2013高考几何证明选修
2013年高考试题及解析:文科数学(新课标Ⅰ卷)
绝密★启封并使用完毕前2013年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至4页。
全卷满分150分。
考试时间120分钟。
注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3. 全部答案在答题卡上完成,答在本试题上无效。
4. 考试结束,将本试题和答题卡一并交回。
第Ⅰ卷一、 选择题共12小题。
每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
(1)已知集合A={1,2,3,4},B={x |x =n 2,n ∈A },则A ∩B= ( ) (A ){0} (B ){-1,,0} (C ){0,1} (D ){-1,,0,1} 【答案】A 【解析】【难度】容易【点评】本题考查集合之间的运算关系,即包含关系.在高一数学强化提高班上学期课程讲座1,第一章《集合》中有详细讲解,其中第02节中有完全相同类型题目的计算.在高考精品班数学(文)强化提高班中有对集合相关知识的总结讲解. (2)1+2i(1-i)2= ( ) (A )-1-12i(B )-1+12i(C )1+12i(D )1-12i【答案】B 【解析】【难度】容易【点评】本题考查复数的计算。
在高二数学(文)强化提高班下学期,第四章《复数》中有详细讲解,其中第02节中有完全相同类型题目的计算。
在高考精品班数学(文)强化提高班中有对复数相关知识的总结讲解。
(3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( )(A )12(B )13(C )14(D )16【答案】B【难度】容易【点评】本题考查几何概率的计算方法。
在高二数学(文)强化提高班,第三章《概率》有详细讲解,在高考精品班数学(文)强化提高班中有对概率相关知识的总结讲解。
几何证明选讲高考试题(2013模拟)
图3C15.(2013湛江二模几何证明选讲选做题)如图,点A 、B 、C 都在⊙O 上,过点C 的切线交A B 的延长线于点D ,若AB = 5,BC = 3,CD = 6,则线段A C 的长为_______15.(2013佛山一模几何证明选讲)如图,M 是平行四边形ABCD 的边AB 的中点,直线l 过点M 分别交,AD AC 于点,E F .若3AD AE =,则:AF FC =.15.(2013广州一模几何证明选讲选做题)如图3,AB 是O 的直径,BC 是O 的切线,AC 与O 交于点D , 若3BC =,165AD =,则AB 的长为. 15.(2013深圳一模几何证明选讲选做题)如图3,在⊙O 中,直径AB 与弦CD垂直,垂足为E ,EF ⊥BC ,垂足为F ,若AB=6,CF ·CB=5,则AE=。
15.(2010年广东省揭阳市高考一模试题)(几何证明选做题)如图,已知P 是O 外一点,PD 为O 的切线,D 为 切点,割线PEF 经过圆心O,若12,43P F P D==则EFD ∠的度数为.15.(广东省佛山市)(几何证明选讲选做题)如图,是⊙的直径,是延长线上的一点。
过作⊙的切线,切点为,若,则⊙的直径______4_____.14、(广东省深圳高级中学2010届高三一模理科)(几何证明选做题) 如图,PA 切⊙O 于点A ,割线PBC 经过圆心O ,OB=PB=1,OA 绕 点O 逆时针旋转60°到OD ,则PD 的长为.15.(2010年3月广东省深圳市高三年级第一次调研考试理科)(几何证明选AB O PAB P O ,C PC =30CAP ︒∠=O AB =第15题图FA BCD E M l讲选做题)如图4,已知PA 是⊙O 的切线,A 是切点,直线PO 交⊙O 于B 、C 两点,D 是OC的中点,连结AD 并延长交⊙O 于点E .若32=PA ,30APB ∠=︒,则AE =.15.(2010年3月广东省深圳市高三年级第一次调研考试文科)(几何证明选讲选做题)如图,圆O 的直径6AB =,C 为圆周上一点,3BC =,过C 作圆的切线l ,过A 作l 的垂线AD ,垂足为D ,则线段CD 的长为.PA B OC DE∙4图lAB C DO。
2013年高考理科数学全国新课标卷2试题与答案word解析版
2013年普通高等学校夏季招生全国统一考试数学理工农医类(全国新课标卷II)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013课标全国Ⅱ,理1)已知集合M ={x |(x -1)2<4,x ∈R },N ={-1,0,1,2,3},则M ∩N =( ).A .{0,1,2}B .{-1,0,1,2}C .{-1,0,2,3}D .{0,1,2,3} 2.(2013课标全国Ⅱ,理2)设复数z 满足(1-i)z =2i ,则z =( ).A .-1+iB .-1-IC .1+iD .1-i3.(2013课标全国Ⅱ,理3)等比数列{a n }的前n 项和为S n .已知S 3=a 2+10a 1,a 5=9,则a 1=( ).A .13B .13-C .19D .19-4.(2013课标全国Ⅱ,理4)已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,lα,lβ,则( ).A .α∥β且l ∥αB .α⊥β且l ⊥βC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l5.(2013课标全国Ⅱ,理5)已知(1+ax )(1+x )5的展开式中x 2的系数为5,则a =( ).A .-4B .-3C .-2D .-16.(2013课标全国Ⅱ,理6)执行下面的程序框图,如果输入的N =10,那么输出的S =( ).A .1111+2310+++B .1111+2!3!10!+++C .1111+2311+++D .1111+2!3!11!+++7.(2013课标全国Ⅱ,理7)一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( ).8.(2013课标全国Ⅱ,理8)设a =log 36,b =log 510,c =log 714,则( ).A .c >b >aB .b >c >aC .a >c >bD .a >b >c9.(2013课标全国Ⅱ,理9)已知a >0,x ,y 满足约束条件1,3,3.x x y y a x ≥⎧⎪+≤⎨⎪≥(-)⎩若z =2x +y 的最小值为1,则a =( ).A .14 B.12 C .1 D .210.(2013课标全国Ⅱ,理10)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是( ).A.∃x0∈R,f(x0)=0B.函数y=f(x)的图像是中心对称图形C.若x0是f(x)的极小值点,则f(x)在区间(-∞,x0)单调递减D.若x0是f(x)的极值点,则f′(x0)=011.(2013课标全国Ⅱ,理11)设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为( ).A.y2=4x或y2=8x B.y2=2x或y2=8xC.y2=4x或y2=16x D.y2=2x或y2=16x12.(2013课标全国Ⅱ,理12)已知点A(-1,0),B(1,0),C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是( ).A.(0,1) B.11,22⎛⎫-⎪⎪⎝⎭ C.1123⎛⎤-⎥⎝⎦ D.11,32⎡⎫⎪⎢⎣⎭第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须做答。
【高考精品复习】选修4-1 几何证明选讲 第2讲 圆周角定理与圆的切线
第2讲 圆周角定理与圆的切线【高考会这样考】考查圆的切线定理和性质定理的应用. 【复习指导】本讲复习时,牢牢抓住圆的切线定理和性质定理,以及圆周角定理和弦切角等有关知识,重点掌握解决问题的基本方法.基础梳理1.圆周角定理(1)圆周角:顶点在圆周上且两边都与圆相交的角. (2)圆周角定理:圆周角的度数等于它所对弧度数的一半. (3)圆周角定理的推论①同弧(或等弧)上的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等. ②半圆(或直径)所对的圆周角是90°;90°的圆周角所对的弦是直径. 2.圆的切线(1)直线与圆的位置关系直线与圆交点的个数 直线到圆心的距离d 与圆的半径r 的关系 相交 两个 d <r 相切 一个 d =r 相离无d >r(2)切线的性质及判定①切线的性质定理:圆的切线垂直于经过切点的半径. ②切线的判定定理过半径外端且与这条半径垂直的直线是圆的切线. (3)切线长定理从圆外一点引圆的两条切线长相等. 3.弦切角(1)弦切角:顶点在圆上,一边与圆相切,另一边与圆相交的角.(2)弦切角定理及推论①定理:弦切角的度数等于所夹弧的度数的一半.②推论:同弧(或等弧)上的弦切角相等,同弧(或等弧)上的弦切角与圆周角相等.双基自测1.如图所示,△ABC 中,∠C =90°,AB =10,AC =6,以AC 为直径的圆与斜边交于点P ,则BP 长为________.解析 连接CP .由推论2知∠CP A =90°,即CP ⊥AB ,由射影定理知,AC 2=AP ·AB .∴AP =3.6,∴BP =AB -AP =6.4. 答案 6.42.如图所示,AB 、AC 是⊙O 的两条切线,切点分别为B 、C ,D是优弧BC 上的点,已知∠BAC =80°, 那么∠BDC =________. 解析 连接OB 、OC ,则OB ⊥AB ,OC ⊥AC ,∴∠BOC =180°-∠BAC =100°,∴∠BDC =12∠BOC =50°. 答案 50°3.(2011·广州测试(一))如图所示,CD 是圆O 的切线,切点为C ,点A 、B 在圆O 上,BC =1,∠BCD =30°,则圆O 的面积为________.解析 连接OC ,OB ,依题意得,∠COB =2∠CAB =2∠BCD =60°,又OB =OC , 因此△BOC 是等边三角形,OB =OC =BC =1,即圆O 的半径为1, 所以圆O 的面积为π×12=π. 答案 π4.(2011·深圳二次调研)如图,直角三角形ABC 中,∠B =90°,AB =4,以BC 为直径的圆交AC 边于点D ,AD =2,则∠C 的大小为________.解析 连接BD ,则有∠ADB =90°.在Rt △ABD 中,AB =4,AD =2,所以∠A =60°;在Rt △ABC 中,∠A =60°,于是有∠C =30°. 答案 30°5.(2011·汕头调研)如图,MN 是圆O 的直径,MN 的延长线与圆O 上过点P 的切线P A 相交于点A ,若∠M =30°,AP =23,则圆O 的直径为________.解析 连接OP ,因为∠M =30°,所以∠AOP =60°,因为P A 切圆O 于P ,所以OP ⊥AP ,在Rt △ADO 中,OP =AP tan ∠AOP =23tan 60°=2,故圆O 的直径为4.