都比他们单干时要少,这是为促成联合所必须制定(de)一条原则.至于如何分配,则是下面要进一步研究(de)问题. 把分担费用转化为分配效益,就不会出现城1联合建厂分担(de)费用反比单独建厂费用高(de)情况.将三城镇记为I={1,2,3},联合建厂比单独建厂节约(de)投资定义为特征函数.于是有v(φ)=0,v({1})=v({2})=v({3})=0,v({1,2})=c(1)+c(2)-c(1,2)=2300+1600-3500=400,v({2,3})=c(2)+c(3)-c(2,3)=1600+2300-3650=250,v({1,3})=0,v(I)=c(1)+c(2)+c(3)-c(1,2,3)=640.S {1} {1,2} {1,3} {1,2,3} V(s) 0 400 0 640 V(s-{1}) 0 0 0 250 V(s)- V(s-{1})0 400 0 39012 23 W()1/31/61/61/3W()[V(s)-V(s-{1})] 0 67 0 130即197)(1=v ϕ同理得321)(2=v ϕ,122)(3=v ϕ那么, 城1分担(de)费用为2300-197=2103, 城2分担(de)费用为1600-321=1279, 城3分担(de)费用为2300-122=2178,合计5560. 习题:某甲(农民)有一块土地.如果从事农业生产可年收入100元;如果将土地租给某企业家用于工业生产,可年收入200元;如果租给某旅店老板开发旅游业,可年收入300元;当旅店老板请企业家参与经营时,年收入可达400元.为实现最高收入,试问如何分配各人(de)所得才能达成协议例5动态规划模型有不少动态过程可抽象成状态转移问题,特别是多阶段决策过程(de)最优化如最短路径问题,最优分配,设备更新问题,排序、生产计划和存储等问题.动态规划是一种将复杂问题转化为一种比较简单问题(de)最优化方法,它(de)基本特征是包含多个阶段(de)决策.1951年,美国数学家贝尔曼(R.Bellman)等人,提出了解决多阶段决策问题(de)“最优化原理”,并研究了许多实际问题,从而创建了动态规划·动态规划方法(de)基本思想是:将一个复杂问题分解成若干个阶段,每一个阶段作为一个小问题进行处理,从而决定整个过程(de)决策,阶段往往可以用时间划分这就具有“动态”(de)含义,然而,一些与时间无关(de)静态规划中(de)最优化问题,也可人为地把问题分成若干阶段,作为一个多阶段决策问题来处理,计算过程单一化,便于应用计算机.求解过程分为两大步骤,①先按整体最优化思想递序地求出各个可能状态(de)最优化决策;②再顺序地求出整个题(de)最优策略和最优路线.下面,结合一个求最短路径(de)例子,来说明动态规划(de)一些基本概念.最短路径问题如图所示(de)交通网络,节点连接线路上(de)数字表示两地距离,计算从A 到E(de)最短路径及长度.1.阶段.把所要处理(de)问题,合理地划分成若干个相互联系(de)阶段,通常用k 表示阶段变量.如例中,可将问题分为4个阶段,k=1,2,3,4. 2.状态和状态变量.每一个阶段(de)起点,称为该阶段(de)状态,描述过程状态(de)变量,称为状态变量,它可以用一个数、一组数或一个向量来描述,常用k x 来表示第k 阶段(de)某一状态.如果状态为非数量表示,则可以给各个阶段(de)可能状态编号,i x i k =)(()(i k x 表示第k 个阶段(de)第i 状态).第k 阶段状态(de)集合为},,,,,{)()()2()1(T k i k k k k x x x x X =如例6中,第3阶段集合可记为}3,2,1{},,{},,{321)3(3)2(3)1(33===C C C x x x X3.决策和决策变量.决策就是在某一阶段给定初始状态(de)情况下,从该状态演变到下一阶段某状态(de)选择.即确定系统过程发展(de)方案.用一个变量来描述决策,称这个变量为决策变量.设)(k k x u 表示第k 个阶段初始状态为k x (de)决策变量.)(k k x D 表示初始状态为k x (de)允许决 策集合,有)(k k x u ∈)(k k x D ={k u }如例6中},,{)(3211B B B A D =,若先取2B ,则21)(B A u =. 4.策略和子策略.由每段(de)决策)(k k x u 组成(de)整个过程(de)决策变量序列称为策略,记为n P ,1,即n P ,1=)}(,),(),({2211n n x u x u x u从阶段k 到阶段n 依次进行(de)阶段决策构成(de)决策序列称为k 子策略,记为n k P ,即)(1,x P n k =)}(,),(),({11n n k k k k x u x u x u ++显然,k=1时(de)k 子策略就是策略.如例6,选取路径E D C B A →→→→221就是一个子策略.从允许策略集中选出(de)具有最佳效果(de)策略称为最优策略. 5.状态转移方程.系统在阶段k 处于状态k x ,执行决策)(k k x u (de)结果是系统状态(de)转移,即由阶段K(de)状态k x 转移到阶段K 十1(de)状态1+k x 适用于动态规划方法求解(de)是一类具有无后效性(de)多阶段决策过程.