2018秋-2019春学年人教版高中数学选修2-1(A版)课件:第三章 3.2 空间向量与平行关系 (共73张PPT)
人教A版高中数学选修2-1课件高二:3-1-1空间向量及其线性运算
4.理解空间向量的正交分解及其坐标的表示,掌握空间 向量的坐标运算及数量积的坐标表示,会判断两个向量平行或 垂直;掌握两个向量的夹角公式和向量长度的坐标计算公式, 并会用这些公式解决有关问题.
5.理解平面的法向量,能用向量语言表述线线、线面、 面面的垂直、平行关系.
6.能用向量方法证明有关线、面位置关系,能够用向量 方法解决线线、线面、面面的夹角及其长度问题.
向量那样,从某点
O
出
发
,
逐
一
引
向
量
→ OA1
=
a1
,
→ A1A2
=
a2,……An-1An=an,于是以所得折线 OA1A2……的起点 O 为
起点,终点 An 为终点的向量O→An,就是 a1,a2,……,an 的和,
即
O→An=O→A1+A→1A2+……An-1An=a1+a2+……+an. 用折线作向量的和时,有可能折线的终点恰恰重合到起点 上,这时的和向量就为零向量. 2.向量减法满足三角形法则:“同始连终、指向被减”. 即以同一点 O 作始点,作O→A=a,O→B=b,连结终点 A,B, 则A→B=b-a,B→A=a-b.
[答案] B
[分析] 给出的命题都是对向量的有关概念及加减法的理 解,解答本题应紧扣向量及其加减运算的有关概念进行.
[解析] |a|=|b|,说明 a 与 b 模相等,但方向不确定,由 a 的相反向量 b=-a,故|a|=|b|,从而 B 正确.只定义加法具有 结合律,减法不具有结合律,一般的四边形不具有A→B+A→D= A→C,只有平行四边形才能成立.故 A、C、D 均不正确.
[解析] B→C1=B→C+B→B1=A→A1+A→D=b+c, A→C1=A→C+C→C1=A→B+A→D+C→C1=a+b+c, B→D1=A→D1-A→B=A→D+A→A1-A→B=b+c-a, C→O=C→C1+C→1O=A→A1+12C→1A1 =A→A1+12(C→1D1+C→1B1) =A→A1+12(-A→B-A→D)=c-12a-12b.
2018-2019学年高二数学苏教版选修2-1讲义:第1部分 第3章 3.1 3.1.4 空间向量的坐标表示含答案解析
3.1.4空间向量的坐标表示[对应学生用书P56]在棱长为1的正方体ABCD-A1B1C1D1中,建立空间直角坐标系(如图),在x轴,y轴,z轴上分别取三个单位向量i,j,k.AD.问题1:用i,j,k表示AC,1AD=j+k.提示:AC=i+j,1AC=x i+y j+z k,则x,y,z为多少?与点C1的坐标有什么关系?问题2:若1AC=i+j+k,提示:∵1∴x=1,y=1,z=1,(x,y,z)=(1,1,1)与C1的坐标相同.在空间直角坐标系O-xyz中,分别取与x轴、y轴、z轴方向相同的单位向量i、j、k作为基向量.对于空间任意一个向量a,根据空间向量基本定理,存在惟一的有序实数组(x,y,z),使a=x i+y j+z k,有序实数组(x,y,z)叫做向量a在空间直角坐标系O-xyz中的坐标,记作a=(x,y,z).一块巨石从山顶坠落,挡住了前面的路,抢修队员紧急赶到从三个方向拉倒巨石,这三个力为F1,F2,F3,它们两两垂直,且|F1|=3 000 N,|F2|=2 000 N,|F3|=2 000 3 N.问题1:若以F1,F2,F3的方向分别为x轴,y轴,z轴正半轴建立空间直角坐标系,巨石受合力的坐标是什么?提示:F=(3 000,2 000,2 0003).问题2:巨石受到的合力有多大?提示:|F|=5 000 N.1.设a=(a1,a2,a3),b=(b1,b2,b3),则a+b=(a1+b1,a2+b2,a3+b3),a-b=(a1-b1,a2-b2,a3-b3),λa=(λa1,λa2,λa3),λ∈R.2.空间向量平行的坐标表示为a∥b(a≠0)⇔b1=λa1,b2=λa2,b3=λa3(λ∈R).3.一个向量的坐标等于表示这个向量的有向线段的终点坐标减去它的起点坐标.1.确定空间向量的坐标的方法:(1)向量的坐标可由其两个端点的坐标确定,可先求其两端点的坐标. (2)通过向量间的坐标运算求得新向量的坐标. 2.空间向量的坐标运算:(1)向量的加减等于对应坐标的加减,其结果仍是向量.(2)向量与实数相乘等于实数与其坐标分别相乘,其结果仍是向量.[对应学生用书P57][例1] 如图所示,P A 垂直于正方形ABCD 所在的平面,M 、N 分别是AB 、PC 的中点,并且P A =AB =1.求向量MN 的坐标.[思路点拨] 以AB 、AD 、AP 为单位正交基底建立空间直角坐标系,用AB 、AD 、AP 表示MN ,得其坐标.[精解详析]∵P A =AB =AD =1,P A ⊥平面ABCD ,AB ⊥AD ,∴AB 、AD 、AP 是两两垂直的单位向量.设AB =e 1,AD =e 2,AP =e 3,以{e 1,e 2,e 3}为基底建立空间直角坐标系A -xyz .法一:∵MN =MA +AP +PN =-12AB +AP +12PC=-12AB +AP +12(PA +AC )=-12AB +AP +12(PA +AB +AD )=12AP +12AD =12e 2+12e 3,∴MN =⎝⎛⎭⎫0,12,12. 法二: 如图所示,连结AC 、BD 交于点O .则O 为AC 、BD 的中点. ∴MO =12BC =12AD ,ON =12AP ,∴MN =MO +ON =12AD +12AP =12e 2+12e 3,∴MN =⎝⎛⎭⎫0,12,12. [一点通] 用坐标表示空间向量的解题方法与步骤:1.已知ABCD -A 1B 1C 1D 1是棱长为2的正方体,E ,F 分别为BB 1和DC 的中点,建立如图所示的空间直角坐标系,试写出1DB ,DE ,DF 的坐标.解:设x 、y 、z 轴的单位向量分别为e 1,e 2,e 3,其方向与各轴上的正方向相同, 则1DB =DA +AB +1BB =2e 1+2e 2+2e 3, ∴1DB =(2,2,2).∵DE =DA +AB +BE =2e 1+2e 2+e 3, ∴DE =(2,2,1). 又∵DF =e 2, ∴DF =(0,1,0).2.在直三棱柱ABO -A 1B 1O 1中,∠AOB =π2,AO =4,BO =2,AA 1=4,D 为A 1B 1的中点,在如图所示的空间直角坐标系中,求DO 、1A B 的坐标.解:(1)∵DO =-OD =-(1OO +1O D ) =-[1OO +12(OA +OB )]=-1OO -12OA -12OB .又|1OO |=4,|OA |=4,|OB |=2, ∴DO =(-2,-1,-4).(2)∵1A B =OB -1OA =OB -(OA +1AA ) =OB -OA -1AA .又|OB |=2,|OA |=4,|1AA |=4, ∴1A B =(-4,2,-4).3.已知向量p 在基底{a ,b ,c }下的坐标是(2,3,-1),求p 在基底{a ,a +b ,a +b +c }下的坐标. 解:由已知p =2a +3b -c , 设p =x a +y (a +b )+z (a +b +c ) =(x +y +z )a +(y +z )b +z c . 由向量分解的惟一性, 得⎩⎪⎨⎪⎧x +y +z =2,y +z =3,z =-1,解得⎩⎪⎨⎪⎧x =-1,y =4,z =-1.