九年级数学

合集下载

九年级下数学所有知识点

九年级下数学所有知识点

九年级下数学所有知识点一、代数与函数1. 整式与分式整式的定义与性质分式的定义与性质2. 一次函数与二次函数一次函数的概念及性质二次函数的概念及性质一次函数与二次函数的图像特征3. 指数与对数指数的概念与性质对数的概念与性质指数函数与对数函数的关系4. 平面直角坐标系与直线平面直角坐标系的引入直线的斜率与方程二、几何1. 四边形与圆四边形的性质与分类圆的概念与性质2. 相似与全等三角形相似三角形的定义与性质全等三角形的定义与性质3. 空间几何体立体几何体的概念与性质立体几何体的计算4. 平行线与比例平行线的性质与判定比例的概念与性质三、概率与统计1. 事件与概率事件的基本概念概率的计算与性质2. 数据的收集与整理数据的统计方式与方法数据的分析与解读3. 统计的图表与分布条形图、折线图、饼图的绘制与解读频率分布表的制作与分析4. 抽样与推断随机抽样的概念与方法样本与总体的关系与推断四、数与量1. 数集与数的性质数集的分类与表示奇偶性、整除与因数2. 分数与小数分数的四则运算与性质小数的运算与应用3. 数量关系与变化比例与比例关系速度与密度的计算4. 三角函数与图形正弦、余弦、正切的概念与性质图形的平移、旋转、翻折与对称以上是九年级下数学的所有知识点的简要概述,涵盖了代数与函数、几何、概率与统计以及数与量等方面的内容。

通过学习这些知识,同学们将能够熟练掌握数学中的基本概念、性质和应用技巧,为进一步的学习做好铺垫,并培养良好的数学思维能力和解决问题的能力。

希望同学们在学习过程中勤加练习,加强对知识的理解与应用,做到理论联系实际,努力提高数学水平。

新人教版九年级数学知识点归纳

新人教版九年级数学知识点归纳

一、代数运算1.整式的加减乘除2.代数式化简3.因式分解4.分式的四则运算及化简5.方程与不等式的基本概念及解法6.一元一次方程与一元一次不等式的应用7.二次根式的性质与运算8.二次方程的解法及应用9.二次函数概念及性质10.比例、比例方程及应用11.百分数与利率二、几何与图形1.角的概念及性质2.线段的分点、线段的垂直平分线、边的垂直平分线、角的平分线3.相交线及其性质4.平行线及其性质5.等腰三角形、直角三角形、等边三角形及其性质6.圆的概念、圆心角、圆内角及弧7.相交圆与相切圆8.平面直角坐标系、坐标运算9.图形的相似与全等10.平面几何的平移、旋转、翻折11.三视图的画法与展开图的应用12.面积的计算、体积的计算三、概率与统计1.事件与概率的概念2.频率与概率的关系3.概率的计算4.统计图表与数据的分析四、函数1.函数概念的认识2.函数的表示及性质3.一次函数的表示与分析4.一次函数与一元一次方程的关系5.约束条件下的一次函数问题6.一次函数的图象与线性规律问题7.二次函数的图象与性质8.二次函数图象的平移与翻折9.二次函数与一元二次方程的关系10.利用二次函数解决实际问题五、三角1.正弦、余弦、正切的定义与性质2.三角函数的计算及应用3.周期函数的性质与表示4.集合与数列5.集合的关系与运算6.集合的表示与应用7.数列的概念与性质8.通项公式与位置公式的应用9.等差数列与等比数列的性质与应用六、立体几何1.平面与直线的位置关系2.空间中的概念及性质3.平行线的判定4.线面垂直及面面垂直的判定5.正交投影图的基本概念与画法6.空间形体的投影图7.三视图的基本概念与画法8.平行面的性质与判定。

