2020届高考数学(理)二轮复习专题检测:(5)平面向量
2020年高考数学二轮限时训练三角函数、平面向量2理
第三部分:三角函数、平面向量(2)(限时:时间45分钟,满分100分)一、选择题1 . (2020 年湖北高考)设 a = (1 , - 2) , b = ( — 3,4) , c = (3,2),则(a + 2b) • c =()A . ( — 15, 12)B . 0 C.— 3 D . — 11 【解析】•/ a + 2b = ( — 5,6),•••(a + 2b) • c = ( — 5,6) • (3,2) =— 15 + 12=— 3.【答案】 C2 .如图,已知正六边形 P 1P 2P 3P4RR ,下列向量的数量积中最大的是 ( )【解析】 利用数量积的几何意义,向量 P 1P 3、P 1P 4、P 1P 5、PR 中,P 1P 3在向量P 1P 2方向上 的投影最大,故 P 1F 2 • P 1P 3最大.【答案】 A3. (2020年江安质检)设A (a,1) , B (2 , b ) , C (4,5)为坐标平面上三点, 0为坐标原点.若0A 与0B 在0C 方向上的投影相同,则 a 与b 满足的关系式为() A . 4a — 5b = 3 B . 5a — 4b = 3C. 4a + 5b = 14 D . 5a + 4b = 12【答案】 A1 1 3 一【解析】O A • O C 由已知得 —— |O ©0E • O C |O © 4a + 58+ 5b ,41 — .41, •- 4a — 5b = 3. C.P 1P 2 • P P D.P 1P 2 • P1R4 .已知a= 3, 2si n a , b =,cos a, ?,且a与b平行,则锐角a的值为()A. 8B. n6nC.〒D. 4n 3" 【解析】•• ■ a // b , 13^ 1—一 2sin a •石 COS a= 0,3 2 21 1即 ---- s in 2 2 2a = 0 ,• Sin 2 a= 1. 又••• 0<a< n 2,••• 0<2a <n,【答案】 C5. (2020年汤阴模拟)在厶ABC 中,(B ~C + B^A ) •AC = |A ~C|2,则三角形ABC 的形状一定 是()A .等边三角形B •等腰三角形 C.直角三角形 D •等腰直角三角形【解析】 由(B"C + B A ) •A'C = |A"C|2,得 A T C • (B ~C + B^A — A_C) = 0, 即 A T C • (B ~C + B ^ + CA )= o ,2B T = 0,AA C ±B A ,•/A = 90° 【答案】 C、填空题【解析】a •b = |a||b| cos 0,— 3 = 3X 2X cos 0, 即卩 1 cos 0=— 2又•0€ [0 ,n ] ,「.0 =2n3 . 6 .(201 1年上海春招)已知|a| = 3,|b| = 2,若a •b =— 3,则a 与b 夹角的大小为【答案】 n则 2 a= — , •a n ~4'••AC 2n 3【解析】 对于A , AC + A 乍=AC + CD = AD = 2B C ,故A 正确.1 —对于 B,vA D = A B + B C + C D = A B + ^A D + A F ,1• 2A D =A B + A F ,•••A E = 2A B + 2A "F ,故 B 正确.对于 C,VA c ・A~D = I A E I IA "C|COS / DAC= |A ~D| •3|A "B|cos 303 =^lA B||A D| , AD •A B = |A D| • |A B |cos Z DAB=|A ~D||A E|cos 601 _= 2|A _B||A D|.故 C 不正确.对于 D,v (A D •A F)E F = |A D||A F |cos 60 ° •E F ,1 =2|A D||A F| •E F , AD(A F •E F)—> —> —> =AD • |A F ||E F |cos 120=(-2E^) • |AP| • ADI •(—弓7 . (2020年江西高考)如图,正六边形 ABCDE 中,有下列四个命题:—> —> —>A . AC + AF = 2BCB . A "D = 2AB + 2A "?C. A _C •AD = A D •A 'B —> —> —> —> —> —>D. (A D •A F)E F = AD(A F •E F)其中真命题的代号是.(写出所有真命题的代号)AB=2|A 1D| • |A •E "F ,故D 正确.【答案】 A B D8. (2020年淮安模拟)△ ABC 内接于以 O 为圆心的圆,且 30" + 4O B — 5O C = 0,则/C【解析】•/ 30" + 4013 — 5O C = 0,••• 3O 1 + 4O B = 5OC ,—1 2 —12 —1 —1 —1 2 • 9OA + 16OB + 24OA •O B = 25OC .又 O A 2= O —B 2 = O C 2,又 30A + 4OB = 5OC , •••点 C 在劣弧 AB 上,C = 135°.【答案】135°三、解答题9 •已知| a| = 1, |b| = .2 a 与b 的夹角为0.(1)若 a // b 求 a • b ;⑵若a — b 与a 垂直,求0.【解析】(1) ••• a / b ,「.0= 0 或 n,• a • b = | a|| b|cos 0= 1 x :2 x cos 0=± '2.⑵•「(a — b)丄 a ,「. a •( a — b) = 0,2 即 a — a •b = 0,• 1 — 1 x ■'2cos 0= 0,二 cos 0=孑.nT0 € [0 ,n ] ,「・0=才.10.已知向量 O A = (3 , — 4) , O —B = (6 , — 3),OC = (5 — m — (3 + m)).(1)若点A 、B 、C 不能构成三角形,求实数 m 应满足的条件;⑵ 若厶ABC 为直角三角形,求实数 m 的值.【解析】 (1)已知向量 O 11 = (3 , — 4) , O B = (6 , — 3) , O C = (5 — m — (3 + m)), 若点A B 、C 不能构成三角形,则这三点共线,• OALOB.VA I B = (3,1) , A T C = (2 - m,1 - m),1故知3(1 —m)= 2 - m「•实数m=㊁时,满足条件.⑵由题意,△ ABC为直角三角形,①若/A为直角,则A E丄AC,• 3(2 —m)+ (1 —m)= 0,解得m= 4.②若/B 为直角,B C = ( — 1 —m, —m),3则A"B ±B C , • 3( — 1 —m) + ( —m)= 0,解得m= —③若/C为直角,则B C ±A C ,• (2 —m)( — 1 —m)+ (1 —m)( —m)= 0,解得m=号5。
2020年高考数学二轮专题训练—平面向量
平面向量一、选择题:本大题共15题,在每小题给出的四个选项中,只有一项是符合题目要求的.1、在平行四边形ABCD 中,AC 为一条对角线,若(2,4)AB =u u u r ,(1,3)AC =u u u r ,则AB =u u u r ( )A . (-2,-4)B .(-3,-5)C .(3,5)D .(2,4) 2 若过两点P 1(-1,2),P 2(5,6)的直线与x 轴相交于点P ,则点P 分有向线段12PP u u u u r 所成的比λ的值为A.-13B. -15C. 15D. 133、在平行四边形ABCD 中,AC 与BD 交于点O E ,是线段OD 的中点,AE 的延长线与CD交于点F .若AC =u u u r a ,BD =u u u r b ,则AF =u u u r ( ) A .1142+a b B .2133+a b C .1124+a b D .1233+a b 4、设D 、E 、F 分别是△ABC 的三边BC 、CA 、AB 上的点,且2,DC BD =u u u r u u u r 2,CE EA =u u u r u u u r 2,AF FB =u u u r u u u r 则AD BE CF ++u u u r u u u r u u u r 与BC uuu rA.反向平行B.同向平行C.互相垂直D.既不平行也不垂直5、已知O ,A ,B 是平面上的三个点,直线AB 上有一点C ,满足20AC CB +=u u u r u u u r ,则OC =u u u r ( )A .2OA OB -u u u r u u u r B .2OA OB -+u u u r u u u rC .2133OA OB -u u u r u u u rD .1233OA OB -+u u u r u u u r 6、平面向量a r ,b r 共线的充要条件是( ) A. a r ,b r 方向相同 B. a r ,b r 两向量中至少有一个为零向量C. R λ∃∈, b a λ=r rD. 存在不全为零的实数1λ,2λ,120a b λλ+=r r r7、在ABC △中,AB =u u u r c ,AC =u u u r b .若点D 满足2BD DC =u u u r u u u r ,则AD =u u u r ( )A .2133+b c B .5233-c b C .2133-b c D .1233+b c 8、已知两个单位向量a r 与b r 的夹角为135︒,则||1a b λ+>r r 的充要条件是A.2)λ∈B.(2,0)λ∈-C.(,0)(2,)λ∈-∞+∞UD.(,2)(2,)λ∈-∞+∞U9、若(2,4)AB =u u u r ,(1,3)AC =u u u r , 则BC =u u u r ( )A .(1,1)B .(-1,-1)C .(3,7)D .(-3,-7)10、已知平面向量,(2,)b m =-r ,且a r //b r ,则23a b +r r =( )A 、(5,10)--B 、(4,8)--C 、(3,6)--D 、(2,4)--11、设a r =(1,-2), b r =(-3,4),c=(3,2),则(2)a b c +⋅r r r =A.(15,12)-B.0C.-3D.-1112、已知平面向量a r =(1,-3),b r =(4,-2),a b λ+r r 与a r 垂直,则λ是( )A. -1B. 1C. -2D. 2 13、设平面向量(3,5),(2,1),2______==--=则a b a bA .(7,3) B.(7,7) C.(1,7) D.(1,3) 14、已知两个单位向量a r 与b r 的夹角为3π,则a b λ+r r 与a b λ-r r 互相垂直的充要条件是( ) A .3λ=3λ=B .12λ=-或12λ= C .1λ=-或1λ= D .λ为任意实数 二.填空题:本大题共7小题。
2020届高考数学(理)二轮强化专题卷(5)平面向量
(5)平面向量1、在ABC △中,记π,,2,4AB a AC b AB BC ABC ====∠=,AD 是边BC 的高线O 是线段AD 的中点,则AO =( ) A.1123a b + B.1132a b +C.1134a b +D.1136a b +2、如图,正方形ABCD 中, M N 、分别是BC CD 、的中点,若AC AM BN λμ=+,则λμ+=( )A. 2B. 83C.65 D. 853、向量,,a b c 在正方形网格中的位置如图所示,若c a bλμ=+(,R)λμ∈,则λμ=( )A .2B .4C .12D .12-4、已知M 是ABC △内一点,11,34AM AB AC =+则ABM △ABC △的面积之比为( )A.14B.13C.12D.235、如图,在ABC △中,π3ABC ∠=,2AD DB =u u ur u u u r ,P 为CD 上一点,且满足12AP mAC AB =+uu u r uuu r uu u r ,若ABC △的面积为||AP uu u r的最小值为( )B.3 D.436、如图,ABC △中,,,AD DB AE EC CD ==与BF 交于,F 设,,AB a AC b AF xa yb ===+,则(,)x y 为 ( )A.11(,)22B.22(,)33C.11(,)33D.21(,)327、在ABC △中,已知D 是AB 边上的一点,若,12,3AD DB CD CA CB λ==+,则λ=( ) A.23B.13C.13-D.23-8、向量(0,2),(3,1)m n =-=,则与2m n +共线的向量可以是()A 1)-B .(-C .(1)-D .(-9、在Rt ABC △中,90C ∠︒=,3AC =,则AB AC ⋅等于( ) A .-3B .-6C .9D .610、已知ABC △是边长为2的等边三角形,P 为平面ABC △内一点,则()PA PB PC ⋅+u u ru u ru u u r的最小值是( ) A.32- B.2- C.43-D.1-11、已知向量()(),,1,2a m n b ==-,若()||25,0a a b λλ==<,则m n -=__________. 12、已知点O 在ABC ∆所在平面内,且4AB =,3AO =,()0OA OB AC +⋅=则AB AC ⋅取得最大值时线段BC 的长度是__________.13、在等腰直角三角形ABC 上(包括边界)有一点P ,2AB AC ==,1PA PB ⋅=u u r u u r,则PC uu u r 的取值范围是 。
2020届高考数学(理)二轮重点突击专题卷(4)平面向量
重点突击专题卷(4)平面向量1、已知向量(2,0,a =,则下列向量中与a 成45︒的夹角的是()A. (0,0,2)B. (2,0,0)C.D.0)2、已知i j k 、、为空间两两垂直的单位向量,且32,2a i j k b i j k =+-=-+,则53a b ⋅=( ) A .15-B .5-C .3-D .1-3、已知P 是ABC △内的一点,1()3AP AB AC =+,则ABC △的面积与ABP △的面积的比值为( ) A.32B.2C.3D.64、若132a k b ==(,),(,),且a b ,共线,则2a b a b -⋅+()()=( ) A.-13 B.0C.-12D.-55、设向量(2,4)a =与向量(,6)b x =共线,则实数x =( )A .2B .3C .4D .66、下列命题中正确的是( )A .若//,//a b b c ,则a c 与所在直线平行B .向量a b c 、、共面即它们所在直线共面C .空间任意两个向量共面D .若//a b ,则存在唯一的实数λ,使a b λ=7、在ABC △中,13BD BC =,若 AB a AC b ==,,则AD =( )A.2133a b +B.1233a b + C.1233a b -D.2133a b -8、己知向量(2,3),(,4)a bm ==,若,a b共线,则实数m =( )A.-6B.83- C. 83 D.69、已知向量()()2,31,2a b ==-,,若42ma b a b +-与共线,则m 的值为( ) A .12B . 2C .12-D .2-10、设a 与b 是两个不共线向量,且向量a b λ+与(2)b a --共线,则λ=( ) A.0B.12-C.-2D.1211、四边形ABCD 中,2AB a b =+,4,53BC a b CD a b =--=--,其中,a b 不共线,则该四边形ABCD 一定为( ) A.平行四边形B.矩形C.梯形D.菱形12、已知已知,,a b c 是不共面的三个向量,则能构成一个基底的一组向量是( ) A . 2,,2a a b a b -+ B . 2,,2b b a b a -+ C .,2,a b b c -D .,,c a c a c +-13、已知()1,2a =r,()4,bk =r ,若()()2//3a b a b +-r rr r ,则k=_________.14、若()()12,3,3,2,,2A B C m ⎛⎫--⎪⎝⎭三点共线,则m 的值为__________. 15、设向量()(),1,1,2a m b ==,且222a b a b +=+,则m =__________.16、在ABC ∆中, ,3A O π∠=为平面内一点, 且,OA OB OC M ==为劣弧BC 上的一动点,且OMpOB qOC =+,则p q +的取值范围为__________.17、已知向量()()()3,1,1,2,2,1a b c =-=-=,若(),a xb yc x y R =+∈,则x y +=__________.18、在ABC △中,1ACAB ==,45BAC ∠=︒,点P 满足:(1)(0)BP BA BC λλλ=-+>,2AP =1.求BA AC ⋅的值;2.求实数λ的值19、若()()()1,2,3,2,0,6a b c ==-= 1. k 为何值时()()3ka b a b +⊥- 2.若cxa yb =+,求实数23x y -的值20、已知三个点()()()2,1,3,2,1,4AB D -.1.求证: AB AD ⊥;2.要使四边形ABCD 为矩形,求点C 的坐标,并求矩形ABCD 两对角线所夹锐角的余弦值。
2020年高考数学(理)二轮专项复习专题06 平面向量(含答案)
2020年高考数学(理)二轮专项复习专题06 平面向量平面向量是工具性的知识,向量的坐标化使得向量具有代数和几何两种形式,它把“数”和“形”很好地结合在一起,体现了重要的数学思想方法,在高考中,除了对向量本身的概念与运算的知识进行考察外,向量还与平面几何、三角几何、解析几何、立体几何等知识综合在一起考查,本专题应该掌握向量的基本概念、向量的运算方法与公式以及向量的应用.§6-1 向量的概念与运算【知识要点】1.向量的有关概念与表示(1)向量:既有方向又有大小的量,记作向量c b a ,,,自由向量:数学中所研究的向量是可以平移的,与位置无关,只要是长度相等,方向相同的向量都看成是相等的向量.(2)向量的模:向量的长度,记作:|||,|a AB向量的夹角:两个非零向量a ,b ,作b a ==OB OA ,,则(AOB 称为向量a ,b 的夹角,记作:〈a ,b 〉 零向量:模为0,方向任意的向量,记作:0单位向量:模为1,方向任意的向量,与a 共线的单位向量是:)0(||=/±a a a(3)相等向量:长度相等,且方向相同的向量叫相等向量. 相反向量:长度相等,方向相反的向量.向量共线:方向相同或相反的非零向量是共线向量,零向量与任意向量共线;共线向量也称为平行向量.记作a ∥b向量垂直;〈a ,b )=90°时,向量a 与b 垂直,规定:0与任意向量垂直. 2.向量的几何运算(注意:运算法则、运算律)(1)加法:平行四边形法则、三角形法则、多边形法则. (2)减法:三角形法则. (3)数乘:记作:λ a .它的长度是:|λ a |=|λ |·|a | 它的方向:①当λ >0时,λ a 与a 同向 ②当λ <0时,λ a 与a 反向 ③当λ =0时,λ a =0 (4)数量积:①定义:a ·b =|a ||b |cos 〈a ,b 〉其物理背景是力在位移方向所做的功. ②运算律:1.(交换律)a ·b =b ·a2.(实数的结合律)λ (a ·b )=(λ a )·b =a ·(λ b ) 3.(分配律)(a +b )·c =a ·c +b ·c ③性质:设a ,b 是非零向量,则: a ·b =0⇔a ⊥ba 与b 同向时,a ·b =|a |·|b |a 与b 反向时,a ·b =-|a |·|b | 特殊地:a ·a =|a |2或a a a ⋅=||夹角:||||,cos b a ba b a ⋅>=<|a ·b |≤|a | |b |3.向量的坐标运算若在平面直角坐标系下,a =(x 1,y 1),b =(x 2,y 2) (1)加法:a +b =(x 1+x 2,y 1+y 2) (2)减法:a -b =(x 1-x 2,y 1-y 2) (3)数乘:λ a =(λ x 1,λ y 1) (4)数量积:a ·b =x 1x 2+y 1y 2 (5)若a =(x ,y ),则22||y x +=a(6)若a =(x 1,y 1),b =(x 2,y 2),则222221212121||||,cos yx yx y y x x +++=>=<⋅⋅b a ba b a(7)若A (x 1,y 1),B (x 2,y 2),则221221)()(||y y x x AB -+-=(8)a 在b 方向上的正射影的数量为22222121||,cos ||y x y y x x ++=>=<⋅b b a b a a 4.