苏科版七年级下册数学第二学期期末试卷及标准答案
新苏科初一数学下册第二学期期末测试题及答案(共五套)
新苏科初一数学下册第二学期期末测试题及答案(共五套)一、选择题1.对于算式20203﹣2020,下列说法错误的是( ) A .能被2019整除B .能被2020整除C .能被2021整除D .能被2022整除2.下列各式从左到右的变形中,是因式分解的是( ) A .2(3)(3)9a a a +-=- B .2323(2)a a a a a--=-- C .245(4)5a a a a --=-- D .22()()a b a b a b -=+- 3.若一个多边形的每个内角都为108°,则它的边数为( )A .5B .8C .6D .10 4.下列运算结果正确的是( ) A .32a a a ÷=B .()225a a =C .236a a a =D .()3326a a =5.小明带了10元钱到文具店购买签字笔和练习本两种文具,已知签字笔2元支,练习本3元/本,如果10元恰好用完,那么小明共有( )种购买方案. A .0B .1C .2D .36.下列方程中,是二元一次方程的是( ) A .x ﹣y 2=1B .2x ﹣y =1C .11y x+= D .xy ﹣1=07.在餐馆里,王伯伯买了5个菜,3个馒头,老板少收2元,只收50元,李太太买了11个菜,5个馒头,老板以售价的九折优惠,只收90元,若菜每个x 元,馒头每个y 元,则下列能表示题目中的数量关系的二元一次方程组是( )A .53502115900.9x y x y +=+⎧⎨+=⨯⎩B .53502115900.9x y x y +=+⎧⎨+=÷⎩C .53502115900.9x y x y +=-⎧⎨+=⨯⎩D .53502115900.9x y x y +=+⎧⎨+=⨯⎩8.已知关于x ,y 的方程x 2m ﹣n ﹣2+4y m +n +1=6是二元一次方程,则m ,n 的值为( )A .m =1,n =-1B .m =-1,n =1C .14m ,n 33==- D .14,33m n =-=9.若x 2+kx +16是完全平方式,则k 的值为( )A .4B .±4C .8D .±810.下列运算正确的是( )A .a 2+a 2=a 4B .(﹣b 2)3=﹣b 6C .2x •2x 2=2x 3D .(m ﹣n )2=m 2﹣n 211.计算12x a a a a ⋅⋅=,则x 等于( ) A .10B .9C .8D .412.下列调查中,适宜采用全面调查方式的是( ) A .考察南通市民的环保意识B .了解全国七年级学生的实力情况C .检查一批灯泡的使用寿命D .检查一枚用于发射卫星的运载火箭的各零部件二、填空题13.如图,ABC 三边的中线AD 、BE 、CF 的公共点为G ,18ABCS =,则图中阴影部分的面积是 ________.14.若等式0(2)1x -=成立,则x 的取值范围是_________.15.已知x 2+2kx +9是完全平方式,则常数k 的值是____________.16.如图,在△ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点,且△ABC 的面积等于4cm 2,则阴影部分图形面积等于_____cm 217.学校计划购买A 和B 两种品牌的足球,已知一个A 品牌足球60元,一个B 品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有_________种.18.如图,两块三角板形状、大小完全相同,边//AB CD 的依据是_______________.19.有两个正方形,A B ,现将B 放在A 的内部得图甲,将,A B 并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形,A B 的边长之和为________.20.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=54º时,∠1=______.21.把长和宽分别为a 和b 的四个相同的小长方形拼成如图的图形,若图中每个小长方形的面积均为3,大正方形的面积为20,则()2a b -的值为_____.22.如图,//PQ MN ,A 、B 分别为直线MN 、PQ 上两点,且45BAN ∠=︒,若射线AM 绕点顺时针旋转至AN 后立即回转,射线BQ 绕点B 逆时针旋转至BP 后立即回转,两射线分别绕点A 、点B 不停地旋转,若射线AM 转动的速度是a ︒/秒,射线BQ 转动的速度是b ︒/秒,且a 、b 满足()2510a b -+-=.若射线AM 绕点A 顺时针先转动18秒,射线BQ 才开始绕点B 逆时针旋转,在射线BQ 到达BA 之前,问射线AM 再转动_______秒时,射线AM 与射线BQ 互相平行.三、解答题23.好学的小红在学完三角形的角平分线后,遇到下列4个问题,请你帮她解决.如图,在ABC ∆中,点I 是ABC ∠、ACB ∠的平分线的交点,点D 是MBC ∠、NCB ∠平分线的交点,,BI DC 的延长线交于点E .(1)若50BAC ∠=︒,则BIC ∠= °;(2)若BAC x ∠=︒ (090x <<),则当ACB ∠等于多少度(用含x 的代数式表示)时,//CE AB ,并说明理由;(3)若3D E ∠=∠,求BAC ∠的度数.24.因式分解:(1)249x - (2) 22344ab a b b -- 25.解二元一次方程组: (1) 523150x y x y =+⎧⎨+-=⎩ (2) 3()4()427x y x y x y +--=⎧⎨+=⎩26.已知关于x 、y 的二元一次方程组21322x yx y k +=⎧⎪⎨-=-⎪⎩(k 为常数).(1)求这个二元一次方程组的解(用含k 的代数式表示); (2)若()2421yx +=,求k 的值;(3)若14k ≤,设364m x y =+,且m 为正整数,求m 的值. 27.若关于x,y 的二元一次方程组 38x y mx ny +=⎧⎨+=⎩与方程组14x y mx ny -=⎧⎨-=⎩有相同的解.(1)求这个相同的解; (2)求m n -的值. 28.阅读材料:求1+2+22+23+24+…+22020的值.解:设S =1+2+22+23+24+...+22020,将等式两边同时乘以2得, 2S =2+22+23+24+25+ (22021)将下式减去上式,得2S ﹣S =22021﹣1,即S =22021﹣1. 即1+2+22+23+24+…+22020=22021﹣1 仿照此法计算:(1)1+3+32+33+ (320)(2)2310011111 (2222)+++++.29.四边形ABCD 中,∠A=140°,∠D=80°. (1)如图①,若∠B=∠C ,试求出∠C 的度数;(2)如图②,若∠ABC 的角平分线交DC 于点E ,且BE ∥AD ,试求出∠C 的度数; (3)如图③,若∠ABC 和∠BCD 的角平分线交于点E ,试求出∠BEC 的度数.30.解方程组(1)24 31 y xx y=-⎧⎨+=⎩(2)121632(1)13(2)x yx y--⎧-=⎪⎨⎪-=-+⎩.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【详解】解:20203﹣2020=2020×(20202﹣1)=2020×(2020+1)×(2020﹣1)=2020×2021×2019,故能被2020、2021、2019整除,故选:D.2.D解析:D【分析】根据因式分解的定义,需要将式子变形为几个整式相乘的形式,据此可判断.【详解】A、C不是几个式子相乘的形式,错误;B中,32aa--不是整式,错误;D是正确的故选:D.【点睛】本题考查因式分解的定义,注意一定要化成多个整式相乘的形式才叫因式分解.3.A解析:A【解析】已知多边形的每一个内角都等于108°,可得多边形的每一个外角都等于180°-108°=72°,所以多边形的边数n=360°÷72°=5.故选A.4.A解析:A 【分析】根据同底数幂的除法、同底数幂的乘法,以及幂的乘方与积的乘方的运算方法,逐项判定即可. 【详解】解:32a a a ÷=,A 正确,()224a a =,B 错误,235a a a =,C 错误,()3328a a =,D 错误,故选:A . 【点睛】此题主要考查了同底数幂的除法,同底数幂的乘法,以及幂的乘方与积的乘方的运算方法,熟练掌握运算方法是解题的关键.5.C解析:C 【分析】设小明买了签字笔x 支,练习本y 本,根据已知列出关于x 、y 的二元一次方程,用y 表示出x ,由x 、y 均为非负整数,解不等式可得出y 可取的几个值,从而得出结论. 【详解】设小明买了签字笔x 支,练习本y 本, 根据已知得:2x+3y=10, 解得:1032yx -=. ∵x 、y 均为非负整数, ∵令1030y -≥,解得:103y ≤, ∴y 只能为0、2两个数, ∴只有两种购买方案. 故选:C . 【点睛】本题考查了二元一次方程的应用以及解一元一次不等式,解题的关键是根据x 、y 均为正整数,解不等式得出y 可取的值.本题属于基础题,难度不大,只要利用x 、y 为正整数,结合不等式即可得出结论.6.B解析:B 【解析】 【分析】根据二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.据此逐一判断即可得. 【详解】解:A .x-y 2=1不是二元一次方程; B .2x-y=1是二元一次方程;C .1x+y =1不是二元一次方程; D .xy-1=0不是二元一次方程; 故选B . 【点睛】本题考查二元一次方程的定义,解题的关键是掌握含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.7.B解析:B 【解析】 【分析】设馒头每个x 元,包子每个y 元,分别利用买5个馒头,3个包子,老板少收2元,只要5元以及11个馒头,5个包子,老板以售价的九折优惠,只要9元,得出方程组. 【详解】设馒头每个x 元,包子每个y 元,根据题意可得:53502115900.9x y x y +=+⎧⎨+=÷⎩, 故选B . 【点睛】本题考查了由实际问题抽象出二元一次方程组,难度一般,关键是读懂题意设出未知数找出等量关系.8.A解析:A 【分析】根据二元一次方程的概念列出关于m 、n 的方程组,解之即可. 【详解】∵关于x ,y 的方程x 2m ﹣n ﹣2+4y m +n +1=6是二元一次方程,∴22111m n m n --=⎧⎨++=⎩即230m n m n -=⎧⎨+=⎩,解得:11m n =⎧⎨=-⎩, 故选:A . 【点睛】本题考查了二元一次方程的定义、解二元一次方程组,理解二元一次方程的定义,熟练掌握二元一次方程组的解法是解答的关键.9.D解析:D 【分析】利用完全平方公式的结构特征判断即可求出k 的值. 【详解】∵216x kx ++是完全平方式, ∴8k =±, 故选:D . 【点睛】本题考查完全平方式,熟悉完全平方式的结构特征并能灵活运用是解答的关键.10.B解析:B 【分析】根据合并同类项法则、幂的乘方法则、单项式乘单项式法则和完全平方公式法则解答即可. 【详解】A 、a 2+a 2=2a 2,故本选项错误;B 、(﹣b 2)3=﹣b 6,故本选项正确;C 、2x •2x 2=4x 3,故本选项错误;D 、(m ﹣n )2=m 2﹣2mn +n 2,故本选项错误. 故选:B . 【点睛】本题考查了整式的运算,合并同类项、幂的乘方、单项式乘单项式和完全平方公式,熟练掌握运算法则是解题的关键.11.A解析:A 【解析】 【分析】利用同底数幂的乘法即可求出答案, 【详解】解:由题意可知:a 2+x =a 12, ∴2+x =12, ∴x =10, 故选:A . 【点睛】本题考查同底数幂的乘法,要注意是指数相加,底数不变.12.D解析:D 【分析】调查方式的选择需要将全面调查的局限性和抽样调查的必要性结合起来,具体问题具体分析,全面调查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择全面调查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,全面调查就受到限制,这时就应选择抽样调查. 【详解】解:A 、考察南通市民的环保意识,人数较多,不适合全面调查; B 、了解全国七年级学生的实力情况,人数较多,不适合全面调查; C 、检查一批灯泡的使用寿命,数量较多,且具有破坏性,不适合全面调查; D 、检查一枚用于发射卫星的运载火箭的各零部件,较为严格,必须采用全面调查, 故选D. 【点睛】此题考查了抽样调查和全面调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果和普查得到的调查结果比较近似.二、填空题13.【分析】利用三角形重心的性质证明图中个小三角形的面积相等即可得到答案. 【详解】解: 三边的中线AD 、BE 、CF 的公共点为G ,图中阴影部分的面积是 故答案为:6. 【点睛】 解析:6.【分析】利用三角形重心的性质证明图中6个小三角形的面积相等即可得到答案. 【详解】 解:ABC 三边的中线AD 、BE 、CF 的公共点为G ,,,,GBD GCDGCEAGEAGFBGFS SSSSS∴=== 2,BG GE =2,BGCGECSS∴=,DGCCGE SS∴=GBDGCDGCEAGEAGFBGFSSS SSS∴=====∴ 图中阴影部分的面积是182 6.6⨯= 故答案为:6. 【点睛】本题考查的是三角形中线的性质,三角形重心的性质,掌握以上知识解决三角形的面积问题是解题的关键.14.【分析】根据非0数的0次幂等于1列出关于的不等式,求出的取值范围即可. 【详解】 解:成立, ,解得. 故答案为:. 【点睛】本题考查了0指数幂的意义,即非0数的0次幂等于1,0的0次幂无意义 解析:2x ≠【分析】根据非0数的0次幂等于1列出关于x 的不等式,求出x 的取值范围即可. 【详解】解:0(2)1x -=成立, 20x ∴-≠,解得2x ≠.故答案为:2x ≠. 【点睛】本题考查了0指数幂的意义,即非0数的0次幂等于1,0的0次幂无意义.15. 3【分析】利用完全平方公式的结构特征判断即可求出k 的值. 【详解】∵关于字母x 的二次三项式x2+2kx+9是完全平方式, ∴k=±3, 故答案为:3. 【点睛】此题考查了完全平方式,熟练解析:±3 【分析】利用完全平方公式的结构特征判断即可求出k 的值.【详解】∵关于字母x 的二次三项式x 2+2kx+9是完全平方式,∴k=±3,故答案为:±3.【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.16.1【分析】由点为的中点,可得的面积是面积的一半;同理可得和的面积之比,利用三角形的等积变换可解答.【详解】解:如图,点是的中点,的底是,的底是,即,而高相等,,是的中点,,,,解析:1【分析】由点E 为AD 的中点,可得EBC ∆的面积是ABC ∆面积的一半;同理可得BCE ∆和EFB ∆的面积之比,利用三角形的等积变换可解答.【详解】解:如图,点F 是CE 的中点,BEF 的底是EF ,BEC ∆的底是EC ,即12EF EC =,而高相等, 12BEF BEC S S ∆∆∴=, E 是AD 的中点,12BDE ABD S S ∆∆∴=,12CDE ACD S S ∆∆=,12EBC ABC S S ∆∆∴=, 14BEF ABC S S ∆∆∴=,且24ABC S cm ∆=, 21BEF S cm ∆∴=,即阴影部分的面积为21cm .故答案为1.【点睛】本题主要考查了三角形面积的等积变换:若两个三角形的高(或底)相等,其中一个三角形的底(或高)是另一个三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍.17.4【分析】设购买x 个A 品牌足球,y 个B 品牌足球,根据总价=单价×数量,即可得出关于x ,y 的二元一次方程,结合x ,y 均为正整数,即可得出各进货方案,此题得解.【详解】解:设购买x 个A 品牌足球,解析:4【分析】设购买x 个A 品牌足球,y 个B 品牌足球,根据总价=单价×数量,即可得出关于x ,y 的二元一次方程,结合x ,y 均为正整数,即可得出各进货方案,此题得解.【详解】解:设购买x 个A 品牌足球,y 个B 品牌足球,依题意,得:60x +75y =1500,解得:y =20−45x . ∵x ,y 均为正整数,∴x 是5的倍数,∴516x y =⎧⎨=⎩,1012x y =⎧⎨=⎩,158x y =⎧⎨=⎩,204x y =⎧⎨=⎩ ∴共有4种购买方案.故答案为:4.【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.18.内错角相等,两直线平行【分析】利用平行线的判定方法即可解决问题.【详解】解:由题意:,(内错角相等,两直线平行)故答案为:内错角相等,两直线平行.【点睛】本题考查平行线的判定,解题的解析:内错角相等,两直线平行【分析】利用平行线的判定方法即可解决问题.【详解】解:由题意:ABD CDB ∠=∠,//AB CD ∴(内错角相等,两直线平行)故答案为:内错角相等,两直线平行.【点睛】本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考常考题型. 19.5【分析】设正方形A ,B 的边长分别为a ,b ,根据图形构建方程组即可解决问题.【详解】解:设正方形A ,B 的边长分别为a ,b .由图甲得:,由图乙得:,化简得,∴,∵a+b>0,∴a+b解析:5【分析】设正方形A ,B 的边长分别为a ,b ,根据图形构建方程组即可解决问题.【详解】解:设正方形A ,B 的边长分别为a ,b .由图甲得:2()1a b -=,由图乙得:22()()12+--=a b a b ,化简得6ab =,∴22()()412425+=-+=+=a b a b ab ,∵a +b >0,∴a +b =5,故答案为:5.【点睛】本题考查完全平方公式,正方形的面积等知识,解题的关键是学会利用参数,构建方程组解决问题,属于中考常考题型.20.36°【分析】如图,根据平行线的性质可得∠3=∠2,然后根据平角的定义解答即可.【详解】解:如图,∵三角尺的两边a∥b,∴∠3=∠2=54º,∴∠1=180°-90°-∠3=36°.故解析:36°【分析】如图,根据平行线的性质可得∠3=∠2,然后根据平角的定义解答即可.【详解】解:如图,∵三角尺的两边a∥b,∴∠3=∠2=54º,∴∠1=180°-90°-∠3=36°.故答案为:36°.【点睛】本题以三角板为载体,主要考查了平行线的性质和和平角的定义,属于基础题型,熟练掌握平行线的性质是解题关键.21.8【解析】【分析】根据阴影部分的面积等于大正方形的面积减去中间小正方形的面积,即可写出等式.【详解】阴影部分的面积是:.故答案为8【点睛】本题主要考查问题推理能力,解答本题关键是根解析:8【解析】【分析】根据阴影部分的面积等于大正方形的面积减去中间小正方形的面积,即可写出等式.【详解】阴影部分的面积是:()22(4)a b a b ab +-=-. ()22()204384a b a b ab ∴+-==-⨯=-故答案为8【点睛】本题主要考查问题推理能力,解答本题关键是根据图示找出大正方形,长方形,小正方形之间的关键. 22.15或22.5【分析】先由题意得出a ,b 的值,再推出射线AM 绕点A 顺时针先转动18秒后,AM转动至AM 的位置,∠MAM=18°×5=90°,然后分情况讨论即可.【详解】∵,∴a=5,b=1解析:15或22.5【分析】先由题意得出a ,b 的值,再推出射线AM 绕点A 顺时针先转动18秒后,AM 转动至AM '的位置,∠MAM '=18°×5=90°,然后分情况讨论即可.【详解】 ∵()2510a b -+-=,∴a=5,b=1,设射线AM 再转动t 秒时,射线AM 、射线BQ 互相平行,如图,射线AM 绕点A 顺时针先转动18秒后,AM 转动至AM '的位置,∠MAM '=18°×5=90°,分两种情况:①当9<t <18时,如图,∠QBQ '=t °,∠M 'AM"=5t °,∵∠BAN=45°=∠ABQ ,∴∠ABQ '=45°-t °,∠BAM"=5t-45°,当∠ABQ '=∠BAM"时,BQ '//AM",此时,45°-t °=5t-45°,解得t=15;②当18<t <27时,如图∠QBQ '=t °,∠NAM"=5t °-90°,∵∠BAN=45°=∠ABQ ,∴∠ABQ '=45°-t °,∠BAM"=45°-(5t °-90°)=135°-5t °,当∠ABQ '=∠BAM"时,BQ '//AM",此时,45°-t °=135°-5t ,解得t=22.5;综上所述,射线AM 再转动15秒或22.5秒时,射线AM 射线BQ 互相平行.故答案为:15或22.5【点睛】本题考查了非负数的性质,平行线的判定,完全平方公式,掌握知识点是解题关键.三、解答题23.(1)115;(2)180-2x ,理由见解析;(3)45°.【分析】(1)已知点I 是两角∠ABC 、∠ACB 平分线的交点,故()()()11118018018018090222BIC IBC ICB ABC ACB A BAC ∠=︒-∠+∠=︒-∠+∠=︒-︒-∠=+∠ ,由此可求∠BIC ;(2)当CE ∥AB 时, ∠ACE=∠A=x °,根据∠ACE=∠A=x °,根据CE 是∠ACG 的角平分线,推出∠ACG=2x °,∠ABC=∠BAC=x °,即可求出ACB ∠的度数.(3)由题意知:△BDE 是直角三角形∠D+∠E=90°,可求出若∠D=3∠E 时,∠BEC=22.5°,再推理出12BEC BAC ∠=∠,即可求出BAC ∠的度数. 【详解】(1)∵点I 是两角∠ABC 、∠ACB 平分线的交点,∴()180BIC IBC ICB ∠=︒-∠+∠ ()11802ABC ACB =-∠+∠︒ ()11801802A =-︒︒-∠1901152BAC =+∠=︒; 故答案为:115.(2)当∠ACB 等于(180-2x )°时,CE ∥AB .理由如下:∵CE ∥AB ,∴∠ACE=∠A=x °,∵∠ACE=∠A=x °,CE 是∠ACG 的角平分线,∴∠ACG=2∠ACE=2x °,∴∠ABC=∠ACG-∠BAC=2x °-x °=x °,∴∠ACB=180°-∠BAC-∠ABC=(180-2x )°;(3)由题意知:△BDE 是直角三角形∠D+∠E=90°若∠D=3∠E 时∠BEC=22.5°,∵90BEC BDC ∠=︒-∠190902BAC ⎛⎫=︒-︒-∠ ⎪⎝⎭ 12BAC =∠, ∴45BAC ∠=︒.【点睛】本题考查了三角形的内角、外角平分线的夹角大小与原三角形内角的关系,要充分运用三角形内角和定理,角平分线性质转换.24.(1)()()2323x x +-;(2)()22--b a b . 【分析】(1)直接利用平方差公式因式分解即可;(2)先提取公因式,然后利用完全平方公式分解因式即可.【详解】(1) ()()249=2323x x x -+-; (2)()223224444ab a b b b a ab b--=--+=()22--b a b .【点睛】 本题考查了用提公因式法和公式法进行因式分解.注意先提公因式,再利用公式法分解,同时因式分解要彻底,直到不能分解为止.25.(1) 61x y =⎧⎨=⎩;(2) 31x y =⎧⎨=⎩【分析】(1)用代入法解得即可;(2)将方程组去括号整理后,用加减法解答即可;解:(1) 523150x y x y =+⎧⎨+-=⎩①② 把方程①代入方程()253150y y ++-=解得1y =把1y =代入到①,得156x =+=所以方程组的解为:61x y =⎧⎨=⎩(2) 原方程组化简,得7427x y x y -+=⎧⎨+=⎩①② ①×2+②,得1515y =解得y=1把y=1代入到②,得217x +=解得x=3所以方程组的解为:31x y =⎧⎨=⎩【点睛】本题考查了解二元一次方程组,解题的关键是熟记代入法和加减法解方程组的步骤,并根据方程选择合适方法解题.26.(1)218524k x ky -⎧=⎪⎪⎨-⎪=⎪⎩;(2)52k =或12k =-;(3)1或2. 【分析】(1)根据题意直接利用加减消元法进行计算求解即可;(2)由题意根据01(0)a a =≠和11n =以及2(1)1n -=(n 为整数)得到三个关于k 的方程,求出k 即可;(3)根据题意用含m 的代数式表示出k ,根据14k ≤,确定m 的取值范围,由m 为正整数,求得m 的值即可.解:(1)21322x y x y k ⎧+=⎪⎪⎨⎪-=-⎪⎩①②, ①+②得:3412x k =+-,解得:218k x -=, ①-②得:3212y k =-+,解得:524k y -=, ∴二元一次方程组的解为:218524k x k y -⎧=⎪⎪⎨-⎪=⎪⎩. (2)∵01(0)a a =≠,2(42)1y x +=,∴20y =,即52204k -⨯=,解得:52k =; ∵11n =,2(42)1y x +=,∴421x +=,即214218k -⨯+=,解得:12k =-; ∵2(1)1n -=(n 为正整数),2(42)1y x +=, ∴4212x y +=-,为偶数,即214218k -⨯+=-,解得:52k =-; 当52k =-时,3532115222y k =-+=++=,为奇数,不合题意,故舍去. 综上52k =或12k =-. (3)∵215213643647842k k m x y k --=+=⨯+⨯=+,即172m k =+, ∴2114m k -=, ∵14k ≤, ∴211144m k -=≤,解得94m ≤, ∵m 为正整数,∴m=1或2.【点睛】本题考查解二元一次方程组以及解一元一次不等式,根据题意列出不等式是解题的关键.27.(1)这个相同的解为21xy=⎧⎨=⎩;(2)1【分析】(1)根据两个方程组有相同解可得方程组31x yx y+=⎧⎨-=⎩,解此方程组即可得出答案;(2)将(1)求解出的x和y的值代入其余两个式子,解出m和n的值,再代入m-n中即可得出答案.【详解】解:(1)∵关于x,y的二元一次方程组38x ymx ny+=⎧⎨+=⎩与14x ymx ny-=⎧⎨-=⎩有相同的解,∴31 x yx y+=⎧⎨-=⎩解得21 xy=⎧⎨=⎩∴这个相同的解为21 xy=⎧⎨=⎩(2)∵关于x,y的二元一次方程组38x ymx ny+=⎧⎨+=⎩与14x ymx ny-=⎧⎨-=⎩相同的解为21xy=⎧⎨=⎩,∴28 24 m nm n+=⎧⎨-=⎩解得32 mn=⎧⎨=⎩∴m-n=3-2=1【点睛】本题考查的是二元一次方程组的同解问题:将两组方程组中只含有x和y的方程组合到一起,求解即可.28.(1)21312-;(2)101100212-.【分析】(1)仿照阅读材料中的方法求出所求即可;(2)仿照阅读材料中的方法求出所求即可.【详解】解:(1)设S=1+3+32+33+ (320)则3S=3+32+33+ (321)∴3S﹣S=321﹣1,即S=2131 2-,则1+3+32+33+…+320=21312-; (2)设S =1+2310011112222+++⋯+, 则12S =231001011111122222+++⋯++, ∴S ﹣12S =1﹣10112=101101212-,即S =101100212-, 则S =1+2310011112222+++⋯+=101100212-. 【点睛】此题考查的是探索运算规律题,根据已知材料中的方法,探索出运算规律是解决此题的关键.29.(1)70°;(2)60°;(3)110°【分析】(1)根据四边形的内角和是360°,结合已知条件就可求解;(2)根据平行线的性质得到∠ABE 的度数,再根据角平分线的定义得到∠ABC 的度数,进一步根据四边形的内角和定理进行求解;(3)根据四边形的内角和定理以及角平分线的概念求得∠EBC+∠ECB 的度数,再进一步求得∠BEC 的度数.【详解】(1)在四边形ABCD 中,∵∠A+∠B+∠C+∠D=360°, 又∠A=140°,∠D=80°,∠B=∠C,∴140°+∠C+∠C+80°=360°,即∠C=70°.(2)∵BE ∥AD ,∠A=140°,∠D=80°,∴∠BEC=∠D ,∠A+∠ABE=180°.∴∠BEC=80°,∠ABE=40°.∵BE 是∠ABC 的平分线,∴∠EBC=∠ABE=40°.∴∠C=180°-∠EBC-∠BEC=180°-40°-80°=60°.(3)在四边形ABCD 中, 有∠A+∠ABC+∠BCD+∠D=360°, ∠A=140°,∠D=80°,所以∠ABC+∠BCD=140°,从而有12∠ABC+12∠BCD=70°. 因为∠ABC 和∠BCD 的角平分线交于点E,所以有∠EBC=12∠ABC,∠ECB=12∠BCD. 故∠C=180°-(∠EBC +∠ECB)=180°-(12∠ABC+12∠BCD)=180°-70°=110°. 30.(1)12x y =⎧⎨=-⎩;(2)53x y =⎧⎨=⎩【分析】(1)方程组利用代入消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【详解】解:(1)2431y xx y=-⎧⎨+=⎩①②,把①代入②得:3x+2x﹣4=1,解得:x=1,把x=1代入①得:y=﹣2,则方程组的解为12 xy=⎧⎨=-⎩;(2)121632(1)13(2) x yx y--⎧-=⎪⎨⎪-=-+⎩方程组整理得:211 213x yx y+=⎧⎨+=⎩①②,①×2﹣②得:3y=9,解得:y=3,把y=3代入②得:x=5,则方程组的解为53 xy=⎧⎨=⎩.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法,要根据方程特点选择合适的方法简化运算.。
苏科版初一数学下册第二学期期末测试题及答案(共五套)
苏科版初一数学下册第二学期期末测试题及答案(共五套)一、选择题1.12-等于( )A .2-B .12C .1D .12- 2.下列计算正确的是( )A .a 3.a 2=a 6B .a 2+a 4=2a 2C .(a 3)2=a 6D .224(3)6a a = 3.已知,则a 2-b 2-2b 的值为 A .4B .3C .1D .0 4.计算:202020192(2)--的结果是( ) A .40392 B .201932⨯ C .20192- D .25.下列图形可由平移得到的是( )A .B .C .D .6.将一张长方形纸片按如图所示折叠后,再展开.如果∠1=56°,那么∠2等于( )A .56°B .62°C .66°D .68°7.如图,能判定EB ∥AC 的条件是( )A .∠C=∠1B .∠A=∠2C .∠C=∠3D .∠A=∠18.如图,下列结论中不正确的是( )A .若∠1=∠2,则AD ∥BCB .若AE ∥CD ,则∠1+∠3=180°C .若∠2=∠C ,则AE ∥CDD .若AD ∥BC ,则∠1=∠B 9.已知4m =a ,8n =b ,其中m ,n 为正整数,则22m +6n =( )A .ab 2B .a +b 2C .a 2b 3D .a 2+b 310.计算a 10÷a 2(a≠0)的结果是( )A .5aB .5a -C .8aD .8a - 11.下列计算不正确的是( ) A .527a a a =B .623a a a ÷=C .2222a a a +=D .(a 2)4=a 8 12.下列各式中,不能够用平方差公式计算的是( )A .(y +2x )(2x ﹣y )B .(﹣x ﹣3y )(x +3y )C .(2x 2﹣y 2 )(2x 2+y 2 )D .(4a +b ﹣c )(4a ﹣b ﹣c ) 二、填空题13.把正三角形、正四边形、正五边形按如图所示的位置摆放,若∠1=52°,∠2=18°,则∠3=_____.14.如图,将一副直角三角板,按如图所示叠放在一起,则图中∠COB =____.15.若24x mx ++是完全平方式,则m =______.16.积的乘方公式为:(ab )m = .(m 是正整数).请写出这一公式的推理过程.17.一个多边形的内角和与外角和之差为720︒,则这个多边形的边数为______.18.分解因式:x 2﹣4x=__.19.如图,1∠、2∠、3∠、4∠是五边形ABCDE 的4个外角,若120A ∠=︒,则1234∠+∠+∠+∠=_______°.20.如图,将长方形纸片ABCD 沿着EF ,折叠后,点D ,C 分别落在点D ,C '的位置,ED '的延长线交BC 于点G .若∠1=64°,则∠2等于_____度.21.已知点m(3a-9,1-a),将m点向左平移3个单位长度后落在y轴上,则a= __________ .22.比较大小:π0_____2﹣1.(填“>”“<”或“=”)23.分解因式:m2﹣9=_____.24.若2a+b=﹣3,2a﹣b=2,则4a2﹣b2=_____.三、解答题25.如图,已知AB∥CD,12∠=∠,BE与CF平行吗?26.如果a c=b ,那么我们规定(a,b)=c,例如:因为23= 8 ,所以(2,8)=3.(1)根据上述规定,填空:(3,27)= ,(4,1)= ,(2,14)= ;(2)若记(3,5)=a,(3,6)=b,(3,30)=c,求证:a +b =c .27.解不等式-3+3+1 21-3-18-xxx x ⎧≥⎪⎨⎪<⎩()28.先化简,再求值:(3x+2)(3x-2)-5x(x+1)-(x-1)2,其中x2-x-10=0.29.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是.(请选择正确的选项)A.a2﹣b2=(a+b)(a﹣b)B.a2﹣2ab+b2=(a﹣b)2C.a2+ab=a(a+b)(2)若x2﹣y2=16,x+y=8,求x﹣y的值;(3)计算:(1﹣212)(1﹣213)(1﹣214)…(1﹣212019)(1﹣212020). 30.已知m 2,3n a a ==,求①m n a +的值; ②3m-2n a 的值31.如图,已知AB ∥CD ,∠1=∠2,求证:AE ∥DF .32.解下列方程组:(1)32316x y x y -=⎧⎨+=⎩ (2)234229x y z x y z ⎧==⎪⎨⎪-+=-⎩ 33.阅读材料:求1+2+22+23+24+…+22020的值.解:设S =1+2+22+23+24+…+22020,将等式两边同时乘以2得,2S =2+22+23+24+25+ (22021)将下式减去上式,得2S ﹣S =22021﹣1,即S =22021﹣1.即1+2+22+23+24+…+22020=22021﹣1仿照此法计算:(1)1+3+32+33+ (320)(2)2310011111 (2222)+++++. 34.把几个图形拼成一个新的图形,再通过两种不同的方式计算同一个图形的面积,可以得到一个等式,也可以求出一些不规则图形的面积.例如,由图1,可得等式:(a+2b )(a+b )=a 2+3ab+2b 2.(1)由图2,可得等式 ;(2)利用(1)所得等式,解决问题:已知a+b+c =11,ab+bc+ac =38,求a 2+b 2+c 2的值. (3)如图3,将两个边长为a 、b 的正方形拼在一起,B ,C ,G 三点在同一直线上,连接BD 和BF ,若这两个正方形的边长a 、b 如图标注,且满足a+b =10,ab =20.请求出阴影部分的面积.(4)图4中给出了边长分别为a 、b 的小正方形纸片和两边长分别为a 、b 的长方形纸片,现有足量的这三种纸片.①请在下面的方框中用所给的纸片拼出一个面积为2a 2+5ab+2b 2的长方形,并仿照图1、图2画出拼法并标注a 、b ;②研究①拼图发现,可以分解因式2a 2+5ab+2b 2= .35.如图,已知:点A C 、、B 不在同一条直线,ADBE . (1)求证:180B C A ∠+∠-∠=︒.(2)如图②,AQ BQ 、分别为DAC EBC ∠∠、的平分线所在直线,试探究C ∠与AQB ∠的数量关系;(3)如图③,在(2)的前提下,且有AC QB ,直线AQ BC 、交于点P ,QP PB ⊥,请直接写出::DAC ACB CBE ∠∠∠=______________.36.如图1是一个长为 4a ,宽为 b 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成的一个“回形”正方形(如图2).(1)图2中的阴影部分的面积为 ;(2)观察图2请你写出 ()2a b +,()2a b -,ab 之间的等量关系是 ;(3)根据(2)中的结论,若 6x y +=,114x y ⋅=,则 x y -= ; (4)实际上我们可以用图形的面积表示许多恒等式,下面请你设计一个几何图形来表示恒等式()()2222252a b a b a ab b ++=++.在图形上把每一部分的面积标写清楚.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】由题意直接根据负指数幂的运算法则进行分析计算即可.【详解】解: 12-=12. 故选:B.【点睛】本题考查负指数幂的运算,熟练掌握负指数幂的运算法则是解题的关键.2.C解析:C【分析】根据同底幂的运算法则依次判断各选项.【详解】A 中,a 3.a 2=a 5,错误;B 中,不是同类项,不能合并,错误;C 中,(a 3)2=a 6,正确;D 中,224(3)9a a =,错误故选:C .【点睛】本题考查同底幂的运算,注意在加减运算中,不是同类项是不能合并的.3.C解析:C【分析】先将原式化简,然后将a−b =1整体代入求解.【详解】()()2212221a b a b b a b a b ba b ba b-∴--+--+--=,====.故答案选:C .【点睛】此题考查的是整体代入思想在代数求值中的应用. 4.B解析:B【分析】将原式整理成2020201922+,再提取公因式计算即可.【详解】解:202020192(2)--=2020201922+=20192(21)⨯+=201932⨯,故选:B .【点睛】此题考查提公因式法进行运算,理解幂是乘方运算的结果是解此题的关键.5.A解析:A【详解】解:观察可知A 选项中的图形可以通过平移得到,B 、C 选项中的图形需要通过旋转得到,D 选项中的图形可以通过翻折得到,故选:A6.D解析:D【解析】【分析】两直线平行,同旁内角互补;另外折叠前后两个角相等.根据这两条性质即可解答.【详解】根据题意知:折叠所重合的两个角相等.再根据两条直线平行,同旁内角互补,得: 2∠1+∠2=180°,解得:∠2=180°﹣2∠1=68°.故选D .【点睛】注意此类折叠题,所重合的两个角相等,再根据平行线的性质得到∠1和∠2的关系,即可求解.7.D解析:D【分析】直接根据平行线的判定定理对各选项进行逐一分析即可.【详解】解:A、∠C=∠1不能判定任何直线平行,故本选项错误;B、∠A=∠2不能判定任何直线平行,故本选项错误;C、∠C=∠3不能判定任何直线平行,故本选项错误;D、∵∠A=∠1,∴EB∥AC,故本选项正确.故选:D.【点睛】本题考查的是平行线的判定,用到的知识点为:内错角相等,两直线平行.8.D解析:D【分析】由平行线的性质和判定解答即可.【详解】解:A、∵∠1=∠2,∴AD∥BC,原结论正确,故此选项不符合题意;B、∵AE∥CD,∴∠1+∠3=180°,原结论正确,故此选项不符合题意;C、∵∠2=∠C,∴AE∥CD,原结论正确,故此选项不符合题意;D、∵AD∥BC,∴∠1=∠2,原结论不正确,故此选项符合题意;故选:D.【点睛】本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质是解决问题的关键,注意它们之间的区别.9.A解析:A【分析】将已知等式代入22m+6n=22m×26n=(22)m•(23)2n=4m•82n=4m•(8n)2可得.【详解】解:∵4m=a,8n=b,∴22m+6n=22m×26n=(22)m•(23)2n=4m•82n=4m •(8n )2=ab 2,故选:A .【点睛】本题主要考查幂的运算,解题的关键是熟练掌握幂的乘方与积的乘方的运算法则.10.C解析:C【解析】【分析】根据同底数幂的除法法则即可得.【详解】1021028(0)a a a a a -÷==≠故选:C.【点睛】本题考查了同底数幂的除法法则:同底数幂相除,底数不变,指数相减.11.B解析:B【分析】根据同底数幂的除法、 乘法, 合并同类项的方法, 以及幂的乘方与积的乘方的运算方法, 逐项判定即可 .【详解】解:∵527a a a =,∴选项A 计算正确,不符合题意;∵624a a a ÷=,∴选项B 计算不正确,符合题意;2222a a a ,∴选项C 计算正确,不符合题意;428()a a =,∴选项D 计算正确,不符合题意;故选:B .【点睛】此题主要考查了同底数幂的除法、 乘法, 合并同类项的方法, 以及幂的乘方与积的乘方的运算方法, 要熟练掌握 .12.B解析:B【分析】根据平方差公式:22()()a b a b a b +-=-进行判断.【详解】A 、原式22(2)x y =-,不符合题意;B 、原式2(3)x y =-+,符合题意;C 、原式2222(2)()x y =-,不符合题意;D 、原式22(4)a c b =--,不符合题意;故选B .【点睛】本题考查平方差公式,熟练掌握平方差公式是解题的关键.二、填空题13.32°.【分析】通过正三角形、正四边形、正五边形的内角度数,结合三角形内角和定理进行计算即可;【详解】等边三角形的内角的度数是60°,正方形的内角度数是90°,正五边形的内角的度数是:(5﹣解析:32°.【分析】通过正三角形、正四边形、正五边形的内角度数,结合三角形内角和定理进行计算即可;【详解】等边三角形的内角的度数是60°,正方形的内角度数是90°,正五边形的内角的度数是:15(5﹣2)×180°=108°, 则∠3=360°﹣60°﹣90°﹣108°﹣∠1﹣∠2=32°.故答案是:32°.【点睛】本题主要考查了多边形内角和与外角定理的应用,准确分析图形中角的关系式解题的关键.14.105°.【分析】先根据直角三角形的特殊角可知:∠ECD=45°,∠BDC=60°,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】如图,∠ECD=45°,∠BD解析:105°.【分析】先根据直角三角形的特殊角可知:∠ECD=45°,∠BDC=60°,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】如图,∠ECD =45°,∠BDC =60°,∴∠COB=∠ECD+∠BDC=45°+60°=105°.故答案为:105°.【点睛】此题考查三角形外角的性质,掌握三角形的一个外角等于与它不相邻的两个内角的和的性质是解题的关键.15.【分析】这里首末两项是x和2这两个数的平方,那么中间一项为加上或减去x和2积的2倍,故m=±4.【详解】解:中间一项为加上或减去和2积的2倍,故,故答案为:.【点睛】本题是完全平方公解析:4±【分析】这里首末两项是x和2这两个数的平方,那么中间一项为加上或减去x和2积的2倍,故m=±4.【详解】解:中间一项为加上或减去x和2积的2倍,m=±,故4±.故答案为:4【点睛】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.16.:ambm,见解析.【解析】【分析】先写出题目中式子的结果,再写出推导过程即可解答本题.【详解】解:(ab)m=ambm,理由:(ab)m=ab×ab×ab×ab×…×ab解析::a m b m,见解析.【解析】【分析】先写出题目中式子的结果,再写出推导过程即可解答本题.【详解】解:(ab)m=a m b m,理由:(ab)m=ab×ab×ab×ab×…×ab=aa…abb…b=a m b m故答案为a m b m.【点睛】本题考查幂的乘方与积的乘方,解题的关键是明确它们的计算方法.17.8【解析】【分析】根据多边形的内角和公式(n-2)•180°与外角和定理列式求解即可.【详解】设这个多边形的边数是n,则(n-2)•180°-360°=720°,解得n=8.故答案为解析:8【解析】【分析】根据多边形的内角和公式(n-2)•180°与外角和定理列式求解即可.【详解】设这个多边形的边数是n,则(n-2)•180°-360°=720°,解得n=8.故答案为8.【点睛】本题考查了多边形的内角和与外角和定理,任意多边形的外角和都是360°,与边数无关.18.x(x﹣4)【详解】解:x2﹣4x=x(x﹣4).故答案为:x(x﹣4).解析:x(x﹣4)【详解】解:x2﹣4x=x(x﹣4).故答案为:x(x﹣4).19.【详解】解:由题意得,∠A的外角=180°-∠A=60°,又∵多边形的外角和为360°,∴∠1+∠2+∠3+∠4=360°-∠A的外角=300°.故答案为:300.【点睛】本题考查多边解析:300【详解】解:由题意得,∠A的外角=180°-∠A=60°,又∵多边形的外角和为360°,∴∠1+∠2+∠3+∠4=360°-∠A的外角=300°.故答案为:300.【点睛】本题考查多边形外角性质,补角定义.20.128【分析】由ADBC,∠1=64°,根据两直线平行,内错角相等,可求得∠DEF的度数,然后由折叠的性质,可得∠FEG的度数,进而再利用两直线平行内错角相等得到∠2的度数.【详解】解:∵A解析:128【分析】由AD//BC,∠1=64°,根据两直线平行,内错角相等,可求得∠DEF的度数,然后由折叠的性质,可得∠FEG的度数,进而再利用两直线平行内错角相等得到∠2的度数.【详解】解:∵AD//BC,∠1=64°,∴∠DEF=∠1=64°,由折叠的性质可得∠FEG=∠DEF=64°,∴∠2=∠1+∠EFG=64°+64°=128°.故答案为:128.【点睛】本题主要考察两直线平行的性质、折叠的性质以及矩形的性质,重点在于利用已知条件找到角度之间的关系.21.4【分析】向左平移3个单位则横坐标减去3纵坐标不变,再根据y轴上点的横坐标为0即可得出答案.【详解】解:由题意得:3a-9-3=0,解得:a=4.故答案为4.【点睛】本题考查了坐标与解析:4【分析】向左平移3个单位则横坐标减去3纵坐标不变,再根据y轴上点的横坐标为0即可得出答案.【详解】解:由题意得:3a-9-3=0,解得:a=4.故答案为4.【点睛】本题考查了坐标与图形变化-平移.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.同时考查了y轴上的点的坐标特征.22.>【分析】先求出π0=1,2-1=,再根据求出的结果比较即可.【详解】解:∵π0=1,2-1=,1>,∴π0>2-1,故答案为:>.【点睛】本题考查零指数幂和负指数幂,实数的大小比较解析:>【分析】先求出π0=1,2-1=12,再根据求出的结果比较即可.【详解】解:∵π0=1,2-1=12,1>12,∴π0>2-1,故答案为:>.【点睛】本题考查零指数幂和负指数幂,实数的大小比较.理解任意非零数的零次方等于1和熟记负指数幂的计算公式是解题关键.23.(m+3)(m﹣3)【分析】通过观察发现式子可以写成平方差的形式,故用平方差公式分解,a2﹣b2=(a+b)(a﹣b).【详解】解:m2﹣9=m2﹣32=(m+3)(m﹣3).故答案为解析:(m+3)(m﹣3)【分析】通过观察发现式子可以写成平方差的形式,故用平方差公式分解,a2﹣b2=(a+b)(a﹣b).【详解】解:m2﹣9=m2﹣32=(m+3)(m﹣3).故答案为:(m+3)(m﹣3).【点睛】此题考查的是因式分解,掌握利用平方差公式因式分解是解决此题的关键.24.-6【分析】根据平方差公式可以求得题目中所求式子的值.【详解】解:∵2a+b=﹣3,2a﹣b=2,∴4a2﹣b2=(2a+b)(2a﹣b)=(﹣3)×2=﹣6,故答案为:﹣6.【点睛】解析:-6【分析】根据平方差公式可以求得题目中所求式子的值.【详解】解:∵2a+b=﹣3,2a﹣b=2,∴4a2﹣b2=(2a+b)(2a﹣b)=(﹣3)×2=﹣6,故答案为:﹣6.【点睛】此题考查的是根据平方差公式求值,掌握利用平方差公式因式分解是解决此题的关键.三、解答题25.见解析.【分析】先根据平行线的性质得出ABC BCD ∠=∠,再根据角的和差得出EBC BCF ∠=∠,然后根据平行线的判定即可得.【详解】//BE CF ,理由如下:∵//AB CD∴ABC BCD ∠=∠(两直线平行,内错角相等)∵12∠=∠∴12ABC BCD ∠-∠=∠-∠即EBC BCF ∠=∠∴//BE CF .(内错角相等,两直线平行)【点睛】本题考查了角的和差、平行线的判定与性质,掌握平行线的判定与性质是解题关键.26.(1)3;0; -2;(2)证明见解析.【分析】(1)根据已知和同底数的幂法则得出即可;(2)根据已知得出3a =5,3b =6,3c =30,求出3a ×3b =30,即可得出答案.【详解】(1)(3,27)=3,(4,1)=0,(2,14)=-2, 故答案为3;0;-2;(2)证明:由题意得:3a = 5,3b = 6,3c = 30,∵ 5⨯ 6=30,∴ 3a ⨯ 3b = 3c ,∴ 3a +b = 3c ,∴ a + b = c .【点睛】本题考查了同底数幂的乘法,有理数的混合运算等知识点,能灵活运用同底数幂的乘法法则进行变形是解此题的关键.27.﹣2<x≤1.【详解】试题分析:根据不等式的解法,分别解两个不等式,然后取其公共部分即可. 试题解析:331(1)213(1)8(2)x x x x -⎧++⎪⎨⎪--<-⎩, ∵解不等式①得:x≤1,解不等式②得:x >﹣2,∴不等式组的解集为﹣2<x≤1.点睛:此题主要考查了不等式组的解法,解题关键是利用一元一次不等式的解法,分别解不等式,然后根据不等式组的解集确定法:“都大取大,都小取小,大小小大取中间,大大小小无解了”,确定其解集即可.28.3x 2-3x -5,25【分析】原式第一项利用平方差公式化简,第二项利用单项式乘以多项式法则计算,最后一项利用完全平方公式展开,去括号合并得到最简结果,将已知的方程变形后代入即可求值.【详解】原式=()222945521x x x x x -----+=222945521x x x x x ----+-=2335x x --,当2100x x =--,即210x x =-时,原式=()235310525x x -=⨯-=-【点睛】本题考查整式的混合运算-化简求值,涉及的知识点有:完全平方公式、平方差公式、去括号法则及合并同类项法则,熟练掌握以上公式及法则是解题的关键.29.(1)A ;(2)2;(3)20214040 【分析】(1)由题意直接根据拼接前后的面积相等进行分析计算即可得出答案;(2)根据题意可知x 2﹣y 2=16,即(x +y )(x ﹣y )=16,又x +y =8,可求出x ﹣y 的值;(3)根据题意利用平方差公式将算式转化为分数的乘积的形式,根据数据规律得出答案.【详解】解:(1)图1的剩余面积为a 2﹣b 2,图2拼接得到的图形面积为(a +b )(a ﹣b ) 因此有,a 2﹣b 2=(a +b )(a ﹣b ),故答案为:A.(2)∵x 2﹣y 2=(x +y )(x ﹣y )=16,又∵x +y =8,∴x ﹣y =16÷8=2;(3)(1﹣212)(1﹣213)(1﹣214)…(1﹣212019)(1﹣212020) =(1﹣12)(1+12)(1﹣13)(1+13)(1﹣14)(1+14)……(1﹣12019)(1+12019)(1﹣12020)(1+12020)=12×32×23×43×34×54×……×20182019×20202019×20192020×20212020 =12×20212020 =20214040. 【点睛】本题考查平方差公式的几何意义及应用,掌握公式的结构特征是正确应用的前提,利用公式进行适当的变形是解题的关键.30.①6;②89 【解析】解:①②31.见解析.【分析】首先根据直线平行得到∠CDA=∠DAB ,结合题干条件得到∠FDA=∠DAE ,进而得到结论.【详解】证明:∵AB ∥CD ,∴∠CDA =∠DAB ,∵∠1=∠2, ∴∠CDA ﹣∠1=∠DAB ﹣∠2,∴∠FDA =∠DAE ,∴AE ∥DF .【点睛】本题主要考查了平行线的判断与性质,解题的关键是掌握两直线平行,内错角相等,此题比较简单. 32.(1)52x y =⎧⎨=⎩(2)234x y z =-⎧⎪=-⎨⎪=-⎩【分析】(1)用加减消元法求解即可;(2)令234x y z k ===,用k 表示出x ,y 和z ,代入229x y z -+=-中,求出k 值,从而得到方程组的解.【详解】解:(1)32316x y x y -=⎧⎨+=⎩①②, ①×3+②得:525x =,解得:x=5,代入①中,解得:y=2,∴方程组的解为:52x y =⎧⎨=⎩; (2)∵设234x y z k ===, ∴x=2k ,y=3k ,z=4k ,代入229x y z -+=-中,4389k k k -+=-,解得:k=-1,∴x=-2,y=-3,z=-4,∴方程组的解为:234x y z =-⎧⎪=-⎨⎪=-⎩. 【点睛】本题考查了二元一次方程组和三元一次方程组,解题的关键是选择合适的方法求解.33.(1)21312-;(2)101100212-. 【分析】(1)仿照阅读材料中的方法求出所求即可;(2)仿照阅读材料中的方法求出所求即可.【详解】解:(1)设S =1+3+32+33+ (320)则3S =3+32+33+ (321)∴3S ﹣S =321﹣1,即S =21312-, 则1+3+32+33+…+320=21312-; (2)设S =1+2310011112222+++⋯+, 则12S =231001011111122222+++⋯++, ∴S ﹣12S =1﹣10112=101101212-,即S =101100212-, 则S =1+2310011112222+++⋯+=101100212-.【点睛】此题考查的是探索运算规律题,根据已知材料中的方法,探索出运算规律是解决此题的关键.34.(1)2222()222a b c a b c ab bc ac ++=+++++;(2)45;(3)20;(4)①见解析,②(2)(2)a b a b ++.【分析】(1)根据面积的不同求解方法,可得到不同的表示方法.一种可以是3个正方形的面积和6个矩形的面积;另一种是直接利用正方形的面积公式计算,由此即可得出答案; (2)利用(1)中的等式直接代入即可求得答案;(3)根据阴影部分的面积等于两个正方形的面积之和减去两个直角三角形的面积即可得; (4)①依照前面的拼图方法,画出图形即可;②参照题(1)的方法,根据面积的不同求解方法即可得出答案.【详解】(1)由题意得:2222()222a b c a b c ab bc ac ++=+++++ 故答案为:2222()222a b c a b c ab bc ac ++=+++++;(2)11,38a b c ab bc ac ++=++= ∴2222()(222)a b c a b c ab bc ac ++++=-++2)2(()a b c ab ac bc -+=+++211238=-⨯45=;(3)四边形ABCD 、四边形ECGF 为正方形,且边长分别为a 、b90A G ∴∠=∠=︒,AB AD BC a ===,FG CG b ==,BG BC CG a b =+=+ ∵10,20a b ab +==∴ABCD ECGF ABD BFG S S S S S =+--阴影221122AB CG AB AD FG BG =+-⋅-⋅ 2211()22a b a a b a b =+-⋅-⋅+ 22111222a b ab =+- 213()22a b ab =+- 213102022=⨯-⨯ 20=;(4)①根据题意,作出图形如下:②根据面积的不同求解方法得:22(2522)(2)a ab b a b a b ++=++故答案为:(2)(2)a b a b ++.【点睛】本题考查了因式分解的几何应用、完全平方公式的几何应用,掌握因式分解的相关知识是解题关键.35.(1)见详解;(2)2180C AQB ∠+∠=︒;(3)1:2:2【分析】(1)过点C 作CF AD ,则//BE CF ,再利用平行线的性质求解即可; (2)过点Q 作QM AD ,则//BE QM ,再利用平行线的性质以及角平分线的性质得出1()2AQE CBE CAD ∠=∠-∠,再结合(1)的结论即可得出答案; (3)由(2)的结论可得出12CAD CBE ∠=∠,又因为QP PB ⊥,因此180CBE CAD ∠+∠=︒,联立即可求出两角的度数,再结合(1)的结论可得出ACB ∠的度数,再求答案即可.【详解】解:(1)过点C 作CF AD ,则//BE CF ,∵//CF AD BE∴,180,ACF A BCF B ACF BCF C ∠=∠∠=︒-∠∠+∠=∠∴180180180B C A BCF C ACF C C ∠+∠-∠=︒-∠+∠-∠=-∠+∠=︒ (2)过点Q 作QM AD ,则//BE QM ,∵QM AD ,//BE QM∴,AQM NAD BQM EBQ ∠=∠∠=∠∵AQ BQ 、分别为DAC EBC ∠∠、的平分线所在直线 ∴11,22NAD CAD EBQ CBE ∠=∠∠=∠ ∴1()2ABQ BQM AQM CBE CAD ∠=∠-∠=∠-∠ ∵180()1802C CBE AD AQB ∠=︒-∠-∠=︒-∠ ∴2180C AQB ∠+∠=︒(3)∵//AC QB ∴11,22AQB CAP CAD ACP PBQ CBE ∠=∠=∠∠=∠=∠ ∴11801802ACB ACP CBE ∠=︒-∠=︒-∠ ∵2180C AQB ∠+∠=︒ ∴12CAD CBE ∠=∠ ∵QP PB ⊥∴180CBE CAD ∠+∠=︒∴60,120CAD CBE ∠=︒∠=︒ ∴11801202ACB CBE ∠=︒-∠=︒ ∴::60:120:1201:2:2DAC ACB CBE ∠∠∠=︒︒︒=.故答案为:1:2:2.【点睛】本题考查的知识点有平行线的性质、角平分线的性质.解此题的关键是作出合适的辅助线,找准角与角之间的关系.36.(1)2()b a -;(2)22()()4a b a b ab +=-+;(3)±5;(4)详见解析 【分析】(1)表示出阴影部分正方形的边长,然后根据正方形的面积公式列式即可;(2)根据大正方形的面积减去小正方形的面积等于四个小长方形的面积列式即可; (3)将(x -y )2变形为(x +y )2—4xy ,再代入求值即可;(4)由已知的恒等式,画出相应的图形,如图所示.【详解】解:(1)阴影部分为一个正方形,其边长为b -a ,∴其面积为:2()b a -,故答案为:2()b a -;(2)大正方形面积为:()2a b +小正方形面积为:2()b a -=2()a b -, 四周四个长方形的面积为:4ab ,∴22()()4a b a b ab +=-+,故答案为:22()()4a b a b ab +=-+;(3)由(2)知,22()()4x y x y xy +=-+, ∴22()()4x y x y xy -=+-, ∴2()4x y x y xy -=±+-=2116454±-⨯=±, 故答案为:±5;(4)符合等式()()2222252a b a b a ab b ++=++的图形如图所示,【点睛】本题考查了完全平方公式的几何背景,此类题目关键在于同一个图形的面积用两种不同的方法表示.。
苏科七年级数学下册第二学期期末测试题及答案(共五套) 百度文库
苏科七年级数学下册第二学期期末测试题及答案(共五套) 百度文库一、选择题1.冠状病毒是引起病毒性肺炎的病原体的一种,可以在人群中扩散传播,某冠状病毒的直径大约是0.000000081米,用科学计数法可表示为( )A .-98.110⨯B .-88.110⨯C .-98110⨯D .-78.110⨯ 2.下列计算中,正确的是( ) A .235235x x x += B .236236x x x =C .322()2x x x ÷-=-D .236(2)2x x -=-3.将一张长方形纸片按如图所示折叠后,再展开.如果∠1=56°,那么∠2等于( )A .56°B .62°C .66°D .68° 4.一个三角形的两边长分别为3和4,且第三边长为整数,这样的三角形的周长最大值是( )A .11B .12C .13D .145.计算23x x 的结果是( )A .5xB .6xC .8xD .23x6.下列四个等式从左到右的变形是因式分解的是 ( )A .22()()a b a b a b +-=-B .2()ab a a b a -=-C .25(1)5x x x x +-=+-D .21()x x x x x+=+ 7.下列图形中,能将其中一个三角形平移得到另一个三角形的是( )A .B .C .D .8.下列图形中,∠1和∠2是同位角的是( )A .B .C .D . 9.下面图案中可以看作由图案自身的一部分经过平移后而得到的是( )A .B .C .D .10.如图,AB ∥CD ,DA ⊥AC ,垂足为A ,若∠ADC=35°,则∠1的度数为( )A .65°B .55°C .45°D .35° 11.一个多边形的每个内角都等于140°,则这个多边形的边数是( ) A .7B .8C .9D .10 12.下列给出的线段长度不能与4cm ,3cm 能构成三角形的是( )A .4cmB .3cmC .2cmD .1cm 二、填空题13.计算:m 2•m 5=_____.14.计算:2202120192020⨯-=__________15.计算:32(2)xy -=___________.16.一个等腰三角形的两边长分别为4cm 和9cm ,则它的周长为__cm .17.二元一次方程7x+y =15的正整数解为_____.18.已知满足不等式()()325416x x -+<-+的最小整数解是方程23x ax -=的解,则a 的值为________.19.实数x ,y 满足方程组2728x y x y +=⎧⎨+=⎩,则x +y =_____. 20.内角和等于外角和2倍的多边形是__________边形.21.计算:2020(0.25)-×20194=_________.22.分解因式:m 2﹣9=_____.三、解答题23.分解因式(1)321025a a a ++;(2)(1)(2)6t t ++- .24.实验中学要为学校科技活动小组提供实验器材,计划购买A 型、B 型两种型号的放大镜.若购买100个A 型放大镜和150个B 型放大镜需用1500元;若购买120个A 型放大镜和160个B 型放大镜需用1720元.(1)求每个A 型放大镜和每个B 型放大镜各多少元;(2)学校决定购买A 型放大镜和B 型放大镜共75个,总费用不超过570元,那么最多可以购买多少个A 型放大镜?25.解方程或不等式(组)(1)24231x y x y +=⎧⎨-=⎩(2)2151132 x x-+-≥(3)312(2)15233x xx x+<+⎧⎪⎨-≤+⎪⎩26.解下列二元一次方程组:(1)70231x yx y+=⎧⎨-=-⎩①②;(2)239 345x yx y-=⎧⎨+=⎩①②.27.因式分解:(1)m2﹣16;(2)x2(2a﹣b)﹣y2(2a﹣b);(3)y2﹣6y+9;(4)x4﹣8x2y2+16y4.28.若规定acbd=a﹣b+c﹣3d,计算:223223xy xx---2574xy xxy-+-+的值,其中x=2,y=﹣1.29.先化简,再求值:(a-1)(2a+1)+(1+a)(1-a),其中a=2.30.疫情初期,武汉物资告急,全国一心,各地纷纷运送物资到武汉。
苏科七年级数学下册第二学期期末测试题及答案(共五套) 百度文库