答案 4考向一 圆周角的计算与证明【例1】►(2011·中山模拟)如图,AB 为⊙O 的直径,弦AC 、BD 交于点P ,若AB=3,CD =1,则sin ∠APB =________.[审题视点] 连结AD ,BC ,结合正弦定理求解. 解析 连接AD ,BC .因为AB 是圆O 的直径,所以∠ADB =∠ACB =90°.又∠ACD =∠ABD ,所以在△ACD 中,由正弦定理得:CD sin ∠DAC =AD sin ∠ACD =AD sin ∠ABD =AB sin ∠ABD sin ∠ABD =AB =3,又CD =1,所以sin ∠DAC =sin ∠DAP =13,所以cos ∠DAP =23 2.又sin∠APB=sin (90°+∠DAP)=cos∠DAP=23 2.答案23 2解决本题的关键是寻找∠APB与∠DAP的关系以及AD与AB的关系.【训练1】如图,点A,B,C是圆O上的点,且AB=4,∠ACB=30°,则圆O的面积等于________.解析连接AO,OB.因为∠ACB=30°,所以∠AOB=60°,△AOB为等边三角形,故圆O的半径r=OA=AB=4,圆O的面积S=πr2=16π.答案16π考向二弦切角定理及推论的应用【例2】►如图,梯形ABCD内接于⊙O,AD∥BC,过B引⊙O的切线分别交DA、CA的延长线于E、F.已知BC=8,CD=5,AF=6,则EF的长为________.[审题视点] 先证明△EAB∽△ABC,再由AE∥BC及AB=CD等条件转化为线段之间的比例关系,从而求解.解析∵BE切⊙O于B,∴∠ABE=∠ACB.又AD∥BC,∴∠EAB=∠ABC,∴△EAB∽△ABC,∴BEAC=ABBC.又AE∥BC,∴EFAF=BEAC,∴ABBC=EFAF.又AD∥BC,∴AB=CD,∴AB=CD,∴CDBC=EFAF,∴58=EF6,∴EF=308=154.答案15 4(1)圆周角定理及其推论与弦切角定理及其推论多用于推出角的关系,从而证明三角形全等或相似,可求线段或角的大小.(2)涉及圆的切线问题时要注意弦切角的转化;关于圆周上的点,常作直线(或半径)或向弦(弧)两端画圆周角或作弦切角.【训练2】(2010·新课标全国)如图,已知圆上的弧AC=BD,过C点的圆的切线与BA的延长线交于E点,证明:(1)∠ACE=∠BCD;(2)BC2=BE×CD.证明(1)因为AC=BD,所以∠BCD=∠ABC.又因为EC与圆相切于点C,故∠ACE=∠ABC,所以∠ACE=∠BCD.(2)因为∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC∽△ECB,故BCBE=CDBC,即BC2=BE×CD.高考中几何证明选讲问题(二)从近两年的新课标高考试题可以看出,圆的切线的有关知识是重点考查对象,并且多以填空题的形式出现.【示例】►(2011·天津卷)如图,已知圆中两条弦AB与CD相交于点F,E是AB 延长线上一点,且DF=CF=2,AF∶FB∶BE=4∶2∶1.若CE与圆相切,则线段CE的长为________.。
(2014年高考必备)2013年全国各地高考理科数学几何证明
2013年全国高考理科数学试题分类汇编17:几何证明一、填空题1 .(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))如图,在ABC中,090C ∠=,060,20A AB ∠==,过C 作ABC 的外接圆的切线CD ,BD CD ⊥,BD 与外接圆交于点E ,则DE 的长为__________【答案】52 .(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))如图, △ABC 为圆的内接三角形, BD为圆的弦, 且BD //AC . 过点A 做圆的切线与DB 的延长线交于点E , AD 与BC 交于点F . 若AB = AC , AE = 6, BD = 5, 则线段CF 的长为______.【答案】833 .(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))(几何证明选讲选做题)如图,AB 是圆O 的直径,点C 在圆O 上,延长BC 到D 使BC CD =,过C 作圆O 的切线交AD 于E .若6AB =,2ED =,则BC =_________.【答案】4 .(2013年高考四川卷(理))设12,,,n P P P 为平面α内的n 个点,在平面α内的所有点中,若点P 到12,,,n P P P 点的距离之和最小,则称点P 为12,,,n P P P 点的一个“中位点”.例如,线段AB 上的任意点都是端点,A B 的中位点.则有下列命题:①若,,A B C 三个点共线,C 在线AB 上,则C 是,,A B C 的中位点;.A ED CB O 第15题图②直角三角形斜边的点是该直角三角形三个顶点的中位点;③若四个点,,,A B C D 共线,则它们的中位点存在且唯一;④梯形对角线的交点是该梯形四个顶点的唯一中位点.其中的真命题是____________.(写出所有真命题的序号数学社区)【答案】①④5 .(2013年高考陕西卷(理))B. (几何证明选做题) 如图, 弦AB 与CD 相交于O 内一点E , 过E 作BC的平行线与AD 的延长线相交于点P . 已知PD =2DA =2, 则PE =_____.【答案】.66 .(2013年高考湖南卷(理))如图2,的O 中,弦,AB CD 相交于点,2P PA PB ==,1PD =,则圆心O 到弦CD 的距离为____________.【答案】23 7 .(2013年高考湖北卷(理))如图,圆O 上一点C 在直线AB 上的射影为D ,点D 在半径OC 上的射影为E .若3AB AD =,则CE EO的值为___________.【答案】8 8 .(2013年高考北京卷(理))如图,AB 为圆O 的直径,PA 为圆O 的切线,PB 与圆O 相交于 D.若PA=3,916PD DB =::,则PD=_________;AB=___________. O D EBA 第15题图C【答案】95;4 二、解答题9 .(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))选修4—1几何证明选讲:如图,CD 为△ABC 外接圆的切线,AB 的延长线交直线CD 于点D ,,E F 分别为弦AB 与弦AC 上的点,且BC AE DC AF ⋅=⋅,,,,B E F C 四点共圆.(Ⅰ)证明:CA 是△ABC 外接圆的直径;(Ⅱ)若DB BE EA ==,求过,,,B E F C 四点的圆的面积与△ABC 外接圆面积的比值.【答案】10.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))选修4-1:几何证明选讲如图,.AB O CD O E AD CD D 为直径,直线与相切于垂直于于,BC 垂直于CD 于C EF ,,垂直于F ,连接,AE BE .证明:(I);FEB CEB ∠=∠ (II)2.EF AD BC =【答案】11.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))A.[选修4-1:几何证明选讲]本小题满分10分.如图,AB 和BC 分别与圆O 相切于点D ,,C AC 经过圆心O ,且2BC OC =求证:2AC AD =【答案】A 证明:连接OD,∵AB 与BC 分别与圆O 相切于点D 与C∴090=∠=∠ACB ADO ,又∵A A ∠=∠∴ADO RT ∆~ACB RT ∆ ∴ADAC OD BC = 又∵BC=2OC=2OD ∴AC=2AD 12.(2013年高考新课标1(理))选修4—1:几何证明选讲 如图,直线AB 为圆的切线,切点为B,点C 在圆上,∠ABC 的角平分线BE 交圆于点E,DB 垂直BE 交圆于D.(Ⅰ)证明:DB=DC;(Ⅱ)设圆的半径为1,BC= ,延长CE 交AB 于点F,求△BCF 外接圆的半径.【答案】(Ⅰ)连结DE,交BC 与点G.由弦切角定理得,∠ABF=∠BCE,∵∠ABE=∠CBE ,∴∠CBE=∠BCE,BE=CE, 又∵DB⊥BE,∴DE 是直径,∠DCE=090,由勾股定理可得DB=DC.(Ⅱ)由(Ⅰ)知,∠CDE=∠BDE,BD=DC,故DG 是BC . 设DE 中点为O,连结BO,则∠BOG=o 60,∠ABE=∠BCE=∠CBE=o 30,∴CF⊥BF, ∴Rt△B CF .。
高考数学专题几何证明选讲
编写说明:考虑到复习实际,本书将选修4-5不等式选讲与前面第六章不等式、推理与证明整合编写。
选修4-1几何证明选讲第一节相似三角形的判定及有关性质1.平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等.推论1:经过三角形一边的中点与另一边平行的直线必平分第三边.推论2:经过梯形一腰的中点,且与底边平行的直线平分另一腰.2.平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例.推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例.3.相似三角形的判定与性质(1)判定定理:(2)1.在使用平行线截割定理时易出现对应线段、对应边对应顺序混乱,导致错误. 2.在解决相似三角形的判定或应用时易出现对应边和对应角对应失误. [试一试]1.如图,F 为▱ABCD 的边AD 延长线上的一点,DF =AD ,BF 分别交DC ,AC 于G ,E 两点,EF =16,GF =12,则BE 的长为________.解析:由DF =AD ,AB ∥CD 知BG =GF =12,又EF =16知EG =4,故BE =8.答案:82.在△ABC 中,点D 在线段BC 上,∠BAC =∠ADC ,AC =8,BC =16,则CD =________. 解析:∵∠BAC =∠ADC ,∠C =∠C ,∴△ABC ∽△DAC ,∴BC AC =AC CD ,∴CD =AC 2BC =8216=4.答案:41.判定两个三角形相似的常规思路 (1)先找两对对应角相等;(2)若只能找到一对对应角相等,则判断相等的角的两夹边是否对应成比例;(3)若找不到角相等,就判断三边是否对应成比例,否则考虑平行线分线段成比例定理及相似三角形的“传递性”.2.借助图形判断三角形相似的方法 (1)有平行线的可围绕平行线找相似;(2)有公共角或相等角的可围绕角做文章,再找其他相等的角或对应边成比例; (3)有公共边的可将图形旋转,观察其特征,找出相等的角或成比例的对应边. [练一练]1.如图,D ,E 分别是△ABC 的边AB ,AC 上的点,DE ∥BC 且ADDB =2,那么△ADE 与四边形DBCE 的面积比是________.解析:∵DE ∥BC ,∴△ADE ∽△ABC ,∴S △ADE S △ABC =AD 2AB 2. ∵AD DB =2,∴AD AB =23,∴S △ADE S △ABC =49, ∴S △ADES 四边形DBCE =45.答案:452.