重要定理(1)平行向量基本定理:若a =λ b ,则a ∥b ,反之:若a ∥b ,且b ≠0,则存在唯一的实数λ 使得a =λ b (2)平面向量基本定理:如果e 1和e 2是平面内的两个不共线的向量,那么该平面内的任一向量a ,存在唯一的一对实数a 1,a 2使a =a 1e 1+a 2e 2(3)向量共线和垂直的充要条件:若在平面直角坐标系下,a =(x 1,y 1),b =(x 2,y 2) 则:a ∥b ⇔x 1y 2-x 2y 1=0,a ⊥b ⇔x 1x 2+y 1y 2=0(4)若a =(x 1,y 1),b =(x 2,y 2),则⎪⎩⎪⎨⎧==⇔=2121y y x x b a【复习要求】1.准确理解相关概念及表示,并进行简单应用;2.掌握向量的加法、减法、数乘运算的方法、几何意义和坐标运算,了解向量的线性运算的法则、性质;会选择合适的方法解决平面向量共线等相关问题;3.熟练掌握向量的数量积的运算、性质与运算律,会利用向量的数量积解决有关长度、角度、垂直、平行等问题.【例题分析】例1 向量a 、b 、c 是非零的不共线向量,下列命题是真命题的个数有( )个 (1)(b ·c )a -(c ·a )b 与c 垂直, (2)若a ·c =b ·c ,则a =b , (3)(a ·b )c =a (b ·c ), (4)a ·b ≤|a ||b |A .0B .1C .2D .3【分析】(1)真命题,注意:向量的数量积是一个实数,因此[(b ·c )a -(c ·a )b ]·c =(b ·c )(a ·c )-(c ·a )(b ·c )=0,所以c (b ·c )a -(c ·a )b 与c 垂直;(2)假命题.a ·c =b ·c ≠a =b ;即向量的数量积不能两边同时消掉相同的向量,比如:向量a 与向量b 都是与向量c 垂直且模长不等的向量,可以使得左边的式子成立,但是a 、b 这两个向量不相等;(3)假命题.(a ·b )c ≠a (b ·c ),实际上(a ·b )c 是与向量c 方向相同或相反的一个向量,a (b ·c )是与a 方向相同或相反的一个向量,向量a 、c 的方向可以不同,左右两边的向量就不等;(4)真命题.a ·b =|a ||b |cos 〈a ,b 〉,且cos 〈a ,b 〉≤1,所以a ·b ≤|a ||b |. 解答:选C .【评析】(1)我们在掌握向量的有关概念时要力求准确和完整,比如平行向量(共线向量)、零向量等,注意积累像这样的容易错误的判断并纠正自己的认识;(2)向量的加减运算与数乘运算的结果仍然是一个向量,而向量的数量积运算结果是一个实数,要熟练掌握向量的运算法则和性质.例2 已知向量a =(1,2),b =(2,-3).若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c =( )A .)37,97(B .)97,37(--C .)97,37(D .)37,97(--【分析】知道向量的具体坐标,可以进行向量的坐标运算;向量的平行与垂直的关系也可以用坐标体现,因此用待定系数法通过坐标运算求解.解:不妨设c =(m ,n ),则a +c =(1+m ,2+n ),a +b =(3,-1),对于(c +a )∥b ,则有-3(1+m )=2(2+n );又c ⊥(a +b ),则有3m -n =0,则有37,97-=-=n m 故选择D 【评析】平面向量的坐标运算,通过平面向量的平行和垂直关系的考查,很好地体现了平面向量的坐标运算在解决具体问题中的应用.此外,待定系数法是在解决向量的坐标运算中常用的方法.例3 (1)已知向量)10,(),5,4(),12,(k k -===,且A 、B 、C 三点共线,求实数k 的值. (2)已知向量a =(1,1),b =(2,-3),若k a -2b 与a 垂直,求实数k 的值. 【分析】(1)向量a 与b (b ≠0)共线⇔存在实数m 使a =m b . 当已知向量的坐标时,a ∥b ⇔x 1y 2-x 2y 1=0.(2)利用向量的数量积能够巧妙迅速地解决有关垂直的相关问题. a ·b =0⇔a ⊥b ⇔x 1x 2+y 1y 2=0解:(1)∵)10,(),5,4(),12,(k OC OB k OA -===, ∴)5,4(),7,4(-+=--=k CB k AB , ∵A 、B 、C 三点共线,∴//,即(4-k )(-5)-(4+k )(-7)=0,解得:⋅-=32k (2)由(k a -2b )⊥a ,得(k a -2b )·a =k a 2-2b ·a =2k -2·(2-3)=0,所以k =-1. 【评析】①向量a 与b (b ≠0)共线的充要条件是存在实数m 使a =m b ;当已知向量的坐标时,a ∥b ⇔x 1y 2-x 2y 1=0.若判断(或证明)两个向量是否共线,只要判断(或证明)两个向量之间是否具有这样的线性关系即可;反之,已知两个向量具有平行关系时,也有线性等量关系成立.②利用向量的共线定理来解决有关求参数、证明点共线或线段平行,以及利用向量的数量积解决垂直问题等是常见的题型,注意在解题过程中适当选择方法、正确使用公式,并注意数形结合.例4 已知:|a |=2,|b |=5,〈a ,b 〉=60°,求:①a ·b ;②(2 a +b )·b ;③|2a +b |;④2 a +b 与b 的夹角θ 的余弦值【分析】利用并选择合适的公式来求数量积、模、夹角等:a ·b =|a ||b |cos 〈a ,b 〉=x 1x 2+y 1y 2a a a a a a ⋅⋅=⇒=||||2,若a =(x ,y ),则22||y x +=a222221212121||||,cos yx yx y y x x +++=>=<⋅⋅b a ba b a解:①∵|a |=2,|b |=5,〈a ,b 〉=60°,∴a ·b =|a ||b |cos 〈a ,b 〉=5; ②(2a +b )·b =2a ·b +b ·b =10+25=35; ③;6125201644)2(|2|222=++=++=+=+⋅⋅b b a a b a b a④⋅==++=++>=+<⋅⋅⋅⋅6161756135||)2()2(|||2|)2(,2cos 2b b a b b a b b a b b a b b a【评析】向量的数量积是一个非常好的工具,利用向量的数量积可以解决求长度、角度、距离等相关问题,同时用向量的数量积解决垂直相关问题也是常见的题型,注意使用正确的公式.例5 已知向量a =(sin θ ,cos θ -2sin θ ),b =(1,2). (Ⅰ)若a ∥b ,求tan θ 的值;(Ⅱ)若|a |=|b |,0<θ <π,求θ 的值.【分析】已知向量的坐标和平行关系与模长,分别用坐标公式刻画. 解:(Ⅰ)因为a ∥b ,所以2sin θ =cos θ -2sin θ ,于是4sin θ =cos θ ,故41tan =θ. (Ⅱ)由|a |=|b |知,sin 2θ +(cos θ -2sin θ )2=5,所以1-2sin2θ +4sin 2θ =5. 从而-2sin2θ +2(1-cos2θ )=4,即sin2θ +cos2θ =-1, 于是22)4π2sin(-=+θ又由0<θ <π知,49π4π24π<+<θ,所以45π4π2=+θ,或47π4π2=-θ 因此2π=θ,或43π=θ.例6 设a 、b 、c 是单位向量,且a ·b =0,则(a -c )·(b -c )的最小值为( ) (A)-2(B)22-(C)-1(D)21-【分析】由向量的模长以及夹角,考虑从数量积的运算寻找解决问题的突破口解:∵a ,b ,c 是单位向量,∴(a -c )·(b -c )=a ·b -(a +b )·c +c 221〉,〈cos 121-≥+-=⋅⋅c b a故选D .例7 在△ABC ,已知23||.||32BC ==⋅,求角A ,B ,C 的大小. 【分析】熟悉向量的数量积的形式,再结合三角公式来解决问题 解:设BC =a ,AC =b ,AB =c由||||32AC AB AC AB ⋅⋅=得bc A bc 3cos 2=,所以23cos =A 又A ∈(0,π),因此6π=A由23||||3BC =⋅得23a bc =,于是43sin 3sin sin 2==⋅A B C 所以43)sin 23cos 21(sin ,43)6π5sin(sin =+=-⋅⋅C C C C C ,因此 02cos 32sin ,3sin 32cos sin 22=-=+⋅C C C C C ,即0)3π2sin(=-C由6π=A 知6π50<<C ,所以34π3π2,3π<--C ,从而03π2=-C ,或π3π2=-C ,即6π=C ,或32π=C ,故 6π,32π,6π===C B A ,或⋅===32π,6π,6πC B A【评析】向量往往是一步工具性的知识应用,继而转化为三角函数、不等式、解三角形等知识,因此,熟练准确掌握向量的基本概念、基本运算法则、性质,以及灵活选择合适的公式非常必要.练习6-1一、选择题1.平面向量a ,b 共线的充要条件是( ) A .a ,b 方向相同B .a ,b 两向量中至少有一个为零向量C .∃λ ∈R ,b =λ aD .存在不全为零的实数λ 1,λ 2,λ 1a +λ 2b =02.已知平面向量a =(1,-3),b =(4,-2),λ a +b 与a 垂直,则λ 是( ) A .-1 B .1 C .-2 D .2 3.已知四边形ABCD 的三个顶点A (0,2),B (-1,-2),C (3,1),且2=,则顶点D 的坐标为( ) A .)27,2(B .)21,2(-C .(3,2)D .(1,3)4.设△ABC 的三个内角A ,B ,C ,向量)cos 3,(cos ),sin ,sin 3(A B B A ==n m ,若m ·n =1+cos(A +B ),则C =( ) A .6π B .3π C .32π D .65π 二、填空题5.设a =(2k +2,4),b =(8,k +1),若a 与b 共线,则k 值为______. 6.已知向量),3(),2,1(m OB OA =-=,若AB OA ⊥,则 m =______. 7.已知M (3,-2),N (-5,-1),MN MP 21=,则P 点坐标为______. 8.已知a 2=1,b 2=2,(a -b )·a =0,则a 和b 的夹角是______. 三、解答题9.已知向量a =(x +3,x 2-3x -4)与AB 相等,其中A (1,2),B (3,2),求实数x 的值.10.已知向量a 与b 同向,b =(1,2),a ·b =10.(1)求向量a 的坐标;(2)若c =(2,-1),求(b ·c )a .11.若向量a 与b 的夹角为60°,|b |=4,(a +2b )·(a -3b )=-72,求向量a 的模.§6-2 向量的应用【知识要点】1.向量的基本概念与运算与平面几何联系解决有关三角形的形状、解三角形的知识; 2.以向量为载体考查三角函数的知识;3.在解析几何中用向量的语言来表达平行、共线、垂直、中点以及定比分点等信息,实际上还是考查向量的运算方法与公式. 【复习要求】会用向量方法解决某些简单的平面几何问题、力学问题与其他一些实际问题,体会向量是一种处理几何问题、物理问题等的工具,发展运算能力和解决实际问题的能力.例1若·==⋅⋅,求证三角形ABC 是正三角形, 【分析】给出的是一个连等的等式,考虑移项进行向量的运算,进而得到正三角形的某些判定的结论. 证明0)()(=+=-=-⋅⋅⋅⋅,即与BC 边上的中线垂直,所以AB =AC ,同理BC =BA ,可以得到该三角形是等边三角形;例2 已知四边形ABCD 中,若⋅⋅⋅⋅===,判断四边形ABCD 的形状. 【分析】已知向量的数量积的对称式,可以从运算和几何意义上分别研究. 解答1从几何意义上设k ====⋅⋅⋅⋅若k >0,则∠ABC ,∠BCD ,∠CDA ,∠DAB 都是钝角,与四边形内角和为360°矛盾,舍;同理k <0时,也不可能,故k =0,即四边形ABCD 为矩形.解答2从运算上,0)()(=+=-=-⋅⋅⋅⋅ 同理;0)()(=+=-=-⋅⋅⋅⋅ 于是BC AD //,同理CD AB //,得到四边形ABCD 是平行四边形;∴02)()(==+=-=-⋅⋅⋅⋅⋅ ∴BC AB ⊥,∴四边形ABCD 为矩形.【评析】利用数量积解决三角形的形状时,常常涉及向量的夹角问题,注意向量的数量积的正负对向量夹角的约束,另外,一些对称式告诉我们几何图形应该具有一个规则的形状,不因为改变字母而变化形状,我们可以直观判断形状.例3 已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量)1,3(-=m ,n =(cos A ,sin A ).若m ⊥n ,且a cos B +b cos A =c sin C ,求角A ,B 的大小.【分析】在三角形中,借助垂直向量的条件可以得到A 角的三角方程,从而求出三角形的内角A ,已知的等式左右两边是边的齐次式,可以借助三角形的正弦定理、三角公式等知识求三角形的其余内角.解:∵ 0sin cos 3=-=⊥⋅∴A A n m n m ,即3tan =A ,∴三角形内角;3π=A ∵a cosB +b cos A =c sinC ,∴sin A cos B +sin B cos A =sin 2C ,即sin(A +B )=sin 2C ,sin C =1,,2π=C ∴⋅=6πB 【评析】向量的知识经常被用在三角形或者解析几何等知识里,结合相关的知识点进行考查,常见的有中点的表达(比如221OBOA OM AB AM 、MB AM +===、等都说明M 是AB 中点)、定比分点的表达、平行(或共线)或垂直的表达等,要注意分析并积累向量语言表达的信息.例4 已知△ABC 的三个顶点的直角坐标分别为A (3,4)、B (0,0)、C (c ,0).(1)若0=⋅,求c 的值;(2)若c =5,求sin ∠A 的值.【分析】(1)利用点的坐标求向量的坐标,利用向量数量积的坐标公式转化为代数问题进行运算求解即可.(2)向量的数量积有代数和几何两种运算公式,为我们沟通了更多的等量关系,我们不仅可以数形结合,还可以利用解三角形的其他知识,如①利用数量积⋅求出cos A 进而求sin A ;②余弦定理正弦定理解:(1))4,3(),4,3(--=--=c 由0=⋅AC AB 可得-3(c -3)+16=0解得325=c (2)[法一]当c =5时,可得AB =5,52=AC ,BC =5,△ABC 为等腰三角形, 过B 作BD ⊥AC 交AC 于D ,可求得52=BD 故,552sin ==ABBD A[法二].cos ||||),4,2(),4,3(AC AB A AC AB AC AB ⋅=-=--=⋅=∈=+-=⨯∴∴∴552sin ],π,0[,55cos 166cos 525A A A A 【评析】向量的数量积有代数和几何两种运算公式,为我们沟通了更多的等量关系,使用时不仅可以数形结合,还可以和解三角形的其他知识——余弦定理、正弦定理一起来解决有关三角形的问题.例5 若等边△A B C 的边长为32,平面内一点M 满足3261+=,则 =⋅______.解析:建立直角坐标系,因为三角形是正三角形,故设C (0,0),)3,3(),0,32(B A ,利用向量坐标运算,求得)21,233(M ,从而求得)25,23(),21,23(--=-=,运用数量积公式解得为-2.另外,还可以通过向量的几何运算求解.解:),3265()6131()()(--=--=⋅⋅⋅ 660cos 3232,32||||=⨯===⋅⋅ ,得到.2-=⋅【评析】注意向量有两套运算公式,有坐标时用代数形式运算,没有坐标时用向量的几何形式运算,同时注意向量在解三角形中的几何运用,以及向量的代数化手段的重要性.例6 已知向量a =(cos a ,sin a ),b =(cos β ,sin β ),c =(-1,0) (Ⅰ)求向量b +c 的长度的最大值;(Ⅱ)设4π=α,且a ⊥(b +c ),求cos β 的值. 【分析】关于向量的模一方面有坐标的计算公式和平方后用向量的数量积运算的公式,另一方面有几何意义,可以数形结合;解:(1)解法1:b +c =(cos β -1,sin β ),则 |b +c |2=(cos β -1)2+sin 2β =2(1-cos β ).∵-1≤cos β ≤1,∴0≤|b +c |2≤4,即0≤|b +c |≤2.当cos β =-1时,有|b +c |=2,所以向量b +c 的长度的最大值为2. 解法2:∵|b |=1,|c |=1,|b +c |≤|b |+|c |=2 当cos β =-1时,有|b +c |=(-2,0),即|b +c |=2, b +c 的长度的最大值为2.(2)解法1:由已知可得b +c =(cos β -1,sin β ),a ·(b +c )=cos α cos β +sin α sin β -cos α =cos(α -β )-cos α . ∵a ⊥(b +c ),∴a ·(b +c )=0,即cos(α -β )=cos α .由4π=α,得4πcos )4πcos(=-β,即).(4ππ24πZ ∈±=-k k β ∴4ππ2+=k β或β =2k π,(k ∈Z ),于是cos β =0或cos β =1.解法2:若4π=α,则)22,22(=a ,又由b =(cos β ,sin β ),c =(-1,0)得,22sin 22cos 22)sin ,1(cos )22,22()(-+=-⋅=+⋅ββββc b a ∵a ⊥(b +c ),∴a ·(b +c )=0,即cos β (cos β -1)=0∴sin β =1-cos β ,平方后sin 2β =(1-cos β )2=1-cos 2β ,化简得cos β (cos β -1)=0 解得cos β =0或cos β =1,经检验,cos β =0或cos β =1即为所求例7 已知△ABC 的角A 、B 、C 所对的边分别是a 、b 、c ,设向量m =(a ,b ),n =(sin B ,sin A ),p =(b -2,a -2).(1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,边长c =2,角,3π=C 求△ABC 的面积. 【分析】已知向量的坐标和位置关系,考虑用坐标运算入手,结合三角形的条件解决问题 证明:(1)∵m ∥n ,∴a sin A =b sin B , 即Rbb R a a 22⋅⋅=,其中R 是三角形ABC 外接圆半径,a =b , ∴△ABC 为等腰三角形.解(2)由题意可知m ⊥p ,m ·p =0,即a (b -2)+b (a -2)=0,∴a +b =ab ,由余弦定理可知,4=a 2+b 2-ab =(a +b )2-3ab , 即(ab )2-3ab -4=0,∴ab =4(舍去ab =-1) ∴33πsin 421sin 21===⋅⋅C ab S 例8 已知向量)2sin ,2(cos ),23sin ,23(cos xx x x -==b a ,其中].2π,0[∈x(1)求a ·b 及|a +b |;(2)若f (x )=a ·b -2λ |a +b |的最小值是23-,求λ 的值. 【分析】只要借助向量的数量积以及模的坐标公式代入,继而转化为三角函数与函数的有关知识. 解:(1)x xx x x 2cos 2sin 23sin2cos 23cos =-=⋅b a ]2π,0[,cos 22cos 22)(||2∈=+=+=+x x x b a b a或]2π,0[,cos 22cos 22)2sin 23(sin )2cos 23(cos||22∈=+=-++=+x x x x x x x b a (2)f (x )=a ·b -2λ |a +b |=cos2x -4λ cos x =2cos 2x -4λ cos x -1=2(cos x -λ )2-2λ 2-1 ∵],1,0([cos ]2π,0[x x ∴∈①当λ ≤0时;f (x )的最小值是-1,不可能是23-,舍; ②当0<λ <1时,f (x )的最小值是23122-=--λ,解得;21=λ③当λ ≥1时,f (x )的最小值是2341-=-λ,解得185<=λ,舍;∴⋅=21λ【评析】向量的知识经常和三角函数、函数、不等式等的知识联系在一起进行考查,向量仅仅是一步坐标运算,继而转化为其他知识,因此使用公式时要准确,为后续解题做好准备.练习6-2一、选择题1.若为a ,b ,c 任意向量,m ∈R ,则下列等式不一定成立的是( ) A .(a +b )+c =a +(b +c ) B .(a +b )·c =a ·c +b ·c C .m (a +b )=m a +m b D .(a ·b )c =a (b ·c ) 2.设)31,(cos ),sin ,23(αα==b a ,且a ∥b ,则α 的值是( ) A .)(,4ππ2Z ∈+=k k α B .)