高中数学第一节课教学设计

合集下载

人教a版数学必修1教案6篇

人教a版数学必修1教案6篇

人教a版数学必修1教案6篇人教a版数学必修1教案篇1教学准备教学目标1、数学知识:掌握等比数列的概念,通项公式,及其有关性质;2、数学能力:通过等差数列和等比数列的类比学习,培养学生类比归纳的能力;归纳——猜想——证明的数学研究方法;3、数学思想:培养学生分类讨论,函数的数学思想。

教学重难点重点:等比数列的概念及其通项公式,如何通过类比利用等差数列学习等比数列;难点:等比数列的性质的探索过程。

教学过程教学过程:1、问题引入:前面我们已经研究了一类特殊的数列——等差数列。

问题1:满足什么条件的数列是等差数列?如何确定一个等差数列?(学生口述,并投影):如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。

要想确定一个等差数列,只要知道它的首项a1和公差d。

已知等差数列的首项a1和d,那么等差数列的通项公式为:(板书)an=a1+(n-1)d。

师:事实上,等差数列的关键是一个“差”字,即如果一个数列,从第2项起,每一项与它前一项的差等于同一个常数,那么这个数列就叫做等差数列。

(第一次类比)类似的,我们提出这样一个问题。

问题2:如果一个数列,从第2项起,每一项与它的前一项的……等于同一个常数,那么这个数列叫做……数列。

(这里以填空的形式引导学生发挥自己的想法,对于“和”与“积”的情况,可以利用具体的例子予以说明:如果一个数列,从第2项起,每一项与它的前一项的“和”(或“积”)等于同一个常数的话,这个数列是一个各项重复出现的“周期数列”,而与等差数列最相似的是“比”为同一个常数的情况。

而这个数列就是我们今天要研究的等比数列了。

)2、新课:1)等比数列的定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。

这个常数叫做公比。

师:这就牵涉到等比数列的通项公式问题,回忆一下等差数列的通项公式是怎样得到的?类似于等差数列,要想确定一个等比数列的通项公式,要知道什么?师生共同简要回顾等差数列的通项公式推导的方法:累加法和迭代法。

高中数学教学设计(4篇)

高中数学教学设计(4篇)

高中数学教学设计(4篇)高中数学教学设计篇一一、教学目标1.知识与技能(1)掌握斜二测画法画水平设置的平面图形的直观图。

(2)采用对比的方法了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点。

2.过程与方法学生通过观察和类比,利用斜二测画法画出空间几何体的直观图。

3.情感态度与价值观(1)提高空间想象力与直观感受。

(2)体会对比在学习中的作用。

(3)感受几何作图在生产活动中的应用。

二、教学重点、难点重点、难点:用斜二测画法画空间几何值的直观图。

三、学法与教学用具1.学法:学生通过作图感受图形直观感,并自然采用斜二测画法画空间几何体的过程。

2.教学用具:三角板、圆规四、教学思路(一)创设情景,揭示课题1.我们都学过画画,这节课我们画一物体:圆柱把实物圆柱放在讲台上让学生画。

2.学生画完后展示自己的结果并与同学交流,比较谁画的效果更好,思考怎样才能画好物体的直观图呢?这是我们这节主要学习的内容。

(二)研探新知1.例1,用斜二测画法画水平放置的正六边形的直观图,由学生阅读理解,并思考斜二测画法的关键步骤,学生发表自己的见解,教师及时给予点评。

画水平放置的多边形的直观图的关键是确定多边形顶点的位置,因为多边形顶点的位置一旦确定,依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可以归结为确定点的位置的画法。

强调斜二测画法的步骤。

练习反馈根据斜二测画法,画出水平放置的正五边形的直观图,让学生独立完成后,教师检查。

2.例2,用斜二测画法画水平放置的圆的直观图教师引导学生与例1进行比较,与画水平放置的多边形的直观图一样,画水平放置的圆的直观图,也是要先画出一些有代表性的点,由于不能像多边那样直接以顶点为代表点,因此需要自己构造出一些点。

教师组织学生思考、讨论和交流,如何构造出需要的一些点,与学生共同完成例2并详细板书画法。

3.探求空间几何体的直观图的画法(1)例3,用斜二测画法画长、宽、高分别是4cm、3cm、2cm的长方体ABCD-A’B’C’D’的直观图。

高中数学教材教法教案设计

高中数学教材教法教案设计

高中数学教材教法教案设计
教法:启发式教学
教案设计:
课时:Unit 1- Functions
学习目标:学生能够理解函数的概念,并能够应用函数进行问题求解。

教学步骤:
1. 导入:通过展示一个实际生活中的问题,引出函数的概念。

例如:某人每天跑步的时间
与距离之间的关系可以用函数来表示。

2. 概念讲解:通过讲解函数的定义和符号表示,让学生理解函数的概念。

提供一些简单的
函数图像,让学生观察函数的特点。

3. 实例分析:选取一些实际问题,让学生通过建立函数模型进行分析和解决。

例如:某商
品的价格与销量之间的关系可以用函数来描述。

4. 练习:设计一些练习题,让学生在课堂上进行解答,检验他们对函数概念的理解。

例如:已知函数f(x) = 2x + 3,求f(5)的值。

5. 巩固拓展:让学生在课后进行更多的练习,加深对函数概念的理解。

也可以设计一些拓
展性问题,让学生应用函数进行解答。

评估方法:课堂练习和课后作业的成绩。

教学资源:课本、黑板、投影仪等。

注意事项:在教学过程中,要激发学生的学习兴趣,让他们积极参与讨论和解答问题。

同时,要及时给予学生反馈,帮助他们纠正错误,提高学习效果。

高中数学必修一第一节教案高中数学必修一第一课(5篇)