如图,已知在△ABC 中,CD ⊥AB 于D 点,BC 2=BD ·AB ,则∠ACB =______.解析:在△ABC 与△CBD 中, 由BC 2=BD ·AB , 得BC BD =ABBC,且∠B =∠B , 所以△ABC ∽△CBD .则∠ACB =∠CDB =90°. 答案:90°平行线分线段成比例定理的应用,AE 交BD 于F ,则BF ∶FD =________.解析:∵AD =BC ,BE ∶EC =2∶3, ∴BE ∶AD =2∶5. ∵AD ∥BC ,∴BF ∶FD =BE ∶AD =2∶5.即BF ∶FD =25.答案:2∶52.(2013·惠州调研)如图,在△ABC 中,DE ∥BC ,DF ∥AC ,AE ∶AC =3∶5,DE =6,则BF =________.解析:由DE ∥BC 得DE BC =AE AC =35,∵DE =6,∴BC =10. 又因为DF ∥AC ,所以BF BC =BD AB =CE AC =25,即BF =4.答案:43.如图,在四边形ABCD 中,EF ∥BC ,FG ∥AD ,则EF BC +FGAD =________.解析:由平行线分线段成比例定理得 EF BC =AF AC ,FG AD =FC AC , 故EF BC +FG AD =AF AC +FC AC =AC AC=1. 答案:1 [类题通法]比例线段常用平行线产生,利用平行线转移比例是常用的证题技巧,当题中没有平行线条件而有必要转移比例时,也常添加辅助平行线,从而达到转移比例的目的.相似三角形的判定及性质[典例] O 内一点E ,过E 作BC 的平行线与AD 的延长线交于点P .已知PD =2DA =2,则PE =________.[解析] 由PE ∥BC 知,∠A =∠C =∠PED .在△PDE 和△PEA 中,∠APE =∠EPD ,∠A =∠PED ,故△PDE ∽△PEA ,则PD PE =PEP A,于是PE 2=P A ·PD =3×2=6,所以PE = 6.[答案]6[类题通法]1.判定两个三角形相似要注意结合图形特征灵活选择判定定理,特别要注意对应角和对应边.2.相似三角形的性质可用来证明线段成比例、角相等;也可间接证明线段相等. [针对训练](2013·佛山质检)如图,∠B =∠D ,AE ⊥BC ,∠ACD =90°,且AB =6,AC =4,AD =12,则BE =________.解析:由于∠B =∠D ,∠AEB =∠ACD ,所以△ABE ∽△ADC ,从而得AB AD =AEAC,解得AE =2,故BE =AB 2-AE 2=4 2.答案:4 2射影定理的应用[典例] AD ⊥BC 于D∠ABC 的平分线,交AD 于F ,求证:DF AF =AE EC.[证明] 由三角形的内角平分线定理得,在△ABD 中,DF AF =BDAB ,① 在△ABC 中,AE EC =ABBC,②在Rt △ABC 中,由射影定理知,AB 2=BD ·BC , 即BD AB =ABBC. ③ 由①③得:DF AF =ABBC ,④由②④得:DF AF =AEEC .[类题通法]1.在使用直角三角形射影定理时,要学会将“乘积式”转化为相似三角形中的“比例式”.2.证题时,要注意作垂线构造直角三角形是解直角三角形时常用的方法. [针对训练]在Rt △ACB 中,∠C =90°,CD ⊥AB 于D ,若BD ∶AD =1∶9,则tan ∠BCD =________. 解析:由射影定理得CD 2=AD ·BD ,又BD ∶AD =1∶9, 令BD =x ,则AD =9x (x >0).∴CD 2=9x 2,∴CD =3x . Rt △CDB 中,tan ∠BCD =BD CD =x 3x =13.答案:13第二节直线与圆的位置关系1.圆周角定理 (1)圆周角定理圆上一条弧所对的圆周角等于它所对的圆心角的一半. (2)圆心角定理圆心角的度数等于它所对弧的度数.推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等.推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径.2.圆内接四边形的性质与判定定理(1)性质定理1:圆内接四边形的对角互补.定理2:圆内接四边形的外角等于它的内角的对角.(2)判定判定定理:如果一个四边形的对角互补,那么这个四边形的四个顶点共圆.推论:如果四边形的一个外角等于它的内角的对角,那么这个四边形的四个顶点共圆.3.圆的切线性质及判定定理(1)性质:性质定理:圆的切线垂直于经过切点的半径.推论1:经过圆心且垂直于切线的直线必经过切点.推论2:经过切点且垂直于切线的直线必经过圆心.(2)判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.(3)弦切角定理:弦切角等于它所夹的弧所对的圆周角.4.与圆有关的比例线段(1)相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等.(2)割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.(3)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.(4)切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.1.易混圆心角与圆周角,在使用时注意结合图形作出判断.2.在使用相交弦定理、割线定理、切割线定理时易出现比例线段对应不成比例而失误.[试一试]1.如图,P是圆O外一点,过P引圆O的两条割线PB、PD,P A=AB=5,CD=3,则PC=________.解析:设PC=x,由割线定理知P A·PB=PC·PD.即5×25=x(x+3),解得x=2或x=-5(舍去).故PC=2.答案:22.如图,EB ,EC 是⊙O 的两条切线,B ,C 是切点,A ,D 是⊙O 上两点,如果∠E =46°,∠DCF =32°,则∠BAD =________.解析:由已知,显然△EBC 为等腰三角形, 因此有∠ECB =180°-∠E 2=67°,因此∠BCD =180°-∠ECB -∠DCF =81°. 而由A ,B ,C ,D 四点共圆, 得∠BAD =180°-∠BCD =99°. 答案:99°1.与圆有关的辅助线的五种作法 (1)有弦,作弦心距.(2)有直径,作直径所对的圆周角. (3)有切点,作过切点的半径. (4)两圆相交,作公共弦. (5)两圆相切,作公切线. 2.证明四点共圆的常用方法(1)利用圆内接四边形的判定定理,证明四点组成的四边形的对角互补; (2)证明它的一个外角等于它的内对角; (3)证明四点到同一点的距离相等.当证明四点共圆以后,圆的各种性质都可以得到应用. 3.圆幂定理与圆周角、弦切角联合应用时,要注意找相等的角,找相似三角形,从而得出线段的比,由于圆幂定理涉及圆中线段的数量计算,所以应注意代数法在解题中的应用.[练一练]1.(2013·荆州模拟)如图,P A 是⊙O 的切线,切点为A ,过P A的中点M 作割线交⊙O 于点B 和C ,若∠BMP =110°,∠BPC =30°,则∠MPB =________.解析:由切割线定理得,MA 2=MB ·MC ,又MA =MP ,故MP 2=MB ·MC ,即MB MP =MP MC ,又∠BMP =∠PMC .故△BMP ∽△PMC ,所以∠MPB =∠MCP ,所以30°+∠MPB +∠MCP =∠AMB =180°-110°=70°,所以∠MPB =20°.答案:20°2.(2013·长沙一模)如图,过圆O 外一点P 分别作圆的切线和割线交圆于点A ,点B ,且PB =7,C 是圆上一点,使得BC =5,∠BAC =∠APB ,则AB =________.解析:由P A 为圆O 的切线可得,∠P AB =∠ACB ,又∠BAC =∠APB ,于是△APB ∽△CAB ,所以PB AB =ABBC,而PB =7,BC =5,故AB 2=PB ·BC =7×5=35,即AB =35. 答案:35圆周角、弦切角和圆的切线问题1.(2013·天津高考)如图, △ABC 为圆的内接三角形, BD 为圆的弦, 且BD ∥AC . 过点A 作圆的切线与DB 的延长线交于点E ,AD 与BC 交于点F .若AB =AC ,AE =6,BD = 5,则线段CF 的长为________.解析:因为AE 是圆的切线,且AE =6,BD =5,由切割线定理可得EA 2=EB ·ED ,即36=EB ·(EB +5),解得EB =4.又∠BAE =∠ADB =∠ACB =∠ABC ,所以AE ∥BC .又AC ∥BD ,所以四边形AEBC 是平行四边形,所以AE =BC =6,AC =EB =4.又由题意可得△CAF ∽△CBA ,所以CA CB =CFCA ,CF=CA 2CB =166=83. 答案:832.(2013·广东高考)如图,AB 是圆O 的直径,点C 在圆O 上.延长BC 到D 使BC =CD ,过C 作圆O 的切线交AD 于E .若AB =6,ED =2,则BC =________.解析:连接OC ,则OC ⊥CE ,∠OCA +∠ACE =90°,∵∠OAC =∠OCA ,∴∠OAC +∠ACE =90°.易知Rt △ACB ≌Rt △ACD ,则∠OAC =∠EAC .∴∠EAC +∠ACE =90°,∴∠AEC =90°,在Rt △ACD 中,由射影定理得:CD 2=ED ·AD ①,又CD =BC ,AD =AB ,将AB =6,ED =2代入①式,得CD = 12=2 3,∴BC =2 3.答案:2 33.(2014·岳阳模拟)如图所示,⊙O 的两条切线P A 和PB 相交于点P ,与⊙O 相切于A ,B 两点,C 是⊙O 上的一点,若∠P =70°,则∠ACB =________.解析:如图所示,连接OA ,OB , 则OA ⊥P A ,OB ⊥PB .故∠AOB =110°, ∴∠ACB =12∠AOB =55°.答案:55° [类题通法]1.圆周角定理及其推论与弦切角定理及其推论多用于推出角的关系,从而证明三角形全等或相似,可求线段或角的大小.2.涉及圆的切线问题时要注意弦切角的转化;关于圆周上的点,常作直径(或半径)或向弦(弧)两端作圆周角或弦切角.圆内接四边形的性质及判定[典例]是AB 延长线上的一点,GCD 是⊙O 的割线,过点G 作AG 的垂线,交直线AC 于点E ,交直线AD 于点F ,过点G 作⊙O 的切线,切点为H .(1)求证:C ,D ,E ,F 四点共圆; (2)若GH =6,GE =4,求EF 的长.[解] (1)证明:连接DB , ∵AB 是⊙O 的直径, ∴∠ADB =90°,在Rt △ABD 与Rt △AFG 中,∠ABD =∠AFE , 又∠ABD =∠ACD , ∴∠ACD =∠AFE , ∴C ,D ,E ,F 四点共圆.(2)⎭⎪⎬⎪⎫C ,D ,E ,F 四点共圆⇒GE ·GF =GC ·GD GH 切⊙O 于点H ⇒GH 2=GC ·GD ⇒GH 2=GE ·GF , 又GH =6,GE =4,∴GF =9,EF =GF -GE =5. [类题通法]证明多点共圆,当它们在一条线段同侧时,可证它们对此线段张角相等,也可以证明它们与某一定点距离相等;如两点在一条线段异侧,则证明它们与线段两端点连成的凸四边形对角互补.