苏科七年级数学下册第二学期期末测试题及答案(共五套) 百度文库一、选择题1.下列等式由左边到右边的变形中,属于因式分解的是( )A .(a ﹣2)(a+2)=a 2﹣4B .8x 2y =8×x 2yC .m 2﹣1+n 2=(m+1)(m ﹣1)+n 2D .x 2+2x ﹣3=(x ﹣1)(x+3)2.计算:202020192(2)--的结果是( ) A .40392 B .201932⨯ C .20192- D .23.冠状病毒是引起病毒性肺炎的病原体的一种,可以在人群中扩散传播,某冠状病毒的直径大约是0.000000081米,用科学计数法可表示为( )A .-98.110⨯B .-88.110⨯C .-98110⨯D .-78.110⨯4.将一张长方形纸片按如图所示折叠后,再展开.如果∠1=56°,那么∠2等于( )A .56°B .62°C .66°D .68°5.如图,在五边形ABCDE 中,A B E α∠+∠+∠=,DP 、CP 分别平分EDC ∠、BCD ∠,则P ∠的度教是( )A .1902α-B .1902α︒+ C .12α D .15402α︒- 6.一直尺与一缺了一角的等腰直角三角板如图摆放,若∠1=115°,则∠2的度数为( )A .65°B .70°C .75°D .80° 7.已知()22316x m x --+是一个完全平方式,则m 的值可能是( )A .7-B .1C .7-或1D .7或1-8.下列计算错误的是( )A .2a 3•3a =6a 4B .(﹣2y 3)2=4y 6C .3a 2+a =3a 3D .a 5÷a 3=a 2(a≠0) 9.x 2•x 3=( )A .x 5B .x 6C .x 8D .x 910.截止到3月26日0时,全球感染新型冠状病毒肺炎的人数已经突破380000人,“山川异域,风月同天”,携手抗“疫”,刻不容缓.将380000用科学记数法表示为( ) A .0.38×106B .3.8×106C .3.8×105D .38×104 11.下列各式能用平方差公式计算的是() A .()()22a b b a +-B .()()11x x +--C .()()m n m n ---+D .()()33x y x y --+ 12.248162(31)(31)(31)(31)(31)⨯+++++的计算结果的个位数字是( )A .8B .6C .2D .0二、填空题13.把正三角形、正四边形、正五边形按如图所示的位置摆放,若∠1=52°,∠2=18°,则∠3=_____.14.如图,图(1)的正方形的周长与图(2)的长方形的周长相等,且长方形的长比宽多acm ,则正方形的面积与长方形的面积的差为_____(用含有字母a 的代数式表示).15.直角三角形中,一个锐角等于另一个锐角的2倍,则较小的锐角是_______.16.PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为________________.17.计算:20202019120192019⎛⎫⨯- ⎪⎝⎭=________. 18.已知关于x 的不等式3x - m+1>0的最小整数解为2,则实数m 的取值范围是___________. 19.如图,在△ABC 中,点D 为BC 边上一点,E 、F 分别为AD 、CE 的中点,且ABC S ∆=8cm 2,则BEF S ∆=____.20.计算212⎛⎫= ⎪⎝⎭______. 21.已知代数式2x-3y 的值为5,则-4x+6y=______.22.如图,AD 、AE 分别是△ABC 的角平分线和高,∠B=60°,∠C=70°,则∠EAD=______.23.甲乙两队进行篮球对抗赛,比赛规则规定每队胜一场得3分,平一场得1分,负一场得0分,两队一共比赛了10场,甲队保持不败,得分不低于24分,甲队至少胜了___________场.24.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中()1,0→()2,0→()2,1→()1,1→1,2→()2,2…根据这个规律,则第2020个点的坐标为_________.三、解答题25.如图,点F 在线段AB 上,点E ,G 在线段CD 上,FG ∥AE ,∠1=∠2.(1)求证:AB ∥CD ;(2)若FG ⊥BC 于点H ,BC 平分∠ABD ,∠D =112°,求∠1的度数.26.计算:(1)22(2).(3)xy xy(2)23(21)ab a b ab -+-(3)(32)(32)x y x y +-(4)()()a b c a b c ++-+27.已知在△ABC 中,试说明:∠A +∠B +∠C =180°方法一: 过点A 作DE ∥BC . 则(填空)∠B =∠ ,∠C =∠∵ ∠DAB +∠BAC + ∠CAE =180°∴∠A +∠B +∠C =180°方法二: 过BC 上任意一点D 作DE ∥AC ,DF ∥AB 分别交AB 、AC 于E 、F (补全说理过程 )28.如图,在数轴上,点A 、B 分别表示数1、23x -+.(1)求x 的取值范围.(2)数轴上表示数2x -+的点应落在( )A .点A 的左边B .线段AB 上C .点B 的右边29.已知下列等式:①32-12=8,②52-32=16,③72-52=24,…(1)请仔细观察,写出第5个式子;(2)根据以上式子的规律,写出第n 个式子,并用所学知识说明第n 个等式成立.30.已和,如图,BE 平分∠ABC ,∠1=∠2,请说明∠AED =∠C .根据提示填空.∵BE 平分∠ABC (已知)∴∠1=∠3,( ) 又∵∠1=∠2,(已知)∴ =∠2,( )∴ ∥ ,( )∴∠AED = .( )31.如图,△ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,∠BAC=60°,∠C=50°,求∠DAC 及∠BOA 的度数.32.在如图所示的正方形网格中,每个小正方形的边长均为1个单位长度,△ABC 的顶点都在正方形网格的格点(网格线的交点)上.(1)画出△ABC 先向右平移5个单位长度,再向上平移2个单位长度所得的△A 1B 1C 1; (2)画出△ABC 的中线AD ;(3)画出△ABC 的高CE 所在直线,标出垂足E :(4)在(1)的条件下,线段AA 1和CC 1的关系是33.平面内的两条直线有相交和平行两种位置关系.①如图a ,若//AB CD ,点P 在AB 、CD 外部,则BPD ∠、B 、D ∠之间有何数量关系?解:BPD B D ∠=∠-∠.证明:∵//AB CD ,∴B BOD ∠=∠,又∵POD BOD ∠+∠=______,在POD 中,由三角形内角和定理可得____________180POD ∠+∠+∠=︒,故______BPD D ∠=∠+∠,从而得BPD B D ∠=∠-∠.②若//AB CD ,将点P 移到AB 、CD 内部,如图b ,以上结论是否成立?若成立,说明理由;若不成立,则BPD ∠、B 、D ∠之间有何数量关系?请证明你的结论; ③在图b 中,将直线AB 绕点B 逆时针方向旋转一定角度交直线CD 于点Q ,如图c ,则BPD ∠、B 、D ∠、BQD ∠之间有何数量关系?请证明你的结论;34.在校运动会中,篮球队和排球队共有24支,其中篮球队每队10名队员,排球队每队12名队员,共有260名队员.请问篮球队、排球队各有多少支?(利用二元一次方程组解决问题)35.已知a 6=2b =84,且a <0,求|a ﹣b|的值.36.杨辉三角是一个由数字排列成的三角形数表,一般形式如图所示,其中每一横行都表示(a+b)n (此处n=0,1,2,3,4...)的展开式中的系数.杨辉三角最本质的特征是:它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两数之和.…… ……(1)请直接写出(a +b )4=__________;(2)利用上面的规律计算:①24+4×23+6×22+4×2+1=__________;②36-6×35+15×34-20×33+15×32-6×3+1=________.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】认真审题,根据因式分解的定义,即:将多项式写成几个因式的乘积的形式,进行分析,据此即可得到本题的答案.【详解】解:A .不是乘积的形式,错误;B .等号左边的式子不是多项式,不符合因式分解的定义,错误;C .不是乘积的形式,错误;D .x 2+2x ﹣3=(x ﹣1)(x+3),是因式分解,正确;故选:D .【点睛】本题主要考查了因式分解的定义,即:将多项式写成几个因式的乘积的形式,牢记定义是解题的关键,要注意认真总结.2.B解析:B【分析】将原式整理成2020201922+,再提取公因式计算即可.【详解】解:202020192(2)--=2020201922+=20192(21)⨯+=201932⨯,故选:B .【点睛】此题考查提公因式法进行运算,理解幂是乘方运算的结果是解此题的关键.3.B解析:B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.000000081=-88.110⨯;故选B .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.D解析:D【解析】【分析】两直线平行,同旁内角互补;另外折叠前后两个角相等.根据这两条性质即可解答.【详解】根据题意知:折叠所重合的两个角相等.再根据两条直线平行,同旁内角互补,得:2∠1+∠2=180°,解得:∠2=180°﹣2∠1=68°.故选D.【点睛】注意此类折叠题,所重合的两个角相等,再根据平行线的性质得到∠1和∠2的关系,即可求解.5.A解析:A【分析】根据五边形的内角和等于540°,由∠A+∠B+∠E=α,可求∠BCD+∠CDE的度数,再根据角平分线的定义可得∠PDC与∠PCD的角度和,进一步求得∠P的度数.【详解】∵五边形的内角和等于540°,∠A+∠B+∠E=α,∴∠BCD+∠CDE=540°-α,∵∠BCD、∠CDE的平分线在五边形内相交于点O,∴∠PDC+∠PCD=12(∠BCD+∠CDE)=270°-12α,∴∠P=180°-(270°-12α)=12α-90°.故选:A.【点睛】此题考查多边形的内角和公式,角平分线的定义,熟记公式是解题的关键.注意整体思想的运用.6.B解析:B【分析】先将一缺了一角的等腰直角三角板补全,再由直尺为矩形,则两组对边分别平行,即可根据∠1求∠4的度数,即可求出∠4的对顶角的度数,再利用等角直角三角形的性质及三角形内角和求出∠2的对顶角,即可求∠2.【详解】解:如图,延BA,CD交于点E.∵直尺为矩形,两组对边分别平行∴∠1+∠4=180°,∠1=115°∴∠4=180°-∠1=180°-115°=65°∵∠EDA 与∠4互为对顶角∴∠EDA=∠4=65°∵△EBC 为等腰直角三角形∴∠E=45°∴在△EAD 中,∠EAD=180°-∠E-∠EDA=180°-45°-65°=70°∵∠2与∠EAD 互为对顶角∴∠2=∠EAD =70°故选:B .【点睛】此题主要考查平行线的性质,等腰直角三角形的性质,挖掘三角板条件中的隐含条件是解题关键.7.D解析:D【分析】利用完全平方公式的特征判断即可得到结果.【详解】解:()22316x m x --+是一个完全平方式, ∴()22316x m x --+=2816x x -+或者()22316x m x --+=2+816x x +∴-2(m-3)=8或-2(m-3)=-8解得:m =-1或7故选:D【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.8.C解析:C【分析】A .根据同底数幂乘法运算法则进行计算,底数不变指数相加,系数相乘.即可对A 进行判断B .根据幂的乘方运算法则对B 进行判断C .根据同类项的性质,判断是否是同类项,如果不是,不能进行相加减,据此对C 进行判断D .根据同底数幂除法运算法则对D 进行判断【详解】A .2a 3•3a =6a 4,故A 正确,不符合题意B .(﹣2y 3)2=4y 6,故B 正确,不符合题意C .3a 2+a ,不能合并同类项,无法计算,故C 错误,符合题意D .a 5÷a 3=a 2(a≠0),故D 正确,不符合题意故选:C【点睛】本题考查了同底数幂乘法和除法运算法则,底数不变指数相加减.幂的乘方运算法则,底数不变指数相乘.以及同类项合并的问题,如果不是同类项不能合并.9.A解析:A【分析】根据同底数幂乘法,底数不变指数相加,即可.【详解】x 2•x 3=x 2+3=x 5,故选A.【点睛】该题考查了同底数幂乘法,熟记同底数幂乘法法则:底数不变,指数相加.10.C解析:C【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:380000=3.8×105.故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.11.C解析:C【分析】平方差公式是指:(a+b)(a-b)=22a b -,要能使用平方差公式,则两个单项式的符号必须一个相同,一个互为相反数.【详解】A. ()()22a b b a +-不能用平方差公式,不符合题意;B. ()()11x x +--不能用平方差公式,不符合题意;C. ()()m n m n ---+=(-m )2-n 2=m 2-n 2;符合题意;D. ()()33x y x y --+不能用平方差公式,不符合题意.故选C12.D解析:D【分析】先将2变形为()31-,再根据平方差公式求出结果,根据规律得出答案即可.【详解】解:2416(31)(31)(31)(31)(31)-+++⋯+22416(31)(31)(31)(31)=-++⋯+4416(31)(31)(31)=-+⋯+3231=-133=,239=,3327=,4381=,53243=,63729=,732187=,836561=,⋯∴3n 的个位是以指数1到4为一个周期,幂的个位数字重复出现,3248÷=,故323与43的个位数字相同即为1,∴3231-的个位数字为0,∴248162(31)(31)(31)(31)(31)⨯+++++的个位数字是0.故选:D .【点睛】本题考查了平方差公式的应用,能根据规律得出答案是解此题的关键. 二、填空题13.32°.【分析】通过正三角形、正四边形、正五边形的内角度数,结合三角形内角和定理进行计算即可;【详解】等边三角形的内角的度数是60°,正方形的内角度数是90°,正五边形的内角的度数是:(5﹣解析:32°.【分析】通过正三角形、正四边形、正五边形的内角度数,结合三角形内角和定理进行计算即可;【详解】等边三角形的内角的度数是60°,正方形的内角度数是90°,正五边形的内角的度数是:15(5﹣2)×180°=108°, 则∠3=360°﹣60°﹣90°﹣108°﹣∠1﹣∠2=32°.故答案是:32°.【点睛】本题主要考查了多边形内角和与外角定理的应用,准确分析图形中角的关系式解题的关键.14.【分析】设长方形的宽为xcm ,根据“图(1)的正方形的周长与图(2)的长方形的周长相等”求得正方形的边长,最后由长方形与正方形的面积公式计算正方形的面积与长方形的面积的差.【详解】解:设长方 解析:24a 【分析】设长方形的宽为xcm ,根据“图(1)的正方形的周长与图(2)的长方形的周长相等”求得正方形的边长,最后由长方形与正方形的面积公式计算正方形的面积与长方形的面积的差.【详解】解:设长方形的宽为xcm ,则长方形的长为(x +a )cm ,∵图(1)的正方形的周长与图(2)的长方形的周长相等,∴正方形的边长为:2()242x a x x a +++=, ∴正方形的面积与长方形的面积的差为:22()2x a x x a +⎛⎫-+ ⎪⎝⎭ 222444x ax a x ax ++=-- =24a . 故答案为:24a . 【点睛】本题主要考查了列代数式,整式的混合运算,关键是读懂题意,正确列出代数式. 15.30°【解析】【分析】设较小的锐角是,然后根据直角三角形两锐角互余列出方程求解即可.【详解】设较小的锐角是x ,则另一个锐角是2x ,由题意得,x +2x =90°,解得x =30°,即此三角解析:30°【解析】【分析】设较小的锐角是x,然后根据直角三角形两锐角互余列出方程求解即可.【详解】设较小的锐角是x,则另一个锐角是2x,由题意得,x+2x=90°,解得x=30°,即此三角形中最小的角是30°.故答案为:30°.【点睛】本题考查了直角三角形的性质,熟练掌握该知识点是本题解题的关键.16.5×10-6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:5×10-6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0000025=2.5×10-6,故答案为2.5×10-6.【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.17.【分析】先利用幂的乘方进行分解,再根据同底数幂相乘,进行计算即可.【详解】=故答案为.【点睛】此题考查幂的乘方,同底数幂相乘,解题关键在于掌握运算法则.解析:1 2019【分析】先利用幂的乘方进行分解,再根据同底数幂相乘,进行计算即可.【详解】20202019201920191112019=2019201920192019⎛⎫⨯-⨯⨯ ⎪⎝⎭=12019 故答案为12019. 【点睛】此题考查幂的乘方,同底数幂相乘,解题关键在于掌握运算法则.18.【解析】【分析】先用含m 的代数式表示出不等式的解集,再根据最小整数解为2即可求出实数m 的取值范围.【详解】∵3x - m+1>0,∴3x> m-1,∴x>,∵不等式3x - m+1>解析:4<7m ≤【解析】【分析】先用含m 的代数式表示出不等式的解集,再根据最小整数解为2即可求出实数m 的取值范围.【详解】∵3x - m+1>0,∴3x> m -1,∴x>-13m , ∵不等式3x - m+1>0的最小整数解为2,∴1≤-13m <3, 解之得4<7m ≤. 故答案为:4<7m ≤.【点睛】本题考查了一元一次不等式的解法,根据最小整数解为2列出关于m 的不等式是解答本题的关键.19.2【分析】根据点F是CE的中点,推出S△BEF=S△BEC,同理得S△EBC=S△ABC,由此可得出答案.【详解】∵点F是CE的中点,∴△BEF的底是EF,△BEC的底是EC,即EF=EC解析:2【分析】根据点F是CE的中点,推出S△BEF=12S△BEC,同理得S△EBC=12S△ABC,由此可得出答案.【详解】∵点F是CE的中点,∴△BEF的底是EF,△BEC的底是EC,即EF=12EC,高相等;∴S△BEF=12S△BEC,同理得S△EBC=12S△ABC,∴S△BEF=14S△ABC,且S△ABC=8,∴S△BEF=2,故答案为:2.【点睛】本题考查了三角形的性质,充分运用三角形的面积公式以及三角形的中线的性质是解本题的关键.20.【分析】根据分式的乘方运算法则,即分式乘方要把分子、分母分别乘方,即可求解.【详解】解:.故答案为.【点睛】本题目考查分式的乘方运算法则,难度不大,熟练掌握其运算法则是解题的关键.解析:14【分析】根据分式的乘方运算法则,即分式乘方要把分子、分母分别乘方,即可求解.【详解】解:222111== 224⎛⎫⎪⎝⎭.故答案为14.【点睛】本题目考查分式的乘方运算法则,难度不大,熟练掌握其运算法则是解题的关键.21.-10【分析】原式前两项提取-2变形后,将已知代数式的值代入计算即可求出值.【详解】解:∵2x-3y=5,∴原式=-2(2x-3y)=-2×5=-10.故答案为:-10.【点睛】本题解析:-10【分析】原式前两项提取-2变形后,将已知代数式的值代入计算即可求出值.【详解】解:∵2x-3y=5,∴原式=-2(2x-3y)=-2×5=-10.故答案为:-10.【点睛】本题考查了代数式求值,熟练掌握运算法则是解题的关键.22.;【详解】解:由题意可知,∠B=60°,∠C=70°,所以°,所以°,在三角形BAE中,°,所以∠EAD=5°故答案为:5°.【点睛】本题属于对角平分线和角度基本知识的变换求解.解析:5︒;【详解】解:由题意可知,∠B=60°,∠C=70°,所以18013050A ∠=-=°,所以25BAD ∠=°,在三角形BAE 中,906030BAE ∠=-=°,所以∠EAD=5°故答案为:5°.【点睛】本题属于对角平分线和角度基本知识的变换求解.23.7【分析】设甲队胜了x 场,则平了(10-x )场,根据胜一场得3分,平一场得1分,负一场得0分,比赛10场,得分24分,列出不等式,求出x 的最小整数解.【详解】设甲队胜了x 场,则平了(10-x解析:7【分析】设甲队胜了x 场,则平了(10-x )场,根据胜一场得3分,平一场得1分,负一场得0分,比赛10场,得分24分,列出不等式,求出x 的最小整数解.【详解】设甲队胜了x 场,则平了(10-x )场,由题意得,3x+(10-x )≥24,解得:x≥7,即甲队至少胜了7场.故答案是:7.【点睛】考查了一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出不等关系,列出不等式求解.24.【分析】有图形可知,图中各点分别组成了正方形点阵,内个正方形点阵的整点数量依次为最右下角点横坐标的平方,且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x 轴,当正方形最右下角解析:()45,5【分析】有图形可知,图中各点分别组成了正方形点阵,内个正方形点阵的整点数量依次为最右下角点横坐标的平方,且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x 轴,当正方形最右下角点的横坐标为偶数时,这个点可以看做按照运动方向离开x 轴,按照此方法计算即可;【详解】有图形可知,图中各点分别组成了正方形点阵,内个正方形点阵的整点数量依次为最右下角点横坐标的平方,且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x轴,当正方形最右下角点的横坐标为偶数时,这个点可以看做按照运动方向离开x轴,∵245=2025,∴第2025个点在x轴上的坐标为()45,0,则第2020个点在()45,5.故答案为()45,5.【点睛】本题主要考查了规律题型点的坐标,准确判断是解题的关键.三、解答题25.(1)见解析;(2)56°【分析】(1)先证∠1=∠CGF即可,然后根据平行线的判定定理证明即可;(2)先根据平行线的性质、角平分线的性质以及垂直的性质得到∠1+∠4=90°,再求出∠4即可.【详解】(1)证明:∵FG∥AE,∴∠2=∠3,∵∠1=∠2,∴∠1=∠3,∴AB∥CD.(2)解:∵AB∥CD,∴∠ABD+∠D=180°,∵∠D=112°,∴∠ABD=180°﹣∠D=68°,∵BC平分∠ABD,∴∠4=12∠ABD=34°,∵FG⊥BC,∴∠1+∠4=90°,∴∠1=90°﹣34°=56°.【点睛】本题考查三角形内角和定理、平行线的性质、角平分线的定义等知识,解题的关键是熟练应用相关性质和定理.26.(1) 3512x y ;(2)3222-6-33a b a b ab +;(3) 229-4x y ;(4)2222-a ac c b ++ 【分析】(1)直接利用积的乘方和单项式乘单项式法则计算即可;(2)直接利用单项式乘多项式法则计算即可;(3)直接利用平方差公式计算即可;(4)先利用平方差公式展开,再利用完全平方公式计算即可.【详解】解:(1)原式2443x y xy =⋅3512x y =;(2)原式23233ab a b ab ab ab =-⋅-⋅+2232633a b a b ab =--+;(3)原式2294x y =-;(4)原式22()a c b =+-2222a ac c b =++-.【点睛】本题考查了整式乘法和乘法公式的运用,熟练掌握整式的乘法法则及乘法公式是解决本题的关键.27.DAB ,CAE ;见解析【分析】方法一:根据平行线的性质:两直线平行,内错角相等解答;方法二:根据平行线的性质:两直线平行、同位角相等解答.【详解】方法一:∵DE ∥BC,∴∠B=∠DAB ,∠C=∠CAE ,故答案为:DAB ,CAE ;方法二:∵DE ∥AC ,∴∠A =∠BED ,∠C =∠BDE ,∵DF ∥AB ,∴∠EDF =∠BED ,∠B =∠CDF ,∵∠CDF +∠EDF +∠BDE =180°,∴∠A +∠B +∠C =180°.【点睛】此题考查平行线的性质,三角形内角和定理的证明过程,解题的关键是熟记平行线的性质并运用于解题.28.(1)1x <.(2)B.【解析】分析:(1)根据点B 在点A 的右侧列出不等式即可求出;(2)利用(1)的结果可判断-x+2的位置.详解:(1)根据题意,得231x -+>.解得1x <.(2)B.点睛:本题考查了数轴的运用.关键是利用数轴,数形结合求出答案.29.(1) 112-92=40; (2) (2n+1)2-(2n -1)2=8n ,证明详见解析【分析】(1)根据所给式子可知:()()22223121121181-⨯+⨯-⨯-==,()()22225322122182-⨯+⨯-⨯-==,()()22227523123183-⨯+⨯-⨯-==,由此可知第5个式子;(2)根据题(1)的推理可得第n 个式子,利用完全平方公式可证得结果;【详解】(1)∵第1个式子为: ()()22223121121181-⨯+⨯-⨯-==第2个式子为: ()()22225322122182-⨯+⨯-⨯-==第3个式子为: ()()22227523123183-⨯+⨯-⨯-==∴第5个式子为: ()()222225125111940⨯+-⨯-=-=即第5个式子为:2211940-=(2)根据题(1)的推理可得:第n 个式子: ()()2221218n n n +--=∵左边=224414418n n n n n +-++-==右边∴等式成立.【点睛】本题考查数式规律的探索,解题的关键仔细观察所给的式子,正确找出式子的规律.30.角平分线的定义,∠3,等量代换,DE ,BC ,内错角相等,两直线平行,∠C ,两直线平行,同位角相等【分析】先根据角平分线的定义,得出∠1=∠3,再根据等量代换,得出∠3=∠2,最后根据平行线的判定与性质得出结论.【详解】证明:∵BE 平分∠ABC (已知)∴∠1=∠3 ( 角平分线的定义)又∵∠1=∠2(已知)∴∠3=∠2 ( 等量代换)∴DE ∥BC ( 内错角相等,两直线平行)∴∠AED =∠C ( 两直线平行,同位角相等)【点睛】本题主要考查了平行线的判定与性质,解题时注意:内错角相等,两直线平行;两直线平行,同位角相等.31.∠DAC=40°,∠BOA=115°【解析】试题分析:在Rt △ACD 中,根据两锐角互余得出∠DAC 度数;△ABC 中由内角和定理得出∠ABC 度数,再根据AE ,BF 是角平分线可得∠BAO、∠ABO,最后在△ABO 中根据内角和定理可得答案.解:∵AD 是BC 边上的高,∴∠ADC=90°,又∵∠C=50°,∴在△ACD 中,∠DAC=90°-∠C=40°,∵∠BAC=60°,∠C=50°,∴在△ABC 中,∠ABC=180°-∠BAC-∠C=70°,又∵AE 、BF 分别是∠BAC 和∠ABC 的平分线,∴∠BAO=12∠BAC=30°,∠ABO=12∠ABC=35°, ∴∠BOA=180°-∠BAO -∠ABO =180°-30°-35°=115°. 32.(1)见解析;(2)见解析;(3)见解析;(4)平行且相等【分析】(1)利用网格特点和平移的性质画出A 、B 、C 的对应点A 1、B 1、C 1即可;(2)根据三角形中线的定义画出图形即可;(3)根据三角形高的定义画出图形即可;(4)根据平移的性质即可得出结论.【详解】解:(1)如图,△A 1B 1C 1即为所作图形;(2)如图,线段AD 即为所作图形;(3)如图,直线CE 即为所作图形;(4)∵△A 1B 1C 1是由△ABC 平移得到,∴A 和A 1,C 和C 1是对应点,∴AA 1和CC 1的关系是:平行且相等.【点睛】本题考查了平移作图,平移的性质,三角形的高和中线的画法,熟练掌握平移的性质是解题的关键.33.①见解析;②BPD B D ∠=∠+∠,证明见解析;③BPD B D BQD ∠=∠+∠+∠,证明见解析.【分析】①先根据平行线的性质可得B BOD ∠=∠,再根据平角的定义可得180POD BOD ∠+∠=︒,然后根据三角形的内角和定理可得180POD BPD D ∠+∠+∠=︒,最后根据等量代换即可得证;②如图(见解析),先根据平行线的性质可得B BQD ∠=∠,再根据三角形的外角性质可得BPD BQD D ∠=∠+∠,然后根据等量代换即可得;③如图(见解析),先根据三角形的外角性质可得BED B BQD ∠=∠+∠,BPD D BED ∠=∠+∠,再根据等量代换即可得.【详解】①BPD B D ∠=∠-∠.证明:∵//AB CD ,∴B BOD ∠=∠,又∵180POD BOD ∠+∠=︒,在POD 中,由三角形内角和定理可得180POD BPD D ∠+∠+∠=︒,故BOD BPD D ∠=∠+∠,从而得BPD B D ∠=∠-∠;②BPD B D ∠=∠+∠,证明如下:如图,延长BP ,交CD 于点Q ,∵//AB CD ,B BQD ∴∠=∠,由三角形的外角性质得:BPD BQD D ∠=∠+∠,BPD B D ∴∠=∠+∠;③BPD B D BQD ∠=∠+∠+∠,证明如下:如图,延长BP ,交CD 于点E ,由三角形的外角性质得:BED B BQD BPD D BED ∠=∠+∠⎧⎨∠=∠+∠⎩, 则BPD B D BQD ∠=∠+∠+∠.【点睛】本题考查了平行线的性质、三角形的内角和定理、三角形的外角性质等知识点,熟练掌握三角形的外角性质是解题关键.34.篮球队14支,排球队10支【分析】根据题意可知,本题中的等量关系是“有24支队”和“260名运动员”,列方程组求解即可.【详解】设篮球队x 支,排球队y 支,由题意可得:241012260x y x y +=⎧⎨+=⎩解的:1410x y =⎧⎨=⎩答:设篮球队14支,排球队10支【点睛】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.35.16【分析】根据幂的乘方运算法则确定a 、b 的值,再根据绝对值的定义计算即可.【详解】解:∵(±4)6=2b =84=212,a <0,∴a =﹣4,b =12,∴|a ﹣b|=|﹣4﹣12|=16.【点睛】本题考查幂的乘方,难度不大,也是中考的常考知识点,熟练掌握幂的乘方运算法则是解题的关键.36.(1)++++432234a 4a b 6a b 4ab b ;(2)①81;②64【分析】(1)根据杨辉三角的数表规律解答即可;(2)由杨辉三角的数表规律和(1)题的结果可得所求式子=(2+1)4,据此解答即可; ②由杨辉三角的数表规律可得所求式子=(3-1)6,据此解答即可.【详解】解:(1)()4432234464a b a a b a b ab b +=++++;故答案为:++++432234a 4a b 6a b 4ab b ;(2)①24+4×23+6×22+4×2+1=(2+1)4=34=81;故答案为:81;②36-6×35+15×34-20×33+15×32-6×3+1=(3-1)6=26=64;故答案为:64.【点睛】本题考查了多项式的乘法和完全平方公式的拓展以及数的规律探求,正确理解题意、找准规律是解题的关键.。
苏科七年级下册第二学期数学期末考试卷及答案
苏科七年级下册第二学期数学期末考试卷及答案一、选择题1.12-等于( )A .2-B .12C .1D .12-2.计算(﹣2a 2)•3a 的结果是( ) A .﹣6a 2B .﹣6a 3C .12a 3D .6a 33.若a =-0.32,b =-3-2,c =21()2--,d =01()3-,则它们的大小关系是( )A .a <b <c <dB .a <d <c <bC .b <a <d <cD .c <a <d <b4.如图,从边长为(4a )cm 的正方形纸片中剪去一个边长为(1a +)cm 的正方形(0a >),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .22(25)a a cm +B .2(315)a cm +C .2(69)a cm +D .2(615)a cm + 5.若一个多边形的每个内角都为108°,则它的边数为( ) A .5B .8C .6D .10 6.下列运算结果正确的是( ) A .32a a a ÷=B .()225a a =C .236a a a =D .()3326a a =7.下列图形中,不能通过其中一个四边形平移得到的是( )A .B .C .D .8.下列图案中,可以看成是由图案自身的一部分经平移后得到的是( )A .B .C .D .9.已知关于,x y 的二元一次方程组725ax y x y +=⎧⎨-=⎩和432x y x by +=⎧⎨+=-⎩有相同的解,则-a b 的值是( ) A .13B .9C .9-D .13-10.足球比赛中,每场比赛都要分出胜负每队胜1场得3分,负一场扣1分,某队在8场比赛中得到12分,若设该队胜的场数为x 负的场数为y ,则可列方程组为( ) A .8312x y x y +=⎧⎨-=⎩B .8312x y x y -=⎧⎨-=⎩C .18312x y x y +=⎧⎨+=⎩D .8312x y x y -=⎧⎨+=⎩11.七边形的内角和是( ) A .360° B .540° C .720° D .900° 12.已知a 、b 、c 是正整数,a >b ,且a 2-ab-ac+bc=11,则a-c 等于( )A .1-B .1-或11-C .1D .1或11二、填空题13.计算:23()a =____________.14.计算()()12x x --的结果为_____; 15.已知方程组,则x+y=_____.16.根据不等式有基本性质,将()23m x -<变形为32x m >-,则m 的取值范围是__________.17.已知关于x 的不等式组521{x x a -≥-->无解,则a 的取值范围是________.18.三角形两边长分别是3、5,第三边长为偶数,则第三边长为_______ 19.已知:()521x x ++=,则x =______________.20.如图,AD 、AE 分别是△ABC 的角平分线和高,∠B=60°,∠C=70°,则∠EAD=______.21.目前,世界上能制造出的最小晶体管的长度只有0.00000004m ,将0.00000004用科学记数法表示为_____.22.PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为________________.23.下列各数中: 3.14-,327-,π2,17-,是无理数的有______个. 24.如图,将边长为6cm 的正方形ABCD 先向上平移3cm ,再向右平移1cm ,得到正方形A ′B ′C ′D ′,此时阴影部分的面积为______cm 2.三、解答题25.已知,关于x 、y 二元一次方程组237921x y a x y -=-⎧⎨+=-⎩的解满足方程2x-y=13,求a 的值.26.分解因式:(1)3222x x y xy -+; (2)2296(1)(1)x x y y -+++;(3)()214(1)mm m -+-.27.(数学经验)三角形的中线的性质:三角形的中线等分三角形的面积. (经验发展)面积比和线段比的联系:(1)如图1,M 为△ABC 的AB 上一点,且BM =2AM .若△ABC 的面积为a ,若△CBM 的面积为S ,则S =_______(用含a 的代数式表示). (结论应用)(2)如图2,已知△CDE 的面积为1,14CD AC =,13CE CB =,求△ABC 的面积.(迁移应用)(3)如图3.在△ABC 中,M 是AB 的三等分点(13AM AB =),N 是BC 的中点,若△ABC 的面积是1,请直接写出四边形BMDN 的面积为________.28.计算: (1)2a (a ﹣2a 2); (2)a 7+a ﹣(a 2)3; (3)(3a +2b )(2b ﹣3a ); (4)(m ﹣n )2﹣2m (m ﹣n ).29.如图,AB ∥CD ,点E 、F 在直线AB 上,G 在直线CD 上,且∠EGF =90°,∠BFG =140°,求∠CGE 的度数.30.先化简,再求值:(2a +b )2﹣(2a +3b )(2a ﹣3b ),其中a =12,b =﹣2. 31.阅读材料:把形如2ax bx c ++的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即222)2(a ab b a b ±+=±.例如:2224213x x x x -+=-++2(1)3x =-+是224x x -+的一种形式的配方;所以,()213x -+,2(2)x -2x +,22213224x x ⎛⎫-+ ⎪⎝⎭是224x x -+的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项). 请根据阅读材料解决下列问题:(1)比照上面的例子,写出249x x -+三种不同形式的配方;(2)已知22610340x y x y +-++=,求32x y -的值;(3)已知2223240a b c ab b c ++---+=,求a b c ++的值.32.已知关于x 的方程3m x +=的解满足325x y ax y a-=-⎧⎨+=⎩,若15y -<<,求实数m 的取值范围.33.如图①所示,在三角形纸片ABC 中,70C ∠=︒,65B ∠=︒,将纸片的一角折叠,使点A 落在ABC 内的点A '处. (1)若140∠=︒,2∠=________.(2)如图①,若各个角度不确定,试猜想1∠,2∠,A ∠之间的数量关系,直接写出结论.②当点A 落在四边形BCDE 外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,A ∠,1∠,2∠之间又存在什么关系?请说明.(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的123456∠+∠+∠+∠+∠+∠和是________.34.第19届亚运会将于2022年在杭州举行,“丝绸细节”助力杭州打动世界.杭州丝绸公司为亚运会设计手工礼品,投入W 元钱,若以2条领带和1条丝巾为一份礼品,则刚好可制作600份礼品;若以1条领带和3条丝巾为一份礼品,则刚好可制作400份礼品. (1)若24W =万元,求领带及丝巾的制作成本是多少?(2)若用W 元钱全部用于制作领带,总共可以制作几条?(3)若用W 元钱恰好能制作300份其他的礼品,可以选择a 条领带和b 条丝巾作为一份礼品(两种都要有),请求出所有可能的a 、b 的值. 35.已知关于x,y 的方程组260250x y x y mx +-=⎧⎨-++=⎩(1)请直接写出方程260x y +-=的所有正整数解 (2)若方程组的解满足x+y=0,求m 的值(3)无论实数m 取何值,方程x -2y+mx+5=0总有一个固定的解,请直接写出这个解? 36.如图1是一个长为 4a ,宽为 b 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成的一个“回形”正方形(如图2).(1)图2中的阴影部分的面积为 ;(2)观察图2请你写出 ()2a b +,()2a b -,ab 之间的等量关系是 ; (3)根据(2)中的结论,若 6x y +=,114x y ⋅=,则 x y -= ; (4)实际上我们可以用图形的面积表示许多恒等式,下面请你设计一个几何图形来表示恒等式()()2222252a b a b a ab b ++=++.在图形上把每一部分的面积标写清楚.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由题意直接根据负指数幂的运算法则进行分析计算即可. 【详解】 解: 12-=12. 故选:B.【点睛】本题考查负指数幂的运算,熟练掌握负指数幂的运算法则是解题的关键.2.B解析:B 【分析】用单项式乘单项式的法则进行计算. 【详解】解:(-2a 2)·3a=(-2×3)×(a 2·a)=-6a 3 故选:B . 【点睛】本题考查单项式乘单项式,掌握运算法则正确计算是解题关键.3.C解析:C 【分析】直接利用负整数指数幂的性质和零指数幂的性质分别化简比较即可求解. 【详解】∵2090.3.0a =-=-,2193b =--=-,2142c -⎛⎫=-= ⎪⎝⎭,0113d ⎛⎫-= ⎪⎝⎭=,∴它们的大小关系是:b <a <d <c 故选:C 【点睛】本题考查负整数指数幂的性质、零指数幂的性质及有理数大小比较,正确化简各数是解题的关键.4.D解析:D 【分析】利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算. 【详解】 矩形的面积为: (a+4)2-(a+1)2 =(a 2+8a+16)-(a 2+2a+1) =a 2+8a+16-a 2-2a-1 =6a+15. 故选D .5.A解析:A 【解析】已知多边形的每一个内角都等于108°,可得多边形的每一个外角都等于180°-108°=72°,所以多边形的边数n=360°÷72°=5.故选A.6.A解析:A 【分析】根据同底数幂的除法、同底数幂的乘法,以及幂的乘方与积的乘方的运算方法,逐项判定即可. 【详解】解:32a a a ÷=,A 正确,()224a a =,B 错误,235a a a =,C 错误,()3328a a =,D 错误,故选:A . 【点睛】此题主要考查了同底数幂的除法,同底数幂的乘法,以及幂的乘方与积的乘方的运算方法,熟练掌握运算方法是解题的关键.7.D解析:D 【详解】解:A 、能通过其中一个四边形平移得到,不符合题意; B 、能通过其中一个四边形平移得到,不符合题意; C 、能通过其中一个四边形平移得到,不符合题意;D 、不能通过其中一个四边形平移得到,需要一个四边形旋转得到,符合题意. 故选D .8.A解析:A 【分析】根据平移的定义,逐一判断即可. 【详解】 解:A 、是平移;B 、轴对称变换,不是平移;C 、是旋转变换,不是平移.D 、图形的大小发生了变化,不是平移. 故选:A . 【点睛】本题考查平移变换,判断图形是否由平移得到,要把握两个“不变”,图形的形状和大小不变;一个“变”,位置改变.9.A解析:A【分析】先解方程组425x yx y+=⎧⎨-=⎩求出该方程组的解,然后把这个解分别代入7ax y+=与32x by+=-即可求出a、b的值,进一步即可求出答案.【详解】解:解方程组425x yx y+=⎧⎨-=⎩,得31xy=⎧⎨=⎩,把31xy=⎧⎨=⎩代入7ax y+=,得317a+=,解得:a=2,把31xy=⎧⎨=⎩代入32x by+=-,得92b+=-,解得:b=﹣11,∴a-b=2-(﹣11)=13.故选:A.【点睛】本题考查了同解方程组的知识,正确理解题意、熟练掌握解二元一次方程组的方法是解题关键.10.A解析:A【分析】设这个队胜x场,负y场,根据在8场比赛中得到12分,列方程组即可.【详解】解:设这个队胜x场,负y场,根据题意,得8 312 x yx y+=⎧⎨-=⎩.故选:A.【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.11.D解析:D【分析】n边形的内角和是(n﹣2)•180°,把多边形的边数代入公式,就得到多边形的内角和.【详解】(7﹣2)×180°=900°.故选D.【点睛】本题考查了多边形的内角和与外角和定理,解决本题的关键是正确运用多边形的内角和公式,是需要熟记的内容.12.D解析:D【解析】【分析】此题先把a2-ab-ac+bc因式分解,再结合a、b、c是正整数和a>b探究它们的可能值,从而求解.【详解】解:根据已知a2-ab-ac+bc=11,即a(a-b)-c(a-b)=11,(a-b)(a-c)=11,∵a>b,∴a-b>0,∴a-c>0,∵a、b、c是正整数,∴a-c=1或a-c=11故选D.【点睛】此题考查了因式分解;能够借助因式分解分析字母的取值范围是解决问题的关键.二、填空题13..【分析】直接根据积的乘方运算法则进行计算即可.【详解】.故答案为:.【点睛】此题主要考查了积的乘方,熟练掌握运算法则是解答此题的关键.-.解析:6a【分析】直接根据积的乘方运算法则进行计算即可.【详解】233236a a a.()=(1)()-.故答案为:6a【点睛】此题主要考查了积的乘方,熟练掌握运算法则是解答此题的关键.14.【分析】原式利用多项式乘多项式法则计算即可得到结果.【详解】原式=x²−2x−x+2=x²−3x+2,故答案为:x²−3x+2.【点睛】点评:此题考查了多项式乘多项式,熟练掌握运算法则解析:2-32x x【分析】原式利用多项式乘多项式法则计算即可得到结果.【详解】原式=x²−2x−x+2=x²−3x+2,故答案为:x²−3x+2.【点睛】点评:此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.15.2【解析】由题意得,两个方程左右相加可得,4x+4y=8⇒x+y=2,故答案为2. 解析:2【解析】由题意得,两个方程左右相加可得,,故答案为2. 16.m<2【分析】根据不等式的性质即可求解.【详解】依题意得m-2<0解得m<2故答案为:m<2.【点睛】此题主要考查不等式的求解,解题的关键是熟知不等式的性质.解析:m<2【分析】根据不等式的性质即可求解.【详解】依题意得m-2<0解得m<2故答案为:m<2.【点睛】此题主要考查不等式的求解,解题的关键是熟知不等式的性质.17.a≥3【详解】解:解5-2x≥-1,得x≤3;解x-a>0,得x>a,因为不等式组无解,所以a≥3.故答案为:a≥3.【点睛】本题考查不等式组的解集.解析:a≥3【详解】解:解5-2x≥-1,得x≤3;解x-a>0,得x>a,因为不等式组无解,所以a≥3.故答案为:a≥3.【点睛】本题考查不等式组的解集.18.4或6【解析】【分析】根据三角形三边关系,可令第三边为x,则5-3<x<5+3,即2<x<8,又因为第三边长为偶数,即可求得答案.【详解】由题意,令第三边为x,则5-3<x<5+3,即2<解析:4或6【解析】【分析】根据三角形三边关系,可令第三边为x,则5-3<x<5+3,即2<x<8,又因为第三边长为偶数,即可求得答案.【详解】由题意,令第三边为x,则5-3<x<5+3,即2<x<8,∵第三边长为偶数,∴第三边长是4或6,故答案为:4或6.【点睛】本题考查了三角形三边关系,熟练掌握三角形的三边关系是解决此类问题的关键.19.-5或-1或-3【分析】根据零指数幂和1的任何次幂都等于1分情况讨论求解.【详解】解:根据0指数的意义,得:当x+2≠0时,x+5=0,解得:x=﹣5.当x+2=1时,x=﹣1,当x+2解析:-5或-1或-3【分析】根据零指数幂和1的任何次幂都等于1分情况讨论求解.【详解】解:根据0指数的意义,得:当x +2≠0时,x +5=0,解得:x =﹣5.当x +2=1时,x =﹣1,当x +2=﹣1时,x =﹣3,x +5=2,指数为偶数,符合题意. 故答案为:﹣5或﹣1或﹣3.【点睛】本题考查零指数幂和有理数的乘方,掌握零指数幂和1的任何次幂都是1是本题的解题关键.20.;【详解】解:由题意可知,∠B=60°,∠C=70°,所以°,所以°,在三角形BAE 中,°,所以∠EAD=5°故答案为:5°.【点睛】本题属于对角平分线和角度基本知识的变换求解.解析:5︒;【详解】解:由题意可知,∠B=60°,∠C=70°,所以18013050A ∠=-=°,所以25BAD ∠=°,在三角形BAE 中,906030BAE ∠=-=°,所以∠EAD=5°故答案为:5°.【点睛】本题属于对角平分线和角度基本知识的变换求解.21.4×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:4×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00000004,4的前面有8个0,所以n=8,所以0.00000004=4×10-8.故答案为:4×10-8.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.22.5×10-6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:5×10-6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0000025=2.5×10-6,故答案为2.5×10-6.【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.23.【分析】根据无理数的定义判断即可.【详解】解:在,,,,五个数中,无理数有,,两个.故答案为:2.【点睛】本题考查了无理数的判断,无理数指无限不循环小数,熟记无理数的定义是解题关键.解析:2【分析】根据无理数的定义判断即可.【详解】解:在 3.14-,π,17-五个数中,无理数有π,两个. 故答案为:2.【点睛】本题考查了无理数的判断,无理数指无限不循环小数,熟记无理数的定义是解题关键. 24.15【分析】由题意可知,阴影部分为长方形,根据平移的性质求出阴影部分长方形的长和宽,即可求得阴影部分的面积.【详解】∵边长为6cm 的正方形ABCD 先向上平移3cm ,∴阴影部分的宽为6-3=解析:15【分析】由题意可知,阴影部分为长方形,根据平移的性质求出阴影部分长方形的长和宽,即可求得阴影部分的面积.【详解】∵边长为6cm 的正方形ABCD 先向上平移3cm ,∴阴影部分的宽为6-3=3cm ,∵向右平移1cm ,∴阴影部分的长为6-1=5cm ,∴阴影部分的面积为3×5=15cm 2.故答案为15.【点睛】本题主要考查了平移的性质及长方形的面积公式,解决本题的关键是利用平移的性质得到阴影部分的长和宽.三、解答题25.a=4【分析】先联立x+2y=−1与2x−y=13解出x ,y ,再代入2x−3y=7a−9即可求出a 值.【详解】依题意得21213x y x y +=-⎧⎨-=⎩解得53xy=⎧⎨=-⎩,代入2x−3y=7a−9,得:a=4,故a的值为4.【点睛】此题主要考查二元一次方程组的解,解题的关键是熟知二元一次方程组的解法. 26.(1)x(x-y)2;(2)(3x-y-1)2;(3)(m-1)(m+2)(m-2).【分析】(1)首先提公因式x,然后利用完全平方公式即可分解;(2)根据完全平方公式进行因式分解即可;(3)首先提公因式(m-1)然后利用平方差公式即可分解.【详解】解:(1)原式=x(x2-2xy+y2)=x(x-y)2;(2)原式=(3x)2-2×(3x)(y+1)+(y+1)2=(3x-y-1)2;(3)原式=(m-1)(m2-4)=(m-1)(m+2)(m-2).【点睛】本题考查了用提公因式法和公式法进行因式分解,将式子分解彻底是解题关键.27.(1)23a(2)12(3)512【分析】(1)根据三角形的面积公式及比例特点即可求解;(2)连接AE,先求出△ACE的面积,再得到△ABC的面积即可;(3)连接BD,设△ADM的面积为a,则△BDM的面积为2a,设△CDN的面积为b,则△BDN的面积为b,根据图形的特点列出方程组求出a,b,故可求解.【详解】(1)设△ABC中BC边长的高为h,∵BM=2AM.∴BM=23 AB∴S=12BM×h=12×23AB×h=23S△ABC=23a故答案为:23 a;(2)如图2,连接AE,∵14 CD AC=∴CD=14 AC∴S△DCE=14S△ACE=1∴S△ACE=4,∵13 CE CB=∴CE=13 CB∴S△ACE=13S△ABC=4∴S△ABC=12;(3)如图3,连接BD,设△ADM的面积为a,∵13 AM AB=∴BM=2AM,BM=23 AB,∴S△BDM=2S△ABM=2a, S△BCM=23S△ABC=23设△CDN的面积为b,∵N是BC的中点,∴S△CDN=S△BDN=b,S△ABN=12S△ABC=12∴122223a a bb b a⎧++=⎪⎪⎨⎪++=⎪⎩,解得11214ab⎧=⎪⎪⎨⎪=⎪⎩∴四边形BMDN的面积为2a+b=5 12故答案为5 12.【点睛】此题主要考查三角形面积公式的应用,解题的关键是根据题意找到面积的之间的关系.28.(1)2a 2﹣4a 3;(2)a 7+a ﹣a 6;(3)4b 2﹣9a 2;(4)n 2﹣m 2【分析】(1)由题意根据单项式乘以多项式法则求出即可;(2)根据题意先算乘方,再合并同类项即可;(3)由题意直接根据平方差公式求出即可;(4)由题意先根据完全平方公式和单项式乘以多项式进行计算,再合并同类项即可.【详解】解:(1)2a (a ﹣2a 2)=2a 2﹣4a 3;(2)a 7+a ﹣(a 2)3=a 7+a ﹣a 6;(3)(3a +2b )(2b ﹣3a )=4b 2﹣9a 2;(4)(m ﹣n )2﹣2m (m ﹣n )=m 2﹣2mn +n 2﹣2m 2+2mn=n 2﹣m 2.【点睛】本题考查整式的混合运算,乘法公式等知识点,能正确根据整式的运算法则进行化简是解此题的关键.29.50︒.【分析】先根据平行线的性质得出BFG FGC ∠=∠,再根据CGE FGC EGF ∠=∠-∠结合已知角度即可求解.【详解】证明://AB CD ,∠BFG =140°,BFG FGC ∴∠=∠=140°,又∵CGE FGC EGF ∠=∠-∠,∠EGF =90°,1409050CGE ∴∠=︒-︒=︒. 【点睛】本题考查的是平行线的性质,熟知平行线及角平分线的性质是解答此题的关键.解题时注意:两直线平行,内错角相等.30.4ab+10b 2;36.【解析】【分析】先利用完全平方公式和平方差公式计算,再去括号、合并同类项即可化简原式,继而将a ,b 的值代入计算可得.【详解】原式=4a 2+4ab +b 2﹣(4a 2﹣9b 2)=4a 2+4ab +b 2﹣4a 2+9b 2=4ab +10b 2当a 12=,b =﹣2时,原式=412⨯⨯(﹣2)+10×(﹣2)2=﹣4+10×4=﹣4+40=36. 【点睛】 本题考查了整式的混合运算﹣化简求值,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握运算法则是解答本题的关键.31.(1)2249(2)5x x x -+=-+;2249(3)10x x x x -+=+-;2249(3)2x x x x -+=-+;(2)19;(3)4【分析】(1)根据材料中的三种不同形式的配方,“余项“分别是常数项、一次项、二次项,可解答;(2)将x 2+y 2-6x+10y+34配方,根据平方的非负性可得x 和y 的值,可解答;(3)通过配方后,求得a ,b ,c 的值,再代入代数式求值.【详解】解:(1)249x x -+的三种配方分别为:2249(2)5x x x -+=-+;2249(3)10x x x x -+=+-;2249(3)2x x x x -+=-+(或2222549339x x x x ⎛⎫-+=-+ ⎪⎝⎭; (2)∵x 2+y 2-6x+10y+34=x 2-6x+9+y 2+10y+25=(x-3)2+(y+5)2=0,∴x-3=0,y+5=0,∴x=3,y=-5,∴3x-2y=3×3-2×(-5)=19(3)2223240a b c ab b c ++---+=()2222134421044a ab b b bc c -++-++-+= 22213(2)(1)024a b b c ⎛⎫-+-+-= ⎪⎝⎭ ∴102a b -=,3(2)04b -=,10c -= ∴1a =,2b =,1c =,则4a b c ++=【点睛】本题考查的是配方法的应用,首先利用完全平方公式使等式变为两个非负数和一个正数的和的形式,然后利用非负数的性质解决问题.32.21m -<<【分析】先解方程组325x y a x y a -=-⎧⎨+=⎩,消去a 用含x 的式子表示y,再将x=3-m 代入y 中,从而得到用含m 的式子表示y,在根据15y -<<,解关于m 的不等式组,求出m 的取值范围.【详解】解:325x y a x y a -=-⎧⎨+=⎩①②,①5⨯+②得6315x y -=即25y x =-③ 由3m x +=得3x m =-,代入③得,12y m =-又因为15y -<<,则1125m -<-<,解得21m -<<【点睛】本题主要考查了分式方程的解以及二元一次方程组的解,解题时需要掌握解二元一次方程和一元一次不等式的方法.33.(1)50°;(2)①见解析;②见解析;(3)360°.【分析】(1)根据题意,已知70C ∠=︒,65B ∠=︒,可结合三角形内角和定理和折叠变换的性质求解;(2)①先根据折叠得:∠ADE=∠A ′DE ,∠AED=∠A ′ED ,由两个平角∠AEB 和∠ADC 得:∠1+∠2等于360°与四个折叠角的差,化简得结果;②利用两次外角定理得出结论;(3)由折叠可知∠1+∠2+∠3+∠4+∠5+∠6等于六边形的内角和减去(∠B'GF+∠B'FG)以及(∠C'DE+∠C'ED)和(∠A'HL+∠A'LH),再利用三角形的内角和定理即可求解.【详解】解:(1)∵70C ∠=︒,65B ∠=︒,∴∠A ′=∠A=180°-(65°+70°)=45°,∴∠A ′ED+∠A ′DE =180°-∠A ′=135°,∴∠2=360°-(∠C+∠B+∠1+∠A ′ED+∠A ′DE )=360°-310°=50°;(2)①122A ∠+∠=∠,理由如下由折叠得:∠ADE=∠A ′DE ,∠AED=∠A ′ED ,∵∠AEB+∠ADC=360°,∴∠1+∠2=360°-∠ADE-∠A ′DE-∠AED-∠A ′ED=360°-2∠ADE-2∠AED ,∴∠1+∠2=2(180°-∠ADE-∠AED )=2∠A ;②221A ∠=∠+∠,理由如下:∵2∠是ADF 的一个外角∴2A AFD ∠=∠+∠.∵AFD ∠是A EF '△的一个外角∴1AFD A '∠=∠+∠又∵A A '∠=∠∴221A ∠=∠+∠(3)如图由题意知,∠1+∠2+∠3+∠4+∠5+∠6=720°-(∠B'GF+∠B'FG)-(∠C'DE+∠C'ED)-(∠A'HL+∠A'LH)=720°-(180°-∠B')-(180°-C')-(180°-A')=180°+(∠B'+∠C'+∠A')又∵∠B=∠B',∠C=∠C',∠A=∠A',∠A+∠B+∠C=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.【点睛】题主要考查了折叠变换、三角形、四边形内角和定理.注意折叠前后图形全等;三角形内角和为180°;四边形内角和等于360度.34.(1)领带的制作成本是120元,丝巾的制作成本是160元;(2)可以制作2000条领带;(3)42a b =⎧⎨=⎩ 【分析】(1)设领带及丝巾的制作成本是x 元和y 元,根据题意列出方程组求解即可; (2)由600(2)W x y =+与400(3)W x y =+可得到43y x =,代入可得2000W x =,即可求得答案;(3)根据44600(2)300()33x x ax bx +=+即可表达出a 、b 的关系式即可解答. 【详解】解:(1)设领带及丝巾的制作成本是x 元和y 元, 则600(2)240000400(3)240000x y x y +=⎧⎨+=⎩解得:120160x y =⎧⎨=⎩答:领带的制作成本是120元,丝巾的制作成本是160元.(2)由题意可得:600(2)W x y =+,且400(3)W x y =+,∴600(2)400(3)x y x y +=+,整理得:43y x =,代入 600(2)W x y =+ 可得:4600(2)20003W x x x =+=, ∴可以制作2000条领带.(3)由(2)可得:43y x =, ∴44600(2)300()33x x ax bx +=+ 整理可得:3420a b +=∵a 、b 都为正整数, ∴42a b =⎧⎨=⎩【点睛】本题考查了二元一次方程组的综合应用,解题的关键是根据题意列出方程,并对已知条件进行适当的变形.35.(1)24,21x x y y ==⎧⎧⎨⎨==⎩⎩(2)-136(3)02.5x y =⎧⎨=⎩【解析】分析:(1)先对方程变形为x=6-2y ,然后可带入数值求解;(2)把已知的x+y=0和方程x+2y-6=0组合成方程组,求解方程组的解,然后代入方程x-2y+mx+5=0即可求m 的值;(3)方程整理后,根据无论m 如何变化,二元一次方程组总有一个固定的解,列出方程组,解方程组即可;详解:(1)∵x+2y-6=0∴x=6-2y当y=1时,x=4,当y=2时,x=2∴24,21x x y y ==⎧⎧⎨⎨==⎩⎩(2)根据题意,把x+y=6和x+2y-6=0构成方程组为:6260x y x y +=⎧⎨+-=⎩和 解得66x y =-⎧⎨=⎩ 把66x y =-⎧⎨=⎩代入x-2y+mx+5=0, 解得m=136-(3)∵无论实数m 取何值,方程x -2y+mx+5=0总有一个固定的解,∴x=0时,m 的值与题目无关∴y=2.5∴02.5x y =⎧⎨=⎩点睛:此题主要考查了二元一次方程组的应用,对方程组中的方程灵活变形,构成可解方程是解题关键,有一定的难度,合理选择加减消元法和代入消元法解题是关键.36.(1)2()b a -;(2)22()()4a b a b ab +=-+;(3)±5;(4)详见解析【分析】(1)表示出阴影部分正方形的边长,然后根据正方形的面积公式列式即可;(2)根据大正方形的面积减去小正方形的面积等于四个小长方形的面积列式即可; (3)将(x -y )2变形为(x +y )2—4xy ,再代入求值即可;(4)由已知的恒等式,画出相应的图形,如图所示.【详解】解:(1)阴影部分为一个正方形,其边长为b -a ,∴其面积为:2()b a -,故答案为:2()b a -;(2)大正方形面积为:()2a b +小正方形面积为:2()b a -=2()a b -, 四周四个长方形的面积为:4ab ,∴22()()4a b a b ab +=-+,故答案为:22()()4a b a b ab +=-+;(3)由(2)知,22()()4x y x y xy +=-+, ∴22()()4x y x y xy -=+-, ∴2()4x y x y xy -=±+-=2116454±-⨯=±, 故答案为:±5;(4)符合等式()()2222252a b a b a ab b ++=++的图形如图所示,【点睛】本题考查了完全平方公式的几何背景,此类题目关键在于同一个图形的面积用两种不同的方法表示.。
新苏科初一数学下册第二学期期末测试题及答案(共五套)