(,4ππ2Z ∈-=k k α C .)(,4ππZ ∈+=k k α D .)(,4ππZ ∈-=k k α3.在△ABC 中,b a ==,,且a ·b >0,则△ABC 的形状为( ) A .锐角三角形 B .直角三角形C .钝角三角形D .等腰直角三角形4.已知:△ABC 的三个顶点A 、B 、C 及平面内一点P ,且=++,则点P 与△ABC 的位置关系是( )A .P 在△ABC 内部B .P 在△ABC 外部 C .P 在AB 边上或其延长线上D .P 在AC 边上二、填空题5.若向量a ,b 满足|a |=1,|b |=2,且a 与b 的夹角为3π,则|a +b |=______. 6.已知向量a =(cos θ ,sin θ ),向量)1,3(-=b ,则|2a -b |的最大值是______. 7.若)1,2(),3,1(x ==b a ,且(a +2b )⊥(2a -b ),则x =______.8.已知向量)5,3(),6,4(==OB OA ,且OB AC OA OC //,⊥,则向量=______ 三、解答题9.平面向量a 与b 的夹角为60°,a =(2,0),|b |=1,求|a +2b |.10.P 在y 轴上,Q 在x 轴的正半轴上,H (-3,0),M 在直线PQ 上,,0=⋅23-=.当点P 在y 轴移动时,求点M 的轨迹C 方程.11.已知向量a =(sin θ ,1),2π2π),cos ,1(<<-=θθb (1)若a ⊥b ,求θ ;(2)求|a +b |的最大值.习题6一、选择题1.已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2 a +3b =( ) A .(-5,-10) B .(-4,-8) C .(-3,-6) D .(-2,-4) 2.给出下列五个命题: ①|a |2=a 2;②aba b a 2=⋅;③(a ·b )2=a 2·b 2; ④(a -b )2=a 2-2a ·b +b 2;⑤若a ·b =0,则a =0或b =0;其中正确命题的序号是( ) A .①②③ B .①④ C .①③④ D .②⑤3.函数y =2x +1的图象按向量a 平移得到函数y =2x +1的图象,则( ) A .a =(-1,-1) B .a =(1,-1) C .a =(1,1) D .a =(-1,1) 4.若a 2=1,b 2=2,(a -b )·a =0,则a 与b 的夹角为( ) A .30° B .45° C .60° D .90° 5.已知在△ABC 中,,⋅⋅⋅==则O 为△ABC 的( ) A .内心B .外心C .重心D .垂心二、填空题6.已知p =(1,2),q =(-1,3),则p 在q 方向上的正射影长为______;7.如图,正六边形ABCDEF 中,有下列四个命题:①.2=+ ②.AF AB AD 22+= ③.AB AD AD AC ⋅⋅= ④.)()(EF AF AD EF AF AD ⋅=⋅其中真命题的代号是______(写出所有真命题的代号).8.给定两个长度为1的平面向量OA 和OB ,它们的夹角为120°.如图所示,点C 在以O 为圆心的圆弧AB 上变动.若OB y OA x OC +=,其中x ,y ∈R ,则x +y 的最大值是______.9.已知向量a =(2,4),b =(1,1),若向量b ⊥(a +λ b ),则实数λ 的值______;若b ba a a a c )(⋅⋅-=,则向量a 与c 的夹角为______;10.已知|a |=3,|b |=4,a ·b =-2,则|a +b |=______.三、解答题11.已知).1,3(),3,1(-==b a(1)证明:a ⊥b ;(2)若k a -b 与3a -k b 平行,求实数k ;(3)若k a -b 与k a +b 垂直,求实数k .12.设向量a =(cos23°,cos67°),b =(cos68°,cos22°),u =a +t b ,(t ∈R ).(1)求a ·b(2)求u 的模的最小值.13.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,.73tan =C(1)求cos C ;(2)若25=⋅,且a +b =9,求c .14.已知函数f (x )=kx +b 的图象与x ,y 轴相交于点A ,B ,j i j i ,(22+=,分别是与x ,y 轴正半轴同方向的单位向量)函数g (x )=x 2-x -6,(1)求k ,b 的值;(2)当x 满足f (x )>g (x )时,求函数)(1)(x f x g +的最小值.15.已知向量a =(x 2,x +1),b =(1-x ,t ),若f (x )=a ·b 在区间(-1,1)上是增函数,求t 的取值范围.专题06 平面向量参考答案练习6-1一、选择题1.D 2.A 3.A 4.C二、填空题5.3或-5 6.4 7.)23,1(-- 8.45°三、解答题 9.由已知)0,2(==AB a ,所以⎩⎨⎧=--=+043232x x x ,得x =-1.10.(1)由已知设a =(λ ,2λ )且λ >0,a ·b =λ +4λ =10,λ =2,所以a =(2,4);(2)(b ·c )a =(2-2)a =0.11.6.练习6-2一、选择题1.D . 2.C . 3.C . 4.D .二、填空题5.7 6.4 7.-6或9 8.)214,72(-三、解答题9.32 由已知|a |=2,|a +2b |2=a 2+4a ·b +4b 2=4+4×2×1×cos60°+4=12 ∴32|2|=+b a .10.解答:设M (x ,y ),∵M 在直线PQ 上, ),0,32(),2,0(,23x Q y P --=∴ ∵)2,(),2,3(,0y y x y +=-==⋅ ∴02323.=-y y x ,即y 2=4x .(除原点.) 11.解:(Ⅰ)若a ⊥b ,则sin θ +cos θ =0,由此得)2π2π(1tan <<--=θθ,所以;4π-=θ (Ⅱ)由a =(sin θ ,1),b =(1,cos θ )得)cos (sin 23)cos 1()1(sin ||22θθθθ++=++=+b a,)4πsin(223++=θ 当1)4πsin(=+θ时,|a +b |取得最大值,即当4π=θ时,|a +b |最大值为.12+ 习题6一、选择题1.B 2.B 3.A 4.B 5.D二、填空题6.210 7.①、②、④ 8.2 9.λ =-3;90° 10.21三、解答题11.(2)k =±3;(3)k =±1.12.答案:(1)22=⋅b a ,(2)22||min =u 13.解答:(1)∵73tan =C ,∴73cos sin =C C ,又∵sin 2C +cos 2C =1 解得⋅±=81cos C ∵tan C >0,∴C 是锐角. ∴⋅=81cos C (2)∵20,25cos ,25===⋅∴∴ab C ab . 又∵a +b =9 ∴a 2+2ab +b 2=81.∴a 2+b 2=41.∴c 2=a 2+b 2-2ab cos C =36.∴c =6.14.略解:(1)由已知得)0,(k bA -,B (0,b ),则),(b k b AB =,于是.2,2==b kb ∴k =1,b =2. (2)由f (x )>g (x ),得x +2>x 2-x -6,即(x +2)(x -4)<0,得-2<x <4,521225)(1)(2-+++=+--=+x x x x x x f x g由于x +2>0,则3)(1)(-≥+x f x g ,其中等号当且仅当x +2=1,即x =-1时成立 ∴)(1)(x f x g +的最小值是-3. 15.略解:解法1:依定义f (x )=x 2(1-x )+t (x +1)=-x 3+x 2+tx +t ,则f '(x =-3x 2+2x +t .若f (x )在(-1,1)上是增函数,则在(-1,1)上可设f '(x )≥0.∴f '(x )≥0⇔t ≥3x 2-2x ,在区间(-1,1)上恒成立,考虑函数g (x )=3x 2-2x ,由于g (x )的图象是对称轴为31=x ,开口向上的抛物线,故要使t ≥3x 2-2x 在区间(-1,1)上恒成立⇔t ≥g (-1),即t ≥5.而当t ≥5时,f '(x )在(-1,1)上满足f ′(x )>0,即f (x )在(-1,1)上是增函数.故t 的取值范围是t ≥5. 解法2:依定义f (x )=x 2(1-x )+t (x +1)=-x 3+x 2+tx +t ,f '(x )=-3x 2+2x +t .若f (x )在(-1,1)上是增函数,则在(-1,1)上可设f '(x )≥0.∵f '(x )的图象是开口向下的抛物线,∴当且仅当f '(1)=t -1≥0,且f '(-1)=t -5≥0时,f '(x )在(-1,1)上满足f '(x )>0,即f (x )在(-1,1)上是增函数.故t 的取值范围是t ≥5.。
2020高考数学(理科)二轮专题复习 跟踪检测: 专题2 三角函数、解三角形与平面向量 第1部分 专题2 第3讲
O→A O→B
O→ C
| |=| |=1,| |=
2,tan∠AOB=-43,∠BOC=45°,O→C=mO→A+nO→B,则mn =( )
5 A.7
7 B.5
3 C. 7
7 D.3
A 解析 以 OA 所在的直线为 x 轴,过 O 作与 OA 垂直的直线为 y 轴,建立平面直角坐
标系如图所示.
O→A O→B 因为| |=| |=1,且
A.9 C. 109
B.3 D.3 10
D 解析 向量 a=(2,-4),b=(-3,x),c=(1,-1),所以 2a+b=(1,x-8),由
(2a+b)⊥c,可得 1+8-x=0,解得 x=9,则|b|= -32+92=3 10.故选 D 项. 6.(2019·广东东莞统考)如图所示,△ABC 中,B→D=2D→C,点 E 是线段 AD 的中点,则
C→A C→B +y ,且
x+y=1,所以
O
在边
AB
上,所以当
CO⊥AB
时,|C→O|最小,|C→O|min=12.
1
答案 2
12.(2019·江西上饶模拟)平行四边形 ABCD 中,AB=4,AD=2,A→B·A→D=4,点 P 在
边 CD 上,则P→A·P→C的取值范围是________.
解析
( ) 设|P→D|=x,x∈[0,4],则P→A·P→C=(P→D+D→A)·P→C=
(2)设 c=(0,1),若 a+b=c,求 α,β 的值.
解析 (1)a-b=(cos α-cos β,sin α-sin β),则|a-b|= 2-2cosα-β= 2,所以 π
cos(α-β)=0,而 0<β<α<π,所以 0<α-β<π,所以 α-β=2.所以向量 a 在 b 上的投影 a·b
高考数学(理)二轮复习(课件+跟踪训练):第一部分 专题二 三角函数、解三角形、平面向量(7份)专题
专题跟踪训练(八)一、选择题1.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,a =80,b =100,A =30°,则此三角形( )A .一定是锐角三角形B .一定是直角三角形C .一定是钝角三角形D .可能是直角三角形,也可能是锐角三角形[解析] 依题意得a sin A =b sin B ,sin B =b sin A a =100sin 30°80=58<32,因此0°<B <60°或120°<B <150°.若0°<B <60°,则C =180°-(B +30°)>90°,此时△ABC 是钝角三角形;若120°<B <150°,此时△ABC 仍是钝角三角形.因此,此三角形一定是钝角三角形,故选C.[答案] C2.(2015·贵州贵阳期末)已知sin ⎝ ⎛⎭⎪⎫π3+α+sin α=435,则sin ⎝ ⎛⎭⎪⎫α+7π6的值是( )A .-235 B.235 C.45D .-45[解析] sin ⎝ ⎛⎭⎪⎫π3+α+sin α=435⇒sin π3cos α+cos π3sin α+sin α=435⇒32sin α+32cos α=435⇒32sin α+12cos α=45,故sin ⎝ ⎛⎭⎪⎫α+7π6=sin αcos 7π6+cos αsin 7π6=-⎝ ⎛⎭⎪⎫32sin α+12cos α=-45,故选D.[答案] D3.如图,在△ABC 中,∠B =45°,D 是BC 边上一点,AD =5,AC =7,DC =3,则AB 的长为()A.615 B .5 C.562D .5 6[解析] 在△ADC 中,由余弦定理得cos ∠ADC =AD 2+DC 2-AC 22·AD ·DC =25+9-492×5×3=-12,所以∠ADC =120°,则∠ADB =60°.在△ABD 中,由正弦定理可得AB =AD sin ∠ADB sin B =5×3222=562,故选C. [答案] C4.(2015·江西南昌一模)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若c =1,B =45°,cos A =35,则b 等于( )A.53 B.107 C.57D.5214[解析] 因为cos A =35,所以sin A =1-cos 2A =1-⎝ ⎛⎭⎪⎫352=45,所以sin C =sin[π-(A +B )]=sin(A +B )=sin A cos B +cos A sin B =45cos 45°+35sin 45°=7210.由正弦定理b sin B =c sin C ,得b =17210×sin 45°=57,故选C.[答案] C5.(2015·贵阳七校联盟)已知角θ的顶点与原点重合,始边与x 轴正半轴重合,终边在直线y =2x 上,则sin ⎝⎛⎭⎪⎫2θ+π4的值为( )A .-7210 B.7210 C .-210D.210[解析] 由三角函数的定义得tan θ=2,cos θ=±55,所以tan 2θ=2tan θ1-tan 2θ=-43,cos 2θ=2cos 2θ-1=-35,所以sin 2θ=cos 2θtan 2θ=45,所以sin ⎝ ⎛⎭⎪⎫2θ+π4=22(sin 2θ+cos 2θ)=22×⎝ ⎛⎭⎪⎫45-35=210,故选D.[答案] D6.(2015·河南郑州质量预测)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,已知sin(B +A )+sin(B -A )=3sin 2A ,且c =7,C =π3,则△ABC 的面积是( )A.334B.736C.213D.334或736[解析] sin(B +A )=sin B cos A +cos B sin A ,sin(B -A )=sin B cos A -cosB sin A ,sin 2A =2sin A cos A ,sin(B +A )+sin(B -A )=3sin 2A ,即2sin B cos A =6sin A cos A .当cos A =0时,A =π2,B =π6,又c =7,得b =213.由三角形面积公式知S =12bc =736;当cos A ≠0时,由2sin B cos A =6sin A cos A 可得sin B =3sin A ,根据正弦定理可知b =3a ,再由余弦定理可知cos C =a 2+b 2-c 22ab =a 2+9a 2-76a 2=cos π3=12,可得a =1,b =3,所以此时三角形的面积为S =12ab sin C =334.综上可得三角形的面积为736或334,所以选D.[答案] D 二、填空题7.(2014·温州十校联考)已知锐角α满足cos 2α=cos ⎝ ⎛⎭⎪⎫π4-α,则sin 2α等于________. [解析] 由cos 2α=cos ⎝ ⎛⎭⎪⎫π4-α得,cos 2α-sin 2α=22cos α+22sin α,而α为锐角,∴cos α+sin α≠0,∴cos α-sin α=22,两边平方得,1-sin 2α=12,∴sin 2α=12.[答案] 128.(2015·广东卷)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b =________.[解析] 由sin B =12得B =π6或5π6,因为C =π6,所以B ≠5π6,所以B =π6,于是A =2π3.由正弦定理,得3sin 2π3=b12,所以b =1. [答案] 19.(2015·贵阳质检)在△ABC 中,a ,b ,c 为∠A ,∠B ,∠C 的对边,若cos 2B +cos B +cos(A -C )=1,b =7,则a 2+c 2的最小值为____________.[解析] ∵cos 2B +cos B +cos(A -C )=1,∴-cos(A +C )+cos(A -C )=1-cos 2B,2sin A sin C =2sin 2B ,由正弦定理得ac =b 2,即7=ac ≤12(a 2+c 2)(当且仅当a =c 时等号成立),∴a 2+c 2的最小值为14.[答案] 14 三、解答题10.已知在△ABC 中,角A ,B ,C 对应的边分别为a ,b ,c ,且a =3,b =3,cos B =13.(1)求c 的值; (2)求cos(B -C )的值.[解] (1)因为b 2=a 2+c 2-2ac cos B ,且a =3,b =3,cos B =13,所以9=9+c 2-2×3c ×13, 解得c =2或0(舍去),故c =2. (2)在△ABC 中,sin B =1-cos 2B =223,由正弦定理,得sin C =c b sin B =23×223=429,因为a =b >c ,所以C 为锐角,因此cos C =1-sin 2C =79,于是cos(B -C )=cos B cos C +sin B sin C =13×79+223×429=2327. 11.(2015·山西太原一模)已知a ,b ,c 分别是△ABC 的内角A ,B ,C 所对的边,且c =2,C =π3.(1)若△ABC 的面积等于3,求a ,b ; (2)若sin C +sin(B -A )=2sin 2A ,求A 的值. [解] (1)∵c =2,C =π3,∴由余弦定理得4=a 2+b 2-2ab cos π3=a 2+b 2-ab , ∵△ABC 的面积等于3, ∴12ab sin C =3,∴ab =4,联立⎩⎨⎧a 2+b 2-ab =4ab =4,解得a =2,b =2.(2)∵sin C +sin(B -A )=2sin 2A , ∴sin(B +A )+sin(B -A )=4sin A cos A , ∴sin B cos A =2sin A cos A , ①当cos A =0时,A =π2;②当cos A ≠0时,sin B =2sin A ,由正弦定理得b =2a ,联立⎩⎨⎧a 2+b 2-ab =4b =2a,解得a =233,b =433,∴b 2=a 2+c 2,∴B =π2.∵C =π3,∴A =π6.综上所述,A =π2或A =π6.12.(2015·辽宁五校期末)已知函数f (x )=2cos 2x -sin ⎝ ⎛⎭⎪⎫2x -7π6.(1)求函数f (x )的最大值,并写出f (x )取最大值时x 的取值集合; (2)已知△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若f (A )=32,b +c =2.求实数a 的取值范围.[解] (1)f (x )=2cos 2x -sin ⎝⎛⎭⎪⎫2x -7π6=(1+cos 2x )-⎝ ⎛⎭⎪⎫sin 2x cos 7π6-cos 2x sin 7π6=1+32sin 2x +12cos 2x =1+sin ⎝ ⎛⎭⎪⎫2x +π6. ∴函数f (x )的最大值为2.当且仅当sin ⎝⎛⎭⎪⎫2x +π6=1,即2x +π6=2k π+π2,k ∈Z ,即x =k π+π6,k ∈Z 时取到.∴函数取最大值时x 的取值集合为 ⎩⎨⎧⎭⎬⎫x |x =k π+π6,k ∈Z .(2)由题意,f (A )=sin ⎝⎛⎭⎪⎫2A +π6+1=32,化简得sin ⎝⎛⎭⎪⎫2A +π6=12. ∵A ∈(0,π),∴2A +π6∈⎝ ⎛⎭⎪⎫π6,13π6,∴2A +π6=5π6,∴A =π3.在△ABC 中,a 2=b 2+c 2-2bc cos π3=(b +c )2-3bc .由b +c =2,知bc ≤⎝ ⎛⎭⎪⎪⎫b +c 22=1,即a 2≥1,当且仅当b =c =1时取等号. 又由b +c >a 得a <2,∴a 的取值范围是[1,2).。
高考数学平面向量专题复习(含答案)(2020年九月整理).doc
(1)求证: 且 ;
(2)设向量 , ,且 ,求实数t的值.