[针对训练]如图所示,在四边形ABCP 中,线段AP 与BC 的延长线交于点D ,已知AB =AC 且A ,B ,C ,P 四点共圆.(1)求证:PC AC =PDBD;(2)若AC =4,求AP ·AD 的值.解:(1)证明:因为点A ,B ,C ,P 四点共圆,所以∠ABC +∠APC =180°,又因为∠DPC +∠APC =180°,所以∠DPC =∠ABC ,又因为∠D =∠D ,所以△DPC ∽△DBA ,所以PC AB =PD BD ,又因为AB =AC ,所以PC AC =PD BD. (2)因为AB =AC ,所以∠ACB =∠ABC ,又∠ACD +∠ACB =180°,所以∠ACD +∠ABC =180°.由于∠ABC +∠APC =180°,所以∠ACD =∠APC ,又∠CAP =∠DAC ,所以△APC ∽△ACD ,所以AP AC =ACAD ,所以AP ·AD =AC 2=16. 与圆有关的比例线段[典例] 是∠ACB 的平分线,△ACD 的外接圆交BC 于点E ,AB =2AC .(1)求证:BE =2AD ;(2)当AC =1,EC =2时,求AD 的长.[解] (1)证明:连接DE ,因为四边形ACED 是圆的内接四边形,所以∠BDE =∠BCA , 又∠DBE =∠CBA ,所以△BDE ∽△BCA , 所以BE BA =DE CA ,而AB =2AC , 所以BE =2DE .又CD 是∠ACB 的平分线,所以AD =DE ,从而BE =2AD . (2)由已知得AB =2AC =2,设AD =t (0<t <2),根据割线定理得, BD ·BA =BE ·BC ,即(AB -AD )·BA =2AD ·(2AD +CE ),11 所以(2-t )×2=2t (2t +2),即2t 2+3t -2=0,解得t =12,即AD =12. [类题通法]1.应用相交弦定理、切割线定理要抓住几个关键内容:如线段成比例与相似三角形、圆的切线及其性质、与圆有关的相似三角形等.2.相交弦定理、切割线定理主要用于与圆有关的比例线段的计算与证明.解决问题时要注意相似三角形知识与圆周角、弦切角、圆的切线等相关知识的综合应用.[针对训练](2014·郑州模拟)如图,已知⊙O 和⊙M 相交于A ,B 两点,AD 为⊙M 的直径,直线BD 交⊙O 于点C ,点G 为弧BD 的中点,连接AG 分别交⊙O ,BD 于点E ,F ,连接CE.求证:(1)AG ·EF =CE ·GD ;(2)GF AG =EF 2CE 2. 证明:(1)连接AB ,AC ,∵AD 为⊙M 的直径,∴∠ABD =90°,∴AC 为⊙O 的直径,∴∠CEF =∠AGD =90°.∵G 为弧BD 的中点,∴∠DAG =∠GAB =∠ECF .∴△CEF ∽△AGD ,∴CE AG =EF GD,∴AG ·EF =CE ·GD . (2)由(1)知∠DAG =∠GAB =∠FDG ,又∠G =∠G ,∴△DFG ∽△ADG ,∴DG 2=AG ·GF .由(1)知EF 2CE 2=GD 2AG 2,∴GF AG =EF 2CE 2.。
2013年高考数学预测新课标数学考点预测(19):几何证明选讲
K
OM .OP = OA .
(Ⅱ)证明:因为 BK 是圆 O 的切线, BN ⊥ OK . 同(Ⅰ) ,有
2
2
O
P
M
OB
= ON .OK ,又 OB = OA ,
,即
所以 OP.OM = ON .OK 又 ∠NOP = ∠MOK ,
ON OM . = OP OK
所以 △ONP ∽△OMK ,故∠OKM = ∠OPN = 90� . ) 5. (2008 江苏卷理 21 21) 如图, 设△ABC 的外接圆的切线 AE 与 BC 的延长线交于点 E, ∠BAC 的平分线与 BC 交于点 D. A 2 求证: = EB.EC .
CB=2 2 ,求 EF 的长.
〖解析〗连 PB,BC 切⊙P 于点 B,PB⊥BC, CD=2,CB=2 2 ,由切割线定理得:CB2=CD·CE
B C D . O A P
F
CE=4,DE=2,BP=1,又∵EF⊥CE EF CE 得: ,EF= 2 = PB CB
∴△CPB∽△CFE,
E
考点三:圆内接四边形的性质定理与判定定理 ) 3.(2008 年南师附中高考数学模拟试卷(最后一卷) 高考数学模拟试卷(最后一卷)) 如图,已知 AD 是ΔABC 的外角∠EAC 的平分线,交 BC 的延长线于点 D,延长 DA 交ΔABC 的外接圆于点 F,连结 FB、FC. (1)求证:FB=FC; (2)求证:FB2=FA·FD; (3)若 AB 是ΔABC 外接圆的直径,∠EAC=120°, BC=6cm,求 AD 的长. 〖解析〗(1)∵AD 平分∠EAC,∴∠EAD=∠DAC. ∵四边形 AFBC 内接于圆,∴∠DAC=∠FBC. ∵∠EAD=∠FAB=∠FCB,∴∠FBC=∠FCB,∴FB=FC. (2)∵∠FAB=∠FCB=∠FBC ,∠AFB=∠BFD,
2013年高考理科数学全国新课标卷1试题与答案word解析版
2013年普通高等学校夏季招生全国统一考试数学理工农医类(全国新课标卷I)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013课标全国Ⅰ,理1)已知集合A ={x |x 2-2x >0},B ={x |-5<x <5},则( ). A .A ∩B = B .A ∪B =R C .B ⊆A D .A ⊆B2.(2013课标全国Ⅰ,理2)若复数z 满足(3-4i)z =|4+3i|,则z 的虚部为( ).A .-4B .45-C .4D .45 3.(2013课标全国Ⅰ,理3)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( ).A .简单随机抽样B .按性别分层抽样C .按学段分层抽样D .系统抽样4.(2013课标全国Ⅰ,理4)已知双曲线C :2222=1x y a b-(a >0,b >0)的离心率为52,则C 的渐近线方程为( ).A .y =14x ±B .y =13x ±C .y =12x± D .y =±x5.(2013课标全国Ⅰ,理5)执行下面的程序框图,如果输入的t ∈[-1,3],则输出的s 属于( ).A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5]6.(2013课标全国Ⅰ,理6)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( ).A .500π3cm3B .866π3cm3C .1372π3cm3D .2048π3cm37.(2013课标全国Ⅰ,理7)设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =( ).A .3B .4C .5D .68.(2013课标全国Ⅰ,理8)某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π9.(2013课标全国Ⅰ,理9)设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b .若13a =7b ,则m =( ).A .5B .6C .7D .8 10.(2013课标全国Ⅰ,理10)已知椭圆E :2222=1x y a b+(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ).A .22=14536x y +B .22=13627x y +C .22=12718x y + D .22=1189x y +11.(2013课标全国Ⅰ,理11)已知函数f (x )=220ln(1)0.x x x x x ⎧-+≤⎨+>⎩,,,若|f (x )|≥ax ,则a 的取值范围是( ).A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0]12.(2013课标全国Ⅰ,理12)设△A n B n C n 的三边长分别为a n ,b n ,c n ,△A n B n C n 的面积为S n ,n =1,2,3,….若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=2n n c a +,c n +1=2n n b a +,则( ). A .{Sn}为递减数列 B .{Sn}为递增数列C .{S2n -1}为递增数列,{S2n}为递减数列D .{S2n -1}为递减数列,{S2n}为递增数列第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(24)题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.(2013课标全国Ⅰ,理13)已知两个单位向量a ,b 的夹角为60°,c =ta +(1-t )b .若b ·c =0,则t =__________.14.(2013课标全国Ⅰ,理14)若数列{an}的前n 项和2133n n S a =+,则{an}的通项公式是an =_______.15.(2013课标全国Ⅰ,理15)设当x =θ时,函数f(x)=sin x -2cos x 取得最大值,则cos θ=__________.16.(2013课标全国Ⅰ,理16)若函数f(x)=(1-x2)(x2+ax +b)的图像关于直线x =-2对称,则f(x)的最大值为__________.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(2013课标全国Ⅰ,理17)(本小题满分12分)如图,在△ABC 中,∠ABC =90°,ABBC =1,P 为△ABC 内一点,∠BPC =90°.(1)若PB =12,求PA ; (2)若∠APB =150°,求tan ∠PBA.18.(2013课标全国Ⅰ,理18)(本小题满分12分)如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(1)证明:AB⊥A1C;(2)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.19.(2013课标全国Ⅰ,理19)(本小题满分12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为12,且各件产品是否为优质品相互独立.(1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.20.(2013课标全国Ⅰ,理20)(本小题满分12分)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.(1)求C的方程;(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|. 21.(2013课标全国Ⅰ,理21)(本小题满分12分)设函数f(x)=x2+ax+b,g(x)=e x(cx+d).