∴p 在基底{a ,a +b ,a +b +c }下的坐标为(-1,4,-1).[例2] 已知a =(2,-1,-2),b =(0,-1,4), 求:a +b ,a -b,3a +2b .[思路点拨] 空间向量的加、减、数乘运算与平面向量的加、减、数乘运算方法类似. [精解详析] a +b =(2,-1,-2)+(0,-1,4) =(2+0,-1+(-1),-2+4)=(2,-2,2). a -b =(2,-1,-2)-(0,-1,4)=(2-0,-1-(-1),-2-4)=(2,0,-6). 3a +2b =3(2,-1,-2)+2(0,-1,4) =(6,-3,-6)+(0,-2,8)=(6,-5,2).[一点通] 空间向量的加、减、数乘运算是今后利用向量知识解决立体几何知识的基础,必须熟练掌握,并且能够灵活应用.4.已知a =(1,-2,4),b =(1,0,3),c =(0,0,2). 求:(1)a -(b +c ); (2)4a -b +2c .解:(1)∵b +c =(1,0,5),∴a -(b +c )=(1,-2,4)-(1,0,5)=(0,-2,-1). (2)4a -b +2c =(4,-8,16)-(1,0,3)+(0,0,4) =(3,-8,17).5.已知O 为原点,A ,B ,C ,D 四点的坐标分别为:A (2,-4,1),B (3,2,0),C (-2,1,4),D (6,3,2),求满足下列条件的点P 的坐标.(1)OP =2(AB -AC ); (2)AP =AB -DC .解:(1)AB -AC =CB =(3,2,0)-(-2,1,4)=(5,1,-4), ∴OP =2(5,1,-4)=(10,2,-8), ∴点P 的坐标为(10,2,-8).(2)设P (x ,y ,z ),则AP =(x -2,y +4,z -1), 又AB =(1,6,-1),DC =(-8,-2,2), ∴AB -DC =(9,8,-3), ∴(x -2,y +4,z -1)=(9,8,-3), ∴⎩⎪⎨⎪⎧ x -2=9,y +4=8,z -1=-3,解得⎩⎪⎨⎪⎧x =11,y =4,z =-2.所以点P 的坐标为(11,4,-2).[例3] 已知四边形ABCD 的顶点坐标分别是A (3,-1,2),B (1,2,-1),C (-1,1,-3),D (3,-5,3),求证:四边形ABCD 是一个梯形.[思路点拨] 证明AB ∥CD 且AD 不平行BC ,或证AB ∥CD 且|AB |≠|CD |即可.[精解详析] ∵AB =(1,2,-1)-(3,-1,2)=(-2,3,-3),CD =(3,-5,3)-(-1,1,-3)=(4,-6,6), ∴-24=3-6=-36, ∴AB 与CD 共线,即AB ∥CD ,又∵AD =(3,-5,3)-(3,-1,2)=(0,-4,1),BC =(-1,1,-3)-(1,2,-1)=(-2,-1,-2),∴0-2≠-4-1≠1-2,∴AD 与BC 不平行. ∴四边形ABCD 为梯形. [一点通]利用空间向量的坐标运算证明线线平行时,应该遵循的步骤是: (1)建立空间直角坐标系,写出相应点的坐标; (2)写出相应向量的坐标; (3)证明两个向量平行;(4)证明其中一个向量所在直线上一点不在另一向量所在的直线上,从而证得线线平行.6.设a =(1,2,-1),b =(-2,3,2).若(k a +b )∥(a -3b ),求k 的值. 解:∵k a +b =(k,2k ,-k )+(-2,3,2) =(k -2,2k +3,2-k ),a -3b =(1,2,-1)-(-6,9,6)=(7,-7,-7). ∵(k a +b )∥(a -3b ), ∴k -27=2k +3-7=2-k -7,∴k =-13.7.如图,在长方体OAEB -O 1A 1E 1B 1中,OA =3,OB =4,OO 1=2,点P 在棱AA 1上,且AP =2P A 1,点S 在棱BB 1上,且SB 1=2BS ,点Q 、R 分别是棱O 1B 1、AE 的中点.求证:PQ ∥RS .证明:如图,建立空间直角坐标系,则A (3,0,0),B (0,4,0),O 1(0,0,2),A 1(3,0,2),B 1(0,4,2). ∵P A =2P A 1,SB 1=2BS ,Q 、R 分别是棱O 1B 1、AE 的中点,∴P ⎝⎛⎭⎫3,0,43,Q (0,2,2),R (3,2,0),S ⎝⎛⎭⎫0,4,23. 于是PQ =⎝⎛⎭⎫-3,2,23=RS .∴PQ ∥RS . ∵R ∉PQ ,∴PQ ∥RS .1.运用空间向量的坐标运算解决立体几何问题的一般步骤: (1)建立恰当的空间直角坐标系; (2)求出相关点的坐标;(3)写出向量的坐标; (4)结合公式进行论证、计算; (5)转化为几何结论.2.用空间向量的坐标运算解决问题的前提是建立恰当的空间直角坐标系,为便于坐标的求解及运算,在建立空间直角坐标系时,要充分分析空间几何体的结构特点,应使尽可能多的点在坐标轴上或坐标平面内.[对应课时跟踪训练(二十一)]1.已知a =(1,-2,1),a -b =(-1,2,-1),则b =________. 解析:b =a -(a -b )=(1,-2,1)-(-1,2,-1)=(2,-4,2). 答案:(2,-4,2)2.已知点A 在基底{a ,b ,c }下的坐标为(2,1,3),其中a =4i +2j ,b =2j +3k ,c =3k -j ,则点A 在基底{i ,j ,k }下的坐标为________.解析:由题意知点A 对应向量为2a +b +3c =2(4i +2j )+(2j +3k )+3(3k -j )=8i +3j +12k , 故点A 在基底{i ,j ,k }下的坐标为(8,3,12). 答案:(8,3,12)3.已知向量a =(2,-1,3),b =(-1,4,-2),c =(7,0,λ),若a 、b 、c 三个向量共面,则实数λ=________. 解析:由a 、b 、c 共面可得c =x a +y b , ∴⎩⎪⎨⎪⎧7=2x -y ,0=-x +4y ,λ=3x -2y ,解得λ=10.答案:104.已知a =(2x,1,3),b =(1,-2y,9),若a ∥b ,则x =_______________, y =________.解析:∵a =(2x,1,3),b =(1,-2y,9), 又∵a ∥b ,显然y ≠0, ∴2x 1=1-2y =39, ∴x =16,y =-32.答案:16 -325.已知点A (4,1,3),B (2,-5,1),C 为线段AB 上一点,且AC =13AB ,则C 点坐标为________.解析:设C 点坐标(x ,y ,z ),则AC =(x -4,y -1,z -3).∵AB =(-2,-6,-2),∴13AB =13(-2,-6,-2)=⎝⎛⎭⎫-23,-2,-23, ∴⎩⎪⎨⎪⎧x -4=-23,y -1=-2,z -3=-23.解得:⎩⎪⎨⎪⎧x =103,y =-1,z =73.答案:(103,-1,73)6.已知P A 垂直于正方形ABCD 所在的平面,M ,N 分别是AB ,PC 的中点,并且P A =AD =1,试建立适当的坐标系并写出向量MN ,DC 的坐标.所以可设AD =e 1,解:如图,因为P A =AD =AB =1,且P A ⊥平面ABCD ,AD ⊥AB ,AB =e 2,AP =e 3,以{e 1,e 2,e 3}为基底建立空间直角坐标系A -xyz . 