23、已知 ,设 .
(1)求 的解析式并求出它的周期T.
(2)在△ABC中,角A,B,C所对的边分别为a,b,c,且 ,求△ABC的面积.
24、已知 为圆 : 上一动点,圆心 关于 轴的对称点为 ,点 分别是线段 , 上的点,且 , 。
4、.如图, 为等腰直角三角形, , 为斜边 的高, 为线段 的中点,则 ( )
A. B. C. D.
5、在平行四边形 中, ,若 是 的中点,则 ( )
A. B. C. D.
6、已知向量 , 且 ,则 ( )
A. B. C. D.
7、已知 是边长为2的等边三角形,D为 的中点,且 ,则 ( )
A. B.1 C. D. 3
(2) 若x, y在[1,6]上取值,则全部基本事件的结果为 ,满足 的基本事件的结果为 .
画出图形如图,正方形的面积为 ,阴影部分的面积为 ,
故满足 的概率为 .
22、(1)证明: ,所以 ,因为 ,所以 ;
(2)因为 ,所以 ,
由(1)得:
所以 ,解得 .
23、解析:(1)
...........4分
三、简答题
19、已知平面直角坐标系中,向量 , ,且 .
(1)求 的值;(2)设 ,求 的值.
20、已知向量 =(sin ,cos ﹣2sin ), =(1,2).
(1)若 ∥ ,求 的值;
(2)若 ,0< < ,求 的值.
21、已知向量 , .(1)若 在集合 中取值,求满足 的概率;(2)若 在区间[1,6]内取值,求满足 的概率.
15、
2020届高考数学压轴必刷题 专题05平面向量(文理合卷)(含答案)
2020届高考数学压轴必刷题专题05平面向量(文理合卷)1.【2019年北京理科07】设点A,B,C不共线,则“与的夹角为锐角”是“||>||”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:点A,B,C不共线,“与的夹角为锐角”⇒“||>||”,“||>||”⇒“与的夹角为锐角”,∴设点A,B,C不共线,则“与的夹角为锐角”是“||>||”的充分必要条件.故选:C.2.【2018年浙江09】已知,,是平面向量,是单位向量.若非零向量与的夹角为,向量满足4•3=0,则||的最小值是()A. 1 B. 1 C.2 D.2【解答】解:由4•3=0,得,∴()⊥(),如图,不妨设,则的终点在以(2,0)为圆心,以1为半径的圆周上,又非零向量与的夹角为,则的终点在不含端点O的两条射线y(x>0)上.不妨以y为例,则||的最小值是(2,0)到直线的距离减1.即.故选:A.3.【2018年天津理科08】如图,在平面四边形ABCD中,AB⊥BC,AD⊥CD,∠BAD=120°,AB=AD =1.若点E为边CD上的动点,则的最小值为()A.B.C.D.3【解答】解:如图所示,以D为原点,以DA所在的直线为x轴,以DC所在的直线为y轴,过点B做BN⊥x轴,过点B做BM⊥y轴,∵AB⊥BC,AD⊥CD,∠BAD=120°,AB=AD=1,∴AN=AB cos60°,BN=AB sin60°,∴DN=1,∴BM,∴CM=MB tan30°,∴DC=DM+MC,∴A(1,0),B(,),C(0,),设E(0,m),∴(﹣1,m),(,m),0≤m,∴m2m=(m)2(m)2,当m时,取得最小值为.故选:A.4.【2017年新课标2理科12】已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则•()的最小值是()A.﹣2 B.C.D.﹣1【解答】解:建立如图所示的坐标系,以BC中点为坐标原点,则A(0,),B(﹣1,0),C(1,0),设P(x,y),则(﹣x,y),(﹣1﹣x,﹣y),(1﹣x,﹣y),则•()=2x2﹣2y+2y2=2[x2+(y)2]∴当x=0,y时,取得最小值2×(),故选:B.5.【2017年新课标3理科12】在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若λμ,则λ+μ的最大值为()A.3 B.2C.D.2【解答】解:如图:以A为原点,以AB,AD所在的直线为x,y轴建立如图所示的坐标系,则A(0,0),B(1,0),D(0,2),C(1,2),∵动点P在以点C为圆心且与BD相切的圆上,设圆的半径为r,∵BC=2,CD=1,∴BD∴BC•CD BD•r,∴r,∴圆的方程为(x﹣1)2+(y﹣2)2,设点P的坐标为(cosθ+1,sinθ+2),∵λμ,∴(cosθ+1,sinθ+2)=λ(1,0)+μ(0,2)=(λ,2μ),∴cosθ+1=λ,sinθ+2=2μ,∴λ+μcosθsinθ+2=sin(θ+φ)+2,其中tanφ=2,∵﹣1≤sin(θ+φ)≤1,∴1≤λ+μ≤3,故λ+μ的最大值为3,故选:A.6.【2017年浙江10】如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O,记I1•,I2•,I3•,则()A.I1<I2<I3B.I1<I3<I2C.I3<I1<I2D.I2<I1<I3【解答】解:∵AB⊥BC,AB=BC=AD=2,CD=3,∴AC=2,∴∠AOB=∠COD>90°,由图象知OA<OC,OB<OD,∴0••,•0,即I3<I1<I2,故选:C.7.【2016年天津理科07】已知△ABC是边长为1的等边三角形,点D、E分别是边AB、BC的中点,连接DE并延长到点F,使得DE=2EF,则•的值为()A.B.C.D.【解答】解:如图,∵D、E分别是边AB、BC的中点,且DE=2EF,∴•.故选:C.8.【2014年浙江理科08】记max{x,y},min{x,y},设,为平面向量,则()A.min{||,||}≤min{||,||} B.min{||,||}≥min{||,||}C.max{||2,||2}≤||2+||2D.max{||2,||2}≥||2+||2【解答】解:对于选项A,取⊥,则由图形可知,根据勾股定理,结论不成立;对于选项B,取,是非零的相等向量,则不等式左边min{||,||}=0,显然,不等式不成立;对于选项C,取,是非零的相等向量,则不等式左边max{||2,||2}=||2=4,而不等式右边=||2+||2=2,故C不成立,D选项正确.故选:D.9.【2014年天津理科08】已知菱形ABCD的边长为2,∠BAD=120°,点E、F分别在边BC、DC上,λ,μ,若•1,•,则λ+μ=()A.B.C.D.【解答】解:由题意可得若•()•()=2×2×cos120°λ•λ•μ2+4μ+4λ+λμ×2×2×cos120°=4λ+4μ﹣2λμ﹣2=1,∴4λ+4μ﹣2λμ=3 ①.••()(1﹣λ)•(1﹣μ)(1﹣λ)•(1﹣μ)=(1﹣λ)(1﹣μ)×2×2×cos120°=(1﹣λ﹣μ+λμ)(﹣2),即﹣λ﹣μ+λμ②.由①②求得λ+μ,故选:C.10.【2013年上海理科18】在边长为1的正六边形ABCDEF中,记以A为起点,其余顶点为终点的向量分别为、、、、;以D为起点,其余顶点为终点的向量分别为、、、、.若m、M 分别为()•()的最小值、最大值,其中{i,j,k}⊆{1,2,3,4,5},{r,s,t}⊆{1,2,3,4,5},则m、M满足()A.m=0,M>0 B.m<0,M>0 C.m<0,M=0 D.m<0,M<0【解答】解:由题意,以A为起点,其余顶点为终点的向量分别为、、、、;以D为起点,其余顶点为终点的向量分别为、、、、,∴利用向量的数量积公式,可知只有,其余数量积均小于等于0,∵m、M分别为()•()的最小值、最大值,∴m<0,M<0故选:D.11.【2012年天津理科07】已知△ABC为等边三角形,AB=2.设点P,Q满足,,λ∈R.若,则λ=()A.B.C.D.【解答】解:∵,,λ∈R∴,∵△ABC为等边三角形,AB=2∴λ(1﹣λ)=2×2×cos60°+λ×2×2×cos180°+(1﹣λ)×2×2×cos180°+λ(1﹣λ)×2×2×cos60°=2﹣4λ+4λ﹣4+2λ﹣2λ2,=﹣2λ2+2λ﹣2∵∴4λ2﹣4λ+1=0∴(2λ﹣1)2=0∴故选:A.12.【2011年上海理科17】设A1,A2,A3,A4,A5是平面上给定的5个不同点,则使成立的点M的个数为()A.0 B.1 C.5 D.10【解答】解:根据题意,设M的坐标为(x,y),x,y解得组数即符合条件的点M的个数,再设A1,A2,A3,A4,A5的坐标依次为(x1,y1),(x2,y2),(x3,y3),(x4,y4),(x5,y5);若成立,得(x1﹣x,y1﹣y)+(x2﹣x,y2﹣y)+(x3﹣x,y3﹣y)+(x4﹣x,y4﹣y)+(x5﹣x,y5﹣y),则有x,y;只有一组解,即符合条件的点M有且只有一个;故选:B.13.【2019年天津理科14】在四边形ABCD中,AD∥BC,AB=2,AD=5,∠A=30°,点E在线段CB 的延长线上,且AE=BE,则•.【解答】解:∵AE=BE,AD∥BC,∠A=30°,∴在等腰三角形ABE中,∠BEA=120°,又AB=2,∴AE=2,∴,∵,∴又,∴•=﹣125×2=﹣1故答案为:﹣1.14.【2019年江苏12】如图,在△ABC中,D是BC的中点,E在边AB上,BE=2EA,AD与CE交于点O.若•6•,则的值是.【解答】解:设λ(),μμ()=(1﹣μ)μμ∴,∴,∴(),,6•6()×()(),∵•,∴,∴3,∴.故答案为:15.【2019年浙江17】已知正方形ABCD的边长为1.当每个λi(i=1,2,3,4,5,6)取遍±1时,|λ1λ2λ3λ4λ5λ6|的最小值是,最大值是.【解答】解:正方形ABCD的边长为1,可得,,•0,|λ1λ2λ3λ4λ5λ6|=|λ1λ2λ3λ4λ5λ5λ6λ6|=|(λ1﹣λ3+λ5﹣λ6)(λ2﹣λ4+λ5+λ6)|,由于λi(i=1,2,3,4,5,6)取遍±1,可得λ1﹣λ3+λ5﹣λ6=0,λ2﹣λ4+λ5+λ6=0,可取λ5=λ6=1,λ1=λ3=1,λ2=﹣1,λ4=1,可得所求最小值为0;由λ1﹣λ3+λ5﹣λ6,λ2﹣λ4+λ5+λ6的最大值为4,可取λ2=1,λ4=﹣1,λ5=λ6=1,λ1=1,λ3=﹣1,可得所求最大值为2.故答案为:0,2.16.【2018年江苏12】在平面直角坐标系xOy中,A为直线l:y=2x上在第一象限内的点,B(5,0),以AB为直径的圆C与直线l交于另一点D.若0,则点A的横坐标为.【解答】解:设A(a,2a),a>0,∵B(5,0),∴C(,a),则圆C的方程为(x﹣5)(x﹣a)+y(y﹣2a)=0.联立,解得D(1,2).∴.解得:a=3或a=﹣1.又a>0,∴a=3.即A的横坐标为3.故答案为:3.17.【2017年江苏12】如图,在同一个平面内,向量,,的模分别为1,1,,与的夹角为α,且tanα=7,与的夹角为45°.若m n(m,n∈R),则m+n=.【解答】解:如图所示,建立直角坐标系.A(1,0).由与的夹角为α,且tanα=7.∴cosα,sinα.∴C.cos(α+45°)(cosα﹣sinα).sin(α+45°)(sinα+cosα).∴B.∵m n(m,n∈R),∴m n,0n,解得n,m.则m+n=3.故答案为:3.18.【2017年浙江15】已知向量、满足||=1,||=2,则||+||的最小值是,最大值是.【解答】解:记∠AOB=α,则0≤α≤π,如图,由余弦定理可得:||,||,令x,y,则x2+y2=10(x、y≥1),其图象为一段圆弧MN,如图,令z=x+y,则y=﹣x+z,则直线y=﹣x+z过M、N时z最小为z min=1+3=3+1=4,当直线y=﹣x+z与圆弧MN相切时z最大,由平面几何知识易知z max即为原点到切线的距离的倍,也就是圆弧MN所在圆的半径的倍,所以z max.综上所述,||+||的最小值是4,最大值是.故答案为:4、.19.【2016年江苏13】如图,在△ABC中,D是BC的中点,E,F是AD上的两个三等分点,•4,•1,则•的值是.【解答】解:∵D是BC的中点,E,F是AD上的两个三等分点,∴,,3,3,∴•22=﹣1,•922=4,∴2,2,又∵2,2,∴•422,故答案为:20.【2016年浙江理科15】已知向量,,||=1,||=2,若对任意单位向量,均有|•|+|•|,则•的最大值是.【解答】解:由绝对值不等式得|•|+|•|≥|••|=|()•|,于是对任意的单位向量,均有|()•|,∵|()|2=||2+||2+2•5+2•,∴|()|,因此|()•|的最大值,则•,下面证明:•可以取得,(1)若|•|+|•|=|••|,则显然满足条件.(2)若|•|+|•|=|••|,此时||2=||2+||2﹣2•5﹣1=4,此时||=2于是|•|+|•|=|••|≤2,符合题意,综上•的最大值是,法2:由于任意单位向量,可设,则|•|+|•|=||+||≥|||=||=||,∵|•|+|•|,∴||,即()2≤6,即||2+||2+2•6,∵||=1,||=2,∴•,即•的最大值是.法三:设,,,则,,|•|+|•|=||+||=||≤||,由题设当且仅当与同向时,等号成立,此时()2取得最大值6,由于||2+||)2=2(||2+||2)=10,于是()2取得最小值4,则•,•的最大值是.故答案为:.21.【2016年上海理科12】在平面直角坐标系中,已知A(1,0),B(0,﹣1),P是曲线y上一个动点,则•的取值范围是.【解答】解:∵在平面直角坐标系中,A(1,0),B(0,﹣1),P是曲线y上一个动点,∴设P(cosα,sinα),α∈[0,π],∴(1,1),(cosα,sinα+1),cosα+sinα+1,∴•的取值范围是[0,1].故答案为:[0,1].22.【2015年浙江理科15】已知是空间单位向量,,若空间向量满足,且对于任意x,y∈R,1(x0,y0∈R),则x0=,y0=,|=.【解答】解:∵•||||cos•cos•,∴•,不妨设(,,0),(1,0,0),(m,n,t),则由题意可知m n=2,m,解得m,n,∴(,,t),∵()=(x﹣y,,t),∴|()|2=(x﹣y)2+()2+t2=x2+xy+y2﹣4x﹣5y+t2+7=(x)2(y﹣2)2+t2,由题意当x=x0=1,y=y0=2时,(x)2(y﹣2)2+t2取最小值1,此时t2=1,故2故答案为:1;2;223.【2015年上海理科14】在锐角三角形ABC中,tan A,D为边BC上的点,△ABD与△ACD的面积分别为2和4.过D作DE⊥AB于E,DF⊥AC于F,则•.【解答】解:如图,∵△ABD与△ACD的面积分别为2和4,∴,,可得,,∴.又tan A,∴,联立sin2A+cos2A=1,得,cos A.由,得.则.∴•.故答案为:.24.【2015年天津理科14】在等腰梯形ABCD中,已知AB∥DC,AB=2,BC=1,∠ABC=60°.动点E 和F分别在线段BC和DC上,且λ,,则•的最小值为.【解答】解:由题意,得到AD=BC=CD=1,所以•()•()=()•()2×1×cos60°+λ1×1×cos60°2×11×1×cos120°=1(当且仅当时等号成立);故答案为:.25.【2014年江苏12】如图,在平行四边形ABCD中,已知AB=8,AD=5,3,2,则的值是.【解答】解:∵3,∴,,又∵AB=8,AD=5,∴•()•()=||2•||2=25•12=2,故•22,故答案为:22.26.【2013年江苏10】设D,E分别是△ABC的边AB,BC上的点,AD AB,BE BC,若λ1λ2(λ1,λ2为实数),则λ1+λ2的值为.【解答】解:由题意结合向量的运算可得,又由题意可知若λ1λ2,故可得λ1,λ2,所以λ1+λ2故答案为:27.【2013年浙江理科17】设、为单位向量,非零向量x y,x、y∈R.若、的夹角为30°,则的最大值等于.【解答】解:∵、为单位向量,和的夹角等于30°,∴1×1×cos30°.∵非零向量x y,∴||,∴,故当时,取得最大值为2,故答案为2.28.