九年级下册数学内容

九年级下册数学内容

九年级下册数学的内容通常包括以下主题:
1. 几何:包括平面几何和空间几何。

主要内容包括平面图形的性质与计算、三角形的性质与计算、四边形的性质与计算、圆的性质与计算、空间图形的性质与计算等。

2. 相似与全等:学习相似三角形的判定与性质、相似三角形的比例关系、全等三角形的判定与性质,以及在几何问题中应用相似与全等的解题方法。

3. 三角函数:学习正弦、余弦、正切等三角函数的定义、性质和应用。

主要内容包括角度的弧度制表示、同角三角函数的关系、三角函数的图像与周期性、三角函数的运算与解题等。

4. 概率与统计:学习概率的基本概念与性质,包括事件的概率、随机事件的组合与计算。

同时也包括统计的基本概念与方法,如数据的收集、整理和分析、统计图表的制作与解读等。

5. 函数与方程:学习函数的概念、性质和图像,包括一元二次函数、指数函数、对数函数等。

同时也学习方程的解法与应用,包括一元二次方程、一次方程组、不等式等。

6. 三角形余弦定理与正弦定理:学习三角形余弦定理和正弦定理的应用,解决与三角形相关的问题。

以上是九年级下册数学的一些主要内容。

具体的教材和教学安排可能会有所不同,建议参考学校或老师提供的教材和教学大纲来了解更详细的内容。

九年级上册数学知识点总结

九年级上册数学知识点总结

九年级上册数学知识点总结一、整数和有理数整数是由正整数、负整数和0组成,可以进行加、减、乘、除等运算。

有理数是整数和分数的集合,分数是整数和整数的比值。

整数和有理数的运算规律与整数运算相同,包括加法、减法、乘法和除法。

二、代数与方程1.代数表达式代数表达式是用字母和数字通过运算符号连接起来的数学式子,可以用来表示数值关系和算式运算。

2.方程与不等式方程是等号连接的两个代数表达式,表示两个量相等的关系。

不等式是不等号连接的两个代数表达式,表示两个量大小关系。

3.一元一次方程一元一次方程是只含有一个未知数,并且该未知数的最高次数为1的方程。

可以使用逆运算的原则,通过加减乘除等运算解得未知数的值。

4.二元一次方程组二元一次方程组是包含两个未知数、两个方程的方程组。

可以使用消元法或代入法解方程组。

三、平面图形与坐标系1.平面图形平面图形包括线段、角、三角形、四边形等。

通过计算边长、角度和面积等属性,可以解决与平面图形相关的问题。

2.坐标系与平面直角坐标系坐标系是由两个相互垂直的直线来确定的,用于描述点在平面上的位置。

平面直角坐标系是最常见的坐标系,包括横轴和纵轴,用数字来表示点的位置。

四、利率与利息利率指一定时期内利息与本金的比率,表示资金的增长速度。

利息是利率乘以本金得到的收益。

五、统计与概率1.抽样调查抽样调查是通过从总体中随机选择一部分样本进行调查,从而获得总体特征的方法。

2.频数与频率频数是指某个事件发生的次数或某个数据出现的次数。

频率是指某事件发生的概率或某数据出现的概率。

六、函数与图像1.函数与映射函数是两个集合之间的对应关系,每个自变量都有唯一的函数值与之对应。

2.函数图像函数图像是表达函数在坐标系中的图形,可以通过绘制函数的图像来研究函数的性质和变化规律。

七、几何变换几何变换包括平移、旋转、镜像和放缩等操作,通过改变图形的位置、角度和形状,可以研究图形的性质和变化规律。

八、三角函数三角函数是用来研究角的一种数学函数,包括正弦、余弦、正切等。

九年级数学知识点提纲

九年级数学知识点提纲

九年级数学知识点提纲一、有理数及其运算1. 有理数概念2. 有理数的加减乘除3. 有理数的大小比较4. 有理数的绝对值二、代数式与分式1. 代数式的基本概念2. 代数式的运算法则3. 分式的概念与运算法则4. 分式方程的解法三、二次根式与无理数1. 二次根式的定义与性质2. 二次根式的化简与计算3. 无理数的概念与性质4. 无理数的运算法则四、平面图形的性质与计算1. 平面图形的基本概念2. 三角形的性质与分类3. 四边形的性质与分类4. 平行四边形与梯形的性质与计算五、三角形的性质与分类1. 三角形角度的性质2. 三角形边长的关系3. 三角形的分类与判定4. 三角形的面积计算与相似性质六、数列与函数1. 数列的概念与表示2. 等差数列与等比数列3. 函数的概念与性质4. 一次函数与二次函数七、方程与不等式1. 一元一次方程与二元一次方程2. 一元二次方程的解法3. 线性不等式的解法与图形表示4. 绝对值方程与不等式八、统计与概率1. 数据的收集与整理2. 统计图表的表示与分析3. 概率的基本概念与计算4. 事件的排列与组合计算九、几何变换与相似1. 平移、旋转、翻转的概念与性质2. 相似三角形的判定与性质3. 相似三角形的计算与应用4. 黄金分割与相似十、立体图形的认识与计算1. 空间图形的基本概念与性质2. 球体、圆锥、圆台的性质与计算3. 容积的计算与应用4. 空间立体图形的投影与展开图以上是九年级数学知识点提纲,包含了九年级数学的主要知识点。