因为DC =AB =e 2,MN =MA +AP +PN =MA +AP +12PC=-12AB +AP +12(PA +AD +DC )=-12e 2+e 3+12(-e 3+e 1+e 2)=12e 1+12e 3.所以MN =⎝⎛⎭⎫-12,0,12,DC =(0,1,0). 7.已知A 、B 、C 三点的坐标分别是(2,-1,2),(4,5,-1)、(-2,2,3).求点P 的坐标,使: (1)OP =12(AB -AC );(2)AP =12(AB -AC ).解:AB =(2,6,-3),AC =(-4,3,1). (1)OP =12(6,3,-4)=⎝⎛⎭⎫3,32,-2, 则点P 的坐标为⎝⎛⎭⎫3,32,-2. (2)设P 为(x ,y ,z ),则AP =(x -2,y +1,z -2) =12(AB -AC )=⎝⎛⎭⎫3,32,-2, ∴x =5,y =12,z =0,则点P 的坐标为⎝⎛⎭⎫5,12,0. 8. 如图,在长方体ABCD -A 1B 1C 1D 1中,DA =DC =4,DD 1=3,点P 是线段BD 1上一动点,E 是BC 的中点,当点P 在什么位置时,PE ∥A 1B?解:以D 为原点,建立空间直角坐标系,如图所示,则A 1(4,0,3),B (4,4,0),C (0,4,0),D 1(0,0,3).∵E 为BC 的中点, ∴E (2,4,0).∴1A B =(4,4,0)-(4,0,3)=(0,4,-3),1BD =(0,0,3)-(4,4,0)=(-4,-4,3),EB =(4,4,0)-(2,4,0)=(2,0,0).设BP =λ1BD ,则EP =EB +BP =EB +λ1BD . ∵EB =(2,0,0),λ1BD =(-4λ,-4λ,3λ), ∴EP =(2-4λ,-4λ,3λ). 由PE ∥A 1B ,得EP ∥1A B , ∴⎩⎪⎨⎪⎧2-4λ=0,-4λ4=3λ-3.∴λ=12.此时点P 为BD 1的中点.故当点P 为BD 1的中点时,PE ∥A 1B .。
人教A版高中数学选修2-1课件3.1《空间向量坐标》(新)
a
M是1M以2M
1(x
1,
y 1,
z 1)为起点、以M 2(x 2,
y2,
z 2)
为终点的向量.
以
i
、
j
、 k
分别表示与 x 轴、y 轴、z 轴同向
的单位向量, 并称它们为这一坐标系的基本单位向量.
z
•P1称为点M1在x轴上的投影,
P2称为点M2在x轴上的投影.
•向量
P1P2
2 y
a
2 z
,
cos
ay
ax2
a
2 y
az2
,
cos
az
a
2 x
a
2 y
a
2 z
.
方向余弦的平方和:
cos
2
cos 2
cos 2
a a
2 x
2 x
a
2 y
a
2 y
a
2 z
a
2 z
1.
单位向量的表示:
a
|
a a
|
|
1 a
|
{
a
x,a y,a
2
我们可以用它与三条坐标轴的夹角
、、(0<、0、0)来表示它的方向,称、、
为非零向量a 的方向角. z
M2
a
M1
y
O
x
向量的方向余弦:
因为向量的坐标就是向量在坐标轴上的投影,所以
ax|
M1M 2 |cos |
a| cos ;
人教A版高中数学选修2-1课件《31空间向量的数量级》
c
a b c
2 2
2
A
CD a b c
1a b 0 a b
(2)选用适当的基底
作业
P36
P35 4
3
一、向量的数量积
1、向量的数量积
a b | a || b | cos a, b
2、数量积的性质
(1)a b a b 0 (证明线线垂直)
(2) cos a, b
2 2
a b ab
2
2
4 a 2b
《名师》P60
考点2
二、应用
例1.已知线段 AB 在平面 内,线段 AC ,
线段 BD AB ,线段 DD, , 30 DBD 若 AB a , AC BD b ,求 C 、之间的距离 D
C D b b a D'
A
1、两向量的夹角: a, b 2、向量的长度 a
0,
? 思 1若 a b 则a, b方向相同或相反,对吗 考
2若 a 0, 则a 0
3、向量的数量积 a b | a || b | cos a, b
a0 并规定 0和轴l,e是l上与l同方向的单位向量
A
M D C N
1 2 0 0 (a a a cos 60 a a cos 60 ) 2
0
练习4、已知空间四边形OABC,OB=OC,
∠AOB=∠AOC=θ,求证:OA⊥BC
小结
1.空间向量的夹角的定义及其表示方法 2.空间两个向量的数量积的概念、性质、运算律 及其简单应用。 3.数量积的应用:
(求线线夹角)
高三数学a版教材教材分析课件人教版选修2-3
四、对教学的几个建议
1.准确把握教学要求 • 与“大纲”比较,“课标”不要求掌握
“组合数的两个性质”(组合数恒等式题用 二项式证)。 • “课标”对本章内容的定位是:用计数原理、 排列与组合概念解决“简单的实际问题”。 所以,教学中一定要把握好这种定位,避免 在技巧和难度上做文章(排列组合的求值化 简证明题难度要控制,要重点做应用题)。
(如第10页.教材更实际实用了贴近高考要求) 5.组合数性质要求有变化 . 6.文科不学本章内容.
计数原理的课程设置意图
必修3概率 计数原理 选修2-3概率
1.必修3强调概率思想,避免复杂的组合计 算干扰学生对概率思想的领悟
2.本章为进一步研究概率做准备 3.本章学习,提供思想和工具
计数问题是数学中的重要研究对象之一, 计数原理为解决很多实际问题提供思想和 工具(分类分步思想不仅仅是解计数问题)
本章内容涉及分类、化归、从特殊到 一般、多元联系表示等众多数学思想方 法。 3.强调对基本概念的本质的理解。
4.加强用两个计数原理解决问题的基本 思想方法
案例1:二项式定理的 猜想与证明 过程
(1)在“探究”中提出如何利用两个计数原理得出 n =2,3,4的展开式的问题;
(2)详细写出用多项式乘法法则得到n=2展开式的 过程,并从两个计数原理的角度对展开过程进行 分析,概括出项数以及项的形式;
二、课时安排及说明
1.本章有三节内容,共14课时
具体分配如下(供参考):
1.1 两个计数原理
2019-2020学年高中人教A版数学选修1-2课件:第3章 数系的扩充与复数的引入 3.2 3.2.2
4.已知复数 z=1-i(i 是虚数单位),则2z-z2 的共轭复数是
()
A.1-3i
B.1+3i
C.-1+3i
D.-1-3i
解析:∵2z-z2=1-2 i-(1-i)2=1-21i+1+i i-(1-2i+i2)=1 +i+2i=1+3i,∴2z-z2 的共轭复数为 1-3i,故选 A.
答案:A
故所求的 z= 23+12i,|z-w|的取值范围是[0,2].
[名 师 点 拨] (1)复数问题向实数问题转化是解答复数问题的重要方法. (2)牢记共轭复数的定义,熟悉共轭复数的相关性质.
(1)(2019·全国卷Ⅱ)设 z=-3+2i,则在
复平面内 z 对应的点位于( )
A.第一象限
B.第二象限
课堂互动探究
归纳透析 触类旁通
题型一 复数代数形式的乘除运算
计算:
(1)(2+3i)2;
(2)-12+ 23i 23+12i(1+i);
(3)11+ -ii6+
2+ 3-
3i 2i.
【思路探索】 按复数的乘除运算法则进行.
【解】 (1)(2+3i)2=4+12i+9i2=4+12i-9=-5+12i.