若曲线y =f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(1)求a,b,c,d的值;(2)若x≥-2时,f(x)≤kg(x),求k的取值范围.请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.22.(2013课标全国Ⅰ,理22)(本小题满分10分)选修4—1:几何证明选讲如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.(1)证明:DB=DC;(2)设圆的半径为1,BC,延长CE交AB于点F,求△BCF外接圆的半径.23.(2013课标全国Ⅰ,理23)(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C1的参数方程为45cos,55sinx ty t=+⎧⎨=+⎩(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sin θ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).24.(2013课标全国Ⅰ,理24)(本小题满分10分)选修4—5:不等式选讲:已知函数f(x)=|2x-1|+|2x +a|,g(x)=x+3.(1)当a=-2时,求不等式f(x)<g(x)的解集;(2)设a>-1,且当x∈1,22a⎡⎫-⎪⎢⎣⎭时,f(x)≤g(x),求a的取值范围.2013年普通高等学校夏季招生全国统一考试数学理工农医类(全国卷I 新课标)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.答案:B解析:∵x (x -2)>0,∴x <0或x >2.∴集合A 与B 可用图象表示为:由图象可以看出A ∪B =R ,故选B.2.答案:D解析:∵(3-4i)z =|4+3i|, ∴55(34i)34i 34i (34i)(34i)55z +===+--+. 故z 的虚部为45,选D. 3.答案:C解析:因为学段层次差异较大,所以在不同学段中抽取宜用分层抽样.4.答案:C解析:∵c e a ==,∴22222254c a b e a a +===. ∴a 2=4b 2,1=2b a ±. ∴渐近线方程为12b y x x a =±±.5.答案:A解析:若t ∈[-1,1),则执行s =3t ,故s ∈[-3,3).若t ∈[1,3],则执行s =4t -t 2,其对称轴为t =2.故当t =2时,s 取得最大值4.当t =1或3时,s 取得最小值3,则s ∈[3,4].综上可知,输出的s ∈[-3,4].故选A.6.答案:A解析:设球半径为R ,由题可知R ,R -2,正方体棱长一半可构成直角三角形,即△OBA 为直角三角形,如图.BC =2,BA =4,OB =R -2,OA =R ,由R 2=(R -2)2+42,得R =5, 所以球的体积为34500π5π33=(cm 3),故选A. 7.答案:C解析:∵S m -1=-2,S m =0,S m +1=3,∴a m =S m -S m -1=0-(-2)=2,a m +1=S m +1-S m =3-0=3.∴d =a m +1-a m =3-2=1.∵S m =ma 1+12m m (-)×1=0,∴112m a -=-. 又∵a m +1=a 1+m ×1=3,∴132m m --+=. ∴m =5.故选C.8.答案:A解析:由三视图可知该几何体为半圆柱上放一个长方体,由图中数据可知圆柱底面半径r =2,长为4,在长方体中,长为4,宽为2,高为2,所以几何体的体积为πr 2×4×12+4×2×2=8π+16.故选A. 9.答案:B解析:由题意可知,a =2C m m ,b =21C m m +,又∵13a =7b ,∴2!21!13=7!!!1!m m m m m m ()(+)⋅⋅(+), 即132171m m +=+.解得m =6.故选B. 10.答案:D解析:设A (x 1,y 1),B (x 2,y 2),∵A ,B 在椭圆上, ∴2211222222221,1,x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩①② ①-②,得1212121222=0x x x x y y y y a b(+)(-)(+)(-)+, 即2121221212=y y y y b a x x x x (+)(-)-(+)(-), ∵AB 的中点为(1,-1),∴y 1+y 2=-2,x 1+x 2=2, 而1212y y x x --=k AB =011=312-(-)-,∴221=2b a . 又∵a 2-b 2=9,∴a 2=18,b 2=9. ∴椭圆E 的方程为22=1189x y +.故选D. 11.答案:D解析:由y =|f (x )|的图象知:①当x >0时,y =ax 只有a ≤0时,才能满足|f (x )|≥ax ,可排除B ,C.②当x ≤0时,y =|f (x )|=|-x 2+2x |=x 2-2x .故由|f (x )|≥ax 得x 2-2x ≥ax .当x =0时,不等式为0≥0成立.当x <0时,不等式等价于x -2≤a .∵x -2<-2,∴a ≥-2.综上可知:a ∈[-2,0].12.答案:B第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(24)题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.答案:2解析:∵c =t a +(1-t )b ,∴b ·c =t a ·b +(1-t )|b |2.又∵|a |=|b |=1,且a 与b 夹角为60°,b ⊥c ,∴0=t |a ||b |cos 60°+(1-t ),0=12t +1-t . ∴t =2.14.答案:(-2)n -1解析:∵2133n n S a =+,① ∴当n ≥2时,112133n n S a --=+.② ①-②,得12233n n n a a a -=-, 即1n n a a -=-2. ∵a 1=S 1=12133a +, ∴a 1=1.∴{a n }是以1为首项,-2为公比的等比数列,a n =(-2)n -1.15.答案:5- 解析:f (x )=sin x -2cos xx x ⎫⎪⎭, 令cos αsin α=- 则f (x )α+x ),当x =2k π+π2-α(k ∈Z )时,sin(α+x )有最大值1,f (x )即θ=2k π+π2-α(k ∈Z ), 所以cos θ=πcos 2π+2k α⎛⎫- ⎪⎝⎭=πcos 2α⎛⎫- ⎪⎝⎭=sin α==. 16.答案:16解析:∵函数f (x )的图像关于直线x =-2对称,∴f (x )满足f (0)=f (-4),f (-1)=f (-3),即15164,0893,b a b a b =-(-+)⎧⎨=-(-+)⎩解得8,15.a b =⎧⎨=⎩∴f (x )=-x 4-8x 3-14x 2+8x +15.由f ′(x )=-4x 3-24x 2-28x +8=0,得x 1=-2x 2=-2,x 3=-2易知,f (x )在(-∞,-2)上为增函数,在(-22)上为减函数,在(-2,-2上为增函数,在(-2∴f (-2=[1-(-22][(-22+8(-2)+15]=(-8--=80-64=16.f (-2)=[1-(-2)2][(-2)2+8×(-2)+15]=-3(4-16+15)=-9.f (-2)=[1-(-22][(-22+8(-2+15]=(-8++=80-64=16.故f (x )的最大值为16.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.解:(1)由已知得∠PBC =60°,所以∠PBA =30°.在△PBA 中,由余弦定理得PA 2=11732cos 30424+-︒=.故PA . (2)设∠PBA =α,由已知得PB =sin α.在△PBA 中,由正弦定理得sin sin150sin(30)αα=︒︒-,cos α=4sin α.所以tan α=4,即tan ∠PBA =4. 18.(1)证明:取AB 的中点O ,连结OC ,OA 1,A 1B .因为CA =CB ,所以OC ⊥AB .由于AB =AA 1,∠BAA 1=60°,故△AA 1B 为等边三角形,所以OA 1⊥AB .因为OC ∩OA 1=O ,所以AB ⊥平面OA 1C .又A 1C ⊂平面OA 1C ,故AB ⊥A 1C .(2)解:由(1)知OC ⊥AB ,OA 1⊥AB .又平面ABC ⊥平面AA 1B 1B ,交线为AB ,所以OC ⊥平面AA 1B 1B ,故OA ,OA 1,OC 两两相互垂直.以O 为坐标原点,OA 的方向为x 轴的正方向,|OA |为单位长,建立如图所示的空间直角坐标系O -xyz .由题设知A (1,0,0),A 1(0,3,0),C (0,0,B (-1,0,0).则BC =(1,0,1BB =1AA =(-1,0),1AC =(0,. 设n =(x ,y ,z )是平面BB 1C 1C 的法向量,2013 全国新课标卷1理科数学 第11页 则10,0,BC BB ⎧⋅=⎪⎨⋅=⎪⎩n n即0,30.x x y ⎧=⎪⎨-+=⎪⎩可取n =1,-1).故cos 〈n ,1AC 〉=11A CA C ⋅n n =5-. 所以A 1C 与平面BB 1C 1C 所成角的正弦值为5. 19.解:(1)设第一次取出的4件产品中恰有3件优质品为事件A 1,第一次取出的4件产品全是优质品为事件A 2,第二次取出的4件产品都是优质品为事件B 1,第二次取出的1件产品是优质品为事件B 2,这批产品通过检验为事件A ,依题意有A =(A 1B 1)∪(A 2B 2),且A 1B 1与A 2B 2互斥,所以 P (A )=P (A 1B 1)+P (A 2B 2)=P (A 1)P (B 1|A 1)+P (A 2)P (B 2|A 2) =41113161616264⨯+⨯=. (2)X 可能的取值为400,500,800,并且 P (X =400)=41111161616--=,P (X =500)=116,P (X =800)=14. 所以X 的分布列为EX =1111400+500+80016164⨯⨯⨯=506.25. 20.解:由已知得圆M 的圆心为M (-1,0),半径r 1=1;圆N 的圆心为N (1,0),半径r 2=3.设圆P 的圆心为P (x,y ),半径为R .(1)因为圆P 与圆M 外切并且与圆N 内切,所以|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4.由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为2的椭圆(左顶点除外),其方程为22=143x y +(x ≠-2). (2)对于曲线C上任意一点P (x ,y ),由于|PM |-|PN |=2R -2≤2,所以R ≤2,当且仅当圆P 的圆心为(2,0)时,R =2.