通过学习这些知识点,可以帮助学生全面掌握九年级数学的基础概念、方法与技巧,为进一步学习高中数学奠定坚实的基础。

掌握了这些知识点,学生可以更好地解决数学问题,提高数学思维能力,并为将来的学习与应用打下坚实的数学基础。

数学九年级公式

数学九年级公式

1.长方形的周长= 2 × (长+ 宽),即C = 2(a + b)。

2.正方形的周长= 4 ×边长,即C = 4a。

3.圆的周长= π × 直径,即C = πd。

4.长方形的面积= 长×宽,即S = ab。

5.正方形的面积= 边长×边长,即S = a²。

6.圆的面积= π × 半径²,即S = πr²。

7.扇形面积= (n/360) × π × 半径²,其中n 是圆心角度数,即S = nπr²/360。

8.三角形的面积= (底×高) / 2,即S = (a × h) / 2。

9.正方形的面积= 边长×边长,即S = a²。

10.平行四边形的面积= 底×高,即S = a × h。

11.菱形的面积= (对角线1 ×对角线2) / 2,即S = (d1 × d2) / 2。

12.梯形的面积= ((上底+ 下底) ×高) / 2,即S = (a + b)h/2。

这些公式包括了一些常见的几何形状(如长方形、正方形、圆、三角形、平行四边形、菱形和梯形)的周长和面积的计算公式。

请注意,这些公式可能需要适应具体的问题和情境进行应用。

九年级数学人教版知识点道客巴巴

九年级数学人教版知识点道客巴巴

九年级数学人教版知识点道客巴巴数学是一门重要的学科,也是我们学习生活中必不可少的一部分。

九年级数学人教版是我们九年级学习数学的教材,其中包含了许多重要的知识点。

在这篇文章中,我将为大家介绍一些九年级数学人教版的知识点。

首先,我们来看一下九年级数学人教版中的代数知识点。

代数是数学中的一个重要分支,它研究的是数与数之间的关系。

在九年级数学人教版中,我们学习了一元一次方程、一元二次方程、函数等知识。

一元一次方程是指只有一个未知数的一次方程,我们可以通过解方程的方法求得未知数的值。

一元二次方程是指只有一个未知数的二次方程,我们可以通过配方法、因式分解、求根公式等方法来解方程。

函数是一种特殊的关系,它将一个集合中的每个元素都对应到另一个集合中的唯一元素。

我们可以通过函数的图像、表达式、定义域、值域等来描述函数。

其次,我们来看一下九年级数学人教版中的几何知识点。

几何是数学中研究空间形状、大小、相对位置等性质的学科。

在九年级数学人教版中,我们学习了平面图形的性质、三角形的性质、相似三角形、勾股定理等知识。

平面图形是指在同一个平面内的图形,我们可以通过计算周长、面积等来研究平面图形的性质。

三角形是指由三条边和三个角组成的图形,我们可以通过计算边长、角度等来研究三角形的性质。

相似三角形是指具有相同形状但大小不同的三角形,我们可以通过比较边长的比例来判断两个三角形是否相似。

勾股定理是指直角三角形中,直角边的平方等于两个直角边的平方和,我们可以通过勾股定理来求解直角三角形的边长。

最后,我们来看一下九年级数学人教版中的概率与统计知识点。

概率与统计是数学中研究随机事件发生的可能性和对数据进行收集、整理、分析的学科。

在九年级数学人教版中,我们学习了事件的概率、统计图表、抽样调查等知识。

事件的概率是指某个事件发生的可能性,我们可以通过计算事件发生的次数与总次数的比值来求得事件的概率。

统计图表是用来展示数据的一种方式,我们可以通过条形图、折线图、饼图等来展示数据的分布情况。

万唯中考九年级数学知识点归纳

万唯中考九年级数学知识点归纳

万唯中考九年级数学知识点归纳数学对于每个学生来说都是一门必修的学科,而数学在中考中的重要性更是不言而喻。

作为学生们最为关注的科目之一,数学的积累和掌握是十分必要的。

为了帮助九年级学生做好数学的复习备考工作,下面将对万唯中考九年级数学知识点进行归纳总结。

一、代数与函数代数与函数是数学中的基础和核心,其中包括了常数、变量、代数式、函数等内容。

在代数与函数部分,重点掌握代数式的展开与因式分解、二次根式的加减乘除及绝对值、一元二次方程的解法、函数的概念与特征以及函数关系的图像。

二、图形与几何几何是数学中的重要组成部分,图形与几何主要涵盖了平面几何和空间几何两个方面。

平面几何的内容包括了点、线、面等基本概念及相关性质,如三角形、四边形、多边形的性质,图形的相似与全等等。

空间几何则主要关注点、直线、平面等在三维空间中的相互关系,如直线的位置关系、平面与平面的位置关系等。

三、数据与概率数据与概率是现实生活中的数学应用,也是数学考试中的一项重要内容。

在数据与概率部分,学生需要了解数据的收集、整理和分析方法,包括统计图表的绘制与解读,常见统计量的计算等。

此外,还需要掌握概率的概念与计算方法,包括事件概率的计算、概率分布的应用等。

四、简单数理逻辑与证明数学逻辑与证明是数学思维的重要体现,也是数学中的一项基本技能。

简单数理逻辑与证明主要包括数学推理、命题、逻辑联结词等相关内容。

九年级学生需要通过大量的练习来提高自己的逻辑思维能力,培养正确的数学证明方法。

五、应用题与解题方法除了掌握基础知识和技能外,九年级学生还需要掌握合理的解题方法和策略,并能够应用所学的数学知识解决实际问题。

对于应用题,需要培养学生的问题分析和解决问题的能力,帮助学生掌握问题的转化和解题思路的确定。

综上所述,九年级数学的复习备考工作需要广泛涉猎各个知识点,并通过大量的练习来提高自己的解题能力。

在备考过程中,学生们可以选择不同的学习方法和技巧,如整理笔记、做题总结、与同学讨论等方式来巩固知识,提高解题水平。

九年级上册数学知识点全总结

九年级上册数学知识点全总结

九年级上册数学知识点全总结在九年级上册的数学学习中,我们接触到了许多重要的数学知识点,涉及了数与代数、几何与图形、函数与方程、统计与概率等多个方面。

下面,我们将对这些知识点进行全面总结。

一、数与代数1. 整数运算:整数加减乘除的规则及性质,同时学习了负数的概念和运算。

2. 分数与小数:分数与小数的相互转换,分数的四则运算以及分数的化简、约分等方法。

3. 实数运算:实数的运算律和性质,在此基础上学习了绝对值的概念和运算法则,了解了实数轴的相关知识。

4. 幂与指数:幂的定义和性质,指数与幂的关系及规律,学习了幂的乘除法则以及零次幂和一次幂的特殊性质。

5. 根式与整式:根式的定义和性质,整式的运算法则,熟悉了多项式的加减法规则。

二、几何与图形1. 角与直线:学习了角的类型和度量,认识了同位角、对顶角、余角等概念,同时也掌握了平行线与垂直线的性质。

2. 三角形:三角形的分类与性质,熟悉了角平分线、中位线、高线等重要线段与特殊点。