2.已知复数 z=4-3i ,则|z|=( )
A.4
B.3
C.5
D.2
解析:z=4-3i =4-3i2i=4+3i,∴|z|=5,故选 C.
答案:C
3.(2019·保定月考)已知 z1,z2 为复数,则下面四个选项中 正确的是( )
A.若z11为纯虚数,则 z1∈R B.若 z21∈R,则 z1∈R C.若 z1,z2 为纯虚数,则 z1+z2 为纯虚数 D.若 z 1=z2,则 z1+z2∈R
人教A版高中数学选修2-1课件高二:3-1-2共线向量与共面向量
→→→ =OA+xAB+yAC.
→→ =OA+tAB
重点难点展示
重点:向量的线性运算,共线向量与共面向量定理. 难点:共线向量和共面向量的理解与运用.
学习要点点拨
1.共线向量 前面,我们学习了平面向量共线的充要条件,这个条件在
空间也是成立的,即①a∥b,b≠0,则存在唯一实数 x 使 a=
xb;②若存在唯一实数 λ,使 a=λb,则 a∥b. 判定两向量共线的关键是找到实数 λ.运用②证明直线平行
如图所示,在平行六面体 ABCD-A1B1C1D1 中,设A→A1= a,A→B=b,A→D=c,M、N、P 分别是 AA1,BC,C1D1 的中点, 试用 a、b、c 表示以下各向量:
(1)A→P; (2)A→1N; (3)M→P+N→C1.
[解析] (1)∵P 是 C1D1 的中点, ∴A→P=A→A1+A→1D1+D→1P=a+A→D+12D→1C1 =a+c+12A→B=a+c+12b. (2)∵N 是 BC 的中点, ∴A→1N=A→1A+A→B+B→N =-a+b+12B→C=-a+b+12A→D=-a+b+12c.
[答案]
2 15
[解析] 由 P 与 A、B、C 三点共面,∴15+23+λ=1,解得 λ=125.
4.在长方体 ABCD—A1B1C1D1 中,若 E 为矩形 ABCD 对 角线交点,则A→1E=A→1A+xA→1B1+yA→1D1中的 x,y 值应为 x= ________,y=________.
→→ 数 t,使OP=OA+ta①,其中 a 叫做
直线 l 的_方__向__向__量___,如图所示. 如图,空间一点 P 位于平面 ABC
推论
内的充要条件是存在有序实数对
人教版 高中数学【选修 2-1】第三章圆锥曲线的概念及性质
人教版高中数学精品资料重点列表: 重点 名称 重要指数 重点1 椭圆 ★★★★ 重点2 双曲线 ★★★ 重点3 抛物线★★★★椭圆的概念(1)文字形式:在平面内到两定点F 1、F 2的距离的和等于常数(大于|F 1F 2|)的点的轨迹(或集合)叫椭圆.这两定点叫做椭圆的焦点 ,两焦点间的距离叫做焦距. (2)代数式形式:集合1212P={M||MF |+|MF |=2a |FF |=2c.} ①若a c >,则集合P 为椭圆; ②若a c =,则集合P 为线段; ③若a c <,则集合P 为空集.椭圆的标准方程:焦点在x 轴时,2222=1(a>b>0)x y a b +;焦点在y 轴时,2222=1(a>b>0)y x a b + 椭圆的标准方程:(1)焦点在x 轴,2222+=1(a>b>0)x y a b;(2)焦点在y 轴,2222y +=1(a>b>0)x a b.满足条件:22222000a c a b c a b c >,=+,>,>,> 条件22222000a c a b c a b c >,=+,>,>,>满足以下三个条件的点的轨迹是双曲线(1)在平面内;(2)动点到两定点的距离的差的绝对值为一定值;(3)这一定值一定要小于两定点的距离.双曲线的标准方程重点1:椭圆的定义及性质【要点解读】1.熟悉椭圆定义、标准方程,在熟练掌握常用基本方法的同时,要注意揣摩解题过程中所使用的数学思想方法.2.在运用椭圆的定义时,要注意“|F1F2|<2a”这个条件,若|F1F2|=2a,则动点的轨迹不是椭圆,而是连结两定点的线段(包括端点);若|F1F2|>2a,则轨迹不存在.3.椭圆的标准方程有两种形式,两种形式可以统一为x 2m +y 2n =1(m >0,n >0,且m ≠n ),具体是哪种形式,由m 与n 的大小而定.4.求椭圆的标准方程常用的方法是待定系数法和定义法,即(1)先设出椭圆标准方程,根据已知条件列出a ,b 的两个方程,求参数a ,b 的值;(2)由椭圆的定义及几何性质直接求出参数a ,b 的值.5.充分利用图形的几何性质可以减少计算量,椭圆中可以用来减少计算量的几何性质主要体现在椭圆的定义中.6.直线与椭圆的位置关系,可通过讨论椭圆方程与直线方程组成的方程组的实数解的个数来确定.通常用消元后的关于x (或y )的一元二次方程的判别式Δ与零的大小关系来判定.7.直线和椭圆相交时,弦的中点坐标或弦中点轨迹方程可由韦达定理来解决.设而不求(设点而不求点)的方法是解析几何中最重要的解题方法之一.【考向1】利用定义求椭圆的方程【例题】如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F 1,右焦点为F 2,离心率e =12.过F 1的直线交椭圆于A ,B 两点,且△ABF 2的周长为8,求椭圆E 的方程.解:由题意得||AB +||AF 2+||BF 2=||AF 1+||BF 1+||AF 2+||BF 2=(||AF 1+||AF 2)+(||BF 1+||BF 2)=4a =8,得a =2.又e =c a =12,∴c =1.∴b 2=a 2-c 2=22-12=3.∴椭圆E 的方程为x 24+y 23=1.【评析】椭圆的定义是高考的常考点,应掌握椭圆的定义以及参数a ,b ,c ,e 的几何意义和相互关系. 【考向2】椭圆定义的应用【例题】如图,设椭圆的中心为原点O ,长轴在x 轴上,上顶点为A ,左、右焦点分别为F 1,F 2,线段OF 1,OF 2的中点分别为B 1,B 2,且△AB 1B 2是面积为4的直角三角形.求该椭圆的离心率和标准方程.解:设所求的椭圆方程为x 2a 2+y 2b 2=1(a >b >0),F 1(-c ,0),F 2(c ,0).易知||OB 1=||OB 2=12||OF 1=c2,||AB 1=||AB 2,又∵△AB 1B 2为直角三角形,∴∠B 1AB 2=90°.∴||OA =||OB 1,即b =c 2,有b 2=a 2-c 2=c 24,得e 2=45,e =255.∵S △AB 1B 2=12||B 1B 2·||AO =12bc =12·c 2·c =c 24=4,∴c 2=16,b 2=4,a 2=20.∴椭圆方程为x 220+y 24=1. 【考向3】椭圆的离心率【例题】设F 1(-c ,0),F 2(c ,0)分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若在直线x =a 2c 上存在点P ,使线段PF 1的中垂线过点F 2,则椭圆离心率的取值范围是( ) A.⎝ ⎛⎦⎥⎤0,22B.⎝ ⎛⎦⎥⎤0,33C.⎣⎢⎡⎭⎪⎫22,1D.⎣⎢⎡⎭⎪⎫33,1解法二:设直线x =a 2c 与x 轴交于M 点,则|F 1F 2|=|F 2P |≥|MF 2|,即2c ≥a 2c -c ,整理得13≤e 2<1,33≤e <1.∴椭圆离心率的取值范围是⎣⎢⎡⎭⎪⎫33,1.故选D.【评析】(1)对于参数的取值范围问题,要能从几何特征的角度去分析参数变化引起的图形的变化.