无后效性又称马尔科夫性,指系统从某个阶段往后(de)发展,完全由本阶段所处(de)状态以及其往后(de)决策决定,与系统以前(de)状态及决策无关,对于具有无后效性(de)多阶段过程,系统由阶段k 向阶段k+1(de)状态转移方程为))(,(1k k k k k x u x T x =+意即1+k x 只与k x ,)(k k x u 有关,而与前面状态无关.))(,(k k k k x u x T 称为变换函数或算子.分确定型和随机型,由此形成确定型动态规划和随机型动态规划. 6.指标函数和最优指标函数.在多阶段决策中,可用一个数量指标来衡量每一个阶段决策(de)效果,这个数量指标就是指标函数,为该阶段状态变量及其以后各阶段(de)决策变量(de)函数,设为n k V ,即n k x x u x V V n k k k n k n k ,,2,1),,,,(1,, ==+指标(de)含义在不同(de)问题中各不相同,可以是距离、成本、产品产 量、资源消耗等.例6中,指标(de)含义就是距离,指标函数为A 到E(de)距离,为各阶段路程(de)和.最常见(de)指标函数取各阶段效果之和(de)形式,即∑==nk j j j j n k u x V V ),(,指标函数nk V ,(de)最优值,称为相应(de)最优指标函数,记为)(k k x fnk k k optV x f ,)(=式中opt 是最优化之意,根据问题要求取max 或min . 7.动态规划最优化原理.贝尔曼指出“作为整个过程(de)最优策略具有这样(de)性质:即无论过去(de)状态和决策如何,对前面(de)决策所形成(de)状态而言,余下(de)诸决策必须构成最优策略”基于这个原理,可有如下定理:定理 若策略*,1n P 是最优策略,则对于任意(de)k(1<k<n),它(de)子策略*,n k P 对于以),(*1*11*---=k k k k u x T x 为起点(de)k 到n 子过程来说,必是最优策略. 实质上,动态规划(de)方法是从终点逐段向始点方向寻找最短路径(de)一种方法.8.动态规划(de)数学模型.利用最优化原理,可以得到动态规划(de)数学模型)}(),({)(11+++=k k k k k k k x f u x V opt x f ))(1,,1,(k k k x D u n n k ∈-=0)(11=++n n x f这是一个由后向前(de)递推方程.下面以例6(de)最短路径问题说明这种递序解法.指标函数为两点之间(de)距离,记为),(k k u x d ,例中共分4个阶段. (倒推) 第4阶段2)(),()(5114=+=E f E D d D f 3)(),()(5224=+=E f E D d D f 5)(),()(5334=+=E f E D d D f 0)(5=E f第3阶段6835)(),(624)(),(min )(2421141113=⎭⎬⎫⎩⎨⎧=+=+=+=+=D f D C d D f D C d C f},,{11*4,3E D C P =4431)(),(826)(),(min )(2422141223=⎭⎬⎫⎩⎨⎧=+=+=+=+=D f D C d D f D C d C f},,{22*4,3E D C P =6651)(),(1239)(),(min )(3433243333=⎭⎬⎫⎩⎨⎧=+=+=+=+=D f D C d D f D C d C f},,{33*4,3E D C P =第2阶段7734)(),(1367)(),(min )(2321131112=⎭⎬⎫⎩⎨⎧=+=+=+=+=C f C B d C f C B d B f},,,{221*4,2E D C B P =7734)(),(826)(),(min )(2322131222=⎭⎬⎫⎩⎨⎧=+=+=+=+=C f C B d C f C B d B f},,,{222*4,2E D C B P =91468)(),(945)(),(min )(3333232332=⎭⎬⎫⎩⎨⎧=+=+=+=+=C f C B d C f C B d B f},,,{223*4,2E D C B P =第1阶段10111192)(),(74)(),(1073)(),(min )(323221211=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=+=+=+=+=+=+=B f B A d B f B A d B f B A d A f},,,,{221*4,1E D C B A P =故最短路径为E D C B A →→→→221,从A 到E(de)最短距离为10. 上述步骤可归纳为下述递推公式)}(),(m in{)(11+++=k k k k k k x f u x d x f 1,2,3,4(=k )0)(55=x f此递推关系叫做动态方程,即最短路径问题(de)动态规划模型,应用动态规划方法解决问题(de)关键是根据所给问题建立具体(de)动态规划模型,建立动态规划模型时(de)主要困难在于:如何将所遇到(de)最优化解释为合适(de)多段决策过程问题.从例6看出,划分I 阶段、定义状态、确定指标函数,是动态规划模型化时(de)主要工作,其合适性决定应用动态规划(de)成败.建模时,除将实际问题根据时间和空间恰当地划分若干阶段外,还须明确下列几点: (1)正确选择状态变量,使它既能描述过程(de)状态,又。