3. 平面镶嵌:学习了平面上的镶嵌图形,通过分析规律解决镶嵌问题,提高了观察和推理能力。

4. 圆与圆内接四边形:圆的相关概念与性质,学习了圆的弧长、扇形面积等计算方法,深入理解了圆与四边形的关系。

5. 空间几何体:学习了立体图形的名称与性质,掌握了棱、面和顶点的概念,了解了棱柱、棱锥、球等重要几何体。

三、函数与方程1. 平移、伸缩与反转:学习了函数图像的平移、伸缩与反转规律,掌握了二次函数、绝对值函数的特性。

2. 一次函数与二次函数:学习了一次函数和二次函数的表达式、图像与性质,了解了它们的特点与应用。

3. 一元一次方程:方程与等式的关系,解一元一次方程的基本方法,熟悉了方程解的概念和解集的表示方法。

4. 一元二次方程:学习了解一元二次方程的基本方法,熟悉了二次方程的根与判别式等概念,同时也了解了二次函数与二次方程的关系。

四、统计与概率1. 数据分析与统计:学习了数据的整理、统计和表示方法,掌握了众数、中位数和平均数等重要概念。

九年级上册数学知识点归纳

九年级上册数学知识点归纳

九年级上册数学知识点归纳一、实数1. 有理数与无理数的定义- 有理数:可以表示为两个整数的比的数,如分数、整数。

- 无理数:不能表示为两个整数的比的数,如√2、π。

2. 实数的运算- 加法、减法、乘法、除法- 乘方、开方- 绝对值的计算3. 实数的性质- 相反数、倒数- 有理数和无理数的性质4. 科学记数法- 表示非常大或非常小的数5. 实数的比较- 大小比较的方法- 不等式的表示和性质二、代数表达式1. 单项式- 单项式的定义- 系数、次数2. 多项式- 多项式的定义- 项、次数、系数- 多项式的加减法3. 代数式的简化- 合并同类项- 分配律、结合律、交换律4. 因式分解- 提公因式法- 公式法(平方差、完全平方等) - 十字相乘法三、方程与不等式1. 一元一次方程- 方程的建立- 解方程的步骤2. 二元一次方程组- 代入法- 消元法(加减消元、代数消元)3. 不等式- 不等式的性质- 解一元一次不等式- 解一元一次不等式组4. 绝对值不等式- 绝对值的性质- 解绝对值不等式四、平面图形1. 平行线与线段- 平行线的性质- 线段的中点、平行线之间的距离2. 角- 角的分类- 角的度量- 角的和差3. 三角形- 三角形的基本性质- 等边三角形、等腰三角形的性质 - 三角形的内角和外角4. 四边形- 四边形的分类- 矩形、菱形、正方形的性质- 四边形的面积计算5. 圆- 圆的基本性质- 圆的面积和周长- 切线的性质五、立体图形1. 立体图形的基本概念- 点、线、面、体- 立体图形的分类2. 棱柱和棱锥- 棱柱和棱锥的性质- 棱柱和棱锥的体积计算3. 圆柱和圆锥- 圆柱和圆锥的性质- 圆柱和圆锥的体积和表面积计算4. 球- 球的性质- 球的体积和表面积计算六、统计与概率1. 统计- 数据的收集和整理- 频数和频率- 统计图表(条形图、折线图、饼图)2. 概率- 随机事件的概率- 概率的计算方法- 条件概率和独立事件请注意,以上内容仅为九年级上册数学知识点的一个概括性归纳,具体的教学内容和深度可能会根据不同地区的教学大纲和教材有所差异。

九年级所有数学详细知识点

九年级所有数学详细知识点

九年级所有数学详细知识点一、代数与函数
1. 整式的加减运算
2. 整式的乘法运算
3. 因式分解
4. 比例与比例方程
5. 一元一次方程与一元一次不等式
6. 二次根式
7. 二次根式与二次方程
8. 图像与函数
9. 直角坐标系与函数
10. 平移与函数图像
11. 对称与函数图像
12. 函数的性质
13. 函数与方程
14. 一元二次方程
15. 实数与实数运算
16. 线性规划
二、几何
1. 基本图形初步认识
2. 直线、射线、线段与角
3. 三角形初步认识
4. 三角形中的周与面
5. 三角形中的诱导性质
6. 三角形中的全等
7. 三角形中的相似
8. 点、线、面的位置关系初步认识
9. 关于点、线对称
10. 直角三角形初步认识
11. 近似计算和绝对误差
12. 圆的初步认识
13. 二次曲线的平移与缩放
三、数据与统计
1. 数据调查与数据整理
2. 统计量
3. 表格和图形的应用
4. 均数与图表
5. 概率初步认识
6. 事件与概率、集合的应用
7. 研究性问题初步认识
以上是九年级数学的所有详细知识点,希望对你的学习有所帮助。

记住,不仅要掌握这些知识点的内容,还要注重实际运用和问题解决能力的培养。

加油!。

九年级数学总结全部知识点

九年级数学总结全部知识点

九年级数学总结全部知识点九年级是初中生涯中最后一个阶段,数学作为一门重要的学科在这个阶段起着至关重要的作用。

在这篇文章中,我们将对九年级数学的全部知识点进行总结,帮助同学们回顾学习内容,并加深对数学知识的理解。

一、代数1. 代数基础知识代数中的基本符号和术语,如变量、常数、系数、代数式等。

还需要掌握代数的基本运算规则,包括加减乘除、幂运算和开方等。

2. 一次方程与一元一次方程组理解一次方程的含义,学会解一元一次方程以及计算涉及一元一次方程的相关问题,如鸡兔同笼问题等。

3.二次根式掌握二次根式的定义和性质,了解二次根式与指数运算的关系。

同时,要会进行二次根式的化简、相加减、乘除等运算。

4. 平方根和实数认识平方根的概念,学会求解平方根及其运算。

进一步了解实数的范围与性质,掌握实数的运算规则。

5. 分式与分式方程掌握分式的基本概念、性质和运算规则,学会解分式方程以及与分式相关的运算问题。

二、几何1. 平面几何基础知识掌握直线、线段、角度等基本概念,理解几何形状的构造和性质。

2. 线段比例与相似三角形学会求解线段的比例及其应用问题,理解相似三角形的定义和性质,并能够应用相似三角形解决实际问题。

3. 圆的相关知识掌握圆的相关术语和性质,学习圆的构造方法,能够计算圆的面积和弧长。

4. 解析几何基础了解直角坐标系的建立及其性质,学会在直角坐标系中表示点、直线和简单的曲线。

三、概率与统计1. 概率概念了解概率的基本概念和性质,学会使用频率、几何和古典概率方法计算概率。

2. 统计数据处理学习收集和整理数据的方法,掌握描述数据集中性质的统计量,如平均数、中位数、众数、范围等。

3. 直方图和折线图理解直方图和折线图的绘制方法,能够从图中获取有关数据分布的信息,并进行适当的分析和解读。

四、函数1. 函数的概念与图像理解函数的定义和性质,学会绘制函数的图像,掌握常见函数的性质和变换规律。

2. 一次函数与二次函数了解一次函数和二次函数的定义、图像特征以及求解相关问题的方法。

人教版九年级上册数学知识点汇总

人教版九年级上册数学知识点汇总

作为资深教师,整理人教版九年级上册数学知识点汇总如下:一、一元二次方程1. 定义•等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。