在学习中,要能主动的研究几何特征变化的根本性原因.(2)对几何对象的本质属性的把握越准确,代数化就越容易.(3)整个图形都随着P 点的变化而变化,P 点的变化使得线段||PF 2的长度也在变化,进而||PF 2与||MF 2的长度关系也在变化.正确的描述这一变化中量与量之间的数量关系是解题的关键所在.重点2:双曲线的定义及性质【要点解读】1.双曲线的定义满足以下三个条件的点的轨迹是双曲线 (1)在平面内;(2)动点到两定点的距离的差的绝对值为一定值; (3)这一定值一定要小于两定点的距离. 2.双曲线的标准方程(1)与双曲线x 2a 2-y 2b 2=1共渐近线的可设为x 2a 2-y 2b 2=λ(λ≠0);(2)若渐近线方程为y =±b a x ,则可设为x 2a 2-y 2b 2=λ(λ≠0);(3)若过两个已知点则设为x 2m +y 2n =1(mn <0).4.应用双曲线的定义需注意的问题:在双曲线的定义中要注意双曲线上的点(动点)具备的几何条件,即“到两定点(焦点)的距离之差的绝对值为一常数,且该常数必须小于两定点的距离”.若定义中的“绝对值”去掉,点的轨迹是双曲线的一支.同时注意定义的转化应用. 5.求双曲线方程时一是标准形式判断;二是注意a 、b 、c 的关系易错易混.【考向1】双曲线的定义【例题】求适合下列条件的双曲线的标准方程: (1)经过点(-5,2),焦点为(6,0); (2)实半轴长为23,且与双曲线x 216-y 24=1有公共焦点. 解:(1)∵焦点坐标为(6,0),焦点在x 轴上,∴可设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0).∵双曲线过点(-5,2), ∴25a 2-4b 2=1,得a 2=25b 2b 2+4. 联立⎩⎨⎧a 2=25b 2b 2+4,a 2+b 2=c 2=6,解得a 2=5,b 2=1,故所求双曲线方程为x 25-y 2=1.(2)由双曲线x 216-y 24=1得其焦点坐标为F 1(-25,0)和F 2(25,0),由题意知,可设所求双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0).易知a =23,c =25,∴b 2=c 2-a 2=8.∴所求双曲线方程为x 212-y 28=1. 【评析】(1)求双曲线的标准方程一般用待定系数法;(2)当双曲线焦点的位置不确定时,为了避免讨论焦点的位置,常设双曲线方程为Ax 2+By 2=1(A ·B <0),这样可以简化运算.【考向2】双曲线的离心率【例题】(1)设双曲线x 2a 2-y 2b 2=1(b >a >0)的半焦距为c ,直线l 经过(a ,0),(0,b )两点,已知原点到直线l 的距离为34c ,则双曲线的离心率为________.(2)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,过F 且斜率为3的直线交C 于A ,B 两点,若AF →=4FB →,则C 的离心率为________.解:设双曲线C :x 2a 2-y 2b 2=1的右准线为l ,过A ,B 分别作AM ⊥l 于M ,BN ⊥l 于N ,作BD ⊥AM 于点D ,由直线AB 的斜率为3知直线AB 的倾斜角为60°,∴∠BAD =60°,|AD |=12|AB |.又|AM |-|BN |=|AD |=1e (|AF →|-|FB →|)=12|AB |=12(|AF →|+|FB →|).又AF →=4FB →, ∴1e ·3|FB →|=52|FB →|,得e =65.故填65. (亦可联立直线与双曲线的方程求解,但计算较繁)【评析】(1)要解决双曲线中有关求离心率或求离心率范围的问题,应找好题中的等量关系或不等关系,构造出关于a ,c 的齐次式,进而求解.(2)要注意对题目中隐含条件的挖掘,如对双曲线上点的几何特征||PF 1+||PF 2≥2c 的运用,对于变式2(2),还可利用双曲线的另一种定义(见人教A 版教材选修2-1P59例5)||PF 1=e ⎝⎛⎭⎪⎫x P +a 2c =4a ,x P =3a 2c ≥a ,得1<e ≤3.(3)过焦点的弦被焦点所分成的线段成比例,一般可以寻找相似三角形,使用相似比【考向3】双曲线的渐近线【例题】已知双曲线C :x 2a 2-y 2b 2=1()a >0,b >0的离心率为52,则C 的渐近线方程为( ) A .y =±14xB .y =±13xC . y =±12xD . y =±x【评析】本题考查双曲线的离心率,a ,b ,c 的关系,以及双曲线的渐近线等知识.渐近线方程可以看作是把双曲线方程中的“1”用“0”替换而得到的两条直线方程.1.对双曲线的学习可类比椭圆进行,应着重注意两者的不同点,对双曲线的渐近线的概念要注意理解.2.双曲线的定义中,当||MF 1>||MF 2时,动点M 的轨迹是双曲线的一支,当||MF 1<||MF 2时,轨迹为双曲线的另一支,而双曲线是由两个分支组成的,故在定义中强调“差的绝对值”.3.定义中|F 1F 2|>2a 这个条件不可忽视,若|F 1F 2|=2a ,则轨迹是以F 1,F 2为端点的两条射线,若|F 1F 2|<2a ,则轨迹不存在.4.在椭圆的两种标准方程中,焦点对应“大分母”,即标准方程中,x 2,y 2谁的分母较大,则焦点就在哪个轴上;而在双曲线的两种标准方程中,焦点的位置对应“正系数”,即标准方程中,x 2,y 2谁的系数为正(右边的常数总为正),则焦点就在哪个轴上.5.在椭圆中,a ,b ,c 满足a 2=b 2+c 2,即a 最大;在双曲线中,a ,b ,c 满足c 2=a 2+b 2,即c 最大.6.在双曲线的几何性质中,渐近线是其独特的一种性质,也是考查的重点内容,对渐近线:(1)掌握方程;(2)掌握其倾斜角、斜率的求法;(3)会利用渐近线方程求双曲线方程的待定系数.7.求双曲线方程的方法以及双曲线定义和双曲线标准方程的应用都和与椭圆有关的问题相类似.因此,双曲线与椭圆的标准方程可统一为Ax 2+By 2=1的形式,当A >0,B >0,A ≠B 时为椭圆,当A ·B <0时为双曲线.重点3:抛物线的定义及性质【要点解读】1.涉及抛物线几何性质的问题常结合图形思考,通过图形可以直观地看出抛物线的顶点、对称轴、开口方向等几何特征,体现了数形结合思想解题的直观性. 2.求抛物线方程应注意的问题(1)当坐标系已建立时,应根据条件确定抛物线方程属于四种类型中的哪一种; (2)要注意把握抛物线的顶点、对称轴、开口方向与方程之间的对应关系; (3)要注意参数p 的几何意义是焦点到准线的距离,利用它的几何意义来解决问题. 【考向1】抛物线的定义及标准方程【例题】(1)已知抛物线的顶点在原点,焦点在坐标轴上,又知抛物线上一点A (m ,-3)到焦点F 的距离为5,求m 的值,并写出抛物线的方程.②当抛物线开口向右或向左时,设抛物线的方程为y 2=2ax (a ≠0),准线方程可统一为x =-a2.由题意可得⎩⎨⎧⎪⎪⎪⎪⎪⎪a 2+m =5,2am =9, 解得⎩⎨⎧a =1,m =92, 或⎩⎨⎧a =-1,m =-92, 或⎩⎨⎧a =9,m =12, 或⎩⎨⎧a =-9,m =-12.∴当m =92时,抛物线的方程为y 2=2x ;当m =-92时,抛物线的方程为y 2=-2x ;当m =12时,抛物线的方程为y 2=18x ;当m =-12时,抛物线的方程为y 2=-18x .