所以当圆P 的半径最长时,其方程为(x -2)2+y 2=4.若l 的倾斜角为90°,则l 与y 轴重合,可得|AB |=若l的倾斜角不为90°,由r 1≠R 知l 不平行于x 轴,设l 与x 轴的交点为Q ,则1||||QP R QM r =,可求得Q (-4,0),所以可设l :y=k (x +4).由l 与圆M , 解得k =当k y x =代入22=143x y +, 并整理得7x 2+8x -8=0,解得x1,2=47-±.所以|AB|2118|7x x-=.当k=|AB|=187.综上,|AB|=|AB|=187.21.解:(1)由已知得f(0)=2,g(0)=2,f′(0)=4,g′(0)=4.而f′(x)=2x+a,g′(x)=e x(cx+d+c),故b=2,d=2,a=4,d+c=4.从而a=4,b=2,c=2,d=2.(2)由(1)知,f(x)=x2+4x+2,g(x)=2e x(x+1).设函数F(x)=kg(x)-f(x)=2k e x(x+1)-x2-4x-2,则F′(x)=2k e x(x+2)-2x-4=2(x+2)(k e x-1).由题设可得F(0)≥0,即k≥1.令F′(x)=0得x1=-ln k,x2=-2.①若1≤k<e2,则-2<x1≤0.从而当x∈(-2,x1)时,F′(x)<0;当x∈(x1,+∞)时,F′(x)>0.即F(x)在(-2,x1)单调递减,在(x1,+∞)单调递增.故F(x)在[-2,+∞)的最小值为F(x1).而F(x1)=2x1+2-21x-4x1-2=-x1(x1+2)≥0.故当x≥-2时,F(x)≥0,即f(x)≤kg(x)恒成立.②若k=e2,则F′(x)=2e2(x+2)(e x-e-2).从而当x>-2时,F′(x)>0,即F(x)在(-2,+∞)单调递增.而F(-2)=0,故当x≥-2时,F(x)≥0,即f(x)≤kg(x)恒成立.③若k>e2,则F(-2)=-2k e-2+2=-2e-2(k-e2)<0.从而当x≥-2时,f(x)≤kg(x)不可能恒成立.综上,k的取值范围是[1,e2].请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.22.(1)证明:连结DE,交BC于点G.由弦切角定理得,∠ABE=∠BCE.而∠ABE=∠CBE,故∠CBE=∠BCE,BE=CE.又因为DB⊥BE,所以DE为直径,∠DCE=90°,由勾股定理可得DB=DC.(2)解:由(1)知,∠CDE=∠BDE,DB=DC,故DG是BC的中垂线,所以BG设DE的中点为O,连结BO,则∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°,所以CF⊥BF,故Rt△BCF.23.解:(1)将45cos,55sinx ty t=+⎧⎨=+⎩消去参数t,化为普通方程(x-4)2+(y-5)2=25,即C1:x2+y2-8x-10y+16=0.2013 全国新课标卷1理科数学第12页2013 全国新课标卷1理科数学 第13页 将cos ,sin x y ρθρθ=⎧⎨=⎩代入x 2+y 2-8x -10y +16=0得ρ2-8ρcos θ-10ρsin θ+16=0.所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0.(2)C 2的普通方程为x 2+y 2-2y =0.由2222810160,20x y x y x y y ⎧+--+=⎨+-=⎩ 解得1,1x y =⎧⎨=⎩或0,2.x y =⎧⎨=⎩ 所以C 1与C 2交点的极坐标分别为π4⎫⎪⎭,π2,2⎛⎫ ⎪⎝⎭. 24.解:(1)当a =-2时,不等式f (x )<g (x )化为|2x -1|+|2x -2|-x -3<0. 设函数y =|2x -1|+|2x -2|-x -3,则y =15,,212,1,236, 1.x x x x x x ⎧-<⎪⎪⎪--≤≤⎨⎪->⎪⎪⎩其图像如图所示.从图像可知,当且仅当x ∈(0,2)时,y <0.所以原不等式的解集是{x |0<x <2}.(2)当x ∈1,22a ⎡⎫-⎪⎢⎣⎭时,f (x )=1+a . 不等式f (x )≤g (x )化为1+a ≤x +3.所以x ≥a -2对x ∈1,22a ⎡⎫-⎪⎢⎣⎭都成立. 故2a -≥a -2,即43a ≤. 从而a 的取值范围是41,3⎛⎤- ⎥⎝⎦.。
2013年高考文科数学真题及答案全国卷1
2013年高考文科数学真题及答案全国卷1本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2013课标全国Ⅰ,文1)已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =( ).A .{1,4}B .{2,3}C .{9,16}D .{1,2} 【答案】A【考点】本题主要考查集合的基本知识。
【解析】∵B ={x |x =n 2,n ∈A }={1,4,9,16}, ∴A ∩B ={1,4}.2.(2013课标全国Ⅰ,文2)212i1i +(-)=( ).A. −1−12i B .11+i 2- C .1+12i D .1−12i 【答案】B【考点】本题主要考查复数的基本运算。
【解析】212i 12i 12i i 2i 1i 2i 22++(+)-+===(-)-=11+i 2-. 3.(2013课标全国Ⅰ,文3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ).A .12B .13C .14D .16【答案】B【考点】本题主要考查列举法解古典概型问题的基本能力。
【解析】由题意知总事件数为6,且分别为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),满足条件的事件数是2,所以所求的概率为13. 4.(2013课标全国Ⅰ,文4)已知双曲线C :2222=1x y a b-(a >0,b >0)C 的渐近线方程为( ).A . y =±14x B .y =±13x C .12y x =± D .y =±x【答案】C【考点】本题主要考查双曲线的离心率、渐近线方程。
【解析】∵e =c a =,即2254c a =.∵c 2=a 2+b 2,∴2214b a =.∴12b a =.∵双曲线的渐近线方程为by x a=±, ∴渐近线方程为12y x =±.故选C. 5.(2013课标全国Ⅰ,文5)已知命题p :?x ∈R,2x<3x;命题q :?x ∈R ,x 3=1-x 2,则下列命题中为真命题的是( ).A .p ∧qB .⌝p ∧qC .p ∧⌝qD .⌝p ∧⌝q 【答案】B【考点】本题主要考查常用逻辑用语等基本知识。
【高考精品复习】选修4-1 几何证明选讲 第3讲 圆中的比例线段与圆内接四边形
第3讲 圆中的比例线段与圆内接四边形【高考会这样考】1.考查相交弦定理,切割线定理的应用. 2.考查圆内接四边形的判定与性质定理. 【复习指导】本讲复习时,紧紧抓住相交弦定理、切割线定理以及圆内接四边形的判定与性质定理,重点以基本知识、基本方法为主,通过典型的题组训练,掌握解决问题的基本技能.基础梳理1.圆中的比例线段 定理名称基本图形条件结论 应用 相交弦定理弦AB 、CD 相交于圆内点P(1)P A ·PB =PC ·PD ; (2)△ACP ∽ △DBP(1)在P A 、PB 、PC 、PD 四线段中知三求一; (2)求弦长及角 切割线定理P A 切⊙O 于A ,PBC 是⊙O 的割线(1)P A 2=PB ·PC ; (2)△P AB ∽△PCA (1)已知P A 、PB 、PC 知二可求一; (2)求解AB 、AC 割线定理P AB 、PCD 是⊙O 的割线 (1)P A ·PB =PC ·PD ;(2)△P AC ∽△PDB(1)求线段P A 、PB 、PC 、PD 及AB 、CD ; (2)应用相似求AC 、BD2.圆内接四边形(1)圆内接四边形性质定理:圆内接四边形的对角互补. (2)圆内接四边形判定定理:①如果四边形的对角互补,则此四边形内接于圆;②若两点在一条线段同侧且对该线段张角相等,则此两点与线段两个端点共圆,特别的,对定线段张角为直角的点共圆.双基自测1.(2011·天津)如图,四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P.若PB=1,PD=3,则BCAD的值为________.解析∵ABCD为圆内接四边形,∴∠PBC=∠ADP,又∠P=∠P,∴△BCP∽△DAP,∴BCAD=PBPD=13.答案1 32.(2011·广州调研)如图,四边形ABCD内接于⊙O,BC是直径,MN与⊙O相切,切点为A,∠MAB=35°,则∠D=________.解析连接BD,由题意知,∠ADB=∠MAB=35°,∠BDC=90°,故∠D=∠ADB+∠BDC=125°.答案125°3.(2011·深圳调研)如图,AB是⊙O的直径,D是⊙O上一点,E为BD的中点,⊙O的弦AD与BE的延长线相交于点C,若AB=18,BC=12,则AD=________.解析如图,连接AE,∵AB是⊙O的直径,∴AE ⊥BE ,又E 是 BD 的中点, ∴∠BAE =∠EAC , 从而E 是BC 的中点, ∴BE =EC =6,AB =AC =18,由CD ·CA =CE ·CB ,得(18-AD )×18=6×12,故AD =14. 答案 144.(2011·广州模拟)如图,过点D 作圆的切线切于B 点,作割线交圆于A ,C 两点,其中BD =3,AD =4,AB =2,则BC =________.解析 ∵∠A =∠DBC ,∠D =∠D , ∴△ABD ∽△BCD ,AD BD =AB BC ,解得BC =32. 答案 325.如图所示,已知⊙O 的两条弦AB 、CD 相交于AB 的中点E ,且AB =4,DE =CE +3,则CD 的长为________.解析 由相交弦定理知, EA ·EB =EC ·ED .(*)又∵E 为AB 中点,AB =4,DE =CE +3, ∴(*)式可化为22=EC (CE +3)=CE 2+3CE , ∴CE =-4(舍去)或CE =1.∴CD =DE +CE =2CE +3=2+3=5. 答案5考向一相交弦定理的应用【例1】►(2011·广东实验中学质检)如图,半径为2的⊙O中,∠AOB=90°,D 为OB的中点,AD的延长线交⊙O于点E,则线段DE的长为________.[审题视点] 由勾股定理求AD,再由相交弦定理求DE.解析延长DO交圆O于另一点F,易知OD=1,则AD=AO2+OD2= 5.由相交弦定理得,AD·DE=BD·DF,即5·DE=1×3,DE=35 5.答案35 5相交弦定理主要用于与圆有关的比例线段的计算与证明,解题时要与相似三角形及圆周角、弦切角等相关知识综合应用.【训练1】(2011·广东)如图,AB、CD是半径为a的圆O的两条弦,它们相交于AB的中点P,PD=2a3,∠OAP=30°,则CP=________.解析依题AP=PB=32a,由PD·CP=AP·PB,得CP=AP2PD=98a.