一般形式为:ax² + bx + c = 0(a ≠ 0)。

2. 解法•配方法:通过配成完全平方形式来解一元二次方程。

步骤包括:移项、除二次项系数、配方、开平方。

•公式法:利用一元二次方程的求根公式x = [-b ± √(b² - 4ac)] / (2a)(当b² - 4ac ≥ 0时)求解。

•因式分解法:将方程的一边化为0,另一边分解为两个一次因式的积,从而转化为求解两个一元一次方程。

3. 根与系数的关系•若一元二次方程x² + px + q = 0的两个根为x₁和x₂,则有:x₁ + x₂ = -p,x₁x₂ = q。

二、实际问题与一元二次方程1. 应用步骤•审:读懂题目,弄清题意,明确已知量和未知量以及它们之间的等量关系。

•设:设出未知数。

•列:列出方程,这是关键步骤,需找出能够表达应用题全部含义的相等关系,并列出含有未知数的等式。

•解:解方程,求出未知数的值。

•验:检验方程的解是否保证实际问题有意义,符合题意。

•答:写出答案。

2. 常见类型•数字问题:如三个连续整数、连续偶数(奇数)的表示。

•增长率问题:设初始量为a,终止量为b,平均增长率或降低率为x,则经过两次的增长或降低后的等量关系为a(1±x)² = b。

•利润问题:常用关系式有总利润=总销售价-总成本,或总利润=单位利润×总销售量,或利润=成本×利润率。

•图形的面积问题:根据图形的面积与图形的边等高等相关元素的关系,将图形的面积用含有未知数的代数式表示出来,建立一元二次方程。

三、二次函数1. 定义•一般地,形如y = ax² + bx + c(a, b, c是常数,a ≠ 0)的函数,叫做二次函数。

数学九年级下试题及答案

数学九年级下试题及答案

数学九年级下试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. πB. 0.33333(无限循环)C. √2D. 0.5答案:C2. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 8答案:A3. 一个数的平方根是它本身,这个数是:A. 0B. 1C. -1D. 以上都不是答案:A4. 函数y = 2x + 3的斜率是:A. 2B. 3C. -2D. -3答案:A5. 一个圆的直径是10厘米,那么它的半径是:A. 5厘米B. 10厘米C. 15厘米D. 20厘米答案:A6. 以下哪个是二次方程?A. x + 2 = 0B. x^2 + 3x + 2 = 0C. x^3 - 4 = 0D. 2x - 1 = 0答案:B7. 一个数的立方根是2,这个数是:A. 8B. -8C. 4D. -4答案:A8. 如果一个二次方程ax^2 + bx + c = 0的判别式Δ = 0,那么这个方程:A. 有一个实数解B. 有两个相同的实数解C. 没有实数解D. 有无穷多个解答案:B9. 以下哪个是等腰三角形的特征?A. 至少有两个边相等B. 至少有一个角是直角C. 至少有一个角是钝角D. 至少有一个角是锐角答案:A10. 一个数的绝对值是5,这个数是:A. 5B. -5C. 5或-5D. 以上都不是答案:C二、填空题(每题4分,共20分)11. 一个数的相反数是-5,这个数是______。

答案:512. 如果一个数的平方是25,那么这个数是______或______。

答案:5 或 -513. 一个数的立方是-27,这个数是______。

答案:-314. 一个三角形的内角和等于______度。

答案:18015. 如果一个直角三角形的斜边长是13,一条直角边长是5,那么另一条直角边长是______。

答案:12三、解答题(每题10分,共50分)16. 解方程:2x - 5 = 7x + 3。

九年级数学教案5篇

九年级数学教案5篇

九年级数学教案5篇九年级数学教案篇1教学目标(一)教学知识点1.能够利用二次函数的图象求一元二次方程的近似根.2.进一步发展估算能力.(二)能力训练要求1.经历用图象法求一元二次方程的近似根的过程,获得用图象法求方程近似根的体验.2.利用图象法求一元二次方程的近似根,重要的是让学生懂得这种求解方程的思路,体验数形结合思想.(三)情感与价值观要求通过利用二次函数的图象估计一元二次方程的根,进一步掌握二次函数图象与x轴的交点坐标和一元二次方程的根的关系,提高估算能力.教学重点1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.2.能够利用二次函数的图象求一元二次方程的近似根.教学难点利用二次函数的图象求一元二次方程的近似根.教学方法学生合作交流学习法.教具准备投影片三张第一张:(记作§2.8.2A)第二张:(记作§2.8.2B)第三张:(记作§2.8.2C)教学过程Ⅰ.创设问题情境,引入新课[师]上节课我们学习了二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点坐标和一元二次方程ax2+bx+c=0(a≠0)的根的关系,懂得了二次函数图象与x轴交点的横坐标,就是y=0时的一元二次方程的根,于是,我们在不解方程的情况下,只要知道二次函数与x轴交点的横坐标即可.但是在图象上我们很难准确地求出方程的解,所以要进行估算.本节课我们将学习利用二次函数的图象估计一元二次方程的根.九年级数学教案篇2教学目标1、知道解一元二次方程的基本思路是“降次”化一元二次方程为一元一次方程。

2、学会用因式分解法和直接开平方法解形如(ax+b)2-k=0(k≥0)的方程。

3、引导学生体会“降次”化归的思路。

重点难点重点:掌握用因式分解法和直接开平方法解形如(ax+b)2-k=0(k≥0)的方程。

难点:通过分解因式或直接开平方将一元二次方程降次为一元一次方程。

教学过程(一)复习引入1、判断下列说法是否正确(1)若p=1,q=1,则pq=l( ),若pq=l,则p=1,q=1( );(2)若p=0,g=0,则pq=0( ),若pq=0,则p=0或q=0( );(3)若x+3=0或x-6=0,则(x+3)(x-6)=0( ),若(x+3)(x-6)=0,则x+3=0或x-6=0( );(4)若x+3=或x-6=2,则(x+3)(x-6)=1( ),若(x+3)(x-6)=1,则x+3=或x-6=2( )。