高中数学必修一第一节教案高中数学必修一第一课(5篇)

高中数学必修一第一节教案高中数学必修一第一课(5篇)高中数学必修一第一节教案高中数学必修一第一课篇一1、学问目标:使学生理解指数函数的定义,初步把握指数函数的图像和性质。

2、力量目标:通过定义的引入,图像特征的观看、发觉过程使学生懂得理论与实践的辩证关系,适时渗透分类争论的数学思想,培育学生的探究发觉力量和分析问题、解决问题的力量。

3、情感目标:通过学生的参加过程,培育他们手脑并用、多思勤练的良好学习习惯和勇于探究、锲而不舍的治学精神。

教学重点、难点:1、重点:指数函数的图像和性质2、难点:底数 a 的变化对函数性质的影响,突破难点的关键是利用多媒体动感显示,通过颜色的区分,加深其感性熟悉。

教学方法:引导——发觉教学法、比拟法、争论法教学过程:一、事例引入t:上节课我们学习了指数的运算性质,今日我们来学习与指数有关的函数。

什么是函数?s: --------t:主要是表达两个变量的关系。

我们来考虑一个与医学有关的例子:大家对“非典”应当并不生疏,它与其它的传染病一样,有肯定的埋伏期,这段时间里病原体在机体内不断地生殖,病原体的生殖方式有许多种,分裂就是其中的一种。

我们来看一种球菌的分裂过程:c:动画演示(某种球菌分裂时,由1分裂成2个,2个分裂成4个,------。

一个这样的球菌分裂x次后,得到的球菌的个数y与x的函数关系式是: y = 2 x )s,t:(争论) 这是球菌个数 y 关于分裂次数 x 的函数,该函数是什么样的形式(指数形式),从函数特征分析:底数 2 是一个不等于 1 的正数,是常量,而指数 x 却是变量,我们称这种函数为指数函数——点题。

二、指数函数的定义c:定义:函数 y = a x (a0且a≠1)叫做指数函数, x∈r.。

问题 1:为何要规定 a 0 且 a ≠1?s:(争论)c: (1)当 a 0 时,a x 有时会没有意义,如 a=﹣3 时,当x= 就没有意义;(2)当 a=0时,a x 有时会没有意义,如x= - 2时,(3)当 a = 1 时,函数值 y 恒等于1,没有讨论的必要。

数学高中教学设计(优秀5篇)

数学高中教学设计(优秀5篇)

数学高中教学设计(优秀5篇)高中数学教学设计篇一教学目标1.掌握等比数列前项和公式,并能运用公式解决简单的问题。

(1)理解公式的推导过程,体会转化的思想;(2)用方程的思想认识等比数列前项和公式,利用公式知三求一;与通项公式结合知三求二;2.通过公式的灵活运用,进一步渗透方程的思想、分类讨论的思想、等价转化的思想。

3.通过公式推导的教学,对学生进行思维的严谨性的训练,培养他们实事求是的科学态度。

教学建议教材分析(1)知识结构先用错位相减法推出等比数列前项和公式,而后运用公式解决一些问题,并将通项公式与前项和公式结合解决问题,还要用错位相减法求一些数列的`前项和。

(2)重点、难点分析教学重点、难点是等比数列前项和公式的推导与应用。

公式的推导中蕴含了丰富的数学思想、方法(如分类讨论思想,错位相减法等),这些思想方法在其他数列求和问题中多有涉及,所以对等比数列前项和公式的要求,不单是要记住公式,更重要的是掌握推导公式的方法。