【2012年上海理科12】在平行四边形ABCD中,∠A,边AB、AD的长分别为2、1,若M、N分别是边BC、CD上的点,且满足,则的取值范围是.【解答】解:建立如图所示的直角坐标系,则B(2,0),A(0,0),D(),设λ,λ∈[0,1],M(2),N(),所以(2)•()=﹣λ2﹣2λ+5,因为λ∈[0,1],二次函数的对称轴为:λ=﹣1,所以λ∈[0,1]时,﹣λ2﹣2λ+5∈[2,5].故答案为:[2,5].29.【2011年浙江理科14】若平面向量α,β满足|α|=1,|β|≤1,且以向量α,β为邻边的平行四边形的面积为,则α和β的夹角θ的范围是.【解答】解:∵||||sinθ∴sinθ,∵||=1,||≤1,∴sinθ,∵θ∈[0,π]∴θ∈[30°,150°],故答案为:[30°,150°],或[],30.【2011年天津理科14】已知直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,P是腰DC 上的动点,则|3|的最小值为.【解答】解:如图,以直线DA,DC分别为x,y轴建立平面直角坐标系,则A(2,0),B(1,a),C(0,a),D(0,0)设P(0,b)(0≤b≤a)则(2,﹣b),(1,a﹣b),∴(5,3a﹣4b)∴5.故答案为5.31.【2010年浙江理科16】已知平面向量满足,且与的夹角为120°,则||的取值范围是.【解答】解:令用、,如下图所示:则由,又∵与的夹角为120°,∴∠ABC=60°又由AC由正弦定理得:||∴||∈(0,]故||的取值范围是(0,]故答案:(0,]1.【2018年天津文科08】在如图的平面图形中,已知OM=1,ON=2,∠MON=120°,2,2,则的值为()A.﹣15 B.﹣9 C.﹣6 D.0【解答】解:解法Ⅰ,由题意,2,2,∴2,∴BC∥MN,且BC=3MN,又MN2=OM2+ON2﹣2OM•ON•cos120°=1+4﹣2×1×2×()=7,∴MN;∴BC=3,∴cos∠OMN,∴•||×||cos(π﹣∠OMN)=31×()=﹣6.解题Ⅱ:不妨设四边形OMAN是平行四边形,由OM=1,ON=2,∠MON=120°,2,2,知3333,∴(﹣33)•=﹣33•=﹣3×12+3×2×1×cos120°=﹣6.故选:C.2.【2016年天津文科07】已知△ABC是边长为1的等边三角形,点D、E分别是边AB、BC的中点,连接DE并延长到点F,使得DE=2EF,则•的值为()A.B.C.D.【解答】解:如图,∵D、E分别是边AB、BC的中点,且DE=2EF,∴•.故选:C.3.【2012年天津文科08】在△ABC中,∠A=90°,AB=1,AC=2.设点P,Q满足,,λ∈R.若2,则λ=()A.B.C.D.2【解答】解:由题意可得0,由于()•()=[]•[]=0﹣(1﹣λ)λ0=(λ﹣1)4﹣λ×1=﹣2,解得λ,故选:B.4.【2010年天津文科09】如图,在△ABC中,AD⊥AB,,,则()A.B.C.D.【解答】解:故选:D.5.【2019年天津文科14】在四边形ABCD中,AD∥BC,AB=2,AD=5,∠A=30°,点E在线段CB 的延长线上,且AE=BE,则•.【解答】解:∵AE=BE,AD∥BC,∠A=30°,∴在等腰三角形ABE中,∠BEA=120°,又AB=2,∴AE=2,∴,∵,∴又,∴•=﹣125×2=﹣1故答案为:﹣1.6.【2017年天津文科14】在△ABC中,∠A=60°,AB=3,AC=2.若2,λ(λ∈R),且4,则λ的值为.【解答】解:如图所示,△ABC中,∠A=60°,AB=3,AC=2,2,∴(),又λ(λ∈R),∴()•(λ)=(λ)•λ=(λ)×3×2×cos60°32λ×22=﹣4,∴λ=1,解得λ.故答案为:.7.【2015年天津文科13】在等腰梯形ABCD中,已知AB∥DC,AB=2,BC=1,∠ABC=60°,点E和F 分别在线段BC和DC上,且,,则•的值为.【解答】解:∵AB=2,BC=1,∠ABC=60°,∴BG,CD=2﹣1=1,∠BCD=120°,∵,,∴•()•()=()•()••••=2×1×cos60°2×1×cos0°1×1×cos60°1×1×cos120°=1,故答案为:8.【2014年天津文科13】已知菱形ABCD的边长为2,∠BAD=120°,点E,F分别在边BC,DC上,BC =3BE,DC=λDF,若•1,则λ的值为.【解答】解:∵BC=3BE,DC=λDF,∴,,,,∵菱形ABCD的边长为2,∠BAD=120°,∴||=||=2,•2×2×cos120°=﹣2,∵•1,∴()•()(1)•1,即44﹣2(1)=1,整理得,解得λ=2,故答案为:2.9.【2013年北京文科14】已知点A(1,﹣1),B(3,0),C(2,1).若平面区域D由所有满足(1≤λ≤2,0≤μ≤1)的点P组成,则D的面积为.【解答】解:设P的坐标为(x,y),则(2,1),(1,2),(x﹣1,y+1),∵,∴,解之得∵1≤λ≤2,0≤μ≤1,∴点P坐标满足不等式组作出不等式组对应的平面区域,得到如图的平行四边形CDEF及其内部其中C(4,2),D(6,3),E(5,1),F(3,0)∵|CF|,点E(5,1)到直线CF:2x﹣y﹣6=0的距离为d∴平行四边形CDEF的面积为S=|CF|×d3,即动点P构成的平面区域D的面积为3 故答案为:310.【2011年天津文科14】已知直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,P是腰DC 上的动点,则|3|的最小值为.【解答】解:如图,以直线DA,DC分别为x,y轴建立平面直角坐标系,则A(2,0),B(1,a),C(0,a),D(0,0)设P(0,b)(0≤b≤a)则(2,﹣b),(1,a﹣b),∴(5,3a﹣4b)∴5.故答案为5.。
2020年高考数学平面向量专题复习(含答案)
2020年高考数学平面向量专题复习(含答案)2020年高考数学平面向量专题复习(含答案)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN2020年高考数学平面向量专题练习一、选择题1、P是双曲线上一点,过P作两条渐近线的垂线,垂足分别为A,B 求的值()A. B. C. D.2、向量,,若,且,则x+y的值为()A.-3 B.1 C.-3或1 D.3或13、已知向量满足,若,则向量在方向上的投影为A.B.C.2 D.44、.如图,为等腰直角三角形,,为斜边的高,为线段的中点,则()A.B. C.D.5、在平行四边形中,,若是的中点,则()A. B. C. D.6、已知向量,且,则()A. B. C. D.7、已知是边长为2的等边三角形,D为的中点,且,则( )A. B.1 C. D. 38、在平行四边形ABCD中,,则该四边形的面积为A. B. C.5 D.109、下列命题中正确的个数是()⑴若为单位向量,且,=1,则=;⑵若=0,则=0⑶若,则;⑷若,则必有;⑸若,则A.0 B.1 C.2 D.310、如图,在扇形中,,为弧上且与不重合的一个动点,且,若存在最大值,则的取值范围为()二、填空题11、已知向量与的夹角为120°,且,则____.12、若三点满足,且对任意都有,则的最小值为________.13、已知,,则向量在方向上的投影等于___________.14、.已知,是夹角为的两个单位向量,,,若,则实数的值为__________.15、已知向量与的夹角为120°,,,则________.16、已知中,为边上靠近点的三等分点,连接为线段的中点,若,则__________.17、已知向量为单位向量,向量,且,则向量的夹角为.18、在矩形ABCD中,已知E,F分别是BC,CD上的点,且满足,。
若(λ,μ∈R),则λ+μ的值为。
三、简答题19、已知平面直角坐标系中,向量,,且.(1)求的值;(2)设,求的值.20、已知向量=(sin,cos﹣2sin),=(1,2).(1)若∥,求的值;(2)若,0<<,求的值.21、已知向量,.(1)若在集合中取值,求满足的概率;(2)若在区间[1,6]内取值,求满足的概率.22、在平面直角坐标系xOy中,已知向量,(1)求证:且;(2)设向量,,且,求实数t的值.23、已知,设.(1)求的解析式并求出它的周期T.(2)在△ABC中,角A,B,C所对的边分别为a,b,c,且,求△ABC的面积. 24、已知为圆:上一动点,圆心关于轴的对称点为,点分别是线段,上的点,且 , 。
2020届高考数学(理)二轮强化专题卷(5)平面向量
(5)平面向量1、在ABC △中,记π,,2,4AB a AC b AB BC ABC ====∠=,AD 是边BC 的高线O 是线段AD 的中点,则AO =( ) A.1123a b + B.1132a b +C.1134a b +D.1136a b +2、如图,正方形ABCD 中, M N 、分别是BC CD 、的中点,若AC AM BN λμ=+,则λμ+=( )A. 2B. 83C.65 D. 853、向量,,a b c 在正方形网格中的位置如图所示,若c a bλμ=+(,R)λμ∈,则λμ=( )A .2B .4C .12D .12-4、已知M 是ABC △内一点,11,34AM AB AC =+则ABM △ABC △的面积之比为( )A.14B.13C.12D.235、如图,在ABC △中,π3ABC ∠=,2AD DB =u u ur u u u r ,P 为CD 上一点,且满足12AP mAC AB =+uu u r uuu r uu u r ,若ABC △的面积为||AP uu u r的最小值为( )B.3 D.436、如图,ABC △中,,,AD DB AE EC CD ==与BF 交于,F 设,,AB a AC b AF xa yb ===+,则(,)x y 为 ( )A.11(,)22B.22(,)33C.11(,)33D.21(,)327、在ABC △中,已知D 是AB 边上的一点,若,12,3AD DB CD CA CB λ==+,则λ=( ) A.23B.13C.13-D.23-8、向量(0,2),(3,1)m n =-=,则与2m n +共线的向量可以是()A 1)-B .(-C .(1)-D .(-9、在Rt ABC △中,90C ∠︒=,3AC =,则AB AC ⋅等于( ) A .-3B .-6C .9D .610、已知ABC △是边长为2的等边三角形,P 为平面ABC △内一点,则()PA PB PC ⋅+u u ru u ru u u r的最小值是( ) A.32- B.2- C.43-D.1-11、已知向量()(),,1,2a m n b ==-,若()||25,0a a b λλ==<,则m n -=__________. 12、已知点O 在ABC ∆所在平面内,且4AB =,3AO =,()0OA OB AC +⋅=则AB AC ⋅取得最大值时线段BC 的长度是__________.13、在等腰直角三角形ABC 上(包括边界)有一点P ,2AB AC ==,1PA PB ⋅=u u r u u r,则PC uu u r 的取值范围是 。
2020年高考理科数学一轮复习题型归纳与变式演练专题05《平面向量》
【变式 1】已知平面内有一点 P 及一个 △ABC ,若 PA PB PC AB ,则
5
() A .点 P 在 △ABC 外部 C.点 P 在线段 BC 上
【答案】 D
B.点 P 在线段 AB 上 D.点 P 在线段 AC 上
【 解 析 】 ∵ PA PB PC AB , ∴ PA PB PC AB 0 , 即
【变式 3】如图,在△ABC 中,AD ⊥ AB ,BC 3BD ,| AD | 1,
则 AC AD ________.
【答案】 3
【解析】 建系如图所示 : 令 B( xB,0),C(xC, yC),D(0,1),
∴ BC ( xC xB, yC ) , BD ( xB,1) , BC 3BD ,
①直线 OC 与直线 BA 平行;② AB BC CA ;③ OA OC OB ;④
AC OB 2OA .
其中正确结论的个数是(
)
A.1 B.2 【答案】 C
C.3
D.4
2
【解析】 kOC 1 2
1 , kBA 2 1
2
02
∵ AB BC AC ,∴②错误;
1 ,∴ OC∥ AB ,①正确; 2
∵ OA OC (0, 2) OB ,∴③正确;
2020 年高考理科数学一轮复习题型归纳与变式演练专题 【题型一】平面向量的相关概念 【题型二】平面向量的加减及其线性运算 【题型三】平面向量的基本定理、坐标表示及综合应用 【题型四】数量积的概念 【题型五】数量积的综合应用 【题型一】、平面向量的相关概念
例 1. 下列说法中正确的是
05《平面向量》
AB , BD 共线, 又 它们有公共点 B , A , B , D 三点共线 . (2) ka + b 和 a + kb 共线, 存在实数 ,使 k a + b (a + k b) ,
2020高考数学分项汇编专项05平面向量(含解析)理
(备战2020)(北京版)高考数学分项汇编专项05 平面向量(含解析)理1. 【2005高考北京理第3题】| a |=1,| b |=2,c = a + b ,且c ⊥a ,那么向量a 与b 的夹角为〔〕A 、30°B 、60°C 、120°D 、150°【答案】 C考点:数量积公式。
2. 【2006高考北京理第2题】假设a 与b c 都是非零向量,那么〝a b a c 〞是〝()a b c 〞的〔〕〔A 〕充分而不必要条件〔B 〕必要而不充分条件〔C 〕充分必要条件〔D 〕既不充分也不必要条件【答案】 C3. 【2007高考北京理第4题】O 是ABC △所在平面内一点,D 为BC 边中点,且20OA OB OC ,那么〔〕A.AO OD B.2AO OD C.3AO OD D.2AO OD4. 【2018高考北京理第2题】向量a 、b 不共线,c k a b (k R ),d a b ,如果c //d ,那么〔〕 A、1k 且c 与d 同向 B 、1k 且c 与d 反向 C 、1k 且c 与d 同向 D 、1k 且c 与d 反向【答案】 D考点:向量的共线〔平行〕、向量的加减法.5. 【2018高考北京理第6题】a ,b 为非零向量.〝a ⊥b 〞是〝函数f (x )=(xa +b )·(xb -a )为一次函数〞的( ) A 、充分而不必要条件B 、必要而不充分条件C 、充分必要条件D 、既不充分也不必要条件【答案】 B考点:充分必要条件;向量的数量积.6. 【2006高考北京理第11题】假设三点(2,2),(,0),(0,)(0)A B a C b ab 共线,那么11a b 的值等于【答案】_______127. 【2018高考北京理第10题】向量a 与b 的夹角为120,且4a b ,那么(2)b a b 的值为.【答案】0考点:向量运算的几何意义8. 【2018高考北京理第10题】向量(3,1)a ,(0,1)b ,(,3)k c ,假设2a b 与c 共线,那么k ________.【答案】19. 【2019高考北京理第13题】正方形ABCD 的边长为1,点E 是AB 边上的动点,那么CB DE 的值为________,DC DE 的最大值为______。
2020年高考数学(理)名师提分专题: 平面向量(全国版含解析)
→
b
B.﹣13
→a﹣23
→
b
C.﹣1
3
→a+23
→
b
D.1
3
→a﹣23
→
b
【答案】C
【解答】:如图所示,
∵点 E 为 CD 的中点,CD∥AB, ∴BF=AB=2,
EF EC
2
∴B→F=2
→ →→
BE,BE=BC
+
C→E=→b﹣1→a,3 Nhomakorabea2
∴B→F=23
→
(b
−
1 2
→a)=﹣13
→a+23
→
b,
3.平面向量共线的坐标表示 设 a=(x1,y1),b=(x2,y2),则 a∥b⇔x1y2-x2y1=0.