九年级数学知识点总结

九年级数学知识点总结

一、函数与方程1.一元一次方程及其应用2.一元二次方程及其应用3.函数及其图像4.函数与方程的综合应用5.不等式与不等式组二、图形的性质与计算1.平面图形的性质-三角形的性质-四边形的性质-圆的性质-相似与全等-二维几何的相关性质2.空间几何的性质-空间点、直线和平面的位置关系-空间图形的投影3.计算几何-三角形面积的计算-相似三角形的计算-圆的面积和周长的计算-三维几何的相关计算三、统计与概率1.统计-统计图表的制作与分析-平均数、中位数、众数与四分位数的计算-简单概率统计2.概率-事件与样本空间-概率的计算与应用-古典概型与条件概率四、数与量1.实数的性质和计算2.合并与比较分数3.小数与百分数4.幂与科学计数法5.负数的认识与计算6.代数式的认识与计算五、函数与图像1.直线的方程和性质2.平面直角坐标系3.一次函数和图像4.二次函数和图像5.指数函数和对数函数六、数据分析1.数据和调查2.数据处理和结果表达3.统计与概率七、三视图与立体图形1.三视图的绘制和展开图形2.立体图形的性质和计算3.空间位置和方位八、平面向量1.平面向量的定义和性质2.平面向量的加减法和数量积3.平面向量的几何应用九、数学建模1.数学建模的基本概念和方法2.数学模型的建立和求解以上是九年级数学的主要知识点总结,每个知识点都需要理解其基本概念和性质,并能够进行相应的计算和应用。

对于每个知识点,需要掌握其相关的公式和定理,能够灵活运用于解决实际问题。

在学习数学的过程中,还需要进行大量的练习和实际运用,加深对知识的理解和应用能力的培养。

最后,希望同学们能够通过努力学习,掌握好这些数学知识,取得好成绩。

九年级上册数学目录

九年级上册数学目录

新人教版九年级上册数学目录第二十一章一元二次方程
一元二次方程
解一元二次方程
配方法
公式法
因式分解法
一元二次方程的根与系数的关系
实际问题与一元二次方程
第二十二章二次函数
二次函数的图象和性质
二次函数
二次函数y=ax2的图象和性质
二次函数y=a(x−h)2+k的图象和性质
二次函数y=ax2+bx+c的图象和性质
二次函数与一元二次方程
实际问题与二次函数
第二十三章旋转
图形的旋转
中心对称
中心对称
中心对称图形
关于原点对称的点的坐标
第二十四章圆
圆的有关性质

垂直于弦的直径
弧、弦、圆心角
圆周角
点和圆、直线和圆的位置关系
点和圆的位置关系
直线和圆的位置关系
正多边形和圆
弧长和扇形面积
第二十五章概率初步
随机事件与概率
随机事件
概率
用列举法求概率
用频率估计概率
新人教版九年级下册数学目录第二十六章反比例函数
反比例函数
实际问题与反比例函数
第二十七章相似
图形的相似
相似三角形
位似
第二十八章锐角三角函数
锐角三角函数
解直角三角形
第二十九章投影与视图
投影
三视图
课题学习制作立体模型。

初中九年级下册数学知识点

初中九年级下册数学知识点

初中九年级下册数学知识点一、代数与函数1.一次函数1.1 函数的定义1.2 函数的图象和性质1.3 函数表达式及其应用2.二次函数2.1 二次函数的图象和性质2.2 一般的二次函数2.3 二次函数的应用3.指数与对数函数3.1 指数函数的概念与性质3.2 指数函数的图象与应用3.3 对数函数的概念与性质3.4 对数函数的图象与应用4.分式函数4.1 分式函数的定义与性质4.2 分式函数的图象与应用5.根式与整式5.1 平方根与立方根的概念5.2 根式的化简与运算6.方程与不等式6.1 一元一次方程组及其解法6.2 一元二次方程的解法6.3 一元一次不等式及其解法6.4 一元二次不等式及其解法7.二元一次方程组与一元二次不等式系统 7.1 二元一次方程组的解法7.2 一元二次不等式系统的解法二、几何与图形1.平面图形1.1 三角形的性质及分类1.2 四边形的性质及分类1.3 正多边形的性质2.空间图形2.1 空间几何体的投影与视图2.2 空间几何体的表面积与体积3.相似与全等3.1 相似图形的判定与性质3.2 相似三角形的性质与判定3.3 全等图形的判定与性质4.三角比4.1 正弦定理与余弦定理的应用 4.2 解直角三角形4.3 解一般三角形5.向量与坐标5.1 向量及其运算5.2 二维坐标系与平面直角坐标系三、数据统计与概率1.数据的收集与整理1.1 数据的收集方法1.2 数据的整理与概述2.统计指标与图表2.1 统计指标的计算2.2 统计图表的制作与分析3.概率与统计3.1 事件与概率3.2 随机事件的概率计算3.3 概率分布与统计这是初中九年级下册数学知识点的简要概述。