数学建模论文(分配问题)

数学建模论文(分配问题)

公平席位的分配系别:机电工程系模具班学号:1号摘要:分配问题是日常生活中经常遇到的问题,它涉及到如何将有限的人力或其他资源以“完整的部分”分配到下属部门或各项不同任务中。

分配问题涉及的内容十分广泛,例如:大到召开全国人民代表大会,小到某学校召开学生代表大会,均涉及到将代表名额分配到各个下属部门的问题。

代表名额的分配(亦称为席位分配问题)是数学在人类政治生活中的一个重要应用,应归属于政治模型。

而当代表的人数在总和没有发生变化的情况下,所占比例却发生了变化时,一个如何分配才能使分配公平的问题就摆在了我们的面前。

因此,我们要通过建立数学模型来确定一种能够使分配公平的方法来分配关键字:理想化原则; 整数规划; 席位公平分配问题的提出:某学院有3个系共200名学生,其中甲系100人,乙系60人,丙系40人,现要选出20名学生代表组成学生会。

如果按学生人数的比例分配席位,那么甲乙丙系分别占10、6、4个席位,这当然没有什么问题(即公平)。

但是若按学生人数的比例分配的席位数不是整数,就会带来一些麻烦。

比如甲系103人,乙系63人,丙系34人,怎么分?问题重述学院的最初人数见下表,此系设20个席位代表。

甲乙丙总人数1006040200学生人数比例:100/200 60/200 40/200按比例分配方法:分配人数=学生人数比例初按比例分配席位:甲乙丙共10 6 4 20若出现学生转系情况:甲乙丙总人数103 63 34 200学生人数比例:103/200 63/200 34/200按例分配方法:比例分配出现最小数时,先按整数分配席位,余下的按小数的大小分配席位按比例分配席位:甲乙丙10.815 6.615 3.57按比例分配席位,丙系却缺少一席的情况,按比例分配席位的方法有缺陷,试建立更合理的分配方法.模型假设分配席位的情况单位人数席位数A单位X n mB单位Y n。

m。

若公平分配,则会出现的情况应当是m=m1,即X/n=Y/m1当m>m。

公平的席位分配问题建模作业

公平的席位分配问题建模作业

公平的席位分配问题——数学建模报告20094865,陈天送20094862,陈铁忠20094854,朱海公平的席位分配问题席位分配在社会活动中经常遇到,如:人大代表或职工学生代表的名额分配和其他物质资料的分配等。

通常分配结果的公平与否以每个代表席位所代表的人数相等或接近来衡量。

符号设定:N :总席位数 i n :分配给第i 系席位数 (1,2,3i =分别为甲,乙,丙系)P :总人数 i P :第i 系数 (1,2,3i =分别为甲,乙,丙系)iQ :第i 系Q 值 (1,2,3i =分别为甲,乙,丙系)Z :目标函数方法一,比例分配法:即:某单位席位分配数 = 某单位总人数比例⨯总席位如果按上述公式参与分配的一些单位席位分配数出现小数,则先按席位分配数的整数分配席位,余下席位按所有参与席位分配单位中小数的大小依次分配之。