新苏科初一数学下册第二学期期末测试题及答案(共五套)一、选择题1.下列各式从左到右的变形中,是因式分解的是( ). A .x (a-b )=ax-bx B .x 2-1+y 2=(x-1)(x+1)+y 2 C .y 2-1=(y+1)(y-1)D .ax+bx+c=x (a+b )+c2.用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底16个,一个盒身与两个盒底配成一套罐头盒,现有18张白铁皮,设用x 张制作盒身,y 张制作盒底,可以使盒身和盒底正好配套,则所列方程组正确的是( )A .181016x y x y +=⎧⎨=⎩B .1821016x y x y +=⎧⎨⨯=⎩C .1810216x y x y +=⎧⎨=⨯⎩D .181610x y x y +=⎧⎨=⎩3.把多项式228x -分解因式,结果正确的是( )A .22(8)x -B .22(2)x -C .D .42()x x x-4.将一张长方形纸片按如图所示折叠后,再展开.如果∠1=56°,那么∠2等于( )A .56°B .62°C .66°D .68°5.足球比赛中,每场比赛都要分出胜负每队胜1场得3分,负一场扣1分,某队在8场比赛中得到12分,若设该队胜的场数为x 负的场数为y ,则可列方程组为( ) A .8312x y x y +=⎧⎨-=⎩B .8312x y x y -=⎧⎨-=⎩C .18312x y x y +=⎧⎨+=⎩D .8312x y x y -=⎧⎨+=⎩6.如图,下列条件:13241804523623∠=∠∠+∠=∠=∠∠=∠∠=∠+∠①,②,③,④,⑤中能判断直线12l l 的有( )A .5个B .4个C .3个D .2个7.下列说法中,正确的个数有( )①同位角相等②三角形的高在三角形内部③一个多边形的边数每增加一条,这个多边形的内角和就增加180°, ④两个角的两边分别平行,则这两个角相等 A .1个 B .2个C .3 个D .4个 8.下列运算中,正确的是( )A .a 8÷a 2=a 4B .(﹣m)2•(﹣m 3)=﹣m 5C .x 3+x 3=x 6D .(a 3)3=a 69.将一副三角板如图放置,作CF //AB ,则∠EFC 的度数是( )A .90°B .100°C .105°D .110°10.下列各式中,不能够用平方差公式计算的是( )A .(y +2x )(2x ﹣y )B .(﹣x ﹣3y )(x +3y )C .(2x 2﹣y 2 )(2x 2+y 2 )D .(4a +b ﹣c )(4a ﹣b ﹣c )11.如图,有以下四个条件:其中不能判定//AB CD 的是( )①180B BCD ∠+∠=︒;②12∠=∠;③34∠=∠;④5B ∠=∠; A .① B .②C .③D .④12.已知x ay b=⎧⎨=⎩是方程组24213x y x y -=⎧⎨+=⎩的解,则32a b -的算术平方根为( )A .4±B .4C .2D .2±二、填空题13.如图,若AB ∥CD ,∠C=60°,则∠A+∠E=_____度.14.计算()()12x x --的结果为_____;15.已知()4432234464a b a a b a b ab b +=++++,则()4a b -=__________.16.如果42x -与231x mx ++的乘积中不含x 2项,则m=______________. 17.已知某种植物花粉的直径为0.00033cm ,将数据0.00033用科学记数法表示为________________.18.一个n 边形的内角和是它外角和的6倍,则n =_______.19.某红外线波长为0.00000094米,数字0.00000094用科学记数法表示为_____. 20.如图,两块三角板形状、大小完全相同,边//AB CD 的依据是_______________.21.有两个正方形,A B ,现将B 放在A 的内部得图甲,将,A B 并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形,A B 的边长之和为________.22.内角和等于外角和2倍的多边形是__________边形. 23.已知m a =2,n a =3,则2m n a -=_______________.24.在平面直角坐标系中,将点()2,3P -先向上平移1个单位长度,再向左平移3个单位长度后,得到点P ',则点P '的坐标为_______.三、解答题25.已知在△ABC 中,试说明:∠A +∠B +∠C =180°方法一: 过点A 作DE ∥BC . 则(填空) ∠B =∠ ,∠C =∠ ∵ ∠DAB +∠BAC + ∠CAE =180° ∴∠A +∠B +∠C =180°方法二: 过BC 上任意一点D 作DE ∥AC ,DF ∥AB 分别交AB 、AC 于E 、F (补全说理过程 )26.问题1:现有一张△ABC 纸片,点D 、E 分别是△ABC 边上两点,若沿直线DE 折叠. (1)探究1:如果折成图①的形状,使A 点落在CE 上,则∠1与∠A 的数量关系是 ;(2)探究2:如果折成图②的形状,猜想∠1+∠2和∠A 的数量关系是 ; (3)探究3:如果折成图③的形状,猜想∠1、∠2和∠A 的数量关系,并说明理由.(4)问题2:将问题1推广,如图④,将四边形ABCD 纸片沿EF 折叠,使点A 、B 落在四边形EFCD 的内部时,∠1+∠2与∠A 、∠B 之间的数量关系是 . 27.因式分解: (1)3a xyyx ;(2)()222416x x +-.28.如图,ABC ∆中,B ACB ∠=∠,点,D F 分别在边,BC AC 的延长线上,连结,CE CD 平分ECF ∠.求证://AB CE .29.A 市准备争创全国卫生城市.某小区积极响应,决定在小区内安装垃圾分类的提示牌和垃圾箱,若购买2个提示牌和3个垃圾箱共需550元,且垃圾箱的单价是提示牌单价的3倍.(1)求提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案. 30.计算:(1)2201(2)3()3----÷- (2)22(21)(21)x x -+31.实验中学要为学校科技活动小组提供实验器材,计划购买A 型、B 型两种型号的放大镜.若购买100个A 型放大镜和150个B 型放大镜需用1500元;若购买120个A 型放大镜和160个B 型放大镜需用1720元.(1)求每个A 型放大镜和每个B 型放大镜各多少元;(2)学校决定购买A 型放大镜和B 型放大镜共75个,总费用不超过570元,那么最多可以购买多少个A型放大镜?32.已知:如图EF∥CD,∠1+∠2=180°.(1)试说明GD∥CA;(2)若CD平分∠ACB,DG平分∠CDB,且∠A=40°,求∠ACB的度数.33.解方程组:41 325 x yx y+=⎧⎨-=⎩.34.如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG交于点H,∠C=∠EFG,∠CED=∠GHD.(1)求证:CE∥GF;(2)试判断∠AED与∠D之间的数量关系,并说明理由;(3)若∠EHF=80°,∠D=30°,求∠AEM的度数.35.(问题背景)(1)如图1的图形我们把它称为“8字形”,请说理证明∠A+∠B=∠C+∠D(简单应用)(2)如图2,AP、CP分别平分∠BAD、∠BCD,若∠ABC=28°,∠ADC=20°,求∠P的度数(可直接使用问题(1)中的结论)(问题探究)(3)如图3,直线BP平分∠ABC的外角∠FBC,DP平分∠ADC的外角∠ADE,若∠A=30°,∠C=18°,则∠P的度数为(拓展延伸)(4)在图4中,若设∠C=x,∠B=y,∠CAP=14∠CAB,∠CDP=14∠CDB,试问∠P与∠C、∠B之间的数量关系为(用x、y表示∠P)(5)在图5中,BP平分∠ABC,DP平分∠ADC的外角∠ADE,猜想∠P与∠A、∠C的关系,直接写出结论.36.如图1,在△ABC的AB边的异侧作△ABD,并使∠C=∠D,点E在射线CA上.(1)如图,若AC∥BD,求证:AD∥BC;(2)若BD⊥BC,试解决下面两个问题:①如图2,∠DAE=20°,求∠C的度数;②如图3,若∠BAC=∠BAD,过点B作BF∥AD交射线CA于点F,当∠EFB=7∠DBF时,求∠BAD的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】A. 是整式的乘法,故A错误;B. 没把一个多项式转化成几个整式积,故B错误;C. 把一个多项式转化成几个整式积,故C正确;D. 没把一个多项式转化成几个整式积,故D错误;故选C.2.B解析:B【分析】⨯=盒底的个数;(2)制作盒身根据题意可知,本题中的相等关系是:(1)盒身的个数2=,再列出方程组即可.的白铁皮张数+制作盒底的白铁皮张数18解:设用x张制作盒身,y张制作盒底,根据题意得:18 21016x yx y+=⎧⎨⨯=⎩.故选:B.【点睛】此题考查从实际问题中抽出二元一次方程组,根据题目给出的条件,找出合适的等量关系注意运用本题中隐含的一个相等关系:“一个盒身与两个盒底配成一套盒”.3.C解析:C【解析】试题分析:首先进行提取公因式,然后利用平方差公式进行因式分解.原式=2(2x-4)=2(x+2)(x-2).考点:因式分解.4.D解析:D【解析】【分析】两直线平行,同旁内角互补;另外折叠前后两个角相等.根据这两条性质即可解答.【详解】根据题意知:折叠所重合的两个角相等.再根据两条直线平行,同旁内角互补,得:2∠1+∠2=180°,解得:∠2=180°﹣2∠1=68°.故选D.【点睛】注意此类折叠题,所重合的两个角相等,再根据平行线的性质得到∠1和∠2的关系,即可求解.5.A解析:A【分析】设这个队胜x场,负y场,根据在8场比赛中得到12分,列方程组即可.【详解】解:设这个队胜x场,负y场,根据题意,得8 312 x yx y+=⎧⎨-=⎩.故选:A.【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.6.B【分析】根据平行线的判定定理对各小题进行逐一判断即可.【详解】解:①∵∠1=∠3,∴l1∥l2,故本小题正确;②∵∠2+∠4=180°,∴l1∥l2,故本小题正确;③∵∠4=∠5,∴l1∥l2,故本小题正确;④∠2=∠3不能判定l1∥l2,故本小题错误;⑤∵∠6=∠2+∠3,∴l1∥l2,故本小题正确.故选B.【点睛】本题考查的是平行线的判定,熟记平行线的判定定理是解答此题的关键.7.A解析:A【分析】根据同位角的定义、三角形垂心的定义及多边形内角和公式、平行线的性质逐一判断可得.【详解】解:①只有两平行直线被第三条直线所截时,同位角才相等,故此结论错误;②只有锐角三角形的三条高在三角形的内部,故此结论错误;③一个多边形的边数每增加一条,这个多边形的内角和就增加180°,此结论正确;④两个角的两边分别平行,则这两个角可能相等,也可能互补,故此结论错误.故选A.【点睛】本题主要考查同位角、三角形垂心及多边形内角和、平行线的性质,熟练掌握基本定义和性质是解题的关键.8.B解析:B【分析】根据同类项的定义及合并同类相法则;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,积的乘方,分析判断后利用排除法求解.【详解】解:A、a8÷a2=a4不正确;B、(-m)2·(-m3)=-m5正确;C、x3+x3=x6合并得2x3,故本选项错误;D、(a3)3=a9,不正确.故选B.【点睛】本题主要考查了合并同类项及同底数幂的乘法、除法,熟练掌握运算性质和法则是解题的9.C解析:C 【分析】根据等腰直角三角形求出∠BAC ,根据平行线求出∠ACF ,根据三角形内角和定理求出即可. 【详解】解:∵△ACB 是等腰直角三角形, ∴∠BAC =45°, ∵CF //AB ,∴∠ACF =∠BAC =45°, ∵∠E =30°,∴∠EFC =180°﹣∠E ﹣∠ACF =105°, 故选:C . 【点睛】本题考查了三角形的内角和定理和平行线的性质,能求出各个角的度数是解此题的关键.10.B解析:B 【分析】根据平方差公式:22()()a b a b a b +-=-进行判断. 【详解】A 、原式22(2)x y =-,不符合题意;B 、原式2(3)x y =-+,符合题意;C 、原式2222(2)()x y =-,不符合题意;D 、原式22(4)a c b =--,不符合题意; 故选B . 【点睛】本题考查平方差公式,熟练掌握平方差公式是解题的关键.11.B解析:B 【分析】根据平行线的判定定理求解,即可求得答案. 【详解】解:①∵∠B+∠BCD=180°, ∴AB ∥CD ; ②∵∠1=∠2, ∴AD ∥BC ;③∵∠3=∠4,∴AB ∥CD ;④∵∠B=∠5,∴AB ∥CD ;∴不能得到AB ∥CD 的条件是②.故选:B .【点睛】此题考查了平行线的判定.此题难度不大,注意掌握数形结合思想的应用,弄清截线与被截线.12.B解析:B【分析】把方程组24213x y x y -=⎧⎨+=⎩的解求解出来即可得到a 、b 的值,再计算32a b -的算术平方根即可得到答案;【详解】解:24213x y x y -=⎧⎨+=⎩①② 把①式×5得:248x y -= ③,用②式-③式得:55y = ,解得:y=1,把1y = 代入①式得到:24x -= ,即:6x = ,又x a y b=⎧⎨=⎩是方程组24213x y x y -=⎧⎨+=⎩的解, 所以61a b =⎧⎨=⎩, 故3216a b -=,所以32a b -的算术平方根=16的算术平方根,4== ,故答案为:4;【点睛】本题主要考查了二元一次方程组的求解以及算术平方根的定义,掌握用消元法求解二元一次方程组的解是解题的关键;二、填空题13.60【解析】【分析】先由AB∥CD,求得∠C的度数,再根据三角形的外角等于与它不相邻的两内角之和可求∠A+∠E的度数.【详解】∵AB∥CD,∴∠C与它的同位角相等,根据三角形的外角等于解析:60【解析】【分析】先由AB∥CD,求得∠C的度数,再根据三角形的外角等于与它不相邻的两内角之和可求∠A+∠E的度数.【详解】∵AB∥CD,∴∠C与它的同位角相等,根据三角形的外角等于与它不相邻的两内角之和,所以∠A+∠E=∠C=60度.故答案为60.【点睛】本题考查了平行线的性质,三角形的外角等于和它不相邻的两个内角的和. ①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补;④夹在两平行线间的平行线段相等.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.14.【分析】原式利用多项式乘多项式法则计算即可得到结果.【详解】原式=x²−2x−x+2=x²−3x+2,故答案为:x²−3x+2.【点睛】点评:此题考查了多项式乘多项式,熟练掌握运算法则解析:2-32x x【分析】原式利用多项式乘多项式法则计算即可得到结果.【详解】原式=x²−2x−x+2=x²−3x+2,故答案为:x²−3x+2.【点睛】点评:此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.15.a4-4a3b+6a2b2-4ab3+b4【分析】原式变形后,利用(a+b)4=a4+4a3b+6a2b2+4ab3+b4,即可得到(a-b)4的结果.【详解】解:根据题意得:(a-b)4=解析:a4-4a3b+6a2b2-4ab3+b4【分析】原式变形后,利用(a+b)4=a4+4a3b+6a2b2+4ab3+b4,即可得到(a-b)4的结果.【详解】解:根据题意得:(a-b)4=[a+(-b)]4=a4-4a3b+6a2b2-4ab3+b4,故答案为:a4-4a3b+6a2b2-4ab3+b4【点睛】此题考查了完全平方公式,熟练掌握公式是解本题的关键.16.【分析】先根据多项式的乘法法则展开,再根据题意,二次项的系数等于0列式求解即可.【详解】解:(4x-2)(3x2+mx+1)=12x3+(4m-6)x2+(4-2m)x-2,∵不含x2项,解析:3 2【分析】先根据多项式的乘法法则展开,再根据题意,二次项的系数等于0列式求解即可.【详解】解:(4x-2)(3x2+mx+1)=12x3+(4m-6)x2+(4-2m)x-2,∵不含x2项,∴4m-6=0,解得m=32.故答案为3 2 .【点睛】此题考查多项式与多项式的乘法,运算法则需要熟练掌握,不含某一项就让这一项的系数等于0是解题的关键.17.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解析:43.310-⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:将数据0.00033用科学记数法表示为43.310-⨯,故答案为:43.310-⨯.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.18.14【分析】根据多边形的内角和公式及外角和列出等式,解出n 即可.【详解】多边形的外角和为:360°,多边形的内角和公式为:(n-2)×180°,根据题意得:(n-2)×180=360×6解析:14【分析】根据多边形的内角和公式及外角和列出等式,解出n 即可.【详解】多边形的外角和为:360°,多边形的内角和公式为:(n-2)×180°,根据题意得:(n-2)×180=360×6,解得:n=14,故答案为:14.【点睛】本题是对多边形内角和及外角和的考查,熟练掌握多边形的内角和公式及外角和是解决本题的关键.19.4×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:4×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00000094=9.4×10﹣8,故答案是:9.4×10﹣8.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.20.内错角相等,两直线平行【分析】利用平行线的判定方法即可解决问题.【详解】解:由题意:,(内错角相等,两直线平行)故答案为:内错角相等,两直线平行.【点睛】本题考查平行线的判定,解题的解析:内错角相等,两直线平行【分析】利用平行线的判定方法即可解决问题.【详解】∠=∠,解:由题意:ABD CDBAB CD∴(内错角相等,两直线平行)//故答案为:内错角相等,两直线平行.【点睛】本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.21.5【分析】设正方形A,B的边长分别为a,b,根据图形构建方程组即可解决问题.【详解】解:设正方形A,B的边长分别为a,b.由图甲得:,由图乙得:,化简得,∴,∵a+b>0,∴a+b解析:5【分析】设正方形A ,B 的边长分别为a ,b ,根据图形构建方程组即可解决问题.【详解】解:设正方形A ,B 的边长分别为a ,b .由图甲得:2()1a b -=,由图乙得:22()()12+--=a b a b ,化简得6ab =,∴22()()412425+=-+=+=a b a b ab ,∵a +b >0,∴a +b =5,故答案为:5.【点睛】本题考查完全平方公式,正方形的面积等知识,解题的关键是学会利用参数,构建方程组解决问题,属于中考常考题型. 22.六【解析】【分析】设多边形有n 条边,则内角和为180°(n-2),再根据内角和等于外角和2倍可得方程180(n-2)=360×2,再解方程即可.【详解】解:设多边形有n 条边,由题意得:1解析:六【解析】【分析】设多边形有n 条边,则内角和为180°(n-2),再根据内角和等于外角和2倍可得方程180(n-2)=360×2,再解方程即可.【详解】解:设多边形有n 条边,由题意得:180(n-2)=360×2,解得:n=6,故答案为:六.【点睛】本题考查多边形的内角和和外角和,关键是掌握内角和为180°(n-2).23.【分析】根据同底数幂的除法和幂的乘方与积的乘方的运算法则求解即可.【详解】解:am-2n=am÷a2n=am÷(an )2=2÷9=故答案为【点睛】本题考查了同底数幂的除法和幂的 解析:29【分析】根据同底数幂的除法和幂的乘方与积的乘方的运算法则求解即可.【详解】解:a m-2n=a m ÷a 2n=a m ÷(a n )2=2÷9 =29故答案为29 【点睛】本题考查了同底数幂的除法和幂的乘方与积的乘方,解答本题的关键在于熟练掌握各知识点的运算法则.24.【分析】根据向左平移横坐标减,向上平移纵坐标加求解即可得到平移后的坐标.【详解】解:将点先向上平移个单位长度,得到,再向左平移个单位长度后得到:, 故答案为:;【点睛】本题考查了坐标与图解析:()1,2--【分析】根据向左平移横坐标减,向上平移纵坐标加求解即可得到平移后的坐标.【详解】解:将点()2,3P -先向上平移1个单位长度,得到()()2,312,2-+=-,再向左平移3个单位长度后得到:()()23,21,2--=--,故答案为:()1,2--;【点睛】本题考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.三、解答题25.DAB ,CAE ;见解析【分析】方法一:根据平行线的性质:两直线平行,内错角相等解答;方法二:根据平行线的性质:两直线平行、同位角相等解答.【详解】方法一:∵DE ∥BC,∴∠B=∠DAB ,∠C=∠CAE ,故答案为:DAB ,CAE ;方法二:∵DE ∥AC ,∴∠A =∠BED ,∠C =∠BDE ,∵DF ∥AB ,∴∠EDF =∠BED ,∠B =∠CDF ,∵∠CDF +∠EDF +∠BDE =180°,∴∠A +∠B +∠C =180°.【点睛】此题考查平行线的性质,三角形内角和定理的证明过程,解题的关键是熟记平行线的性质并运用于解题.26.(1)12A ∠=∠;(2)122A ∠+∠=∠;(3)见解析;(4)1222360A B ∠+∠=∠+∠-︒【分析】(1)根据三角形外角性质可得;(2)在四边形A EAD '中,内角和为360°,∠BDA=∠CEA=180°,利用这两个条件,进行角度转化可得关系式;(3)如下图,根据(1)可得∠1=2∠DAA ',∠2=2∠EAA ',从而推导出关系式; (4)根据平角的定义以及四边形的内角和定理,与(2)类似思路探讨,可得关系式.【详解】(1)∵△'EDA 是△EDA 折叠得到∴∠A=∠A '∵∠1是△'ADA 的外角∴∠1=∠A+∠A '∴12A ∠=∠;(2)∵在四边形A EAD '中,内角和为360°∴∠A+A '+∠A DA '+∠A EA '=360°同理,∠A=∠A '∴2∠A+∠A DA '+∠A EA '=360°∵∠BDA=∠CEA=180∴∠1+∠A DA '+∠A EA '+∠2=360°∴122A ∠+∠=∠ ;(3)数量关系:212A ∠-∠=∠理由:如下图,连接AA '由(1)可知:∠1=2∠DAA ',∠2=2∠EAA '∴212()2EAA DAA DAE ∠-∠=∠-=∠'∠';(4)由折叠性质知:∠2=180°-2∠AEF ,∠1=180°-2∠BFE相加得:123602(360)22360A B A B ∠+∠=︒-︒-∠-∠=∠+∠-︒.【点睛】本题考查角度之间的关系,(4)问的解题思路是相同的,主要运用三角形的内角和定理和四边形的内角和定理进行角度转换.27.(1)3xy a ;(2)()()2222x x -+. 【分析】(1)原式先提取负号,再按提取公因式分解即可;(2)原式利用平方差公式分解因式,再利用完全平方分解因式即可;【详解】(1)3a xy y x 3a xy x y 3x y a ;(2)()222416x x +-()()224444x x x x =+-++2222x x .【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 28.证明见详解.【分析】根据B ACB ∠=∠,DCF ACB ∠=∠,CD 平分ECF ∠,可得B DCF ∠=∠,ECD DCF ,容易得ECD B ∠=∠,即可得//AB CE .【详解】∵B ACB ∠=∠,DCF ACB ∠=∠,∴B DCF ∠=∠,又∵CD 平分ECF ∠,∴ECD DCF∴ECD B ∠=∠∴//AB CE .【点睛】本题考查了对顶角的性质,角平分线的定义和平行线的证明,熟悉相关性质是解题的关键.29.(1)50元,150元;(2)提示牌50个,垃圾箱50个;提示牌51个,垃圾箱49个;提示牌52个,垃圾箱48个;【分析】1)根据“购买2个提示牌和3个垃圾箱共需550元”,建立方程求解即可得出结论; (2)根据“费用不超过10000元和至少需要安放48个垃圾箱”,建立不等式即可得出结论.【详解】解:(1)设提示牌的单价为x 元,则垃圾箱的单价为3x 元,根据题意得,233550x x +⨯=,50x ∴=,3150x ∴=,即:提示牌和垃圾箱的单价各是50元和150元;(2)设购买提示牌y 个(y 为正整数),则垃圾箱为(100)y -个,根据题意得,1004850150(100)10000y y y ,5052y , y 为正整数,y ∴为50,51,52,共3种方案;即:温馨提示牌50个,垃圾箱50个;温馨提示牌51个,垃圾箱49个;温馨提示牌52个,垃圾箱48个,【点睛】此题主要考查了一元一次不等式组,一元一次方程的应用,正确找出相等关系是解本题的关键.30.(1)374-.(2)16x 4−8x 2+1. 【分析】 (1)原式利用负整数指数幂,零指数幂、平方的计算法则得到1914--÷,再计算即可得到结果; (2)原式逆用积的乘方运算法则变形,再利用平方差公式及完全平方公式化简即可得到结果.【详解】(1)2201(2)3()3----÷-= 1914--÷=374-. (2)原式=[(2x−1)(2x +1)]2=(4x 2−1)2=16x 4−8x 2+1.【点睛】本题考查零指数幂、负整数指数幂 、平方差公式及完全平方公式,熟练掌握运算法则是解本题的关键.31.(1)每个A 型放大镜和每个B 型放大镜分别为9元,4元;(2)最多可以购买54个A 型放大镜.【分析】(1)根据题意设每个A 型放大镜和每个B 型放大镜分别为x 元,y 元,列出方程组即可解决问题;(2)由题意设购买A 型放大镜a 个,列出不等式并进行分析求解即可解决问题.【详解】解:(1)设每个A 型放大镜和每个B 型放大镜分别为x 元,y 元,可得:10015015001201601720x y x y +⎧⎨+⎩==, 解得:94x y =⎧⎨=⎩. 答:每个A 型放大镜和每个B 型放大镜分别为9元,4元.(2)设购买A 型放大镜a 个,根据题意可得:94(75)570a a +⨯-≤,解得:54a ≤.答:最多可以购买54个A 型放大镜.【点睛】本题考查二元一次方程组的应用以及一元一次不等式的应用等知识,解题的关键是理解题意,列出方程组和不等式进行分析解答.32.(1)见解析;(2)∠ACB =80°【分析】(1)利用同旁内角互补,说明GD ∥CA ;(2)由GD ∥CA ,得∠A =∠GDB =∠2=40°=∠ACD ,由角平分线的性质可求得∠ACB 的度数.【详解】解:(1)∵EF ∥CD∴∠1+∠ECD =180°又∵∠1+∠2=180°∴∠2=∠ECD∴GD ∥CA ;(2)由(1)得:GD ∥CA ,∴∠BDG =∠A =40°,∠ACD =∠2,∵DG 平分∠CDB ,∴∠2=∠BDG =40°,∴∠ACD =∠2=40°,∵CD 平分∠ACB ,∴∠ACB =2∠ACD =80°.【点睛】本题考查了角平分线的性质和平行线的性质.解决本题的关键熟练利用所学的性质进行解题.33.11717x y ⎧=⎪⎪⎨⎪=-⎪⎩【分析】直接利用加减消元法解方程组即可.【详解】41325x y x y +=⎧⎨-=⎩①② 由+2⨯①②得:7x=11, 解得117x =, 把117x =代入方程①得:17y =-, 故原方程组的解为:11717x y ⎧=⎪⎪⎨⎪=-⎪⎩. 【点睛】本题考查了解二元一次方程组,熟练掌握加减消元法解二元一次方程组是解本题的关键.34.(1)证明见解析;(2)∠AED +∠D =180°,理由见解析;(3)110°【分析】(1)依据同位角相等,即可得到两直线平行;(2)依据平行线的性质,可得出∠FGD=∠EFG,进而判定AB∥CD,即可得出∠AED+∠D=180°;(3)依据已知条件求得∠CGF的度数,进而利用平行线的性质得出∠CEF的度数,依据对顶角相等即可得到∠AEM的度数.【详解】(1)∵∠CED=∠GHD,∴CB∥GF;(2)∠AED+∠D=180°;理由:∵CB∥GF,∴∠C=∠FGD,又∵∠C=∠EFG,∴∠FGD=∠EFG,∴AB∥CD,∴∠AED+∠D=180°;(3)∵∠GHD=∠EHF=80°,∠D=30°,∴∠CGF=80°+30°=110°,又∵CE∥GF,∴∠C=180°﹣110°=70°,又∵AB∥CD,∴∠AEC=∠C=70°,∴∠AEM=180°﹣70°=110°.【点睛】本题主要考查了平行线的判定与性质,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.35.(1)证明见解析;(2)24°;(3)24°;(4)∠P=34x+14y;(5)∠P=180()2A C︒-∠+∠【分析】(1)根据三角形内角和为180°,对顶角相等,即可证得∠A+∠B=∠C+∠D(2)由(1)的结论得:∠BCP+∠P=∠BAP+∠ABC①,∠PAD+∠P=∠PCD+∠ADC②,将两个式子相加,已知AP、CP分别平分∠BAD、∠BCD,可得∠BAP=∠PAD,∠BCP=∠PCD,可证得∠P=12(∠ABC+∠ADC),即可求出∠P度数.(3)已知直线BP平分∠ABC的外角∠FBC,DP平分∠ADC的外角∠ADE,可得∠1=∠2,∠3=∠4,由(1)的结论得:∠C+180°-∠3=∠P+180°-∠1,∠A+∠4=∠P+∠2,两式相加即可求出∠P的度数.(4)由(1)的结论得:14∠CAB+∠C=∠P+14∠CDB,34∠CAB+∠P=∠B+34∠CDB,第一个式子乘以3,得到的式子减去第二个式子即可得出用x、y表示∠P(5)延长AB交DP于点F,标注出∠1,∠2,∠3,∠4,由(1)的结论得:∠A+2∠1=∠C+180°-2∠3,其中根据对顶角相等,三角形内角和,以及外角的性质即可得到∠1=∠PBF=180°-∠BFP-∠P=180°-(∠A+∠3)-∠P,代入∠A+2∠1=∠C+180°-2∠3,即可得出∠P与∠A、∠C的关系.【详解】(1)如图1,∠A+∠B+∠AOB=∠C+∠D+∠COD=180°∵∠AOB=∠COD∴∠A+∠B=∠C+∠D(2)∵AP、CP分别平分∠BAD、∠BCD∴∠BAP=∠PAD,∠BCP=∠PCD,由(1)的结论得:∠BCP+∠P=∠BAP+∠ABC①,∠PAD+∠P=∠PCD+∠ADC②①+②,得2∠P+∠PAD+∠BCP=∠BAP+∠ABC +∠PCD+∠ADC∴∠P=12(∠ABC+∠ADC)∴∠ABC=28°,∠ADC=20°∴∠P=12(28°+20°)∴∠P=24°故答案为:24°(3)∵如图3,直线BP平分∠ABC的外角∠FBC,DP平分∠ADC的外角∠ADE,∴∠1=∠2,∠3=∠4由(1)的结论得:∠C+180°-∠3=∠P+180°-∠1①,∠A+∠4=∠P+∠2②①+②,得∠C+180°-∠3+∠A+∠4=∠P+180°-∠1+∠P+∠2∴30°+18°=2∠P∴∠P=24°故答案为:24°(4)由(1)的结论得:14∠CAB+∠C=∠P+14∠CDB①,34∠CAB+∠P=∠B+34∠CDB②①×3,得34∠CAB+3∠C=3∠P+34∠CDB③②-③,得∠P-3x=y-3∠P∴∠P=34x+14y故答案为:∠P=34x+14y(5)如图5所示,延长AB交DP于点F由(1)的结论得:∠A+2∠1=∠C+180°-2∠3∵∠1=∠PBF=180°-∠BFP-∠P=180°-(∠A+∠3)-∠P ∴∠A+360°-2∠A-2∠3-2∠P=∠C+180°-2∠3解得:∠P=180()2A C︒-∠+∠故答案为:∠P=180()2A C︒-∠+∠【点睛】本题是考查了角平分线性质及三角形内角和定理,对顶角相等,三角形任一外角等于不相邻的两个内角和等知识点,本题是典型的拓展延伸题,一般第一问得出基本结论,后面的问题将基本结论作为解题基础,进行拓展延伸.36.(1)见解析;(2)35°;(3)117°【分析】(1)由AC∥BD得∠D=∠DAE,角的等量关系证明∠DAE与∠C相等,根据同位角得AD∥BC;(2)由BD⊥BC得∠HBC=90°,余角的性质和三角形外角性质解得∠C的度数为35°;(3)由BF∥AD得∠D=∠DBF,垂直的定义得∠DBC=90°,三角形的内角和定理,角的和差求得∠DBA=∠CBA=45°,由已知条件∠EFB=7∠DBF,角的和差得出∠BAD的度数为117°.【详解】解:(1)如图1所示:∵AC∥BD,∴∠D=∠DAE,又∵∠C=∠D,∴∠DAE=∠C,∴AD∥BC;(2)①如图2所示:∵BD⊥BC,∴∠HBC=90°,∴∠C+∠BHC=90°,又∵∠BHC=∠DAE+∠D,∠C=∠D,∠DAE=20°,∴20°+2∠C=90°,∴∠C=35°;②如图3所示:∵BF∥AD,∴∠D=∠DBF,又∵∠C=∠D,∴∠C=∠D=∠DBF,又∵BD⊥BC,∴∠DBC=90°,又∵∠D+∠DBA+∠BAD=180°,∠C+∠CBA+∠BAC=180°.∠BAC=∠BAD,∴∠DBA=∠CBA=45°,又∵∠EFB=7∠DBF,∠EFB=∠FBC+∠C,∴7∠DBF=2∠DBF+∠DBC,解得:∠DBF=18°,∴∠BAD=180°﹣45°﹣18°=117°.【点睛】本题考查了平行线的判定与性质,余角的性质,三角形的内角和性质,三角形的外角性质,角的和差等相关知识点,掌握平行线的判定与性质,三角形内角和和外角的性质是解题的关键.。
苏科七年级苏科初一数学下册第二学期期末测试题及答案(共五套) word版
苏科七年级苏科初一数学下册第二学期期末测试题及答案(共五套) word 版一、选择题1.对于算式20203﹣2020,下列说法错误的是( )A .能被2019整除B .能被2020整除C .能被2021整除D .能被2022整除2.下列条件中,能判定△ABC 为直角三角形的是( ).A .∠A=2∠B -3∠CB .∠A+∠B=2∠C C .∠A-∠B=30°D .∠A=12∠B=13∠C 3.已知,则a 2-b 2-2b 的值为 A .4B .3C .1D .0 4.一直尺与一缺了一角的等腰直角三角板如图摆放,若∠1=115°,则∠2的度数为( )A .65°B .70°C .75°D .80° 5.已知4m =a ,8n =b ,其中m ,n 为正整数,则22m +6n =( ) A .ab 2B .a +b 2C .a 2b 3D .a 2+b 3 6.如果多项式x 2+2x+k 是完全平方式,则常数k 的值为( ) A .1B .-1C .4D .-4 7.下列运算正确的是( ) A .a 2+a 2=a 4B .(﹣b 2)3=﹣b 6C .2x •2x 2=2x 3D .(m ﹣n )2=m 2﹣n 28.下列各式从左到右的变形,是因式分解的是( ) A .a 2-5=(a+2)(a-2)-1 B .(x+2)(x-2)=x 2-4C .x 2+8x+16=(x+4)2D .a 2+4=(a+2)2-4 9.如图,A ,B ,C ,D 中的哪幅图案可以通过图案①平移得到( )A .B .C .D .10.若多项式224a kab b ++是完全平方式,则k 的值为( )A .4B .2±C .4±D .8± 11.一个多边形的每个内角都等于140°,则这个多边形的边数是( )A .7B .8C .9D .10 12.下列不等式:ac bc >;ma mb -<-;22ac bc >;22ac bc ->-,其中能推出a b>的是( )A .ac bc >B .ma mb -<-C .22ac bc >D .22ac bc ->-二、填空题13.20192018512125⎛⎫-⨯ ⎪⎝⎭⎭⎛⎫ ⎪⎝ =______. 14.已知23x y +=,用含x 的代数式表示y =________.15.在第八章“幂的运算”中,我们学习了①同底数幂的乘法:a m ⋅a n =a m +n ;②积的乘方:(ab )n =a n b n ;③幂的乘方:(a m )n =a mn ;④同底数幂的除法:a m ÷a n =a m -n 等运算法则,请问算式()()3333232369111228x y x y x y ⎛⎫⎛⎫-=-⋅⋅=- ⎪ ⎪⎝⎭⎝⎭中用到以上哪些运算法则_________(填序号).16.一个n 边形的内角和是它外角和的6倍,则n =_______.17.已知满足不等式()()325416x x -+<-+的最小整数解是方程23x ax -=的解,则a 的值为________.18.已知:实数m,n 满足:m+n=3,mn=2.则(1+m)(1+n)的值等于____________.19.若2(3)(2)x x ax bx c +-=++(a 、b 、c 为常数),则a b c ++=_____. 20.若满足方程组33221x y m x y m +=+⎧⎨-=-⎩的x 与y 互为相反数,则m 的值为_____. 21.在平面直角坐标系中,将点()2,3P -先向上平移1个单位长度,再向左平移3个单位长度后,得到点P ',则点P '的坐标为_______.22.某校七年级社会实践小组去商场调查商品的销售情况,了解到该商场以每件80元的价格购进某品牌衬衫500件,并以每件120元的价格销售400件.该商场准备采取促销措施,将剩下的衬衫降价销售,每件衬衫至多降价______元,销售完这批衬衫才能达到盈利45%的预期目标.三、解答题23.观察下列式子:2×4+1=9;4×6+1=25;6×8+1=49;…(1)请你根据上面式子的规律直接写出第4个式子: ;(2)探索以上式子的规律,试写出第n 个等式,并说明等式成立的理由.24.某口罩加工厂有,A B 两组工人共150人,A 组工人每人每小时可加工口罩70只,B 组工人每小时可加工口罩50只,,A B 两组工人每小时一共可加工口罩9300只.(1)求A B 、两组工人各有多少人?(2)由于疫情加重,A B 、两组工人均提高了工作效率,一名A 组工人和一名B 组工人每小时共可生产口罩200只,若A B 、两组工人每小时至少加工15000只口罩,那么A 组工人每人每小时至少加工多少只口罩?25.如图,在方格纸内将ABC ∆水平向右平移4个单位得到'''A B C ∆.(1)补全'''A B C ∆,利用网格点和直尺画图;(2)图中AC 与''A C 的位置关系是: ;(3)画出ABC ∆中AB 边上的中线CE ;(4)平移过程中,线段AC 扫过的面积是: .26.先化简,再求值:(1)()()()462a a a a --+-,其中12a =-; (2)2(x 2)(2x 1)(2x 1)4x(x 1)+++--+,其中13x =. 27.如图,在网格中,每个小正方形的边长均为1个单位长度,我们将小正方形的顶点叫做格点,三角形ABC 的三个顶点均在格点上.(1)将三角形ABC 先向右平移6个单位长度,再向上平移3个单位长度,得到三角形A 1B 1C 1,画出平移后的三角形A 1B 1C 1;(2)建立适当的平面直角坐标系,使得点A 的坐标为(-4,3),并直接写出点A 1的坐标; (3)求三角形ABC 的面积.28.从边长为a 的正方形中剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是 .(请选择正确的选项) A .a 2﹣b 2=(a +b )(a ﹣b )B .a 2﹣2ab +b 2=(a ﹣b )2C .a 2+ab =a (a +b )(2)若x 2﹣y 2=16,x +y =8,求x ﹣y 的值;(3)计算:(1﹣212)(1﹣213)(1﹣214)…(1﹣212019)(1﹣212020). 29.已知关于x,y 的方程组260250x y x y mx +-=⎧⎨-++=⎩(1)请直接写出方程260x y +-=的所有正整数解(2)若方程组的解满足x+y=0,求m 的值(3)无论实数m 取何值,方程x -2y+mx+5=0总有一个固定的解,请直接写出这个解?30.杨辉三角是一个由数字排列成的三角形数表,一般形式如图所示,其中每一横行都表示(a+b)n (此处n=0,1,2,3,4...)的展开式中的系数.杨辉三角最本质的特征是:它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两数之和.…… ……(1)请直接写出(a +b )4=__________;(2)利用上面的规律计算:①24+4×23+6×22+4×2+1=__________;②36-6×35+15×34-20×33+15×32-6×3+1=________.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D解:20203﹣2020=2020×(20202﹣1)=2020×(2020+1)×(2020﹣1)=2020×2021×2019,故能被2020、2021、2019整除,故选:D .2.D解析:D【分析】根据三角形内角和定理和各选项中的条件计算出△ABC 的内角,然后根据直角三角形的判定方法进行判断.【详解】解:A 、∠A+∠B+∠C=180°,而∠A=2∠B=3∠C ,则∠A=108011°,所以A 选项错误; B 、∠A+∠B+∠C=180°,而∠A+∠B=2∠C ,则∠C=60°,不能确定△ABC 为直角三角形,所以B 选项错误;C 、∠A+∠B+∠C=180°,而∠A=∠B=30°,则∠C=150°,所以B 选项错误;D 、∠A+∠B+∠C=180°,而∠A=12∠B=13∠C ,则∠C=90°,所以D 选项正确. 故选:D .【点睛】此题考查三角形内角和定理,直角三角形的定义,解题关键在于掌握三角形内角和是180°. 3.C解析:C【分析】先将原式化简,然后将a−b =1整体代入求解.【详解】()()2212221a b a b b a b a b ba b ba b-∴--+--+--=,====.故答案选:C .【点睛】此题考查的是整体代入思想在代数求值中的应用. 4.B解析:B先将一缺了一角的等腰直角三角板补全,再由直尺为矩形,则两组对边分别平行,即可根据∠1求∠4的度数,即可求出∠4的对顶角的度数,再利用等角直角三角形的性质及三角形内角和求出∠2的对顶角,即可求∠2.【详解】解:如图,延BA,CD交于点E.∵直尺为矩形,两组对边分别平行∴∠1+∠4=180°,∠1=115°∴∠4=180°-∠1=180°-115°=65°∵∠EDA与∠4互为对顶角∴∠EDA=∠4=65°∵△EBC为等腰直角三角形∴∠E=45°∴在△EAD中,∠EAD=180°-∠E-∠EDA=180°-45°-65°=70°∵∠2与∠EAD互为对顶角∴∠2=∠EAD =70°故选:B.【点睛】此题主要考查平行线的性质,等腰直角三角形的性质,挖掘三角板条件中的隐含条件是解题关键.5.A解析:A【分析】将已知等式代入22m+6n=22m×26n=(22)m•(23)2n=4m•82n=4m•(8n)2可得.【详解】解:∵4m=a,8n=b,∴22m+6n=22m×26n=(22)m•(23)2n=4m•82n=4m•(8n)2=ab2,故选:A.【点睛】本题主要考查幂的运算,解题的关键是熟练掌握幂的乘方与积的乘方的运算法则.解析:A【分析】根据完全平方公式的乘积二倍项和已知平方项先确定出另一个数是1,平方即可.【详解】解:∵2x=2×1•x,∴k=12=1,故选A.【点睛】本题考查了对完全平方公式的应用,由乘积二倍项确定做完全平方运算的两个数是解题的关键.7.B解析:B【分析】根据合并同类项法则、幂的乘方法则、单项式乘单项式法则和完全平方公式法则解答即可.【详解】A、a2+a2=2a2,故本选项错误;B、(﹣b2)3=﹣b6,故本选项正确;C、2x•2x2=4x3,故本选项错误;D、(m﹣n)2=m2﹣2mn+n2,故本选项错误.故选:B.【点睛】本题考查了整式的运算,合并同类项、幂的乘方、单项式乘单项式和完全平方公式,熟练掌握运算法则是解题的关键.8.C解析:C【分析】根据因式分解的定义逐个判断即可.【详解】A、不是因式分解,故本选项不符合题意;B、不是因式分解,故本选项不符合题意;C、是因式分解,故本选项符合题意;D、不是因式分解,故本选项不符合题意;故选:C.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,把一个多项式化成几个整式的积的形式,叫因式分解.9.D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】通过图案①平移得到必须与图案①完全相同,角度也必须相同,观察图形可知D 可以通过图案①平移得到.故答案选:D.【点睛】本题考查的知识点是生活中的平移现象,解题的关键是熟练的掌握生活中的平移现象.10.C解析:C【分析】根据完全平方式的特征解答即可.【详解】∵224a kab b ++是一个完全平方式,∴224a kab b ++=(a ±2b )2,而(a ±2b )2=a 2±4ab+24b ,∴k=±4,故选C .【点睛】本题考查了完全平方式,根据完全平方式的特点得到k=±4是解决问题的关键.11.D解析:D【分析】一个外角的度数是:180°-140°=40°,则多边形的边数为:360°÷40°=9;故选C .【详解】12.C解析:C【分析】根据不等式的性质逐项判断即可.【详解】解:A. ac bc >,由于不知道c 的符号,故无法得到a b >,故该选项不合题意;B. ma mb -<-,由于不知道-m 的符号,故无法得到a b >,故该选项不合题意;C. 22ac bc >,∵20c ≠,∴2c >0,∴a b >,故该选项符合题意;D. 22ac bc ->-,∵20c ≠,∴20c -<,∴a b <,故该选项不合题意.【点睛】本题考查了不等式的性质,熟知不等式的性质是解题关键.二、填空题13.【分析】根据同底数的幂的乘法运算的逆运算,先将分成 ,再根据积的乘方的逆运算,把指数相同的数相乘即可.【详解】解:故答案为: .【点睛】本题考查幂的乘方和积的乘方,将不同底数 解析:5-12【分析】 根据同底数的幂的乘法运算的逆运算,先将2019512⎛⎫- ⎪⎝⎭分成2018551212⎛⎫⎛⎫-⨯- ⎪ ⎪⎝⎭⎝⎭ ,再根据积的乘方的逆运算,把指数相同的数相乘即可.【详解】 解:20192018512125⎛⎫-⨯ ⎪⎝⎭⎭⎛⎫ ⎪⎝ 20182018551212125⎛⎫⎛⎫⎛⎫=-⨯-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 20182018512512512⎛⎫⎛⎫⎛⎫=-⨯⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 2018512512512⎛⎫⎛⎫=-⨯⨯- ⎪ ⎪⎝⎭⎝⎭ ()20185112⎛⎫=-⨯- ⎪⎝⎭512=- 故答案为:512-. 【点睛】 本题考查幂的乘方和积的乘方,将不同底数且不同指数的幂转化为底数相同或者指数相同的幂是解题关键.14.y=3-2x【解析】移项得:y=3-2x.故答案是:y=3-2x .解析:y=3-2x【解析】23x y +=移项得:y=3-2x.故答案是:y=3-2x .15.②③【分析】在的运算过程中,第一步用到了积的乘方,第二步用到了幂的乘方,据此判断即可.【详解】在的运算过程中,运用了上述幂的运算中的②③.故答案为:②③.【点睛】此题主要考查了幂的乘方解析:②③【分析】 在()()3333232369111228x y x y x y ⎛⎫⎛⎫-=-⋅⋅=- ⎪ ⎪⎝⎭⎝⎭的运算过程中,第一步用到了积的乘方,第二步用到了幂的乘方,据此判断即可.【详解】 在()()3333232369111228x y x y x y ⎛⎫⎛⎫-=-⋅⋅=- ⎪ ⎪⎝⎭⎝⎭的运算过程中,运用了上述幂的运算中的②③.故答案为:②③.【点睛】此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).16.14【分析】根据多边形的内角和公式及外角和列出等式,解出n即可.【详解】多边形的外角和为:360°,多边形的内角和公式为:(n-2)×180°,根据题意得:(n-2)×180=360×6解析:14【分析】根据多边形的内角和公式及外角和列出等式,解出n即可.【详解】多边形的外角和为:360°,多边形的内角和公式为:(n-2)×180°,根据题意得:(n-2)×180=360×6,解得:n=14,故答案为:14.【点睛】本题是对多边形内角和及外角和的考查,熟练掌握多边形的内角和公式及外角和是解决本题的关键.17.【分析】首先解不等式求的不等式的解集,然后确定解集中的最小整数值,代入方程求得a的值即可;【详解】解不等式,去括号,得,移项,得,合并同类项,得,系数化为1,得,则最小的整数解为-解析:7 2【分析】首先解不等式求的不等式的解集,然后确定解集中的最小整数值,代入方程求得a的值即可;【详解】解不等式()()325416x x -+<-+,去括号,得365446-+<-+x x ,移项,得344665-<-++-x x ,合并同类项,得3x -<,系数化为1,得3x >-,则最小的整数解为-2.把2x =-代入23x ax -=中,得423a -+=, 解得:72a =. 故答案为72. 【点睛】本题主要考查了一元一次方程的解与一元一次不等式的整数解,准确计算是解题的关键. 18.6【分析】根据多项式乘以多项式的法则展开,再代入计算即可.【详解】∵m+n=3,mn=2,∴(1+m)(1+n)=1+n+m+mn=1+3+2=6.故答案为:6.【点睛】本题考查了多解析:6【分析】根据多项式乘以多项式的法则展开,再代入计算即可.【详解】∵m +n =3,mn =2,∴(1+m )(1+n )=1+n +m +mn =1+3+2=6.故答案为:6.【点睛】本题考查了多项式乘以多项式,掌握多项式乘以多项式的法则是解答本题的关键.注意不要漏项,漏字母,有同类项的合并同类项.19.-4【分析】由x=1可知,等式左边=-4,右边=,由此即可得出答案.【详解】解:当x=1时,,,∵,∴故答案为:-4.【点睛】本题考查了代数式求值.利用了特殊值法解题,抓住当x解析:-4【分析】由x=1可知,等式左边=-4,右边=a b c ++,由此即可得出答案.【详解】解:当x=1时,()()(3)(2)13124x x +-=+⨯-=-,2ax bx c a b c ++=++,∵2(3)(2)x x ax bx c +-=++,∴4a b c ++=-故答案为:-4.【点睛】本题考查了代数式求值.利用了特殊值法解题,抓住当x=1时2ax bx c a b c ++=++是解题的关键. 20.【分析】把m 看做已知数表示出x 与y ,代入x+y =0计算即可求出m 的值.【详解】解:,①+②得:5x =3m+2,解得:x =,把x =代入①得:y =,由x 与y 互为相反数,得到=0,去分母解析:【分析】把m 看做已知数表示出x 与y ,代入x +y =0计算即可求出m 的值.【详解】解:33221x y m x y m +=+⎧⎨-=-⎩①②,①+②得:5x =3m +2,解得:x =325m +, 把x =325m +代入①得:y =945m -, 由x 与y 互为相反数,得到3294+55m m +-=0, 去分母得:3m +2+9﹣4m =0,解得:m =11,故答案为:11【点睛】 此题考查了二元一次方程组的解,以及解二元一次方程组,熟练掌握方程组的解法及相反数的性质是解本题的关键.21.【分析】根据向左平移横坐标减,向上平移纵坐标加求解即可得到平移后的坐标.【详解】解:将点先向上平移个单位长度,得到,再向左平移个单位长度后得到:, 故答案为:;【点睛】本题考查了坐标与图解析:()1,2--【分析】根据向左平移横坐标减,向上平移纵坐标加求解即可得到平移后的坐标.【详解】解:将点()2,3P -先向上平移1个单位长度,得到()()2,312,2-+=-,再向左平移3个单位长度后得到:()()23,21,2--=--,故答案为:()1,2--;【点睛】本题考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.22.【分析】设每件衬衫降价x 元,正好达到预期目标,根据销售收入-成本=利润,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】解:设每件衬衫降价x 元,正好达到预期目标,根据题意得:120解析:20【分析】设每件衬衫降价x元,正好达到预期目标,根据销售收入-成本=利润,即可得出关于x的一元一次方程,解之即可得出结论.【详解】解:设每件衬衫降价x元,正好达到预期目标,根据题意得:120×400+(120-x)×(500-400)-80×500=80×500×45%,解得:x=20.答:每件衬衫降价10元,正好达到预期目标.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.三、解答题23.(1)8×10+1=81;(2)2n(2n+1)+1=(2n+1)2,理由见解析.【分析】(1)根据上面式子的规律即可写出第4个式子;(2)探索以上式子的规律,结合(1)即可写出第n个等式.【详解】解:观察下列式子:2×4+1=9=32;4×6+1=25=52:6×8+1=49=72;…(1)发现规律:第4个式子:8×10+1=81=92;故答案为:8×10+1=81;(2)第n个等式为:2n(2n+1)+1=(2n+1)2,理由:2n(2n+1)+1=4n2+4n+1=(2n+1)2.【点睛】本题考查了规律型-数字的变化类,解决本题的关键是根据数字的变化寻找规律,总结规律.24.(1)A组工人有90人、B组工人有60人(2)A组工人每人每小时至少加工100只口罩【分析】(1)设A组工人有x人、B组工人有(150−x)人,根据题意列方程健康得到结论;(2)设A组工人每人每小时加工a只口罩,则B组工人每人每小时加工(200−a)只口罩;根据题意列不等式健康得到结论.【详解】(1)设A组工人有x人、B组工人有(150−x)人,根据题意得,70x+50(150−x)=9300,解得:x=90,150−x=60,答:A组工人有90人、B组工人有60人;(2)设A组工人每人每小时加工a只口罩,则B组工人每人每小时加工(200−a)只口罩;根据题意得,90a+60(200−a)≥15000,解得:a≥100,答:A组工人每人每小时至少加工100只口罩.【点睛】本题考查了一元一次方程的应用,一元一次不等式的应用,正确的理解题意是解题的关键.25.(1)图见详解;(2)平行且相等;(3)图见详解;(4)28.【分析】(1)根据图形平移的性质画出△A B C'''即可;(2)根据平移的性质可得出AC与A C''的关系;(3)先取AB的中点E,再连接CE即可;(4)线段AC扫过的面积为平行四边形AA C C''的面积,根据平行四边形的底为4,高为7,可得线段AC扫过的面积.【详解】解:(1)如图所示,△A B C'''即为所求;(2)由平移的性质可得,AC与A C''的关系是平行且相等;故答案为:平行且相等;(3)如图所示,线段CE即为所求;(4)如图所示,连接AA',CC',则线段AC扫过的面积为平行四边形AA C C''的面积,由图可得,线段AC扫过的面积4728=⨯=.故答案为:28.【点睛】本题主要考查了利用平移变换进行作图,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.26.(1)-8a+12,16;(2)x2+3,1 3 9【分析】(1)直接利用多项式乘法去括号,进而合并同类项,再将已知数据代入求出答案;(2)直接利用多项式乘法去括号,进而合并同类项,再将已知数据代入求出答案.【详解】解:(1)原式=a2-4a-(a2-2a+6a-12)=a2-4a-(a2+4a-12)=a2-4a-a2-4a+12=-8a+12把12a=-代入得:原式=-8×(1-2)+12=16;(2)原式=x2+4x+4+4x2-1-4x2-4x =x2+3把13x=代入得:原式=(13)2+3=139.【点睛】本题考查了多项式乘法,合并同类项,平方差公式和完全平方公式.细心运算是解题关键.27.(1)见解析;(2)(2,6);(3)19 2【分析】(1)利用网格特点和平移的性质画出A、B、C的对应点A1、B1、C1,从而得到△A1B1C1;(2)利用A点坐标画出直角坐标系,再写出A1坐标即可;(3)利用分割法求出坐标即可.【详解】解:(1)画出平移后的△A1B1C1如下图;;(2)如上图建立平面直角坐标系,使得点A的坐标为(-4,3),由图可知:点A1的坐标为(2,6);(3)由(2)中的图可知:A(-4,3),B(5,-1),C(0,0),∴S△ABC=11119 (45)434512222 +⨯-⨯⨯-⨯⨯=.【点睛】本题考查了作图——平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.28.(1)A ;(2)2;(3)20214040 【分析】(1)由题意直接根据拼接前后的面积相等进行分析计算即可得出答案;(2)根据题意可知x 2﹣y 2=16,即(x +y )(x ﹣y )=16,又x +y =8,可求出x ﹣y 的值;(3)根据题意利用平方差公式将算式转化为分数的乘积的形式,根据数据规律得出答案.【详解】解:(1)图1的剩余面积为a 2﹣b 2,图2拼接得到的图形面积为(a +b )(a ﹣b ) 因此有,a 2﹣b 2=(a +b )(a ﹣b ),故答案为:A.(2)∵x 2﹣y 2=(x +y )(x ﹣y )=16,又∵x +y =8,∴x ﹣y =16÷8=2;(3)(1﹣212)(1﹣213)(1﹣214)…(1﹣212019)(1﹣212020) =(1﹣12)(1+12)(1﹣13)(1+13)(1﹣14)(1+14)……(1﹣12019)(1+12019)(1﹣12020)(1+12020) =12×32×23×43×34×54×……×20182019×20202019×20192020×20212020 =12×20212020 =20214040. 【点睛】本题考查平方差公式的几何意义及应用,掌握公式的结构特征是正确应用的前提,利用公式进行适当的变形是解题的关键.29.(1)24,21x x y y ==⎧⎧⎨⎨==⎩⎩(2)-136(3)02.5x y =⎧⎨=⎩ 【解析】分析:(1)先对方程变形为x=6-2y ,然后可带入数值求解;(2)把已知的x+y=0和方程x+2y-6=0组合成方程组,求解方程组的解,然后代入方程x-2y+mx+5=0即可求m 的值;(3)方程整理后,根据无论m 如何变化,二元一次方程组总有一个固定的解,列出方程组,解方程组即可;详解:(1)∵x+2y-6=0∴x=6-2y当y=1时,x=4,当y=2时,x=2∴24,21x x y y ==⎧⎧⎨⎨==⎩⎩(2)根据题意,把x+y=6和x+2y-6=0构成方程组为:6260x y x y +=⎧⎨+-=⎩和 解得66x y =-⎧⎨=⎩把66x y =-⎧⎨=⎩代入x-2y+mx+5=0, 解得m=136- (3)∵无论实数m 取何值,方程x -2y+mx+5=0总有一个固定的解,∴x=0时,m 的值与题目无关∴y=2.5∴02.5x y =⎧⎨=⎩点睛:此题主要考查了二元一次方程组的应用,对方程组中的方程灵活变形,构成可解方程是解题关键,有一定的难度,合理选择加减消元法和代入消元法解题是关键.30.(1)++++432234a 4a b 6a b 4ab b ;(2)①81;②64【分析】(1)根据杨辉三角的数表规律解答即可;(2)由杨辉三角的数表规律和(1)题的结果可得所求式子=(2+1)4,据此解答即可; ②由杨辉三角的数表规律可得所求式子=(3-1)6,据此解答即可.【详解】解:(1)()4432234464a b a a b a b ab b +=++++;故答案为:++++432234a 4a b 6a b 4ab b ;(2)①24+4×23+6×22+4×2+1=(2+1)4=34=81;故答案为:81;②36-6×35+15×34-20×33+15×32-6×3+1=(3-1)6=26=64;故答案为:64.【点睛】本题考查了多项式的乘法和完全平方公式的拓展以及数的规律探求,正确理解题意、找准规律是解题的关键.。
苏科初一数学下册第二学期期末测试题及答案(共五套) word版