(2)已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( ) A .2B .3C .115D .3716解:易知直线l2:x=-1为抛物线y2=4x的准线,由抛物线的定义知,点P到l2的距离等于点P到抛物线的焦点F(1,0)的距离,因此原问题可转化为在抛物线y2=4x上找一个点P使得P到点F(1,0)和直线l1的距离之和最小.因此最小值为F(1,0)到直线l1:4x-3y+6=0的距离,即d min=|4-0+6|42+(-3)2=2.故选A.【评析】(1)用数形结合的方法判断抛物线的开口方向,以便选择抛物线方程的具体形式.注意利用代数的观点,把抛物线向右或向左的情形统一起来,提高解题效率;(2)把“数”、“方程”向“形”的方向转化,运用运动变化的观点和几何的方法进行研究比直接代数化更简洁.1.抛物线的定义、标准方程和性质是解决有关抛物线问题的基础,应当熟练掌握.2.求抛物线的标准方程的常用方法是待定系数法或轨迹法.若抛物线的开口不确定,为避免多种情况分类求解的麻烦,可以设抛物线方程为y2=mx或x2=ny(m≠0,n≠0).若m>0,开口向右;若m<0,开口向左.m有两解时,则抛物线的标准方程有两个.对n>0与n<0,有类似的讨论.3.抛物线的离心率e=1,体现了抛物线上的点到焦点的距离等于该点到准线的距离.因此,涉及抛物线的焦半径、焦点弦问题时,可以优先考虑利用抛物线的定义,将其转化为点到准线的距离,这样往往可以使问题简单化.4.提倡作出合理的草图,图形合理,才能观察出图形的几何性质,并加以研究,为准确的代数化打下基础.难点列表:椭圆中有两条对称轴,“六点”(两个焦点、四个顶点),要注意它们之间的位置关系(如焦点在长轴上等)以及相互间的距离(如焦点到相应顶点的距离为a-c),过焦点垂直于长轴的通径长为2222e?b b c a=等.设椭圆2222+=1(a>b>0)x y a b上任意一点P (x ,y ),则当x =0时,|OP |有最小值b ,这时,P 在短轴端点处;当x =a 时,|OP |有最大值a ,这时P 在长轴端点处. 椭圆上任意一点P (x ,y )(y ≠0)与两焦点F 1(-c,0),F 2(c,0)构成的△PF 1F 2称为焦点三角形,其周长为2(a +c ).椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a 是斜边,a 2=b 2+c 2.重视向量在解析几何中的应用,注意合理运用中点、对称、弦长、垂直等几何特征.已知过抛物线22(0)y px p =>的焦点F 的直线交抛物线于A 、B 两点。
数学·选修2-3(人教A版)课件:第三章3.1第2课时残差分析
统计案例
3.1 回归分析的基本思想 及其初步应用 第 2 课时 残差分析
[学习目标] 1.了解残差平方和、相关指数 R2 的概念 (重点). 2.了解回归分析的基本步骤(难点) 3.会用残差 平方和与相关指数对回归模型拟合度进行评判(重点) 4. 了解简单的非线性回归分析方法(难点).
[知识提炼· 梳理] 1.残差 对于样本点(x1,y1),(x2,y2),…,(xn,yn),它们的 随机误差 ei=yi-bxi-a,i=1,2,…,n,其估计值为 ei=yi-^ y i=,yi)的残差.
-2.58.
答案:y=e0.25x-2.58
类型 1 线性回归分析(自主研析) [典例 1] 为研究重量 x(单位: 克)对弹簧长度 y(单位: 厘米)的影响,对不同重量的 6 个物体进行测量,数据如 下表所示:
x y 5 7.25 10 8.12 15 8.95 20 9.90 25 10.9 30 11.8
所以残差平方和为 ( - 0.34)2 + 0.032 + 0.52 + 0.272 + (-0.46)2=0.651.
(3)R =1-
2
0.651
— )2 ( y - i y
5
≈0.958 7.
i= 1
类型 2 非线性回归分析 [典例 2] 下表为收集到的一组数据:
归纳升华 一般地,求出回归直线方程后,通常可以计算残差的 平方和以及相关指数 R2 的值来对回归模型的好坏做出评 判,由 R2 的计算公式知,残差平方和越小,R2 就越大, 拟合效果就越好;残差平方和越大,R2 就越小,拟合效 果就越差.
[变式训练] 假设关于某设备的使用年限 x 和所支出 的维修费用 y(单位:万元),有如下表的统计资料:
人教A版高中数学选修2-1课件:3-2立体几何中的向量方法 第4课时 空间向量的平行、垂直关系
探究 1:求平面的法向量 【例 1】
如图,已知四边形 ABCD 是直角梯形,∠ABC=90°,SA⊥平面 ABCD,SA=AB=BC=1,AD= ,试建立适当的坐标系,求: (1)平面 ABCD 与平面 SAB 的一个法向量; (2)平面 SCD 的一个法向量.
1 2
【方法指导】一般情况下,使用待定系数法求平面的法向量 的步骤:①设出平面的法向量为 n=(x,y,z);②找出(求出)平面内 的两个不共线的向量 a=(a1,b1,c1),b=(a2,b2,c2);③根据法向量的 定义建立关于 x,y,z 的方程组 一个解,即得法向量. n·a = 0, n·b = 0; ④解方程组,取其中的
【解析】不妨设正方体的边长为 a,建立空间直角坐标系 Dxyz(如图),则 E(a,2,0),F(2,a,0),G(a,0,2). 设平面 EFG 的法向量为 n=(x,y,z), GE=(0,2,-2),
a a FE=( ,- ,0), 2 2 1 1 a a a a a
n ⊥ GE,⇒ 1 1 n ⊥ FE n·FE = x- y = 0,
2
2
2
2
(法二)以CD,CB,CE为正交基底,建立空间直角坐标系,则 E(0,0,1),D( 2,0,0),B(0, 2,0),A( 2, 2,0),M( , ,1),DE= (- 2,0,1),BE=(0,- 2,1),AM=(- 2 ,- 2 ,1). 设平面 BDE 的法向量为 n=(a,b,c),∴n⊥DE,n⊥BE, n·DE = 0, - 2a + c = 0, ∴ ∴ n·BE = 0, - 2b + c = 0, 令 c=1,则 a= 2 ,b= 2 ,n=( 2 , 2 ,1),∴n·AM=0.
高二数学人教版A版选修2-1课件:第三章 空间向量与立体几何 3.1.3
解析答
― → ― → ― → (2)| OA + OB + OC |.
解 = =
― → ― → ― → | OA + OB + OC | →+― →+― →2 ― OA OB OC →2 ― →2 ― →2 ― →― → ― →― → ― →― → OA + OB + OC +2 OA · OB + OB · OC + OA · OC
= 12+12+12+21×1×cos 60° ×3= 6.
解析答
类型二
例2
利用数量积求夹角
BB1⊥平面ABC,且△ABC是∠B=90°的等腰直角三角形,▱ABB1A1、▱BB1C1C的对角线都分
别相互垂直且相等,若AB=a,求异面直线BA1与AC所成的角.
反思与
解析答
跟踪训练2
且l⊥OA.
其中正确的有(
A.①② C.③④
)
D B.②③ D.②④
解析 结合向量的数量积运算律,只有②④正确.