这种分配方法公平吗?由书上给出的案例,我们可以很清楚的知道该方法是有缺陷的,是不公平的。

方法二,Q 值法: 采用相对标准,定义席位分配的相对不公平标准公式:若2211n p n p > 则称 11221222211-=-n p n p n p n p n p 为对A 的相对不公平值, 记为 ),(21n n r A ,若2211n p n p < 则称 12112111122-=-n p n p n p n p n p 为对B 的相对不公平值 ,记为 ),(21n n r B 由定义有对某方的不公平值越小,某方在席位分配中越有利,因此可以用使不公平值尽量小的分配方案来减少分配中的不公平。

确定分配方案:使用不公平值的大小来确定分配方案,不妨设11n p >22n p ,即对单位A 不公平,再分配一个席位时,关于11n p ,22n p 的关系可能有1. 111+n p >22n p ,说明此一席给A 后,对A 还不公平;2. 111+n p <22n p ,说明此一席给A 后,对B 还不公平,不公平值为 1)1(11),1(212111112221-⋅+=++-=+n p p n n p n pn p n n r B 3. 11n p >122+n p ,说明此一席给B 后,对A 不公平,不公平值为1)1(11)1,(121222221121-⋅+=++-=+n p p n n p n p n p n n r A4.11n p <122+n p ,不可能上面的分配方法在第1和第3种情况可以确定新席位的分配,但在第2种情况时不好确定新席位的分配。

公平分配席位数学建模

公平分配席位数学建模

公平分配席位是一种数学建模问题,通常涉及到在一个组织或机构内,如何公平地分配有限的席位或资源给不同的成员或利益相关者。

该问题可通过以下步骤建立数学模型:
1.定义问题:明确参与者、资源和目标,确定席位数量和分配规则。

2.建立评价指标:根据目标和分配规则,建立评价指标来衡量分配方案的公平性和效
率性。

3.确定算法:选择合适的算法来进行席位分配,例如最大剩余法、顺序分配法、随机
分配法等。

4.模型求解:通过计算机程序或手工计算,进行模型求解,得出最优分配方案。

5.结果分析:对比各个方案的评价指标,选择最优方案并进行结果分析,验证模型的
可靠性和有效性。

公平分配席位模型可以应用于政治、教育、医疗、社会保障等领域,如选举、大学招生、医疗资源分配、社会福利等。

数学建模论文-席位公平分配问题

数学建模论文-席位公平分配问题

数学建模论文-席位公平分配问题数学建模论文(席位公平分配问题)席位公平分配问题摘要本文讨论了席位公平分配问题以使席位分配方案达到最公平状态。

我主要根据了各系人数因素对席位获得的影响,首先定义了公平的定义及相对不公平的定义,采用了比例模型、汉丁顿模型和Q值模型制定了一个比较合理的分配方案。

首先,我根据相关资料的查阅,定义了公平的定义和不公平的定义以及不公平程度的定义和相对不公平数的定义以便来检验模型的公平性程度。

其次,我建立了一个比例模型,采用了比例相等的方法,列出一个关于所获席位与总席位数和各系人数与各系总人数的等式,进而求得所获席位数。

同时我建立了一D+Q值模型,通过汉丁顿模型和Q值模型的结合,最终得出一个比较合理的分配方案。

最后,我用相对不公平数来检验两个模型的公平性程度。

关键词:数学建模公平定义 Q值模型 d'Hondt(汉丁顿)模型1目录一、问题重述与分析: ................................... 3 1.1问题重述: ........................................ 3 1.2问题分析: ........................................ 3 二、模型假设 .......................................... 4 三、符号说明 .......................................... 4 四、模型建立: ........................................ 5 4.1公平的定义: ...................................... 5 4.2不公平程度的表示: ................................ 5 4.3相对不公平数的定义: .............................. 5 4.4模型一的建立:(比例分配模型) ...................... 6 4.5模型二的建立:(d'hondt模型和Q值模型) (6)五、模型求解 .......................................... 8 5.1模型一求解: ...................................... 8 5.2模型二的求解: .................................... 8 六、模型分析与检验 ..................................... 9 七、模型的评价: ...................................... 11 7.1、优点: ......................................... 11 7.2、缺点: ......................................... 11 7.3、改进方向: ..................................... 11 八、模型优化 ......................................... 11 九、参考文献 (12)2一、问题重述与分析:1.1问题重述:三个系学生共200名(甲系100,乙系60,丙系40),代表会议共20席,按比例分配,三个系分别为10,6,4席。