等比数列前项和公式是分情况讨论的,在运用中要特别注意和两种情况。

教学建议(1)本节内容分为两课时,一节为等比数列前项和公式的推导与应用,一节为通项公式与前项和公式的综合运用,另外应补充一节数列求和问题。

(2)等比数列前项和公式的推导是重点内容,引导学生观察实例,发现规律,归纳总结,证明结论。

(3)等比数列前项和公式的推导的其他方法可以给出,提高学生学习的兴趣。

(4)编拟例题时要全面,不要忽略的情况。

(5)通项公式与前项和公式的综合运用涉及五个量,已知其中三个量可求另两个量,但解指数方程难度大。

(6)补充可以化为等差数列、等比数列的数列求和问题。

教学设计示例课题:等比数列前项和的公式教学目标(1)通过教学使学生掌握等比数列前项和公式的推导过程,并能初步运用这一方法求一些数列的前项和。

(2)通过公式的推导过程,培养学生猜想、分析、综合能力,提高学生的数学素质。

(3)通过教学进一步渗透从特殊到一般,再从一般到特殊的辩证观点,培养学生严谨的学习态度。

高中数学起始课教案

高中数学起始课教案

高中数学起始课教案
教学目标:
1.了解高中数学的课程内容和要求;
2.培养学生对数学的兴趣和学习动力;
3.引导学生建立正确的数学学习方法和态度。

教学内容:
1.高中数学的学科特点和重要性;
2.高中数学课程设置和教学要求;
3.数学学习的方法和技巧;
4.数学学习的重要性和价值。

教学过程:
一、引入:
教师向学生介绍高中数学的重要性和学科特点,激发学生学习数学的兴趣和动力。

二、讲解:
1.介绍高中数学的课程设置和教学要求,让学生了解数学学习的内容和难度;
2.分享数学学习的方法和技巧,引导学生建立正确的数学学习态度和方法。

三、实践:
1.组织学生进行小组讨论,让他们分享自己对数学学习的看法和体会;
2.布置作业,让学生在家中思考并总结自己的数学学习方法和体会。

四、反馈:
1.让学生分享自己的学习心得和体会;
2.对学生的学习态度和方法进行评价和引导。

五、总结:
教师总结本节课的教学内容和学生的学习表现,激励学生继续努力学习数学。

教学反思:
本节课主要介绍了高中数学的学科特点和重要性,引导学生建立正确的数学学习方法和态度。

在教学过程中,应该注重培养学生的数学兴趣和学习动力,引导他们主动探究和学习数学知识。

同时,要不断激发学生的学习兴趣和创新意识,帮助他们建立数学自信心,提高数学学习的效率和质量。

高中必修1数学a版教案设计

高中必修1数学a版教案设计

高中必修1数学a版教案设计
教学内容:平面向量
教学目标:学生能够理解和掌握平面向量的概念、运算规则和性质。

教学重点:平面向量的定义、加法、减法、数量积和平行四边形法则。

教学难点:向量的线性运算和向量的性质证明。

教学方法:讲授、示范、实践。

教学过程:
一、导入(5分钟)
教师通过讲解实际生活中的例子引入平面向量的概念,让学生了解向量的作用和重要性。

二、讲解平面向量的定义和基本性质(15分钟)
教师讲解平面向量的定义、零向量和单位向量的概念,介绍向量的加法和减法规则,并讲解向量的数量积和平行四边形法则。

三、练习与巩固(20分钟)
让学生进行练习,进行向量的加法、减法和数量积计算,巩固所学内容。

四、拓展与应用(15分钟)
引入实际生活中的问题,让学生通过向量的概念和运算规则解决问题,培养学生的应用能力和创新思维。

五、总结与反思(5分钟)
让学生总结本节课所学内容,并检查自己的学习情况,有针对性地进行巩固和提高。

教学过程中,教师要注重激发学生的学习兴趣和主动性,引导学生通过思考和实践提高自己的数学能力。

同时,要根据学生的不同水平和特点,采用灵活多样的教学方式,确保每个学生都能够达到预设的教学目标。

高中数学_函数Y=Asin(ωx+φ)的图像(第一课时)教学设计学情分析教材分析课后反思

高中数学_函数Y=Asin(ωx+φ)的图像(第一课时)教学设计学情分析教材分析课后反思

函数sin()(0,0)y A x A ωϕω=+>>的图象(一)一、教材分析本节是人教A 版数学第一册第5章第6节的内容,前一节“正弦函数的性质和图象”主要讲述了正弦函数图象的画法(五点法)、性质及应用。

本节课的主要内容是结合实例,了解)sin(φω+=x A y 的实际意义,会用五点法画出函数的图象,揭示参数φω,,A 变化时对函数)sin(φω+=x A y 图象的形状,位置的影响,讨论函数)sin(φω+=x A y 的图象与正弦函数的关系;通过引导学生对函数图象规律性的探索,让学生体会到从简单到复杂,从特殊到一般的化归思想;通过对参数的分类讨论,让学生深刻认识到图象变换与函数解析式变换的内在联系。

二、教学目标:1. 分别通过对三角函数图像的各种变换的探究和动态演示让学生了解三角函数图像各种变换的实质和内在规律。

2. 通过对函数sin()(0,0)y A x A ωϕω=+>>图象的探讨,让学生进一步掌握三角函数图像各种变换的内在联系。

3. 培养学生观察问题和探索问题的能力。

三、教学重、难点:教学重点:函数sin()(0,0)y A x A ωϕω=+>>的图像的画法和图像与函数y=sinx 图像的关系,以及对各种变换内在联系的揭示。