苏科初一数学下册第二学期期末测试题及答案(共五套) word版一、选择题1.已知关于x,y的方程组3210ax byax by+=⎧⎨-=⎩的解为21xy=⎧⎨=-⎩,则a,b的值是()A.12ab=⎧⎨=⎩B.21ab=⎧⎨=⎩C.12ab=-⎧⎨=-⎩D.21ab=⎧⎨=-⎩2.如图,P1是一块半径为1的半圆形纸板,在P1的右上端剪去一个直径为1的半圆后得到图形P2,然后依次剪去一个更小的半圆(其直径为前一个被剪去的半圆的半径)得到图形P3、P4…P n…,记纸板P n的面积为S n,则S n-S n+1的值为( )A.12nπ⎛⎫⎪⎝⎭B.14nπ⎛⎫⎪⎝⎭C.2112nπ+⎛⎫⎪⎝⎭D.2112nπ-⎛⎫⎪⎝⎭3.以下列各组线段为边,能组成三角形的是()A.2cm、2cm、4cm B.2cm、6cm、3cm C.8cm、6cm、3cm D.11cm、4cm、6cm 4.不等式3x+2≥5的解集是()A.x≥1B.x≥73C.x≤1D.x≤﹣15.把多项式x2+ax+b分解因式,得(x+1)(x-3),则a、b的值分别是()A.a=2,b=3 B.a=-2,b=-3C.a=-2,b=3 D.a=2,b=-36.如图,能判定EB∥AC的条件是()A.∠C=∠1 B.∠A=∠2C.∠C=∠3 D.∠A=∠17.等腰三角形的两边长分别为3和6,那么该三角形的周长为()A.12 B.15 C.10 D.12或15 8.下列运算正确的是()A.a2·a3=a6B.a5+a3=a8C.(a3)2=a5D.a5÷a5=1 9.下列各式从左到右的变形,是因式分解的是()A.a2-5=(a+2)(a-2)-1 B.(x+2)(x-2)=x2-4C.x2+8x+16=(x+4)2D.a2+4=(a+2)2-410.如图,A,B,C,D中的哪幅图案可以通过图案①平移得到()A.B.C.D.11.如图所示的四个图形中,∠1和∠2是同位角...的是()A.②③B.①②③C.①②④D.①④12.下列给出的线段长度不能与4cm,3cm能构成三角形的是()A.4cm B.3cm C.2cm D.1cm二、填空题13.如图,将边长为6cm的正方形ABCD先向下平移2cm,再向左平移1cm,得到正方形A'B'C'D',则这两个正方形重叠部分的面积为______cm2.14.一个五边形所有内角都相等,它的每一个内角等于_______.15.积的乘方公式为:(ab)m=.(m是正整数).请写出这一公式的推理过程.16.若x+3y-4=0,则2x•8y=_________.17.已知△ABC中,∠A=60°,∠ACB=40°,D为BC边延长线上一点,BM平分∠ABC,E为射线BM上一点.若直线CE垂直于△ABC的一边,则∠BEC=____°.18.已知2m+5n﹣3=0,则4m×32n的值为____19.如果a 2﹣b 2=﹣1,a+b=12,则a ﹣b=_______. 20.已知m a =2,n a =3,则2m n a -=_______________.21.已知关于x ,y 的方程22146m n m n x y --+++=是二元一次方程,那么点(),M m n 位于平面直角坐标系中的第______象限.22.已知m 为正整数,且关于x ,y 的二元一次方程组210320mx y x y +=⎧⎨-=⎩有整数解,则m 的值为_______.三、解答题23.在南通市中小学标准化建设工程中,某校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元;(2)根据学校实际,需购进电脑和电子白板共31台,若总费用不超过30万元,则至多购买电子白板多少台?24.已知关于x 的方程3m x +=的解满足325x y ax y a-=-⎧⎨+=⎩,若15y -<<,求实数m 的取值范围.25.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如图1,可以得到222()2a b a ab b +=++这个等式,请解答下列问题:(1)写出图2中所表示的数学等式 . (2)根据整式乘法的运算法则,通过计算验证上述等式. (3)利用(1)中得到的结论,解决下面的问题:若10a b c ++=,35ab ac bc ++=,则222a b c ++= .(4)小明同学用图3中x 张边长为a 的正方形,y 张边长为b 的正方形,z 张长宽分别为a 、b 的长方形纸片拼出一个面积为2)(4)a b a b ++(的长方形,则x y z ++= .26.阅读材料:求1+2+22+23+24+…+22020的值.解:设S =1+2+22+23+24+...+22020,将等式两边同时乘以2得, 2S =2+22+23+24+25+ (22021)将下式减去上式,得2S ﹣S =22021﹣1,即S =22021﹣1. 即1+2+22+23+24+…+22020=22021﹣1 仿照此法计算:(1)1+3+32+33+ (320)(2)2310011111 (2222)+++++. 27.(类比学习)小明同学类比除法240÷16=15的竖式计算,想到对二次三项式x 2+3x +2进行因式分解的方法:15162401 6 8080 0 2221322222 0x x x x x x x x +++++++ 即(x 2+3x +2)÷(x +1)=x +2,所以x 2+3x +2=(x +1)(x +2). (初步应用)小明看到了这样一道被墨水污染的因式分解题:x 2+□x +6=(x +2)(x +☆),(其中□、☆代表两个被污染的系数),他列出了下列竖式:22262(2)62 0x x x x x x x x +++++-++☆☆☆得出□=___________,☆=_________. (深入研究)小明用这种方法对多项式x 2+2x 2-x -2进行因式分解,进行到了:x 3+2x 2-x -2=(x +2)(*).(*代表一个多项式),请你利用前面的方法,列出竖式,将多项式x 3+2x 2-x -2因式分解. 28.解方程组:(1)2338y x x y =-⎧⎨-=⎩(2) 743832x yx y ⎧+=⎪⎪⎨⎪+=⎪⎩ 29.如图,已知点E 、F 在直线AB 上,点G 在线段CD 上,ED 与FG 交于点H ,∠C =∠EFG ,∠CED =∠GHD . (1)求证:CE ∥GF ;(2)试判断∠AED 与∠D 之间的数量关系,并说明理由; (3)若∠EHF =80°,∠D =30°,求∠AEM 的度数.30.已知:5x y +=,(2)(2)3x y --=-.求下列代数式的的值. (1)xy ;(2)224x xy y ++; (3)25x xy y ++.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】把21x y =⎧⎨=-⎩代入方程组03210ax by ax by +=⎧⎨-=⎩得到关于a ,b 的二元一次方程组,解之即可.【详解】解:把21x y =⎧⎨=-⎩代入方程组03210ax by ax by +=⎧⎨-=⎩得:2=06210a b a b -⎧⎨+=⎩, 解得:=1=2a b ⎧⎨⎩, 故选A. 【点睛】本题考查了二元一次方程组的解,正确掌握代入法和解二元一次方程组的方法是解题的关键.2.C解析:C 【分析】首先分析题意,找到规律,并进行推导得出答案. 【详解】 根据题意得,n ≥2,S1=12π×12=12π,S2=12π﹣12π×(12)2,…S n=12π﹣12π×(12)2﹣12π×[(12)2]2﹣…﹣12π×[(12)n﹣1]2,S n+1=12π﹣12π×(12)2﹣12π×[(12)2]2﹣…﹣12π×[(12)n﹣1]2﹣12π×[(12)n]2,∴S n﹣S n+1=12π×(12)2n=(12)2n+1π.故选C.【点睛】考查学生通过观察、归纳、抽象出数列的规律的能力.3.C解析:C【分析】根据三角形三条边的关系计算即可,三角形任意两边之和大于第三边,任意两边之差小于第三边.【详解】A. ∵2+2=4,∴ 2cm、2cm、4cm不能组成三角形,故不符合题意;B. ∵2+3<6,∴2cm、6cm、3cm不能组成三角形,故不符合题意;C. ∵3+6>8,∴8cm、6cm、3cm能组成三角形,故符合题意;D. ∵4+6<11,∴11cm、4cm、6cm不能组成三角形,故不符合题意;故选C.【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键. 4.A解析:A【解析】分析:根据一元一次不等式的解法即可求出答案.详解:3x+2≥5,3x≥3,∴x≥1.故选A.点睛:本题考查了一元一次不等式的解法,解题的关键是熟练运用一元一次不等式的解法,本题属于基础题型.5.B解析:B分析:根据整式的乘法,先还原多项式,然后对应求出a、b即可.详解:(x+1)(x-3)=x2-3x+x-3=x2-2x-3所以a=2,b=-3,故选B.点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键.6.D解析:D【分析】直接根据平行线的判定定理对各选项进行逐一分析即可.【详解】解:A、∠C=∠1不能判定任何直线平行,故本选项错误;B、∠A=∠2不能判定任何直线平行,故本选项错误;C、∠C=∠3不能判定任何直线平行,故本选项错误;D、∵∠A=∠1,∴EB∥AC,故本选项正确.故选:D.【点睛】本题考查的是平行线的判定,用到的知识点为:内错角相等,两直线平行.7.B解析:B【分析】求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为3和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】由题意,分以下两种情况:(1)当等腰三角形的腰为3时,三边为3,3,6+=,不满足三角形的三边关系定理此时336(2)当等腰三角形的腰为6时,三边为3,6,6+>,满足三角形的三边关系定理此时366++=则其周长为36615综上,该三角形的周长为15故选:B.【点睛】本题考查了等腰三角形的定义、三角形的三边关系定理,依据题意,正确分两种情况讨论是解题关键.解析:D 【分析】通过幂的运算公式进行计算即可得到结果. 【详解】A .23235a a a a +==,故A 错误;B .538a a a +≠,故B 错误;C .()23326a a a ⨯==,故C 错误;D .5501a a a ÷==,故D 正确;故选:D . 【点睛】本题主要考查了整式乘除中的幂的运算性质,准确运用公式是解题的关键.9.C解析:C 【分析】根据因式分解的定义逐个判断即可. 【详解】A 、不是因式分解,故本选项不符合题意;B 、不是因式分解,故本选项不符合题意;C 、是因式分解,故本选项符合题意;D 、不是因式分解,故本选项不符合题意; 故选:C . 【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,把一个多项式化成几个整式的积的形式,叫因式分解.10.D解析:D 【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等. 【详解】通过图案①平移得到必须与图案①完全相同,角度也必须相同, 观察图形可知D 可以通过图案①平移得到. 故答案选:D. 【点睛】本题考查的知识点是生活中的平移现象,解题的关键是熟练的掌握生活中的平移现象.11.C【分析】根据同位角的定义逐一判断即得答案. 【详解】解:图①中的∠1与∠2是同位角,图②中的∠1与∠2是同位角,图③中的∠1与∠2不是同位角,图④中的∠1与∠2是同位角,所以在如图所示的四个图形中,图①②④中的∠1和∠2是同位角.... 故选:C . 【点睛】本题考查了同位角的定义,属于基础概念题型,熟知概念是关键.12.D解析:D 【分析】根据三角形的三边关系:任意两边之和大于第三边,两边之差小于第三边,即可得答案. 【详解】解:设第三边为xcm ,根据三角形的三边关系:4343x -<<+, 解得:17x <<.故选项ABC 能构成三角形,D 选项1cm 不能构成三角形, 故选:D . 【点睛】本题主要考查了三角形的三边关系定理:任意两边之和大于第三边,两边之差小于第三边.二、填空题 13.20 【分析】如图,向下平移2cm ,即AE=2,再向左平移1cm ,即CF=1,由重叠部分为矩形的面积为DE•DF,即可求两个正方形重叠部分的面积 【详解】 解:如图,向下平移2cm ,即AE=2,解析:20 【分析】如图,向下平移2cm ,即AE=2,再向左平移1cm ,即CF=1,由重叠部分为矩形的面积为DE•DF ,即可求两个正方形重叠部分的面积 【详解】 解:如图,向下平移2cm ,即AE=2,则DE=AD-AE=6-2=4cm向左平移1cm,即CF=1,则DF=DC-CF=6-1=5cm则S矩形DEB'F=DE•DF=4×5=20cm2故答案为20【点睛】此题主要考查正方形的性质,平移的性质,关键在理解平移后,图形的位置变化.14.【分析】根据多边形的外角和是360度,再用360°除以边数可得每一个外角度数,进一步得到每一个内角度数.【详解】每一个外角的度数是:360°÷5=72°,每一个内角度数是:180°−72°解析:108【分析】根据多边形的外角和是360度,再用360°除以边数可得每一个外角度数,进一步得到每一个内角度数.【详解】每一个外角的度数是:360°÷5=72°,每一个内角度数是:180°−72°=108°.故答案为:108°.【点睛】本题主要考查了多边形的外角和定理.注意多边形的外角和不随边数的变化而变化,是一个固定值360°.15.:ambm,见解析.【解析】【分析】先写出题目中式子的结果,再写出推导过程即可解答本题.【详解】解:(ab)m=ambm,理由:(ab)m=ab×ab×ab×ab×…×ab解析::a m b m,见解析.【分析】先写出题目中式子的结果,再写出推导过程即可解答本题.【详解】解:(ab)m=a m b m,理由:(ab)m=ab×ab×ab×ab×…×ab=aa…abb…b=a m b m故答案为a m b m.【点睛】本题考查幂的乘方与积的乘方,解题的关键是明确它们的计算方法.16.16【分析】根据幂的运算公式变形,再代入x+3y=4即可求解.【详解】∵x+3y-4=0∴x+3y=4∴2x•8y=2x•(23)y=2x+3y=24=16.故答案为:16.【点睛】解析:16【分析】根据幂的运算公式变形,再代入x+3y=4即可求解.【详解】∵x+3y-4=0∴x+3y=4∴2x•8y=2x•(23)y=2x+3y=24=16.故答案为:16.【点睛】此题主要考查幂的运算,解题的关键是熟知幂的运算公式.17.10°或50°或130°【分析】分三种情况讨论:①当CE⊥BC时;②当CE⊥AB时;③当CE⊥AC时;根据垂直的定义和三角形内角和计算即可得到结论.【详解】解:①如图1,当CE⊥BC时,解析:10°或50°或130°分三种情况讨论:①当CE⊥BC时;②当CE⊥AB时;③当CE⊥AC时;根据垂直的定义和三角形内角和计算即可得到结论.【详解】解:①如图1,当CE⊥BC时,∵∠A=60°,∠ACB=40°,∴∠ABC=80°,∵BM平分∠ABC,∴∠CBE=12∠ABC=40°,∴∠BEC=90°-40°=50°;②如图2,当CE⊥AB时,∵∠ABE=12∠ABC=40°,∴∠BEC=90°+40°=130°;③如图3,当CE⊥AC时,∵∠CBE=40°,∠ACB=40°,∴∠BEC=180°-90°-40°-40°=10°;综上所述:∠BEC的度数为10°,50°,130°,故答案为:10°,50°,130°.【点睛】本题考查了垂直的定义和三角形的内角和,考虑全情况是解题关键.18.8【解析】试题分析: 直接利用幂的乘方运算法则将原式变形,再结合同底数幂的乘法运算法则求出答案.本题解析:∵2m+5n−3=0,∴2m+5n=3,则4m×32n=22m×25n=22m+5解析:8【解析】试题分析: 直接利用幂的乘方运算法则将原式变形,再结合同底数幂的乘法运算法则求出答案.本题解析:∵2m+5n−3=0,∴2m+5n=3,则4m×32n=22m×25n=22m+5n=23=8.故答案为8.19.-2【分析】根据平方差公式进行解题即可【详解】∵a2-b2=(a+b)(a-b),a2﹣b2=﹣1,a+b=,∴a-b=-1÷=-2,故答案为-2.解析:-2【分析】根据平方差公式进行解题即可【详解】,∵a2-b2=(a+b)(a-b),a2﹣b2=﹣1,a+b=12∴a-b=-1÷1=-2,2故答案为-2.20.【分析】根据同底数幂的除法和幂的乘方与积的乘方的运算法则求解即可.【详解】解:am-2n=am÷a2n=am÷(an)2=2÷9=故答案为【点睛】本题考查了同底数幂的除法和幂的解析:29【分析】根据同底数幂的除法和幂的乘方与积的乘方的运算法则求解即可.【详解】解:a m-2n=a m ÷a 2n=a m ÷(a n )2=2÷9 =29 故答案为29【点睛】本题考查了同底数幂的除法和幂的乘方与积的乘方,解答本题的关键在于熟练掌握各知识点的运算法则.21.四【分析】根据题意得到关于m 、n 的二元一次方程组,确定点M 坐标,判断M 所在象限即可.【详解】解:由题意得,解得,∴点M 坐标为,∴点M 在第四象限.故答案为:四【点睛】本题考查了二元解析:四【分析】根据题意得到关于m 、n 的二元一次方程组,确定点M 坐标,判断M 所在象限即可.【详解】解:由题意得22111m n m n --=⎧⎨++=⎩, 解得11m n =⎧⎨=-⎩, ∴点M 坐标为()1,1-,∴点M 在第四象限.故答案为:四【点睛】本题考查了二元一次方程定义,二元一次方程组解法,点的坐标等知识,综合性较强,根据题意列出方程组是解题关键.22.【分析】先把二元一次方程组求解出来,用m 表示,再根据有整数解求解m 的值即可得到答案;【详解】解:,把①②式相加得到:,即: ,要二元一次方程组有整数解,即为整数,又∵为正整数,故解析:2【分析】先把二元一次方程组210320mx y x y +=⎧⎨-=⎩求解出来,用m 表示,再根据有整数解求解m 的值即可得到答案;【详解】解:210320mx y x y +=⎧⎨-=⎩①②, 把①②式相加得到:310+=mx x , 即:103x m =+ , 要二元一次方程组210320mx y x y +=⎧⎨-=⎩有整数解, 即103x m =+为整数, 又∵m 为正整数,故m=2, 此时10223x ==+,3y = , 故,x y 均为整数,故答案为:2;【点睛】本题主要考查了二元一次方程组的求解,掌握二元一次方程组的求解步骤是解题的关键;三、解答题23.(1)电脑0.5万元,电子白板1.5万元;(2)14台【分析】(1)设每台电脑x 元,每台电子白板y 元,根据题意列出方程组,解方程组即可;(2)设购进电子白板m 台,则购进电脑()31m -台,根据总费用不超过30万元,列出不等式,根据m 实际意义即可求解.【详解】(1)设每台电脑x 元,每台电子白板y 元,则2 3.52 2.5x y x y +=⎧⎨+=⎩,解得0.51.5x y =⎧⎨=⎩故每台电脑0.5万元,每台电子白板1.5万元;(2)设购进电子白板m 台,则购进电脑()31m -台,由题意得 1.50.5(31)30m m +-≤解得14.5m ≤,又因为m 是正整数,则14m ≤,故至多购买电子白板14台.【点睛】本题考查了二元一次方程组应用,一元一次不等式应用,综合性较强,难度不大,根据题意列出二元一次方程组、一元一次不等式是解题关键.24.21m -<<【分析】先解方程组325x y a x y a -=-⎧⎨+=⎩,消去a 用含x 的式子表示y,再将x=3-m 代入y 中,从而得到用含m 的式子表示y,在根据15y -<<,解关于m 的不等式组,求出m 的取值范围.【详解】解:325x y a x y a -=-⎧⎨+=⎩①②,①5⨯+②得6315x y -=即25y x =-③ 由3m x +=得3x m =-,代入③得,12y m =-又因为15y -<<,则1125m -<-<,解得21m -<<【点睛】本题主要考查了分式方程的解以及二元一次方程组的解,解题时需要掌握解二元一次方程和一元一次不等式的方法.25.(1) ()2222222.a b c a b c ab ac bc ++=+++++(2)证明见解析;(3) 30; (4) 15.【分析】(1)依据正方形的面积=()2a b c ++ ;正方形的面积=222a +b +c +2ab+2ac+2bc.,可得等式;(2)运用多项式乘多项式进行计算即可;(3)依据()2222a b +c a b c -2ab-2ac-2bc,+=++ 进行计算即可;(4)依据所拼图形的面积为:22xa yb zab ++ , 而()()222224284249a b a b a ab ab b a b ab ++=+++=++ ,即可得到x, y, z 的值,即可求解.【详解】解: (1) 正方形的面积=()2a b c ++ ;大正方形的面积=222a +b +c +2ab+2ac+2bc. 故答案为:()2222222.a b c a b c ab ac bc ++=+++++(2)证明: (a+b+c) (a+b+c) ,=222a ab ac ab b bc ac bc c ++++++++ ,=222222a b c ab ac bc +++++ .(3)()2222222,a b c a b c ab ac bc ++=++---=()2102ab ac bc -++ , =100235-⨯ ,=30.故答案为: 30;(4)由题可知,所拼图形的面积为:22xa yb zab ++ ,(2a+b) (a+4b)=222a 8ab ab 4b ,+++=222a 4b 9ab,++∴x=2,y=4, z=9.∴x+y+z=2+4+9=15.故答案为: 15.【点睛】本题考查了完全平方公式的几何背景,根据矩形的面积公式分整体与部分两种思路表示出面积,然后再根据同一个图形的面积相等即可解答.26.(1)21312-;(2)101100212-. 【分析】(1)仿照阅读材料中的方法求出所求即可;(2)仿照阅读材料中的方法求出所求即可.【详解】解:(1)设S =1+3+32+33+ (320)则3S =3+32+33+ (321)∴3S ﹣S =321﹣1,即S =21312-,则1+3+32+33+…+320=21312-; (2)设S =1+2310011112222+++⋯+, 则12S =231001011111122222+++⋯++, ∴S ﹣12S =1﹣10112=101101212-,即S =101100212-, 则S =1+2310011112222+++⋯+=101100212-. 【点睛】此题考查的是探索运算规律题,根据已知材料中的方法,探索出运算规律是解决此题的关键.27.[初步应用]5,3;[深入研究]x 3+2x 2-x -2=(x +2)(x +1)(x -1);详见解析;【分析】[初步应用]列出竖式结合已知可得:2☆-6=0,2-=☆,求出□与☆即可.[深入研究]列出竖式可得x 3+2x 2-x -2÷(x +2),即可将多项式x 3+2x 2-x -2因式分解.【详解】[初步应用]∵多项式x 2+□x +6能被x +2整除,∴2☆-6=0,2-=☆,∴☆= 3,□=5,故答案为:5,3;[深入研究]∵2323212222 22 0x x x x x x x x x -++--+----, ∴()()()()()3222221211x x x x x x x x +--=+-=++-. 【点睛】本题考查整式的除法;理解题意,仿照整数的除法列出竖式进行运算是解题的关键.28.(1)57x y =⎧⎨=⎩;(2)6024x y =⎧⎨=-⎩ 【分析】(1)2338y x x y =-⎧⎨-=⎩①②,由①得2x-y=3③,②-③可求得x ,将x 值代入①可得y 值,即可求得方程组的解.(2)743832x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩①②,先将①×12去分母,将分式方程化为整式方程,得3x+4y=84③,将②×6,由分式方程化为整式方程,得2x+3y=48④,③和④再利用加减消元法即可求解方程组的解.【详解】(1)2338y x x y =-⎧⎨-=⎩①② 由①,得2x-y=3③②-③,得x=5将x=5代入①,得2×5-y=3∴y=7故方程组的解为:57x y =⎧⎨=⎩ 故答案为:57x y =⎧⎨=⎩(2)743832x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩①② ①×12,得3x+4y=84③②×6,得2x+3y=48④③×2,得6x+8y=168⑤④×3,得6x+9y=144⑥⑤-⑥,得y=-24将y=-24代入①,得874x -= ∴x=60 故方程组的解为:6024x y =⎧⎨=-⎩故答案为:6024x y =⎧⎨=-⎩【点睛】本题考查了一元二次方程的解法—加减消元法,将方程组中的各个方程化简成标准形式,方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等,把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程,解这个一元一次方程,求出一个未知数的值;29.(1)证明见解析;(2)∠AED +∠D =180°,理由见解析;(3)110°【分析】(1)依据同位角相等,即可得到两直线平行;(2)依据平行线的性质,可得出∠FGD =∠EFG ,进而判定AB ∥CD ,即可得出∠AED +∠D =180°;(3)依据已知条件求得∠CGF 的度数,进而利用平行线的性质得出∠CEF 的度数,依据对顶角相等即可得到∠AEM 的度数.【详解】(1)∵∠CED =∠GHD ,∴CB ∥GF ;(2)∠AED +∠D =180°;理由:∵CB ∥GF ,∴∠C =∠FGD ,又∵∠C =∠EFG ,∴∠FGD =∠EFG ,∴AB ∥CD ,∴∠AED +∠D =180°;(3)∵∠GHD =∠EHF =80°,∠D =30°,∴∠CGF =80°+30°=110°,又∵CE ∥GF ,∴∠C =180°﹣110°=70°,又∵AB ∥CD ,∴∠AEC =∠C =70°,∴∠AEM =180°﹣70°=110°.【点睛】本题主要考查了平行线的判定与性质,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.30.(1)3;(2)31;(3)25.【分析】(1)把多项式乘积展开,再将已知5x y +=代入,即可求解;(2)根据(1)得到3xy =,再利用完全平方公式,即可求解;(3)根据5x y +=将x 用y 来表示,再代入25x xy y ++,合并同类项即可求解.【详解】解:(1)∵()(2)(2)22424=3x y xy x y xy x y --=--+=-++-,而5x y +=, ∴ ()=324=3254=3xy x y -++--+⨯-.故答案为3.(2)由(1)知3xy =,∴ ()22224=2=523=31x xy y x y xy +++++⨯. 故答案为31.(3)∵5x y +=,得5x y =-,则()()22225=55525105525x xy y y y y y y y y y y ++-+-+=-++-+=. 故答案为25.【点睛】本题目考查整式的乘法,难度一般,是常考知识点,熟练掌握代数式之间的转化是顺利解题的关键.。
苏科七年级下册第二学期数学期末试卷及答案全百度文库
苏科七年级下册第二学期数学期末试卷及答案全百度文库一、选择题1.计算(﹣2a 2)•3a 的结果是( )A .﹣6a 2B .﹣6a 3C .12a 3D .6a 32.若a =-0.32,b =-3-2,c =21()2--,d =01()3-,则它们的大小关系是( ) A .a <b <c <d B .a <d <c <b C .b <a <d <c D .c <a <d <b3.下列运算结果正确的是( ) A .32a a a ÷= B .()225a a = C .236a a a =D .()3326a a = 4.把多项式x 2+ax+b 分解因式,得(x+1)(x-3),则a 、b 的值分别是( )A .a=2,b=3B .a=-2,b=-3C .a=-2,b=3D .a=2,b=-3 5.要使(4x ﹣a )(x+1)的积中不含有x 的一次项,则a 等于( ) A .﹣4B .2C .3D .4 6.一直尺与一缺了一角的等腰直角三角板如图摆放,若∠1=115°,则∠2的度数为( )A .65°B .70°C .75°D .80°7.下列方程组中,解是-51x y =⎧⎨=⎩的是( ) A .64x y x y +=⎧⎨-=⎩B .6-6x y x y +=⎧⎨-=⎩C .-4-6x y x y +=⎧⎨-=⎩D .-4-4x y x y +=⎧⎨-=⎩8.如图1是//AD BC 的一张纸条,按图1→图2→图3,把这一纸条先沿EF 折叠并压平,再沿BF 折叠并压平,若图3中24CFE ∠=︒,则图2中AEF ∠的度数为( )A .120︒B .108︒C .112︒D .114︒ 9.将下列三条线段首尾相连,能构成三角形的是( )A .1,2,3B .2,3,6C .3,4,5D .4,5,9 10.下列各式从左到右的变形中,是因式分解的为( )A .ab +ac +d =a (b +c )+dB .(x +2)(x ﹣2)=x 2﹣4C .6ab =2a ⋅3bD .x 2﹣8x +16=(x ﹣4)2 11.已知a 、b 、c 是△ABC 的三条边长,化简|a +b -c|-|c -a -b|的结果为( ) A .2a +2b -2cB .2a +2bC .2cD .0 12.下列计算不正确的是( )A .527a a a =B .623a a a ÷=C .2222a a a +=D .(a 2)4=a 8 二、填空题13.等式01a =成立的条件是________.14.一个五边形所有内角都相等,它的每一个内角等于_______.15.已知()4432234464a b a a b a b ab b +=++++,则()4a b -=__________. 16.计算:20202019120192019⎛⎫⨯- ⎪⎝⎭=________.17.若x +3y -4=0,则2x •8y =_________.18.如果42x -与231x mx ++的乘积中不含x 2项,则m=______________.19.计算:(12)﹣2=_____. 20.如图,1∠、2∠、3∠、4∠是五边形ABCDE 的4个外角,若120A ∠=︒,则1234∠+∠+∠+∠=_______°.21.若29x kx -+是完全平方式,则k =_____.22.已知关于x 的不等式3()50a b x a b -+->的解集是1x <,则关于x 的不等式4ax b >的解集为_______.三、解答题23.如图:在正方形网格中有一个△ABC ,按要求进行下列作图(只能借助于网格).(1)画出先将△ABC 向右平移6格,再向上平移3格后的△DEF .(2)连接AD 、BE ,那么AD 与BE 的关系是 ,线段AB 扫过的部分所组成的封闭图形的面积为 .24.计算:(1)0201711(2)(1)()2--+--;(2)()()()3243652a a a +-•- 25.解下列二元一次方程组:(1)70231x y x y +=⎧⎨-=-⎩①②; (2)239345x y x y -=⎧⎨+=⎩①②. 26.计算: (1)1021(3)(4)5π-⎛⎫---- ⎪⎝⎭(2)3()6m m n mn -+(3)4(2)(2)x x -+-(4)2(2)(2)a b a a b ---27.先化简,再求值:4(x ﹣1)2﹣(2x +3)(2x ﹣3),其中x =﹣1.28.阅读材料:求1+2+22+23+24+…+22020的值.解:设S =1+2+22+23+24+…+22020,将等式两边同时乘以2得,2S =2+22+23+24+25+ (22021)将下式减去上式,得2S ﹣S =22021﹣1,即S =22021﹣1.即1+2+22+23+24+…+22020=22021﹣1仿照此法计算:(1)1+3+32+33+ (320)(2)2310011111 (2222)+++++. 29.因式分解:(1)3()6()x a b y b a ---(2)222(1)6(1)9y y ---+30.解方程组:(1)2338y x x y =-⎧⎨-=⎩(2) 743832x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】用单项式乘单项式的法则进行计算.【详解】解:(-2a 2)·3a=(-2×3)×(a 2·a)=-6a 3 故选:B .【点睛】本题考查单项式乘单项式,掌握运算法则正确计算是解题关键.2.C解析:C【分析】直接利用负整数指数幂的性质和零指数幂的性质分别化简比较即可求解.【详解】∵2090.3.0a =-=-,2193b =--=-,2142c -⎛⎫=-= ⎪⎝⎭,0113d ⎛⎫-= ⎪⎝⎭=, ∴它们的大小关系是:b <a <d <c故选:C【点睛】本题考查负整数指数幂的性质、零指数幂的性质及有理数大小比较,正确化简各数是解题的关键.3.A解析:A【分析】根据同底数幂的除法、同底数幂的乘法,以及幂的乘方与积的乘方的运算方法,逐项判定【详解】解:32a a a ÷=,A 正确,()224a a =,B 错误, 235a a a =,C 错误,()3328a a =,D 错误,故选:A .【点睛】此题主要考查了同底数幂的除法,同底数幂的乘法,以及幂的乘方与积的乘方的运算方法,熟练掌握运算方法是解题的关键.4.B解析:B【解析】分析:根据整式的乘法,先还原多项式,然后对应求出a 、b 即可.详解:(x+1)(x-3)=x 2-3x+x-3=x 2-2x-3所以a=2,b=-3,故选B .点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键.5.D解析:D【分析】先运用多项式的乘法法则计算,再合并同类项,因积中不含x 的一次项,所以让一次项的系数等于0,得a 的等式,再求解.【详解】解:(4x-a )(x+1),=4x 2+4x-ax-a ,=4x 2+(4-a )x-a ,∵积中不含x 的一次项,∴4-a=0,解得a=4.故选D .【点睛】本题考查了多项式乘多项式法则,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.6.B【分析】先将一缺了一角的等腰直角三角板补全,再由直尺为矩形,则两组对边分别平行,即可根据∠1求∠4的度数,即可求出∠4的对顶角的度数,再利用等角直角三角形的性质及三角形内角和求出∠2的对顶角,即可求∠2.【详解】解:如图,延BA,CD交于点E.∵直尺为矩形,两组对边分别平行∴∠1+∠4=180°,∠1=115°∴∠4=180°-∠1=180°-115°=65°∵∠EDA与∠4互为对顶角∴∠EDA=∠4=65°∵△EBC为等腰直角三角形∴∠E=45°∴在△EAD中,∠EAD=180°-∠E-∠EDA=180°-45°-65°=70°∵∠2与∠EAD互为对顶角∴∠2=∠EAD =70°故选:B.【点睛】此题主要考查平行线的性质,等腰直角三角形的性质,挖掘三角板条件中的隐含条件是解题关键.7.C解析:C【解析】试题解析:A. 的解是51xy=⎧⎨=⎩,故A不符合题意;B. 的解是6xy=⎧⎨=⎩,故B不符合题意;C. 的解是51xy=-⎧⎨=⎩,故C符合题意;D. 的解是4xy=-⎧⎨=⎩,故D不符合题意;故选C.点睛:解二元一次方程的方法有:代入消元法,加减消元法.8.C解析:C【分析】设∠B′FE=x,根据折叠的性质得∠BFE=∠B′FE=x,∠AEF=∠A′EF,则∠BFC=x−24°,再由第2次折叠得到∠C′FB=∠BFC=x−24°,于是利用平角定义可计算出x =68°,接着根据平行线的性质得∠A′EF=180°−∠B′FE=112°,所以∠AEF=112°.【详解】如图,设∠B′FE=x,∵纸条沿EF折叠,∴∠BFE=∠B′FE=x,∠AEF=∠A′EF,∴∠BFC=∠BFE−∠CFE=x−24°,∵纸条沿BF折叠,∴∠C′FB=∠BFC=x−24°,而∠B′FE+∠BFE+∠C′FE=180°,∴x+x+x−24°=180°,解得x=68°,∵A′D′∥B′C′,∴∠A′EF=180°−∠B′FE=180°−68°=112°,∴∠AEF=112°.故选:C.【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解决本题的关键是画出折叠前后得图形.9.C解析:C【分析】构成三角形的三边应满足:任意两边之和大于第三边,任意两边之差小于第三边,只有同时满足以上的两个条件,才能构成三角形,根据该定则,就可判断选项正误.【详解】解:A选项:1+2=3,两边之和没有大于第三边,∴无法组成三角形;B选项:2+3<6,两边之和没有大于第三边,∴无法组成三角形;C选项:3+4>5,两边之和大于第三边,且满足两边之差小于第三边,∴可以组成三角形;D 选项:4+5=9,两边之和没有大于第三边,∴无法组成三角形,故选:C .【点睛】本题主要考察了三角形的三边关系定则:在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边,只有同时满足以上的两个条件,才能构成三角形.10.D解析:D【解析】【分析】根据因式分解就是把一个多项式化为几个整式的积的形式的定义判断,利用排除法求解.【详解】A 、等式右边不是整式积的形式,故不是因式分解,故本选项错误;B 、等式右边不是整式积的形式,故不是因式分解,故本选项错误;C 、等式左边是单项式,不是因式分解,故本选项错误;D 、符合因式分解的定义,故本选项正确.故选D .【点睛】本题考查的是因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.11.D解析:D【解析】试题解析:∵a 、b 、c 为△ABC 的三条边长,∴a+b-c >0,c-a-b <0,∴原式=a+b-c+(c-a-b )=0.故选D .考点:三角形三边关系.12.B解析:B【分析】根据同底数幂的除法、 乘法, 合并同类项的方法, 以及幂的乘方与积的乘方的运算方法, 逐项判定即可 .【详解】解:∵527a a a =,∴选项A 计算正确,不符合题意;∵624a a a ÷=,∴选项B 计算不正确,符合题意;2222a a a ,∴选项C 计算正确,不符合题意;428()a a =,∴选项D 计算正确,不符合题意;故选:B.【点睛】此题主要考查了同底数幂的除法、乘法,合并同类项的方法,以及幂的乘方与积的乘方的运算方法,要熟练掌握.二、填空题13..【分析】根据零指数幂有意义的条件作答即可.【详解】由题意得:.故答案为:.【点睛】本题考查零指数幂有意义的条件.熟练掌握非零的零次幂等于1是解题的关键.a≠.解析:0【分析】根据零指数幂有意义的条件作答即可.【详解】a≠.由题意得:0a≠.故答案为:0【点睛】本题考查零指数幂有意义的条件.熟练掌握非零的零次幂等于1是解题的关键.14.【分析】根据多边形的外角和是360度,再用360°除以边数可得每一个外角度数,进一步得到每一个内角度数.【详解】每一个外角的度数是:360°÷5=72°,每一个内角度数是:180°−72°解析:108︒【分析】根据多边形的外角和是360度,再用360°除以边数可得每一个外角度数,进一步得到每一个内角度数.【详解】每一个外角的度数是:360°÷5=72°,每一个内角度数是:180°−72°=108°.故答案为:108°.【点睛】本题主要考查了多边形的外角和定理.注意多边形的外角和不随边数的变化而变化,是一个固定值360°.15.a4-4a3b+6a2b2-4ab3+b4【分析】原式变形后,利用(a+b )4=a4+4a3b+6a2b2+4ab3+b4,即可得到(a-b )4的结果.【详解】解:根据题意得:(a-b )4=解析:a 4-4a 3b+6a 2b 2-4ab 3+b 4【分析】原式变形后,利用(a+b )4=a 4+4a 3b+6a 2b 2+4ab 3+b 4,即可得到(a-b )4的结果.【详解】解:根据题意得:(a-b )4=[a+(-b )]4=a 4-4a 3b+6a 2b 2-4ab 3+b 4,故答案为:a 4-4a 3b+6a 2b 2-4ab 3+b 4【点睛】此题考查了完全平方公式,熟练掌握公式是解本题的关键.16.【分析】先利用幂的乘方进行分解,再根据同底数幂相乘,进行计算即可.【详解】=故答案为.【点睛】此题考查幂的乘方,同底数幂相乘,解题关键在于掌握运算法则. 解析:12019【分析】先利用幂的乘方进行分解,再根据同底数幂相乘,进行计算即可.【详解】20202019201920191112019=2019201920192019⎛⎫⨯-⨯⨯ ⎪⎝⎭=12019 故答案为12019. 【点睛】 此题考查幂的乘方,同底数幂相乘,解题关键在于掌握运算法则.17.16【分析】根据幂的运算公式变形,再代入x+3y=4即可求解.【详解】∵x+3y-4=0∴x+3y=4∴2x•8y=2x•(23)y=2x+3y=24=16.故答案为:16.【点睛】解析:16【分析】根据幂的运算公式变形,再代入x+3y=4即可求解.【详解】∵x+3y-4=0∴x+3y=4∴2x•8y=2x•(23)y=2x+3y=24=16.故答案为:16.【点睛】此题主要考查幂的运算,解题的关键是熟知幂的运算公式.18.【分析】先根据多项式的乘法法则展开,再根据题意,二次项的系数等于0列式求解即可.【详解】解:(4x-2)(3x2+mx+1)=12x3+(4m-6)x2+(4-2m)x-2,∵不含x2项,解析:3 2【分析】先根据多项式的乘法法则展开,再根据题意,二次项的系数等于0列式求解即可.【详解】解:(4x-2)(3x2+mx+1)=12x3+(4m-6)x2+(4-2m)x-2,∵不含x2项,∴4m-6=0,解得m=32.故答案为3 2 .【点睛】此题考查多项式与多项式的乘法,运算法则需要熟练掌握,不含某一项就让这一项的系数等于0是解题的关键.19.【分析】根据负整数指数幂与正整数指数幂互为倒数,可得答案.【详解】解:()﹣2===4,故答案为:4.【点睛】本题考查负指数幂的计算,掌握即可.解析:【分析】根据负整数指数幂与正整数指数幂互为倒数,可得答案.【详解】解:(12)﹣2=2112⎛⎫⎪⎝⎭=114=4,故答案为:4.【点睛】本题考查负指数幂的计算,掌握即可.20.【详解】解:由题意得,∠A的外角=180°-∠A=60°,又∵多边形的外角和为360°,∴∠1+∠2+∠3+∠4=360°-∠A的外角=300°.故答案为:300.【点睛】本题考查多边解析:300【详解】解:由题意得,∠A的外角=180°-∠A=60°,又∵多边形的外角和为360°,∴∠1+∠2+∠3+∠4=360°-∠A的外角=300°.故答案为:300.【点睛】本题考查多边形外角性质,补角定义.21.【分析】根据两数的平方和加上或减去两数积的2倍,等于两数和或差的平方,即可求出的值.【详解】解:∵是完全平方式,即.故答案为:.【点睛】此题考查了完全平方式, 熟练掌握完全平方公式解析:6±【分析】根据两数的平方和加上或减去两数积的2倍,等于两数和或差的平方,即可求出k 的值 .【详解】解:∵29x kx -+是完全平方式,即()2293x kx x -+=± 236k ∴=±⨯=±.故答案为:6±.【点睛】此题考查了完全平方式, 熟练掌握完全平方公式的结构特点是解本题的关键22.【分析】根据已知不等式的解集,即可确定a,b 之间得关系以及b 的符号,从而解不等式.【详解】解:∵的解集是,∴=1,a -b<0,∴a=2b,b<0.则不等式可以化为2bx>4b.∵b<解析:2x <【分析】根据已知不等式的解集,即可确定a,b 之间得关系以及b 的符号,从而解不等式.【详解】解:∵3()50a b x a b -+->的解集是1x <,∴()53a b a b --=1,a-b<0, ∴a=2b,b<0.则不等式4ax b >可以化为2bx>4b.∵b<0.∴x<2.即关于x 的不等式4ax b >的解集为x<2.【点睛】本题考查了不等式的解法,正确确定b 的符号是关键.三、解答题23.(1)见解析;(2)平行且相等; 9 .【分析】(1)将三个顶点分别上平移3格,再向右平移6格得到对应点,再顺次连接即可得; (2)根据图形平移的性质和平行四边形的面积公式即可得出结论【详解】(1)如图所示△DEF 即为所求;(2)∵△DEF 由△ABC 平移而成,∴AD ∥BE ,AD =BE ;线段AB 扫过的部分所组成的封闭图形是□ABED ,339ABED S=⨯= 故答案为:平行且相等;9【点睛】本题考查的是作图-平移变换,熟知图形平移不变性的性质是解答此题的关键.24.(1)-2(2)12a【分析】(1)根据零指数幂和负指数幂的运算法则进行化简即可求解;(2)根据幂的运算法则即可求解.【详解】(1)0201711(2)(1)()2--+-- =1-1-2=-2(2)()()()3243652a a a +-•- =()126654a a a +•- =121254a a -=12a .【点睛】此题主要考查实数与幂的运算,解题的关键是熟知其运算法则.25.(1)43x y =⎧⎨=⎩;(2)31x y =⎧⎨=-⎩ 【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【详解】解:(1)由①得:x =7﹣y ③,把③代入②得:2(7﹣y )﹣3y =﹣1,解得:y =3,把y =3代入③得:x =4,所以这个二元一次方程组的解为:43x y =⎧⎨=⎩; (2)①×4+②×3得:17x =51,解得:x =3,把x =3代入①得:y =﹣1,所以这个方程组的解为31x y =⎧⎨=-⎩. 【点睛】本题主要考查了方程组的解法,准确运用代入消元法和加减消元法解题是解题的关键.26.(1)12;(2)233m mn +;(3)28x -;(4)224ab b -+.【分析】(1)直接利用零指数幂的性质以及负指数幂的性质分别化简得出答案;(2)先做单项式乘多项式,再合并同类项即可得出答案;(3)先利用平方差公式计算,再合并同类项即可得出答案;(4)先利用完全平方公式以及单项式乘多项式计算,再合并同类项即可得出答案.【详解】解:(1)1021(3)(4)5π-⎛⎫---- ⎪⎝⎭5116=--12=-;(2)3()6m m n mn -+2336m mn mn =-+233m mn =+;(3)4(2)(2)x x -+-()244x =--244x ==-+28x =-;(4)()()222a b a a b --- ()()222442a ab b a ab =-+--222442a ab b a ab =-+-+224ab b +=-.【点睛】此题主要考查了平方差公式以及完全平方公式、实数运算,正确应用公式是解题关键.27.化简结果:-8x+13,值为21.【解析】分析:根据整式的混合运算法则将所给的整式化简后,再代入求值即可.详解:原式=4(x 2-2 x +1)-(4x 2-9) =4x 2-8 x +4-4x 2+9=-8 x +13当x =-1时,原式=21点睛:本题是整式的化简求值,考查了整式的混合运算,解题时注意运算顺序以及符号的处理.28.(1)21312-;(2)101100212-. 【分析】(1)仿照阅读材料中的方法求出所求即可;(2)仿照阅读材料中的方法求出所求即可.【详解】解:(1)设S =1+3+32+33+ (320)则3S =3+32+33+ (321)∴3S ﹣S =321﹣1,即S =21312-, 则1+3+32+33+…+320=21312-; (2)设S =1+2310011112222+++⋯+, 则12S =231001011111122222+++⋯++, ∴S ﹣12S =1﹣10112=101101212-,即S =101100212-, 则S =1+2310011112222+++⋯+=101100212-. 【点睛】此题考查的是探索运算规律题,根据已知材料中的方法,探索出运算规律是解决此题的关键.29.(1)3()(2)a b x y -+;(2)22(2)(2)y y +-【分析】(1)提取公因式3(a-b),即可求解.(2)将(y 2-1)看成一项,根据完全平方公式进行因式分解,之后再利用平方差公式即可求解.【详解】(1)原式=3()6()x a b y b a ---=3()(2)a b x y -+故答案为:3()(2)a b x y -+(2)原式=222(1)6(1)9y y ---+=22(y 13)--=22(4)y -=22(2)(2)y y +-故答案为:22(2)(2)y y +-【点睛】本题考查了因式分解的方法,本题分别采用了提取公因式法和公式法进行因式分解,一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.运用公式法因式分解,一般有平方差公式,完全平方公式,立方和公式,完全立方公式. 30.(1)57x y =⎧⎨=⎩;(2)6024x y =⎧⎨=-⎩ 【分析】(1)2338y x x y =-⎧⎨-=⎩①②,由①得2x-y=3③,②-③可求得x ,将x 值代入①可得y 值,即可求得方程组的解. (2)743832x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩①②,先将①×12去分母,将分式方程化为整式方程,得3x+4y=84③,将②×6,由分式方程化为整式方程,得2x+3y=48④,③和④再利用加减消元法即可求解方程组的解.【详解】(1)2338y x x y =-⎧⎨-=⎩①② 由①,得2x-y=3③②-③,得x=5将x=5代入①,得2×5-y=3∴y=7故方程组的解为:57x y =⎧⎨=⎩故答案为:57x y =⎧⎨=⎩(2)743832x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩①② ①×12,得3x+4y=84③②×6,得2x+3y=48④③×2,得6x+8y=168⑤④×3,得6x+9y=144⑥⑤-⑥,得y=-24将y=-24代入①,得874x -= ∴x=60故方程组的解为:6024x y =⎧⎨=-⎩故答案为:6024x y =⎧⎨=-⎩ 【点睛】 本题考查了一元二次方程的解法—加减消元法,将方程组中的各个方程化简成标准形式,方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等,把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程,解这个一元一次方程,求出一个未知数的值;。
苏科七年级苏科初一下册第二学期数学期末试卷及答案全
苏科七年级苏科初一下册第二学期数学期末试卷及答案全一、选择题1.如图所示,直线a ,b 被直线c 所截,则1∠与2∠是( )A .同位角B .内错角C .同旁内角D .对顶角 2.下列计算中,正确的是( ) A .235235x x x += B .236236x x x =C .322()2x x x ÷-=-D .236(2)2x x -=-3.如图,在五边形ABCDE 中,A B E α∠+∠+∠=,DP 、CP 分别平分EDC ∠、BCD ∠,则P ∠的度教是( )A .1902α-B .1902α︒+ C .12α D .15402α︒- 4.把面值20元的纸币换成1元或5元的纸币,则换法共有 ( )A .4种B .5种C .6种D .7种5.如图,图(1)的正方形的周长与图(2)的长方形的周长相等,且长方形的长比宽多a cm ,则正方形的面积与长方形的面积的差为 ( )A .a 2B .12a 2C .13a 2D .14a 2 6.若(x-2y)2 =(x+2y)2+M,则M= ( )A .4xyB .- 4xyC .8xyD .-8xy 7.若正方形边长增加1,得到的新正方形面积比原正方形面积增加6,则原正方形的边长是( )A.2 B.52C.3 D.728.若8xa=,4ya=,则2x ya+的值为( )A.12 B.20 C.32 D.2569.如果多项式x2+2x+k是完全平方式,则常数k的值为()A.1 B.-1 C.4 D.-410.下列运算正确的是()A.a2+a2=a4B.(﹣b2)3=﹣b6C.2x•2x2=2x3D.(m﹣n)2=m2﹣n211.如图,已知AB∥CD,点E、F分别在直线AB、CD上,∠EPF=90°,∠BEP=∠GEP,则∠1与∠2的数量关系为( )A.∠1=∠2 B.∠1=2∠2 C.∠1=3∠2 D.∠1=4∠212.下列方程组中,是二元一次方程组的为()A.1512nmmn⎧+=⎪⎪⎨⎪+=⎪⎩B.2311546a bb c-=⎧⎨-=⎩C.292xy x⎧=⎨=⎩D.xy=⎧⎨=⎩二、填空题13.如图,已知AB∥CD,BC∥DE.若∠A=20°,∠C=105°,则∠AED的度数是_____.14.计算:23()a=____________.15.已知等腰三角形的两边长分别为4和8,则它的周长是_______.16.最薄的金箔的厚度为0.000000091m,用科学记数法表示为________m.17.若(3x+2y)2=(3x﹣2y)2+A,则代数式A为______.18.已知:12345633,39,327,381,3243,3729,======……,设A=2(3+1)(32+1)(34+1)(316+1)(332+1)+1,则A的个位数字是__________.19.每个生物携带自身基因的载体是生物细胞的DNA,DNA分子的直径只有0.0000002cm,将0.0000002用科学记数法表示为_________.20.在第八章“幂的运算”中,我们学习了①同底数幂的乘法:a m⋅a n=a m+n;②积的乘方:(ab )n =a n b n ;③幂的乘方:(a m )n =a mn ;④同底数幂的除法:a m ÷a n =a m -n 等运算法则,请问算式()()3333232369111228x y x y x y ⎛⎫⎛⎫-=-⋅⋅=- ⎪ ⎪⎝⎭⎝⎭中用到以上哪些运算法则_________(填序号).21.如图,已知AE 是△ABC 的边BC 上的中线,若AB=8cm,△ACE 的周长比△AEB 的周长多2cm,则AC=_____.22.已知代数式2x-3y 的值为5,则-4x+6y=______.23.若2(3)(2)x x ax bx c +-=++(a 、b 、c 为常数),则a b c ++=_____. 24.已知关于x 的不等式3()50a b x a b -+->的解集是1x <,则关于x 的不等式4ax b >的解集为_______.三、解答题25.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC 的三个顶点的位置如图所示.现将△ABC 平移,使点C 变换为点D ,点A 、B 的对应点分别是点E 、F . (1)在图中请画出△ABC 平移后得到的△EFD ;(2)在图中画出△ABC 的AB 边上的高CH ;(3)△ABC 的面积为_______.26.若x ,y 为任意有理数,比较6xy 与229x y +的大小.27.实验中学要为学校科技活动小组提供实验器材,计划购买A 型、B 型两种型号的放大镜.若购买100个A 型放大镜和150个B 型放大镜需用1500元;若购买120个A 型放大镜和160个B 型放大镜需用1720元.(1)求每个A 型放大镜和每个B 型放大镜各多少元;(2)学校决定购买A 型放大镜和B 型放大镜共75个,总费用不超过570元,那么最多可以购买多少个A 型放大镜?28.如果a c =b ,那么我们规定(a ,b )=c .例如;因为23=8,所以(2,8)=3. (1)根据上述规定填空:(3,27)= ,(4,1)= ,(2,0.25)= ; (2)记(3,5)=a ,(3,6)=b ,(3,30)=c .判断a ,b ,c 之间的等量关系,并说明理由.29.如图,AB∥CD,点E、F在直线AB上,G在直线CD上,且∠EGF=90°,∠BFG=140°,求∠CGE的度数.30.解下列方程组(1)29 321 x yx y+=⎧⎨-=-⎩.(2)34332(1)11x yx y⎧+=⎪⎨⎪--=⎩.31.阅读材料:求1+2+22+23+24+…+22020的值.解:设S=1+2+22+23+24+…+22020,将等式两边同时乘以2得,2S=2+22+23+24+25+ (22021)将下式减去上式,得2S﹣S=22021﹣1,即S=22021﹣1.即1+2+22+23+24+…+22020=22021﹣1仿照此法计算:(1)1+3+32+33+ (320)(2)2310011111...2222+++++.32.四边形ABCD中,∠A=140°,∠D=80°.(1)如图①,若∠B=∠C,试求出∠C的度数;(2)如图②,若∠ABC的角平分线交DC于点E,且BE∥AD,试求出∠C的度数;(3)如图③,若∠ABC和∠BCD的角平分线交于点E,试求出∠BEC的度数.33.要说明(a+b+c)2=a2+b2+c2+2ab+2ac+2bc成立,三位同学分别提供了一种思路,请根据他们的思路写出推理过程.(1)小刚说:可以根据乘方的意义来说明等式成立;(2)小王说:可以将其转化为两数和的平方来说明等式成立;(3)小丽说:可以构造图形,通过计算面积来说明等式成立;34.因式分解:(1)3()6()x a b y b a ---(2)222(1)6(1)9y y ---+35.如图1是一个长为4a 、宽为b 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2)(1)观察图2请你写出(a+b )2、(a ﹣b )2、ab 之间的等量关系是 ;(2)根据(1)中的结论,若x+y =5,x•y =94,则x ﹣y = ; (3)拓展应用:若(2019﹣m )2+(m ﹣2020)2=15,求(2019﹣m )(m ﹣2020)的值.36.如图,在边长为1个单位长度的小正方形网格中,ΔABC 经过平移后得到ΔA B C ''',图中标出了点B 的对应点B ',点A '、C '分别是A 、C 的对应点.(1)画出平移后的ΔA B C ''';(2)连接BB '、CC ',那么线段BB '与CC '的关系是_________;(3)四边形BCC B ''的面积为_______.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据同旁内角的定义可判断.∵∠1和∠2都在直线c 的下侧,且∠1和∠2在直线a 、b 之内∴∠1和∠2是同旁内角的关系故选:C .【点睛】本题考查同旁内角的理解,紧抓定义来判断.2.C解析:C【解析】试题解析:A.不是同类项,不能合并,故错误.B.235236.x x x ⋅= 故错误.C.()3222.x x x ÷-=- 正确.D.()32628.x x -=- 故错误. 故选C.点睛:同底数幂相乘,底数不变,指数相加.同底数幂相除,底数不变,指数相减.3.A解析:A【分析】根据五边形的内角和等于540°,由∠A+∠B+∠E=α,可求∠BCD+∠CDE 的度数,再根据角平分线的定义可得∠PDC 与∠PCD 的角度和,进一步求得∠P 的度数.【详解】∵五边形的内角和等于540°,∠A+∠B+∠E=α,∴∠BCD+∠CDE=540°-α,∵∠BCD 、∠CDE 的平分线在五边形内相交于点O ,∴∠PDC+∠PCD=12(∠BCD+∠CDE )=270°-12α, ∴∠P=180°-(270°-12α)=12α-90°. 故选:A .【点睛】 此题考查多边形的内角和公式,角平分线的定义,熟记公式是解题的关键.注意整体思想的运用.4.B解析:B【分析】设1元和5元的纸币分别有x 、y 张,得到方程x+5y=20,然后根据x 、y 都是正整数即可确定x 、y 的值.解:设1元和5元的纸币分别有x 、y 张,则x+5y=20,∴x=20-5y ,而x≥0,y≥0,且x 、y 是整数,∴y=0,x=20;y=1,x=15;y=2,x=10;y=3,x=5;y=4,x=0,共有5种换法.故选:B .【点睛】此题主要考查了二元一次方程的应用,列出方程并确定未知数的取值范围是解题的关键.5.D解析:D【分析】设长方形的宽为x cm ,则长为(x +a )cm ,可得正方形的边长为22x a +;求出两个图形面积然后做差即可.【详解】解:设长方形的宽为x cm ,则长为(x +a )cm ,则正方形的边长为()2242x a x x a ⨯+++=; 正方形的面积为222244224x a x a x ax a ++++=, 长方形的面积为()2x x a x ax +=+, 二者面积之差为()222244144x ax a x ax a ++-+=, 故选:D .【点睛】本题考查了整式的混合运算,设出长方形的宽,然后表示出正方形和长方形的面积表达式是解题的关键.6.D解析:D【分析】根据完全平方公式的运算法则即可求解.【详解】∵(x-2y)2 =(x+2y)2+M∴M=(x-2y)2 -(x+2y)2=x 2-4xy+4y 2-x 2-4xy-4y 2=-8xy故选D.【点睛】此题主要考查完全平方公式的运算,解题的关键是熟知完全平方公式的运算法则.7.B解析:B【分析】设原正方形的边长为x ,则新正方形的边长为(1)x +,根据题意列出方程求解即可.【详解】解:设原正方形的边长为x ,则新正方形的边长为(1)x +,根据题意可列方程为22(1)6x x +-=, 解得52x =, ∴原正方形的边长为52. 故选:B .【点睛】 此题考查了完全平方公式,找到等量关系列方程为解题关键.8.D解析:D【分析】根据同底数幂的乘法:同底数幂相乘,底数不变,指数相加,以及幂的乘方,底数不变,指数相乘,即可求解.【详解】解:∵()222=84256x y xy a a a +⋅=⋅=.故选D .【点睛】本题考查同底数幂的乘法、幂的乘方运算法则,难度不大,熟练掌握运算法则是顺利解题的关键. 9.A解析:A【分析】根据完全平方公式的乘积二倍项和已知平方项先确定出另一个数是1,平方即可.【详解】解:∵2x=2×1•x ,∴k=12=1,故选A .【点睛】本题考查了对完全平方公式的应用,由乘积二倍项确定做完全平方运算的两个数是解题的关键.10.B解析:B【分析】根据合并同类项法则、幂的乘方法则、单项式乘单项式法则和完全平方公式法则解答即可.【详解】A、a2+a2=2a2,故本选项错误;B、(﹣b2)3=﹣b6,故本选项正确;C、2x•2x2=4x3,故本选项错误;D、(m﹣n)2=m2﹣2mn+n2,故本选项错误.故选:B.【点睛】本题考查了整式的运算,合并同类项、幂的乘方、单项式乘单项式和完全平方公式,熟练掌握运算法则是解题的关键.11.B解析:B【解析】【分析】延长EP交CD于点M,由三角形外角的性质可得∠FMP=90°-∠2,再根据平行线的性质可得∠BEP=∠FMP,继而根据平角定义以及∠BEP=∠GEP即可求得答案.【详解】延长EP交CD于点M,∵∠EPF是△FPM的外角,∴∠2+∠FMP=∠EPF=90°,∴∠FMP=90°-∠2,∵AB//CD,∴∠BEP=∠FMP,∴∠BEP=90°-∠2,∵∠1+∠BEP+∠GEP=180°,∠BEP=∠GEP,∴∠1+90°-∠2+90°-∠2=180°,∴∠1=2∠2,故选B.【点睛】本题考查了三角形外角的性质,平行线的性质,平角的定义,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.12.D解析:D【分析】组成二元一次方程组的两个方程应共含有两个未知数,且未知数的项最高次数都应是一次的整式方程.【详解】A、属于分式方程,不符合题意;B、有三个未知数,为三元一次方程组,不符合题意;C、未知数x是2次方,为二次方程,不符合题意;D、符合二元一次方程组的定义,符合题意;故选:D.【点睛】考查了二元一次方程组的定义,一定要紧扣二元一次方程组的定义“由两个二元一次方程组成的方程组”.二、填空题13.95°.【分析】延长DE交AB于F,根据两直线平行,同旁内角互补求出∠B,再根据两直线平行,同位角相等求出∠AFE,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解解析:95°.【分析】延长DE交AB于F,根据两直线平行,同旁内角互补求出∠B,再根据两直线平行,同位角相等求出∠AFE,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:如图,延长DE交AB于F,∵AB∥CD,∴∠B=180°﹣∠C=180°﹣105°=75°,∵BC∥DE,∴∠AFE=∠B=75°,在△AEF中,∠AED=∠A+∠AFE=20°+75°=95°,故答案为:95°.【点睛】本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质是解题的关键.14..【分析】直接根据积的乘方运算法则进行计算即可.【详解】.故答案为:.【点睛】此题主要考查了积的乘方,熟练掌握运算法则是解答此题的关键.-.解析:6a【分析】直接根据积的乘方运算法则进行计算即可.【详解】233236()=(1)()a a a.-.故答案为:6a【点睛】此题主要考查了积的乘方,熟练掌握运算法则是解答此题的关键.15.20【分析】分腰长为4或腰长为8两种情况,根据等腰三角形的性质求出周长即可得答案.【详解】当腰长是4cm时,三角形的三边是4、4、8,∵4+4=8,∴不满足三角形的三边关系,当腰长是8解析:20【分析】分腰长为4或腰长为8两种情况,根据等腰三角形的性质求出周长即可得答案.【详解】当腰长是4cm 时,三角形的三边是4、4、8,∵4+4=8,∴不满足三角形的三边关系,当腰长是8cm 时,三角形的三边是8、8、4,∴三角形的周长是8+8+4=20.故答案为:20【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,进行分类讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.16..【解析】【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为 与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解析:89.110-⨯.【解析】【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.000000091m 用科学记数法表示为89.110m -⨯.故答案为89.110-⨯.【点睛】考查科学记数法,掌握绝对值小于1的数的表示方法是解题的关键.17.24xy【解析】∵(3x+2y )2=(3x ﹣2y )2+A ,∴(3x)2+2×3x×2y+(2y)2=(3x)2-2×3x×2y+(2y)2+A,即9x2+12xy+4y2=9x2-12xy+解析:24xy【解析】∵(3x+2y)2=(3x﹣2y)2+A,∴(3x)2+2×3x×2y+(2y)2=(3x)2-2×3x×2y+(2y)2+A,即9x2+12xy+4y2=9x2-12xy+4y2+A∴A=24xy,故答案为24xy.【点睛】本题考查了完全平方公式,熟记完全平方公式是解题的关键.完全平方公式:(a±b)2=a2±2ab+b2.18.1【分析】把2写成3-1后,利用平方差公式化简,归纳总结得到一般性规律,即可确定出A的个位数字.【详解】解:A=(3-1)(3+1)(32+1)(34+1)(316+1)(332+1)+1解析:1【分析】把2写成3-1后,利用平方差公式化简,归纳总结得到一般性规律,即可确定出A的个位数字.【详解】解:A=(3-1)(3+1)(32+1)(34+1)(316+1)(332+1)+1=(32-1)(32+1)(34+1)(316+1)(332+1)+1=(34-1)(34+1)(316+1)(332+1)+1=(316-1)(316+1)(332+1)+1=(332-1)(332+1)+1=364-1+1=364,观察已知等式,个位数字以3,9,7,1循环,64÷4=16,则A的个位数字是1,故答案为:1.【点睛】本题考查平方差公式,熟练掌握平方差公式是解本题的关键.19.210-7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决解析:2⨯10-7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10-n ,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.000 0002=2×10-7,故答案为:2⨯10-7.【点睛】本题考查用科学记数法表示较小的数,一般形式为a ×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.20.②③【分析】在的运算过程中,第一步用到了积的乘方,第二步用到了幂的乘方,据此判断即可.【详解】在的运算过程中,运用了上述幂的运算中的②③.故答案为:②③.【点睛】此题主要考查了幂的乘方解析:②③【分析】 在()()3333232369111228x y x y x y ⎛⎫⎛⎫-=-⋅⋅=- ⎪ ⎪⎝⎭⎝⎭的运算过程中,第一步用到了积的乘方,第二步用到了幂的乘方,据此判断即可.【详解】 在()()3333232369111228x y x y x y ⎛⎫⎛⎫-=-⋅⋅=- ⎪ ⎪⎝⎭⎝⎭的运算过程中,运用了上述幂的运算中的②③.故答案为:②③.【点睛】此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m )n =a mn (m ,n 是正整数);②(ab )n =a n b n (n 是正整数).21.10cm【分析】依据AE 是△ABC 的边BC 上的中线,可得CE =BE ,再根据AE =AE ,△ACE 的周长比△AEB 的周长多2cm ,即可得到AC 的长.解:∵AE是△ABC的边BC上的中线,解析:10cm【分析】依据AE是△ABC的边BC上的中线,可得CE=BE,再根据AE=AE,△ACE的周长比△AEB 的周长多2cm,即可得到AC的长.【详解】解:∵AE是△ABC的边BC上的中线,∴CE=BE,又∵AE=AE,△ACE的周长比△AEB的周长多2cm,∴AC−AB=2cm,即AC−8cm=2cm,∴AC=10cm,故答案为10cm.【点睛】本题考查了三角形中线的有关计算,分析得到两个三角形的周长的差等于两边的差是解题的关键.22.-10【分析】原式前两项提取-2变形后,将已知代数式的值代入计算即可求出值.【详解】解:∵2x-3y=5,∴原式=-2(2x-3y)=-2×5=-10.故答案为:-10.【点睛】本题解析:-10【分析】原式前两项提取-2变形后,将已知代数式的值代入计算即可求出值.【详解】解:∵2x-3y=5,∴原式=-2(2x-3y)=-2×5=-10.