数学建模-席位分配

数学建模-席位分配

问 三个系学生共200名(甲系100,乙系60,丙系40),代表

会议共20席,按比例分配,三个系分别为10,6,4席。
现因学生转系,三系人数为103, 63, 34, 问20席如何分配?
若增加为21席,又如何分配?
系别 学生 比例 20席的分配 21席的分配
比 例
人数 (%) 比例 结果
比例
结果
i 1,2,, m
该席给Q值最大的一方 Q 值方法
三系用Q值方法重新分配 21个席位
按人数比例的整数部分已将19席分配完毕
甲系:p1=103, n1=10 乙系:p2= 63, n2= 6 丙系:p3= 34, n3= 3

用Q值方法分配 第20席和第21席
第20席
Q1

1032 1011

2
2
1
0
三种分配方案,得到了完全不同的结果,最大余数法显 然对小党比较有利,洪德规则则偏向最大的党,北欧折 衷方案对最大和最小党都不利
二.份额分配法(Quota Method) 一种以“相对公平”为标准的席位分配方法,来源于
著名的“阿拉巴玛悖论”(Alabama Paradox)。 美国宪法第1条第2款对议会席位分配作了明确规定,
找衡量公平分配的数量指标
当p1/n1= p2/n2 时,分配公平 若 p1/n1> p2/n2 ,对 A 不公平
p1/n1– p2/n2 ~ 对A的绝对不公平度
p1=150, n1=10, p1/n1=15 p2=100, n2=10, p2/n2=10
p1/n1– p2/n2=5
p1=1050, n1=10, p1/n1=105 p2=1000, n2=10, p2/n2=100

数学建模方法总结

数学建模方法总结

1.席位分配问题(宿舍分配问题):比例模型、Q值法、d’Hondt法。

席位分配模型中, 按比例分配法存在较大缺陷, D’Hondt 法不能解决不公平的大小问题, Q 值法不能解决“分配资格”问题。

2.人员分配:线性规划,人员分配,最大收益,LINGO软件
3.贫困生认定工作:模糊综合评价理论, 模糊评价;聚类分析;综合评价
数学建模算法:蒙特卡罗算法,数据拟合、参数估计、插值等数据处理算法,线性规划、整数
规划、多元规划、二次规划等规划类算法,图论算法,动态规划、回溯搜索、分支定界
最优化理论三大经典算法:模拟退火算法、神经网络算法、遗传算。

数学建模席位分配

数学建模席位分配

情形2
说明当对A 不公平时,给A 单 位增加1席,对B 又不公平。
计算对B 的相对不公平值
情形3
说明当对A 不公平时,给B 单
位增加1席,对A 不公平。
计算对A 的相对不公平值
则这一席位给A 单位,否则给B 单位。
结论:当(*)成立时,增加的一个席位应分配给A 单位, 反之,应分配给 B 单位。
若A、B两方已占有席位数为
按Q值方法:
甲1 2 2 3 4 … 乙1 1 2 2 2 … 丙1 1 1 1 1 …
甲:11,乙:6,丙:4
练习 学校共1000学生,235人住在A楼,333人住 在B楼,432住在C楼。学生要组织一个10人 委员会,试用惯例分配方法, d’Hondt方法和 Q值方法分配各楼的委员数,并比较结果。

则增加的一个席位应分配给Q值 较大的一方。 这样的分配席位的方法称为Q值方法。 4 推广 有m 方分配席位的情况 设 方人数为 ,已占有 个席位, 当总席位增加1 席时,计算
则1 席应分给Q值最大的一方。从
开始,即每方
至少应得到以1 席,(如果有一方1 席也分不到,则把 它排除在外。)
5 举例
甲、乙、丙三系各有人数103,63,34,有21个 席位,如何分配?