注:(1)共线向量定理:向量 a(a≠0)与 b 共线,当且仅当有唯一的一个实数λ,使得 b a .
(2)若存在实数λ,使 AB AC ,则 A,B,C 三点共线.
4
(3)夹角: cos a b
x1x2 y1 y2
.
| a || b |
x12 y12 x22 y22
注:数量积大于 0 说明不共线的两向量的夹角为锐角,数量积等于 0 说明不共线的两向量的夹角为直
角,数量积小于 0 且两向量不共线时两向量的夹角为钝角.
1.已知
P
是 △ABC
可得→a2
+
→
2a
⋅
→b=0,即:1+2cos<→a,→b>=0,所以<→a,→b>=120°.
故选:C.
【名师点睛】本题主要考查向量的模及平面向量数量积公式,属于中档题.平面向量数量积公式有两种形
专题06 平面向量-2020年高考数学(理)二轮专项习题练 (原卷版)
专题五 平面向量第十三讲 平面向量的概念与运算一、选择题1.(2018全国卷Ⅰ)在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =u u u rA .3144AB AC -u u ur u u u rB .1344AB AC -u u ur u u u rC .3144AB AC +u u ur u u u rD .1344AB AC +u u ur u u u r2.(2018北京)设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件3.(2018全国卷Ⅱ)已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a bA .4B .3C .2D .04.(2017北京)设m , n 为非零向量,则“存在负数λ,使得λ=m n ”是“0⋅<m n ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 5.已知非零向量m,n 满足4|3|=m |n |,1cos ,3<>=m n .若()t ⊥+n m n ,则实数t 的值为 A .4 B .–4C .94D .–946.已知ΔABC 是边长为1的等边三角形,点E D ,分别是边BC AB ,的中点,连接DE 并延长到点F ,使得EF DE 2=,则AF BC ⋅u u u r u u u r的值为 A .85-B .81 C .41 D .8117.已知向量(1,)(3,2)m =-,=a b ,且()+⊥a b b ,则m = A .8- B .6- C .6 D .88.已知向量1(,22BA =uu v ,1),22BC =uu u v 则ABC ∠= A .30oB .45oC .60oD .120o9.设,m n u r r 为非零向量,则“λ=u r r m n ,1λ≤-”是“m n m n +=-u r r u r r ”的( )E DCBA .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件10.已知向量a r 与b r 夹角为3π,且||1a =r,2a b -=v v ||b =rABC .1 D.211.已知向量()1,2AB =-u u u r ,(),5BC x =-u u u r,若7AB BC ⋅=-uu u r uu u r ,则AC =u u u r ( )A .5B.C .6D.12.(2018天津)如图,在平面四边形ABCD 中,AB BC ⊥,AD CD ⊥,120BAD ∠=︒,1AB AD ==. 若点E 为边CD 上的动点,则⋅uu u r uurAE BE 的最小值为A .2116B .32C .2516D .313.(2018浙江)已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为3π,向量b 满足2430-⋅+=b e b ,则||-a b 的最小值是A1B1C .2D.214.在矩形ABCD 中,1AB =,2AD =,动点P 在以点C 为圆心且与BD 相切的圆上.若AP AB AD λμ=+u u u r u u u r u u u r,则λμ+的最大值为A .3 B. CD .215.已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+u u u r u u u r u u u r的最小值是A .2-B .32-C .43- D .1- 16.如图,已知平面四边形ABCD ,AB BC ⊥,2AB BC AD ===,3CD =,AC 与BD 交于点O ,记1I OA OB =⋅u u u r u u u r ,2·I OB OC u u u r u u u r =,3·I OC OD u u u r u u u r =,则 OABCDA .1I <2I <3IB .1I <3I <2IC .3I < 1I <2ID .2I <1I <3I17.在平面内,定点A ,B ,C ,D 满足DA u u u r =DB u u u r =DC u u u r ,DA DB ⋅u u u r u u u r=DB DC ⋅u u u r u u u r =DC DA ⋅u u u r u u u r =-2,动点P ,M 满足AP u u u r =1,PM u u u u r =MC u u uu r ,则2BM u u u u u r 的最大值是A .434 B .494 C .3763+ D .37233+二、填空题18.(2018全国卷Ⅲ)已知向量(1,2)=a ,(2,2)=-b ,(1,)λ=c .若(2)+∥c a b ,则λ= .19.已知向量a ,b 的夹角为60°,||2=a ,||1=b ,则|2|+a b = .20.已知向量a ,b 满足||1=a ,||2=b ,则||||++-a b a b 的最小值是 ,最大值是 .21.已知1e ,2e 是互相垂直的单位向量,若123-e e 与12λ+e e 的夹角为60o ,则实数λ的值是 .22.如图,在同一个平面内,向量OA u u u r ,OB uuu r ,OC u u u r 的模分别为1,1,2,OA u u u r 与OC u u u r的夹角为α,且tan 7α=,OB uuu r 与OC u u u r 的夹角为45o.若OC u u u r =m OA u u u r +n OB uuu r (m ,n ∈R ),则m n += .23.设向量(,1)m =a ,(1,2)=b ,且222||||||+=+a b a b ,则m = .24.(2018上海)在平面直角坐标系中,已知点(10)A -,,(2,0)B ,E ,F 是y 轴上的两个动点,且||2EF =u u u r ,则AE BF ⋅u u u r u u u r的最小值为______.25.在平面直角坐标系xOy 中,(12,0)A -,(0,6)B ,点P 在圆O :2250x y +=上,若20PA PB ⋅u u u r u u u r≤,则点P 的横坐标的取值范围是 .26.在ABC △中,60A =︒∠,3AB =,2AC =.若2BD DC =u u u r u u u r,AE AC AB λ=-u u u r u u u r u u u r ()λ∈R ,且4AD AE ⋅=-u u u r u u u r,则λ的值为___________.27.已知向量,a b ,||1=a ,||2=b ,若对任意单位向量e ,均有||||6+…ae be ,则⋅a b 的最大值是 .三、解答题28.已知向量(cos ,sin )x x =a ,(3,=b ,[0,]x π∈.(1)若∥a b ,求x 的值;(2)记()f x =⋅a b ,求()f x 的最大值和最小值以及对应的x 的值.29.在平面直角坐标系xoy 中,已知向量(22=-m ,(sin ,cos )x x =n ,(0,)2x π∈. (1)若⊥m n ,求tan x 的值; (2)若m 与n 的夹角为3π,求x 的值.30.已知向量()(),cos2,sin 2,m x x n ==a b ,函数()f x =⋅a b ,且()y f x = 的图像过点12π⎛ ⎝和点2,23π⎛⎫-⎪⎝⎭. (Ⅰ)求,m n 的值;(Ⅱ)将()y f x =的图像向左平移()0ϕϕπ<<个单位后得到函数()y g x =的图像,若()y g x =图像上各最高点到点()0,3的距离的最小值为1, 求()y g x =的单调递增区间.31.在ABC ∆中,内角,,A B C 的对边,,a b c ,且a c >,已知2BA BC ⋅=u u u r u u u r ,1cos 3B =,3b =,求:(Ⅰ)a 和c 的值; (Ⅱ)cos()B C -的值.32.已知(cos ,sin )αα=a ,(cos ,sin )ββ=b ,0βαπ<<<.(1) 若||-=a b ⊥a b ;(2) 设(0,1)=c ,若+=a b c ,求α,β的值.。
2020高考数学(理)(全国通用)大一轮复习2020高考试题汇编 第五章 平面向量 Word版含解析.doc
第五章 平面向量第一节 平面向量的线性运算及其坐标表示题型59 向量的概念及共线向量 题型60 平面向量的线性表示——暂无 题型61 向量共线的应用1.(2017全国3理12)在矩形ABCD 中,1AB =,2AD =,动点P 在以点C 为圆心且与BD 相切的圆上.若AP AB AD λμ=+,则λμ+的最大值为( ). A .3B.D .2解析 解法一:由题意,作出图像,如图所示.设BD 与C 切于点E ,联结CE .以点A 为坐标原点,AD 为x 轴正半轴,AB 为y 轴正半轴建立直角坐标系,则点C 坐标为(2,1).因为||1CD =,||2BC =.所以BD =BD 切C 于点E .所以CE⊥BD .所以CE 是Rt BCD △斜边BD上的高.1222BCDBC CDS EC BD BD ⋅⋅⋅==△, 即C.因为点P 在C 上.所以点P 的轨迹方程为224(2)(1)5x y -+-=.设点P 的坐标为00(,)x y ,可以设出点P坐标满足的参数方程0021x y θθ⎧=⎪⎪⎨⎪=⎪⎩,而00(,)AP x y =,(0,1)AB =,(2,0)AD =. 因为(0,1)(2,0)(2,)AP AB AD λμλμμλ=+=+=,所以0112x μθ==,01y λθ==.两式相加得()112λμθθθϕ+=++=++= 2sin()3θϕ++≤ (其中sin ϕcos ϕ),当且仅当π2π2k θϕ=+-,k ∈Z 时,λμ+取得最大值为3.故选A.解法二:如图所示,考虑向量线性分解的等系数和线,可得λμ+的最大值为3. 2.(2017浙江理15)已知向量a ,b 满足1=a ,2=b ,则++-a b a b 的最小值是 ,最大值是 .解析 解法一:如图所示,a +b 和-a b 是以,a b 为邻边的平行四边形的两条对角线,则()2222210++-=+=a b a b a b,A 是以O 为圆心的单位圆上的一动点,构造2个全等的平行四边形AOBD ,平行四边形ECOA .所以AB AC +-=+a +b a b . 易知当A ,B ,C 三点共线时,AB AC +最小,此时4AB AC BC +==; 当AO BC ⊥时,AB AC+最大,此时2AB AC AB +==解法二:()2222++-=++-++-=a b a b a b a b a b a b ()222++a b1010+=+θ是向量a ,b 的夹角).所以当2cos 1θ=时,++-a b a b 取得最小值4;当2cos 0θ=时,++-a b a b 取得最大值a题型62 平面向量基本定理及应用1.(2017江苏12)如图所示,在同一个平面内,向量OA ,OB ,OC 的模分别为1,1,OA 与OC 的夹角为α,且t a n 7α=,OB 与OC 的夹角为45︒.若O C m O An O =+(),mn ∈R , 则m n += .B解析 解法一:由题意OC OA mOA OA nOB OA OC OB mOA OB nOB OB⎧⋅=⋅+⋅⎪⎨⋅=⋅+⋅⎪⎩ (*)而由tan 7α=,得sin α=,cos α=,11cos 4OA OB απ⎛⎫⋅=⨯⨯+ ⎪⎝⎭3cos cos sin sin 445ααππ=⋅-⋅=-.将(*)式化简为13 5531 5m n m n ⎧=-⎪⎪⎨⎪=-+⎪⎩①②式①加式②,得3m n +=.故填3.解法二(坐标法):如图所示,以OA 所在的直线为x 轴,过O 且垂直于OA 的直线为y 轴建立平面直角坐标系,由题意结合解法一可得()1,0A ,17,55C ⎛⎫⎪⎝⎭,34,55B ⎛⎫- ⎪⎝⎭,由OC mOA nOB =+,得()1734,1,0,5555m n ⎛⎫⎛⎫=+-⎪ ⎪⎝⎭⎝⎭,即13557455m n n⎧=-⎪⎪⎨⎪=⎪⎩,解得5474m n ⎧=⎪⎪⎨⎪=⎪⎩,故3m n +=.故填3.解法三(解三角形):由tan 7α=,可得sin 10α=,cos 10α=,如图所示,根据向量的分解,易得cos 45cos sin 45sin 0n m n m αα⎧︒+=⎪⎨︒-=⎪⎩2100210n m n m +=⎪-=⎩,即510570n m n m +=⎧⎨-=⎩,解得57,44m n ==,所以3m n +=.题型63 平面向量的坐标运算1.(2017江苏13)在平面直角坐标系xOy 中,点()12,0A -,()0,6B ,点P 在圆22:50O x y +=上.若20PA PB ⋅…,则点P 的横坐标的取值范围是 .解析 不妨设()00,P x y ,则220050x y +=,且易知0x ⎡∈-⎣.因为PA PB AP BP =⋅⋅()()000012,,6x y x y =+⋅-=220000126x x y y ++-005012620x y =+-…,故00250x y -+….所以点()00,P x y 在圆22:50O x y +=上,且在直线250x y -+=的左上方(含直线).联立2250250x y x y ⎧+=⎨-+=⎩,得15x =-,21x =,如图所示,结合图形知0x ⎡⎤∈-⎣⎦.故填⎡⎤-⎣⎦.2评注 也可以理解为点P 在圆22000012620x y x y +=+-的内部来解决,与解析中的方法一致.题型64 向量共线(平行)的坐标表示——暂无第二节 平面向量的数量积题型65 平面向量的数量积1.(2017天津理13)在ABC △中,60A =∠,3AB =,2AC =.若2BD DC =,()AE AC AB λλ∈=-R ,且4AD AE ⋅=-,则λ的值为___________.解析 解法一:如图所示,以向量AB ,AC 为平面向量的基底,则依题意可得1cos603232AB AC AB AC ⋅==⨯⨯=.又因为2BD DC =,则()22213333AD AB BD AB BC AB AC AB AC AB =+=+=+-=+, 则22212114533333AD AE AC AB AC AB λλλ⎛⎫-=⋅=-+-⋅=- ⎪⎝⎭,解得311λ=.DCBA解法二:以点A 为坐标原点,以AB 所在的直线为x 轴,建立直角坐标系(如图所示).依题意易得()0,0A ,()3,0B,(C ,()=3,0AB,(BC =-,(=1,3AC .则可得2533AD AB BD AB BC ⎛=+=+= ⎝⎭,()AE AC AB λλ=-=-,于是有()511432533AD AE λλλ-=⋅=-+=-,解得311λ=.2.(2017北京理6)设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的( ). A.充分而不必要条件B.必要而不充分条件C. 充分必要条件D.既不充分也不必要条件解析若0λ∃<,使λ=m n ,即两向量方向相反,夹角为180,则0⋅<m n .若0⋅<m n ,也可能夹角为(90,180⎤⎦,方向并不一定相反,故不一定存在.故选A.3.(2017全国1理13)13.已知向量a ,b 的夹角为60,2=a ,1=b ,则2+=a b . 解析 ()22222(2)22cos602+=+=+⋅⋅⋅+a b a b a a b b221222222=+⨯⨯⨯+=444++=12,所以2+==a b 4.(2017全国2理12)已知ABC △是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是( ).A.2-B.32-C. 43- D.1-解析 解法一(几何法):如图所示,取BC 的中点D ,联结AD ,取AD 的中点E ,由2PB PC PD +=,则()()()22PA PB PC PD PA PE ED PE EA ⋅+=⋅=+⋅+=()222PE ED-=2221132422PE AD AD ⎛⎫--=- ⎪⎝⎭…,当且仅当20PE =,即点P 与点E 重合时,取得最小值为32-,故选B.解法二(解析法):建立如图所示的直角坐标系,以的BC 的中点为坐标原点, 所以(0A ,()10B -,,()10C ,.设点()P x y ,,()PA x y=-,()1PB x y =---,,()1PC x y =--,,所以()2222PA PB PC x y ⋅+=-+22324x y ⎡⎤⎛⎢⎥=+-- ⎢⎥⎝⎭⎣⎦, 则其最小值为33242⎛⎫⨯-=- ⎪⎝⎭,此时0x =,y =.故选B.5.(2017全国3理12)在矩形ABCD 中,1AB =,2AD =,动点P 在以点C 为圆心且与BD 相切的圆上.若AP AB AD λμ=+,则λμ+的最大值为( ). A .3B.D .2解析 解法一:由题意,作出图像,如图所示.设BD 与C 切于点E ,联结CE .以点A 为坐标原点,AD 为x 轴正半轴,AB 为y 轴正半轴建立直角坐标系,则点C 坐标为(2,1).因为||1CD =,||2BC =.所以BD =BD 切C 于点E .所以CE⊥BD .所以CE 是Rt BCD △斜边BD上的高.1222BCDBC CDS EC BD BD ⋅⋅⋅==△, 即C.因为点P 在C 上.所以点P 的轨迹方程为224(2)(1)5x y -+-=.设点P 的坐标为00(,)x y ,可以设出点P坐标满足的参数方程0021x y θθ⎧=⎪⎪⎨⎪=⎪⎩,而00(,)AP x y =,(0,1)AB =,(2,0)AD =. 因为(0,1)(2,0)(2,)AP AB AD λμλμμλ=+=+=,所以0112x μθ==,01y λθ==.两式相加得()112λμθθθϕ+=++=++=2sin()3θϕ++≤ (其中sin ϕcos ϕ),当且仅当π2π2k θϕ=+-,k ∈Z 时,λμ+取得最大值为3.故选A.解法二:如图所示,考虑向量线性分解的等系数和线,可得λμ+的最大值为3.λ+μ=2λ+μ=3DCBA6.(2017山东理12)已知12,e e 是互相垂直的单位向量,12-e 与12λ+e e 的夹角为60,则实数λ的值是. 解析)()221212112122λλλ-⋅+=+⋅-⋅-=e e e e e e e e ,122-===e,12λ+===e e2cos601λ==+,解得3λ=.7.(2017浙江理10)如图所示,已知平面四边形ABCD,AB BC⊥,2AB BC AD===,3CD=,AC与BD交于点O,记1·I O A O B=,2·I OB OC=,3·IOC OD=,则().A.123I I I<<B.132I I I<<C.312I I I<<D.213I I I<<解析如图所示,动态研究问题:D D¢®,O O¢®.此时有90AOB?o,90BOC?o,90COD?o,且CO AO>,DO BO>.故OB OC OA OB OC OD???uu u r uuu r uu r uu u r uuu r uuu r.8.(2017浙江理15)已知向量a,b满足1=a,2=b,则++-a b a b的最小值是,最大值是.解析解法一:如图所示,a+b和-a b是以,a b为邻边的平行四边形的两条对角线,则()2222210++-=+=a b a b a b,A是以O为圆心的单位圆上的一动点,构造2个全等的平行四边形AOBD,平行四边形ECOA.所以AB AC+-=+a+b a b.易知当A,B,C三点共线时,AB AC+最小,此时4AB AC BC+==;当AO BC⊥时,AB AC+最大,此时2AB AC AB+==Aa解法二:()2222++-=++-++-=a b a b a b a b a b a b ()222++a b1010+=+θ是向量a ,b 的夹角).所以当2cos 1θ=时,++-a b a b 取得最小值4;当2cos 0θ=时,++-a b a b 取得最大值题型66 向量与三角形的四心——暂无。