故答案为:-10.【点睛】本题考查了代数式求值,熟练掌握运算法则是解题的关键.23.-4【分析】由x=1可知,等式左边=-4,右边=,由此即可得出答案.解:当x=1时,,,∵,∴故答案为:-4.【点睛】本题考查了代数式求值.利用了特殊值法解题,抓住当x解析:-4【分析】由x=1可知,等式左边=-4,右边=a b c ++,由此即可得出答案.【详解】解:当x=1时,()()(3)(2)13124x x +-=+⨯-=-,2ax bx c a b c ++=++,∵2(3)(2)x x ax bx c +-=++,∴4a b c ++=-故答案为:-4.【点睛】本题考查了代数式求值.利用了特殊值法解题,抓住当x=1时2ax bx c a b c ++=++是解题的关键. 24.【分析】根据已知不等式的解集,即可确定a,b 之间得关系以及b 的符号,从而解不等式.【详解】解:∵的解集是,∴=1,a -b<0,∴a=2b,b<0.则不等式可以化为2bx>4b.∵b<解析:2x <【分析】根据已知不等式的解集,即可确定a,b 之间得关系以及b 的符号,从而解不等式.【详解】解:∵3()50a b x a b -+->的解集是1x <, ∴()53a b a b --=1,a-b<0, ∴a=2b,b<0.则不等式4ax b >可以化为2bx>4b.∵b<0.∴x<2.即关于x 的不等式4ax b >的解集为x<2.【点睛】本题考查了不等式的解法,正确确定b 的符号是关键.三、解答题25.(1)见详解;(2)见详解;(3)152. 【分析】(1)按要求作图即可;(2)按要求作图即可;(3)根据勾股定理求出AB 和CH 的长即可得出面积.【详解】(1)△EFD 如图所示, ;(2)CH 如图所示,;(3)根据勾股定理可得:∴S △ABC =12×AB ×CH=12×152. 【点睛】 本题考查了平移作图,勾股定理,掌握知识点是解题关键.26.2296x y xy +≥【分析】根据题意直接利用作差法对两个代数式进行大小比较即可.【详解】解:∵x ,y 为任意有理数,22296(3)0x y xy x y +-=-≥,∴2296x y xy +≥.【点睛】本题考查整式加减,注意掌握利用作差法对两个代数式进行大小比较以及配方法的应用是解题的关键.27.(1)每个A 型放大镜和每个B 型放大镜分别为9元,4元;(2)最多可以购买54个A 型放大镜.【分析】(1)根据题意设每个A 型放大镜和每个B 型放大镜分别为x 元,y 元,列出方程组即可解决问题;(2)由题意设购买A 型放大镜a 个,列出不等式并进行分析求解即可解决问题.【详解】解:(1)设每个A 型放大镜和每个B 型放大镜分别为x 元,y 元,可得:10015015001201601720x y x y +⎧⎨+⎩==, 解得:94x y =⎧⎨=⎩. 答:每个A 型放大镜和每个B 型放大镜分别为9元,4元.(2)设购买A 型放大镜a 个,根据题意可得:94(75)570a a +⨯-≤,解得:54a ≤.答:最多可以购买54个A 型放大镜.【点睛】本题考查二元一次方程组的应用以及一元一次不等式的应用等知识,解题的关键是理解题意,列出方程组和不等式进行分析解答.28.(1)3,0,﹣2;(2)a +b =c ,理由见解析.【分析】(1)直接根据新定义求解即可;(2)先根据新定义得出关于a ,b ,c 的等式,然后根据幂的运算法则求解即可.【详解】(1)∵33=27,∴(3,27)=3,∵40=1,∴(4,1)=0,∵2﹣2=14, ∴(2,0.25)=﹣2.故答案为:3,0,﹣2;(2)a +b =c .理由:∵(3,5)=a ,(3,6)=b ,(3,30)=c ,∴3a =5,3b =6,3c =30,∴3a ×3b =5×6=3c =30,∴3a ×3b =3c ,∴a +b =c .【点睛】本题考查了新定义运算,明确新定义的运算方法是解答本题的关键,本题也考查了有理数的乘方、同底数幂的乘法运算.29.50︒.【分析】先根据平行线的性质得出BFG FGC ∠=∠,再根据CGE FGC EGF ∠=∠-∠结合已知角度即可求解.【详解】证明://AB CD ,∠BFG =140°,BFG FGC ∴∠=∠=140°,又∵CGE FGC EGF ∠=∠-∠,∠EGF =90°,1409050CGE ∴∠=︒-︒=︒. 【点睛】本题考查的是平行线的性质,熟知平行线及角平分线的性质是解答此题的关键.解题时注意:两直线平行,内错角相等.30.(1)272x y =⎧⎪⎨=⎪⎩;(2)692x y =⎧⎪⎨=⎪⎩【分析】(1)根据加减消元法,即可求解;(2)先去分母,去括号,移项,合并同类项,再通过加减消元法,即可求解.【详解】(1)29321x y x y +=⎧⎨-=-⎩①②,+①②得:48x =.解得:2x =,把2x =代入①得:229y +=,解得:72y =, ∴方程组的解为272x y =⎧⎪⎨=⎪⎩; (2)原方程可化为3436329x y x y +=⎧⎨-=⎩①②, ①-②得:627y =,解得:92y =, 把92y =代入②得:399x -=,解得:6x =, ∴方程组的解为692x y =⎧⎪⎨=⎪⎩. 【点睛】本题主要考查解二元一次方程组,掌握加减消元法,是解题的关键.31.(1)21312-;(2)101100212-. 【分析】(1)仿照阅读材料中的方法求出所求即可;(2)仿照阅读材料中的方法求出所求即可.【详解】解:(1)设S =1+3+32+33+ (320)则3S =3+32+33+ (321)∴3S ﹣S =321﹣1,即S =21312-, 则1+3+32+33+…+320=21312-; (2)设S =1+2310011112222+++⋯+, 则12S =231001011111122222+++⋯++, ∴S ﹣12S =1﹣10112=101101212-,即S =101100212-, 则S =1+2310011112222+++⋯+=101100212-. 【点睛】此题考查的是探索运算规律题,根据已知材料中的方法,探索出运算规律是解决此题的关键.32.(1)70°;(2)60°;(3)110°【分析】(1)根据四边形的内角和是360°,结合已知条件就可求解;(2)根据平行线的性质得到∠ABE的度数,再根据角平分线的定义得到∠ABC的度数,进一步根据四边形的内角和定理进行求解;(3)根据四边形的内角和定理以及角平分线的概念求得∠EBC+∠ECB的度数,再进一步求得∠BEC的度数.【详解】(1)在四边形ABCD中,∵∠A+∠B+∠C+∠D=360°, 又∠A=140°,∠D=80°,∠B=∠C,∴140°+∠C+∠C+80°=360°,即∠C=70°.(2)∵BE∥AD,∠A=140°,∠D=80°,∴∠BEC=∠D,∠A+∠ABE=180°.∴∠BEC=80°,∠ABE=40°.∵BE是∠ABC的平分线,∴∠EBC=∠ABE=40°.∴∠C=180°-∠EBC-∠BEC=180°-40°-80°=60°.(3)在四边形ABCD中, 有∠A+∠ABC+∠BCD+∠D=360°, ∠A=140°,∠D=80°,所以∠ABC+∠BCD=140°,从而有12∠ABC+12∠BCD=70°.因为∠ABC和∠BCD的角平分线交于点E,所以有∠EBC=12∠ABC,∠ECB=12∠BCD.故∠C=180°-(∠EBC +∠ECB)=180°-(12∠ABC+12∠BCD)=180°-70°=110°.33.(1)详见解析;(2)详见解析;(3)详见解析【分析】(1)利用乘方的意义求解,即可;(2)将式子变形,利用完全平方公式计算,即可;(3)化成边长为a+b+c的正方形,即可得出答案.【详解】(1)小刚:(a+b+c)2=(a+b+c)(a+b+c)=a2+ab+ac+ba+b2+bc+ca+cb+c2=a2+b2+c2+2ab+2ac+2bc(2)小王:(a+b+c)2=[(a+b)+c]2=(a+b)2+2(a+b)c+c2=a2+b2+2ab+2ac+2bc+c2(3)小丽:如图【点睛】本题考查了整式的运算法则的应用,能正确根据整式的运算法则进行化简是解此题的关键,也培养了学生的动手操作能力.34.(1)3()(2)a b x y -+;(2)22(2)(2)y y +-【分析】(1)提取公因式3(a-b),即可求解.(2)将(y 2-1)看成一项,根据完全平方公式进行因式分解,之后再利用平方差公式即可求解.【详解】(1)原式=3()6()x a b y b a ---=3()(2)a b x y -+故答案为:3()(2)a b x y -+(2)原式=222(1)6(1)9y y ---+=22(y 13)--=22(4)y -=22(2)(2)y y +-故答案为:22(2)(2)y y +-【点睛】本题考查了因式分解的方法,本题分别采用了提取公因式法和公式法进行因式分解,一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.运用公式法因式分解,一般有平方差公式,完全平方公式,立方和公式,完全立方公式.35.(1)(a+b)2-(a-b)2=4ab ;(2)±4;(3)-7【分析】(1)由图可知,图1的面积为4ab ,图2中白色部分的面积为(a+b)2-(b-a)2=(a+b)2-(a-b)2,图1的面积和图2中白色部分的面积相等即可求解.(2)由(1)知,(x+y)2-(x-y)2=4xy ,将x+y =5,x•y =94代入(x+y)2-(x-y)2=4xy ,即可求得x-y 的值(3)因为(2019﹣m)+(m ﹣2020)=-1,等号两边同时平方,已知(2019﹣m)2+(m ﹣2020)2=15,即可求解.【详解】(1)由图可知,图1的面积为4ab,图2中白色部分的面积为(a+b)2-(b-a)2=(a+b)2-(a-b)2∵图1的面积和图2中白色部分的面积相等∴(a+b)2-(a-b)2=4ab故答案为:(a+b)2-(a-b)2=4ab(2)由(1)知,(x+y)2-(x-y)2=4xy∵x+y=5,x•y=9 4∴52-(x-y)2=4×9 4∴(x-y)2=16∴x-y=±4故答案为:±4(3)∵(2019﹣m)+(m﹣2020)=-1∴[(2019﹣m)+(m﹣2020)]2=1∴(2019﹣m)2+2(2019﹣m)(m﹣2020)+ (m﹣2020)2=1∵(2019﹣m)2+(m﹣2020)2=15∴2(2019﹣m)(m﹣2020)=1-15=-14∴(2019﹣m)(m﹣2020)=-7故答案为:-7【点睛】本题考查了完全平方公式的几何背景,运用几何直观理解、解决完全平方公式的推导过程,通过几何图形之间的数量关系对完全平方公式做出几何解释.36.(1)见解析;(2)平行且相等;(3)28【分析】(1)根据平移的性质画出点A、C平移后的对应点A'、C'即可画出平移后的△A B C''';(2)根据平移的性质解答即可;(3)根据平行四边形的面积解答即可.【详解】解:(1)如图,ΔA B C'''即为所求;(2)根据平移的性质可得:BB'与CC'的关系是平行且相等;故答案为:平行且相等;(3)四边形BCC B''的面积为4×7=28.故答案为:28.【点睛】本题主要考查了平移的性质和平移作图,属于常考题型,熟练掌握平移的性质是解题关键.。
新苏科初一数学下册第二学期期末测试题及答案(共五套)
新苏科初一数学下册第二学期期末测试题及答案(共五套)一、选择题1.下列计算正确的是( ) A .a 3.a 2=a 6B .a 2+a 4=2a 2C .(a 3)2=a 6D .224(3)6a a =2.如图,下列推理中正确的是( )A .∵∠1=∠4, ∴BC//ADB .∵∠2=∠3,∴AB//CDC .∵∠BCD+∠ADC=180°,∴AD//BCD .∵∠CBA+∠C=180°,∴BC//AD3.如图,把一块含45°角的三角板的直角顶点靠在长尺(两边a ∥b )的一边b 上,若∠1=30°,则三角板的斜边与长尺的另一边a 的夹角∠2的度数为( )A .10°B .15°C .30°D .35° 4.要使(4x ﹣a )(x+1)的积中不含有x 的一次项,则a 等于( ) A .﹣4B .2C .3D .45.下列方程中,是二元一次方程的是( ) A .x ﹣y 2=1B .2x ﹣y =1C .11y x+= D .xy ﹣1=06.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( ) A .12 B .15 C .12或15 D .18 7.下列式子是完全平方式的是( )A .a 2+2ab ﹣b 2B .a 2+2a +1C .a 2+ab +b 2D .a 2+2a ﹣18.如图,已知直线AB ∥CD ,115C ∠=︒,25A ∠=︒,则E ∠=( )A .25︒B .65︒C .90︒D .115︒9.如图,△ABC 中∠A=30°,E 是AC 边上的点,先将△ABE 沿着BE 翻折,翻折后△ABE 的AB 边交AC 于点D ,又将△BCD 沿着BD 翻折,C 点恰好落在BE 上,此时∠CDB=82°,则原三角形的∠B 的度数为( )A .75°B .72°C .78°D .82° 10.若多项式224a kab b ++是完全平方式,则k 的值为( )A .4B .2±C .4±D .8± 11.已知a 、b 、c 是正整数,a >b ,且a 2-ab-ac+bc=11,则a-c 等于( )A .1-B .1-或11-C .1D .1或1112.平面直角坐标系中,点A 到x 轴的距离为1,到y 轴的距离为3,且在第二象限,则点A 的坐标为( ) A .()1,3-B .()3,1-C .()1,3-D .()3,1-二、填空题13.计算()()12x x --的结果为_____;14.一个多边形的内角和与外角和之差为720︒,则这个多边形的边数为______. 15.一个等腰三角形的两边长分别为4cm 和9cm ,则它的周长为__cm . 16.已知5m a =,3n a =,则2m n a -的值是_________.17.如果()()2x 1x 4ax a +-+的乘积中不含2x 项,则a 为______ .18.计算:312-⎛⎫ ⎪⎝⎭= . 19.已知()223420x y x y -+--=,则x=__________,y=__________.20.一个n 边形的内角和是它外角和的6倍,则n =_______. 21.若2(1)(23)2x x x mx n +-=++,则m n +=________.22.已知:实数m,n 满足:m+n=3,mn=2.则(1+m)(1+n)的值等于____________. 23.已知m a =2,n a =3,则2m n a -=_______________. 24.若29x kx -+是完全平方式,则k =_____.三、解答题25.因式分解:(1)()()36x m n y n m ---;(2)()222936x x +-26.A 市准备争创全国卫生城市.某小区积极响应,决定在小区内安装垃圾分类的提示牌和垃圾箱,若购买2个提示牌和3个垃圾箱共需550元,且垃圾箱的单价是提示牌单价的3倍.(1)求提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案.AB DC,AC和BD相交于点O,E是CD上一点,F是OD上一点,且27.已知:如图,//∠1=∠A.FE OC;(1)求证://(2)若∠BFE=110°,∠A=60°,求∠B的度数.28.如图,在△ABC中,∠ABC=56º,∠ACB=44º,AD是BC边上的高,AE是△ABC的角平分线,求出∠DAE的度数.29.如图,在网格中,每个小正方形的边长均为1个单位长度,我们将小正方形的顶点叫做格点,三角形ABC的三个顶点均在格点上.(1)将三角形ABC先向右平移6个单位长度,再向上平移3个单位长度,得到三角形A1B1C1,画出平移后的三角形A1B1C1;(2)建立适当的平面直角坐标系,使得点A的坐标为(-4,3),并直接写出点A1的坐标;(3)求三角形ABC的面积.轴于B,点C在30.如图(1),在平面直角坐标系中,点A在x轴负半轴上,直线l x直线l上,点C在x轴上方.(1)(),0A a ,(),2C b ,且,a b 满足2()|4|0a b a b ++-+=,如图(2),过点C 作MN ∥AB ,点Q 是直线MN 上的点,在x 轴上是否存在点P ,使得ABC ∆的面积是BPQ 的面积的23?若存在,求出P 点坐标;若不存在,请说明理由.(2)如图(3),直线l 在y 轴右侧,点E 是直线l 上动点,且点E 在x 轴下方,过点E 作DE ∥AC 交y 轴于D ,且AF 、DF 分别平分CAB ∠、ODE ∠,则AFD ∠的度数是否发生变化?若不变,求出AFD ∠的度数;若变化,请说明理由.31.如图,△ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,∠BAC=60°,∠C=50°,求∠DAC 及∠BOA 的度数.32.如果a c =b ,那么我们规定(a ,b )=c .例如;因为23=8,所以(2,8)=3. (1)根据上述规定填空:(3,27)= ,(4,1)= ,(2,0.25)= ; (2)记(3,5)=a ,(3,6)=b ,(3,30)=c .判断a ,b ,c 之间的等量关系,并说明理由. 33.计算(1)(π-3.14)0-|-3|+(12)1--(-1)2012 (2) (-2a 2)3+(a 2)3-4a .a 5 (3)x (x+7)-(x-3)(x+2) (4)(a-2b-c )(a+2b-c )34.定义:若实数x ,y 满足22x y t =+,22y x t =+,且x ≠y ,则称点M (x ,y )为“好点”.例如,点(0,-2)和 (-2,0)是“好点”.已知:在直角坐标系xOy 中,点P (m ,n ).(1)P 1(3,1)和P 2(-3,1)两点中,点________________是“好点”. (2)若点P (m ,n )是“好点”,求m +n 的值.(3)若点P 是“好点”,用含t 的代数式表示mn ,并求t 的取值范围. 35.(1)填一填 21-20=2( ) 22-21=2( ) 23-22=2( ) ⋯(2)探索(1)中式子的规律,试写出第n 个等式,并说明第n 个等式成立; (3)计算20+21+22+⋯+22019.36.如图,已知:点A C 、、B 不在同一条直线,AD BE .(1)求证:180B C A ∠+∠-∠=︒.(2)如图②,AQ BQ 、分别为DAC EBC ∠∠、的平分线所在直线,试探究C ∠与AQB ∠的数量关系;(3)如图③,在(2)的前提下,且有ACQB ,直线AQ BC 、交于点P ,QP PB ⊥,请直接写出::DAC ACB CBE ∠∠∠=______________.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据同底幂的运算法则依次判断各选项. 【详解】A 中,a 3.a 2=a 5,错误;B 中,不是同类项,不能合并,错误;C 中,(a 3)2=a 6,正确;D 中,224(3)9a a ,错误 故选:C . 【点睛】本题考查同底幂的运算,注意在加减运算中,不是同类项是不能合并的.2.C解析:C 【分析】根据平行线的判定方法一一判断即可. 【详解】A 、错误.由∠1=∠4应该推出AB ∥CD . B 、错误.由∠2=∠3,应该推出BC//AD .C 、正确.D 、错误.由∠CBA+∠C=180°,应该推出AB ∥CD , 故选:C . 【点睛】本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考基础题.3.B解析:B【解析】∠1与它的同位角相等,它的同位角+∠2=45°所以∠2=45°-30°=15°,故选B4.D解析:D【分析】先运用多项式的乘法法则计算,再合并同类项,因积中不含x的一次项,所以让一次项的系数等于0,得a的等式,再求解.【详解】解:(4x-a)(x+1),=4x2+4x-ax-a,=4x2+(4-a)x-a,∵积中不含x的一次项,∴4-a=0,解得a=4.故选D.【点睛】本题考查了多项式乘多项式法则,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.5.B解析:B【解析】【分析】根据二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.据此逐一判断即可得.【详解】解:A.x-y2=1不是二元一次方程;B.2x-y=1是二元一次方程;C.1x+y=1不是二元一次方程;D.xy-1=0不是二元一次方程;故选B.【点睛】本题考查二元一次方程的定义,解题的关键是掌握含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.6.B解析:B【解析】试题分析:根据题意,要分情况讨论:①、3是腰;②、3是底.必须符合三角形三边的关系,任意两边之和大于第三边.解:①若3是腰,则另一腰也是3,底是6,但是3+3=6,∴不构成三角形,舍去. ②若3是底,则腰是6,6. 3+6>6,符合条件.成立. ∴C=3+6+6=15. 故选B .考点:等腰三角形的性质.7.B解析:B 【分析】利用完全平方公式的结构特征判断即可. 【详解】解:下列式子是完全平方式的是a 2+2a+1=(a+1)2, 故选B . 【点睛】此题考查了完全平方式:(a+b)²=a²+2ab+b²,熟练掌握完全平方公式是解本题的关键.8.C解析:C 【分析】先根据平行线的性质求出∠EFB 的度数,再利用三角形的外角性质解答即可. 【详解】解:∵AB ∥CD ,115C ∠=︒, ∴115EFB C ∠=∠=︒, ∵EFB A E ∠=∠+∠,25A ∠=︒ ∴1152590E ∠=︒-︒=︒. 故选:C . 【点睛】本题考查了平行线的性质和三角形的外角性质,属于基础题型,熟练掌握上述基本知识是解题关键.9.C解析:C 【分析】在图①的△ABC 中,根据三角形内角和定理,可求得∠B+∠C=150°;结合折叠的性质和图②③可知:∠B=3∠CBD ,即可在△CBD 中,得到另一个关于∠B 、∠C 度数的等量关系式,联立两式即可求得∠B 的度数. 【详解】在△ABC 中,∠A=30°,则∠B+∠C=150°…①; 根据折叠的性质知:∠B=3∠CBD ,∠BCD=∠C ;在△CBD 中,则有:∠CBD+∠BCD=180°-82°,即:13∠B+∠C=98°…②; ①-②,得:23∠B=52°, 解得∠B=78°. 故选:C . 【点睛】此题主要考查的是图形的折叠变换及三角形内角和定理的应用,能够根据折叠的性质发现∠B 和∠CBD 的倍数关系是解答此题的关键.10.C解析:C 【分析】根据完全平方式的特征解答即可. 【详解】∵224a kab b ++是一个完全平方式, ∴224a kab b ++=(a ±2b )2, 而(a ±2b )2=a 2±4ab+24b , ∴k=±4, 故选C . 【点睛】本题考查了完全平方式,根据完全平方式的特点得到k=±4是解决问题的关键.11.D解析:D 【解析】 【分析】此题先把a 2-ab -ac +bc 因式分解,再结合a 、b 、c 是正整数和a >b 探究它们的可能值,从而求解. 【详解】解:根据已知a 2-ab -ac +bc =11, 即a (a -b )-c (a -b )=11, (a -b )(a -c )=11, ∵a >b , ∴a -b >0, ∴a -c >0, ∵a 、b 、c 是正整数, ∴a -c =1或a -c =11 故选D . 【点睛】此题考查了因式分解;能够借助因式分解分析字母的取值范围是解决问题的关键.12.B解析:B【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值解答.【详解】解:∵P在第二象限,且点P到x轴、y轴的距离分别是1,3,∴点P的横坐标为-3,纵坐标为1,∴P点的坐标为(-3,1).故选:B.【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.二、填空题13.【分析】原式利用多项式乘多项式法则计算即可得到结果.【详解】原式=x²−2x−x+2=x²−3x+2,故答案为:x²−3x+2.【点睛】点评:此题考查了多项式乘多项式,熟练掌握运算法则解析:2-32x x【分析】原式利用多项式乘多项式法则计算即可得到结果.【详解】原式=x²−2x−x+2=x²−3x+2,故答案为:x²−3x+2.【点睛】点评:此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.14.8【解析】【分析】根据多边形的内角和公式(n-2)•180°与外角和定理列式求解即可.【详解】设这个多边形的边数是n,则(n-2)•180°-360°=720°,解得n=8.故答案为解析:8【解析】【分析】根据多边形的内角和公式(n-2)•180°与外角和定理列式求解即可.【详解】设这个多边形的边数是n,则(n-2)•180°-360°=720°,解得n=8.故答案为8.【点睛】本题考查了多边形的内角和与外角和定理,任意多边形的外角和都是360°,与边数无关.15.22【解析】【分析】底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长. 【详解】试题解析:①当腰是4cm,底边是9cm时:不满足三角形的三边关系,因此舍去.②当底边是4cm解析:22【解析】【分析】底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长.【详解】试题解析:①当腰是4cm,底边是9cm时:不满足三角形的三边关系,因此舍去.②当底边是4cm,腰长是9cm时,能构成三角形,则其周长=4+9+9=22cm.故填22.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答. 16.【分析】根据同底数幂的乘除法计算法则进行计算即可.【详解】解:,∵,∴,故答案为:.【点睛】此题考查同底数幂的乘除法.同底数幂相乘或相除,底数不变,指数相加或相减. 解析:253【分析】根据同底数幂的乘除法计算法则进行计算即可.【详解】解:22m n m n a a a -=÷,∵5m a =,∴22525m a ==, ∴22252533m n m n a a a -=÷=÷=, 故答案为:253. 【点睛】此题考查同底数幂的乘除法.同底数幂相乘或相除,底数不变,指数相加或相减.17.【分析】先根据多项式乘以多项式法则展开,合并同类项,根据已知得出,求出即可;【详解】解:,的乘积中不含项,,解得:.故答案为:.【点睛】本题考查了多项式乘以多项式法则和解一元 解析:14【分析】先根据多项式乘以多项式法则展开,合并同类项,根据已知得出4a 10-+=,求出即可;解:()()2x 1x 4ax a +-+ 322x 4ax ax x 4ax a =-++-+()32x 4a 1x 3ax a =+-+-+,()()2x 1x 4ax a +-+的乘积中不含2x 项,4a 10∴-+=, 解得:1a 4=. 故答案为:14. 【点睛】本题考查了多项式乘以多项式法则和解一元一次方程,掌握多项式乘以多项式法则是解此题的关键.18.8【解析】分析:根据幂的负整数指数运算法则进行计算即可.解:原式==8.故答案为8.点评:负整数指数幂的运算,先把底数化成其倒数,然后将负整数指数幂当成正的进行计算.解析:8【解析】分析:根据幂的负整数指数运算法则进行计算即可.解:原式=3112⎛⎫ ⎪⎝⎭=8. 故答案为8.点评:负整数指数幂的运算,先把底数化成其倒数,然后将负整数指数幂当成正的进行计算.19..【解析】试题分析:因,所以,解得.考点:和的非负性;二元一次方程组的解法.解析:⎩⎨⎧==12y x .【解析】试题分析:因()223420x y x y -+--=,所以⎩⎨⎧=--=-024302y x y x ,解得⎩⎨⎧==12y x . 考点:a 和2a 的非负性;二元一次方程组的解法.20.14【分析】根据多边形的内角和公式及外角和列出等式,解出n 即可.【详解】多边形的外角和为:360°,多边形的内角和公式为:(n-2)×180°,根据题意得:(n-2)×180=360×6解析:14【分析】根据多边形的内角和公式及外角和列出等式,解出n 即可.【详解】多边形的外角和为:360°,多边形的内角和公式为:(n-2)×180°,根据题意得:(n-2)×180=360×6,解得:n=14,故答案为:14.【点睛】本题是对多边形内角和及外角和的考查,熟练掌握多边形的内角和公式及外角和是解决本题的关键.21.【分析】根据多项式与多项式相乘的法则进行运算,得一次项系数与常数项分别为、,进而求得 .【详解】解:∵,∴ 、 ,∴.故答案为.【点睛】本题目考查整式的乘法,难度不大,熟练掌握多项解析:4-【分析】根据多项式与多项式相乘的法则进行运算,得一次项系数与常数项分别为m 、n ,进而求得m n + .【详解】解:∵22(1)(23)23=2x x x x x mx n +-=--++,∴1m =- 、3n =- ,∴()=13=13=4m n +-+----.故答案为4-.【点睛】本题目考查整式的乘法,难度不大,熟练掌握多项式与多项式相乘的运算方法即可顺利解题.22.6【分析】根据多项式乘以多项式的法则展开,再代入计算即可.【详解】∵m+n=3,mn=2,∴(1+m)(1+n)=1+n+m+mn=1+3+2=6.故答案为:6.【点睛】本题考查了多解析:6【分析】根据多项式乘以多项式的法则展开,再代入计算即可.【详解】∵m +n =3,mn =2,∴(1+m )(1+n )=1+n +m +mn =1+3+2=6.故答案为:6.【点睛】本题考查了多项式乘以多项式,掌握多项式乘以多项式的法则是解答本题的关键.注意不要漏项,漏字母,有同类项的合并同类项.23.【分析】根据同底数幂的除法和幂的乘方与积的乘方的运算法则求解即可.【详解】解:am-2n=am÷a2n=am÷(an )2=2÷9=故答案为【点睛】本题考查了同底数幂的除法和幂的 解析:29【分析】根据同底数幂的除法和幂的乘方与积的乘方的运算法则求解即可.【详解】解:a m-2n=a m ÷a 2n=a m ÷(a n )2=2÷9 =29故答案为29 【点睛】本题考查了同底数幂的除法和幂的乘方与积的乘方,解答本题的关键在于熟练掌握各知识点的运算法则.24.【分析】根据两数的平方和加上或减去两数积的2倍,等于两数和或差的平方,即可求出的值 .【详解】解:∵是完全平方式,即.故答案为:.【点睛】此题考查了完全平方式, 熟练掌握完全平方公式解析:6±【分析】根据两数的平方和加上或减去两数积的2倍,等于两数和或差的平方,即可求出k 的值 .【详解】解:∵29x kx -+是完全平方式,即()2293x kx x -+=± 236k ∴=±⨯=±.故答案为:6±.【点睛】此题考查了完全平方式, 熟练掌握完全平方公式的结构特点是解本题的关键三、解答题25.(1)3()(2)m n x y -+;(2)22(3)(3)x x +-.【分析】(1)原式变形后,提取公因式即可;(2)原式先利用平方差公式进行因式分解,再利用完全平方公式分解即可.【详解】(1)原式3()6()x m n y m n =-+-3()3()2m n x m n y =-⋅+-⋅3()(2)m n x y =-+(2)原式()2229(6)x x =+-()()229696x x x x =+++-22(3)(3)x x =+-【点睛】此题考查了提公因式与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 26.(1)50元,150元;(2)提示牌50个,垃圾箱50个;提示牌51个,垃圾箱49个;提示牌52个,垃圾箱48个;【分析】1)根据“购买2个提示牌和3个垃圾箱共需550元”,建立方程求解即可得出结论; (2)根据“费用不超过10000元和至少需要安放48个垃圾箱”,建立不等式即可得出结论.【详解】解:(1)设提示牌的单价为x 元,则垃圾箱的单价为3x 元,根据题意得,233550x x +⨯=, 50x ∴=,3150x ∴=,即:提示牌和垃圾箱的单价各是50元和150元;(2)设购买提示牌y 个(y 为正整数),则垃圾箱为(100)y -个,根据题意得,1004850150(100)10000y y y ,5052y , y 为正整数,y ∴为50,51,52,共3种方案;即:温馨提示牌50个,垃圾箱50个;温馨提示牌51个,垃圾箱49个;温馨提示牌52个,垃圾箱48个,【点睛】此题主要考查了一元一次不等式组,一元一次方程的应用,正确找出相等关系是解本题的关键.27.(1)见详解;(2)50°.【分析】(1)由//AB DC,可知∠A=∠C ,然后等量代换得到∠C=∠1,利用同位角相等两直线平行即可得证;(2)由EF与OC平行,利用两直线平行同旁内角互补得到∠BFE+∠DOC=180°,然后通过三角形内角和即可求出∠B的度数.【详解】(1)证明:∵AB∥CD,∴∠A=∠C ,又∵∠1=∠A,∴∠C=∠1,∴FE∥OC;(2)解:∵FE∥OC,∴∠BFE+∠DOC=180°,又∵∠BFE=110°,∴∠DOC=180°-110°=70°,∴∠AOB=∠DOC=70°,∵∠A=60°,∴∠B=180°-60°-70°=50°.【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.28.6°【解析】试题分析:先根据三角形内角和求出∠BAC的度数,由AE是△ABC的角平分线,求出∠DAC的度数,由AD是BC边上的高,求出∠EAC的度数,再利用角的和差求出∠DAE的度数.解:∵在△ABC中,∠ABC=56°,∠ACB=44°∴∠BA C=180°-∠ABC-∠ACB=80°∵AE是△ABC的角平分线∴∠EAC=12∠BA C=40°∵AD是BC边上的高,∠ACB=44°∴∠DAC=90°-∠ACB=46°∴∠DAE=∠DAC-∠EAC=6°29.(1)见解析;(2)(2,6);(3)19 2【分析】(1)利用网格特点和平移的性质画出A、B、C的对应点A1、B1、C1,从而得到△A1B1C1;(2)利用A点坐标画出直角坐标系,再写出A1坐标即可;(3)利用分割法求出坐标即可.【详解】解:(1)画出平移后的△A 1B 1C 1如下图;;(2)如上图建立平面直角坐标系,使得点A 的坐标为(-4,3),由图可知:点A 1的坐标为(2,6);(3)由(2)中的图可知:A (-4,3),B (5,-1),C (0,0),∴S △ABC =11119(45)434512222+⨯-⨯⨯-⨯⨯=. 【点睛】 本题考查了作图——平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.30.(1)存在,P 点为()8,0或()4,0-;(2)AFD ∠的度数不变,AFD ∠=45︒【分析】(1)由非负数的性质可得a 、b 的方程组,解方程组即可求出a 、b 的值,于是可得点A 、C 坐标,进而可得S △ABC ,若x 轴上存在点P (m ,0),满足S △ABC =23S △BPQ ,可得关于m 的方程,解方程即可求出m 的值,从而可得点P 坐标;(2)如图4,过点F 作FH ∥AC ,设AC 交y 轴于点G ,根据平行公理的推论可得AC ∥FH ∥DE ,然后根据平行线的性质和角的和差可得∠AFD =∠GAF +∠1,由角平分线的性质和三角形的内角和定理可得2∠GAF +2∠1=90°,于是可得∠AFD =45°,从而可得结论.【详解】解:(1)∵,a b 满足2()|4|0a b a b ++-+=, ∴040a b a b +=⎧⎨-+=⎩,解得:22a b =-⎧⎨=⎩, ∴()2,0A -,()2,2C ,∴S △ABC =14242⨯⨯=, ∵点Q 是直线MN 上的点,∴2Q y =,若x 轴上存在点P (m ,0),满足S △ABC =23S △BPQ ,则2122432m ⨯⋅-⨯=,解得:m =8或﹣4, 所以存在点P 满足S △ABC =23S △BPQ ,且P 点坐标为()8,0或()4,0-; (2)如图4,过点F 作FH ∥AC ,设AC 交y 轴于点G ,∵DE ∥AC ,∴AC ∥FH ∥DE ,∴∠GAF =∠AFH ,∠HFD =∠1,∠AGO =∠GDE ,∴∠AFD =∠AFH +∠HFD =∠GAF +∠1,∵AF 、DF 分别平分CAB ∠、ODE ∠,∴∠CAB =2∠GAF ,∠ODE =2∠1=∠AGO ,∵∠CAB +∠AGO =90°,∴2∠GAF +2∠1=90°,∴∠GAF +∠1=45°,即∠AFD =45°;∴AFD ∠的度数不会发生变化,且∠AFD =45°.【点睛】本题考查了非负数的性质、二元一次方程组的解法、坐标系中三角形的面积、平行线的性质、角平分线的定义以及三角形的内角和定理等知识,综合性强、但难度不大,正确添加辅助线、熟练掌握上述是解题的关键.31.∠DAC=40°,∠BOA=115°【解析】试题分析:在Rt △ACD 中,根据两锐角互余得出∠DAC 度数;△ABC 中由内角和定理得出∠ABC 度数,再根据AE ,BF 是角平分线可得∠BAO、∠ABO,最后在△ABO 中根据内角和定理可得答案.解:∵AD 是BC 边上的高,∴∠ADC=90°,又∵∠C=50°,∴在△ACD 中,∠DAC=90°-∠C=40°,∵∠BAC=60°,∠C=50°,∴在△ABC 中,∠ABC=180°-∠BAC-∠C=70°,又∵AE 、BF 分别是∠BAC 和∠ABC 的平分线,∴∠BAO=12∠BAC=30°,∠ABO=12∠ABC=35°, ∴∠BOA=180°-∠BAO -∠ABO =180°-30°-35°=115°. 32.(1)3,0,﹣2;(2)a +b =c ,理由见解析.【分析】(1)直接根据新定义求解即可;(2)先根据新定义得出关于a ,b ,c 的等式,然后根据幂的运算法则求解即可.【详解】(1)∵33=27,∴(3,27)=3,∵40=1,∴(4,1)=0,∵2﹣2=14, ∴(2,0.25)=﹣2.故答案为:3,0,﹣2;(2)a +b =c .理由:∵(3,5)=a ,(3,6)=b ,(3,30)=c ,∴3a =5,3b =6,3c =30,∴3a ×3b =5×6=3c =30,∴3a ×3b =3c ,∴a +b =c .【点睛】本题考查了新定义运算,明确新定义的运算方法是解答本题的关键,本题也考查了有理数的乘方、同底数幂的乘法运算.33.(1)-1;(2)611a -;(3)86x +;(4)222a ac c -+ -24b【分析】(1)直接利用零指数幂,绝对值,负指数幂,乘方法则运算.(2)先利用幂的运算法则,再合并同类项.(3)利用整式的乘法法则进行运算.(4)利用平方差公式进行运算.【详解】解:(1)原式=1-3+2-1=-1(2)原式=68a - +6a -64a =611a -(3)原式=27x x + -()26x x -- =27x x +26x x -++ =86x +(4)原式=()2a c - -()22b =222a ac c -+ -24b【点睛】本题主要考查了数的计算,整式的加减与乘法,解题的关键要对零指数幂,绝对值,负指数幂以及幂的运算和整式的乘法法则熟悉.34.(1)2P ;(2)2-;(3)3t >【分析】(1)将P 1(3,1)和P 2(-3,1)分别代入等式即可得出结果;(2)将点P (m ,n )代入等式即可得出m+n 的值;(3)根据“好点”的定义,将P 点代入即可得到关于m 和n 的等式,将两个等式结合即可得出结果.【详解】解:(1)对于1(3,1)P ,2321,7t t =⨯+=,2123,5t t =⨯+=-对于2(3,1)P -,2(3)21,7t t -=⨯+=,212(3),7t t =⨯-+=,所以2P 是“好点” (2)∵点(,)P m n 是好点,∴222,2m n t n m t =+=+, 222()m n n m -=-,∴2m n +=-(3)∵222,2m n t n m t =+=+,2222m n n t m t -=+--①,2222m n m t n t +=+++②,得()()2()0m n m n m n -++-=,即()(2)0m n m n -++=,由题知,,2m n m n ≠∴+=-,由②得2()22()2m n mn m n t +-=++,∴4242,4mn t mn t -=-+=-,∵m n ≠,∴2()0m n ->,∴2()40m n mn +->,∴44(4)0t -->,所以3t >,【点睛】本题主要考查的是新定义“好点”,正确的掌握整式的乘法解题的关键.35.(1)0,1,2(2)11222n n n ---=(3)22020-1【分析】(1)根据乘方的运算法则计算即可;(2)根据式子规律可得11222n n n ---=,然后利用提公因式法12n -可以证明这个等式成立;(3)设题中的表达式为a ,再根据同底数幂的乘法得出2a 的表达式相减即可.【详解】(1)10022212-=-=,21122422-=-=,32222842-=-=,故答案为:0,1,2;(2)第n 个等式为:11222n n n ---=,∵左边=()111222212n n n n ----=-=,右边=12n -,∴左边=右边,∴11222n n n ---=;(3)20+21+22+⋅⋅⋅⋅⋅⋅+22019=21-20+22-21+⋅⋅⋅⋅⋅⋅+22020-22019=22020-1∴01220192020222221++++=-….【点睛】此题主要考察了探寻数列规律问题,认真观察,总结出规律,并能正确的应用规律是解答此题的关键.36.(1)见详解;(2)2180C AQB ∠+∠=︒;(3)1:2:2【分析】(1)过点C 作CF AD ,则//BE CF ,再利用平行线的性质求解即可; (2)过点Q 作QM AD ,则//BE QM ,再利用平行线的性质以及角平分线的性质得出1()2AQE CBE CAD ∠=∠-∠,再结合(1)的结论即可得出答案; (3)由(2)的结论可得出12CAD CBE ∠=∠,又因为QP PB ⊥,因此180CBE CAD ∠+∠=︒,联立即可求出两角的度数,再结合(1)的结论可得出ACB ∠的度数,再求答案即可.【详解】解:(1)过点C 作CF AD ,则//BE CF ,∵//CF AD BE∴,180,ACF A BCF B ACF BCF C ∠=∠∠=︒-∠∠+∠=∠∴180180180B C A BCF C ACF C C ∠+∠-∠=︒-∠+∠-∠=-∠+∠=︒(2)过点Q 作QM AD ,则//BE QM ,∵QM AD ,//BE QM∴,AQM NAD BQM EBQ ∠=∠∠=∠∵AQ BQ 、分别为DAC EBC ∠∠、的平分线所在直线 ∴11,22NAD CAD EBQ CBE ∠=∠∠=∠ ∴1()2ABQ BQM AQM CBE CAD ∠=∠-∠=∠-∠ ∵180()1802C CBE AD AQB ∠=︒-∠-∠=︒-∠ ∴2180C AQB ∠+∠=︒(3)∵//AC QB ∴11,22AQB CAP CAD ACP PBQ CBE ∠=∠=∠∠=∠=∠ ∴11801802ACB ACP CBE ∠=︒-∠=︒-∠ ∵2180C AQB ∠+∠=︒ ∴12CAD CBE ∠=∠ ∵QP PB ⊥∴180CBE CAD ∠+∠=︒∴60,120CAD CBE ∠=︒∠=︒ ∴11801202ACB CBE ∠=︒-∠=︒ ∴::60:120:1201:2:2DAC ACB CBE ∠∠∠=︒︒︒=.故答案为:1:2:2.【点睛】本题考查的知识点有平行线的性质、角平分线的性质.解此题的关键是作出合适的辅助线,找准角与角之间的关系.。
苏科七年级苏科初一下册第二学期数学期末考试卷及答案
苏科七年级苏科初一下册第二学期数学期末考试卷及答案一、选择题1.下列运算正确的是 () A .()23524a a -= B .()222a b a b -=- C .61213a a +=+ D .325236a a a ⋅= 2.如图,给出下列条件:①∠1=∠2;②∠3=∠4;③∠A=∠CDE ;④∠A+∠ADC=180°.其中,能推出AB ∥DC 的条件为( )A .①④B .②③C .①③D .①③④3.将一张长方形纸片按如图所示折叠后,再展开.如果∠1=56°,那么∠2等于( )A .56°B .62°C .66°D .68° 4.下列线段能构成三角形的是( ) A .2,2,4B .3,4,5C .1,2,3D .2,3,6 5.下列各式中,不能用平方差公式计算的是( )A .(x -y )(-x +y )B .(-x -y )(-x +y )C .(x -y )(-x -y )D .(x +y )(-x +y ) 6.如图所示的四个图形中,∠1和∠2不是同位角的是( )A .B .C .D .7.一个三角形的两边长分别为3和4,且第三边长为整数,这样的三角形的周长最大值是( )A .11B .12C .13D .148.不等式3+2x>x+1的解集在数轴上表示正确的是( )A .B .C .D .9.若关于x 的不等式组2034x x a x -<⎧⎨+>-⎩恰好只有2个整数解,且关于x 的方程21236x a a x +++=+的解为非负整数解,则所有满足条件的整数a 的值之和是( ) A .1 B .3 C .4 D .610.下列各组数中,是二元一次方程5x ﹣y =4的一个解的是( )A .31x y =⎧⎨=⎩B .11x y =⎧⎨=⎩C .04x y =⎧⎨=⎩D .13x y =⎧⎨=⎩11.如图,在下列给出的条件下,不能判定AB ∥DF 的是( )A .∠A+∠2=180°B .∠A=∠3C .∠1=∠4D .∠1=∠A12.若关于x 的一元一次不等式组202x m x m -<⎧⎨+>⎩无解,则m 的取值范围是( ) A .23m ≤ B .23m < C .23m ≥ D .23m > 二、填空题13.如图,根据长方形中的数据,计算阴影部分的面积为______ .14.若 a m =6 , a n =2 ,则 a m−n =________15.已知关于x 的不等式组()531235x a x x ⎧->-⎨-≤⎩的所有整数解的和为7则a 的取值范围是__________.16.三角形的周长为10cm ,其中有两边的长相等且长为整数,则第三边长为______cm .17.如图,四边形ABCD 中,E 、F 、G 、H 依次是各边中点,O 是形内一点,若四边形AEOH 、四边形BFOE 、四边形CGOF 的面积分别为6、7、8,四边形DHOG 面积为______.18.如果()()2x 1x 4ax a +-+的乘积中不含2x 项,则a 为______ . 19.小马在解关于x 的一元一次方程3232a x x -=时,误将- 2x 看成了+2x ,得到的解为x =6,请你帮小马算一算,方程正确的解为x =_____.20.若长方形的长为a +3b ,宽为a +b ,则这个长方形的面积为_____. 21.目前,世界上能制造出的最小晶体管的长度只有0.00000004m ,将0.00000004用科学记数法表示为_____.22.已知21xy=⎧⎨=⎩是方程2x﹣y+k=0的解,则k的值是_____.三、解答题23.已知a+b=2,ab=-1,求下面代数式的值:(1)a2+b2;(2)(a-b)2.24.探究与发现:如图1所示的图形,像我们常见的学习用品﹣﹣圆规.我们不妨把这样图形叫做“规形图”,那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥你的聪明才智,解决以下问题:(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;(2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,若∠A=50°,则∠ABX+∠ACX=°;②如图3,DC平分∠ADB,EC平分∠AEB,若∠DAE=50°,∠DBE=130°,求∠DCE的度数;③如图4,∠ABD,∠ACD的10等分线相交于点G1、G2…、G9,若∠BDC=140°,∠BG1C=77°,求∠A的度数.25.因式分解:(1)12abc﹣9a2b;(2)a2﹣25;(3)x3﹣2x2y+xy2;(4)m2(x﹣y)﹣(x﹣y).26.某公司有A、B两种型号的商品需运出,这两种商品的体积和质量如表所示:体积(m3/件)质量(吨/件)A两种型号0.80.5B两种型号21(1)已知一批商品有A、B两种型号,体积一共是20m3,质量一共是10.5吨,求A、B两种型号商品各有几件;(2)物流公司现有可供使用的货车每辆额定载重3.5吨,容积为6m3,其收费方式有以下两种:按车收费:每辆车运输货物到目的地收费900元;按吨收费:每吨货物运输到目的地收费300元.要将(1)中的商品一次或分批运输到目的地,该公司应如何选择运送方式,使所付运费最少,并求出该方式下的运费是多少元.27.阅读下列各式:(a•b)2=a2b2,(a•b)3=a3b3,(a•b)4=a4b4…回答下列三个问题:(1)验证:(2×12)100=,2100×(12)100=;(2)通过上述验证,归纳得出:(a•b)n=;(abc)n=.(3)请应用上述性质计算:(﹣0.125)2017×22016×42015.28.已知:如图EF∥CD,∠1+∠2=180°.(1)试说明GD∥CA;(2)若CD平分∠ACB,DG平分∠CDB,且∠A=40°,求∠ACB的度数.29.在南通市中小学标准化建设工程中,某校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元;(2)根据学校实际,需购进电脑和电子白板共31台,若总费用不超过30万元,则至多购买电子白板多少台?30.如图1,在△ABC的AB边的异侧作△ABD,并使∠C=∠D,点E在射线CA上.(1)如图,若AC∥BD,求证:AD∥BC;(2)若BD⊥BC,试解决下面两个问题:①如图2,∠DAE=20°,求∠C的度数;②如图3,若∠BAC=∠BAD,过点B作BF∥AD交射线CA于点F,当∠EFB=7∠DBF时,求∠BAD的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】A选项:(﹣2a3)2=4a6,故是错误的;B选项:(a﹣b)2=a2-2ab+b2,故是错误的;C选项:6123aa+=+13,故是错误的;故选D.2.D解析:D【详解】解:①∵∠1=∠2,∴AB∥CD,故本选项正确;②∵∠3=∠4,∴BC∥AD,故本选项错误;③∵∠A=∠CDE,∴AB∥CD,故本选项正确;④∵∠A+∠ADC=180°,∴AB∥CD,故本选项正确.故选D.3.D解析:D【解析】【分析】两直线平行,同旁内角互补;另外折叠前后两个角相等.根据这两条性质即可解答.【详解】根据题意知:折叠所重合的两个角相等.再根据两条直线平行,同旁内角互补,得:2∠1+∠2=180°,解得:∠2=180°﹣2∠1=68°.故选D.【点睛】注意此类折叠题,所重合的两个角相等,再根据平行线的性质得到∠1和∠2的关系,即可求解.4.B解析:B【解析】试题分析:A、2+2=4,不能构成三角形,故本选项错误;B、3、4、5,满足任意两边之和大于第三边,能构成三角形,故本选项正确;C、1+2=3,不能构成三角形,故本选项错误;D、2+3<6,不能构成三角形,故本选项错误.故选B.考点:三角形三边关系.5.A解析:A【分析】根据公式(a+b)(a-b)=a2-b2的左边的形式,判断能否使用.【详解】A、由于两个括号中含x、y项的符号都相反,故不能使用平方差公式,A符合题意;B、两个括号中,含x项的符号相同,含y的项的符号相反,故能使用平方差公式,B不符合题意;C、两个括号中,含x项的符号相反,y项的符号相同,故能使用平方差公式,C不符合题意;D、两个括号中,含x项的符号相反,y项的符号相同,故能使用平方差公式,D不符合题意;故选:A.【点睛】本题考查了平方差公式.注意两个括号中一项符号相同,一项符号相反才能使用平方差公式.6.C解析:C【分析】根据同位角的定义,逐一判断选项,即可得到答案.【详解】A. ∠1和∠2在两条直线的同侧,也在第三条直线的同侧,故它们是同位角,不符合题意;B. ∠1和∠2在两条直线的同侧,也在第三条直线的同侧,故它们是同位角,不符合题意;C. ∠1与∠2分别是四条直线中的两对直线的夹角,不符合同位角的定义,故它们不是同位角,符合题意;D. ∠1和∠2在两条直线的同侧,也在第三条直线的同侧,故它们是同位角,不符合题意.故选C.【点睛】本题主要考查同位角的定义,掌握同位角的定义:“两条直线被第三条直线所截,在两条直线的同侧,在第三条直线的同旁的两个角,叫做同位角”,是解题的关键.7.C解析:C【解析】【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围,再根据第三边是整数,从而求得周长最大时,对应的第三边的长.【详解】解:设第三边为a ,根据三角形的三边关系,得:4-3<a <4+3,即1<a <7,∵a 为整数,∴a 的最大值为6,则三角形的最大周长为3+4+6=13.故选:C .【点睛】本题考查了三角形的三边关系,根据三边关系得出第三边的取值范围是解决此题的关键.8.A解析:A【分析】先解不等式求出不等式的解集,然后根据不等式的解集在数轴上的表示方法判断即可.【详解】解:移项,得2x -x >1-3,合并同类项,得x >﹣2,不等式的解集在数轴上表示为:.故选:A .【点睛】本题考查了一元一次不等式的解法和不等式的解集在数轴上的表示,属于基础题型,熟练掌握一元一次不等式的解法是关键.9.C解析:C【分析】先解不等式组,根据只有2个整数解得到a 的范围,再解方程,得到a 的范围,再根据a 是整数,综合得出a 的值之和.【详解】解:解不等式2034x x a x-<⎧⎨+>-⎩得: 44a -<x <2, ∵不等式组恰好只有2个整数解,∴-1≤44a-<0,∴0≤a<4;解方程21 236x a a x+++=+得:x=52a -,∵方程的解为非负整数,∴52a-≥0,∴a≤5,又∵0≤a<4,∴a=1, 3,∴1+3=4,∴所有满足条件的整数a的值之和为4.故选:C.【点睛】本题考查一元一次不等式组及一元一次方程的特殊解,熟练掌握一元一次不等式组及一元一次方程的解法是解题的关键.10.B解析:B【分析】把x与y的值代入方程检验即可.【详解】解:A、把31xy=⎧⎨=⎩代入得:左边=15﹣1=14,右边=4,∵左边≠右边,∴31xy=⎧⎨=⎩不是方程的解;B、把11xy=⎧⎨=⎩代入得:左边=5﹣1=4,右边=4,∵左边=右边,∴11xy=⎧⎨=⎩是方程的解;C、把4xy=⎧⎨=⎩代入得:左边=0﹣4=﹣4,右边=4,∵左边≠右边,∴4xy=⎧⎨=⎩不是方程的解;D、把13xy=⎧⎨=⎩代入得:左边=5﹣3=2,右边=4,∵左边≠右边,∴13xy=⎧⎨=⎩不是方程的解,故选:B.【点睛】本题主要考查了二元一次方程的解的知识点,准确代入求职是解题的关键.11.D解析:D【分析】根据平行线的判定定理对各选项进行逐一判断即可.【详解】A、∵∠A+∠2=180°,∴AB∥DF,故本选项错误;B、∵∠A=∠3,∴AB∥DF,故本选项错误;C、∵∠1=∠4,∴AB∥DF,故本选项错误;D、∵∠1=∠A,∴AC∥DE,故本选项正确.故选:D.【点睛】点评:本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.12.A解析:A【分析】分别求出各不等式的解集,再根据不等式组无解即可得出m的取值范围.【详解】解:202x mx m-<⎧⎨+>⎩①②解不等式①,得x<2m.解不等式②,得x>2-m.因为不等式组无解,∴2-m≥2m.解得23 m≤.故选A.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.二、填空题13.104【解析】两个阴影图形可以平移组成一个长方形,长为,宽为8,故阴影部分的面积13×8=104,故答案为104.解析:104【解析】两个阴影图形可以平移组成一个长方形,长为15213-=,宽为8,故阴影部分的面积13×8=104,故答案为104.14.3【解析】.故答案为3.解析:3【解析】623m n m n a a a -=÷=÷=.故答案为3.15.7≤a <9或-3≤a <-1.【分析】先求出求出不等式组的解集,再根据已知得出关于a 的不等式组,求出不等式组的解集即可.【详解】解:,∵解不等式①得:,解不等式②得:x≤4,∴不等式组的解析:7≤a <9或-3≤a <-1.【分析】先求出求出不等式组的解集,再根据已知得出关于a 的不等式组,求出不等式组的解集即可.【详解】解:()531235x a x x ⎧->-⎨-≤⎩①②, ∵解不等式①得:32a x ->, 解不等式②得:x≤4,∴不等式组的解集为342a x -<≤, ∵关于x 的不等式组()531235x a x x ⎧->-⎨-≤⎩的所有整数解的和为7, ∴当32a ->0时,这两个整数解一定是3和4, ∴2≤32a -<3, ∴79a ≤<, 当32a -<0时,-3≤32a -<−2, ∴-3≤a <-1, ∴a 的取值范围是7≤a <9或-3≤a <-1.故答案为:7≤a <9或-3≤a <-1.【点睛】本题考查了解一元一次不等式组和不等式组的整数解,能得出关于a 的不等式组是解此题的关键.16.或 2【分析】可分相等的两边的长为1cm ,2cm ,3cm ,4cm ,依此讨论,根据三角形三边关系(三角形两边之和大于第三边,两边只差小于第三边)即可求解.【详解】解:相等的两边的长为1cm ,则解析:或 2【分析】可分相等的两边的长为1cm ,2cm ,3cm ,4cm ,依此讨论,根据三角形三边关系(三角形两边之和大于第三边,两边只差小于第三边)即可求解.【详解】解:相等的两边的长为1cm ,则第三边为:10-1×2=8(cm ),1+1<8,不符合题意; 相等的两边的长为2cm ,则第三边为:10-2×2=6(cm ),2+2<6,不符合题意; 相等的两边的长为3cm ,则第三边为:10-3×2=4(cm ),3+3>4,符合题意; 相等的两边的长为4cm ,则第三边为:10-4×2=2(cm ),2+4>4,符合题意. 故第三边长为4或2cm .故答案为:4或2.【点睛】此题考查了三角形三边关系(三角形两边之和大于第三边,两边只差小于第三边),等腰三角形的性质和周长计算,分类思想的运用是解题的关键.17.7连接OC,OB,OA,OD,易证S△OBF=S△OCF,S△ODG=S△OCG,S△ODH=S△OAH,S△OAE=S△OBE,从而有S四边形AEOH+S四边形CGOF=S四边形DHO解析:7【分析】连接OC,OB,OA,OD,易证S△OBF=S△OCF,S△ODG=S△OCG,S△ODH=S△OAH,S△OAE=S△OBE,从而有S四边形AEOH+S四边形CGOF=S四边形DHOG+S四边形BFOE,由此即可求得答案.【详解】连接OC,OB,OA,OD,∵E、F、G、H依次是各边中点,∴△AOE和△BOE等底等高,∴S△OAE=S△OBE,同理可证,S△OBF=S△OCF,S△ODG=S△OCG,S△ODH=S△OAH,∴S四边形AEOH+S四边形CGOF=S四边形DHOG+S四边形BFOE,∵S四边形AEOH=6,S四边形BFOE=7,S四边形CGOF=8,∴6+8=7+S四边形DHOG,解得:S四边形DHOG=7,故答案为:7.【点睛】本题考查了三角形的面积.解决本题的关键将各个四边形划分,充分利用给出的中点这个条件,证得三角形的面积相等,进而证得结论.18.【分析】先根据多项式乘以多项式法则展开,合并同类项,根据已知得出,求出即可;【详解】解:,的乘积中不含项,,解得:.故答案为:.本题考查了多项式乘以多项式法则和解一元 解析:14【分析】先根据多项式乘以多项式法则展开,合并同类项,根据已知得出4a 10-+=,求出即可;【详解】解:()()2x 1x 4ax a +-+ 322x 4ax ax x 4ax a =-++-+()32x 4a 1x 3ax a =+-+-+,()()2x 1x 4ax a +-+的乘积中不含2x 项,4a 10∴-+=, 解得:1a 4=. 故答案为:14. 【点睛】本题考查了多项式乘以多项式法则和解一元一次方程,掌握多项式乘以多项式法则是解此题的关键.19.3【解析】【分析】先根据题意得出a 的值,再代入原方程求出x 的值即可.【详解】∵方程的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x ,解得x=3.故答案为3解析:3【解析】【分析】先根据题意得出a 的值,再代入原方程求出x 的值即可.【详解】 ∵方程3232a x x +=的解为x=6, ∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x,解得x=3.故答案为3【点睛】本题考查的是一元一次方程的解,熟知解一元一次方程的基本步骤是解答此题的关键.20.a2+4ab+3b2【分析】根据长方形面积公式可得长方形的面积为(a+3b)(a+b),计算即可.【详解】解:由题意得,长方形的面积:(a+3b)(a+b)=a2+4ab+3b2.故答案为解析:a2+4ab+3b2【分析】根据长方形面积公式可得长方形的面积为(a+3b)(a+b),计算即可.【详解】解:由题意得,长方形的面积:(a+3b)(a+b)=a2+4ab+3b2.故答案为:a2+4ab+3b2.【点睛】本题考查长方形的面积公式和多项式乘法,熟练掌握多项式乘法计算法则是解题的关键.21.4×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:4×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00000004,4的前面有8个0,所以n=8,所以0.00000004=4×10-8.故答案为:4×10-8.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.22.-3【分析】把x与y的值代入方程计算即可求出k的值.【详解】解:把代入方程得:4﹣1+k=0,解得:k=﹣3,则k的值是﹣3.故答案为:﹣3.【点睛】此题考查的是根据二元一次方程的解析:-3【分析】把x与y的值代入方程计算即可求出k的值.【详解】解:把21xy=⎧⎨=⎩代入方程得:4﹣1+k=0,解得:k=﹣3,则k的值是﹣3.故答案为:﹣3.【点睛】此题考查的是根据二元一次方程的解,求方程中的参数,掌握二元一次方程解的定义是解决此题的关键.三、解答题23.(1)6;(2)8.【分析】(1)先将原式转化为(a+b)2-2ab,再将已知代入计算可得;(2)先将原式转化为(a+b)2-4ab,再将已知代入计算计算可得.【详解】解:(1)当a+b=2,ab=-1时,原式=(a+b)2-2ab=22-2×(-1)=4+2=6;(2)当a+b=2,ab=-1时,原式=(a+b)2-4ab=22-4×(-1)=4+4=8.【点睛】本题主要考查完全平方公式的变形求值问题,解题的关键是熟练掌握完全平方公式及其灵活变形.24.(1)∠BDC=∠A+∠B+∠C,理由见解析;(2)①40°;②90°;③70°.【分析】(1)根据题意观察图形连接AD并延长至点F,根据一个三角形的外角等于与它不相邻的两个内角的和可证∠BDC=∠BDF+∠CDF;(2)①由(1)的结论可得∠ABX+∠ACX+∠A=∠BXC,然后把∠A=50°,∠BXC=90°代入上式即可得到∠ABX+∠ACX的值;②结合图形可得∠DBE=∠DAE+∠ADB+∠AEB,代入∠DAE=50°,∠DBE=130°即可得到∠ADB+∠AEB的值,再利用上面得出的结论可知∠DCE=12(∠ADB+∠AEB)+∠A,易得答案.③由②方法,进而可得答案.【详解】解:(1)连接AD并延长至点F,由外角定理可得∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD;∵∠BDC=∠BDF+∠CDF,∴∠BDC=∠BAD+∠B+∠C+∠CAD.∵∠BAC=∠BAD+∠CAD;∴∠BDC=∠BAC +∠B+∠C;(2)①由(1)的结论易得:∠ABX+∠ACX+∠A=∠BXC,又因为∠A=50°,∠BXC=90°,所以∠ABX+∠ACX=90°﹣50°=40°;②由(1)的结论易得∠DBE=∠DAE +∠ADB+∠AEB,∵∠DAE=50°,∠DBE=130°,∴∠ADB+∠AEB=80°;∴∠DCE=12(ADB+∠AEB)+A=40°+50°=90°;③由②知,∠BG1C=110(ABD+∠ACD)+A,∵∠BG1C=77°,∴设∠A为x°,∵∠ABD+∠ACD=140°﹣x°,∴110(40﹣x)x=77,∴14﹣110x+x=77,∴x=70,∴∠A为70°.【点睛】本题考查三角形外角的性质,三角形的内角和定理的应用,能求出∠BDC=∠A+∠B+∠C是解答的关键,注意:三角形的内角和等于180°,三角形的一个外角等于和它不相邻的两个内角的和.25.(1)3ab(4c﹣3a);(2)(a+5)(a﹣5);(3)x(x﹣y)2;(4)(x﹣y)(m +1)(m﹣1)【分析】(1)由题意原式直接提取公因式即可;(2)根据题意原式利用平方差公式分解即可;(3)由题意原式提取公因式,再利用完全平方公式分解即可;(4)根据题意原式提取公因式,再利用平方差公式分解即可.【详解】解:(1)12abc﹣9a2b=3ab(4c﹣3a);(2)a2﹣25=(a+5)(a﹣5);(3)x3﹣2x2y+xy2=x(x2﹣2xy+y2)=x(x﹣y)2;(4)m2(x﹣y)﹣(x﹣y)=(x﹣y)(m2﹣1)=(x﹣y)(m+1)(m﹣1).【点睛】本题考查提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解答本题的关键.26.(1)A种商品有5件,B种商品有8件;(2)先按车收费用3辆车运送18m3,再按吨收费运送1件B型产品,运费最少为3000元【分析】(1)设A、B两种型号商品各有x件和y件,根据体积一共是20m3,质量一共是10.5吨列出方程组再解即可;(2)分别计算出①按车收费的费用,②按吨收费的费用,③两种方式混合用的花费,进而可得答案.【详解】解:(1)设A、B两种型号商品各有x件和y件,由题意得,0.8220 0.510.5x yx y+=⎧⎨+=⎩,解得:58 xy=⎧⎨=⎩,答:A、B两种型号商品各有5件、8件;(2)①按车收费:10.5÷3.5=3(辆),但车辆的容积为:6×3=18<20,所以3辆车不够,需要4辆车,此时运费为:4×900=3600元;②按吨收费:300×10.5=3150元,③先用3辆车运送A商品5件,B商品7件,共18m3,按车付费3×900=2700(元).剩余1件B型产品,再运送,按吨付费300×1=300(元).共需付2700+300=3000(元).∵3000<3150<3600,∴先按车收费用3辆车运送18m3,再按吨收费运送1件B型产品,运费最少为3000元.答:先按车收费用3辆车运送18m3,再按吨收费运送1件B型产品,运费最少为3000元.【点睛】本题考查二元一次方程组的应用,关键是正确理解题意,找出题中的等量关系.27.(1)1, 1, (2)a n b n, a n b n c n,(3)132 .【解析】【分析】(1)先算括号内的乘法,再算乘方;先乘方,再算乘法;(2)根据有理数乘方的定义求出即可;(3)根据同底数幂的乘法计算,再根据积的乘方计算,即可得出答案.【详解】解:(1)(2×12)100=1,2100×(12)100=1;(2)(a•b)n=a n b n,(abc)n=a n b n c n,(3)原式=(﹣0.125)2015×22015×42015×[(﹣0.125)×(﹣0.125)×2]=(﹣0.125×2×4)2015×1 32=(﹣1)2015×1 32=﹣1×1 32=﹣1 32.【点睛】本题主要考查了同底数幂的乘法和积的乘方,掌握运算法则是解答此题的关键.28.(1)见解析;(2)∠ACB=80°【分析】(1)利用同旁内角互补,说明GD∥CA;(2)由GD ∥CA ,得∠A =∠GDB =∠2=40°=∠ACD ,由角平分线的性质可求得∠ACB 的度数.【详解】解:(1)∵EF ∥CD∴∠1+∠ECD =180°又∵∠1+∠2=180°∴∠2=∠ECD∴GD ∥CA ;(2)由(1)得:GD ∥CA ,∴∠BDG =∠A =40°,∠ACD =∠2,∵DG 平分∠CDB ,∴∠2=∠BDG =40°,∴∠ACD =∠2=40°,∵CD 平分∠ACB ,∴∠ACB =2∠ACD =80°.【点睛】本题考查了角平分线的性质和平行线的性质.解决本题的关键熟练利用所学的性质进行解题.29.(1)电脑0.5万元,电子白板1.5万元;(2)14台【分析】(1)设每台电脑x 元,每台电子白板y 元,根据题意列出方程组,解方程组即可;(2)设购进电子白板m 台,则购进电脑()31m -台,根据总费用不超过30万元,列出不等式,根据m 实际意义即可求解.【详解】(1)设每台电脑x 元,每台电子白板y 元,则2 3.52 2.5x y x y +=⎧⎨+=⎩,解得0.51.5x y =⎧⎨=⎩故每台电脑0.5万元,每台电子白板1.5万元;(2)设购进电子白板m 台,则购进电脑()31m -台,由题意得 1.50.5(31)30m m +-≤解得14.5m ≤,又因为m 是正整数,则14m ≤,故至多购买电子白板14台.【点睛】本题考查了二元一次方程组应用,一元一次不等式应用,综合性较强,难度不大,根据题意列出二元一次方程组、一元一次不等式是解题关键.30.(1)见解析;(2)35°;(3)117°【分析】(1)由AC ∥BD 得∠D =∠DAE ,角的等量关系证明∠DAE 与∠C 相等,根据同位角得AD ∥BC ;(2)由BD ⊥BC 得∠HBC =90°,余角的性质和三角形外角性质解得∠C 的度数为35°;(3)由BF∥AD得∠D=∠DBF,垂直的定义得∠DBC=90°,三角形的内角和定理,角的和差求得∠DBA=∠CBA=45°,由已知条件∠EFB=7∠DBF,角的和差得出∠BAD的度数为117°.【详解】解:(1)如图1所示:∵AC∥BD,∴∠D=∠DAE,又∵∠C=∠D,∴∠DAE=∠C,∴AD∥BC;(2)①如图2所示:∵BD⊥BC,∴∠HBC=90°,∴∠C+∠BHC=90°,又∵∠BHC=∠DAE+∠D,∠C=∠D,∠DAE=20°,∴20°+2∠C=90°,∴∠C=35°;②如图3所示:∵BF∥AD,∴∠D=∠DBF,又∵∠C=∠D,∴∠C=∠D=∠DBF,又∵BD⊥BC,∴∠DBC=90°,又∵∠D+∠DBA+∠BAD=180°,∠C+∠CBA+∠BAC=180°.∠BAC=∠BAD,∴∠DBA=∠CBA=45°,又∵∠EFB=7∠DBF,∠EFB=∠FBC+∠C,∴7∠DBF=2∠DBF+∠DBC,解得:∠DBF=18°,∴∠BAD=180°﹣45°﹣18°=117°.【点睛】本题考查了平行线的判定与性质,余角的性质,三角形的内角和性质,三角形的外角性质,角的和差等相关知识点,掌握平行线的判定与性质,三角形内角和和外角的性质是解题的关键.。