教学难点:各种变换内在联系的揭示。

四、教法学法采取各个击破,归纳整合为主线,自主探索、合作学习为主导,教师总结点评为辅助,充分发挥学生的动手能力的教学方法;多媒体辅助教学。

五、教学过程:(一)、新课引入:那么怎么画函数12sin()34y x π=-的图象? (二)、尝试探究探究(一):对 sin()y x ϕϕ=+对的图象的影响问题1:sin()3y x π=+函数周期是多少?你有什么办法画出该函数在一个周期内的图象?学生:用“五点法”作出函数 问题2:比较函数 sin()3y x π=+与sin y x = 的图象的形状和位置,你有什么发现?学生:函数sin()3y x π=+的图象,可以看作是把曲线sin y x =上所有的点向左平移3π个单位长度而得到的. 那么函数sin()3y x π=-的图象?学生:函数sin()3y x π=-的图象,可以看作是把曲线sin y x =上所有的点向右平移3π个单位长度而得到的.问题3:一般地,对任意的 (0)ϕϕ≠,函数 sin()y x ϕ=+ 的图象是由函数 sin y x = 的图象经过怎样的变换而得到的? 归纳:函数sin()y x ϕ=+的图象,可以看作是把曲线sin y x =上所有的点向左(0ϕ>时)或向右0ϕ<(时)平移ϕ个单位长度而得到的.上述变换称为平移变换探究(二):(0)sin y x ωωω>=对的图象的影响问题1:函数sin 2y x =周期是多少?如何用“五点法”画出该函数在一个周期内的图象?问题2:比较函数 sin 2y x =与sin y x = 的图象的形状和位置,你有什么发现?学生:函数 sin 2y x =的图象,可以看作是把sin y x =的图象上所有的点横坐标缩短到原来的12倍(纵坐标不变)而得到的. 那么函数1sin()2y x =的图象?学生:函数 1sin()2y x =的图象,可以看作是把sin y x =的图象上所有的点横坐标伸长到原来的 2 倍(纵坐标不变)而得到的.问题3:一般地,对任意的 (0)ωω>,函数 sin y x ω=的图象是由函数sin y x =的图象经过怎样的变换而得到的?归纳:函数sin (0)y x ωω=>的图像可由函数y =sinx 的图像沿x 轴伸长(w<1)或缩短(w>1)到原来的ω1倍(纵坐标不变).......而得到的,称为周期变换。

高一数学教案精选13篇

高一数学教案精选13篇

高一数学教案精选13篇高一数学集合教案篇一教学目的:(1)使学生初步理解集合的概念,知道常用数集的概念及记法(2)使学生初步了解“属于”关系的意义(3)使学生初步了解有限集、无限集、空集的意义教学重点:集合的基本概念及表示方法教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪内容分析:1.集合是中学数学的一个重要的基本概念在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解集等;在几何中用到的有点集至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具这些可以帮助学生认识学习本章的意义,也是本章学习的基础把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础例如,下一章讲函数的概念与性质,就离不开集合与逻辑本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子这节课主要学习全章的引言和集合的基本概念学习引言是引发学生的学习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的基本概念集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集”这句话,只是对集合概念的描述性说明教学过程:一、复习引入:1.简介数集的发展,复习公约数和最小公倍数,质数与和数;2.教材中的章头引言;3.集合论的创始人——康托尔(德国数学家)(见附录);4.“物以类聚”,“人以群分”;5.教材中例子(P4)二、讲解新课:阅读教材第一部分,问题如下:(1)有那些概念?是如何定义的?(2)有那些符号?是如何表示的?(3)集合中元素的特性是什么?(一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的。

高中数学必修一 《1 1 集合的概念》优质课教案教学设计

高中数学必修一 《1 1 集合的概念》优质课教案教学设计

《集合的概念》教案教材分析集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础.许多重要的数学分支,都是建立在集合理论的基础上.此外,集合理论的应用也变得更加广泛.教学目标【知识与能力目标】1.通过实例,了解集合的含义,体会元素与集合的属于关系;2.知道常用数集及其专用记号;3.了解集合中元素的确定性、互异性、无序性;4.会用集合语言表示有关数学对象;5.培养学生抽象概括的能力.【过程与方法目标】1.让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.2.让学生归纳整理本节所学知识.【情感态度价值观目标】使学生感受学习集合的必要性和重要性,增加学生对数学学习的兴趣.教学重难点【教学重点】集合的含义与表示方法.【教学难点】对待不同问题,表示法的恰当选择.课前准备学生通过预习,自主学习、思考、交流、讨论和概括,从而更好地完成本节课的教学目标.教学过程(一)创设情景,揭示课题请分析以下几个实例:1.正整数1,2,3, ;2.中国古典四大名著;3.2018足球世界杯参赛队伍;4.《水浒》中梁山108好汉;5.到线段两端距离相等的点.在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体.(二)研探新知1.集合的有关概念(1)一般地,我们把研究对象统称为元素(element),把一些元素组成的总体叫做集合(set)(简称为集).思考:上述5个实例能否构成集合?如果是集合,那么它的元素分别是什么?练习1:下列指定的对象,是否能构成一个集合?①很小的数②不超过30的非负实数③直角坐标平面的横坐标与纵坐标相等的点④π的近似值⑤高一年级优秀的学生⑥所有无理数⑦大于2的整数⑧正三角形全体(2)关于集合的元素的特征(a)确定性:设A一个给定的集合,对于一个具体对象a,则a或者是集合A的元素,或者不是集合A的元素,两种情况必有一种且只有一种成立.(b)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素.(c)无序性:集合中的元素是没有顺序关系的,即只要构成两个集合的元素一样,我们称这两个集合是相等的,跟顺序无关.(3)思考1:列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题.答案:(a)把3-11内的每一个偶数作为元数,这些偶数全体就构成一个集合.(b)不能组成集合,因为组成它的元素是不确定的.(4)元素与集合的关系;(a)如果a是集合A的元素,就说a属于(belong to)A,记作a∈A(b)如果a不是集合A的元素,就说a不属于(not belong to)A,记作a∉A例如:A表示方程x2=1 的解.2∉A,1∈A(5)集合的表示方法我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合.(a)列举法:把集合中的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列表法.如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;思考2,引入描述法答案:(1)1~9内所有偶数组成的集合(2)不能,因为集合中元素的个数是无穷多个.说明:集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序.(b)描述法:用集合所含元素的共同特征表示集合的方法称为描述法.具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},…;思考3:描述法表示集合应注意集合的代表元素{(x,y)|y= x2+3x+2}与{y|y= x2+3x+2}不同,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集Z.(6)常用数集及其记法非负整数集(或自然数集),记作N正整数集,记作N*或N+;整数集,记作Z有理数集,记作Q实数集,记作R辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}.下列写法{实数集},{R}也是错误的.如果写{实数}是正确的.说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法.(7)集合的分类问题2:我们看这样一个集合:{ x |x2+x+1=0},它有什么特征?显然这个集合没有元素.我们把这样的集合叫做空集,记作∅.练习:(1)0 ∅(填∈或∉)(2){ 0 } ∅(填=或≠)集合的分类:(1)按元素多少分类:有限集、无限集;(2)按元素种类分类:数集、点集等(三)例题讲解例1.用集合表示:①x 2-3=0的解集;②所有大于0小于10的奇数;③不等式2x -1>3的解.例2.已知集合S 满足:1S ∉,且当a S ∈时11S a ∈-,若2S ∈,试判断12是否属于S ,说明你的理由.例3.设由4的整数倍加2的所有实数构成的集合为A ,由4的整数倍再加3的所有实数构成的集合为B ,若,x A y B ∈∈,试推断x +y 和x -y 与集合B 的关系.(四)归纳小结本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了集合的常用表示方法,包括列举法、描述法.。