对于每个知识点,都有更详细的内容和例题。

希望这份知识点的整理能够帮助你更好地学习和理解数学知识。

祝你学业进步!。

九年级数学重点知识点归纳

九年级数学重点知识点归纳

九年级数学重点知识点归纳数学是一门重要且广泛应用于各个领域的学科,而对于初中九年级的学生来说,数学的学习显得尤为关键。

九年级数学涉及的知识点较多,掌握这些知识点对于高中乃至大学的学习都具有重要意义。

下面将对九年级数学的重点知识点进行归纳,帮助同学们更好地复习和掌握这些知识。

一、代数与函数1. 一次函数:掌握一次函数的定义、性质和表示方法,了解斜率、截距及其应用。

2. 二次函数与二次函数方程:了解二次函数的基本形式、特性,掌握二次函数方程的解法和图像的绘制。

3. 绝对值与不等式:掌握绝对值的定义和性质,了解绝对值不等式的求解方法。

4. 幂次与根式:熟悉幂次与根式的定义和性质,能够进行简单的运算与问题求解。

5. 等差数列与等比数列:掌握等差数列与等比数列的定义和性质,了解求和公式及其应用。

二、几何与三角1. 平面与立体图形:了解平面与立体图形的基本概念,如平行、垂直、相交等,能够进行简单的图形推理和面积、体积计算。

2. 三角形与四边形:熟悉三角形的分类、性质和计算方法,了解四边形的分类、性质和计算公式。

3. 圆与圆周角:掌握圆的基本概念和性质,理解圆周角的定义和性质,能够进行简单的弧长和扇形面积计算。

4. 三角函数:了解正弦、余弦、正切等三角函数的概念、计算方法和应用。

5. 空间几何与向量:理解向量的定义和运算法则,了解平面向量的应用和基本定理。

三、数据与统计1. 数据的整理与分析:掌握数据的整理方法,了解频数、频率、众数、中位数等统计概念,能够进行简单的数据分析和解读。

2. 概率与统计:了解事件、概率、样本空间等概念,掌握概率计算的基本方法和思维。

以上列举的是九年级数学的重点知识点,学生们可以根据自己的学习进度和能力因素来有针对性地进行复习。

在复习过程中,适当地使用一些案例分析、图表展示、练习题训练等多种形式,能够更好地帮助巩固知识和提升解题能力。

此外,九年级数学的学习也需要培养数学思维和解决问题的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

凯迪数学九年级上学期第一次月考数学试卷一、选择题:4.下列四个命题中,正确的有()①圆的对称轴是直径;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.A.①②B.②③C.③④D.②④5.若将一函数的图象向右平行移动2个单位,再向上平移2个单位,可得到的抛物线y=2x2,则原函数解析式是()A.y=2(x+2)2﹣2 B.y=2(x+2)2+2 C.y=2(x﹣2)2﹣2 D.y=2(x﹣2)2+26.下列事件是必然事件的是()A.任意买张票,座位号是偶数B.三角形内角和180度C.明天是晴天D.打开电视正在放广告7.下列命题正确的个数是()①平分弧的直径垂直平分弧所对的弦;②平分弦的直径平分弦所对的弧;③垂直于弦的直线必过圆心;④垂直于弦的直径平分弦所对的弧.A.1个B.2个C.3个D.4个8.抛物线y=﹣x2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:x …﹣2 ﹣1 0 1 2 …y …0 4 6 6 4 …从上表可知,下列说法正确的个数是()①抛物线与x轴的一个交点为(﹣2,0);②抛物线与y轴的交点为(0,6);③抛物线的对称轴是x=1;④在对称轴左侧y 随x增大而增大.A. 1 B. 2 C. 3 D. 49.⊙O中,∠AOB=84°,则弦AB所对的圆周角的度数为()A.42°B.138°C.69°D.42°或138°10.(4分)如图1,在抛物线y=﹣x2上有A,B两点,其横坐标分别为1,2;在y轴上有一动点C,则AC+BC最短距离为()A. 5 B.C.D.11.将抛物线y=2x2﹣12x+16绕它的顶点旋转180°,所得抛物线的解析式是()A.y=﹣2x2﹣12x+16 B.y=﹣2x2+12x﹣16C.y=﹣2x2+12x﹣19 D.y=﹣2x2+12x﹣2012.函数y=x2+bx+c与y=x的图象如图2所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为()A. 1 B. 2 C. 3 D. 4二、填空题:14从长度分别为3,5,6,9的四条线段中任取三条,则能组成三角形的概率为.19.将抛物线向右平移2个单位,得到抛物线y2的图象.P是抛物线y2对称轴上的一个动点,直线x=t平行于y轴分别与直线y=x抛物线y2交于点A、B.若△ABP是以点A或点B为直角顶点的等腰直角三角形求满足条件的t的值,则t=.三、解答题:21.如图4,以△ABC边AB为直径作⊙O交BC于D,已知BD=DC.(1)求证:△ABC是等腰三角形2)若:∠A=36°,求的度数.10.如图,等腰Rt△ABC(∠ACB=90°)的直角边与正方形DEFG的边长均为2,且AC与DE在同一直线上,开始时点C与点D 重合,让△ABC沿这条直线向右平移,直到点A与点E重合为止.设CD的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是()21.已知二次函数y=x2+bx+c中,函数y与自变量x的部分对应值如下表:(1)求该二次函数的关系式;(2)当x为何值时,y有最小值,最小值是多少?(3)若A(m,y1),B(m+1,y2)两点都在该函数的图象上,试比较y1与y2的大小.23.如图所示,在平面直角坐标系xOy中,矩形OABC的边长OA、OC分别为12cm、6cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B,且18a+c=0.1)求抛物线的解析式.2)如果点P由点A开始沿AB边以1cm/s的速度向终点B移动,同时点Q由点B开始沿BC边以2cm/s 的速度向终点C移动.①移动开始后第t秒时,设△PBQ的面积为S,试写出S与t之间的函数关系式,并写出t的取值范围.②当S取得最大值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.26.如图7,已知抛物线.