2020高考复习数学:平面向量(附答案)
2020年高考虽然延期一个月,但是练习一定要跟上,加油!一、选择题(每小题5分,共60分)1.点M(4,-3)关于点N(5,-6)的对称点是9,0)A.(4,3)B.(21,3) D.(6,-9)C.(-2解析:设M关于N的对称点为M'(x,y),MN=M N',把坐标代入即可.答案:D2.有三个命题:①向量AB与CD是共线向量,则A、B、C、D必在同一直线上;②向量a与向量b平行,则a与b的方向相同或相反;③四边形ABCD是平行四边形的充要条件是AB=DC.其中正确的是A.②B.③C.①③D.②③解析:①AB与CD共线,AB与CD也可以平行.②中a与b也可能为0.选B.答案:B3.已知A(1,2),B(4,2),则向量AB按向量a=(-1,3)平移后得到的向量坐标是A.(3,0)B.(3,5)C.(-4,3)D.(2,3)解析:AB =(3,0),向量AB 按任何方向平移后坐标不变. 答案:A4.已知|a |=4,|b |=8且a 与2b -a 互相垂直,则向量a 与b 的夹角是A.arccos 41B.π-arccos 41C.3πD.6π解析:由a ⊥(2b -a )得a ·(2b -a )=0,∴2|a ||b |cos θ-|a |2=0.∴cos θ=41.又0≤θ≤π,∴θ=arccos 41.答案:A5.△ABC 中,已知b =10,c =15,C =30°,则此三角形的解的情况是A.一解B.两解C.无解D.无法确定解析:由b <c 得B <C ,B 必为小于30°的锐角. 答案:A 6.下列命题:①k ∈R ,且k b =0,则k =0或b =0; ②若a ·b =0,则a =0或b =0;③若不平行的两个非零向量a 、b ,满足|a |=|b |,则(a +b )·(a -b )=0;④若a 与b 平行,则|a ·b |=|a ||b |;⑤a ∥b ,b ∥c ,则a ∥c . 其中真命题的个数是 A.1B.2C.3D.4解析:①正确;②错误,若a ⊥b ,则a ·b =0;③正确,因为(a +b )·(a -b )=|a |2-|b |2=0;④正确,可设a =λb ,则a ·b =λb ·b =λ|b |2;⑤错误,若b =0,则对任意a 与c ,均有a ∥b ,b ∥c 成立.答案:C7.已知点P (cos α,sin α),Q (cos β,sin β),则|PQ |的最大值是A.2B.2C.4D.不存在解析:|PQ |2=(cos β-cos α)2+(sin β-sin α)2=2-2(cosαcos β+sin αsin β)=2-2cos (α-β),故当cos (α-β)=-1时,|PQ |取最大值2.答案:B8.在△ABC 中,a 2+b 2-c 2=ab ,则角C 为 A.60°B.45°或135°C.120°D.30°解析:cos C =abc b a 2222-+=21,C =60°.答案:A9.点P 1,P 2,…,P n 是线段AB 的n 个n +1等分点,P ∈{P 1,P 2,…,P n },则P 分有向线段AB 的比λ的最大值和最小值分别是A.n +1,21+n B.n +1,11+nC.n ,n1D.n -1,11 n 解析:由AP =λPB 知λ取得最大值时P 为距点B 最近的点P n ,取最小值时为P 1.答案:C10.若a 与b 的夹角为60°,|b |=2,(a +b )·(a -2b )=-2,则向量a 的模是A.2B.5C.3D.6解析:由题意知a 2-a ·b -2b 2=-2,|b |=2,cos60°=21,代入得|a |2-|a |-6=0.∴|a |=3或|a |=-2(舍去). 答案:C11.命题p :|a |=|b |且a ∥b ;命题q :a =b ,则p 是q 的 A.充分不必要条件B.必要不充分要件C.充分必要条件D.既不充分又不必要条件解析:当a ∥b 且a 与b 方向相反时,即使|a |=|b |,也不能得到a =b ,故|a |=|b |且a ∥b 不是a =b 的充分条件,而是必要不充分条件.答案:B12.在平面直角坐标系中,O 为原点,OA =a ,OB =b ,对任意一点M ,它关于A 的对称点为S ,S 关于点B 的对称点为N ,则MN 用a 、b 表示为A.2(b -a )B.21(a -b )C.a +bD.21(a +b )解析:MN =MS +SN =2AS +2SB =2OB -2OA .(四边形OASB 是平行四边形)答案:A二、填空题(每小题4分,共16分) 13.OA =3e 1,OB =3e 2,且AP =21PB ,则OP =____________. 解析:AB =3e 2-3e 1,AP =31AB =e 2-e 1,OP =OA +AP =2e 1+e 2.答案:2e 1+e 2 14.已知向量a =(1,2),b =(-2,1),若正数k 和t 满足x =a +(t 2+1)b 与y =-k a +t1b 垂直,则k 的最小值是____________.解析:x =(1-2-2t 2,1+2+t 2),y =(-k -t2,-2k +t1),由x ⊥y 得x ·y =0.又t >0,∴k =t +t1≥2.∴当t =1时,k 的最小值为2.答案:215.在△ABC 中,记BC =a ,AC =b ,AB =c ,若9a 2+9b 2-19c 2=0,则BA Ccot cot cot +=____________.解析:BA Ccot cot cot +=BBA A C C sin cos sin cos sin cos +=C C B A 2sin cos sin sin =ab c b a cab 22222-+⋅=22222c c b a -+=222218999c c b a -+=22218919c c c -=95.答案:9516.已知直线l 1过点(0,t ),方向向量为(1,1),直线l 2过点(t ,1),方向向量为(1,-2),P 为l 1、l 2的交点,当t 变化时,P 的轨迹方程为____________.解析:l 1方程为x -y +t =0,l 2方程为2x +y -1-2t =0,两式消去t 即得P 的轨迹方程.答案:4x -y -1=0三、解答题(本大题共6小题,共74分) 17.(12分)已知向量a =(3,-4),求: (1)与a 平行的单位向量b ; (2)与a 垂直的单位向量c ;(3)将a 绕原点逆时针方向旋转45°得到的向量e 的坐标. 解:(1)设b =λa ,则|b |=1,b =(53,-54)或b =(-53,54).(2)由a ⊥c ,a =(3,-4),可设c =λ(4,3),求得c =(54,53)或c =(-54,-53). (3)设e =(x ,y ),则x 2+y 2=25.又a ·e =3x -4y =|a ||e |cos45°,即3x -4y =2225,由上面关系求得e =(227,-22),或e =(-22,-227),而向量e 由a 绕原点逆时针方向旋转45°得到,故e =(227,-22).18.(12分)向量a =(1,cos2θ),b =(2,1),c =(4sin θ,1),d =(21sin θ,1),其中θ∈(0,4π).(1)求a ·b -c ·d 的取值范围;(2)若函数f (x )=|x -1|,判断f (a ·b )与f (c ·d )的大小,并说明理由.解:(1)a ·b =2+cos2θ,c ·d =2sin 2θ+1=2-cos2θ. ∵a ·b -c ·d =2cos2θ, ∴0<θ<4π.∴0<2θ<2π.∴0<cos2θ<1.∴0<2cos2θ<2. ∴a ·b -c ·d 的取值范围是(0,2).(2)f (a ·b )=|2+cos2θ-1|=|1+cos2θ|=2cos 2θ,f (c ·d )=|2-cos2θ-1|=|1-cos2θ|=2sin 2θ.于是有f (a ·b )-f (c ·d )=2(cos 2θ-sin 2θ)=2cos2θ. ∵0<θ<4π,∴0<2θ<2π.∴2cos2θ>0.∴f (a ·b )>f (c ·d ).19.(12分)△ABC 的三个内角A 、B 、C 满足下列条件: ①A <B <C ;②A 、B 、C 成等差数列;③tan A ·tan C =2+3.(1)求A 、B 、C 的大小; (2)若AB 边上的高为43,求a 、b 、c 的大小.解:(1)由题意知B =60°,A +C =120°,tan (A +C )=C A CA tan tan 1tan tan -+=-tan B =-3,∴tan A +tan C =3+3.故⎪⎩⎪⎨⎧+==32tan 1tan C A ,或⎪⎩⎪⎨⎧=+=1tan 32tan C A ,(舍),故A =45°,B =60°,C =75°.(2)过C 作CD ⊥AB 于点D ,则CD =43,在Rt △ACD 和Rt△ABC 中,由正弦定理得a =BCDsin =8,b =ACD sin =46,c =AD +DB =43+4.20.(12分)已知a =(cos θ,sin θ),b =(cos β,sin β),a 与b 之间有关系式|k a +b |=3|a -k b |(k >0).(1)用k 表示a ·b ;(2)求a ·b 的最小值,并求此时a 与b 夹角的大小. 解:(1)将|k a +b |=3|a -k b |两边平方得a ·b =kk k 81332222b a )()(-+-=kk 412+. (2)∵(k -1)2≥0, 又k >0,∴k k 412+≥kk42=21,即a ·b ≥21,cos α=21.又0°≤α≤180°,故a 与b 的夹角为60°.21.(12分)已知矩形ABCD ,E 、F 分别是AD 、BC 的中点,求证:对角线AC ⊥BE ,AC ⊥DF 的充要条件是AB ∶BC =1∶2.证明:设BA =a ,BC =b ,则a ⊥b .AE =21b ,AC =b -a ,BE =BA +AE =a +21b . (1)必要性:∵AC ⊥BE ,∴(b -a )·(a +21b )=0, 即a ·b +21b 2-a 2-21a ·b =0.∵a ⊥b ,∴a ·b =0.∴21b 2-a 2=0,即21b 2=a 2,得b 2=2a 2,|b |=2|a |.∴AB ∶BC =1∶2.(2)充分性:∵AC ·BE =(b -a )·(a -21b )=a ·b +21b 2-a 2-21a ·b , 又∵a ⊥b ,∴a ·b =0.∴AC ·BE =21b 2-a 2=21|b |2-|a |2.∵AB ∶BC =1∶2,∴|a |∶|b |=1∶2.∴|a |2=21|b |2.∴AC ·BE =0. 故AC ⊥BE .同理可证AC ·DF =0,则AC ⊥DF .综合(1)(2)知AC ⊥BE ,AC ⊥DF 的充要条件是AB ∶BC =1∶2.22.(14分)设坐标平面上全部向量的集合为V ,a =(a 1,a 2)为V 的一个单位向量.已知从V 到V 的映射f 由f (x )=-x +2(x ·a )a (x ∈V )确定.(1)若x 、y ∈V ,求证:f (x )·f (y )=x ·y ; (2)对于x ∈V ,计算f [f (x )]-x ;(3)设u =(1,0),v =(0,1),若f (u )=v ,求a . (1)证明:f (x )·f (y )=[-x +2(x ·a )a ]·[-y +2(y ·a )a ]=x ·y -4(x ·a )(y ·a )+4(x ·a )(y ·a )a 2=x ·y . (2)解:∵f [f (x )]=f [-x +2(x ·a )a ] =-[-x +2(x ·a )a ]+2{[-x +2(x ·a )a ]·a }a =x -2(x ·a )a +2[-x ·a +2(x ·a )a 2]a =x -2(x ·a )a +2(x ·a )a =x , ∴f [f (x )]-x =0. (3)解:由f (u )=v ,得⎪⎩⎪⎨⎧==-.120122121a a a ,解得⎪⎪⎩⎪⎪⎨⎧==222221a a ,或⎪⎪⎩⎪⎪⎨⎧-=-=.222221a a , ∴a =(22,22)或a =(-22,-22).。
2020年高考数学二轮 专题5 平面向量精品复习(学生版)
2020届高考数学二轮复习资料专题五 平面向量(学生版)【考纲解读】1. 理解平面向量的概念与几何表示、两个向量相等的含义;掌握向量加减与数乘运算及其意义;理解两个向量共线的含义,了解向量线性运算的性质及其几何意义.2.了解平面向量的基本定理及其意义;掌握平面向量的正交分解及其坐标表示;会用坐标表示平面向量的加法、减法与数乘运算;理解用坐标表示的平面向量共线的条件.3.理解平面向量数量积的含义及其物理意义;了解平面向量数量积与向量投影的关系;掌握数量积的坐标表达式,会进行平面向量数量积的运算;能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.【考点预测】高考对平面向量的考点分为以下两类:(1)考查平面向量的概念、性质和运算,向量概念所含内容较多,如单位向量、共线向量、方向向量等基本概念和向量的加、减、数乘、数量积等运算,高考中或直接考查或用以解决有关长度,垂直,夹角,判断多边形的形状等,此类题一般以选择题形式出现,难度不大.(2)考查平面向量的综合应用.平面向量常与平面几何、解析几何、三角等内容交叉渗透,使数学问题的情境新颖别致,自然流畅,此类题一般以解答题形式出现,综合性较强.【要点梳理】1.向量的加法与减法:掌握平行四边形法则、三角形法则、多边形法则,加法的运算律;2.实数与向量的乘积及是一个向量,熟练其含义;3.两个向量共线的条件:平面向量基本定理、向量共线的坐标表示;4.两个向量夹角的范围是:[0,]π;5.向量的数量积:熟练定义、性质及运算律,向量的模,两个向量垂直的充要条件.【考点在线】考点一 向量概念及运算例1.(2020年高考山东卷理科12)设1A ,2A ,3A ,4A 是平面直角坐标系中两两不同的四点,若1312A A A A λ=u u u u v u u u u v (λ∈R),1412A A A A μ=u u u u v u u u u v (μ∈R),且112λμ+=,则称3A ,4A 调和分割1A ,2A ,已知点C(c ,o),D(d ,O) (c ,d ∈R)调和分割点A(0,0),B(1,0),则下面说法正确的是( )(A)C 可能是线段AB 的中点(B)D 可能是线段AB 的中点(C)C ,D 可能同时在线段AB 上(D) C ,D 不可能同时在线段AB 的延长线上练习1: (2020年高考广东卷文科3)已知向量(1,2),(1,0),(3,4)a b c ===r r r ,若λ为实数,()//a b c λ+r r r ,则λ= ( )A .14B .12C .1D .2 考点二 平面向量的数量积已知向量)2,(sin -=θa 与)cos ,1(θ=b 互相垂直,其中)2,0(πθ∈(1)求θsin 和θcos 的值(2)若ϕϕθcos 53)cos(5=-,<<ϕ02π,求ϕcos 的值 【易错专区】 问题:向量运算例. (山东省济宁市2020年3月高三第一次模拟理科)平面上有四个互异的点A 、B 、C 、D ,满足(AB u u u r -BC u u u r )·(AD u u u r -CD u u u r )=0,则三角形ABC 是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形【考题回放】 1.(2020年高考全国卷文科3)设向量a b r r 、满足|a r |=|b r |=1, a b ⋅r r 1=2-,则2a b +=r r ( )(A 2 (B 3(C 5(D 72.(2020年高考辽宁卷文科3)已知向量a =(2,1),b =(-1,k ),a ·(2a -b )=0,则k=( )(A )-12 (B )-6 (C )6 (D )123. (2020年高考四川卷文科7)如图,正六边形ABCDEF 中,BA CD EF ++u u u r u u u r u u u r =( )(A)0 (B)BE u u u r (C)AD u u u r (D)CF uuu r4.( 2020年高考全国Ⅰ卷文科11)已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么PA PB •u u u v u u u v 的最小值为( ) (A) 42-+32- (C) 422-+322-+5.(2020年高考全国卷Ⅱ文科10)△ABC 中,点D 在边AB 上,CD 平分∠ACB ,若CB u u u r = a ,CA u u u r = b , a = 1 ,b = 2, 则CD uuu r =( )(A )13a + 23b (B )23a +13b (C )35a +45b (D )45a +35b 6.(2020年高考四川卷文科6)设点M 是线段BC 的中点,点A 在直线BC 外,216BC =u u u r ,AB AC AB AC +=-u u u r u u u r u u u r u u u r ,则AM u u u u r =( ) (A )8 (B )4 (C )2 (D )17.(2020年高考江西卷文科11)已知两个单位向量1e ,2e 的夹角为3π,若向量1122b e e =-,21234b e e =+,则12b b ⋅=___.8. (2020年高考福建卷文科13)若向量a=(1,1),b (-1,2),则a·b 等于_____________.9.(2020年高考湖南卷文科13)设向量,a b r r 满足||5,(2,1),a b ==r r 且a b r r 与的方向相反,则a r 的坐标为 .10.(2020年高考浙江卷文科15)若平面向量α、β 满足1,1αβ=≤,且以向量α、β为邻边的平行四边形的面积为12,则α和β的夹角θ取值范围是 . 11. (2020年高考天津卷文科14)已知直角梯形ABCD 中,AD ∥BC,90ADC ∠=o ,AD=2,BC=1,P是腰DC 上的动点,则|3|PA PB +u u u r u u u r 的最小值为 .(D)2222()()||||a b a b a b +•=e 2.(2020年高考天津卷文科9)如图,在ΔABC 中,AD AB ⊥,3BC =u u u r BD u u u r ,1AD =u u u r ,则AC AD ⋅u u u r u u u r =( )(A )23(B 3(C 3(D 3 3.(2020年高考福建卷文科8)若向量(x,3)(x )a R =∈r ,则“x 4=”是“||5a =”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分又不必要条件4.(2020年高考福建卷文科11)若点O 和点F 分别为椭圆22143x y +=的中心和左焦点,点P 为椭圆上的任意一点,则OP FP u u u r u u u r g 的最大值为( )A.2B.3C.6D.85.(2020年高考北京卷理科6)a 、b 为非零向量。