课程导入高中数学教案

课程导入高中数学教案

课程导入高中数学教案
时间:第一课时
目标:引导学生对高中数学学习的重要性和意义进行思考,培养学生对数学的兴趣和热爱。

教学步骤:
一、导入(5分钟)
1. 老师与学生互动,询问学生对数学的看法和感受。

学生可以分享自己对数学的理解和认识。

2. 老师介绍今天的课程内容,引导学生明确本节课的学习目标和重点。

二、教学内容(30分钟)
1. 老师通过举例子引导学生思考数学在日常生活中的应用,让学生认识到数学无处不在,
并与我们的生活息息相关。

2. 老师简要介绍高中数学课程的内容和重要性,激发学生对数学学习的兴趣。

3. 老师向学生展示数学在各个领域的广泛应用,如科学研究、工程技术、金融等,让学生
了解数学是一门强大的工具。

三、活动(15分钟)
1. 老师组织学生参与数学游戏或有趣的数学问题解决活动,培养学生的思维能力和创造力。

2. 学生分组讨论并答辩不同观点,培养学生的合作意识和团队合作能力。

4. 老师鼓励学生主动提问和探索,激发学生对数学的好奇心和求知欲。

四、总结(5分钟)
1. 老师总结本节课的学习内容和收获,鼓励学生在今后的学习中充分发挥自己的潜力。

2. 老师鼓励学生在日常生活中多多运用数学知识,提高自己的数学能力。

教学反思:通过本节课的导入,学生对高中数学的重要性和意义有了初步的认识和了解,
引发了学生对数学的兴趣和热爱。

接下来,教师将继续引导学生进行更深入的数学学习,
培养学生的数学思维和解决问题的能力。

新人教A版高中数学必修2第九章统计的第一节第一课时—简单随机抽样-经典教学设计

新人教A版高中数学必修2第九章统计的第一节第一课时—简单随机抽样-经典教学设计
引导学生得出结论:当总体规模较大,经费、时间上受限或调查有破坏性时,选择抽样调查。
(3)通过调查历城二中高一学生的平均身高来估计济南市高一学生的平均身高,请你写出此次调查的总体,个体样本和样本容量。
通过熟悉的生活情境引入普查、抽样调查的适用范围,回顾总体、样本、个体、样本容量的概念。
通过提问,从学生熟悉的具体问题入手,迅速吸引学生的注意力,体会到了抽样调查的必要性。
2.简单随机抽样的特点:
总体有限,逐个抽取,等概率抽样。
3.简单随机抽样的方法:
抽签法和随机数法
学生回顾本节课所学知识点。
小结本节课知识点,加深对知识点的记忆理解。总结提炼,理清脉络,有利于帮助学生建构知识体系,起到画龙点睛的作用。
6.课后作业
1.一个学生在一次竞赛中要回答的8道题是这样产生的:从15道物理题中随机抽3道;从20道化学题中随机抽3道;从12道生物题中随机抽2道.选用合适的方法确定这个学生所要回答的三门学科的题的序号(物理题的编号为1~15,化学题的编号为16~35,生物题的编号为36~47).
此处设计遵循由特殊到一般的认知规律,让学生在观察中归纳,在具体问题中进行总结,自然而然地形成简单随机抽样的概念,培养数学抽象的学科核心素养,最终实现突破难点的目的。
2.实践探究,形成概念
请小组在全班范围内交流,教师在学生回答基础上完善补充,得到下列结论:
(1)一般地,设一个总体含有N(N为正整数)个个体,从中逐个不放回地抽取n(1≤n<N)个个体作为样本,每次抽取时总体内未进入样本的各个个体被抽到的概率都相等,我们把这样的抽样方法叫做不放回简单随机抽样。如果抽取是放回的,且每次抽取时总体内的各个个体被抽到的概率都相等,我们把这样的抽样方法叫做放回简单抽样。