答案98a考向二切割线定理的应用【例2】►如图所示,P A为⊙O的切线,A为切点,PBC是过点O的割线,P A=10,PB=5,∠BAC的平分线与BC和⊙O分别交于点D和E,求AD·AE的值.[审题视点] 由切割线定理知P A2=PB·PC,可得直径BC的长,要求AD·AE,由△ACE∽△ADB,得AD·AE=CA·BA,只要求出CA,BA的长即可.解如图所示,连接CE,∵P A是⊙O的切线,PBC是⊙O的割线,∴P A2=PB·PC.又P A=10,PB=5,∴PC=20,BC=15.∵P A切⊙O于A,∴∠P AB=∠ACP.又∠P为公共角,∴△P AB∽△PCA.∴ABCA=P APC=1020=12.∵BC为⊙O的直径,∴∠CAB=90°.∴AC2+AB2=BC2=225.∴AC=65,AB=3 5. 又∠ABC=∠E,∠CAE=∠EAB,∴△ACE∽△ADB,∴ABAE=ADAC.∴AD·AE=AB·AC=35×65=90.在圆中通过连接圆上的两点、作圆的切线等可以创造使用圆周角定理、圆心角定理、弦切角定理的条件,这是在圆的问题上解决角之间关系的重要技巧.【训练2】如图,⊙O与⊙O′外切于P,两圆公切线AC,分别切⊙O、⊙O′于A、C两点,AB是⊙O的直径,BE是⊙O′的切线,E为切点,连AP、PC、BC.求证:AP·BC=BE·AC.证明由题意可知∠APC=90°,连BP,则∠APB=90°,∴B、P、C在同一直线上,即P点在BC上,由于AB⊥AC,易证Rt△APB∽Rt△CAB.∴ABCB=PBAB,即AB2=BP·BC,又由切割线定理,得BE2=BP·BC,∴AB=BE,又Rt△APB∽Rt△CAB,∴ABCB=APCA,即AP·BC=AB·AC,∴AP·BC=BE·AC.考向三圆内接四边形性质的应用【例3】►(2011·辽宁三校联考)已知四边形PQRS是圆内接四边形,∠PSR=90°,过点Q作PR、PS的垂线,垂足分别为点H、K.(1)求证:Q、H、K、P四点共圆;(2)求证:QT=TS.[审题视点] (1)利用∠PHQ=∠PKQ=90°;(2)先证∠HKS=∠QSP,TS=TK,再证TS=QT.证明(1)∵∠PHQ=∠PKQ=90°,∴Q、H、K、P四点共圆.(2)∵Q、H、K、P四点共圆,∴∠HKS=∠HQP,①∵∠PSR=90°,∴PR为圆的直径,∴∠PQR=90°,∠QRH=∠HQP,②而∠QSP=∠QRH,③由①②③得,∠QSP=∠HKS,TS=TK,又∠SKQ=90°,∵∠SQK=∠TKQ,∴QT=TK,∴QT=TS.(1)四边形ABCD的对角线交于点P,若P A·PC=PB·PD,则它的四个顶点共圆.(2)四边形ABCD的一组对边AB、DC的延长线交于点P,若P A·PB=PC·PD,则它的四个顶点共圆.以上两个命题的逆命题也成立.该组性质用于处理四边形与圆的关系问题时比较有效.【训练3】如图所示,AB是⊙O的直径,G为AB延长线上的一点,GCD是⊙O的割线,过点G作AB的垂线,交AC的延长线于点E,交AD的延长线于点F,过G作⊙O的切线,切点为H.求证:(1)C,D,F,E四点共圆;(2)GH 2=CE ·GF .证明 (1)如图,连接BC .∵AB 是⊙O 的直径,∴∠ACB =90°. ∵AG ⊥FG ,∴∠AGE =90°. 又∠EAG =∠BAC , ∴∠ABC =∠AEG .又∠FDC =∠ABC , ∴∠FDC =∠AEG . ∴∠FDC +∠CEF =180°. ∴C ,D ,F ,E 四点共圆.(2)∵GH 为⊙O 的切线,GCD 为割线, ∴GH 2=GC ·GD .由C ,D ,F ,E 四点共圆,得∠GCE =∠AFE ,∠GEC =∠GDF . ∴△GCE ∽△GFD . ∴GC GF =GE GD, 即GC ·GD =GE ·GF .∴CH 2=GE ·GF .如何求解高考中几何证明选讲问题从近两年的新课标高考试题可以看出,高考对切割线定理的应用及四点共圆问题重点考查,题型为填空题或解答题.【示例】► (本题满分10分)(2011·新课标全国)如图,D ,E 分别为△ABC 的边AB ,AC 上的点,且不与△ABC 的顶点重合.已知AE 的长为m ,AC 的长为n ,AD ,AB 的长是关于x 的方程x 2-14x +mn =0的两个根.(1)证明:C ,B ,D ,E 四点共圆;(2)若∠A =90°,且m =4,n =6,求C ,B ,D ,E 所在圆的半径.第(1)问连DE ,证明△ADE ∽△ACB ,即证∠ADE =∠ACB ,根据对角互补判定四点C ,B ,D ,E 共圆;第(2)问先求AD 、AB 的长,再确定C ,B ,D ,E 四点所在圆的圆心,进一步求半径.[解答示范] (1)连接DE ,根据题意,在△ADE 和△ACB 中,AD ·AB =mn =AE ·AC ,即AD AC =AEAB .又∠DAE =∠CAB , 从而△ADE ∽△ACB .(3分) 因此∠ADE =∠ACB .所以C ,B ,D ,E 四点共圆.(4分)(2)m =4,n =6时,方程x 2-14x +mn =0的两根为x 1=2,x 2=12. 故AD =2,AB =12.(6分)取CE 的中点G ,DB 的中点F ,分别过G ,F 作AC ,AB 的垂线,两垂线相交于H 点,连结DH .因为C ,B ,D ,E 四点共圆,所以C ,B ,D ,E 四点所在圆的圆心为H ,半径为DH .(8分)由于∠A =90°,故GH ∥AB ,HF ∥AC .从而HF =AG =5,DF =12×(12-2)=5. 故C ,B ,D ,E 四点所在圆的半径为5 2.(10分)本题主要考查平面几何证明,四点共圆,三角形相似,一元二次方程根与系数的关系.四点共圆常用的证明方法是求证四边形的一个外角等于与它不相邻的内角,当然也可以求出过其中三点的圆,然后证另一点也在这个圆上,也可以证明以两个点为端点的线段的垂直平分线与以另两个点为端点的线段的垂直平分线相交.【试一试】(2011·辽宁)如图,A,B,C,D四点在同一圆上,AD的延长线与BC的延长线交于E点,且EC=ED.(1)证明:CD∥AB;(2)延长CD到F,延长DC到G,使得EF=EG,证明:A,B,G,F四点共圆.[尝试解答] (1)因为EC=ED,所以∠EDC=∠ECD.因为A,B,C,D四点在同一圆上,所以∠EDC=∠EBA.故∠ECD=∠EBA.所以CD∥AB.(2)由(1)知,AE=BE.因为EF=EG,故∠EFD=∠EGC,从而∠FED=∠GEC.连接AF,BG,则△EF A≌△EGB,故∠F AE=∠GBE.又CD∥AB,∠EDC=∠ECD,所以∠F AB=∠GBA.所以∠AFG+∠GBA=180°.故A,B,G,F四点共圆.。
2013年高考全国Ⅰ理科数学试题及答案(word解析版)
2013年普通高等学校招生全国统一考试(全国Ⅰ)数学(理科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)【2013年全国Ⅰ,理1,5分】已知集合{}{2|20,|A x x x B x x =->=<,则( ) (A )A B =∅ (B )A B =R (C )B A ⊆ (D )A B ⊆ 【答案】B【解析】∵2()0x x ->,∴0x <或2x >.由图象可以看出A B =R ,故选B . (2)【2013年全国Ⅰ,理2,5分】若复数z 满足(34i)|43i |z -=+,则z 的虚部为( )(A )4- (B )45- (C )4 (D )45【答案】D【解析】∵(34i)|43i |z -=+,∴55(34i)34i 34i (34i)(34i)55z +===+--+.故z 的虚部为45,故选D . (3)【2013年全国Ⅰ,理3,5分】为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是( )(A )简单随机抽样 (B )按性别分层抽样 (C )按学段分层抽样 (D )系统抽样 【答案】C【解析】因为学段层次差异较大,所以在不同学段中抽取宜用分层抽样,故选C .(4)【2013年全国Ⅰ,理4,5分】已知双曲线C :()2222=10,0x y a b a b->>C 的渐近线方程为( )(A )14y x =± (B )13y x =± (C )12y x =± (D )y x =±【答案】C【解析】∵c e a ==,∴22222254c a b e a a +===.∴224a b =,1=2b a ±. ∴渐近线方程为12b y x x a =±±,故选C .(5)【2013年全国Ⅰ,理5,5分】执行下面的程序框图,如果输入的[]1,3t ∈-,则输出的s 属于( ) (A )[3,4]- (B )[5,2]- (C )[4,3]- (D )[2,5]- 【答案】D【解析】若[)1,1t ∈-,则执行3s t =,故[)3,3s ∈-.若[]1,3t ∈,则执行24s t t =-,其对称轴为2t =.故当2t =时,s 取得最大值4.当1t =或3时,s 取得最小值3,则[]3,4s ∈. 综上可知,输出的[]3,4s ∈-,故选D .(6)【2013年全国Ⅰ,理6,5分】如图,有一个水平放置的透明无盖的正方体容器,容器高8cm , 将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器的厚 度,则球的体积为( )(A )35003cm π (B )38663cm π (C )313723cm π(D )320483cm π【答案】B【解析】设球半径为R ,由题可知R ,2R -,正方体棱长一半可构成直角三角形,即OBA ∆为直角三角形,如图,2BC =,4BA =,2OB R =-,OA R =,由()22224R R =-+,得5R =,所以球的体积为34500533ππ=(cm 3),故选B .(7)【2013年全国Ⅰ,理7,5分】设等差数列{}n a 的前n 项和为11,2,0,3n m m m S S S S -+=-==,则m =( )(A )3(B )4 (C )5 (D )6【答案】C 【解析】∵12m S -=-,0m S =,13m S +=,∴()1022m m m a S S -=-=--=,11303m m m a S S ++=-=-=.∴1321m m d a a +=-=-=.∵()11102m m m S ma -=+⨯=,∴112m a -=-. 又∵1113m a a m +=+⨯=,∴132m m --+=.∴5m =,故选C . (8)【2013年全国Ⅰ,理8,5分】某几何体的三视图如图所示,则该几何体的体积为( ) (A )168π+ (B )88π+ (C )1616π+ (D )816π+ 【答案】A【解析】由三视图可知该几何体为半圆柱上放一个长方体,由图中数据可知圆柱底面半径2r =,长为4,在长方体中,长为4,宽为2,高为2,所以几何体的体积为24422816r ππ⨯⨯+⨯⨯=+,故选A .(9)【2013年全国Ⅰ,理9,5分】设m 为正整数,()2m x y +展开式的二项式系数的最大值为a , ()21m x y ++展开式的二项式系数的最大值为b ,若137a b =,则m =( )(A )5 (B )6 (C )7 (D )8 【答案】B【解析】由题意可知,2m m a C =,21mm b C +=,又∵137a b =,∴2!21!13=7!!!1!m m m m m m ()(+)⋅⋅(+),即132171m m +=+.