解析答
1
2 3 4 5
― → ― → ― → 2.已知正方体 ABCD-A′B′C′D′的棱长为 a,设 AB =a,AD =b, AA′ ― ― → ― ― ― → =c,则〈A′B, B′D ′〉等于( A.30° C.90° B.60°
当堂训练
问题导学 知识点一 空间向量数量积的概念
思考
如图所示,在空间四边形 OABC 中,OA=8,
AB=6,AC=4,BC=5,∠OAC=45° ,∠OAB=60° , ― → ― → 类比平面向量有关运算,如何求向量 OA 与 BC 的数量 积?并总结求两个向量数量积的方法.
梳理
(1)定义:已知两个非零向量a,b,则|a||b|cos〈a,b〉叫做a,b的数量积,记作a·b.
高二数学人教A版选修2-1课件:3.2.3 空间向量与距离
������������+2������������ ·������������ =
12 5
2
+
7 5
2
+
12 5
2 -2×152
×
12 5
×
1 2
=
12953,
所以|������������|= 1593,即顶点 B 与 D 之间的距离为 1593.
一二
知识精要
二、求点到平面的距离
典题例解
求点面距的方法 提示:用向量法求点面距的方法与步骤框图
案例探究
误区警示
思悟升华
类题试解
在四棱锥 P-ABCD 中,四边形 ABCD 为正方形,PD⊥平面 ABCD,PD=DA=2,F,E 分别为 AD,PC 的中点.
(1)求证:DE∥平面 PFB; (2)求点 E 到平面 PFB 的距离. 解:(1)证明:以 D 为原点,建立如图所示的空间直角坐标系, 则 P(0,0,2),F(1,0,0),B(2,2,0),E(0,1,1).
设平面 A1BD 的法向量为 n=(x,y,z),则
������·������������ = (������,������,������)·(-������,-������,0) = 0,
迁移应用
������·������1������ = (������,������,������)·(-������,0,������) = 0,
思路分析:求 A,D 两点间的距离,就是求向量������������的模,由于本题 中的空间图形不适合建系,故可用向量分解法求模.
一二
知识精要
典题例解
迁移应用
解:∵������������ = ������������ + ������������ + ������������, ∴|������������|2=(������������ + ������������ + ������������)2=|������������|2+|������������|2+|������������|2+2(������������ ·������������ +
高中数学第三章空间向量与立体几何3.2.1空间向量与平行关系课件新人教A版选修21
(1)设 n1=(x1,y1,z1)是平面 ADE 的法向量,则 n1⊥D→A,n1⊥A→E, 即nn11· ·AD→→EA==22yx11+=z01,=0,得xz11==-0,2y1, 令 z1=2,则 y1=-1,所以 n1=(0,-1,2). 因为F→C1·n1=-2+2=0,所以F→C1⊥n1. 又因为 FC1⊄平面 ADE,所以 FC1∥平面 ADE.
(2)D→B=(2,2,0),D→E=(1,0,2). 设平面 BDEF 的一个法向量为 n=(x,y,z). ∴nn··DD→→BE==00,, ∴2x+x+22z=y=0,0,∴yz==--12x, x. 令 x=2,得 y=-2,z=-1. ∴n=(2,-2,-1)即为平面 BDEF 的一个法向量.
【自主解答】 以点 A 为原点,AD、AB、AS 所在的直线分别为 x 轴、 y 轴、z 轴,建立如图所示的坐标系,则 A(0,0,0),B(0,1,0),C(1,1, 0),D12,0,0,S(0,0,1).
(1)∵SA⊥平面 ABCD, ∴A→S=(0,0,1)是平面 ABCD 的一个法向量.
第九页,共47页。
图322
【解】 设正方体 ABCD-A1B1C1D1 的棱长为 2,则 D(0,0,0),B(2, 2,0),A(2,0,0),C(0,2,0),E(1,0,2).
(1)连接 AC,因为 AC⊥平面 BDD1B1,所以A→C=(-2,2,0)为平面 BDD1B1 的一个法向量.
第十五页,共47页。
-x1+4z1=0, 即32y1+4z1=0. 令 x1=1,得 z1=14,y1=-23.
第二十八页,共47页。
nn22· ·DD→→EF==00,,即32x2y+2+34y2z+2=40z2,=0, 令 y2=-1,得 z2=38,x2=32. ∴n1=1,-23,14,n2=32,-1,38, ∴n1=23n2,即 n1∥n2, ∴平面 AMN∥平面 EFBD.
高中数学人教A版选修2-1第三章 空间向量与立体几何
高中数学学习材料(灿若寒星 精心整理制作)第三章 空间向量与立体几何§3.1 空间向量及其运算3.1.1 空间向量及其加减运算 课时目标1.理解空间向量的概念,掌握空间向量的几何表示和字母表示.2.掌握空间向量的加减运算及其运算律,能借助图形理解空间向量及其运算的意义.2.几类特殊向量(1)零向量:____________的向量叫做零向量,记为________.(2)单位向量:________的向量称为单位向量.(3)相等向量:方向________且模________的向量称为相等向量.在空间,同向且等长的有向线段表示同一向量或相等向量.(4)相反向量:与向量a 长度______而方向________的向量,称为a 的相反向量,记为________. 3.空间向量的加减法与运算律空间向量的加减法 类似平面向量,定义空间向量的加、减法运算(如图):OB →=OA →+AB →=__________;CA →=OA →-OC →=________.加法运算律 (1)交换律:a +b =________ (2)结合律:(a +b )+c =____________.;一、选择题1.下列命题中,假命题是( )A. 向量AB →与BA →的长度相等B .两个相等的向量,若起点相同,则终点也相同C .只有零向量的模等于0D .共线的单位向量都相等2.如图所示,平行四边形ABCD 的对角线的交点为O ,则下列等式成立的是( )A. OA →+OB →=AB →B. OA →+OB →=BA →C. AO →-OB →=AB →D. OA →-OB →=CD →3.已知O 是△ABC 所在平面内一点,D 为BC 边中点且2OA →+OB →+OC →=0,则AO →等于( )A. OB →B. OC →C. OD → D .2OD → 4.已知向量AB →,AC →,BC →满足|AB →|=|AC →|+|BC →|,则( )A. AB →=AC →+BC →B. AB →=-AC →-BC →C. AC →与BC →同向D. 与AC →与CB →同向5.在正方体ABCD —A 1B 1C 1D 1中,向量表达式DD 1→-AB →+BC →化简后的结果是( )A. BD 1→B. 1D BC.1B DD. 1DB6.平行六面体ABCD —A 1B 1C 1D 1中,E ,F ,G ,H ,P ,Q 分别是A 1A ,AB ,BC ,CC 1,C 1D 1,D 1A 1的中点,则( )A.EF →+GH →+PQ →=0B. EF→-GH →-PQ →=0 C.EF→+GH →-PQ →=0 D.EF →-GH →+PQ →=0 二、填空题7.在平行六面体ABCD -A ’B’C ’D ’中,与向量''A B 的模相等的向量有________个.8.若G 为△ABC 内一点,且满足AG +BG →+CG →=0,则G 为△ABC 的________.(填“外心”“内心”“垂心”或“重心”)9.判断下列各命题的真假:①向量AB →的长度与向量BA →的长度相等;②向量a 与b 平行,则a 与b 的方向相同或相反;③两个有共同起点而且相等的向量,其终点必相同;④两个有公共终点的向量,一定是共线向量;⑤有向线段就是向量,向量就是有向线段.