最新苏科七年级苏科初一下册第二学期数学期末试卷及答案全
最新苏科七年级苏科初一下册第二学期数学期末试卷及答案全一、选择题1.下列分解因式正确的是( )A .x 3﹣x=x (x 2﹣1)B .m 2+m ﹣6=(m+3)(m ﹣2)C .(a+4)(a ﹣4)=a 2﹣16D .x 2+y 2=(x+y )(x ﹣y )2.已知,则a 2-b 2-2b 的值为 A .4 B .3 C .1D .0 3.下列运算结果正确的是( ) A .32a a a ÷= B .()225a a = C .236a a a =D .()3326a a = 4.在餐馆里,王伯伯买了5个菜,3个馒头,老板少收2元,只收50元,李太太买了11个菜,5个馒头,老板以售价的九折优惠,只收90元,若菜每个x 元,馒头每个y 元,则下列能表示题目中的数量关系的二元一次方程组是( )A .53502115900.9x y x y +=+⎧⎨+=⨯⎩B .53502115900.9x y x y +=+⎧⎨+=÷⎩ C .53502115900.9x y x y +=-⎧⎨+=⨯⎩ D .53502115900.9x y x y +=+⎧⎨+=⨯⎩ 5.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,试利用上述规律判断算式:3+32+33+34+…+32020结果的末位数字是( )A .0B .1C .3D .7 6.在ABC 中,1135A B C ∠=∠=∠,则ABC 是( ) A .钝角三角形B .直角三角形C .锐角三角形D .无法确定 7.已知点M (2x ﹣3,3﹣x ),在第一、三象限的角平分线上,则M 点的坐标为( )A .(﹣1,﹣1).B .(﹣1,1)C .(1,1)D .(1,﹣1) 8.若关于x 的不等式组2034x x a x -<⎧⎨+>-⎩恰好只有2个整数解,且关于x 的方程21236x a a x +++=+的解为非负整数解,则所有满足条件的整数a 的值之和是( ) A .1 B .3 C .4 D .69.下列运算正确的是( )A .a 2+a 2=a 4B .(﹣b 2)3=﹣b 6C .2x •2x 2=2x 3D .(m ﹣n )2=m 2﹣n 210.下列运算正确的是( )A .a 2·a 3=a 6B .a 5+a 3=a 8C .(a 3)2=a 5D .a 5÷a 5=1 11.七边形的内角和是( ) A .360° B .540° C .720° D .900°12.关于x 的不等式组0233(2)x m x x ->⎧⎨-≥-⎩恰有三个整数解,那么m 的取值范围为( ) A .10m -<≤ B .10m -≤< C .01m ≤< D .01m <≤二、填空题13.若x +3y -4=0,则2x •8y =_________.14.计算:32(2)xy -=___________. 15.计算:312-⎛⎫ ⎪⎝⎭= . 16.计算:x (x ﹣2)=_____17.如图,在△ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点,且△ABC 的面积等于4cm 2,则阴影部分图形面积等于_____cm 218.如图,在三角形纸片ABC 中剪去∠C 得到四边形ABDE ,且∠C =40°,则∠1+∠2的度数为_____.19.甲乙两队进行篮球对抗赛,比赛规则规定每队胜一场得3分,平一场得1分,负一场得0分,两队一共比赛了10场,甲队保持不败,得分不低于24分,甲队至少胜了___________场.20.一个两位数的十位上的数是个位上的数的2倍,若把两个数字对调,则新得到的两位数比原两位数小36,则原两位数是_______.21.若2a x =,5b x =,那么2a b x +的值是_______ ;22.把一根 9m 长的钢管截成 1m 长和 2m 长两种规格均有的短钢管,且没有余料,设某种截法中 1m 长的钢管有 a 根,则 a 的值可能有_____种.23.在平面直角坐标系中,将点()2,3P -先向上平移1个单位长度,再向左平移3个单位长度后,得到点P ',则点P '的坐标为_______.24.分解因式:m 2﹣9=_____.三、解答题25.先化简,再求值:(2x+2)(2﹣2x )+5x (x+1)﹣(x ﹣1)2,其中x =﹣2.26.因式分解:(1)16x2-9y2(2)(x2+y2)2-4x2y227.已知关于x、y的二元一次方程组21322x yx y k+=⎧⎪⎨-=-⎪⎩(k为常数).(1)求这个二元一次方程组的解(用含k的代数式表示);(2)若()2421yx+=,求k的值;(3)若14k≤,设364m x y=+,且m为正整数,求m的值.28.已知a+b=2,ab=-1,求下面代数式的值:(1)a2+b2;(2)(a-b)2.29.如图①,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45°.(1)将图①中的三角尺OCD沿AB的方向平移至图②的位置,使得顶点O与点N重合,CD与MN相交于点E,求∠CEN的度数;(2)将图①中三角尺OCD绕点O按顺时针方向旋转,使一边OD在∠MON的内部,如图③,且OD恰好平分∠MON,CD与MN相交于点E,求∠CEN的度数;(3)将图①中三角尺OCD绕点O按每秒15°的速度沿顺时针方向旋转一周,在旋转过程中,在第秒时,边CD恰好与边MN平行;在第秒时,直线CD恰好与直线MN垂直.30.计算:(1)203211(5)(5)36-⎛⎫⎛⎫-++-÷-⎪ ⎪⎝⎭⎝⎭(2)()3242(3)2a a a-⋅+-31.已知关于x,y的二元一次方程组233741x y mx y m+=+⎧⎨-=+⎩它的解是正数.(1)求m的取值范围;(2)化简:22|2|(1)(1)m m m--+-32.如图①所示,在三角形纸片ABC中,70C∠=︒,65B∠=︒,将纸片的一角折叠,使点A落在ABC内的点A'处.(1)若140∠=︒,2∠=________.(2)如图①,若各个角度不确定,试猜想1∠,2∠,A∠之间的数量关系,直接写出结论.②当点A 落在四边形BCDE 外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,A ∠,1∠,2∠之间又存在什么关系?请说明.(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的123456∠+∠+∠+∠+∠+∠和是________.33.已知关于x ,y 的二元一次方程组533221x y n x y n +=⎧⎨-=+⎩的解适合方程x +y =6,求n 的值.34.要说明(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc 成立,三位同学分别提供了一种思路,请根据他们的思路写出推理过程.(1)小刚说:可以根据乘方的意义来说明等式成立;(2)小王说:可以将其转化为两数和的平方来说明等式成立;(3)小丽说:可以构造图形,通过计算面积来说明等式成立;35.如图1是一个长为4a 、宽为b 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2)(1)观察图2请你写出(a+b )2、(a ﹣b )2、ab 之间的等量关系是 ;(2)根据(1)中的结论,若x+y =5,x•y =94,则x ﹣y = ; (3)拓展应用:若(2019﹣m )2+(m ﹣2020)2=15,求(2019﹣m )(m ﹣2020)的值.36.如图,在边长为1个单位长度的小正方形网格中,ΔABC 经过平移后得到ΔA B C ''',图中标出了点B 的对应点B ',点A '、C '分别是A 、C 的对应点.(1)画出平移后的ΔA B C ''';(2)连接BB '、CC ',那么线段BB '与CC '的关系是_________;(3)四边形BCC B ''的面积为_______.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】试题分析:因式分解是指将几个多项式的和的形式转化个几个多项式或多项式的积的形式.A 、没有完全分解,还可以利用平方差公式进行;B 、正确;C 、不是因式分解;D 、无法进行因式分解.考点:因式分解2.C解析:C【分析】先将原式化简,然后将a−b =1整体代入求解.【详解】()()2212221a b a b b a b a b ba b ba b-∴--+--+--=,====.故答案选:C .【点睛】此题考查的是整体代入思想在代数求值中的应用. 3.A解析:A【分析】根据同底数幂的除法、同底数幂的乘法,以及幂的乘方与积的乘方的运算方法,逐项判定即可.【详解】解:32a a a ÷=,A 正确,()224a a =,B 错误,235a a a =,C 错误,()3328a a =,D 错误,故选:A .【点睛】此题主要考查了同底数幂的除法,同底数幂的乘法,以及幂的乘方与积的乘方的运算方法,熟练掌握运算方法是解题的关键.4.B解析:B【解析】【分析】设馒头每个x 元,包子每个y 元,分别利用买5个馒头,3个包子,老板少收2元,只要5元以及11个馒头,5个包子,老板以售价的九折优惠,只要9元,得出方程组.【详解】设馒头每个x 元,包子每个y 元,根据题意可得:53502115900.9x y x y +=+⎧⎨+=÷⎩, 故选B .【点睛】本题考查了由实际问题抽象出二元一次方程组,难度一般,关键是读懂题意设出未知数找出等量关系.5.A解析:A【分析】观察所给等式发现规律末位数字为:3,9,7,1,3,9,7,…,每4个数一组循环,进而可得算式:3+32+33+34+…+32020结果的末位数字.【详解】解:观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,…,发现规律:末位数字为:3,9,7,1,3,9,7,…,每4个数一组循环,所以2020÷4=505,而3+9+7+1=20,20×505=10100.所以算式:3+32+33+34+…+32020结果的末位数字是0.故选:A .【点睛】本题考查了规律型-数字的变化类,解决本题的关键是根据数字的变化寻找规律.6.A解析:A【分析】根据三角形的内角和是180︒列方程即可;【详解】 ∵1135A B C ∠=∠=∠,∴3B A ∠=∠,5C A ∠=∠,∵180A B C ∠+∠+∠=︒,∴35180A A A ∠+∠+∠=︒,∴30A ∠=︒,∴100C ∠=︒,∴△ABC 是钝角三角形.故答案选A .【点睛】本题主要考查了三角形内角和定理的应用,在准确进行分析列式是解题的关键.7.C解析:C【分析】直接利用角平分线上点的坐标特点得出2x ﹣3=3﹣x ,进而得出答案.【详解】解:∵点M (2x ﹣3,3﹣x ),在第一、三象限的角平分线上,∴2x ﹣3=3﹣x ,解得:x =2,故2x ﹣3=1,3﹣x =1,则M 点的坐标为:(1,1).故选:C .【点睛】此题主要考查了点的坐标,正确掌握横纵坐标的关系是解题关键.8.C解析:C【分析】先解不等式组,根据只有2个整数解得到a 的范围,再解方程,得到a 的范围,再根据a 是整数,综合得出a 的值之和.【详解】解:解不等式2034x x a x-<⎧⎨+>-⎩得: 44a -<x <2,∵不等式组恰好只有2个整数解,∴-1≤44a-<0,∴0≤a<4;解方程21 236x a a x+++=+得:x=52a -,∵方程的解为非负整数,∴52a-≥0,∴a≤5,又∵0≤a<4,∴a=1, 3,∴1+3=4,∴所有满足条件的整数a的值之和为4.故选:C.【点睛】本题考查一元一次不等式组及一元一次方程的特殊解,熟练掌握一元一次不等式组及一元一次方程的解法是解题的关键.9.B解析:B【分析】根据合并同类项法则、幂的乘方法则、单项式乘单项式法则和完全平方公式法则解答即可.【详解】A、a2+a2=2a2,故本选项错误;B、(﹣b2)3=﹣b6,故本选项正确;C、2x•2x2=4x3,故本选项错误;D、(m﹣n)2=m2﹣2mn+n2,故本选项错误.故选:B.【点睛】本题考查了整式的运算,合并同类项、幂的乘方、单项式乘单项式和完全平方公式,熟练掌握运算法则是解题的关键.10.D解析:D【分析】通过幂的运算公式进行计算即可得到结果.【详解】A .23235a a a a +==,故A 错误;B .538a a a +≠,故B 错误; C .()23326a a a ⨯==,故C 错误; D .5501a a a ÷==,故D 正确;故选:D .【点睛】本题主要考查了整式乘除中的幂的运算性质,准确运用公式是解题的关键.11.D解析:D【分析】n 边形的内角和是(n ﹣2)•180°,把多边形的边数代入公式,就得到多边形的内角和.【详解】(7﹣2)×180°=900°.故选D .【点睛】本题考查了多边形的内角和与外角和定理,解决本题的关键是正确运用多边形的内角和公式,是需要熟记的内容.12.C解析:C【分析】首先解不等式组求得不等式组的解集,然后根据不等式组有三个整数解,即可确定整数解,然后得到关于m 的不等式,求得m 的范围.【详解】解:0233(2)x m x x ->⎧⎨-≥-⎩①② 解不等式①,得x>m.解不等式②,得x ≤3.∴不等式组得解集为m<x ≤3.∵不等式组有三个整数解,∴01m ≤<.故选C.【点睛】本题考查了不等式组的整数解,解不等式组应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.二、填空题13.16【分析】根据幂的运算公式变形,再代入x+3y=4即可求解.【详解】∵x+3y -4=0∴x+3y=4∴2x•8y=2x•(23)y =2x+3y =24=16.故答案为:16.【点睛】解析:16【分析】根据幂的运算公式变形,再代入x+3y=4即可求解.【详解】∵x +3y -4=0∴x +3y=4∴2x •8y =2x •(23)y =2x+3y =24=16.故答案为:16.【点睛】此题主要考查幂的运算,解题的关键是熟知幂的运算公式.14.【分析】根据积的乘方进行计算即可.【详解】解:,故答案为:.【点睛】此题考查积的乘方.积的乘方,先把积中的每一个乘数分别乘方,再把所得的幂相乘.解析:264x y【分析】根据积的乘方进行计算即可.【详解】解:3226(2)4xy x y -=,故答案为:264x y .【点睛】此题考查积的乘方.积的乘方,先把积中的每一个乘数分别乘方,再把所得的幂相乘.15.8【解析】分析:根据幂的负整数指数运算法则进行计算即可.解:原式==8.故答案为8.点评:负整数指数幂的运算,先把底数化成其倒数,然后将负整数指数幂当成正的进行计算.解析:8【解析】分析:根据幂的负整数指数运算法则进行计算即可.解:原式=3112⎛⎫ ⎪⎝⎭=8. 故答案为8.点评:负整数指数幂的运算,先把底数化成其倒数,然后将负整数指数幂当成正的进行计算.16.x2﹣2x【分析】根据单项式乘多项式法则即可求出答案.【详解】解:原式=x2﹣2x故答案为:x2﹣2x .【点睛】此题考查的是整式的运算,掌握单项式乘多项式法则是解决此题的关键. 解析:x 2﹣2x【分析】根据单项式乘多项式法则即可求出答案.【详解】解:原式=x 2﹣2x故答案为:x 2﹣2x .【点睛】此题考查的是整式的运算,掌握单项式乘多项式法则是解决此题的关键.17.1【分析】由点为的中点,可得的面积是面积的一半;同理可得和的面积之比,利用三角形的等积变换可解答.解:如图,点是的中点,的底是,的底是,即,而高相等,,是的中点,,,,解析:1【分析】由点E 为AD 的中点,可得EBC ∆的面积是ABC ∆面积的一半;同理可得BCE ∆和EFB ∆的面积之比,利用三角形的等积变换可解答.【详解】解:如图,点F 是CE 的中点,BEF 的底是EF ,BEC ∆的底是EC ,即12EF EC =,而高相等, 12BEF BEC S S ∆∆∴=, E 是AD 的中点,12BDE ABD S S ∆∆∴=,12CDE ACD S S ∆∆=, 12EBC ABC S S ∆∆∴=, 14BEF ABC S S ∆∆∴=,且24ABC S cm ∆=, 21BEF S cm ∆∴=,即阴影部分的面积为21cm .故答案为1.【点睛】本题主要考查了三角形面积的等积变换:若两个三角形的高(或底)相等,其中一个三角形的底(或高)是另一个三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍.18.220°根据三角形的外角的性质以及三角形内角和定理求解即可.【详解】解:∵∠1=∠C+∠CED,∠2=∠C+∠EDC,∴∠1+∠2=∠C+∠CED+∠EDC+∠C,∵∠C+∠CE解析:220°【分析】根据三角形的外角的性质以及三角形内角和定理求解即可.【详解】解:∵∠1=∠C+∠CED,∠2=∠C+∠EDC,∴∠1+∠2=∠C+∠CED+∠EDC+∠C,∵∠C+∠CED+∠EDC=180°,∠C=40°,∴∠1+∠2=180°+40°=220°,故答案为:220°.【点睛】本题考查剪纸问题,三角形内角和定理,三角形的外角的性质等知识,熟悉相关性质是解题的关键.19.7【分析】设甲队胜了x场,则平了(10-x)场,根据胜一场得3分,平一场得1分,负一场得0分,比赛10场,得分24分,列出不等式,求出x的最小整数解.【详解】设甲队胜了x场,则平了(10-x解析:7【分析】设甲队胜了x场,则平了(10-x)场,根据胜一场得3分,平一场得1分,负一场得0分,比赛10场,得分24分,列出不等式,求出x的最小整数解.【详解】设甲队胜了x场,则平了(10-x)场,由题意得,3x+(10-x)≥24,解得:x≥7,即甲队至少胜了7场.故答案是:7.【点睛】考查了一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出不等关系,列出不等式求解.【分析】设原两位数的个位上的数字为x ,则十位上的数字为2x ,根据数位问题的数量关系建立方程求出其解就可以得出结论.【详解】解:设原两位数的个位上的数为x ,则十位上的数字为2x ,由题意,得 解析:84【分析】设原两位数的个位上的数字为x ,则十位上的数字为2x ,根据数位问题的数量关系建立方程求出其解就可以得出结论.【详解】解:设原两位数的个位上的数为x ,则十位上的数字为2x ,由题意,得10×2x+x-(10x+2x )=36,解得:x=4,则十位数字为:2×4=8,则原两位数为84.故答案为:84.【点睛】本题考查了一元一次方程的应用-数字问题,考查了百位数字×100+十位上的数字×10+个位数字的运用,解答时根据数位问题的数量关系建立方程式是关键.21.【分析】可从入手,联想到同底数幂的乘法以及幂的乘方的逆用;逆用幂运算法则可得到(xa)2×xb,接下来将已知条件代入求值即可.【详解】对逆用同底数幂的乘法法则,得(xa)2×xb,逆用幂的解析:【分析】可从2a b x +入手,联想到同底数幂的乘法以及幂的乘方的逆用;逆用幂运算法则可得到(x a )2×x b ,接下来将已知条件代入求值即可.【详解】对2a b x +逆用同底数幂的乘法法则,得(x a )2×x b ,逆用幂的乘方法则,得(x a )2×x b ,将2a x =、5b x =代入(x a )2× x b 中,得22×5=20,故答案为:20.【点睛】此题考查同底数幂的乘法,解题关键在于掌握运算法则.22.4【分析】根据题意列二元一次方程即可解决问题.【详解】设2m 的钢管b 根,根据题意得:a +2b =9,∵a 、b 均为正整数,∴,,,.a 的值可能有4种,故答案为:4.【点睛】本题运解析:4【分析】根据题意列二元一次方程即可解决问题.【详解】设2m 的钢管b 根,根据题意得:a +2b =9,∵a 、b 均为正整数,∴14a b =⎧⎨=⎩,33a b =⎧⎨=⎩,52a b =⎧⎨=⎩,71a b =⎧⎨=⎩. a 的值可能有4种,故答案为:4.【点睛】本题运用了二元一次方程的整数解的知识点,运算准确是解此题的关键.23.【分析】根据向左平移横坐标减,向上平移纵坐标加求解即可得到平移后的坐标.【详解】解:将点先向上平移个单位长度,得到,再向左平移个单位长度后得到:, 故答案为:;【点睛】本题考查了坐标与图解析:()1,2--【分析】根据向左平移横坐标减,向上平移纵坐标加求解即可得到平移后的坐标.【详解】解:将点()2,3P -先向上平移1个单位长度,得到()()2,312,2-+=-,再向左平移3个单位长度后得到:()()23,21,2--=--,故答案为:()1,2--;【点睛】本题考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.24.(m+3)(m ﹣3)【分析】通过观察发现式子可以写成平方差的形式,故用平方差公式分解,a2﹣b2=(a+b )(a ﹣b ).【详解】解:m2﹣9=m2﹣32=(m+3)(m ﹣3).故答案为解析:(m +3)(m ﹣3)【分析】通过观察发现式子可以写成平方差的形式,故用平方差公式分解,a 2﹣b 2=(a +b )(a ﹣b ).【详解】解:m 2﹣9=m 2﹣32=(m +3)(m ﹣3).故答案为:(m +3)(m ﹣3).【点睛】此题考查的是因式分解,掌握利用平方差公式因式分解是解决此题的关键.三、解答题25.73x +;-11【分析】根据整式的运算法则即可求出答案.【详解】解:22222511xx x x x 222445521x x x x x73x当2x =-时,原式14311.【点睛】本题考查整式化简求值,熟练运用运算法则是解题的关键.26.(1)(43)(4-3)x y x y +;(2)22()(-y)x y x +.【分析】(1)直接利用平方差公式22()()a b a b a b +-=-分解即可;(2)先利用平方差公式,再利用完全平方公式222()2a b a ab b ±=±+即可. 【详解】(1)原式2243))((x y =-(43)(43)x y x y =+-;(2)原式2222)()(2x y xy =-+2222(2)(2)x y x y xy y x ++=+-22()()x y x y =+-.【点睛】本题考查了利用平方差公式和完全平方公式进行因式分解,熟记公式是解题关键.27.(1)218524k x ky -⎧=⎪⎪⎨-⎪=⎪⎩;(2)52k =或12k =-;(3)1或2. 【分析】(1)根据题意直接利用加减消元法进行计算求解即可;(2)由题意根据01(0)a a =≠和11n =以及2(1)1n -=(n 为整数)得到三个关于k 的方程,求出k 即可;(3)根据题意用含m 的代数式表示出k ,根据14k ≤,确定m 的取值范围,由m 为正整数,求得m 的值即可.【详解】 解:(1)21322x y x y k ⎧+=⎪⎪⎨⎪-=-⎪⎩①②, ①+②得:3412x k =+-,解得:218k x -=, ①-②得:3212y k =-+,解得:524k y -=, ∴二元一次方程组的解为:218524k x k y -⎧=⎪⎪⎨-⎪=⎪⎩.(2)∵01(0)a a =≠,2(42)1y x +=,∴20y =,即52204k -⨯=,解得:52k =; ∵11n =,2(42)1y x +=,∴421x +=,即214218k -⨯+=,解得:12k =-; ∵2(1)1n -=(n 为正整数),2(42)1y x +=, ∴4212x y +=-,为偶数,即214218k -⨯+=-,解得:52k =-; 当52k =-时,3532115222y k =-+=++=,为奇数,不合题意,故舍去. 综上52k =或12k =-. (3)∵215213643647842k k m x y k --=+=⨯+⨯=+,即172m k =+, ∴2114m k -=, ∵14k ≤, ∴211144m k -=≤,解得94m ≤, ∵m 为正整数,∴m=1或2.【点睛】本题考查解二元一次方程组以及解一元一次不等式,根据题意列出不等式是解题的关键.28.(1)6;(2)8.【分析】(1)先将原式转化为(a+b )2-2ab ,再将已知代入计算可得;(2)先将原式转化为(a+b )2-4ab ,再将已知代入计算计算可得.【详解】解:(1)当a+b=2,ab=-1时,原式=(a+b )2-2ab=22-2×(-1)=4+2=6;(2)当a+b=2,ab=-1时,原式=(a+b )2-4ab=22-4×(-1)=4+4=8.【点睛】本题主要考查完全平方公式的变形求值问题,解题的关键是熟练掌握完全平方公式及其灵活变形.29.(1)105°;(2)150°;(3)5或17;11或23.【分析】(1)根据三角形的内角和定理可得180CEN DCN MNO ∠=︒-∠-∠,代入数据计算即可得解;(2)根据角平分线的定义求出45DON ∠=︒,利用内错角相等两直线平行求出//CD AB ,再根据两直线平行,同旁内角互补求解即可;(3)①分CD 在AB 上方时,//CD MN ,设OM 与CD 相交于F ,根据两直线平行,同位角相等可得60OFD M ∠=∠=︒,然后根据三角形的内角和定理列式求出MOD ∠,即可得解;CD 在AB 的下方时,//CD MN ,设直线OM 与CD 相交于F ,根据两直线平行,内错角相等可得60DFO M ∠=∠=︒,然后利用三角形的内角和定理求出DOF ∠,再求出旋转角即可;②分CD 在OM 的右边时,设CD 与AB 相交于G ,根据直角三角形两锐角互余求出CGN ∠,再根据三角形的一个外角等于与它不相邻的两个内角的和求出CON ∠,再求出旋转角即可,CD 在OM 的左边时,设CD 与AB 相交于G ,根据直角三角形两锐角互余求出NGD ∠,再根据三角形的一个外角等于与它不相邻的两个内角的和列式求出AOC ∠ ,然后求出旋转角,计算即可得解.【详解】解:(1)在CEN ∆中,180CEN DCN MNO ∠=︒-∠-∠1804530=︒-︒-︒105=︒;(2)OD 平分MON ∠,11904522DON MPN ∴∠=∠=⨯︒=︒, 45DON D ∴∠=∠=︒,//CD AB ∴,180********CEN MNO ∴∠=︒-∠=︒-︒=︒;(3)如图1,CD 在AB 上方时,设OM 与CD 相交于F ,//CD MN ,60OFD M ∴∠=∠=︒,在ODF ∆中,180MOD D OFD ∠=︒-∠-∠,1804560=︒-︒-︒,75=︒,∴旋转角为75︒,75155t =︒÷︒=秒;CD 在AB 的下方时,设直线OM 与CD 相交于F ,//CD MN ,60DFO M ∴∠=∠=︒,在DOF ∆中,180180456075DOF D DFO ∠=︒-∠-∠=︒-︒-︒=︒,∴旋转角为75180255︒+︒=︒,2551517t =︒÷︒=秒;综上所述,第5或17秒时,边CD 恰好与边MN 平行;如图2,CD 在OM 的右边时,设CD 与AB 相交于G ,CD MN ⊥,90903060NGC MNO ∴∠=︒-∠=︒-︒=︒,604515CON NGC OCD ∴∠=∠-∠=︒-︒=︒,∴旋转角为180********CON ︒-∠=︒-︒=︒,1651511t =︒÷︒=秒,CD 在OM 的左边时,设CD 与AB 相交于G ,CD MN ⊥,90903060NGD MNO ∴∠=︒-∠=︒-︒=︒,604515AOC NGD C ∴∠=∠-∠=︒-︒=︒,∴旋转角为36036015345AOC ︒-∠=︒-︒=︒,3451523t =︒÷︒=秒,综上所述,第11或23秒时,直线CD 恰好与直线MN 垂直.故答案为:5或17;11或23.【点睛】本题考查了旋转的性质,三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,直角三角形两锐角互余的性质,熟记各性质并熟悉三角板的度数特点是解题的关键.30.(1)5;(2)6a【分析】(1)先算负整数指数幂,乘法和同底数幂的除法,最后进行加法运算即可; (2)先算积的乘方和同底数幂的乘法,再合并同类项即可.解:(1)233211(5)(5)36-⎛⎫⎛⎫-++-÷- ⎪ ⎪⎝⎭⎝⎭232(3)1(5)-=-++-91(5)=++- 105=-5=(2)()3242(3)2a a a -⋅+-()24698a a a =⋅+- 6698a a =- 6a =【点睛】此题主要考查了实数的运算和积的乘方运算,整式的加法等,正确掌握相关计算法则是解题关键.31.(1)213m -<< (2)m -【分析】(1)先解方程组,用含m 的式子表示出x 、y ,再根据方程组的解时一对正数列出关于m 的不等式组,解之可得;(2)根据m 的取值范围判断出m-2<0、m+1>0,m-1<0,再根据绝对值性质去绝对值符号、合并同类项即可得.【详解】 解:(1)解方程组233741x y m x y m +=+⎧⎨-=+⎩, 得321x m y m =+⎧⎨=-⎩因为解为正数,则32010m m +>⎧⎨->⎩,解得213m -<<; (2)原式2(1)(1)m m m m =--+--=-.【点睛】本题考查了二元一次方程组及解法、一元一次不等式组及解法.解题的关键是根据题意列出关于m 的不等式组及绝对值的性质.32.(1)50°;(2)①见解析;②见解析;(3)360°.【分析】(1)根据题意,已知70C ∠=︒,65B ∠=︒,可结合三角形内角和定理和折叠变换的性(2)①先根据折叠得:∠ADE=∠A ′DE ,∠AED=∠A ′ED ,由两个平角∠AEB 和∠ADC 得:∠1+∠2等于360°与四个折叠角的差,化简得结果;②利用两次外角定理得出结论;(3)由折叠可知∠1+∠2+∠3+∠4+∠5+∠6等于六边形的内角和减去(∠B'GF+∠B'FG)以及(∠C'DE+∠C'ED)和(∠A'HL+∠A'LH),再利用三角形的内角和定理即可求解.【详解】解:(1)∵70C ∠=︒,65B ∠=︒,∴∠A ′=∠A=180°-(65°+70°)=45°,∴∠A ′ED+∠A ′DE =180°-∠A ′=135°,∴∠2=360°-(∠C+∠B+∠1+∠A ′ED+∠A ′DE )=360°-310°=50°;(2)①122A ∠+∠=∠,理由如下由折叠得:∠ADE=∠A ′DE ,∠AED=∠A ′ED ,∵∠AEB+∠ADC=360°,∴∠1+∠2=360°-∠ADE-∠A ′DE-∠AED-∠A ′ED=360°-2∠ADE-2∠AED ,∴∠1+∠2=2(180°-∠ADE-∠AED )=2∠A ;②221A ∠=∠+∠,理由如下:∵2∠是ADF 的一个外角∴2A AFD ∠=∠+∠.∵AFD ∠是A EF '△的一个外角∴1AFD A '∠=∠+∠又∵A A '∠=∠∴221A ∠=∠+∠(3)如图由题意知,∠1+∠2+∠3+∠4+∠5+∠6=720°-(∠B'GF+∠B'FG)-(∠C'DE+∠C'ED)-(∠A'HL+∠A'LH)=720°-(180°-∠B')-(180°-C')-(180°-A')=180°+(∠B'+∠C'+∠A')又∵∠B=∠B',∠C=∠C',∠A=∠A',∠A+∠B+∠C=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.【点睛】题主要考查了折叠变换、三角形、四边形内角和定理.注意折叠前后图形全等;三角形内角和为180°;四边形内角和等于360度.33.116【分析】方程组消去n后,与已知方程联立求出x与y的值,即可确定出n的值.【详解】解:方程组消去n得,-7x-8y=1,联立得:7816x yx y--=⎧⎨+=⎩解得4943 xy=⎧⎨=-⎩把x=49,y=-43代入方程组,解得n=116.【点睛】本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.34.(1)详见解析;(2)详见解析;(3)详见解析【分析】(1)利用乘方的意义求解,即可;(2)将式子变形,利用完全平方公式计算,即可;(3)化成边长为a+b+c的正方形,即可得出答案.【详解】(1)小刚:(a+b+c)2=(a+b+c)(a+b+c)=a2+ab+ac+ba+b2+bc+ca+cb+c2=a2+b2+c2+2ab+2ac+2bc(2)小王:(a+b+c)2=[(a+b)+c]2=(a+b)2+2(a+b)c+c2=a2+b2+2ab+2ac+2bc+c2(3)小丽:如图【点睛】本题考查了整式的运算法则的应用,能正确根据整式的运算法则进行化简是解此题的关键,也培养了学生的动手操作能力.35.(1)(a+b)2-(a-b)2=4ab;(2)±4;(3)-7【分析】(1)由图可知,图1的面积为4ab,图2中白色部分的面积为(a+b)2-(b-a)2=(a+b)2-(a-b)2,图1的面积和图2中白色部分的面积相等即可求解.(2)由(1)知,(x+y)2-(x-y)2=4xy,将x+y=5,x•y=94代入(x+y)2-(x-y)2=4xy,即可求得x-y的值(3)因为(2019﹣m)+(m﹣2020)=-1,等号两边同时平方,已知(2019﹣m)2+(m﹣2020)2=15,即可求解.【详解】(1)由图可知,图1的面积为4ab,图2中白色部分的面积为(a+b)2-(b-a)2=(a+b)2-(a-b)2∵图1的面积和图2中白色部分的面积相等∴(a+b)2-(a-b)2=4ab故答案为:(a+b)2-(a-b)2=4ab(2)由(1)知,(x+y)2-(x-y)2=4xy∵x+y=5,x•y=9 4∴52-(x-y)2=4×9 4∴(x-y)2=16∴x-y=±4故答案为:±4(3)∵(2019﹣m)+(m﹣2020)=-1∴[(2019﹣m)+(m﹣2020)]2=1∴(2019﹣m)2+2(2019﹣m)(m﹣2020)+ (m﹣2020)2=1∵(2019﹣m)2+(m﹣2020)2=15∴2(2019﹣m)(m﹣2020)=1-15=-14∴(2019﹣m)(m﹣2020)=-7故答案为:-7【点睛】本题考查了完全平方公式的几何背景,运用几何直观理解、解决完全平方公式的推导过程,通过几何图形之间的数量关系对完全平方公式做出几何解释.36.(1)见解析;(2)平行且相等;(3)28【分析】(1)根据平移的性质画出点A、C平移后的对应点A'、C'即可画出平移后的△A B C''';(2)根据平移的性质解答即可;(3)根据平行四边形的面积解答即可.【详解】解:(1)如图,ΔA B C'''即为所求;(2)根据平移的性质可得:BB'与CC'的关系是平行且相等;故答案为:平行且相等;(3)四边形BCC B''的面积为4×7=28.故答案为:28.【点睛】本题主要考查了平移的性质和平移作图,属于常考题型,熟练掌握平移的性质是解题关键.。
苏科七年级苏科初一下册第二学期数学期末考试卷及答案百度文库
苏科七年级苏科初一下册第二学期数学期末考试卷及答案百度文库一、选择题1.下列运算正确的是( ) A .236a a a ⋅=B .222()ab a b =C .()325a a = D .623a a a ÷=2.下列等式由左边到右边的变形中,属于因式分解的是( ) A .(a ﹣2)(a+2)=a 2﹣4 B .8x 2y =8×x 2yC .m 2﹣1+n 2=(m+1)(m ﹣1)+n 2D .x 2+2x ﹣3=(x ﹣1)(x+3) 3.若a >b ,则下列结论错误的是( ) A .a −7>b −7B .a+3>b+3C .a 5>b 5D .−3a>−3b4.下列线段能构成三角形的是( ) A .2,2,4B .3,4,5C .1,2,3D .2,3,65.下列等式从左到右的变形属于因式分解的是( ) A .a 2﹣2a+1=(a ﹣1)2 B .a (a+1)(a ﹣1)=a 3﹣a C .6x 2y 3=2x 2•3y 3D .211()x x x x+=+6.下列图形中,不能通过其中一个四边形平移得到的是( )A .B .C .D .7.等腰三角形的两边长分别为3和6,那么该三角形的周长为( ) A .12B .15C .10D .12或158.截止到3月26日0时,全球感染新型冠状病毒肺炎的人数已经突破380000人,“山川异域,风月同天”,携手抗“疫”,刻不容缓.将380000用科学记数法表示为( ) A .0.38×106 B .3.8×106 C .3.8×105 D .38×104 9.如果多项式x 2+2x+k 是完全平方式,则常数k 的值为( )A .1B .-1C .4D .-410.如图,△ABC 的面积是12,点D 、E 、F 、G 分别是BC 、AD 、BE 、CE 的中点,则△AFG的面积是( )A .4.5B .5C .5.5D .611.计算28+(-2)8所得的结果是( ) A .0B .216C .48D .2912.△ABC 是直角三角形,则下列选项一定错误的是( )A .∠A -∠B=∠CB .∠A=60°,∠B=40°C .∠A+∠B=∠CD .∠A :∠B :∠C=1:1:2二、填空题13.如图,根据长方形中的数据,计算阴影部分的面积为______ .14.已知2m+5n ﹣3=0,则4m ×32n 的值为____15.如图,D 、E 分别是△ABC 边AB 、BC 上的点,AD=2BD ,BE=CE ,设△ADC 的面积为S l ,△ACE 的面积为S 2,若S △ABC =12,则S 1+S 2=______.16.已知2x =3,2y =5,则22x+y-1=_____.17.每个生物携带自身基因的载体是生物细胞的DNA ,DNA 分子的直径只有0.0000002cm ,将0.0000002用科学记数法表示为_________. 18.()7(y x -+________ 22)49y x =-.19.如图,两块三角板形状、大小完全相同,边//AB CD 的依据是_______________.20.有两个正方形,A B ,现将B 放在A 的内部得图甲,将,A B 并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形,A B 的边长之和为________.21.对有理数x ,y 定义运算:x*y=ax+by ,其中a ,b 是常数.例如:3*4=3a+4b ,如果2*(﹣1)=﹣4,3*2>1,则a 的取值范围是_______. 22.比较大小:π0_____2﹣1.(填“>”“<”或“=”)23.实数x ,y 满足方程组2728x y x y +=⎧⎨+=⎩,则x +y =_____.24.已知(a +b )2=7,a 2+b 2=5,则ab 的值为_____. 三、解答题25.如图,已知AB ∥CD , 12∠=∠,BE 与CF 平行吗?26.(知识生成)通常情况下、用两种不同的方法计算同一图形的面积,可以得到一个恒等式. (1)如图 1,请你写出()()22,a b a b ab +-,之间的等量关系是 (知识应用)(2)根据(1)中的结论,若74,4x y xy +==,则x y -= (知识迁移)类似地,用两种不同的方法计算同一几何体的情况,也可以得到一个恒等式.如图 2 是边长为+a b 的正方体,被如图所示的分割成 8块.(3)用不同的方法计算这个正方体的体积,就可以得到一个等式,这个等式可以是 (4)已知4a b +=,1ab =,利用上面的规律求33+a b 的值.27.如图,ABC ∆中,B ACB ∠=∠,点,D F 分别在边,BC AC 的延长线上,连结,CE CD 平分ECF ∠.求证://AB CE .28.当,m n 都是实数,且满足28m n =+,就称点21,2n P m +⎛⎫- ⎪⎝⎭为“爱心点”. (1)判断点()5,3A 、()4,8B 哪个点为“爱心点”,并说明理由;(2)若点(),4A a -、()4,B b 是“爱心点”,请判断A 、B 两点的中点C 在第几象限?并说明理由;(3)已知P 、Q 为有理数,且关于x 、y 的方程组333x y p q x y p q⎧+=+⎪⎨-=-⎪⎩解为坐标的点(),B x y 是“爱心点”,求p 、q 的值.29.(知识回顾):如图①,在△ABC 中,根据三角形内角和定理,我们知道∠A +∠B +∠C =180°. 如图②,在△ABC 中,点D 为BC 延长线上一点,则∠ACD 为△ABC 的一个外角.请写出∠ACD 与∠A 、∠B 的关系,直接填空:∠ACD = .(初步运用):如图③,点D 、E 分别是△ABC 的边AB 、AC 延长线上一点. (1)若∠A =70°,∠DBC =150°,则∠ACB = °.(直接写出答案) (2)若∠A =70°,则∠DBC +∠ECB = °.(直接写出答案)(拓展延伸):如图④,点D 、E 分别是四边形ABPC 的边AB 、AC 延长线上一点. (1)若∠A =70°,∠P =150°,则∠DBP +∠ECP = °.(请说明理由)(2)分别作∠DBP 和∠ECP 的平分线,交于点O ,如图⑤,若∠O =40°,求出∠A 和∠P 之间的数量关系,并说明理由.(3)分别作∠DBP 和∠ECP 的平分线BM 、CN ,如图⑥,若∠A =∠P ,求证:BM ∥CN .30.先化简,再求值:2(1)(3)(2)(2)x x x x x ---++-,其中x =﹣2.31.阅读材料:把形如2ax bx c ++的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即222)2(a ab b a b ±+=±.例如:2224213x x x x -+=-++2(1)3x =-+是224x x -+的一种形式的配方;所以,()213x -+,2(2)x -2x +,22213224x x ⎛⎫-+ ⎪⎝⎭是224x x -+的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项). 请根据阅读材料解决下列问题:(1)比照上面的例子,写出249x x -+三种不同形式的配方;(2)已知22610340x y x y +-++=,求32x y -的值;(3)已知2223240a b c ab b c ++---+=,求a b c ++的值.32.在南通市中小学标准化建设工程中,某校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元;(2)根据学校实际,需购进电脑和电子白板共31台,若总费用不超过30万元,则至多购买电子白板多少台?33.定义:若实数x ,y 满足22x y t =+,22y x t =+,且x ≠y ,则称点M (x ,y )为“好点”.例如,点(0,-2)和 (-2,0)是“好点”.已知:在直角坐标系xOy 中,点P (m ,n ).(1)P 1(3,1)和P 2(-3,1)两点中,点________________是“好点”. (2)若点P (m ,n )是“好点”,求m +n 的值.(3)若点P 是“好点”,用含t 的代数式表示mn ,并求t 的取值范围. 34.解方程组: (1)2338y x x y =-⎧⎨-=⎩(2) 743832x yx y ⎧+=⎪⎪⎨⎪+=⎪⎩ 35.如图,在每个小正方形边长为1的方格纸中,△ABC 的顶点都在方格纸格点上.将△ABC 向左平移2格,再向上平移4格. (1)请在图中画出平移后的△A ′B ′C ′; (2)再在图中画出△ABC 的高CD ;(3)在图中能使S △PBC =S △ABC 的格点P 的个数有 个(点P 异于A )36.疫情初期,武汉物资告急,全国一心,各地纷纷运送物资到武汉。
苏科七年级数学下册第二学期期末测试题及答案(共五套) 百度文库
苏科七年级数学下册第二学期期末测试题及答案(共五套) 百度文库一、选择题1.如图,能判断AB ∥CE 的条件是( )A .∠A =∠ECDB .∠A =∠ACEC .∠B =∠BCAD .∠B =∠ACE2.从边长为a 的大正方形板挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙),那么通过计算两个图形阴影部分的面积,可以验证的公式为( )A .()222a b a b -=- B .()2222a b a ab b +=++C .()2222a b a ab b -=-+ D .()()22a b a b a b +-=-3.下列分解因式正确的是( ) A .x 3﹣x=x (x 2﹣1)B .m 2+m ﹣6=(m+3)(m ﹣2)C .(a+4)(a ﹣4)=a 2﹣16D .x 2+y 2=(x+y )(x ﹣y )4.观察下列等式: 133=,239=,3327=,4381=,53243=,63729=,732187=,试利用上述规律判断算式234202033333+++++…结果的末位数字是( )A .0B .1C .3D .75.能把一个三角形的面积分成相等的两部分的线是这个三角形的( )A .一条高B .一条中线C .一条角平分线D .一边上的中垂线 6.已知点M (2x ﹣3,3﹣x ),在第一、三象限的角平分线上,则M 点的坐标为( ) A .(﹣1,﹣1).B .(﹣1,1)C .(1,1)D .(1,﹣1)7.下列各式中,能用平方差公式计算的是( ) A .(p +q )(p +q ) B .(p ﹣q )(p ﹣q ) C .(p +q )(p ﹣q ) D .(p +q )(﹣p ﹣q ) 8.一个多边形的每个内角都等于140°,则这个多边形的边数是( )A .7B .8C .9D .109.若25a=,23b =,则232a b -等于( )A .2725B .109C .35D .252710.△ABC 是直角三角形,则下列选项一定错误的是( ) A .∠A -∠B=∠C B .∠A=60°,∠B=40° C .∠A+∠B=∠C D .∠A :∠B :∠C=1:1:211.如图,已知AB ∥CD,点E 、F 分别在直线AB 、CD 上,∠EPF=90°,∠BEP=∠GEP ,则∠1与∠2的数量关系为( )A .∠1=∠2B .∠1=2∠2C .∠1=3∠2D .∠1=4∠212.若关于x 的一元一次不等式组202x m x m -<⎧⎨+>⎩无解,则m 的取值范围是( )A .23m ≤B .23m <C .23m ≥D .23m >二、填空题13.如图,若AB ∥CD ,∠C=60°,则∠A+∠E=_____度.14.已知某种植物花粉的直径为0.00033cm ,将数据0.00033用科学记数法表示为 ________________.15.已知5x m =,4y m =,则2x y m +=______________. 16.若关于x 、的方程()2233b a axb y -+++=是二元一次方程,则b a =_______17.如图,∠1、∠2是△ABC 的外角,已知∠1+∠2=260°,求∠A 的度数是______.18.233、418、810的大小关系是(用>号连接)_____.19.如图,在三角形纸片ABC 中剪去∠C 得到四边形ABDE ,且∠C =40°,则∠1+∠2的度数为_____.20.比较大小:π0_____2﹣1.(填“>”“<”或“=”)21.已知m a =2,n a =3,则2m n a -=_______________.22.若二次三项式x 2+kx+81是一个完全平方式,则k 的值是 ________. 23.若2a x =,5b x =,那么2a b x +的值是_______ ;24.一个容量为40的样本的最大值为35,最小值为15,若取组距为4,则应该分的组数是为_______.三、解答题25.(知识生成)通常情况下、用两种不同的方法计算同一图形的面积,可以得到一个恒等式. (1)如图 1,请你写出()()22,a b a b ab +-,之间的等量关系是 (知识应用)(2)根据(1)中的结论,若74,4x y xy +==,则x y -= (知识迁移)类似地,用两种不同的方法计算同一几何体的情况,也可以得到一个恒等式.如图 2 是边长为+a b 的正方体,被如图所示的分割成 8块.(3)用不同的方法计算这个正方体的体积,就可以得到一个等式,这个等式可以是 (4)已知4a b +=,1ab =,利用上面的规律求33+a b 的值.26.如果a c = b ,那么我们规定(a ,b )=c ,例如:因为23= 8 ,所以(2,8)=3. (1)根据上述规定,填空:(3,27)= ,(4,1)= ,(2,14)= ; (2)若记(3,5)=a ,(3,6)=b ,(3,30)=c ,求证: a + b = c .27.好学的小红在学完三角形的角平分线后,遇到下列4个问题,请你帮她解决.如图,在ABC ∆中,点I 是ABC ∠、ACB ∠的平分线的交点,点D 是MBC ∠、NCB ∠平分线的交点,,BI DC 的延长线交于点E .(1)若50BAC ∠=︒,则BIC ∠= °;(2)若BAC x ∠=︒ (090x <<),则当ACB ∠等于多少度(用含x 的代数式表示)时,//CE AB ,并说明理由; (3)若3D E ∠=∠,求BAC ∠的度数.28.当,m n 都是实数,且满足28m n =+,就称点21,2n P m +⎛⎫- ⎪⎝⎭为“爱心点”. (1)判断点()5,3A 、()4,8B 哪个点为“爱心点”,并说明理由;(2)若点(),4A a -、()4,B b 是“爱心点”,请判断A 、B 两点的中点C 在第几象限?并说明理由;(3)已知P 、Q 为有理数,且关于x 、y 的方程组333x y q x y q⎧+=+⎪⎨-=-⎪⎩解为坐标的点(),B x y 是“爱心点”,求p 、q 的值.29.因式分解:(1)43312x x - (2)2()a b x a b -+- (3)2169x - (4)(1)(5)4x x +++30.先化简,再求值:(2a +b )2﹣(2a +3b )(2a ﹣3b ),其中a =12,b =﹣2. 31.解下列方程组:(1)32316x y x y -=⎧⎨+=⎩ (2)234229x y zx y z ⎧==⎪⎨⎪-+=-⎩32.计算: (1)21122⎛⎫⎛⎫-⨯- ⎪ ⎪⎝⎭⎝⎭; (2)m 2•m 4+(﹣m 3)2; (3)(x +y )(2x ﹣3y );(4)(x +3)2﹣(x +1)(x ﹣1). 33.因式分解: (1)a 3﹣a ; (2)4ab 2﹣4a 2b ﹣b 3; (3)a 2(x ﹣y )﹣9b 2(x ﹣y ); (4)(y 2﹣1)2+6 (1﹣y 2)+9.34.在校运动会中,篮球队和排球队共有24支,其中篮球队每队10名队员,排球队每队12名队员,共有260名队员.请问篮球队、排球队各有多少支?(利用二元一次方程组解决问题)35.如图1,在ABC 中,BD 平分ABC ∠,CD 平分ACB ∠. (1)若80A ∠=︒,则BDC ∠的度数为______; (2)若A α∠=,直线MN 经过点D .①如图2,若//MN AB ,求NDC MDB ∠-∠的度数(用含α的代数式表示); ②如图3,若MN 绕点D 旋转,分别交线段,BC AC 于点,M N ,试问在旋转过程中NDC MDB ∠-∠的度数是否会发生改变?若不变,求出NDC MDB ∠-∠的度数(用含α的代数式表示),若改变,请说明理由:③如图4,继续旋转直线MN ,与线段AC 交于点N ,与CB 的延长线交于点M ,请直接写出NDC ∠与MDB ∠的关系(用含α的代数式表示).36.如图,D 、E 、F 分别在ΔABC 的三条边上,DE//AB ,∠1+∠2=180º.(1)试说明:DF//AC ;(2)若∠1=120º,DF 平分∠BDE ,则∠C=______º.【参考答案】***试卷处理标记,请不要删除一、选择题1.B 解析:B 【解析】 【分析】根据平行线的判定方法:内错角相等两直线平行,即可判断AB ∥CE . 【详解】解:∵∠A =∠ACE ,∴AB ∥CE (内错角相等,两直线平行). 故选:B . 【点睛】此题考查了平行线的判定,平行线的判定方法有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行,熟练掌握平行线的判定是解本题的关键.2.D解析:D 【分析】分别表示出图甲和图乙中阴影部分的面积,二者相等,从而可得答案. 【详解】解:图甲中阴影部分的面积为:22a b -, 图乙中阴影部分的面积为:()()()1()4=22a b a b a b a b -+⨯⨯⨯+-, 甲乙两图中阴影部分的面积相等22()()a b a b a b ∴-=+-∴可以验证成立的公式为22()()a b a b a b +-=-故选:D . 【点睛】本题考查了平方差公式的几何背景,属于基础题型,比较简单.3.B解析:B 【解析】试题分析:因式分解是指将几个多项式的和的形式转化个几个多项式或多项式的积的形式.A 、没有完全分解,还可以利用平方差公式进行;B 、正确;C 、不是因式分解;D 、无法进行因式分解. 考点:因式分解4.A解析:A 【分析】观察可以发现3n 的末位数字为4个一循环,故相加后末位数字为定值,而2020是4的整数倍,即可求解.【详解】解:通过观察可以发现3n 的末位数字为3、9、7、1……,4个为一循环, 而12343333=392781=120++++++末尾数字为0, ∵20204=505÷,故234202033333+++++…的末尾数字也为0. 故选A . 【点睛】本题属于找规律题型,难度不大,是中考的常考知识点,细心观察,总结规律是顺利解题的关键.5.B解析:B 【分析】根据三角形中线的性质作答即可. 【详解】解:能把一个三角形的面积分成相等的两部分的线是这个三角形的一条中线. 故选:B . 【点睛】本题考查了三角形中线的性质,属于应知应会题型,熟知三角形的一条中线将三角形分成面积相等的两部分是解题的关键.6.C解析:C 【分析】直接利用角平分线上点的坐标特点得出2x ﹣3=3﹣x ,进而得出答案. 【详解】解:∵点M (2x ﹣3,3﹣x ),在第一、三象限的角平分线上, ∴2x ﹣3=3﹣x , 解得:x =2,故2x ﹣3=1,3﹣x =1, 则M 点的坐标为:(1,1). 故选:C . 【点睛】此题主要考查了点的坐标,正确掌握横纵坐标的关系是解题关键.7.C解析:C 【分析】利用完全平方公式和平方差公式对各选项进行判断. 【详解】(p +q )(p +q )=(p +q )2=p 2+2pq +q 2;(p ﹣q )(p ﹣q )=(p ﹣q )2=p 2﹣2pq +q 2; (p +q )(p ﹣q )=p 2﹣q 2;(p +q )(﹣p ﹣q )=﹣(p +q )2=﹣p 2﹣2pq ﹣q 2. 故选:C . 【点睛】本题考查了完全平方公式和平方差公式,熟练掌握公式的结构及其运用是解答的关键.8.D解析:D 【分析】一个外角的度数是:180°-140°=40°, 则多边形的边数为:360°÷40°=9; 故选C . 【详解】9.D解析:D 【分析】根据同底数幂的除法的逆运算法则及幂的乘方运算法则,进行代数式的运算即可求解. 【详解】222233332(2)5252=2(2)327a a a bb b -=== 故选:D 【点睛】本题考查了同底数幂的除法的逆运算法,一般地,(0mm nn a a a a-=≠,m ,n 都是正整数,并且m >n),还考查了幂的乘方运算法则,(a m )n =a mn (m ,n 都是正整数). 10.B解析:B 【分析】根据三角形内角和定理得出∠A +∠B +∠C =180°,和选项求出∠C (或∠B 或∠A )的度数,再判断即可. 【详解】解:A 、∵∠A ﹣∠B =∠C , ∴∠A =∠B +∠C , ∵∠A +∠B +∠C =180°, ∴2∠A =180°, ∴∠A =90°,∴△ABC 是直角三角形,故A 选项是正确的; B 、∵∠A =60°,∠B =40°,∴∠C=180°﹣∠A﹣∠B=180°﹣60°﹣40°=80°,∴△ABC是锐角三角形,故B选项是错误的;C、∵∠A+∠B=∠C,∠A+∠B+∠C=180°,∴2∠C=180°,∴∠C=90°,∴△ABC是直角三角形,故C选项是正确的;D、∵∠A:∠B:∠C=1:1:2,∴∠A+∠B=∠C,∵∠A+∠B+∠C=180°,∴2∠C=180°,∴∠C=90°,∴△ABC是直角三角形,故D选项是正确的;故选:B.【点睛】本题考查了三角形的内角和定理的应用,主要考查学生的推理能力和辨析能力.11.B解析:B【解析】【分析】延长EP交CD于点M,由三角形外角的性质可得∠FMP=90°-∠2,再根据平行线的性质可得∠BEP=∠FMP,继而根据平角定义以及∠BEP=∠GEP即可求得答案.【详解】延长EP交CD于点M,∵∠EPF是△FPM的外角,∴∠2+∠FMP=∠EPF=90°,∴∠FMP=90°-∠2,∵AB//CD,∴∠BEP=∠FMP,∴∠BEP=90°-∠2,∵∠1+∠BEP+∠GEP=180°,∠BEP=∠GEP,∴∠1+90°-∠2+90°-∠2=180°,∴∠1=2∠2,故选B.【点睛】本题考查了三角形外角的性质,平行线的性质,平角的定义,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.12.A解析:A【分析】分别求出各不等式的解集,再根据不等式组无解即可得出m的取值范围.【详解】解:202x mx m-<⎧⎨+>⎩①②解不等式①,得x<2m.解不等式②,得x>2-m.因为不等式组无解,∴2-m≥2m.解得23 m≤.故选A.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.二、填空题13.60【解析】【分析】先由AB∥CD,求得∠C的度数,再根据三角形的外角等于与它不相邻的两内角之和可求∠A+∠E的度数.【详解】∵AB∥CD,∴∠C与它的同位角相等,根据三角形的外角等于解析:60【解析】【分析】先由AB∥CD,求得∠C的度数,再根据三角形的外角等于与它不相邻的两内角之和可求∠A+∠E的度数.【详解】∵AB ∥CD ,∴∠C 与它的同位角相等,根据三角形的外角等于与它不相邻的两内角之和,所以∠A +∠E =∠C =60度.故答案为60.