40
4
40/4=10
系别 人数 席位数 每席位代表的人数 公平程度
甲 103 10
103/10=10.3

乙 63 6
63/6=10.5

丙 34 4
34/4=8.5

系别 人数 席位数 每席位代表的人数
甲 103 11 103/11=9.36
乙 63 7
63/7=9

ch1-§4 数学建模教学插件1.1: 初等模型:代表席位公平分配问题 --3.2

ch1-§4 数学建模教学插件1.1:  初等模型:代表席位公平分配问题 --3.2

§1. 代表席位分配模型一、问题:代表大会的召开,如何分配各单位的代表各方是最公平,最合理? 例1.分配席位为整数某学校200学生:甲方:100名,乙方:60名,丙方40名,学生代表设20席,公平又简单的办法:按人数比例分配。

1、模型1(比例模型): 代表名额分配:ii ip n p ⨯=⨯∑∑各单位学生人数代表席位学生总数甲方:()1002002050%2010⨯=⨯=席 乙方:()602002030%206⨯=⨯=席 乙方:()402002020%204⨯=⨯=席 2、模型2(惯例模型)分配席位为小数时——剩余席位分配结余最大的单位: 如:学生总数200人(丙方有6名学生转入甲、乙方各3人)即 甲:103人 乙:63人 丙:34人代表总数仍为20人,则:仍按上述方案分配就出现小数。

按惯例将席位整数19席分配完毕之后,剩余一席按照惯例分配给比例余数最大的丙席,于是分配结果似乎合理,是否合理看下例。

但若总数变化时所出3.惯例模型的问题----增加一席代表后的分配情况 增加一席代表后的分配结果:若学生总人数200,分布同2(甲103,乙6,丙34)学生代表人数21人(避免出现表决提案成平面)分配办法:仍按比例和惯例分配:分配结果:使人吃惊,总席为增加1席,丙方反而减少1席,显然“不公平”。

为此,要寻找更加“公平”的分配办法:问题:寻求更好的分配模型,使得分配结果更合理,于是,要解决此问题必须要弄清楚,该问题中什麽是“合理”?或者说我们应在该问题中如何去理解和定义“合理”的 概念。

即有以下的分析。

二.建模分析:席位分配模型——Q 值分配方案1、公平的定义:定义1:设:A 方人数 1p 人,若分配给 1n 个席位,则每席代表人数11p n B 方人数 2p 人,若分配给 2n 个席位,则每席代表人数22p n 则公平的定义为:若:有1212p p n n =成立,则席位分配是公平的,否则是不公平的。

最新 数学建模教学的实践与思考——以《席位的公平分配问题》为例-精品

最新 数学建模教学的实践与思考——以《席位的公平分配问题》为例-精品

数学建模教学的实践与思考——以《席位的公平分配问题》为例摘要:考虑到常规教学对建模的关注不足,开设自由选课、每周一节的校本课程,提供现实生活中的情境(或问题),引导学生提出问题,并建立数学模型来解决。

“席位的公平分配问题”是一个有趣、实用又开放的问题。

对此,分“介绍背景,提出问题”“数学模型的初步假设”“数学模型的基本建立”“数学模型的求解与分析”“数学模型的改进”五个环节,用四个课时完成教学。

数学建模的教学价值主要表现为将思考和表达的机会还给学生,提高学生的元认知能力,发展学生的符号意识。

关键词:数学建模席位的公平分配教学设计数学建模就是用数学方法解决实际问题:先用数字、符号、公式和图表等将问题表示出来,再经过数学或的处理,得出供人们进行分析、决策、预报或控制的定量结果。

其过程可以大致分为观察实际情境、发现和提出问题、抽象成数学模型、得到数学结果、实际检验结果、确认或返回等环节。

数学建模的教学可以开拓学生的数学视野,让学生体会数学内部、数学与其他学科、数学与生活之间的联系,提高学生的数学应用意识,让学生感受数学的价值,进而增强学生学习数学的兴趣,培养学生从数学的角度提出问题的能力、综合运用数学知识解决实际问题的能力。

这符合课程标准的理念。

考虑到常规教学必须重视学生基础知识的掌握和解题(应试)能力的培养,导致对数学建模的关注不足,笔者针对具有一定知识基础而没有太大应试压力的初二学生开设了自由选课、每周一节的校本课程:《数学建模与实践》。