(1)填空:抛物线的顶点坐标是(,),对称轴是;2)已知y轴上一点A(0,﹣2),点P在抛物线上,过点P作PB⊥x轴,垂足为B.若△PAB是等边三角形,求点P的坐标;((2)3)在(2)的条件下,点M在直线AP上.在平面内是否存在点N,使以点O、点A、点M、点N为顶点的四边形为菱形?若存在,直接写出所有满足条件的点N的坐标;若不存在,请说明理由.9.(4分)将抛物线向右平移2个单位,得到抛物线y2的图象.P是抛物线y2对称轴上的一个动点,直线x=t平行于y轴,分别与直线y=x、抛物线y2交于点A、B.若△ABP 是以点A或点B为直角顶点的等腰直角三角形,求满足条件的t的值,则t=3+或3﹣或2+或2﹣.解:∵抛物线y1=x2向右平移2个单位,∴抛物线y2的函数解析式为y=(x﹣2)2=x2﹣4x+4,∴抛物线y2的对称轴为直线x=2,∵直线x=t与直线y=x、抛物线y2交于点A、B,∴点A的坐标为(t,t),点B的坐标为(t,t2﹣4t+4),∴AB=|t2﹣4t+4﹣t|=|t2﹣5t+4|,AP=|t﹣2|,∵△APB是以点A或B为直角顶点的三角形,∴|t2﹣5t+4|=|t﹣2|,∴t2﹣5t+4=t﹣2①或t2﹣5t+4=﹣(t﹣2)②,整理①得,t2﹣6t+6=0,解得t1=3+,t2=3﹣,整理②得,t2﹣4t+2=0,解得t1=2+,t2=2﹣,综上所述,满足条件的t值为:3+或3﹣或2+或2﹣,故答案为:3+或3﹣或2+或2﹣.23故该运动员的成绩是(3+3)m.综上所述,满足条件的点D的坐标是(,1)或(,﹣1)或(,﹣1).10.如图,等腰Rt△ABC(解答:解:设CD的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y∴当C从D点运动到E点时,即0≤x≤2时,y==.当A从D点运动到E点时,即2<x ≤4时,y==∴y与x之间的函数关系由函数关系式可看出A中的函数图象与所求的分段函数对应.故选:A.2(1)求该二次函数的关系式;2)当x为何值时,y有最小值,最小值是多少?(3)若A(m,y1),B(m+1,y2)两点都在该函数的图象上,试比较y1与y2的大小.解答:解:(1)根据题意,∴该二次函数关系式为y=x2﹣4x+5;(2)∵y=x2﹣4x+5=(x﹣2)2+1,∴当x=2时,y有最小值,最小值是1,3)∵A(m,y1),B(m+1,y2)两点都在函数y=x2﹣4x+5的图象上,所以,y1=m2﹣4m+5,y2=(m+1)2﹣4(m+1)+5=m2﹣2m+2,y2﹣y1=(m2﹣2m+2)﹣(m2﹣4m+5)=2m﹣3,∴①当2m﹣3<0,即m<时,y1>y2;②当2m﹣3=0,即m=时,y1=y2;③当2m﹣3>0,即m>时,y1<y2.23.如图所示,在平面直角坐标系xOy中,矩形OABC的边长OA、OC分别为12cm、6cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B,且18a+c=0.(1)求抛物线的解析式.(2)如果点P由点A开始沿AB边以1cm/s的速度向终点B移动,同时点Q由点B开始沿BC边以2cm/s的速度向终点C移动.①移动开始后第t秒时,设△PBQ的面积为S,试写出S与t之间的函数关系式,并写出t 的取值范围.②当S取得最大值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.解答:解:(1)∵抛物线的解析式为y=ax2+bx+c,由题意知点A(0,﹣12),∴c=﹣12,又∵18a+c=0,∵AB∥OC,且AB=6cm,∴抛物线的对称轴是,∴b=﹣4,所以抛物线的解析式为;2)①,(0<t<6)②当t=3时,S取最大值为9(cm2),这时点P的坐标(3,﹣12),点Q坐标(6,﹣6)若以P、B、Q、R为顶点的四边形是平行四边形,有如下三种情况:(Ⅰ)以PB为对角线,当点R在BQ的左边,且在PB下方时,点R的坐标(3,﹣18),将(3,﹣18)代入抛物线的解析式中,满足解析式,所以存在,点R的坐标就是(3,﹣18),(Ⅱ)以PQ为对角线,当点R在BQ的左边,且在PB上方时,点R的坐标(3,﹣6),将(3,﹣6)代入抛物线的解析式中,不满足解析式,所以点R不满足条件.(Ⅲ)以BQ为对角线,当点R在BQ的右边,且在PB上方时,点R的坐标(9,﹣6),将(9,﹣6)代入抛物线的解析式中,不满足解析式,所以点R不满足条件.综上所述,点R坐标为(3,﹣18).26.(12分)如图,已知抛物线.(1)填空:抛物线的顶点坐标是(0,﹣1),对称轴是y轴;2)已知y轴上一点A(0,﹣2),点P在抛物线上,过点P作PB⊥x轴,垂足为B.若△PAB是等边三角形,求点P的坐标;3)在(2)的条件下,点M在直线AP 上.在平面内是否存在点N,使以点O、点A、点M、点N为顶点的四边形为菱形?若存在,直接写出所有满足条件的点N的坐标;若不存在,请说明理由.解答:解:(1)由可知:顶点坐标是(0,﹣1),对称轴是y轴(或x=O).(2)∵△PAB是等边三角形,∴∠ABO=90°﹣60°=30°,∴AB=20A=4,∴PB=4,把y=﹣4代入y=﹣x2﹣1,得x=±2 ,P1(2 ,﹣4),P2(﹣2 ,﹣4).3)∵点A的坐标为(0,﹣2),点P的坐标为(2 ,﹣4),∴设线段AP所在直线的解析式为y=kx+b,∴解得:∴解析式为:y=﹣x﹣2,设存在点N使得OAMN是菱形,∵点M在直线AP上,∴设点M的坐标为:(m,﹣m﹣2),如图1,作MQ⊥y轴于点Q,则MQ=m,AQ=OQ﹣OA=m+2﹣2=m,∵四边形OAMN为菱形,∴AM=AO=2,∴在直角三角形AMQ中,AQ2+MQ2=AM2,即:m2+(m)2=22,解得:m=±代入直线AP的解析式求得y=﹣3或﹣1,当P点在抛物线的右支上时,分为两种情况:当N在右图2位置时,∵OA=MN,∴MN=2,又∵M点坐标为(,﹣3),∴N点坐标为(,﹣1),即N1坐标为(,﹣1).当N在右图2位置时,∵MN=OA=2,M点坐标为(﹣,﹣1),∴N点坐标为(﹣,1),即N2坐标为(﹣,1).当P点在抛物线的左支上时,分为两种情况:第一种是当点M在线段PA上时(PA内部)我们求出N点坐标为(﹣,﹣1);第二种是当M点在PA的延长线上时(在第一象限)我们求出N点坐标为(,1);∴存在N1(,﹣1),N2(﹣,1)N3(﹣,﹣1),N4(,1)使得四边形OAMN 是菱形;。

相关文档
最新文档