【点睛】本题考查了平行线的性质,三角形的外角等于和它不相邻的两个内角的和. ①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补;④夹在两平行线间的平行线段相等.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.14.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解析:43.310-⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:将数据0.00033用科学记数法表示为43.310-⨯,故答案为:43.310-⨯.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.15.100【分析】根据同底数幂的乘法法则、幂的乘方与积的乘方法则把所求代数式进行化简,再把,代入进行计算即可.【详解】解:,故答案为100.【点睛】本题考查同底数幂的乘法法则、幂的乘方与积解析:100【分析】根据同底数幂的乘法法则、幂的乘方与积的乘方法则把所求代数式进行化简,再把5x m =,4y m =代入进行计算即可.【详解】解:2x y m +=()()2254100xy m m ⨯=⨯=,故答案为100.【点睛】本题考查同底数幂的乘法法则、幂的乘方与积的乘方法则,先根据同底数幂的乘法法则把所求代数式进行化简是解答此题的关键. 16.1【解析】根据题意得:,解得:b=3或−3(舍去),a=−1,则ab=−1.故答案是:−1.解析:1【解析】 根据题意得:2121{030b a a b -=+=≠+≠, 解得:b =3或−3(舍去),a =−1,则ab =−1.故答案是:−1.17.80°【分析】先根据三角形外角性质得出∠A+∠ACB+∠A+∠ABC=260°,再根据三角形内角和定理得出∠A+∠ACB+∠ABC=180°,即得.【详解】解:∵∠1、∠2是△ABC 的外角,解析:80°【分析】先根据三角形外角性质得出∠A+∠ACB+∠A+∠ABC=260°,再根据三角形内角和定理得出∠A+∠ACB+∠ABC=180°,即得.【详解】解:∵∠1、∠2是△ABC 的外角,∠1+∠2=260°,∴∠A+∠ACB+∠A+∠ABC=260°,∵∠A+∠ACB+∠ABC=180°,∴∠A=80°,故答案为:80°.【点睛】本题考查了三角形内角和定理和三角形外角性质的应用,能根据三角形的外角性质得∠A+∠ACB+∠A+∠ABC=260°是解题关键.18.418>233>810【分析】直接利用幂的乘方运算法则将原式变形,进而比较得出答案.【详解】解:∵,,∴236>233>230,∴418>233>810.故答案为:418>233>81解析:418>233>810【分析】直接利用幂的乘方运算法则将原式变形,进而比较得出答案.【详解】解:∵()18182364=2=2,()10103308=2=2, ∴236>233>230,∴418>233>810.故答案为:418>233>810【点睛】比较不同底数的幂的大小,当无法直接计算或计算过程比较麻烦时,可以转化为同底数幂,比较指数大小或同指数幂,比较底数大小进行.能熟练运用幂的乘方进行变形是解题关键.19.220°【分析】根据三角形的外角的性质以及三角形内角和定理求解即可.【详解】解:∵∠1=∠C+∠CED,∠2=∠C+∠EDC,∴∠1+∠2=∠C+∠CED+∠EDC+∠C,∵∠C+∠CE解析:220°【分析】根据三角形的外角的性质以及三角形内角和定理求解即可.【详解】解:∵∠1=∠C+∠CED,∠2=∠C+∠EDC,∴∠1+∠2=∠C+∠CED+∠EDC+∠C,∵∠C+∠CED+∠EDC=180°,∠C=40°,∴∠1+∠2=180°+40°=220°,故答案为:220°.【点睛】本题考查剪纸问题,三角形内角和定理,三角形的外角的性质等知识,熟悉相关性质是解题的关键.20.>【分析】先求出π0=1,2-1=,再根据求出的结果比较即可.【详解】解:∵π0=1,2-1=,1>,∴π0>2-1,故答案为:>.【点睛】本题考查零指数幂和负指数幂,实数的大小比较解析:>【分析】先求出π0=1,2-1=12,再根据求出的结果比较即可.【详解】解:∵π0=1,2-1=12,1>12,∴π0>2-1,故答案为:>.【点睛】本题考查零指数幂和负指数幂,实数的大小比较.理解任意非零数的零次方等于1和熟记负指数幂的计算公式是解题关键.21.【分析】根据同底数幂的除法和幂的乘方与积的乘方的运算法则求解即可.【详解】解:am-2n=am÷a2n=am÷(an)2=2÷9=【点睛】本题考查了同底数幂的除法和幂的解析:2 9【分析】根据同底数幂的除法和幂的乘方与积的乘方的运算法则求解即可.【详解】解:a m-2n=a m÷a2n=a m÷(a n)2=2÷9=2 9故答案为2 9【点睛】本题考查了同底数幂的除法和幂的乘方与积的乘方,解答本题的关键在于熟练掌握各知识点的运算法则.22.【分析】由是完全平方式,得到从而可得答案.【详解】解:方法一、方法二、由是完全平方式,则有两个相等的实数根,,故答案为:【点睛】本题考查的是完全平方式【分析】由281x kx ++是完全平方式,得到()22819,x kx x ++=±从而可得答案.【详解】解:方法一、 ()2222281991881,x kx x kx x x x ++=++=±=±+18,kx x ∴=± 18.k ∴=±方法二、由281x kx ++是完全平方式,则2810x kx ++=有两个相等的实数根,240,b ac ∴=-=1,,81,a b k c ===241810,k ∴-⨯⨯=2481k ∴=⨯,18.k ∴=±故答案为:18.±【点睛】本题考查的是完全平方式的特点,掌握完全平方式的特点,特别是积的二倍项的特点是解题的关键.23.【分析】可从入手,联想到同底数幂的乘法以及幂的乘方的逆用;逆用幂运算法则可得到(xa)2×xb,接下来将已知条件代入求值即可.【详解】对逆用同底数幂的乘法法则,得(xa)2×xb,逆用幂的解析:【分析】可从2a b x +入手,联想到同底数幂的乘法以及幂的乘方的逆用;逆用幂运算法则可得到(x a )2×x b ,接下来将已知条件代入求值即可.【详解】对2a b x +逆用同底数幂的乘法法则,得(x a )2×x b ,逆用幂的乘方法则,得(x a )2×x b ,将2a x =、5b x =代入(x a )2× x b 中,得22×5=20,故答案为:20.【点睛】此题考查同底数幂的乘法,解题关键在于掌握运算法则.24.5【分析】根据组数=(最大值-最小值)÷组距计算,注意小数部分要进位.【详解】解:在样本数据中最大值为35,最小值为15,它们的差是,已知组距为4,那么由于,故可以分成5组.故答案为:解析:5【分析】根据组数=(最大值-最小值)÷组距计算,注意小数部分要进位.【详解】解:在样本数据中最大值为35,最小值为15,它们的差是351520-=,已知组距为4,那么由于2054=,故可以分成5组. 故答案为:5.【点睛】本题考查的是组数的计算,属于基础题,只要根据组数的定义“数据分成的组的个数称为组数”来解即可. 三、解答题25.(1)22()4()a b ab a b +-=-.(2)3x y -= .(3)33322()33a b a b a b ab +=+++.(4)54.【分析】(1)根据两种面积的求法的结果相等,即可得到答案;(2)根据第(1)问中已知的等式,将数值分别代入,即可求得答案.(3)根据正方体的体积公式,正方体的边长的立方就是正方体的体积;2个正方体和6个长方体的体积和就是大长方体的体积,则可得到等式;(4)结合4a b +=,1ab =,根据(3)中的公式,变形进行求解即可.【详解】(1)22()4()a b ab a b +-=-.(2)4x y +=,74xy =,()()22274441679.4x y x y xy -=+-=-⨯=-= 故3x y -= . (3)33322()33a b a b a b ab +=+++ .(4)由4a b +=,1ab =,根据第(3)得到的公式可得()()()()333322333641254a b a b a b ab a b ab a b +=+-+=+-+=-=.【点睛】本题考查完全平方公式以及立方公式的几何背景,从整体和局部两种情况分析并写出面积以及体积的表达式是解题的关键.26.(1)3;0; -2;(2)证明见解析.【分析】(1)根据已知和同底数的幂法则得出即可;(2)根据已知得出3a =5,3b =6,3c =30,求出3a ×3b =30,即可得出答案.【详解】(1)(3,27)=3,(4,1)=0,(2,14)=-2, 故答案为3;0;-2;(2)证明:由题意得:3a = 5,3b = 6,3c = 30,∵ 5⨯ 6=30,∴ 3a ⨯ 3b = 3c ,∴ 3a +b = 3c ,∴ a + b = c .【点睛】本题考查了同底数幂的乘法,有理数的混合运算等知识点,能灵活运用同底数幂的乘法法则进行变形是解此题的关键.27.(1)115;(2)180-2x ,理由见解析;(3)45°.【分析】(1)已知点I 是两角∠ABC 、∠ACB 平分线的交点,故()()()11118018018018090222BIC IBC ICB ABC ACB A BAC ∠=︒-∠+∠=︒-∠+∠=︒-︒-∠=+∠ ,由此可求∠BIC ;(2)当CE ∥AB 时, ∠ACE=∠A=x °,根据∠ACE=∠A=x °,根据CE 是∠ACG 的角平分线,推出∠ACG=2x °,∠ABC=∠BAC=x °,即可求出ACB ∠的度数.(3)由题意知:△BDE 是直角三角形∠D+∠E=90°,可求出若∠D=3∠E 时,∠BEC=22.5°,再推理出12BEC BAC ∠=∠,即可求出BAC ∠的度数. 【详解】(1)∵点I 是两角∠ABC 、∠ACB 平分线的交点,∴()180BIC IBC ICB ∠=︒-∠+∠ ()11802ABC ACB =-∠+∠︒ ()11801802A =-︒︒-∠ 1901152BAC =+∠=︒; 故答案为:115.(2)当∠ACB 等于(180-2x )°时,CE ∥AB .理由如下:∵CE ∥AB ,∴∠ACE=∠A=x °,∵∠ACE=∠A=x °,CE 是∠ACG 的角平分线,∴∠ACG=2∠ACE=2x °,∴∠ABC=∠ACG-∠BAC=2x °-x °=x °,∴∠ACB=180°-∠BAC-∠ABC=(180-2x )°;(3)由题意知:△BDE 是直角三角形∠D+∠E=90°若∠D=3∠E 时∠BEC=22.5°,∵90BEC BDC ∠=︒-∠190902BAC ⎛⎫=︒-︒-∠ ⎪⎝⎭ 12BAC =∠, ∴45BAC ∠=︒.【点睛】本题考查了三角形的内角、外角平分线的夹角大小与原三角形内角的关系,要充分运用三角形内角和定理,角平分线性质转换.28.(1)()5,3A 为爱心点,理由见解析;(2)第四象限,理由见解析;(3)0p =,q =23- 【分析】(1)分别把A 、B 点坐标,代入(m ﹣1,22n +)中,求出m 和n 的值,然后代入2m =8+n 检验等号是否成立即可;(2)把点A (a ,﹣4)、B (4,b )各自代入(m ﹣1,22n +)中,分别用a 、b 表示出m 、n ,再代入2m =8+n 中可求出a 、b 的值,则可得A 和B 点的坐标,再根据中点坐标公式即可求出C 点坐标,然后即可判断点C 所在象限;(3)解方程组,用q 和p 表示x 和y ,然后代入2m =8+n 可得关于p 和q 的等式,再根据p ,q 为有理数,即可求出p 、q 的值.【详解】解:(1)A 点为“爱心点”,理由如下:当A (5,3)时,m ﹣1=5,22n +=3, 解得:m =6,n =4,则2m =12,8+n =12,所以2m =8+n ,所以A (5,3)是“爱心点”;当B(4,8)时,m﹣1=4,22n+=8,解得:m=5,n=14,显然2m≠8+n,所以B点不是“爱心点”;(2)A、B两点的中点C在第四象限,理由如下:∵点A(a,﹣4)是“爱心点”,∴m﹣1=a,22n+=﹣4,解得:m=a+1,n=﹣10.代入2m=8+n,得2(a+1)=8﹣10,解得:a=﹣2,所以A点坐标为(﹣2,﹣4);∵点B(4,b)是“爱心点”,同理可得m=5,n=2b﹣2,代入2m=8+n,得:10=8+2b﹣2,解得:b=2.所以点B坐标为(4,2).∴A、B两点的中点C坐标为(2442,22-+-+),即(1,﹣1),在第四象限.(3)解关于x,y的方程组3x y qx y q⎧+=+⎪⎨-=-⎪⎩,得:2x qy q⎧=-⎪⎨=⎪⎩.∵点B(x,y)是“爱心点”,∴m﹣1﹣q,22n+=2q,解得:m﹣q+1,n=4q﹣2.代入2m=8+n,得:﹣2q+2=8+4q﹣2,整理得﹣6q=4.∵p,q为有理数,若使p﹣6q结果为有理数4,则P=0,所以﹣6q=4,解得:q=﹣23.所以P=0,q=﹣23.【点睛】本题是新定义题型,以“爱心点”为载体,主要考查了解二元一次方程组、中点坐标公式等知识以及阅读理解能力和迁移运用能力,正确理解题意、熟练掌握二元一次方程组的解法是关键.29.(1)3x3(x﹣4);(2)(a﹣b)(1+2x);(3)(4﹣3x)(4+3x);(4)2(3)x+.【分析】(1)原式提取公因式3x3即可;(2)原式提取公因式-a b 即可;(3)原式利用平方差公式分解即可;(4)原式变形后,利用完全平方公式分解即可.【详解】解:(1)原式=3x 3(x ﹣4);(2)原式=(a ﹣b )(1+2x );(3)原式=(4﹣3x )(4+3x );(4)原式=2554x x x ++++=269x x ++=2(3)x +.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 30.4ab+10b 2;36.【解析】【分析】先利用完全平方公式和平方差公式计算,再去括号、合并同类项即可化简原式,继而将a ,b 的值代入计算可得.【详解】原式=4a 2+4ab +b 2﹣(4a 2﹣9b 2)=4a 2+4ab +b 2﹣4a 2+9b 2=4ab +10b 2 当a 12=,b =﹣2时,原式=412⨯⨯(﹣2)+10×(﹣2)2=﹣4+10×4=﹣4+40=36. 【点睛】 本题考查了整式的混合运算﹣化简求值,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握运算法则是解答本题的关键.31.(1)52x y =⎧⎨=⎩(2)234x y z =-⎧⎪=-⎨⎪=-⎩【分析】(1)用加减消元法求解即可;(2)令234x y z k ===,用k 表示出x ,y 和z ,代入229x y z -+=-中,求出k 值,从而得到方程组的解.【详解】解:(1)32316x y x y -=⎧⎨+=⎩①②, ①×3+②得:525x =,解得:x=5,代入①中,解得:y=2,∴方程组的解为:52x y =⎧⎨=⎩; (2)∵设234x y z k ===, ∴x=2k ,y=3k ,z=4k ,代入229x y z -+=-中,4389k k k -+=-,解得:k=-1,∴x=-2,y=-3,z=-4,∴方程组的解为:234x y z =-⎧⎪=-⎨⎪=-⎩. 【点睛】本题考查了二元一次方程组和三元一次方程组,解题的关键是选择合适的方法求解.32.(1)18-;(2)2m 6;(3)2x 2﹣xy ﹣3y 2;(4)6x +10.【分析】(1)根据同底数幂的乘法法则进行计算;(2)先根据同底数幂的乘法法则和幂的乘方法则进行计算,再根据合并同类项法则进行计算;(3)根据多项式乘以多项式法则进行计算,再合并同类项;(4)先根据完全平方公式,平方差公式进行计算,再合并同类项.【详解】解:(1)21122⎛⎫⎛⎫-⨯- ⎪ ⎪⎝⎭⎝⎭=312⎛⎫- ⎪⎝⎭ 18=-; (2)m 2•m 4+(﹣m 3)2=m 6+m 6=2m 6;(3)(x +y )(2x ﹣3y )=2x 2﹣3xy +2xy ﹣3y 2=2x 2﹣xy ﹣3y 2;(4)(x +3)2﹣(x +1)(x ﹣1)=x 2+6x +9﹣x 2+1【点睛】此题考查的是幂的运算性质和整式的运算,掌握同底数幂的乘法法则、幂的乘方法则、多项式乘以多项式法则、完全平方公式和平方差公式是解决此题的关键.33.(1)a (a+1)(a ﹣1);(2)﹣b (2a ﹣b )2;(3)(x ﹣y )(a+3b )(a ﹣3b );(4)(y+2)2(y ﹣2)2【分析】(1)直接提取公因式a ,进而利用平方差公式分解因式得出答案;(2)直接提取公因式﹣b ,进而利用完全平方公式分解因式即可;(3)直接提取公因式(x ﹣y ),进而利用平方差公式分解因式得出答案;(4)直接利用完全平方公式分解因式,再利用平方差公式分解因式即可.【详解】解:(1)a 3﹣a=a (a 2﹣1)=a (a+1)(a ﹣1);(2)4ab 2﹣4a 2b ﹣b 3=﹣b (﹣4ab+4a 2+b 2)=﹣b (2a ﹣b )2;(3)a 2(x ﹣y )﹣9b 2(x ﹣y )=(x ﹣y )(a 2﹣9b 2)=(x ﹣y )(a+3b )(a ﹣3b );(4)(y 2﹣1)2+6(1﹣y 2)+9=(y 2﹣1)2﹣6 (y 2﹣1)+9=(y 2﹣1﹣3)2=(y+2)2(y ﹣2)2.【点睛】此题主要考查因式分解的几种方法:提公因式法,公式法等,能熟练运用是解题关键.34.篮球队14支,排球队10支【分析】根据题意可知,本题中的等量关系是“有24支队”和“260名运动员”,列方程组求解即可.【详解】设篮球队x 支,排球队y 支,由题意可得:241012260x y x y +=⎧⎨+=⎩解的:1410x y =⎧⎨=⎩答:设篮球队14支,排球队10支解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.35.(1)130°;(2)①90︒-α;②不变,90︒-α;③∠NDC+∠MDB=90︒-1α2.【分析】(1)根据已知,以及三角形内角和等于180︒,即可求解;(2)①根据平行线的性质可以证得∠ABD=∠BDM=∠MBD,∠CND=∠A=α,再利用含有α的式子分别表示出∠NDC、∠MDB,进行作差,即可求解代数式;②延长BD交AC于点E,则∠NDE=∠MDB,因此∠NDC-∠MDB=∠NDC-∠NDE=∠EDC,再利用三角形内角和为180︒,即可求解;③如图可知,∠NDC+∠MDB=180︒-∠BDC,利用平角的定义,即可求解代数式.【详解】解:(1)∵∠A=80︒∴∠ABC+∠ACB=180︒-80︒=100︒又∵ BD平分∠ABC,CD平分∠ACB,∴∠DBC+∠DCB=12⨯100︒=50︒.∴∠BDC=180︒-50︒=130︒.(2)①∵MN//AB,BD平分∠ABC,CD平分∠ACB,∴∠ABD=∠BDM=∠MBD,∠CND=∠A=α,∴∠NDC=180︒-α-12∠ACB,∠MDB=12∠ABC,∴∠NDC-∠MDB=180︒-α-12∠ACB-12∠ABC=180︒-α-12(∠ACB+∠ABC)=180︒-α-12(180︒-α)=90︒-α.②不变;延长BD交AC于点E,如图:∴∠NDE=∠MDB,∵∠BDC=180︒-12(∠ACB+∠ABC)=180︒-12(180︒-α)=90︒+1α2,∴∠NDC-∠MDB=∠NDC-∠NDE=∠EDC=180︒-∠BDC=180︒-(90︒+1α2)=90︒-α,同①,说明MN在旋转过程中∠NDC-∠MDB的度数只与∠A有关系,而∠A始终不变,故:MN在旋转过程中∠NDC-∠MDB的度数不会发生改变.③如图可知,∠NDC+∠MDB=180︒-∠BDC,由②知∠BDC=90︒+1α2,∴∠NDC+∠MDB=180︒-(90︒+1α2)=90︒-1α2.故∠NDC与∠MDB的关系是∠NDC+∠MDB=90︒-1α2.【点睛】本题目考查平行线与三角形的综合,涉及知识点有平行线的性质,三角形内角和等于180°等,是中考的常考知识点,难度一般,熟练掌握以上知识点的综合运用是顺利解题的关键.36.(1)见解析;(2)60.【分析】(1)根据平行线的性质得出∠A=∠2,求出∠1+∠A=180°,根据平行线的判定得出即可.(2)根据平行线的性质解答即可.【详解】证明:(1)∵DE∥AB,∴∠A=∠2,∵∠1+∠2=180°.∴∠1+∠A=180°,∴DF∥AC;(2)∵DE∥AB,∠1=120°,∴∠FDE=60°,∵DF平分∠BDE,∴∠FDB=60°,∵DF∥AC,∴∠C=∠FDB=60°【点睛】本题考查了平行线的性质和判定定理,解题的关键是能灵活运用平行线的判定和性质定理进行推理.。
苏科版七年级数学下册第二学期期末测试题及答案(共五套) word版
苏科版七年级数学下册第二学期期末测试题及答案(共五套) word 版一、选择题1.下列计算中正确的是( ) A .2352a a a += B .235a a a +=C .235a a a =D .236a a a =2.在ABC ∆中,::1:2:3A B C ∠∠∠=,则ABC ∆一定是( )A .锐角三角形B .直角三角形C .钝角三角形D .锐角三角形或直角三角形3.如图,能判定EB ∥AC 的条件是( )A .∠C=∠1B .∠A=∠2C .∠C=∠3D .∠A=∠14.一个三角形的两边长分别为3和4,且第三边长为整数,这样的三角形的周长最大值是( )A .11B .12C .13D .145.将一副三角板(含30°、45°的直角三角形)摆放成如图所示,图中∠1的度数是( )A .90°B .120°C .135°D .150° 6.计算a 2•a 3,结果正确的是( )A .a 5B .a 6C .a 8D .a 9 7.如果多项式x 2+2x+k 是完全平方式,则常数k 的值为( ) A .1B .-1C .4D .-48.下列各组数中,是二元一次方程5x ﹣y =4的一个解的是( )A .31x y =⎧⎨=⎩B .11x y =⎧⎨=⎩C .04x y =⎧⎨=⎩D .13x y =⎧⎨=⎩9.下列运算正确的是( )A .a 2+a 2=a 4B .(﹣b 2)3=﹣b 6C .2x •2x 2=2x 3D .(m ﹣n )2=m 2﹣n 210.计算a 10÷a 2(a≠0)的结果是( ) A .5a B .5a - C .8a D .8a - 11.一个多边形的每个内角都等于140°,则这个多边形的边数是( )A .7B .8C .9D .1012.一天李师傅骑车上班途中因车发生故障,修车耽误了一段时间后继续骑行,按时赶到了单位,下图描述了他上班途中的情景,下列四种说法:李师傅上班处距他家2000米;李师傅路上耗时20分钟;修车后李师傅的速度是修车前的4倍;李师傅修车用了5分钟,其中错误的是()A.0个B.1个C.2个D.3个二、填空题13.如图,ABC三边的中线AD、BE、CF的公共点为G,18ABCS=,则图中阴影部分的面积是 ________.14.等式01a=成立的条件是________.15.已知关于x的不等式3x - m+1>0的最小整数解为2,则实数m的取值范围是___________.16.多项式4a3bc+8a2b2c2各项的公因式是_________.17.若x ay b=⎧⎨=⎩是二元一次方程2x﹣3y﹣5=0的一组解,则4a﹣6b=_____.18.如图,四边形ABCD中,E、F、G、H依次是各边中点,O是形内一点,若四边形AEOH、四边形BFOE、四边形CGOF的面积分别为6、7、8,四边形DHOG面积为()A.6 B.7 C.8 D.919.某红外线波长为0.00000094米,数字0.00000094用科学记数法表示为_____.20.若2(1)(23)2x x x mx n +-=++,则m n +=________. 21.若2m =3,2n =5,则2m+n =______.22.已知(a +b )2=7,a 2+b 2=5,则ab 的值为_____.三、解答题23.因式分解: (1)16x 2-9y 2 (2)(x 2+y 2)2-4x 2y 224.(知识生成)我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式.例如图1可以得到(a+b )2=a 2+2ab+b 2,基于此,请解答下列问题:(1)根据图2,写出一个代数恒等式: .(2)利用(1)中得到的结论,解决下面的问题:若a+b+c =10,ab+ac+bc =35,则a 2+b 2+c 2= .(3)小明同学用图3中x 张边长为a 的正方形,y 张边长为b 的正方形,z 张宽、长分别为a 、b 的长方形纸片拼出一个面积为(2a+b )(a+2b )长方形,则x+y+z = . (知识迁移)(4)事实上,通过计算几何图形的体积也可以表示一些代数恒等式,图4表示的是一个边长为x 的正方体挖去一个小长方体后重新拼成一个新长方体,请你根据图4中图形的变化关系,写出一个代数恒等式: . 25.解方程或不等式(组)(1)24231x y x y +=⎧⎨-=⎩(2)2151132x x -+-≥ (3)312(2)15233x x x x +<+⎧⎪⎨-≤+⎪⎩26.若关于x,y 的二元一次方程组 38x y mx ny +=⎧⎨+=⎩与方程组14x y mx ny -=⎧⎨-=⎩有相同的解.(1)求这个相同的解; (2)求m n -的值.27.已知3321130y x -+-=,|1|24z x y -=--+,求x y z ++的平方根. 28.定义:若实数x ,y 满足22x y t =+,22y x t =+,且x ≠y ,则称点M (x ,y )为“好点”.例如,点(0,-2)和 (-2,0)是“好点”.已知:在直角坐标系xOy 中,点P (m ,n ).(1)P 1(3,1)和P 2(-3,1)两点中,点________________是“好点”. (2)若点P (m ,n )是“好点”,求m +n 的值.(3)若点P 是“好点”,用含t 的代数式表示mn ,并求t 的取值范围.29.对于多项式x 3﹣5x 2+x +10,我们把x =2代入此多项式,发现x =2能使多项式x 3﹣5x 2+x +10的值为0,由此可以断定多项式x 3﹣5x 2+x +10中有因式(x ﹣2),(注:把x =a 代入多项式,能使多项式的值为0,则多项式一定含有因式(x ﹣a )),于是我们可以把多项式写成:x 3﹣5x 2+x +10=(x ﹣2)(x 2+mx +n ),分别求出m 、n 后再代入x 3﹣5x 2+x +10=(x ﹣2)(x 2+mx +n ),就可以把多项式x 3﹣5x 2+x +10因式分解.(1)求式子中m 、n 的值;(2)以上这种因式分解的方法叫“试根法”,用“试根法”分解多项式x 3+5x 2+8x +4.30.如图 1,直线GH 分别交,AB CD 于点 ,E F (点F 在点E 的右侧),若12180︒∠+∠= (1)求证://AB CD ;(2)如图2所示,点M N 、在,AB CD 之间,且位于,E F 的异侧,连MN , 若23M N ∠=∠,则,,AEM NFD N ∠∠∠三个角之间存在何种数量关系,并说明理由.(3)如图 3 所示,点M 在线段EF 上,点N 在直线CD 的下方,点P 是直线AB 上一点(在E 的左侧),连接,,MP PN NF ,若2,2MPN MPB NFH HFD ∠=∠∠=∠,则请直接写出PMH ∠与N ∠之间的数量【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据同底数幂的加法和乘法法则进行计算判断即可. 【详解】解:A 、23a a +无法合并,故A 选项错误; B 、23a a +无法合并,故B 选项错误; C 、235a a a =,故C 选项正确; D 、235a a a =,故D 选项错误. 故选:C 【点睛】此题考查同底数幂的运算法则,同底数幂的加减必须是同类项才可以进行加减,同底数幂的乘除底数不变,指数相加减.2.B解析:B 【分析】根据三角形内角和为180°,求出三个角的度数进行判断即可. 【详解】解:∵三角形内角和为180°, ∴118030123A ∠=⨯︒=︒++218060123B ∠=⨯︒=︒++318090123C ∠=⨯︒=︒++,∴△ABC 为直角三角形, 故选:B . 【点睛】此题考查三角形内角和,熟知三角形内角和为180°,根据各角占比求出各角度数即可判断.3.D解析:D 【分析】直接根据平行线的判定定理对各选项进行逐一分析即可. 【详解】解:A 、∠C=∠1不能判定任何直线平行,故本选项错误; B 、∠A=∠2不能判定任何直线平行,故本选项错误; C 、∠C=∠3不能判定任何直线平行,故本选项错误; D 、∵∠A=∠1,∴EB ∥AC ,故本选项正确. 故选:D . 【点睛】本题考查的是平行线的判定,用到的知识点为:内错角相等,两直线平行.4.C解析:C 【解析】 【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围,再根据第三边是整数,从而求得周长最大时,对应的第三边的长. 【详解】解:设第三边为a ,根据三角形的三边关系,得:4-3<a <4+3, 即1<a <7, ∵a 为整数, ∴a 的最大值为6,则三角形的最大周长为3+4+6=13. 故选:C . 【点睛】本题考查了三角形的三边关系,根据三边关系得出第三边的取值范围是解决此题的关键.5.B解析:B 【详解】解:根据题意得:∠1=180°-60°=120°. 故选:B 【点睛】本题考查直角三角板中的角度的计算,难度不大.6.A解析:A 【分析】此题目考查的知识点是同底数幂相乘.把握同底数幂相乘,底数不变,指数相加的规律就可以解答..【详解】同底数幂相乘,底数不变,指数相加.m n m n a a a +⋅=所以23235.a a a a +⋅== 故选A. 【点睛】此题重点考察学生对于同底数幂相乘的计算,熟悉计算法则是解本题的关键.7.A解析:A 【分析】根据完全平方公式的乘积二倍项和已知平方项先确定出另一个数是1,平方即可. 【详解】解:∵2x=2×1•x , ∴k=12=1, 故选A . 【点睛】本题考查了对完全平方公式的应用,由乘积二倍项确定做完全平方运算的两个数是解题的关键.8.B解析:B【分析】把x与y的值代入方程检验即可.【详解】解:A、把31xy=⎧⎨=⎩代入得:左边=15﹣1=14,右边=4,∵左边≠右边,∴31xy=⎧⎨=⎩不是方程的解;B、把11xy=⎧⎨=⎩代入得:左边=5﹣1=4,右边=4,∵左边=右边,∴11xy=⎧⎨=⎩是方程的解;C、把4xy=⎧⎨=⎩代入得:左边=0﹣4=﹣4,右边=4,∵左边≠右边,∴4xy=⎧⎨=⎩不是方程的解;D、把13xy=⎧⎨=⎩代入得:左边=5﹣3=2,右边=4,∵左边≠右边,∴13xy=⎧⎨=⎩不是方程的解,故选:B.【点睛】本题主要考查了二元一次方程的解的知识点,准确代入求职是解题的关键.9.B解析:B【分析】根据合并同类项法则、幂的乘方法则、单项式乘单项式法则和完全平方公式法则解答即可.【详解】A、a2+a2=2a2,故本选项错误;B、(﹣b2)3=﹣b6,故本选项正确;C、2x•2x2=4x3,故本选项错误;D、(m﹣n)2=m2﹣2mn+n2,故本选项错误.故选:B.【点睛】本题考查了整式的运算,合并同类项、幂的乘方、单项式乘单项式和完全平方公式,熟练掌握运算法则是解题的关键.10.C解析:C 【解析】 【分析】根据同底数幂的除法法则即可得. 【详解】1021028(0)a a a a a -÷==≠故选:C. 【点睛】本题考查了同底数幂的除法法则:同底数幂相除,底数不变,指数相减.11.D解析:D 【分析】一个外角的度数是:180°-140°=40°, 则多边形的边数为:360°÷40°=9; 故选C . 【详解】12.B解析:B 【分析】观察图象,明确每一段行驶的路程、时间,即可做出判断. 【详解】由图可知,当时间为离家20分钟时,李师傅到达单位,所以说法一和说法二正确; 从出发到10分钟时,李师傅的速度为1000÷10=100(米∕分钟),在出发后15分钟到20分钟,李师傅的速度为(2000-1000)÷(20-15)=200(米∕秒),修车后李师傅的速度是修车前的2倍,所以说法三错误;在出发后10分钟到15分钟,李师傅修车用了15-10=5(分钟),所以说法四正确, 故选:B . 【点睛】此题考查了函数的图象,会从图象中提取有效信息,理解因变量与自变量的关系是解答的关键.二、填空题13.【分析】利用三角形重心的性质证明图中个小三角形的面积相等即可得到答案. 【详解】解: 三边的中线AD 、BE 、CF 的公共点为G ,图中阴影部分的面积是 故答案为:6. 【点睛】 解析:6.【分析】利用三角形重心的性质证明图中6个小三角形的面积相等即可得到答案. 【详解】 解:ABC 三边的中线AD 、BE 、CF 的公共点为G ,,,,GBD GCDGCEAGEAGFBGFS SSSSS∴=== 2,BG GE =2,BGC GECS S ∴=,DGCCGE SS∴=GBDGCDGCEAGEAGFBGFSSS SSS∴=====∴ 图中阴影部分的面积是182 6.6⨯= 故答案为:6. 【点睛】本题考查的是三角形中线的性质,三角形重心的性质,掌握以上知识解决三角形的面积问题是解题的关键.14.. 【分析】根据零指数幂有意义的条件作答即可. 【详解】 由题意得:. 故答案为:. 【点睛】本题考查零指数幂有意义的条件.熟练掌握非零的零次幂等于1是解题的关键.解析:0a ≠. 【分析】根据零指数幂有意义的条件作答即可. 【详解】由题意得:0a ≠.【点睛】本题考查零指数幂有意义的条件.熟练掌握非零的零次幂等于1是解题的关键.15.【解析】【分析】先用含m 的代数式表示出不等式的解集,再根据最小整数解为2即可求出实数m 的取值范围.【详解】∵3x - m+1>0,∴3x> m -1,∴x>,∵不等式3x - m+1>解析:4<7m ≤【解析】【分析】先用含m 的代数式表示出不等式的解集,再根据最小整数解为2即可求出实数m 的取值范围.【详解】∵3x - m+1>0,∴3x> m -1,∴x>-13m , ∵不等式3x - m+1>0的最小整数解为2, ∴1≤-13m <3, 解之得4<7m ≤.故答案为:4<7m ≤.【点睛】本题考查了一元一次不等式的解法,根据最小整数解为2列出关于m 的不等式是解答本题的关键.16.4a2bc【分析】多项式的公因式的系数是指多项式中各项系数的最大公约数,字母取各项相同字母的最低次幂.【详解】多项式4a3bc 8a2b2c2的各项公因式是4a2bc .解析:4a2bc【分析】多项式的公因式的系数是指多项式中各项系数的最大公约数,字母取各项相同字母的最低次幂.【详解】多项式4a3bc+8a2b2c2的各项公因式是4a2bc.故答案为:4a2bc.【点睛】本题属于基础题型,注意一个多项式的各项都含有的公共因式是这个多项式的公因式.17.10【分析】已知是二元一次方程2x﹣3y﹣5=0的一组解,将代入二元一次方程2x﹣3y﹣5=0中,即可求解.【详解】∵是二元一次方程2x﹣3y﹣5=0的一组解∴2a-3b=5∴4a-6b解析:10【分析】已知x ay b=⎧⎨=⎩是二元一次方程2x﹣3y﹣5=0的一组解,将x ay b=⎧⎨=⎩代入二元一次方程2x﹣3y﹣5=0中,即可求解.【详解】∵x ay b=⎧⎨=⎩是二元一次方程2x﹣3y﹣5=0的一组解∴2a-3b=5∴4a-6b=10故答案为:10【点睛】本题考查了二元一次方程组解的定义,能使二元一次方程左右两边的值相等的两个未知数的值,叫做二元一次方程的解.由于使二元一次方程的左右两边的值相等的未知数的值不止一组,故每个二元一次方程都有无数组解.18.B【解析】连接OC,OB,OA,OD,∵E、F、G、H依次是各边中点,∴△AOE和△BOE等底等高,所以S△OAE=S△OBE,同理可证,S△OBF=S△OCF,S△ODG=S△OCG,解析:B【解析】连接OC,OB,OA,OD,∵E、F、G、H依次是各边中点,∴△AOE和△BOE等底等高,所以S△OAE=S△OBE,同理可证,S△OBF=S△OCF,S△ODG=S△OCG,S△ODH=S△OAH,∴S四边形AEOH+S四边形CGOF=S四边形DHOG+S四边形BFOE,∵S四边形AEOH=6,S四边形BFOE=7,S四边形CGOF=8,∴6+8=7+S四边形DHOG,解得S四边形DHOG=7.故答案为7.点睛:本题考查了三角形的面积.解决本题的关键将各个四边形划分,充分利用给出的中点这个条件,证得三角形的面积相等,进而证得结论.19.4×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:4×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00000094=9.4×10﹣8,故答案是:9.4×10﹣8.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.20.【分析】根据多项式与多项式相乘的法则进行运算,得一次项系数与常数项分别为、,进而求得 .【详解】解:∵,∴ 、 ,∴.故答案为.【点睛】本题目考查整式的乘法,难度不大,熟练掌握多项解析:4-【分析】根据多项式与多项式相乘的法则进行运算,得一次项系数与常数项分别为m 、n ,进而求得m n + .【详解】解:∵22(1)(23)23=2x x x x x mx n +-=--++,∴1m =- 、3n =- ,∴()=13=13=4m n +-+----.故答案为4-.【点睛】本题目考查整式的乘法,难度不大,熟练掌握多项式与多项式相乘的运算方法即可顺利解题. 21.15【分析】根据同底数幂的乘法逆运算法则可得,进一步即可求出答案.【详解】解:.故答案为:15.【点睛】本题考查了同底数幂的乘法法则的逆用,属于常考题型,熟练掌握同底数幂的乘法法则是关解析:15【分析】根据同底数幂的乘法逆运算法则可得222m n m n +=⋅,进一步即可求出答案.【详解】解:2223515m n m n +=⋅=⨯=.故答案为:15.本题考查了同底数幂的乘法法则的逆用,属于常考题型,熟练掌握同底数幂的乘法法则是关键.22.1【分析】利用完全平方公式得到a2+2ab+b2=7,然后把a2+b2=5代入可计算出ab 的值.【详解】解:∵(a+b )2=7,∴a2+2ab+b2=7,∵a2+b2=5,∴5+2ab解析:1【分析】利用完全平方公式得到a 2+2ab +b 2=7,然后把a 2+b 2=5代入可计算出ab 的值.【详解】解:∵(a +b )2=7,∴a 2+2ab +b 2=7,∵a 2+b 2=5,∴5+2ab =7,∴ab =1.故答案为1.【点睛】本题主要考查了完全平方差公式的运用,掌握完全平方差公式是解题的关键.三、解答题23.(1)(43)(4-3)x y x y +;(2)22()(-y)x y x +.【分析】(1)直接利用平方差公式22()()a b a b a b +-=-分解即可; (2)先利用平方差公式,再利用完全平方公式222()2a b a ab b ±=±+即可.【详解】(1)原式2243))((x y =-(43)(43)x y x y =+-;(2)原式2222)()(2x y xy =-+2222(2)(2)x y x y xy y x ++=+-22()()x y x y =+-.本题考查了利用平方差公式和完全平方公式进行因式分解,熟记公式是解题关键.24.(1)(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;(2)30;(3)9;(4)x3﹣x=(x+1)(x﹣1)x【分析】(1)依据正方形的面积=(a+b+c)2;正方形的面积=a2+b2+c2+2ab+2ac+2bc,可得等式;(2)依据a2+b2+c2=(a+b+c)2﹣2ab﹣2ac﹣2bc,进行计算即可;(3)依据所拼图形的面积为:xa2+yb2+zab,而(2a+b)(a+2b)=2a2+4ab+ab+2b2=2a2+5b2+2ab,即可得到x,y,z的值.(4)根据原几何体的体积=新几何体的体积,列式可得结论.【详解】(1)由图2得:正方形的面积=(a+b+c)2;正方形的面积=a2+b2+c2+2ab+2ac+2bc,∴(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,故答案为:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;(2)∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,∵a+b+c=10,ab+ac+bc=35,∴102=a2+b2+c2+2×35,∴a2+b2+c2=100﹣70=30,故答案为:30;(3)由题意得:(2a+b)(a+2b)=xa2+yb2+zab,∴2a2+5ab+2b2=xa2+yb2+zab,∴225xyz=⎧⎪=⎨⎪=⎩,∴x+y+z=9,故答案为:9;(4)∵原几何体的体积=x3﹣1×1•x=x3﹣x,新几何体的体积=(x+1)(x﹣1)x,∴x3﹣x=(x+1)(x﹣1)x.故答案为:x3﹣x=(x+1)(x﹣1)x.【点睛】本题主要考查的是整式的混合运算,利用直接法和间接法分别求得几何图形的体积或面积,然后根据它们的体积或面积相等列出等式是解题的关键.25.(1)21xy=⎧⎨=⎩;(2)1x≤-;(3)13x-≤<【分析】(1)根据加减消元法解答;(2)根据解一元一次不等式的方法解答即可;(3)先分别解两个不等式,再取其解集的公共部分即得结果.【详解】解:(1)对24231x y x y +=⎧⎨-=⎩①②, ①×2,得248x y +=③,③-②,得7y =7,解得:y =1,把y =1代入①,得x +2=4,解得:x =2,∴原方程组的解为:21x y =⎧⎨=⎩; (2)不等式两边同乘以6,得()()2216351x x --≥+,去括号,得426153x x --≥+,移项、合并同类项,得1111x -≥,不等式两边同除以﹣1,得1x ≤-;(3)对()312215233x x x x ⎧+<+⎪⎨-≤+⎪⎩①②, 解不等式①,得x <3,解不等式②,得1x ≥-,∴原不等式组的解集为13x -≤<.【点睛】本题考查了二元一次方程组、一元一次不等式和一元一次不等式组的解法,属于基本题型,熟练掌握解二元一次方程组和一元一次不等式的方法是关键.26.(1)这个相同的解为21x y =⎧⎨=⎩;(2)1 【分析】 (1)根据两个方程组有相同解可得方程组31x y x y +=⎧⎨-=⎩,解此方程组即可得出答案; (2)将(1)求解出的x 和y 的值代入其余两个式子,解出m 和n 的值,再代入m-n 中即可得出答案.【详解】解:(1)∵关于x,y 的二元一次方程组38x y mx ny +=⎧⎨+=⎩与14x y mx ny -=⎧⎨-=⎩有相同的解, ∴31x y x y +=⎧⎨-=⎩解得21x y =⎧⎨=⎩∴这个相同的解为21x y =⎧⎨=⎩(2)∵关于x,y 的二元一次方程组38x y mx ny +=⎧⎨+=⎩与14x y mx ny -=⎧⎨-=⎩相同的解为21x y =⎧⎨=⎩, ∴2824m n m n +=⎧⎨-=⎩解得32m n =⎧⎨=⎩∴m-n=3-2=1【点睛】本题考查的是二元一次方程组的同解问题:将两组方程组中只含有x 和y 的方程组合到一起,求解即可.27.【分析】根据题意得到三元一次方程组,解方程组,求出x y z ++,最后求平方根即可.【详解】0=,|1|z -=,=|1|0z -=,∴2113024010y x x y z -+-=⎧⎪-+=⎨⎪-=⎩,解得231x y z =⎧⎪=⎨⎪=⎩,则6x y z ++=,∴x y z ++平方根为.【点睛】本题考查相反数的意义,非负数的表达,解三元一次方程组,求平方根等知识,综合性较强,解题关键是根据题意列出三元一次方程组.28.(1)2P ;(2)2-;(3)3t >【分析】(1)将P 1(3,1)和P 2(-3,1)分别代入等式即可得出结果;(2)将点P (m ,n )代入等式即可得出m+n 的值;(3)根据“好点”的定义,将P 点代入即可得到关于m 和n 的等式,将两个等式结合即可得出结果.【详解】解:(1)对于1(3,1)P ,2321,7t t =⨯+=,2123,5t t =⨯+=-对于2(3,1)P -,2(3)21,7t t -=⨯+=,212(3),7t t =⨯-+=,所以2P 是“好点” (2)∵点(,)P m n 是好点,∴222,2m n t n m t =+=+, 222()m n n m -=-,∴2m n +=-(3)∵222,2m n t n m t =+=+,2222m n n t m t -=+--①,2222m n m t n t +=+++②,得()()2()0m n m n m n -++-=,即()(2)0m n m n -++=,由题知,,2m n m n ≠∴+=-,由②得2()22()2m n mn m n t +-=++,∴4242,4mn t mn t -=-+=-,∵m n ≠,∴2()0m n ->,∴2()40m n mn +->,∴44(4)0t -->,所以3t >,【点睛】本题主要考查的是新定义“好点”,正确的掌握整式的乘法解题的关键.29.(1)m =﹣3,n =﹣5;(2)x 3+5x 2+8x +4=(x +1)(x +2)2.【解析】【分析】(1)根据x 3﹣5x 2+x+10=(x ﹣2)(x 2+mx+n ),得出有关m ,n 的方程组求出即可; (2)由把x =﹣1代入x 3+5x 2+8x+4,得其值为0,则多项式可分解为(x+1)(x 2+ax+b )的形式,进而将多项式分解得出答案.【详解】(1)在等式x 3﹣5x 2+x+10=(x ﹣2)(x 2+mx+n ),中,分别令x =0,x =1,即可求出:m =﹣3,n =﹣5(2)把x =﹣1代入x 3+5x 2+8x+4,得其值为0,则多项式可分解为(x+1)(x 2+ax+b )的形式,用上述方法可求得:a =4,b =4,所以x3+5x2+8x+4=(x+1)(x2+4x+4),=(x+1)(x+2)2.【点睛】本题主要考查了因式分解的应用,根据已知获取正确的信息,是近几年中考中热点题型同学们应熟练掌握获取正确信息的方法.30.(1)证明过程见解析;(2)12N AEM NFD∠=∠-∠,理由见解析;(3)13∠N+∠PMH=180°.【分析】(1)根据同旁内角互补,两直线平行即可判定AB∥CD;(2)设∠N=2α,∠M=3α,∠AEM=x,∠NFD=y,过M作MP∥AB,过N作NQ∥AB 可得∠PMN=3α-x,∠QNM=2α-y,根据平行线性质得到3α-x=2α-y,化简即可得到1 2N AEM NFD ∠=∠-∠;(3)过点M作MI∥AB交PN于O,过点N作NQ∥CD交PN于R,根据平行线的性质可得∠BPM=∠PMI,由已知得到∠MON=∠MPN+∠PMI=3∠PMI及∠RFN=180°-∠NFH-∠HFD=180°-3∠HFD,根据对顶角相等得到∠PRF=∠FNP+∠RFN=∠FNP+180°-3∠RFM,化简得到∠FNP+2∠PMI-2∠RFM=180°-∠PMH,根据平行线的性质得到3∠PMI+∠FNP+∠FNH=180°及3∠RFM+∠FNH=180°,两个等式相减即可得到∠RFM-∠PMI=13∠FNP,将该等式代入∠FNP+2∠PMI-2∠RFM=180°-∠PMH,即得到1 3∠FNP=180°-∠PMH,即13∠N+∠PMH=180°.【详解】(1)证明:∵∠1=∠BEF,12180︒∠+∠=∴∠BEF+∠2=180°∴AB∥CD.(2)解:12N AEM NFD ∠=∠-∠设∠N=2α,∠M=3α,∠AEM=x,∠NFD=y 过M作MP∥AB,过N作NQ∥AB∵//AB CD,MP∥AB,NQ∥AB ∴MP∥NQ∥AB∥CD∴∠EMP=x,∠FNQ=y∴∠PMN=3α-x,∠QNM=2α-y ∴3α-x=2α-y即α=x-y∴12N AEM NFD ∠=∠-∠故答案为12N AEM NFD ∠=∠-∠(3)解:13∠N+∠PMH=180°过点M作MI∥AB交PN于O,过点N作NQ∥CD交PN于R.∵//AB CD,MI∥AB,NQ∥CD∴AB∥MI∥NQ∥CD∴∠BPM=∠PMI∵∠MPN=2∠MPB∴∠MPN=2∠PMI∴∠MON=∠MPN+∠PMI=3∠PMI∵∠NFH=2∠HFD∴∠RFN=180°-∠NFH-∠HFD=180°-3∠HFD∵∠RFN=∠HFD∴∠PRF=∠FNP+∠RFN=∠FNP+180°-3∠RFM∴∠MON+∠PRF+∠RFM=360°-∠OMF即3∠PMI+∠FNP+180°-3∠RFM+∠RFM=360°-∠OMF ∴∠FNP+2∠PMI-2∠RFM=180°-∠PMH∵3∠PMI+∠PNH=180°∴3∠PMI+∠FNP+∠FNH=180°∵3∠RFM+∠FNH=180°∴3∠PMI-3∠RFM+∠FNP=0°即∠RFM-∠PMI=13∠FNP∴∠FNP+2∠PMI-2∠RFM=∠FNP-2(∠RFM-∠PMI)=180°-∠PMH∠FNP-2×13∠FNP=180°-∠PMH13∠FNP=180°-∠PMH即13∠N+∠PMH=180°故答案为13∠N+∠PMH=180°【点睛】本题主要考查了平行线的判定与性质.解题的关键是正确作出辅助线,通过运用平行线性质得到角之间的关系.。
苏科初一数学下册第二学期期末测试题及答案(共五套) word版
苏科初一数学下册第二学期期末测试题及答案(共五套) word 版一、选择题1.若a =-0.32,b =-3-2,c =21()2--,d =01()3-,则它们的大小关系是( )A .a <b <c <dB .a <d <c <bC .b <a <d <cD .c <a <d <b2.下列分解因式正确的是( ) A .x 3﹣x=x (x 2﹣1)B .m 2+m ﹣6=(m+3)(m ﹣2)C .(a+4)(a ﹣4)=a 2﹣16D .x 2+y 2=(x+y )(x ﹣y )3.下列等式从左到右的变形,属于因式分解的是( ) A .8x 2 y 3=2x 2⋅4 y 3B .( x +1)( x ﹣1)=x 2﹣1C .3x ﹣3y ﹣1=3( x ﹣y )﹣1D .x 2﹣8x +16=( x ﹣4)24.下列计算正确的是( ) A .a 4÷a 3=a B .a 4+a 3=a 7C .(-a 3)2=-a 6D .a 4⋅a 3=a 125.下列计算错误的是( )A .2a 3•3a =6a 4B .(﹣2y 3)2=4y 6C .3a 2+a =3a 3D .a 5÷a 3=a 2(a≠0) 6.身高1.62米的小明乘升降电梯从1楼上升到3楼,则此时小明的身高为( ) A .1.62米B .2.62米C .3.62米D .4.62米 7.在餐馆里,王伯伯买了5个菜,3个馒头,老板少收2元,只收50元,李太太买了11个菜,5个馒头,老板以售价的九折优惠,只收90元,若菜每个x 元,馒头每个y 元,则下列能表示题目中的数量关系的二元一次方程组是( )A .53502115900.9x y x y +=+⎧⎨+=⨯⎩B .53502115900.9x y x y +=+⎧⎨+=÷⎩C .53502115900.9x y x y +=-⎧⎨+=⨯⎩D .53502115900.9x y x y +=+⎧⎨+=⨯⎩8.计算a 2•a 3,结果正确的是( ) A .a 5B .a 6C .a 8D .a 9 9.已知点M (2x ﹣3,3﹣x ),在第一、三象限的角平分线上,则M 点的坐标为( ) A .(﹣1,﹣1). B .(﹣1,1) C .(1,1) D .(1,﹣1) 10.若x 2+kx +16是完全平方式,则k 的值为( )A .4B .±4C .8D .±811.如图,在△ABC 中,CE ⊥AB 于 E ,DF ⊥AB 于 F ,AC ∥ED ,CE 是∠ACB 的平分线, 则图中与∠FDB 相等的角(不包含∠FDB )的个数为( )A .3B .4C .5D .612.如图,△ABC 中∠A=30°,E 是AC 边上的点,先将△ABE 沿着BE 翻折,翻折后△ABE 的AB 边交AC 于点D ,又将△BCD 沿着BD 翻折,C 点恰好落在BE 上,此时∠CDB=82°,则原三角形的∠B 的度数为( )A .75°B .72°C .78°D .82°二、填空题13.水由氢原子和氧原子组成,其中氢原子的直径约为0.000 000 000 1 m,这个数据用科学记数法表示为____.14.()a b -+(__________) =22a b -.15.如图,将一张长方形纸片沿EF 折叠后,点D 、C 分别落在点D '、C '的位置,ED '的延长线与BC 相交于点G ,若∠EFG =50°,则∠1=_______.16.如图,在△ABC 中,点D 为BC 边上一点,E 、F 分别为AD 、CE 的中点,且ABC S ∆=8cm 2,则BEF S ∆=____.17.计算24a a ⋅的结果等于__. 18.因式分解:=______.19.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中()1,0→()2,0→()2,1→()1,1→1,2→()2,2…根据这个规律,则第2020个点的坐标为_________.20.PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为________________.21.若(x 2+x-1)(px+2)的乘积中,不含x 2项,则p 的值是 ________.22.已知关于x ,y 的二元一次方程(32)(23)11100a x a y a +----=,无论a 取何值,方程都有一个固定的解,则这个固定解为_______.三、解答题23.如图,甲长方形的两边长分别为1m +,7m +;乙长方形的两边长分别为2m +,4m +.(其中..m 为正整数....)(1)图中的甲长方形的面积1S ,乙长方形的面积2S ,比较: 1S 2S (填“<”、“=”或“>”);(2)现有一正方形,其周长与图中的甲长方形周长相等,试探究:该正方形面积S 与图中的甲长方形面积1S 的差(即1S S -)是一个常数,求出这个常数;(3)在(1)的条件下,若某个图形的面积介于1S 、2S 之间(不包括1S 、2S )并且面积为整数,这样的整数值有且只有16个,求m 的值. 24.计算(1)(π-3.14)0-|-3|+(12)1--(-1)2012 (2) (-2a 2)3+(a 2)3-4a .a 5 (3)x (x+7)-(x-3)(x+2) (4)(a-2b-c )(a+2b-c )25.先化简,再求值:2(1)(3)(2)(2)x x x x x ---++-,其中x =﹣2.26.如图,有一块长为(3)a b +米,宽为(2)a b +米的长方形空地,计划修筑东西、南北走向的两条道路,其余进行绿化(阴影部分),已知道路宽为a 米,东西走向的道路与空地北边界相距1米,则绿化的面积是多少平方米?并求出当a =3,b =2时的绿化面积.27.如图,在方格纸内将水平向右平移4个单位得到△.(1)画出△; (2)画出边上的中线和高线;(利用网格点和直尺画图)(3)的面积为 .28.阅读材料:把形如2ax bx c ++的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即222)2(a ab b a b ±+=±.例如:2224213x x x x -+=-++2(1)3x =-+是224x x -+的一种形式的配方;所以,()213x -+,2(2)x -2x +,22213224x x ⎛⎫-+ ⎪⎝⎭是224x x -+的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项). 请根据阅读材料解决下列问题:(1)比照上面的例子,写出249x x -+三种不同形式的配方;(2)已知22610340x y x y +-++=,求32x y -的值;(3)已知2223240a b c ab b c ++---+=,求a b c ++的值.29.把几个图形拼成一个新的图形,再通过两种不同的方式计算同一个图形的面积,可以得到一个等式,也可以求出一些不规则图形的面积.例如,由图1,可得等式:(a+2b )(a+b )=a 2+3ab+2b 2.(1)由图2,可得等式 ;(2)利用(1)所得等式,解决问题:已知a+b+c =11,ab+bc+ac =38,求a 2+b 2+c 2的值. (3)如图3,将两个边长为a 、b 的正方形拼在一起,B ,C ,G 三点在同一直线上,连接BD 和BF ,若这两个正方形的边长a 、b 如图标注,且满足a+b =10,ab =20.请求出阴影部分的面积.(4)图4中给出了边长分别为a 、b 的小正方形纸片和两边长分别为a 、b 的长方形纸片,现有足量的这三种纸片.①请在下面的方框中用所给的纸片拼出一个面积为2a 2+5ab+2b 2的长方形,并仿照图1、图2画出拼法并标注a 、b ;②研究①拼图发现,可以分解因式2a 2+5ab+2b 2= .30.对于多项式x 3﹣5x 2+x +10,我们把x =2代入此多项式,发现x =2能使多项式x 3﹣5x 2+x +10的值为0,由此可以断定多项式x 3﹣5x 2+x +10中有因式(x ﹣2),(注:把x =a 代入多项式,能使多项式的值为0,则多项式一定含有因式(x ﹣a )),于是我们可以把多项式写成:x 3﹣5x 2+x +10=(x ﹣2)(x 2+mx +n ),分别求出m 、n 后再代入x 3﹣5x 2+x +10=(x ﹣2)(x 2+mx +n ),就可以把多项式x 3﹣5x 2+x +10因式分解.(1)求式子中m 、n 的值;(2)以上这种因式分解的方法叫“试根法”,用“试根法”分解多项式x 3+5x 2+8x +4.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】直接利用负整数指数幂的性质和零指数幂的性质分别化简比较即可求解. 【详解】∵2090.3.0a =-=-,2193b =--=-,2142c -⎛⎫=-= ⎪⎝⎭,0113d ⎛⎫-= ⎪⎝⎭=,∴它们的大小关系是:b <a <d <c 故选:C本题考查负整数指数幂的性质、零指数幂的性质及有理数大小比较,正确化简各数是解题的关键.2.B解析:B【解析】试题分析:因式分解是指将几个多项式的和的形式转化个几个多项式或多项式的积的形式.A、没有完全分解,还可以利用平方差公式进行;B、正确;C、不是因式分解;D、无法进行因式分解.考点:因式分解3.D解析:D【解析】【分析】把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解.【详解】①是单项式的变形,不是因式分解;②是多项式乘以多项式的形式,不是因式分解;③左侧是多项式加减,右侧也是多项式加减,不是因式分解;④符合因式分解的定义,结果是整式的积,因此D正确;故选D.【点睛】本题考查因式分解的定义.正确理解因式分解的结果是“整式的积”的形式,是解题的关键.4.A解析:A【分析】根据合并同类项法则;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘对各选项分析判断后利用排除法求解.【详解】A、a4÷a3=a,故本选项正确;B、a4和a3不能合并,故本选项错误;C、 (-a3)2=a6,故本选项错误;D、a4⋅a3=a7,故本选项错误.故选:A.【点睛】本题考查了合并同类项,同底数幂的乘法,幂的乘方的性质,同底数幂的除法,熟练掌握运算性质和法则是解题的关键.5.C【分析】A .根据同底数幂乘法运算法则进行计算,底数不变指数相加,系数相乘.即可对A 进行判断B .根据幂的乘方运算法则对B 进行判断C .根据同类项的性质,判断是否是同类项,如果不是,不能进行相加减,据此对C 进行判断D .根据同底数幂除法运算法则对D 进行判断 【详解】A .2a 3•3a =6a 4,故A 正确,不符合题意B .(﹣2y 3)2=4y 6,故B 正确,不符合题意C .3a 2+a ,不能合并同类项,无法计算,故C 错误,符合题意D .a 5÷a 3=a 2(a≠0),故D 正确,不符合题意 故选:C 【点睛】本题考查了同底数幂乘法和除法运算法则,底数不变指数相加减.幂的乘方运算法则,底数不变指数相乘.以及同类项合并的问题,如果不是同类项不能合并.6.A解析:A 【分析】根据平移的性质即可得到结论. 【详解】解:身高1.62米的小明乘升降电梯从1楼上升到3楼,则此时小明的身高为1.62米, 故选:A . 【点睛】本题考查了生活中的平移现象,熟练正确平移的性质是解题的关键.7.B解析:B 【解析】 【分析】设馒头每个x 元,包子每个y 元,分别利用买5个馒头,3个包子,老板少收2元,只要5元以及11个馒头,5个包子,老板以售价的九折优惠,只要9元,得出方程组. 【详解】设馒头每个x 元,包子每个y 元,根据题意可得:53502115900.9x y x y +=+⎧⎨+=÷⎩, 故选B . 【点睛】本题考查了由实际问题抽象出二元一次方程组,难度一般,关键是读懂题意设出未知数找出等量关系.8.A解析:A 【分析】此题目考查的知识点是同底数幂相乘.把握同底数幂相乘,底数不变,指数相加的规律就可以解答..【详解】同底数幂相乘,底数不变,指数相加.m n m n a a a +⋅=所以23235.a a a a +⋅== 故选A. 【点睛】此题重点考察学生对于同底数幂相乘的计算,熟悉计算法则是解本题的关键.9.C解析:C 【分析】直接利用角平分线上点的坐标特点得出2x ﹣3=3﹣x ,进而得出答案. 【详解】解:∵点M (2x ﹣3,3﹣x ),在第一、三象限的角平分线上, ∴2x ﹣3=3﹣x , 解得:x =2,故2x ﹣3=1,3﹣x =1, 则M 点的坐标为:(1,1). 故选:C . 【点睛】此题主要考查了点的坐标,正确掌握横纵坐标的关系是解题关键.10.D解析:D 【分析】利用完全平方公式的结构特征判断即可求出k 的值. 【详解】∵216x kx ++是完全平方式, ∴8k =±, 故选:D . 【点睛】本题考查完全平方式,熟悉完全平方式的结构特征并能灵活运用是解答的关键.11.B【解析】分析:推出DF∥CE,推出∠FDB=∠ECB,∠EDF=∠CED,根据DE∥AC推出∠ACE=∠DEC,根据角平分线得出∠ACE=∠ECB,即可推出答案.详解:∵CE⊥AB,DF⊥AB,∴DF∥CE,∴∠ECB=∠FDB,∵CE是∠ACB的平分线,∴∠ACE=∠ECB,∴∠ACE=∠FDB,∵AC∥DE,∴∠ACE=∠DEC=∠FDB,∵DF∥CE,∴∠DEC=∠EDF=∠FDB,即与∠FDB相等的角有∠ECB、∠ACE、∠CED、∠EDF,共4个,故选B.点睛:本题考查了平行线的性质:两直线平行,内错角相等、同位角相等,同旁内角互补;解决此类题型关键在于正确找出内错角、同位角、同旁内角.12.C解析:C【分析】在图①的△ABC中,根据三角形内角和定理,可求得∠B+∠C=150°;结合折叠的性质和图②③可知:∠B=3∠CBD,即可在△CBD中,得到另一个关于∠B、∠C度数的等量关系式,联立两式即可求得∠B的度数.【详解】在△ABC中,∠A=30°,则∠B+∠C=150°…①;根据折叠的性质知:∠B=3∠CBD,∠BCD=∠C;在△CBD中,则有:∠CBD+∠BCD=180°-82°,即:13∠B+∠C=98°…②;①-②,得:23∠B=52°,解得∠B=78°.故选:C.【点睛】此题主要考查的是图形的折叠变换及三角形内角和定理的应用,能够根据折叠的性质发现∠B和∠CBD的倍数关系是解答此题的关键.二、填空题13.1×10-10.【分析】根据科学记数法的定义进行求解即可. 【详解】根据题意得:0.0000000001m=1×10-10(m ). 故答案为:1×10-10. 【点睛】 本题考查科学解析:1×10-10. 【解析】 【分析】根据科学记数法的定义进行求解即可. 【详解】根据题意得:0.0000000001m=1×10-10(m ). 故答案为:1×10-10. 【点睛】本题考查科学记数法,其形式为:a ×10n (1≤a <10,n 为整数).14.【分析】根据平方差公式即可求出答案. 【详解】 解:, 故答案为:. 【点睛】本题考查了平方差公式,解题的关键是熟练运用平方差公式,本题属于基础题型. 解析:a b --【分析】根据平方差公式即可求出答案. 【详解】解:()2222()()a b a b a b a b -+--==---, 故答案为:a b --. 