高中必修一数学教案设计

高中必修一数学教案设计

高中必修一数学教案设计
学科:数学
年级:高中一年级
课时数:1课时
课题:函数及其性质
教学目标:
1. 理解函数的概念及其分类;
2. 掌握常见函数的图像和性质;
3. 能够运用函数的性质解决实际问题。

教学重点:
1. 函数的概念及其分类;
2. 常见函数的性质及图像。

教学难点:
1. 理解函数的定义和性质;
2. 掌握不同函数类型的性质和图像。

教学过程:
一、导入(5分钟)
教师引导学生回顾函数的概念,提问:什么是函数?函数的定义是什么?并简单介绍函数的分类。

二、讲解(15分钟)
1. 介绍常见函数类型:线性函数、二次函数、指数函数、对数函数等;
2. 分别讲解每种函数的性质和特点,以及对应的图像。

三、练习(20分钟)
1. 给学生一些练习题,让他们运用所学知识解决问题;
2. 学生可在小组内讨论,相互交流解题方法。

四、总结(5分钟)
教师对本节课的重点知识进行总结,并强调学生需要牢固掌握函数的定义和常见函数类型的性质。

五、作业布置(5分钟)
布置相关练习题作业,巩固本节课所学内容。

教学反思:
本节课通过引导学生回顾函数的概念,讲解常见函数的性质和图像,并进行实际练习,使学生更加深入地理解函数及其性质。

在教学过程中,需要借助图表等形式来展示函数的图像,帮助学生更好地理解函数的性质。

同时,要注意激发学生对数学的兴趣,引导他们主动参与讨论和学习,提高学习效果。

高中数学教学设计模板5篇

高中数学教学设计模板5篇

高中数学教学设计模板5篇作为一位杰出的教职工,时常会需要准备好教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。

怎样写教案才更能起到其作用呢以下是小编整理的高中数学教学设计模板,欢迎大家分享。

高中数学教学设计模板1一、教学内容分析:本节教材选自人教a版数学必修②第二章第一节课,本节内容在立几学习中起着承上启下的作用,具有重要的意义与地位。

本节课是在前面已学空间点、线、面位置关系的基础作为学习的出发点,结合有关的实物模型,通过直观感知、操作确认(合情推理,不要求证明)归纳出直线与平面平行的判定定理。

本节课的学习对培养学生空间感与逻辑推理能力起到重要作用,特别是对线线平行、面面平行的判定的学习作用重大。

二、学生学习情况分析:任教的学生在年段属中上程度,学生学习兴趣较高,但学习立几所具备的语言表达及空间感与空间想象能力相对不足,学习方面有一定困难。

三、设计思想本节课的设计遵循从具体到抽象的原则,适当运用多媒体辅助教学手段,借助实物模型,通过直观感知,操作确认,合情推理,归纳出直线与平面平行的判定定理,将合情推理与演绎推理有机结合,让学生在观察分析、自主探索、合作交流的过程中,揭示直线与平面平行的判定、理解数学的概念,领会数学的思想方法,养成积极主动、勇于探索、自主学习的学习方式,发展学生的空间观念和空间想象力,提高学生的数学逻辑思维能力。

四、教学目标通过直观感知——观察——操作确认的认识方法理解并掌握直线与平面平行的判定定理,掌握直线与平面平行的画法并能准确使用数学符号语言、文字语言表述判定定理。

培养学生观察、探究、发现的能力和空间想象能力、逻辑思维能力。

让学生在观察、探究、发现中学习,在自主合作、交流中学习,体验学习的乐趣,增强自信心,树立积极的学习态度,提高学习的自我效能感。

五、教学重点与难点重点是判定定理的引入与理解,难点是判定定理的应用及立几空间感、空间观念的形成与逻辑思维能力的培养。

高一数学教案(优秀5篇)

高一数学教案(优秀5篇)

高一数学教案(优秀5篇)作为一名无私奉献的老师,时常要开展教案准备工作,借助教案可以有效提升自己的教学能力。

我们该怎么去写教案呢?这次漂亮的我为亲带来了5篇《高一数学教案》,可以帮助到您,就是本文我最大的乐趣哦。

高中数学教案篇一教学目标:1、了解反函数的概念,弄清原函数与反函数的定义域和值域的关系。

2、会求一些简单函数的反函数。

3、在尝试、探索求反函数的过程中,深化对概念的认识,总结出求反函数的一般步骤,加深对函数与方程、数形结合以及由特殊到一般等数学思想方法的认识。

4、进一步完善学生思维的深刻性,培养学生的逆向思维能力,用辩证的观点分析问题,培养抽象、概括的能力。

教学重点:求反函数的方法。

教学难点:反函数的概念。

教学过程:教学活动设计意图一、创设情境,引入新课1、复习提问①函数的概念②y=f(x)中各变量的意义2、同学们在物理课学过匀速直线运动的位移和时间的函数关系,即S=vt和t=(其中速度v是常量),在S=vt中位移S是时间t的函数;在t=中,时间t是位移S的函数。

在这种情况下,我们说t=是函数S=vt的反函数。

什么是反函数,如何求反函数,就是本节课学习的内容。

3、板书课题由实际问题引入新课,激发了学生学习兴趣,展示了教学目标。

这样既可以拨去"反函数"这一概念的神秘面纱,也可使学生知道学习这一概念的必要性。

二、实例分析,组织探究1、问题组一:(用投影给出函数与;与()的图象)(1)这两组函数的图像有什么关系?这两组函数有什么关系?(生答:与的图像关于直线y=x对称;与()的图象也关于直线y=x 对称。