其中假命题的个数为________.三、解答题10.判断下列命题是否正确,若不正确,请简述理由.①向量AB →与CD →是共线向量,则A 、B 、C 、D 四点必在一条直线上;②单位向量都相等;③任一向量与它的相反向量不相等;④四边形ABCD 是平行四边形的充要条件是AB →=DC →;⑤模为0是一个向量方向不确定的充要条件.11.如图所示,已知空间四边形ABCD ,连结AC,BD,E,F,G 分别是BC,CD,DB 的中点,请化简:AB →+BC →+CD →,(2)AB →+GD →+EC →,并标出化简结果的向量.能力提升12.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F.若AC →=a ,BD →=b ,则AF →等于( )A.14a +12bB.13a +23b C.12a +14b D.23a +13b 13.证明:平行六面体的对角线交于一点,并且在交点处互相平分.1.在掌握向量加减法的同时,应首先掌握有特殊位置关系的两个向量的和或差,如共线、共起点、共终点等.2.通过掌握相反向量,理解两个向量的减法可以转化为加法.3.注意向量的三角形法则和平行四边形法则的要点.对于向量加法运用平行四边形法则要求两向量有共同起点,运用三角形法则要求向量首尾顺次相连.对于向量减法要求两向量有共同的起点.4.a -b 表示的是由b 的终点指向a 的终点的一条有向线段.第三章 空间向量与立体几何§3.1 空间向量及其运算3.1.1 空间向量及其加减运算知识梳理1.大小 方向 (2)大小 模 (3)①有向线段②AB →2.(1)长度为0 0 (2)模为1 (3)相同 相等(4)相等 相反 -a3.a +b a -b (1)b +a (2)a +(b +c )作业设计1.D [共线的单位向量是相等向量或相反向量.]2.D [OA →-OB →=BA →=CD →.]3.C [∵D 为BC 边中点,∴OB →+OC →=2OD →,∴OA →+OD →=0,∴AO →=OD →.]4.D [由|AB →|=|AC →|+|BC →|=|AC →|+|CB →|,知C 点在线段AB 上,否则与三角形两边之和大于第三边矛盾,所以AC →与CB →同向.]5.A[如图所示,∵DD 1→=AA 1→,DD →1-AB →=AA 1→-AB →=BA 1→,BA 1→+BC →=BD →1,∴DD 1→-AB →+BC →=BD 1→.]6.A [观察平行六面体ABCD —A 1B 1C 1D 1可知,向量EF →,GH →,PQ →平移后可以首尾相连,于是EF →+GH →+PQ →=0.]7.7解析 |D'C'→|=|DC →|=|C'D'→|=|CD →|=|BA →|=|AB →|=|B'A'→|=|A'B'→|.8.重心解析如图,取BC 的中点O ,AC 的中点D ,连结OG 、DG .由题意知AG →=-BG →-CG →=GB →+GC →=2GO →,同理BG →=2GD →,故G 为△ABC 的重心.9.3解析 ①真命题;②假命题,若a 与b 中有一个为零向量时,其方向是不确定的;③真命题;④假命题,终点相同并不能说明这两个向量的方向相同或相反;⑤假命题,向量可用有向线段来表示,但并不是有向线段.10.解 ①不正确,共线向量即平行向量,只要求两个向量方向相同或相反即可,并不要求两个向量AB ,CD 在同一条直线上.②不正确,单位向量模均相等且为1,但方向并不一定相同.③不正确,零向量的相反向量仍是零向量,但零向量与零向量是相等的.④正确.⑤正确.11.解 (1) AB →+BC →+CD →=AC →+CD →=AD →.(2)∵E ,F ,G 分别为BC ,CD ,DB 的中点.∴BE →=EC →,EF →=GD →.∴AB →+GD →+EC →=AB →+EF →+BE →=AF →.故所求向量AD →,AF →,如图所示.12.D [AF →=AC →+CF →=a +23CD → =a +13(b -a )=23a +13b .]13.证明如图所示,平行六面体ABCD —A ′B ′C ′D ′,设点O 是AC ′的中点,则AO →=12AC'→ =12(AB →+AD →+AA'→). 设P 、M 、N 分别是BD ′、CA ′、DB ′的中点.则AP =AB →+BP →=AB →+12BD'→ =AB →+12(BA →+BC →+B B'→) =AB →+12(-AB →+AD →+AA'→) =12(AB →+AD →+AA'→). 同理可证:AM →=12(AB →+AD →+AA'→) AN →=12(AB →+AD →+AA'→). 由此可知O ,P ,M ,N 四点重合.故平行六面体的对角线相交于一点,且在交点处互相平分.。
高中数学选修2-1第三章课件3.1.5空间向量运算的坐标表示 人教A版
品质来自专业 信赖源于诚信
3.1.5空间向量运算的坐标表示
复习 单位正交基底,空间直角坐标系,向量的坐标 z
金太阳教育网
品质来自专业 信赖源于诚信
zi
P (x,y,z)
zi
k
xi
x
i O
j
yj
Q
y
OP = OQ + QP =
xi y j zk
证明:不妨设已知正方体的棱长为1个单 位长度,设 DA i, DC j, DD1 k 分别以 i, j , k 为坐标向量建立空间直 A1 角坐标系 D xyz 则
金太阳教育网
品质来自专业 信赖源于诚信
z
D1
C1
F E
1 1 1 E (1,1, ), F ( , ,1), EF ( 1 , 1 , 1 ), 2 2 2 2 2 2 A1 (1,0,1), D(0,0,0), DA1 (1,0,1), A 1 1 1 EF DA1 ( , , ) (1, 0,1) 0, x 2 2 2 EF DA1即: EF DA1
2.设a ( x, 4,3), b (3, 2, z), 且a / /b, 则xz ( )
x 3 , 4 2 ,3 z , R
金太阳教育网
品质来自专业 信赖源于诚信
例2
B1 E1 如图,在正方体 ABCD A1B1C1 D1 中,
类比可得空间向量的坐标运算(1)
金太阳教育网 品质来自专业 信赖源于诚信
设 a (a1 , a2 , a3 ), b (b1 , b2 , b3 ), A( x1 , y1 , z1 ), B( x2 , y2 , z2 )
高中数学人教A版选修2-1课件3.1.4空间向量的正交分解及其坐标运算(系列三)
∴O→E=12(O→A+O→B), C→G=2C→E=2(O→E-O→C)
33 ∴O→G=O→C+C→G= O→C+2(O→E-O→C)=
3 13(O→A+O→B+O→C) ∴λ=3.
答案:3
5.如图 2,四棱锥 P—OABC 的底面为一矩形, 设O→A=a,O→C=b,O→P=c,E、F 分别是 PC 和 PB 的中点,用 a,b,c 表示B→F、B→E、A→E、E→F.
D.既不充分也不必要条件
解析:当非零向量a,b,c不共面时,{a,b,c}可以当基底, 否则不能当基底,当{a,b,c}为基底时,一定有a,b,c为 非零向量.
答案:B
2.已知{a,b,c}是空间的一个基底,则可以和向量p=a+b, q=a-b构成基底的向量是( )
A.a
B.b
C.a+2b
有序实数组{x,y,z},使得p=xa+yb+zc.
2.基底的概念
如果三个向量a、b、c不共面,那么空间所有向量组成的集合 就是{p|p=xa+yb+zc,x、y、z∈R}这个集合可以看作是由 向 量 a 、 b 、 c 生 成 的 , 我 们 把 {a , b , c} 叫 做 空 间 的 一 个 基 底.a、b、c叫做基向量.空间任何三个不共面的向量都可构 成空间的一个基底.
人教版 选修2-1
第三章 空间向量与立体几何
3.1空间向量及其运算
空间向量的正交分解及其坐标 表示
学习目标
1.了解空间向量的正交分解的含义. 2.掌握空间向量的基本定理,并能用空间向量基本定理
解决一些简单问题. 3.掌握空间向量的坐标表示,能在适当的坐标系中写出
向量的坐标.
新知导入
1.空间向量基本定理 如果三个向量a,b,c不共面,那么对空间任一向量p,存在