【点睛】本题考查了平方差公式,解题的关键是熟练运用平方差公式,本题属于基础题型.15.; 【解析】分析:先根据平行线的性质得∠DEF=∠EFG=50°,∠1=∠GED,再根据折叠的性质得∠DEF=∠GEF=50°,则∠GED=100°,即可得到结论.详解:∵DE∥GC,∴∠DEF解析:100 ;【解析】分析:先根据平行线的性质得∠DEF=∠EFG=50°,∠1=∠GED,再根据折叠的性质得∠DEF=∠GEF=50°,则∠GED=100°,即可得到结论.详解:∵DE∥GC,∴∠DEF=∠EFG=50°,∠1=∠GED.∵长方形纸片沿EF折叠后,点D、C 分别落在点D′、C′的位置,∴∠DEF=∠GEF=50°,即∠GED=100°,∴∠1=∠GED=100°.故答案为100.点睛:本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.也考查了折叠的性质.16.2【分析】根据点F是CE的中点,推出S△BEF=S△BEC,同理得S△EBC=S△ABC,由此可得出答案.【详解】∵点F是CE的中点,∴△BEF的底是EF,△BEC的底是EC,即EF=EC解析:2【分析】根据点F是CE的中点,推出S△BEF=12S△BEC,同理得S△EBC=12S△ABC,由此可得出答案.【详解】∵点F是CE的中点,∴△BEF的底是EF,△BEC的底是EC,即EF=12EC,高相等;∴S△BEF=12S△BEC,同理得S△EBC=12S△ABC,∴S△BEF=14S△ABC,且S△ABC=8,∴S△BEF=2,故答案为:2.【点睛】本题考查了三角形的性质,充分运用三角形的面积公式以及三角形的中线的性质是解本题17..【分析】直接利用同底数幂的乘法运算法则求出答案.【详解】原式.故答案为:.【点睛】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键. 解析:6a .【分析】直接利用同底数幂的乘法运算法则求出答案.【详解】原式246a a +==.故答案为:6a .【点睛】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.18.2(x+3)(x ﹣3).【解析】试题分析:先提公因式2后,再利用平方差公式分解即可,即2x2-18=2(x2-9)=2(x+3)(x-3).考点:因式分解.解析:2(x +3)(x ﹣3).【解析】试题分析:先提公因式2后,再利用平方差公式分解即可,即=2(x 2-9)=2(x+3)(x-3).考点:因式分解. 19.【分析】有图形可知,图中各点分别组成了正方形点阵,内个正方形点阵的整点数量依次为最右下角点横坐标的平方,且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x 轴,当正方形最右下角解析:()45,5有图形可知,图中各点分别组成了正方形点阵,内个正方形点阵的整点数量依次为最右下角点横坐标的平方,且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x轴,当正方形最右下角点的横坐标为偶数时,这个点可以看做按照运动方向离开x轴,按照此方法计算即可;【详解】有图形可知,图中各点分别组成了正方形点阵,内个正方形点阵的整点数量依次为最右下角点横坐标的平方,且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x轴,当正方形最右下角点的横坐标为偶数时,这个点可以看做按照运动方向离开x轴,∵245=2025,∴第2025个点在x轴上的坐标为()45,0,45,5.则第2020个点在()45,5.故答案为()【点睛】本题主要考查了规律题型点的坐标,准确判断是解题的关键.20.5×10-6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:5×10-6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0000025=2.5×10-6,故答案为2.5×10-6.【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.21.【分析】先按照多项式乘以多项式,再把同类项合并,利用不含项即这一项的系数为,即可得到答案.【详解】而上式不含项,,故答案为:【点睛】本题考查的是多项式的乘法运算,同时解析:2.-【分析】先按照多项式乘以多项式,再把同类项合并,利用不含2x 项即这一项的系数为0,即可得到答案.【详解】解:()()232212222x x px px x px x px +-+=+++--()()32222px p x p x =+++--而上式不含2x 项,20p ∴+=,2,p ∴=-故答案为: 2.-【点睛】本题考查的是多项式的乘法运算,同时考查多项式的概念中的项的次数,及不含某项的条件,掌握以上知识是解题的关键.22.【分析】根据题意先给a 取任意两个值,然后代入,得到关于x 、y 的二元一次方程组,解之得到x 、y 的值,再代入原方程验证即可.【详解】∵无论取何值,方程都有一个固定的解,∴a 值可任意取两个值,解析:41x y =⎧⎨=⎩【分析】根据题意先给a 取任意两个值,然后代入,得到关于x 、y 的二元一次方程组,解之得到x 、y 的值,再代入原方程验证即可.【详解】∵无论a 取何值,方程都有一个固定的解,∴a 值可任意取两个值,可取a=0,方程为23110x y +-=,取a=1,方程为5210x y +-=,联立两个方程解得4,1x y ==,将4,1x y ==代入(32)(23)11100a x a y a +----=,得(32)4(23)111101282311100a a a a a a +⨯--⨯--=+-+--=对任意a 值总成立,所以这个固定解是41x y =⎧⎨=⎩, 故答案为:41x y =⎧⎨=⎩. 【点睛】此题考查了解二元一次方程组,熟练掌握带有参数的方程的解法是解答的关键. 三、解答题23.(1)>;(2)9;(3)9.【分析】(1)根据矩形的面积公式计算即可;(2)根据矩形和正方形的周长和面积公式即可得到结论;(3)根据题意列出不等式,然后求解即可得到结论.【详解】解:(1)图①中长方形的面积21(7)(1)87S m m m m , 图②中长方形的面积22(4)(2)68S m m m m , 1221S S m ,m 为正整数,m 最小为1,2110m ,12S S ∴>;(2)依题意得,正方形的边长为:2(71)44m m m ; 则:221(4)(87)9S S m m m ,是一个定值;(3)由(1)得,1221S S m ,根据某个图形的面积介于1S 、2S 之间(不包括1S 、2S )并且面积为整数,这样的整数值有且只有16个,∴当162117m 时, ∴1792m , m 为正整数,9m ∴=.【点睛】本题考查了完全平方方公式的几何背景,多项式的乘法,整式的混合运算,一元一次不等式,熟记相关运算法则是解题的关键.24.(1)-1;(2)611a -;(3)86x +;(4)222a ac c -+ -24b【分析】(1)直接利用零指数幂,绝对值,负指数幂,乘方法则运算.(2)先利用幂的运算法则,再合并同类项.(3)利用整式的乘法法则进行运算.(4)利用平方差公式进行运算.【详解】解:(1)原式=1-3+2-1=-1(2)原式=68a - +6a -64a =611a -(3)原式=27x x + -()26x x -- =27x x +26x x -++ =86x +(4)原式=()2a c - -()22b =222a ac c -+ -24b【点睛】本题主要考查了数的计算,整式的加减与乘法,解题的关键要对零指数幂,绝对值,负指数幂以及幂的运算和整式的乘法法则熟悉.25.23x x +-;1-【分析】先通过整式的乘法及乘法公式对原式进行去括号,然后通过合并同类项进行计算即可化简原式,再将2x =-代入即可得解.【详解】解:原式222221343x x x x x x x =-+-++-=+-将2x =-代入,原式2(2)(2)34231=-+--=--=-.【点睛】本题主要考查了整式的混合运算,熟练掌握整式的乘法公式及合并同类项的运算方法是解决本题的关键.26.()2223a ab b ++平方米;40平方米. 【分析】(1)根据平移的原理,四块绿化面积可拼成一个长方形,其边长为原边长减去再减去道路宽为a 米,由此即可求绿化的面积的代数式;然后利用多项式乘多项式法则计算,去括号合并得到最简结果,将a 与b 的值代入计算即可求出值.【详解】解:根据题意得:22(3)(2)(2)()23a b a a b a a b a b a ab b +-+-=++=++(平方米).则绿化的面积是()2223a ab b ++平方米; 当3a =,2b =时,原式2223233240=⨯+⨯⨯+=(平方米).故当a =3,b =2时,绿化面积为40平方米.答:绿化的面积是()2223a ab b ++平方米;当a =3,b =2时,绿化面积为40平方米. 【点睛】此题考查整式的混合运算与代数式求值,掌握长方形的面积计算方法是解决问题的关键.27.(1)见解析; (2) 见解析;(3) 4.【解析】【分析】(1)根据图形平移的性质画出△A′B′C′即可;(2)先取AB 的中点D ,再连接CD 即可;过点C 作CD ⊥AB 交AB 的延长线于点E ,CE 即为所求;(3)利用割补法计算△ABC 的面积.【详解】(1)如图所示:(2)如图所示;(3)S △BCD =20-5-1-10=4.28.(1)2249(2)5x x x -+=-+;2249(3)10x x x x -+=+-;2249(3)2x x x x -+=-+;(2)19;(3)4【分析】(1)根据材料中的三种不同形式的配方,“余项“分别是常数项、一次项、二次项,可解答;(2)将x 2+y 2-6x+10y+34配方,根据平方的非负性可得x 和y 的值,可解答;(3)通过配方后,求得a ,b ,c 的值,再代入代数式求值.【详解】解:(1)249x x -+的三种配方分别为:2249(2)5x x x -+=-+;2249(3)10x x x x -+=+-;2249(3)2x x x x -+=-+(或2222549339x x x x ⎛⎫-+=-+ ⎪⎝⎭; (2)∵x 2+y 2-6x+10y+34=x 2-6x+9+y 2+10y+25=(x-3)2+(y+5)2=0,∴x-3=0,y+5=0,∴x=3,y=-5,∴3x-2y=3×3-2×(-5)=19(3)2223240a b c ab b c ++---+=()2222134421044a ab b b bc c -++-++-+= 22213(2)(1)024a b b c ⎛⎫-+-+-= ⎪⎝⎭ ∴102a b -=,3(2)04b -=,10c -= ∴1a =,2b =,1c =,则4a b c ++=【点睛】本题考查的是配方法的应用,首先利用完全平方公式使等式变为两个非负数和一个正数的和的形式,然后利用非负数的性质解决问题.29.(1)2222()222a b c a b c ab bc ac ++=+++++;(2)45;(3)20;(4)①见解析,②(2)(2)a b a b ++.【分析】(1)根据面积的不同求解方法,可得到不同的表示方法.一种可以是3个正方形的面积和6个矩形的面积;另一种是直接利用正方形的面积公式计算,由此即可得出答案; (2)利用(1)中的等式直接代入即可求得答案;(3)根据阴影部分的面积等于两个正方形的面积之和减去两个直角三角形的面积即可得; (4)①依照前面的拼图方法,画出图形即可;②参照题(1)的方法,根据面积的不同求解方法即可得出答案.【详解】(1)由题意得:2222()222a b c a b c ab bc ac ++=+++++ 故答案为:2222()222a b c a b c ab bc ac ++=+++++;(2)11,38a b c ab bc ac ++=++= ∴2222()(222)a b c a b c ab bc ac ++++=-++2)2(()a b c ab ac bc -+=+++211238=-⨯45=;(3)四边形ABCD 、四边形ECGF 为正方形,且边长分别为a 、b90A G ∴∠=∠=︒,AB AD BC a ===,FG CG b ==,BG BC CG a b =+=+ ∵10,20a b ab +==∴ABCD ECGF ABD BFG S S S S S =+--阴影221122AB CG AB AD FG BG =+-⋅-⋅2211()22a b a a b a b =+-⋅-⋅+ 22111222a b ab =+- 213()22a b ab =+- 213102022=⨯-⨯ 20=;(4)①根据题意,作出图形如下:②根据面积的不同求解方法得:22(2522)(2)a ab b a b a b ++=++故答案为:(2)(2)a b a b ++.【点睛】本题考查了因式分解的几何应用、完全平方公式的几何应用,掌握因式分解的相关知识是解题关键.30.(1)m =﹣3,n =﹣5;(2)x 3+5x 2+8x +4=(x +1)(x +2)2.【解析】【分析】(1)根据x 3﹣5x 2+x+10=(x ﹣2)(x 2+mx+n ),得出有关m ,n 的方程组求出即可; (2)由把x =﹣1代入x 3+5x 2+8x+4,得其值为0,则多项式可分解为(x+1)(x 2+ax+b )的形式,进而将多项式分解得出答案.【详解】(1)在等式x 3﹣5x 2+x+10=(x ﹣2)(x 2+mx+n ),中,分别令x =0,x =1,即可求出:m =﹣3,n =﹣5(2)把x =﹣1代入x 3+5x 2+8x+4,得其值为0,则多项式可分解为(x+1)(x 2+ax+b )的形式,用上述方法可求得:a =4,b =4,所以x 3+5x 2+8x+4=(x+1)(x 2+4x+4),=(x+1)(x+2)2.【点睛】本题主要考查了因式分解的应用,根据已知获取正确的信息,是近几年中考中热点题型同学们应熟练掌握获取正确信息的方法.。
苏科七年级下册第二学期数学期末试卷及答案全百度文库
苏科七年级下册第二学期数学期末试卷及答案全百度文库一、选择题1.下列运算中,正确的是( )A .(ab 2)2=a 2b 4B .a 2+a 2=2a 4C .a 2•a 3=a 6D .a 6÷a 3=a 22.已知一粒米的质量是0.00021kg ,这个数用科学记数法表示为 ( )A .4 2.110-⨯kgB .52.110-⨯kgC .42110-⨯kgD .62.110-⨯kg3.下列运算正确的是( )A .()3253a b a b =B .a 6÷a 2=a 3C .5y 3•3y 2=15y 5D .a +a 2=a 3 4.观察下列等式: 133=,239=,3327=,4381=,53243=,63729=,732187=,试利用上述规律判断算式234202033333+++++…结果的末位数字是( ) A .0B .1C .3D .7 5.下列计算正确的是( )A .a +a 2=2a 2B .a 5•a 2=a 10C .(﹣2a 4)4=16a 8D .(a ﹣1)2=a ﹣2 6.不等式3+2x>x+1的解集在数轴上表示正确的是( )A .B .C .D .7.已知关于x ,y 的方程x 2m﹣n ﹣2+4y m +n +1=6是二元一次方程,则m ,n 的值为( ) A .m =1,n =-1 B .m =-1,n =1 C .14m ,n 33==- D .14,33m n =-= 8.点M 位于平面直角坐标系第四象限,且到x 轴的距离是5,到y 轴的距离是2,则点M 的坐标是( )A .(2,﹣5)B .(﹣2,5)C .(5,﹣2)D .(﹣5,2)9.科学家发现2019﹣nCoV 冠状肺炎病毒颗粒的平均直径约为0.00000012m .数据0.00000012用科学记数法表示为( )A .1.2×107B .0.12×10﹣6C .1.2×10﹣7D .1.2×10﹣8 10.若x 2+kx +16是完全平方式,则k 的值为( )A .4B .±4C .8D .±8 11.足球比赛中,每场比赛都要分出胜负每队胜1场得3分,负一场扣1分,某队在8场比赛中得到12分,若设该队胜的场数为x 负的场数为y ,则可列方程组为( ) A .8312x y x y +=⎧⎨-=⎩ B .8312x y x y -=⎧⎨-=⎩ C .18312x y x y +=⎧⎨+=⎩ D .8312x y x y -=⎧⎨+=⎩ 12.如图,下列条件:13241804523623∠=∠∠+∠=∠=∠∠=∠∠=∠+∠①,②,③,④,⑤中能判断直线12l l 的有( )A .5个B .4个C .3个D .2个二、填空题13.一个五边形所有内角都相等,它的每一个内角等于_______.14.一个等腰三角形的两边长分别为4cm 和9cm ,则它的周长为__cm .15.已知22a b -=,则24a b ÷的值是____.16.如图,在△ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点,且△ABC 的面积等于4cm 2,则阴影部分图形面积等于_____cm 217.如图,在三角形纸片ABC 中剪去∠C 得到四边形ABDE ,且∠C =40°,则∠1+∠2的度数为_____.18.甲乙两队进行篮球对抗赛,比赛规则规定每队胜一场得3分,平一场得1分,负一场得0分,两队一共比赛了10场,甲队保持不败,得分不低于24分,甲队至少胜了___________场.19.已知(x ﹣4)(x +6)=x 2+mx ﹣24,则m 的值为_____.20.计算:22020×(12)2020=_____. 21.一艘船从A 港驶向B 港的航向是北偏东25°,则该船返回时的航向应该是_______.22.在平面直角坐标系中,将点()2,3P -先向上平移1个单位长度,再向左平移3个单位长度后,得到点P ',则点P '的坐标为_______.三、解答题23.解不等式-3+3+121-3-18-x x x x ⎧≥⎪⎨⎪<⎩()24.已知有理数,x y 满足:1x y -=,且221x y ,求22x xy y ++的值.25.如图,甲长方形的两边长分别为1m +,7m +;乙长方形的两边长分别为2m +,4m +.(其中..m 为正整数....)(1)图中的甲长方形的面积1S ,乙长方形的面积2S ,比较: 1S 2S (填“<”、“=”或“>”);(2)现有一正方形,其周长与图中的甲长方形周长相等,试探究:该正方形面积S 与图中的甲长方形面积1S 的差(即1S S -)是一个常数,求出这个常数;(3)在(1)的条件下,若某个图形的面积介于1S 、2S 之间(不包括1S 、2S )并且面积为整数,这样的整数值有且只有16个,求m 的值.26.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC 的三个顶点的位置如图所示.现将△ABC 平移,使点C 变换为点D ,点A 、B 的对应点分别是点E 、F . (1)在图中请画出△ABC 平移后得到的△EFD ;(2)在图中画出△ABC 的AB 边上的高CH ;(3)△ABC 的面积为_______.27.因式分解:(1)249x - (2) 22344ab a b b --28.计算:(1)2a (a ﹣2a 2);(2)a 7+a ﹣(a 2)3;(3)(3a +2b )(2b ﹣3a );(4)(m ﹣n )2﹣2m (m ﹣n ).29.因式分解:(1)12abc ﹣9a 2b ;(2)a 2﹣25;(3)x 3﹣2x 2y +xy 2;(4)m 2(x ﹣y )﹣(x ﹣y ).30.南通某校为了了解家长和学生参与南通安全教育平台“5.12防灾减灾”专题教育活动的情况,在本校学生中随机抽取部分学生做调查,把收集的数据分为以下4类情形: A .仅学生自己参与;B .家长和学生一起参与;C .仅家长参与;D .家长和学生都未参与请根据上图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了多少名学生?(2)补全条形统计图,并在扇形统计图中计算C 类所对应扇形的圆心角的度数; (3)根据抽样调查结果,估计该校3600名学生中“家长和学生都未参与”的人数.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】直接利用积的乘方运算法则以及合并同类项法则和同底数幂的乘除运算法则分别分析得出答案.【详解】解:A 、(ab 2)2=a 2b 4,故此选项正确;B 、a 2+a 2=2a 2,故此选项错误;C 、a 2•a 3=a 5,故此选项错误;D 、a 6÷a 3=a 3,故此选项错误;故选:A.【点睛】此题主要考查了积的乘方运算以及合并同类项和同底数幂的乘除运算,正确掌握运算法则是解题关键.2.A解析:A【分析】科学记数法的形式是:10n a ⨯ ,其中1a ≤<10,n 为整数.所以 2.1,a =,n 取决于原数小数点的移动位数与移动方向,n 是小数点的移动位数,往左移动,n 为正整数,往右移动,n 为负整数。
新苏科七年级下册第二学期数学期末考试卷及答案百度文库
新苏科七年级下册第二学期数学期末考试卷及答案百度文库一、选择题1.下列各式从左到右的变形中,是因式分解的是( )A .2(3)(3)9a a a +-=-B .2323(2)a a a a a --=--C .245(4)5a a a a --=--D .22()()a b a b a b -=+- 2.下列运算正确的是( )A .236a a a ⋅=B .222()ab a b =C .()325a a =D .623a a a ÷=3.下列等式由左边到右边的变形中,属于因式分解的是( )A .(a ﹣2)(a+2)=a 2﹣4B .8x 2y =8×x 2yC .m 2﹣1+n 2=(m+1)(m ﹣1)+n 2D .x 2+2x ﹣3=(x ﹣1)(x+3)4.下列分解因式正确的是( )A .x 3﹣x=x (x 2﹣1)B .m 2+m ﹣6=(m+3)(m ﹣2)C .(a+4)(a ﹣4)=a 2﹣16D .x 2+y 2=(x+y )(x ﹣y )5.下列计算中正确的是( )A .2352a a a +=B .235a a a +=C .235a a a =D .236a a a =6.不等式3x+2≥5的解集是( )A .x≥1B .x≥73C .x≤1D .x≤﹣1 7.已知()22316x m x --+是一个完全平方式,则m 的值可能是( )A .7-B .1C .7-或1D .7或1-8.不等式3+2x>x+1的解集在数轴上表示正确的是( )A .B .C .D .9.已知关于x ,y 的方程x 2m ﹣n ﹣2+4y m +n +1=6是二元一次方程,则m ,n 的值为( ) A .m =1,n =-1 B .m =-1,n =1 C .14m ,n 33==- D .14,33m n =-=10.下列运算正确的是( )A .a 2·a 3=a 6B .a 5+a 3=a 8C .(a 3)2=a 5D .a 5÷a 5=1 11.下列说法中,正确的个数有( )①同位角相等②三角形的高在三角形内部③一个多边形的边数每增加一条,这个多边形的内角和就增加180°,④两个角的两边分别平行,则这两个角相等A .1个B .2个C .3 个D .4个12.一天李师傅骑车上班途中因车发生故障,修车耽误了一段时间后继续骑行,按时赶到了单位,下图描述了他上班途中的情景,下列四种说法:李师傅上班处距他家2000米;李师傅路上耗时20分钟;修车后李师傅的速度是修车前的4倍;李师傅修车用了5分钟,其中错误的是( )A .0个B .1个C .2个D .3个二、填空题13.若x +3y -4=0,则2x •8y =_________.14.已知22a b -=,则24a b ÷的值是____.15.若多项式x 2-kx +25是一个完全平方式,则k 的值是______.16.已知某新型感冒病毒的直径约为0.000000823米,将0.000000823用科学记数法表示为___________17.计算24a a ⋅的结果等于__.18.小明在拼图时,发现8个样大小的长方形,恰好可以拼成一个大的长方形如图(1);小红看见了,说:“我也来试试.”结果小红七拼八凑,拼成了如图(2)那样的正方形,中间还留下了一个洞,恰好是边长为5mm 的小正方形,则每个小长方形的面积为__________2mm .19.阅读材料:①1的任何次幂都等于1;②﹣1的奇数次幂都等于﹣1;③﹣1的偶数次幂都等于1;④任何不等于零的数的零次幂都等于1,试根据以上材料探索使等式(2x+3)x+2016=1成立的x 的值为_____.20.三角形两边长分别是3、5,第三边长为偶数,则第三边长为_______21.有两个正方形,A B ,现将B 放在A 的内部得图甲,将,A B 并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形,A B 的边长之和为________.22.如图,已知AE 是△ABC 的边BC 上的中线,若AB=8cm,△ACE 的周长比△AEB 的周长多2cm,则AC=_____.23.已知a+b=5,ab=3,求:(1)a 2b+ab 2; (2)a 2+b 2.24.若2a x =,5b x =,那么2a b x +的值是_______ ;三、解答题25.解下列方程组或不等式组(1)24231x y x y +=⎧⎨-=⎩ (2)()211113x x x x ⎧--≤⎪⎨+>-⎪⎩26.已知a +b =5,ab =-2.求下列代数式的值:(1)22a b +;(2)22232a ab b -+.27.计算:(1)2201(2)3()3----÷- (2)22(21)(21)x x -+ 28.已知关于x 、y 的二元一次方程组21322x y x y k +=⎧⎪⎨-=-⎪⎩(k 为常数). (1)求这个二元一次方程组的解(用含k 的代数式表示);(2)若()2421y x +=,求k 的值; (3)若14k ≤,设364m x y =+,且m 为正整数,求m 的值. 29.如图,在网格中,每个小正方形的边长均为1个单位长度,我们将小正方形的顶点叫做格点,三角形ABC 的三个顶点均在格点上.(1)将三角形ABC 先向右平移6个单位长度,再向上平移3个单位长度,得到三角形A 1B 1C 1,画出平移后的三角形A 1B 1C 1;(2)建立适当的平面直角坐标系,使得点A 的坐标为(-4,3),并直接写出点A 1的坐标; (3)求三角形ABC 的面积.30.已知m 2,3na a ==,求①m n a +的值; ②3m-2n a 的值31.将下列各式因式分解(1)xy 2-4xy(2)x 4-8x 2y 2+16y 432.如图,点D 、E 、F 分别是△ABC 三边上的点,DF ∥AC ,∠BFD=∠CED ,请写出∠B 与∠CDE 之间的数量关系,并说明理由.33.解方程组:(1)2531y x x y =-⎧⎨+=-⎩; (2)3000.050.530.25300x y x y +=⎧⎨+=⨯⎩. 34.(1)填一填21-20=2( )22-21=2( )23-22=2( )⋯(2)探索(1)中式子的规律,试写出第n 个等式,并说明第n 个等式成立; (3)计算20+21+22+⋯+22019.35.若规定acbd=a﹣b+c﹣3d,计算:223223xy xx---2574xy xxy-+-+的值,其中x=2,y=﹣1.36.如图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.将△ABC向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A′B′C′;(2)再在图中画出△ABC的高CD;(3)在图中能使S△PBC=S△ABC的格点P的个数有个(点P异于A)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据因式分解的定义,需要将式子变形为几个整式相乘的形式,据此可判断.【详解】A、C不是几个式子相乘的形式,错误;B中,32aa--不是整式,错误;D是正确的故选:D.【点睛】本题考查因式分解的定义,注意一定要化成多个整式相乘的形式才叫因式分解.2.B解析:B【解析】A.235a a a⋅=,故本选项错误;B. ()222ab a b =,故本选项正确;C. ()326a a =,故本选项错误;D. 624a a a ÷=,故本选项错误。
最新苏科初一下册第二学期数学期末考试试卷及答案百度文库
最新苏科初一下册第二学期数学期末考试试卷及答案百度文库一、选择题1.下列分解因式正确的是( )A .x 3﹣x=x (x 2﹣1)B .m 2+m ﹣6=(m+3)(m ﹣2)C .(a+4)(a ﹣4)=a 2﹣16D .x 2+y 2=(x+y )(x ﹣y )2.将一张长方形纸片按如图所示折叠后,再展开.如果∠1=56°,那么∠2等于( )A .56°B .62°C .66°D .68° 3.下列运算结果正确的是( ) A .32a a a ÷= B .()225a a = C .236a a a =D .()3326a a = 4.把多项式x 2+ax+b 分解因式,得(x+1)(x-3),则a 、b 的值分别是( )A .a=2,b=3B .a=-2,b=-3C .a=-2,b=3D .a=2,b=-3 5.a 5可以等于( )A .(﹣a )2•(﹣a )3B .(﹣a )•(﹣a )4C .(﹣a 2)•a 3D .(﹣a 3)•(﹣a 2) 6.要使(4x ﹣a )(x+1)的积中不含有x 的一次项,则a 等于( )A .﹣4B .2C .3D .4 7.下列等式从左到右的变形属于因式分解的是( )A .a 2﹣2a+1=(a ﹣1)2B .a (a+1)(a ﹣1)=a 3﹣aC .6x 2y 3=2x 2•3y 3D .211()x x x x+=+ 8.等腰三角形的两边长分别为3和6,那么该三角形的周长为( )A .12B .15C .10D .12或159.如图所示的四个图形中,∠1和∠2是同位角...的是( )A .②③B .①②③C .①②④D .①④ 10.下列给出的线段长度不能与4cm ,3cm 能构成三角形的是( )A .4cmB .3cmC .2cmD .1cm11.已知x a y b =⎧⎨=⎩是方程组24213x y x y -=⎧⎨+=⎩的解,则32a b -的算术平方根为( ) A .4± B .4 C .2 D .2±12.关于x 的不等式组0233(2)x m x x ->⎧⎨-≥-⎩恰有三个整数解,那么m 的取值范围为( ) A .10m -<≤ B .10m -≤<C .01m ≤<D .01m <≤ 二、填空题13.如图,图(1)的正方形的周长与图(2)的长方形的周长相等,且长方形的长比宽多acm ,则正方形的面积与长方形的面积的差为_____(用含有字母a 的代数式表示).14.如果42x -与231x mx ++的乘积中不含x 2项,则m=______________.15.a m =2,b m =3,则(ab )m =______.16.已知23x y +=,用含x 的代数式表示y =________.17.在第八章“幂的运算”中,我们学习了①同底数幂的乘法:a m ⋅a n =a m +n ;②积的乘方:(ab )n =a n b n ;③幂的乘方:(a m )n =a mn ;④同底数幂的除法:a m ÷a n =a m -n 等运算法则,请问算式()()3333232369111228x y x y x y ⎛⎫⎛⎫-=-⋅⋅=- ⎪ ⎪⎝⎭⎝⎭中用到以上哪些运算法则_________(填序号).18.如图,1∠、2∠、3∠、4∠是五边形ABCDE 的4个外角,若120A ∠=︒,则1234∠+∠+∠+∠=_______°.19.关于,x y 的方程组3x y m x my n -=⎧⎨-=⎩的解是11x y =⎧⎨=⎩,则n 的值是______. 20.如图,将长方形纸片ABCD 沿着EF ,折叠后,点D ,C 分别落在点D ,C '的位置,ED '的延长线交BC 于点G .若∠1=64°,则∠2等于_____度.21.已知:如图,△ABC 的周长为21cm ,AB =6cm ,BC 边上中线AD =5cm ,△ACD 周长为16cm ,则AC 的长为__________cm .22.计算:2020(0.25)-×20194=_________.三、解答题23.计算:(1)101223; (2)3258232a a a a a ; (3)223113x x x x x x .24.解不等式-3+3+121-3-18-x x x x ⎧≥⎪⎨⎪<⎩()25.计算:(1)2201(2)3()3----÷- (2)22(21)(21)x x -+ 26.从边长为a 的正方形中剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是 .(请选择正确的选项)A .a 2﹣b 2=(a +b )(a ﹣b )B .a 2﹣2ab +b 2=(a ﹣b )2C .a 2+ab =a (a +b )(2)若x 2﹣y 2=16,x +y =8,求x ﹣y 的值;(3)计算:(1﹣212)(1﹣213)(1﹣214)…(1﹣212019)(1﹣212020). 27.解下列方程组 (1)29321x y x y +=⎧⎨-=-⎩. (2)34332(1)11x y x y ⎧+=⎪⎨⎪--=⎩.28.四边形ABCD 中,∠A=140°,∠D=80°.(1)如图①,若∠B=∠C ,试求出∠C 的度数;(2)如图②,若∠ABC 的角平分线交DC 于点E ,且BE ∥AD ,试求出∠C 的度数;(3)如图③,若∠ABC 和∠BCD 的角平分线交于点E ,试求出∠BEC 的度数.29.(1)填一填21-20=2( )22-21=2( )23-22=2( )⋯(2)探索(1)中式子的规律,试写出第n 个等式,并说明第n 个等式成立; (3)计算20+21+22+⋯+22019.30.如图,已知点E 、F 在直线AB 上,点G 在线段CD 上,ED 与FG 交于点H ,∠C =∠EFG ,∠CED =∠GHD .(1)求证:CE ∥GF ;(2)试判断∠AED 与∠D 之间的数量关系,并说明理由;(3)若∠EHF =80°,∠D =30°,求∠AEM 的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】试题分析:因式分解是指将几个多项式的和的形式转化个几个多项式或多项式的积的形式.A 、没有完全分解,还可以利用平方差公式进行;B 、正确;C 、不是因式分解;D 、无法进行因式分解.考点:因式分解2.D解析:D【解析】【分析】两直线平行,同旁内角互补;另外折叠前后两个角相等.根据这两条性质即可解答.【详解】根据题意知:折叠所重合的两个角相等.再根据两条直线平行,同旁内角互补,得: 2∠1+∠2=180°,解得:∠2=180°﹣2∠1=68°.故选D .【点睛】注意此类折叠题,所重合的两个角相等,再根据平行线的性质得到∠1和∠2的关系,即可求解.3.A解析:A【分析】根据同底数幂的除法、同底数幂的乘法,以及幂的乘方与积的乘方的运算方法,逐项判定即可.【详解】解:32a a a ÷=,A 正确,()224a a =,B 错误, 235a a a =,C 错误,()3328a a =,D 错误,故选:A .【点睛】此题主要考查了同底数幂的除法,同底数幂的乘法,以及幂的乘方与积的乘方的运算方法,熟练掌握运算方法是解题的关键.4.B【解析】分析:根据整式的乘法,先还原多项式,然后对应求出a、b即可.详解:(x+1)(x-3)=x2-3x+x-3=x2-2x-3所以a=2,b=-3,故选B.点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键.5.D解析:D【分析】根据同底数幂的乘法底数不变指数相加,可得答案.【详解】A、(﹣a)2(﹣a)3=(﹣a)5,故A错误;B、(﹣a)(﹣a)4=(﹣a)5,故B错误;C、(﹣a2)a3=﹣a5,故C错误;D、(﹣a3)(﹣a2)=a5,故D正确;故选:D.【点睛】本题考查了同底数幂的乘法,利用了同底数幂的乘法法则.6.D解析:D【分析】先运用多项式的乘法法则计算,再合并同类项,因积中不含x的一次项,所以让一次项的系数等于0,得a的等式,再求解.【详解】解:(4x-a)(x+1),=4x2+4x-ax-a,=4x2+(4-a)x-a,∵积中不含x的一次项,∴4-a=0,解得a=4.故选D.【点睛】本题考查了多项式乘多项式法则,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.7.A【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A、是因式分解,故A正确;B、是整式的乘法运算,故B错误;C、是单项式的变形,故C错误;D、没把一个多项式转化成几个整式积的形式,故D错误;故选:A.【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.8.B解析:B【分析】求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为3和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】由题意,分以下两种情况:(1)当等腰三角形的腰为3时,三边为3,3,6+=,不满足三角形的三边关系定理此时336(2)当等腰三角形的腰为6时,三边为3,6,6+>,满足三角形的三边关系定理此时366++=则其周长为36615综上,该三角形的周长为15故选:B.【点睛】本题考查了等腰三角形的定义、三角形的三边关系定理,依据题意,正确分两种情况讨论是解题关键.9.C解析:C【分析】根据同位角的定义逐一判断即得答案.【详解】解:图①中的∠1与∠2是同位角,图②中的∠1与∠2是同位角,图③中的∠1与∠2不是同位角,图④中的∠1与∠2是同位角,所以在如图所示的四个图形中,图①②④中的∠1和∠2是同位角....故选:C.【点睛】本题考查了同位角的定义,属于基础概念题型,熟知概念是关键.10.D解析:D【分析】根据三角形的三边关系:任意两边之和大于第三边,两边之差小于第三边,即可得答案.【详解】解:设第三边为xcm ,根据三角形的三边关系:4343x -<<+,解得:17x <<.故选项ABC 能构成三角形,D 选项1cm 不能构成三角形,故选:D .【点睛】本题主要考查了三角形的三边关系定理:任意两边之和大于第三边,两边之差小于第三边.11.B解析:B【分析】把方程组24213x y x y -=⎧⎨+=⎩的解求解出来即可得到a 、b 的值,再计算32a b -的算术平方根即可得到答案;【详解】解:24213x y x y -=⎧⎨+=⎩①② 把①式×5得:248x y -= ③,用②式-③式得:55y = ,解得:y=1,把1y = 代入①式得到:24x -= ,即:6x = ,又x a y b=⎧⎨=⎩是方程组24213x y x y -=⎧⎨+=⎩的解, 所以61a b =⎧⎨=⎩, 故3216a b -=,所以32a b -的算术平方根=16的算术平方根,4== ,故答案为:4;【点睛】本题主要考查了二元一次方程组的求解以及算术平方根的定义,掌握用消元法求解二元一次方程组的解是解题的关键;12.C解析:C【分析】首先解不等式组求得不等式组的解集,然后根据不等式组有三个整数解,即可确定整数解,然后得到关于m 的不等式,求得m 的范围.【详解】解:0233(2)x m x x ->⎧⎨-≥-⎩①② 解不等式①,得x>m.解不等式②,得x ≤3.∴不等式组得解集为m<x ≤3.∵不等式组有三个整数解,∴01m ≤<.故选C.【点睛】本题考查了不等式组的整数解,解不等式组应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.二、填空题13.【分析】设长方形的宽为xcm ,根据“图(1)的正方形的周长与图(2)的长方形的周长相等”求得正方形的边长,最后由长方形与正方形的面积公式计算正方形的面积与长方形的面积的差.【详解】解:设长方 解析:24a 【分析】设长方形的宽为xcm ,根据“图(1)的正方形的周长与图(2)的长方形的周长相等”求得正方形的边长,最后由长方形与正方形的面积公式计算正方形的面积与长方形的面积的差.【详解】解:设长方形的宽为xcm ,则长方形的长为(x +a )cm ,∵图(1)的正方形的周长与图(2)的长方形的周长相等,∴正方形的边长为:2()242x a x x a +++=,∴正方形的面积与长方形的面积的差为:22()2x a x x a +⎛⎫-+ ⎪⎝⎭ 222444x ax a x ax ++=-- =24a . 故答案为:24a . 【点睛】本题主要考查了列代数式,整式的混合运算,关键是读懂题意,正确列出代数式.14.【分析】先根据多项式的乘法法则展开,再根据题意,二次项的系数等于0列式求解即可.【详解】解:(4x-2)(3x2+mx+1)=12x3+(4m-6)x2+(4-2m )x-2,∵不含x2项, 解析:32【分析】先根据多项式的乘法法则展开,再根据题意,二次项的系数等于0列式求解即可.【详解】解:(4x-2)(3x 2+mx+1)=12x 3+(4m-6)x 2+(4-2m )x-2,∵不含x 2项,∴4m-6=0,解得m=32. 故答案为32. 【点睛】此题考查多项式与多项式的乘法,运算法则需要熟练掌握,不含某一项就让这一项的系数等于0是解题的关键.15.6【分析】根据积的乘方运算法则,底数的积的乘方等于乘方的积,即可转化计算.【详解】解:因为am=2,bm=3,所以(ab )m=am•bm=2×3=6,故答案为:6.【点睛】此题考查积解析:6【分析】根据积的乘方运算法则,底数的积的乘方等于乘方的积,即可转化计算.【详解】解:因为a m =2,b m =3,所以(ab )m =a m •b m =2×3=6,故答案为:6.【点睛】此题考查积的乘方,关键是根据积的乘方运算法则将未知转化为已知.16.y=3-2x【解析】移项得:y=3-2x.故答案是:y=3-2x .解析:y=3-2x【解析】23x y +=移项得:y=3-2x.故答案是:y=3-2x .17.②③【分析】在的运算过程中,第一步用到了积的乘方,第二步用到了幂的乘方,据此判断即可.【详解】在的运算过程中,运用了上述幂的运算中的②③.故答案为:②③.【点睛】此题主要考查了幂的乘方解析:②③【分析】 在()()3333232369111228x y x y x y ⎛⎫⎛⎫-=-⋅⋅=- ⎪ ⎪⎝⎭⎝⎭的运算过程中,第一步用到了积的乘方,第二步用到了幂的乘方,据此判断即可.【详解】 在()()3333232369111228x y x y x y ⎛⎫⎛⎫-=-⋅⋅=- ⎪ ⎪⎝⎭⎝⎭的运算过程中,运用了上述幂的运算中的②③.故答案为:②③.【点睛】此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m )n =a mn (m ,n 是正整数);②(ab )n =a n b n (n 是正整数).18.【详解】解:由题意得,∠A 的外角=180°-∠A=60°,又∵多边形的外角和为360°,∴∠1+∠2+∠3+∠4=360°-∠A 的外角=300°.故答案为:300.【点睛】本题考查多边解析:300【详解】解:由题意得,∠A 的外角=180°-∠A=60°,又∵多边形的外角和为360°,∴∠1+∠2+∠3+∠4=360°-∠A 的外角=300°.故答案为:300.【点睛】本题考查多边形外角性质,补角定义.19.【分析】将,代入方程组,首先求得,进而可以求得.【详解】解:将代入方程组得: ,解得: ,故的值为-1.【点睛】本题考查二元一次方程组,难度不大,理解二元一次方程组的解的含义是顺利解解析:1-【分析】将x ,y 代入方程组,首先求得m ,进而可以求得n .【详解】解:将11xy=⎧⎨=⎩代入方程组得:31=1mm n-⎧⎨-=⎩,解得:21mn=⎧⎨=-⎩,故n的值为-1.【点睛】本题考查二元一次方程组,难度不大,理解二元一次方程组的解的含义是顺利解题的关键.20.128【分析】由ADBC,∠1=64°,根据两直线平行,内错角相等,可求得∠DEF的度数,然后由折叠的性质,可得∠FEG的度数,进而再利用两直线平行内错角相等得到∠2的度数.【详解】解:∵A解析:128【分析】由AD//BC,∠1=64°,根据两直线平行,内错角相等,可求得∠DEF的度数,然后由折叠的性质,可得∠FEG的度数,进而再利用两直线平行内错角相等得到∠2的度数.【详解】解:∵AD//BC,∠1=64°,∴∠DEF=∠1=64°,由折叠的性质可得∠FEG=∠DEF=64°,∴∠2=∠1+∠EFG=64°+64°=128°.故答案为:128.【点睛】本题主要考察两直线平行的性质、折叠的性质以及矩形的性质,重点在于利用已知条件找到角度之间的关系.21.7【解析】先根据△ABD周长为15cm,AB=6cm,AD=5cm,由周长的定义可求BC的长,再根据中线的定义可求BC的长,由△ABC的周长为21cm,即可求出AC长.解:∵AB=6cm,AD解析:7【解析】先根据△ABD周长为15cm,AB=6cm,AD=5cm,由周长的定义可求BC的长,再根据中线的定义可求BC的长,由△ABC的周长为21cm,即可求出AC长.解:∵AB=6cm,AD=5cm ,△ABD 周长为15cm ,∴BD=15-6-5=4cm ,∵AD 是BC 边上的中线,∴BC=8cm,∵△ABC 的周长为21cm ,∴AC=21-6-8=7cm .故AC 长为7cm .“点睛”此题考查了三角形的周长和中线,本题的关键是由周长和中线的定义得到BC 的长,题目难度中等.22.【分析】先将写成的形式,再利用积的乘方逆运算将指数相同的因数相乘即可得到答案.【详解】×,,,=,故答案为:.【点睛】此题考查高次幂的乘法运算,同底数幂相乘的逆运算,积的乘方的逆 解析:14【分析】先将2020(0.25)-写成201911()44⨯的形式,再利用积的乘方逆运算将指数相同的因数相乘即可得到答案.【详解】 2020(0.25)-×20194,2019201911()444=⨯⨯, 201911(4)44=⨯⨯, =14, 故答案为:14. 【点睛】此题考查高次幂的乘法运算,同底数幂相乘的逆运算,积的乘方的逆运算,正确掌握公式是解此题的关键.三、解答题23.(1)2-;(2)624a ;(3)252x x . 【分析】(1)原式利用零指数幂、负整数指数幂法则,以及绝对值的代数意义计算即可求出值; (2)原式利用幂的乘方与积的乘方运算法则,单项式除单项式法则,合并同类项计算即可求出值;(3)原式利用单项式乘以多项式,以及多项式乘以多项式法则计算,去括号合并即可得到结果;【详解】(1)101223 2132=-;(2)3258232a a a a a 66624a a a 624a ;(3)223113x x x x x x 323233332x x x x x x323233332x x x x x x 252x x .【点睛】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键. 24.﹣2<x≤1.【详解】试题分析:根据不等式的解法,分别解两个不等式,然后取其公共部分即可.试题解析:331(1)213(1)8(2)x x x x -⎧++⎪⎨⎪--<-⎩, ∵解不等式①得:x≤1,解不等式②得:x >﹣2,∴不等式组的解集为﹣2<x≤1. 点睛:此题主要考查了不等式组的解法,解题关键是利用一元一次不等式的解法,分别解不等式,然后根据不等式组的解集确定法:“都大取大,都小取小,大小小大取中间,大大小小无解了”,确定其解集即可.25.(1)374-.(2)16x 4−8x 2+1. 【分析】(1)原式利用负整数指数幂,零指数幂、平方的计算法则得到1914--÷,再计算即可得到结果; (2)原式逆用积的乘方运算法则变形,再利用平方差公式及完全平方公式化简即可得到结果.【详解】(1)2201(2)3()3----÷-= 1914--÷=374-. (2)原式=[(2x−1)(2x +1)]2=(4x 2−1)2=16x 4−8x 2+1.【点睛】本题考查零指数幂、负整数指数幂 、平方差公式及完全平方公式,熟练掌握运算法则是解本题的关键.26.(1)A ;(2)2;(3)20214040 【分析】(1)由题意直接根据拼接前后的面积相等进行分析计算即可得出答案;(2)根据题意可知x 2﹣y 2=16,即(x +y )(x ﹣y )=16,又x +y =8,可求出x ﹣y 的值;(3)根据题意利用平方差公式将算式转化为分数的乘积的形式,根据数据规律得出答案.【详解】解:(1)图1的剩余面积为a 2﹣b 2,图2拼接得到的图形面积为(a +b )(a ﹣b ) 因此有,a 2﹣b 2=(a +b )(a ﹣b ),故答案为:A.(2)∵x 2﹣y 2=(x +y )(x ﹣y )=16,又∵x +y =8,∴x ﹣y =16÷8=2;(3)(1﹣212)(1﹣213)(1﹣214)…(1﹣212019)(1﹣212020) =(1﹣12)(1+12)(1﹣13)(1+13)(1﹣14)(1+14)……(1﹣12019)(1+12019)(1﹣12020)(1+12020) =12×32×23×43×34×54×……×20182019×20202019×20192020×20212020 =12×20212020 =20214040. 【点睛】本题考查平方差公式的几何意义及应用,掌握公式的结构特征是正确应用的前提,利用公式进行适当的变形是解题的关键.27.(1)272x y =⎧⎪⎨=⎪⎩;(2)692x y =⎧⎪⎨=⎪⎩【分析】(1)根据加减消元法,即可求解;(2)先去分母,去括号,移项,合并同类项,再通过加减消元法,即可求解.【详解】(1)29321x y x y +=⎧⎨-=-⎩①②, +①②得:48x =.解得:2x =,把2x =代入①得:229y +=,解得:72y =, ∴方程组的解为272x y =⎧⎪⎨=⎪⎩; (2)原方程可化为3436329x y x y +=⎧⎨-=⎩①②, ①-②得:627y =,解得:92y =, 把92y =代入②得:399x -=,解得:6x =, ∴方程组的解为692x y =⎧⎪⎨=⎪⎩. 【点睛】本题主要考查解二元一次方程组,掌握加减消元法,是解题的关键.28.(1)70°;(2)60°;(3)110°【分析】(1)根据四边形的内角和是360°,结合已知条件就可求解;(2)根据平行线的性质得到∠ABE 的度数,再根据角平分线的定义得到∠ABC 的度数,进一步根据四边形的内角和定理进行求解;(3)根据四边形的内角和定理以及角平分线的概念求得∠EBC+∠ECB 的度数,再进一步求得∠BEC 的度数.【详解】(1)在四边形ABCD 中,∵∠A+∠B+∠C+∠D=360°, 又∠A=140°,∠D=80°,∠B=∠C,∴140°+∠C+∠C+80°=360°,即∠C=70°.(2)∵BE ∥AD ,∠A=140°,∠D=80°,∴∠BEC=∠D ,∠A+∠ABE=180°.∴∠BEC=80°,∠ABE=40°.∵BE 是∠ABC 的平分线,∴∠EBC=∠ABE=40°.∴∠C=180°-∠EBC-∠BEC=180°-40°-80°=60°.(3)在四边形ABCD 中, 有∠A+∠ABC+∠BCD+∠D=360°, ∠A=140°,∠D=80°,所以∠ABC+∠BCD=140°,从而有12∠ABC+12∠BCD=70°. 因为∠ABC 和∠BCD 的角平分线交于点E,所以有∠EBC=12∠ABC,∠ECB=12∠BCD. 故∠C=180°-(∠EBC +∠ECB)=180°-(12∠ABC+12∠BCD)=180°-70°=110°. 29.(1)0,1,2(2)11222n n n ---=(3)22020-1【分析】(1)根据乘方的运算法则计算即可;(2)根据式子规律可得11222n n n ---=,然后利用提公因式法12n -可以证明这个等式成立;(3)设题中的表达式为a ,再根据同底数幂的乘法得出2a 的表达式相减即可.【详解】(1)10022212-=-=,21122422-=-=,32222842-=-=,故答案为:0,1,2;(2)第n 个等式为:11222n n n ---=,∵左边=()111222212n n n n ----=-=,右边=12n -,∴左边=右边,∴11222n n n ---=;(3)20+21+22+⋅⋅⋅⋅⋅⋅+22019=21-20+22-21+⋅⋅⋅⋅⋅⋅+22020-22019=22020-1∴01220192020222221++++=-….【点睛】此题主要考察了探寻数列规律问题,认真观察,总结出规律,并能正确的应用规律是解答此题的关键.30.(1)证明见解析;(2)∠AED +∠D =180°,理由见解析;(3)110°【分析】(1)依据同位角相等,即可得到两直线平行;(2)依据平行线的性质,可得出∠FGD =∠EFG ,进而判定AB ∥CD ,即可得出∠AED +∠D =180°;(3)依据已知条件求得∠CGF 的度数,进而利用平行线的性质得出∠CEF 的度数,依据对顶角相等即可得到∠AEM 的度数.【详解】(1)∵∠CED=∠GHD,∴CB∥GF;(2)∠AED+∠D=180°;理由:∵CB∥GF,∴∠C=∠FGD,又∵∠C=∠EFG,∴∠FGD=∠EFG,∴AB∥CD,∴∠AED+∠D=180°;(3)∵∠GHD=∠EHF=80°,∠D=30°,∴∠CGF=80°+30°=110°,又∵CE∥GF,∴∠C=180°﹣110°=70°,又∵AB∥CD,∴∠AEC=∠C=70°,∴∠AEM=180°﹣70°=110°.【点睛】本题主要考查了平行线的判定与性质,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学下学期期末考试试卷数学试卷(满分100分,时间120分钟)一、选择题(本大题共10小题,每小题2分,共20分.) 1.下列运算正确的是 ( )A .42226)3(y x xy =B .xx 2121=- C .527)()(x x x =-÷- D .523523x x x =+2.已知一粒米的质量是0.000021千克,这个数字用科学记数法表示为 ( ) A .41021-⨯千克 B .6101.2-⨯千克 C .5101.2-⨯千克 D .4101.2-⨯千克 3.如图,能判定EB ∥AC 的条件是 ( ) A .∠C =∠ABE B .∠A =∠EBD C .∠C =∠ABC D .∠A =∠ABE4.不等式x 2-≤6的解集在数轴上表示正确的是 ( ) A . B . C . D .5.若152)2)(3(2-+=-+mx x n x x ,则 ( ) A .5,1=-=n m B .5,1-==n m C .5,1-=-=n m D .5,1==n m6.如图,△ABC 中,∠ACB =90°,沿CD 折叠△CBD ,使点B 恰好落在AC 边上的点E 处.若∠A =22°,则∠BDC 等于 ( ) A .44° B .60° C .67° D .77°7.如图,A 、B 两点在数轴上表示的数分别是a 、b ,则下列式子中一定成立的是 ( ) A .0>-b a B .a ab 3< C .b a 2121->- D .b ab ->8.如图,面积为6cm 2的△ABC 纸片沿BC 方向平移至△DEF 的位置,平移的距离是BC 长的2倍,则△ABC 纸片扫过的面积为 ( )A .18cm 2B .21cm 2C .27cm 2D .30cm 210.下列说法:①一个多边形最多有3个锐角; ②n 边形有2条对角线;③三角形的三条高一定交于一点;④当x 为任意有理数时,1062+-x x 的值一定大于1;⑤方程73=+y x 有无数个整数解.其中正确的有 ( ) A .2个 B .3个 C .4个 D .5个 二、填空题(本大题共10小题,每空2分,共26分)第6题图 第7题图 第3题图 第8题图班级 姓名 考试号 .…………………………………………………………………………………………………………………………………………………11.计算:⑴1022014--=____________;⑵)1(22-x x =____________. 12.分解因式:42-y =____________.13.若一个多边形的内角和是外角和的2倍,则这个多边形的边数为____________.14.命题“互为相反数的两个数的和为零”的逆命题是___________________________________. 15.已知32=+b a ,1-=ab ,则⑴2)(b a -=____________;⑵)3)(3(--b a =____________. 16.已知6=mx,3=n x ,则n m x -=____________, n m x x -÷-2)(=____________.17.若不等式组⎩⎨⎧>-<-ax x 012的解集是21<x ,则a 的取值范围是____________.18.如图,一个长方体的表面展开图中四边形ABCD 是正方形,则原长方体的体积是____________.19.一次生活常识竞赛一共有25道题,答对一题得4分,不答得0分,答错一题扣2分,小明有2题没答,竞赛 成绩要超过74分,则小明至多答错____________道题. 20.若二元一次方程组⎩⎨⎧=++=+m y x m y x 232的解x ,y 的值恰好是一个等腰三角形两边的长,且这个等腰三角形的周长为7,则m 的值为____________. 三、解答题(本大题共8小题.共54分) 21.计算:(本题满分6分)⑴ 4322222)(23)(5a a b a b a b a ÷-+⋅-- ⑵2)2(2)32)(32(x y y x y x -----22.分解因式:(本题满分6分)⑴ 4824324-+-x x ⑵ )4()1(2)1(622b a x x a ----23.(本题满分8分)⑴解方程组:⎪⎩⎪⎨⎧-=+-=+-1532322y x y x ⑵解不等式组:⎪⎩⎪⎨⎧+≤-+<-2353)1(213xx x x 并写出它的所有整数解.D21EFDBA DA CB EF24.(本题满分6分)在正方形网格中,每个小正方形的 边长都为1个单位长度,△ABC 的三个顶点的位置 如图所示,现将△ABC 平移后得△EDF ,使点B 的 对应点为点D ,点A 对应点为点E .(1)画出△EDF ; (2)线段BD 与AE 有何关系?____________;(3)连接CD 、BD ,则四边形ABDC 的面积为_______.25.(本题满分6分)如图,AD ∥BC ,∠A =∠C ,BE 、DF 分别平分∠ABC 和∠CDA . 求证:BE ∥DF26.(本题满分7分)如图,△ABC 中,AD 是高,BE 平分∠ABC . (1)若∠EBC =32°,∠1∶∠2=1∶2,EF ∥AD ,求∠FEC 的度数;(2)若∠2=50°,点F 为射线CB 上的一个动点,当△EFC 为钝角三角形时,直接写出∠FEC 的取值范围.27.(本题满分7分)如图①,将一副直角三角板放在同一条直线AB 上,其中∠ONM =30°,∠OCD =45°.(1)将图①中的三角板OMN 沿BA 的方向平移至图②的位置,MN 与CD 相交于点E , 求∠CEN 的度数;(2)将图①中的三角板OMN 绕点O 按逆时针方向旋转,使∠BON =30°,如图③,MN与CD 相交于点E ,求∠CEN 的度数; 班级 姓名 考试号 .…………………………………………………………………………………………………………………………………………………(3)将图①中的三角板OMN绕点O按每秒30°的速度按逆时针方向旋转一周,在旋转的过程中,在第_____________________秒时,直线MN恰好与直线CD垂直.(直接写出结果)D28.(本题满分8分)某镇水库的可用水量为12000万立方米,假设年降水量不变,能维持该镇16万人20年的用水量.实施城市化建设,新迁入4万人后,水库只够维持居民15年的用水量.(1)问:年降水量为多少万立方米?每人年平均用水量多少立方米?(2)政府号召节约用水,希望将水库的保用年限提高到25年,则该镇居民人均每年需节约多少立方米才能实现目标?(3)某企业投入1000万元设备,每天能淡化5000立方米海水,淡化率为70%.每淡化1立方米海水所需的费用为1.5元,政府补贴0.3元.企业将淡化水以3.2元/立方米的价格出售,每年还需各项支出40万元.按每年实际生产300天计算,该企业至少几年后能收回成本(结果保留整数)?初一数学期末试题答案 一选择题⒈ C ⒉C ⒊ D ⒋A ⒌D ⒍ C ⒎ C ⒏D ⒐ B ⒑ B二 填空题11. 0.5 ;x x 223- 12. )2)(2(-+y y 13. 6 14. 两个和为零的数互为相反数 15. 944;6 16. 2 ;108 17. a ≤21- 18. 12 19. 2 20. 2 三解答题21. ⑴原式=2242465a b a b a --………………( 2)=224a b a -- ………………( 3 )⑵原式=)44(2492222x xy y x y +---………………( 2 )=xy x y 8622+- ………………( 3 )22. ⑴原式=)168(324+--x x ………………( 1 ) =22)4(3--x ………………( 2 ) =22)2()2(3-+-x x ………………( 3 )⑵原式=[])4(26)1(2b a a x --- ………………( 1 ) =)84()1(2b a x +- ………………( 2 ) =)2()1(42b a x +- ………………( 3 )23.⑴由①得823-=-y x ③ ………………( 1 ) ②-③得y=1 ………………( 2 ) 将y=1代入②得x=-2 ………………( 3 )∴⎩⎨⎧=-=12y x ………………( 4 )⑵由①得x <3 ………………( 1 ) 由②得x ≥-1 ………………( 2 ) ∴-1≤x <3 ………………( 3 ) ∴整数x=-1,0,1,2 ………………( 4 )24.⑴画图略 ;………………( 2 ) ⑵ BD ∥═AE ;………………( 4 )⑶6 ………………( 6 )25.⑴∵AD ∥BC∴∠A+∠ABC=180°;∠C+∠ADC=180°………………( 1) ∵∠A=∠C∴∠ABC=∠ADC ………………( 2 ) ∵BE 、DF 分别平分∠ABC 和∠CDA∴∠EBC=21∠ABC, ∠EDF==21∠ADC ∴∠EBC=∠EDF ………………( 4 )∵AD ∥BC∴∠DFC=∠EDF∴∠EBC=∠DFC ………………( 5 ) ∴BE ∥DF ………………( 6 )26.⑴∵BE 平分∠ABC∴∠ABC=2∠EBC=64° ………………( 1 ) ∵AD 是高 ∴AD ⊥BC ∴∠ADB=90°∴∠1=90°−∠ABC=26° ………………( 2 ) ∵∠1∶∠2=1∶2∴∠2=2∠1=52° ………………( 3 ) ∵EF ∥AD∴∠FEC=∠2=52° ………………( 4 )⑵90°<∠FEC <140°; 0°<∠FEC <50°………………( 7 ) ( 做对一个答案仅得1分)27⑴∠CEN=180°-∠ONM −∠NCD=180°-30°-45°=105°………………( 1 )⑵∵∠N=∠BON =30°∴MN ∥CO ………………( 2 ) ∴∠CEN+∠OCD =180°∴∠CEN =180°−∠OCD =135° ………………( 3 ) ②5.5秒,11.5秒 ………………( 7 ) ( 做对一个答案得2分)28.解:(1)设年降水量为x 万m 3,每人年平均用水量为ym 3, 由题意得,, ………………( 1 )解得:.答:年降水量为200万m 3,每人年平均用水量为50m 3.………………( 3 )(2)设该镇居民人均每年需用水z m 3水才能实现目标, 由题意得,12000+25×200=20×25z , 解得:z=34,50﹣34=16m 3.答:设该镇居民人均每年需节约16 m 3水才能实现目标.………………( 5 )(3)设该企业n 几年后能收回成本,由题意得,[3.2×5000×70%﹣(1.5﹣0.3)×5000]×﹣40n≥1000,………………( 6 )解得: 29188n ∴最小整数n=9答:至少9年后企业能收回成本. ………………( 8)。