是求一个数立方的运算,而是求一个数立方根的运算,它们互为逆运算。

同样,与()也互为逆运算。

)(2)由,已知y能否求x?(3)是否是一个函数?它与有何关系?(4)与有何联系?2、问题组二:(1)函数y=2x 1(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?(2)函数(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?(3)函数()的定义域与函数()的值域有什么关系?3、渗透反函数的概念。

高中数学第一节

高中数学第一节

高中数学的第一节课通常会涵盖以下内容:
1.介绍课程内容和目标:让学生了解高中数学涵盖的范围和内容,
以及他们在高中阶段需要达到的学习目标。

2.讲解数学基础知识:如代数、几何、概率与统计等,让学生对
数学有一个基本的认识和了解。

3.强调数学学习方法:包括如何制定学习计划、如何阅读和理解
数学教材、如何做笔记、如何复习和总结等。

4.培养数学思维:通过一些具体的数学问题和案例,让学生了解
数学思维的特点和重要性,并培养他们的数学思维能力。

5.激发学习兴趣:通过有趣的问题和实例,让学生感受到数学的
趣味性和实用性,激发他们对数学的兴趣和热情。

6.建立良好的学习习惯:如定时复习、多做习题、积极参与课堂
讨论等,帮助学生建立良好的学习习惯和态度。

7.强调数学与实际生活的联系:通过介绍一些实际生活中的数学
问题和案例,让学生了解数学在实际生活中的应用和重要性。

总之,高中数学的第一节课旨在让学生了解高中数学的基本情况和要求,帮助他们建立正确的学习方法和态度,培养他们的数学思维和兴趣,并为他们后续的学习奠定坚实的基础。

高中数学必修一平面教案

高中数学必修一平面教案

高中数学必修一平面教案
第一课时:直线的方程
教学目标:让学生了解直线的基本性质和方程的概念,掌握直线的一般方程和截距式方程
的求解方法。

教学重点:直线的方程的基本概念及求解方法。

教学难点:通过实际问题推导直线的方程。

教学准备:教师准备教材、黑板、彩色粉笔等。

教学过程:
1.引导学生回顾直线的基本性质,并引出直线的方程的概念。

2.介绍直线的一般方程和截距式方程的定义及表示方法。

3.通过实例讲解一般方程和截距式方程的求解方法。

4.进行练习,巩固学生的理解和掌握能力。

5.布置作业,要求学生进一步巩固所学知识。

板书设计:
直线的方程
1. 一般方程:Ax + By + C = 0
2. 截距式方程:x/a + y/b = 1
教学反思:通过这节课的学习,学生能够初步掌握直线的方程和解题方法,为后续的学习
打下基础。

在教学过程中要注意引导学生积极思考和参与,培养他们独立解决问题的能力。

2022最新高一年级数学课程教学设计5篇

2022最新高一年级数学课程教学设计5篇

2022最新高一年级数学课程教学设计5篇高一新生要根据自己的条件,以及高中阶段学科知识交叉多、综合性强,以及考查的知识和思维触点广的特点,找寻一套行之有效的学习方法。

接下来是关于高一年级数学课程教学设计的文章,希望能帮助到大家!高一年级数学课程教学设计1目标:(1)使学生初步理解集合的概念,知道常用数集的概念及其记法(2)使学生初步了解“属于”关系的意义(3)使学生初步了解有限集、无限集、空集的意义重点:集合的基本概念教学过程:1.引入(1)章头导言(2)集合论与集合论的-----康托尔(有关介绍可引用附录中的内容)2.讲授新课阅读教材,并思考下列问题:(1)有那些概念?(2)有那些符号?(3)集合中元素的特性是什么?(4)如何给集合分类?(一)有关概念:1、集合的概念(1)对象:我们可以感觉到的客观存在以及我们思想中的事物或抽象符号,都可以称作对象.(2)集合:把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合.(3)元素:集合中每个对象叫做这个集合的元素.集合通常用大写的拉丁字母表示,如A、B、C、……元素通常用小写的拉丁字母表示,如a、b、c、……2、元素与集合的关系(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A(2)不属于:如果a不是集合A的元素,就说a不属于A,记作要注意“∈”的方向,不能把a∈A颠倒过来写.3、集合中元素的特性(1)确定性:给定一个集合,任何对象是不是这个集合的元素是确定的了.(2)互异性:集合中的元素一定是不同的.(3)无序性:集合中的元素没有固定的顺序.4、集合分类根据集合所含元素个属不同,可把集合分为如下几类:(1)把不含任何元素的集合叫做空集Ф(2)含有有限个元素的集合叫做有限集(3)含有无穷个元素的集合叫做无限集注:应区分,0等符号的含义5、常用数集及其表示方法(1)非负整数集(自然数集):全体非负整数的集合.记作N(2)正整数集:非负整数集内排除0的集.记作N_或N+(3)整数集:全体整数的集合.记作Z(4)有理数集:全体有理数的集合.记作Q(5)实数集:全体实数的集合.记作R注:(1)自然数集包括数0.(2)非负整数集内排除0的集.记作N_或N+,Q、Z、R等其它数集内排除0的集,也这样表示,例如,整数集内排除0的集,表示成Z_课堂练习:教材第5页练习A、B小结:本节课我们了解集合论的发展,学习了集合的概念及有关性质课后作业:第十页习题1-1B第3题高一年级数学课程教学设计2一、教学目标:1.通过高速公路上的实际例子,引起积极的思考和交流,从而认识到生活中处处可以遇到变量间的依赖关系.能够利用初中对函数的认识,了解依赖关系中有的是函数关系,有的则不是函数关系.2.培养广泛联想的能力和热爱数学的态度.二、教学重点:在于让学生领悟生活中处处有变量,变量之间充满了关系教学难点:培养广泛联想的能力和热爱数学的态度三、教学方法:探究交流法四、教学过程(一)、知识探索:阅读课文P25页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学第一节课教学设计同学们好,我姓代,你们可以叫我代老师,很高兴在接下来的一年甚至两年时间里能跟大家一起来学习咱们这门数学学科。