2020年高考数学试题分项版—平面向量(解析版)
2020年高考数学试题分项版——平面向量(解析版)一、选择题1.(2020·全国Ⅲ理,6)已知向量a ,b 满足|a |=5,|b |=6,a ·b =-6,则cos 〈a ,a +b 〉等于( )A .-3135B .-1935 C.1735 D.1935答案 D解析 ∵|a +b |2=(a +b )2=a 2+2a ·b +b 2 =25-12+36=49, ∴|a +b |=7,∴cos 〈a ,a +b 〉=a ·(a +b )|a ||a +b |=a 2+a ·b |a ||a +b |=25-65×7=1935. 2.(2020·新高考全国Ⅰ,7)已知P 是边长为2的正六边形ABCDEF 内的一点,则AP →·AB →的取值范围是( )A .(-2,6)B .(-6,2)C .(-2,4)D .(-4,6) 答案 A解析 如图,取A 为坐标原点,AB 所在直线为x 轴建立平面直角坐标系,则A (0,0),B (2,0),C (3,3),F (-1,3). 设P (x ,y ),则AP →=(x ,y ),AB →=(2,0),且-1<x <3. 所以AP →·AB →=(x ,y )·(2,0)=2x ∈(-2,6).3.(2020·新高考全国Ⅱ,3)若D 为△ABC 的边AB 的中点,则CB →等于( ) A .2CD →-CA → B .2CA →-CD → C .2CD →+CA → D .2CA →+CD →答案 A解析 如图所示,∵D 为△ABC 的边AB 的中点, ∴CA →+CB →=2CD →, ∴CB →=2CD →-CA →.4.(2020·全国Ⅱ文,5)已知单位向量a ,b 的夹角为60°,则在下列向量中,与b 垂直的是( )A .a +2bB .2a +bC .a -2bD .2a -b 答案 D解析 由题意得|a |=|b |=1,设a ,b 的夹角为θ=60°, 故a ·b =|a ||b |cos θ=12.对A 项,(a +2b )·b =a ·b +2b 2=12+2=52≠0;对B 项,(2a +b )·b =2a ·b +b 2=2×12+1=2≠0;对C 项,(a -2b )·b =a ·b -2b 2=12-2=-32≠0;对D 项,(2a -b )·b =2a ·b -b 2=2×12-1=0.5.(2020·全国Ⅲ文,6)在平面内,A ,B 是两个定点,C 是动点,若AC →·BC →=1,则点C 的轨迹为( )A .圆B .椭圆C .抛物线D .直线 答案 A解析 建立如图所示的平面直角坐标系xOy ,设点A ,B 的坐标分别为(-a,0),(a,0),点C 为(x ,y ), 则AC →=(x +a ,y ),BC →=(x -a ,y ), 所以AC →·BC →=(x -a )(x +a )+y ·y =x 2+y 2-a 2=1, 整理得x 2+y 2=a 2+1. 因此点C 的轨迹为圆.二、填空题1.(2020·全国Ⅰ理,14)设a ,b 为单位向量,且|a +b |=1,则|a -b |=________. 答案3解析 将|a +b |=1两边平方,得a 2+2a ·b +b 2=1. ∵a 2=b 2=1,∴1+2a ·b +1=1,即2a ·b =-1. ∴|a -b |=(a -b )2=a 2-2a ·b +b 2 =1-(-1)+1= 3.2.(2020·全国Ⅱ理,13)已知单位向量a ,b 的夹角为45°,k a -b 与a 垂直,则k =________. 答案22解析 由题意知(k a -b )·a =0,即k a 2-b ·a =0. 因为a ,b 为单位向量,且夹角为45°, 所以k ×12-1×1×22=0,解得k =22. 3.(2020·北京,13)已知正方形ABCD 的边长为2,点P 满足AP →=12(AB →+AC →),则|PD →|=________;PB →·PD →=________. 答案5 -1解析 建立如图所示的平面直角坐标系,∵AP →=12(AB →+AC →),∴P 为BC 的中点.∴点P 的坐标为(2,1),点D 的坐标为(0,2),点B 的坐标为(2,0), ∴|PD →|=5,PB →=(0,-1),PD →=(-2,1), ∴PB →·PD →=-1.4.(2020·天津,15)如图,在四边形ABCD 中,∠B =60°,AB =3,BC =6,且AD →=λBC →,AD →·AB →=-32,则实数λ的值为________,若M ,N 是线段BC 上的动点,且|MN →|=1,则DM →·DN →的最小值为________.答案 16 132解析 因为AD →=λBC →,所以AD ∥BC ,则∠BAD =120°, 所以AD →·AB →=|AD →|·|AB →|·cos 120°=-32,解得|AD →|=1.因为AD →,BC →同向,且BC =6, 所以AD →=16BC →,即λ=16.在四边形ABCD 中,作AO ⊥BC 于点O , 则BO =AB ·cos 60°=32,AO =AB ·sin 60°=332.以O 为坐标原点,以BC 和AO 所在直线分别为x ,y 轴建立平面直角坐标系.如图,设M (a,0),不妨设点N 在点M 右侧, 则N (a +1,0),且-32≤a ≤72.又D ⎝⎛⎭⎫1,332,所以DM →=⎝⎛⎭⎫a -1,-332,DN →=⎝⎛⎭⎫a ,-332,所以DM →·DN →=a 2-a +274=⎝⎛⎭⎫a -122+132. 所以当a =12时,DM →·DN →取得最小值132.5.(2020·江苏,13)在△ABC 中,AB =4,AC =3,∠BAC =90°,D 在边BC 上,延长AD 到P ,使得AP =9,若P A →=mPB →+⎝⎛⎭⎫32-m PC →(m 为常数),则CD 的长度是________.答案185或0解析 方法一 ∵AB =4,AC =3,∠BAC =90°, ∴BC =5.由向量系数m +⎝⎛⎭⎫32-m =32为常数,结合等和线定理可知|P A →||PD →|=321. 故PD =23P A =6,AD =P A -PD =3=AC ,当D 与C 重合时,CD =0;当D 与C 不重合时,得∠ACD =∠ADC , ∴∠CAD =π-2∠ACD .在△ABC 中,cos ∠ACB =AC BC =35.在△ADC 中,由正弦定理得CD sin ∠CAD =ADsin ∠ACD,∴CD =sin (π-2∠ACD )sin ∠ACD ·AD =sin 2∠ACDsin ∠ACD ·AD=2cos ∠ACD ·AD =2×35×3=185.综上,CD =185或0.方法二 如图,以点A 为坐标原点,AB ,AC 所在的直线分别为x 轴、y 轴建立平面直角坐标系,则C (0,3),B (4,0),AC →=(0,3),CB →=(4,-3).∵P A →=mPB →+⎝⎛⎭⎫32-m PC →=32PC →+m (PB →-PC →)=32(P A →+AC →)+mCB →=32P A →+32AC →+mCB →, ∴-12P A →=32(0,3)+m (4,-3)=⎝⎛⎭⎫4m ,92-3m , ∴P A →=(-8m,6m -9).∵|P A →|=9,∴64m 2+(6m -9)2=81, ∴m =2725或m =0,当m =2725时,P A →=⎝⎛⎭⎫-21625,-6325, ∴P ⎝⎛⎭⎫21625,6325,∴k P A =63216=724.由⎩⎨⎧y =724x ,x 4+y3=1,解得⎩⎨⎧x =7225,y =2125,∴D ⎝⎛⎭⎫7225,2125, ∴CD =⎝⎛⎭⎫0-72252+⎝⎛⎭⎫3-21252=8 100252=9025=185. 当m =0时,P A →=(0,-9), ∴P (0,9),此时C 与D 重合,CD =0. 综上,CD =185或0.6.(2020·浙江,17)已知平面单位向量e 1,e 2满足|2e 1-e 2|≤2,设a =e 1+e 2,b =3e 1+e 2,向量a ,b 的夹角为θ,则cos 2θ的最小值是________. 答案2829解析 设e 1=(1,0),e 2=(x ,y ), 则a =(x +1,y ),b =(x +3,y ). 由2e 1-e 2=(2-x ,-y ), 故|2e 1-e 2|=(2-x )2+y 2≤2, 得(x -2)2+y 2≤2.又有x 2+y 2=1,得(x -2)2+1-x 2≤2, 化简,得4x ≥3,即x ≥34,因此34≤x ≤1.cos 2θ=⎝⎛⎭⎫a ·b |a |·|b |2=⎣⎢⎡⎦⎥⎤(x +1)(x +3)+y 2(x +1)2+y 2(x +3)2+y 22 =⎝ ⎛⎭⎪⎫4x +42x +26x +102=4(x +1)2(x +1)(3x +5) =4(x +1)3x +5=43(3x +5)-833x +5 =43-833x +5,当x =34时,cos 2θ有最小值,为4⎝⎛⎭⎫34+13×34+5=2829.7.(2020·全国Ⅰ文,14)设向量a =(1,-1),b =(m +1,2m -4),若a ⊥b ,则m =________. 答案 5解析 ∵a ⊥b ,∴a ·b =0.又a =(1,-1),b =(m +1,2m -4),∴1×(m +1)+(-1)×(2m -4)=0,解得m =5.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(5)平面向量
1、在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =( ) A.3144
AB AC - B.1344
AB AC -
C.3144
AB AC +
D.1344
AB AC +
2、已知O 、A 、B 为平面上三点,点C 分有向线段AB 所成的比为2,则( )
A.12
-33OC OA OB =
B. 12
33OC OA OB =+
C.21
-33
OC OA OB =
D.21
33
OC OA OB =+
3、如图,在正方形ABCD 中,点E 是DC 的中点,点F 是BC 的一个三等分点,那么EF =( )
A .
11
23
AB AD - B .11
42AB AD + C .11
32AB AD +
D .
12
23
AB AD - 4、如图,在△ABC 中, 2,3AN NC P =是BN 上一点,若1
3
AP t AB AC =+,则实数t 的值为( )
A.
2
3 B. 25
C. 16
D. 34
5、已知向量()()()1,2,1,0,3,4a b c ===,若λ为实数, ()
//a b c λ+,则=λ ( )
A.
13 B. 12
C. 2
D. 3?
6、已知在边长为2的等边ABC △中,向量,a b 满足AB BC ==+uu u r uu u r ,a a b ,则下列式子错误的
是( )
A.22+=a b
B.=b
C.()2⋅+=a a b
D. 6⋅=-a b
7、设向量(,0),(1,1)a m b ==,且2
2
2
b a a b =--,则m =( ) A.2
B.1
C.-2
D.-1
8、已知ABC △是边长为2的等边三角形,P 为平面ABC △内一点,则()PA PB PC ⋅+uu r uu r uu u r
的最小值是( )
A.32-
B.2-
C.4
3- D.1-
9、已知向量(1,2),(2,4),5a b c ==--=,若5
()2a b c +⋅=,则a 与c 的夹角为() A.30︒
B.60︒
C.120︒
D.150︒
10、已知向量(1,)a m =r ,(3,2)b =-r ,且()a b b +⊥r r r
,则m =( )
A.-8
B.-6
C.6
D.8
11、已知向量a =(-4,3),b =(6,m ),且a b ⊥,则m =__________. 12、若向量,a b 满足:1,()a a b a =+⊥,(2)a b b +⊥,则b =________.
13、在等腰直角三角形ABC 上(包括边界)有一点P ,2AB AC ==,1PA PB ⋅=u u r u u r
,则PC uu u r 的取
值范围是 。
14、在Rt AOB △中,9012AOB OA OB ∠===,,,OC 平分AOB ∠且与AB 相交于点C ,则OC 在OA 上的投影为___。
15、已知平面向量()()1,2,2,a b m =-= 1.若a b ⊥,求2a b +;
2.若0m =,求a b +与a b -夹角的余弦值.
答案以及解析
1答案及解析: 答案:A
解析:在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,
12EB AB AE AB AD =-=-()
1122AB AB AC =-⨯+31
44
AB AC =- 故选A
2答案及解析: 答案:B
解析:∵点C 分有向线段AB 所成的比为2, ∴2AC CB =,∴()
2OC OA OB OC -=-
∴32OC OA OB =+∴12
23OC OA OB =+
综上所述,答案为B
3答案及解析: 答案:D 解析:
4答案及解析: 答案:C 解析:
5答案及解析: 答案:B 解析:
6答案及解析: 答案:C
解析:2AC AB BC =+=+uu u r uu u r uu u r
a b ,则
22AC +==uuu r a b ,A 正确; ()2AB BC ⋅+=⋅=-uu u r uu u r
a a
b ,C 错误;
()2
2⋅+=+⋅=-a a b a a b ,6⋅=-a b ,D 正确;
又2+=a b ,两边平方得22
24+⋅+=a a b b ,=b B 正确
7答案及解析: 答案:A
解析:方法一:∵(,0),(1,1)a m b ==,∴(1,1)a b m -=--, ∴222[(1)1]m m =--+,解得2m =.故选A.
方法二:∵2
2
2
b a a b =--,∴222()b a a b =--=222(2)a a a b b --⋅+, ∴2b a b =⋅,由题意知2,b a b m =⋅=,∴2m =
8答案及解析: 答案:A 解析:
9答案及解析: 答案:C
解析:依题意,得(1,2),5a b a +=--=. 设(,),c x y a =与c 的夹角为θ,而5()2
a b c +⋅=
, 所以5
22x y +=-.又2a c x y ⋅=+,
所以5
1
2cos 525a c a c
θ-
⋅=
===-⨯⋅. 所以a 与c 的夹角为120︒.
10答案及解析: 答案:D 解析:
11答案及解析: 答案:8.
解析:向量4,36,a b m a b =-=⊥(),(),,
则•046308a b m m =-⨯+==,
,.
12答案及解析:
解析:设向量,a b 的夹角为θ, ∵1,(),(2)a a b a a b b =+⊥+⊥ ∴2
()1cos a b a a a b b θ+⋅=+⋅=+ 2
2
()22cos 0a b b a b b b b θ+⋅=⋅+=+=
联立可解得2b = 2
13答案及解析: 答案:52⎡⎤⎣⎦,
解析:以点A 为坐标原点,AB AC ,所在的直线为x 轴,y 轴建立平面直角坐标系(如图), 则()()(00202)0A B C ,,,,,.设()P x y ,,则由1PA PB ⋅=u u r u u r
得,
()(2)x y x y ---⋅-,,2221x x y =-+=, 则点P 的轨迹方程是()2
212x y -+=, 轨迹是位于三角形内(含边界)的一段圆弧.
设点F 为其圆心,则0(1)F ,
,如图.当点C P F ,,共线时,
min CP CF PF =-,当点P 的坐标为(0)1,时,
CP 取得最大值1.故CP 的取值范围是⎤⎦.
14答案及解析: 答案:
23
解析:如图,过点C 作CD OA ⊥于点D ,则//CD BO ,向量OC 在OA 上的投影为OD .由OC 是
AOB ∠的平分线,得
12OA AC AD OB CB OD ===,则2
3
OD =.
15答案及解析:
答案:1.因为a b ⊥,()()1,2,2,a b m =-= 所以0a b ⋅=,即220m -+= 解得1m =
所以()()()21,24,23,4a b +=-+= 22345a b +=+
2.若0m =,则()2,0b = 所以(1,2)a b +=,-(3,2)a b =-
5,a b +=,-13a b =,341a b ⋅=-+=
所以cos 5-a b a b a b
θ⋅=
=
⋅+ 解析:。