课上,笔者提供现实生活中的情境(或问题),引导学生提出问题,并建立数学模型来解决。

下面,以《席位的公平分配问题》的教学设计与实施为例,谈谈如何有效地进行数学建模的教学。

一、教学设计与实施(一)教学思考席位分配在社会生活中经常遇到,如代表名额的分配和物质资料的分配等。

它是指将一定数量的某种事物(如席位)分配给一定数量的另一种事物(如人群)。

基于公平原则,其基本方法是按比例分配。

公平席位分配问题 数学建模

公平席位分配问题  数学建模

公平席位分配问题数学建模数学建模,公平席位问题所在系别:地球科学与资源系专业班级:10级土管6班姓名:刘强1一、摘要本文就是席位分配公平与否的问题。

需要联系生活想象。

它就是在达到所有系最公平的条件下寻求最好的方法,通过对各个合理的计算和研究,总结找出最佳方案。

首先用比例分配法求出本题的答案,然而考虑到实际的多重因素下,在假设一组数据进行检验,然后便发现了问题,即:很多时候根本没有公平的分配方法,我需要另寻其他方法。

找到了以下关于分配的方法:Hamilton (哈密顿)方法、d’Hondt 接着我(汉丁顿)方法、Q值方法、d’Hondt(汉丁顿)方法+Q值法。

将对这些方法进行逐一分析与检验,使得得出一套最佳的合理方案。

即:使得各系席位分配最公平。

关键词:公平分配、最佳方案、最公平二、问题的重述某校有200名学生,甲系100名,乙系60名,丙系40名,若学生代表会议设20个席位,问三系各有多少个席位,三、问题的提出与分析分配问题是日常生活中经常遇到的问题,它涉及到如何将有限的人力或其他资源以“完整的部分”分配到下属部门或各项不同任务中。

它涉及的内容十分广泛。

此题一个自然的问题是如何分配席位名额才是公平的呢,反映公平分配的数量指标可用每席位代表的人数来衡量。

即:mi / xi当各系每席位代表的人数相等时,则就是最公平的分配方法。

此题公平的席位分配办法是按学生人数的比例分配,显然甲、乙、丙三系分别占有10、6、4个席位。

但是比例分配在实际生活中的应用并不广泛,原因是当所得结果并非整数时,就难以解决了。

此时就需要另寻其他方法了。

Hamilton (哈密顿)方法、d’Hondt(汉丁顿)方法、Q值方法均是求如何分配所总结的方法。

那么什么方法使得能够更大的获得公平呢,四、符号的约定• N 表示总席位数• s 表示系数• ni(i=1.2.3……s) 表示第i个系• mi(i=1.2.3……s) 表示各系中的人数• xi(i=1.2.3……s) 表示各系所获得的席位数?、采用比例分配法xi=(mi/N)*总席数20个席位的分配结果如下表人数系别ni 所占比例分配方案席位数xi mi甲 100 100/200 (50/100)*20=10 102乙 60 60/200 (30/100)*20=6 6丙 40 40/200 (20/100)*20=4 4• 但是我发现实际生活中结果是整数的情况少之又少,• 所以对此我们假设下面这种情况作为参考。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料1202 包阳201298306
席位分配问题
问题:
甲乙两个部门分别有人数a1,a2。

现有代表的名额数为N,如何分配代表人数才能维持相对公平?
解决:
在公平的条件下,让甲乙各分配n1,n2个代表,然后采取相对不公平度((a1/n1-a2/n2)/(a2/n2))指导分配,采用递推法,即对哪个部门不公平,则下一个名额就相应分配给这个部门。

编写程序如下:
#include<stdio.h>
int main ()
{
double a1,a2;
int N,n1,n2;
printf("请输入甲乙两个部门的人数a1,a2:\n");
scanf("%lf%lf",&a1,&a2);
printf("请输入代表总数及甲乙两部门在公平的情况下已经分得的代表人数N,n1,n2:\n");
scanf("%d%d%d",&N,&n1,&n2);
L1:if ((a1/n1-a2/n2)/(a2/n2)>=0)
{
if (n1+n2<N)
{
n1++; goto L1;
}
else
goto L2;
}
else if
((a1/n1-a2/n2)/(a2/n2)<0)
{
if (n1+n2<N)
{
n2++;goto L1;
}
else
goto L2;
}
L2:printf("甲部门分得n1=%d\n乙部门分得n2=%d\n",n1,n2);
return 0;
}
可以通过在程序中输入两部门人数,以及代表名额数,获得相对公平的分配方案。

运行如下:。

相关文档
最新文档