相信大家对于高中的学习都充满着好奇,和初中相比呢,高中课程与初中课程有很大的不同。

今天这节课我们不急于上新课,我想和同学们聊一聊数学,一起来探讨为什么要学习数学以及如果学好数学这两个问题。

首先,我们为什么要学习数学这门学科呢?
同学们经过小学,初中,也已经学习数学这门学科有9年了,不知道同学们有没有思考过这个问题。

可能有些同学会想,以前学的一些解方程,三角形之类的知识,对以后的生活到底有什么用呢?其实啊,数学作为我们中国教育的一门基础学科,它是很多学科的基础。

马克思说过:“一中科学只有在成功运用数学时,才算达到了真正完善的地步。

”正因为数学是日常生活和进一步学习必不可少的基础和工具,一切科学到了最后都归结为数学问题。

相信高中的第一节课各位科任老师都各显神通,通过各种有趣的方式来突出每门课的重要性,作为数学老师我表达上不如文科老师迂回婉转和风趣幽默,我们更喜欢用数字来说明问题。

其实在我们周围又很多事情都是可以用数学来解决的,无非很多人都没有用数学的眼光来看待罢了。

比如说,有一天我和一个朋友去必胜客吃饭,点了一个12寸的披萨,结果服务员说没了,就说给我们一个9寸的外加一个6寸的来抵换,同学们觉得这样划算吗?为什么?(让同学们讨论一会儿)继续说:我的朋友觉得挺划算啊,立马同意了,我当时就隐
隐约约觉得有些不对,随后,我拿起笔在菜单背面大概算了一下:一个 12寸的披萨的面积是=圆周率X半径(12寸的半径是6寸)的平方=3.1415926X6X6=113.0973 平方寸。

一个9寸的披萨的面积是=圆周率X半径(9寸的半径为4.5寸)的平方=3.1415926X4.5X4.5=63.62 平方寸
一个6寸的披萨的面积是=圆周率X半径(6寸的半径为3寸)的平方=3.1415926X3X3= 28.274平方寸。

所以,一个9寸的披萨加上一个6寸的披萨,总共的面积只有=63.62+28.274=91.894 平方寸!只有大约92平方寸!而一个12寸的披萨面积有113平方寸!乍一看,我们好像是赚了,可实际上吃了很大的亏了。

所以说,学好数学并能够把数学知识运用到实际中来是很重要的。

再提个问题:基督教徒认为上帝是万能的。

同学们认为呢?又如何来证明你的结论呢?(让同学发言讨论)
我的观点:上帝不是万能的。

为什么呢?
证明:(我们用反证法)假如上帝是万能的那么他能够制作出一块无论什么力量都搬不动的石头。

根据假设,既然上帝是万能的,那么他一定能够搬的动他自己制造的那石头,这与“无论什么力量都搬不动的石头”相矛盾,所以假设不成立。

所以上帝不是万能的。

你们看,数学是不是很神奇。

可以再举出一些生活中的数学趣事来调动学生对数学的兴趣。

比如抓阄,对最后一个抓的人跟第一个抓的人来说公平吗?
事例1、据说国际象棋是古印度的一位宰相发明的。

国王很欣赏他的这项发明,问他的宰相要什么赏赐。

聪明的宰相说,“我所要的从一粒谷子(没错,是1粒,不是1两或1斤)开始。

在这个有64格的棋盘上,第一格里放1粒谷子,第二格里放2粒,第三格里放4粒,即每下一格粒数加倍,……如此下去,一直放满到棋盘上的64格。

这就是我所要的赏赐。

”国王觉得宰相要的实在不多,就叫人按宰相的要求赏赐。

但后来发现即使把全国所有的谷子抬来也远远不够。

事例2、两人轮流往同一个桌子上平放同样大小的硬币,每次一枚,但不允许任何两枚硬币有重叠的部分,规定谁放下最后一枚硬币,并使得对方没有再放的位置,就谁获胜.试问是先放者获胜,还是后放者获胜?怎样才能稳操胜券?(学生们又不懂了,一阵胡思乱想过后)
老师出马:先放者获胜.只要先放硬币的人将硬币放在正方形的中心处,然后,对方每放一枚硬币,先放者都在对于所放硬币关于桌子中心的对称处放一枚同样的硬币,如此进行下去,先放者必胜。

……
……
根据实际情况,灵活选取事例…..
接下来我们一起来思考,如何才能学好数学呢? (未完待续)。

相关文档
最新文档