解得6m =,故选B .(10)【2013年全国Ⅰ,理10,5分】已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为(3,0)F ,过点F 的直线交椭圆于,A B 两点.若AB 的中点坐标为(1,1)-,则E 的方程为( ) (A )2214536x y +=(B )2213627x y += (C )2212718x y += (D )221189x y +=【答案】D【解析】设11()A x y ,,22()B x y ,,∵A ,B 在椭圆上,∴2211222222221,1,x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩①②,①-②,得 1212121222=0x x x x y y y y a b (+)(-)(+)(-)+,即2121221212=y y y y b a x x x x (+)(-)-(+)(-), ∵AB 的中点为()1,1-,∴122y y +=-,122x x +=,而1212011=312AB y y k x x --(-)==--, ∴221=2b a .又∵229a b -=,∴218a =,29b =.∴椭圆E 的方程为22=1189x y +,故选D . (11)【2013年全国Ⅰ,理11,5分】已知函数()()220ln 10x x x f x x x ⎧-+≤⎪=⎨+>⎪⎩,若()f x a x ≥|,则a 的取值范围是( ) (A )(],0-∞ (B )(],1-∞ (C )[2,1]- (D )[2,0]-【答案】D【解析】由()y f x =的图象知:①当0x >时,y ax =只有0a ≤时,才能满足()f x ax ≥,可排除B ,C .②当0x ≤时,()2222y f x x x x x ==-+=-.故由()f x ax ≥得 22x x ax -≥.当0x =时,不等式为00≥成立.当0x <时,不等式等价于2x a -≤.∵22x -<-,∴2a ≥-.综上可知:[]2,0a ∈-,故选D .(12)【2013年全国Ⅰ,理12,5分】设n n n A B C ∆的三边长分别为n a ,n b ,n c ,n n n A B C ∆的面积为n S ,1,2,3.n =⋯,若11b c >,1112b c a +=,1n n a a +=,12n n n c a b ++=,12n nn b a c ++=,则( )(A ){}n S 为递减数列 (B ){}n S 为递增数列(C ){}21n S -为递增数列,{}2n S 为递减数列 (D ){}21n S -为递减数列,{}2n S 为递增数列 【答案】B第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分(13)【2013年全国Ⅰ,理13,5分】已知两个单位向量a ,b 的夹角为60°,()1t t =+-c a b .若·0=b c ,则t = . 【答案】2【解析】∵()1t t =+-c a b ,∴()2··1t t =+-bc ab b .又∵1==a b ,且a 与b 夹角为60°,⊥b c , ∴()0 601t cos t =︒+-a b ,1012t t =+-.∴2t =.(14)【2013年全国Ⅰ,理14,5分】若数列{}n a 的前n 项和2133n n S a =+,则{}n a 的通项公式是n a = .【答案】()12n --【解析】∵2133n n S a =+,① ∴当2n ≥时,112133n n S a --=+.② ①-②,得12233n n n a a a -=-,即12n n aa -=-.∵1112133a S a ==+,∴11a =.∴{}n a 是以1为首项,-2为公比的等比数列,()12n n a -=-.(15)【2013年全国Ⅰ,理15,5分】设当x θ=时,函数()2f x sinx cosx =-取得最大值,则cos θ= .【答案】 【解析】()s 2x f x sinx cosx x ⎫⎪==⎭-,令cos α=,sin α=,则()()f x x α=+,当22()x k k ππα=+-∈Z 时,()sin x α+有最大值1,()f x,即22()k k πθπα=+-∈Z ,所以cos θ=πcos =cos 2π+cos sin 22k πθααα⎛⎫⎛⎫-=-=== ⎪ ⎪⎝⎭⎝⎭(16)【2013年全国Ⅰ,理16,5分】若函数()()()221f x x x ax b =-++的图像关于直线2x =-对称,则()f x 的最大值为 .【答案】16【解析】∵函数()f x 的图像关于直线2x =-对称,∴()f x 满足()()04f f =-,()()13f f -=-,即151640893b a b a b =-(-+)⎧⎨=-(-+)⎩,得815a b =⎧⎨=⎩∴()432814815f x x x x x =---++.由()324242880f x x x x '=---+=,得12x =-22x =-,32x =-.易知,()f x在(,2-∞-上为增函数,在()22--上为减函数,在(2,2--上为增函数,在()2-+-∞上为减函数.∴(((((222122821588806416f ⎡⎤⎡⎤-=---+-+=---=-=⎢⎥⎢⎥⎣⎦⎣⎦.()()()()()22212282153416915f ⎡⎤⎡-=---+⨯⎤==-⎣⎦⎣⎦-+--+(((((222122821588806416f ⎡⎤⎡⎤-=---++-++=-++=-=⎢⎥⎢⎥⎣⎦⎣⎦.故f (x )的最大值为16.三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)【2013年全国Ⅰ,理17,12分】如图,在ABC ∆中,90ABC ∠=︒,AB =,1BC =,P为ABC ∆内一点,90BPC ∠=︒.(1)若12PB =,求PA ;(2)若150APB ∠=︒,求tan PBA ∠.解:(1)由已知得60PBC ∠=︒,30PBA ∴∠=︒.在PBA ∆中,由余弦定理得211732cos 30424PA =+-︒=.故PA =(2)设PBA α∠=,由已知得sin PB α=.在PBA ∆sin sin(30)αα=︒-,4sin αα=.所以tan α,即tan PBA ∠= (18)【2013年全国Ⅰ,理18,12分】如图,三棱柱111ABC A B C -中,CA CB =,1AB AA =,160BAA ∠=︒. (1)证明:1AB A C ⊥;(2)若平面ABC ⊥平面11AA B B ,AB CB =,求直线1A C 与平面11BB C C 所成角的正弦值.解:(1)取AB 的中点O ,连结OC ,1OA ,1A B .因为CA CB =,所以OC AB ⊥.由于1AB AA =,160BAA ∠=︒,故1AA B ∆为等边三角形,所以1OA AB ⊥.因为1OC OA O = ,所以AB ⊥平面1OA C . 又1A C 平面1OA C ,故1AB A C ⊥.(2)由(1)知OC AB ⊥,1OA AB ⊥.又平面ABC ⊥平面11AA B B ,交线为AB ,所以OC ⊥平面11AA B B ,故OA ,1OA ,OC 两两相互垂直.以O 为坐标原点,OA 的方向为x 轴的正方向,OA为单位长,建立如图所示的空间直角坐标系O xyz -.由题设知()1,0,0A,1()0A ,(0,0C ,()1,0,0B -.则(1,03BC =,11()BB AA =-=,(10,A C = .设()n x y z =,,是平面11BB C C 的法向量,则100BC BB ⎧⋅=⎪⎨⋅=⎪⎩n n即0x x ⎧=⎪⎨-=⎪⎩可取1)n =-.故111cos ,n AC n AC n AC ⋅==⋅ .所以1A C 与平面11BB C C. (19)【2013年全国Ⅰ,理19,12分】一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n .如果n =3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n =4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为12,且各件产品是否为优质品相互独立.(1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X (单位:元),求X 的分布列及数学期望.解:(1)设第一次取出的4件产品中恰有3件优质品为事件1A ,第一次取出的4件产品全是优质品为事件2A ,第二次取出的4件产品都是优质品为事件1B ,第二次取出的1件产品是优质品为事件2B ,这批产品通过检验为事件A ,依题意有()()1122A A B A B = ,且11A B 与22A B 互斥,所以 ()()()()()()()112211122241113||161616264P A P A B P A B P A P B A P A P B A ==⨯++⨯==+.(2)X 可能的取值为400,500,800,并且()41114001161616P X ==--=,()500116P X ==,()80140P X ==. 所以X 的分布列为()111400+500+800506.2516164E X =⨯⨯⨯=. (20)【2013年全国Ⅰ,理20,12分】已知圆()2211M x y ++=:,圆()2219N x y -+=:,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .(1)求C 的方程;(2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求AB . 解:由已知得圆M 的圆心为()1,0M -,半径11r =;圆N 的圆心为()1,0N ,半径23r =.设圆P 的圆心为(),P xy ,半径为R .(1)因为圆P 与圆M 外切并且与圆N 内切,所以()()12124PM PN R r r R r r +=++-=+=.由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为2(左顶点除外),其方程为()22=1243x y x +≠-.(2)对于曲线C 上任意一点()P x y ,,由于222PM PN R -=-≤,所以2R ≤,当且仅当圆P 的圆心为()2,0时,2R =.所以当圆P 的半径最长时,其方程为()2224x y -+=.若l 的倾斜角为90︒,则l 与y 轴重 合,可得AB =l 的倾斜角不为90︒,由1r R ≠知l 不平行于x 轴,设l 与x 轴的交点为Q ,则1||||QP R QM r =,可求得()4,0Q -,所以可设()4l y k x =+:.由l 与圆M ,解得k =. 当k =时,将y =+22=13x y +,并整理得27880x x +-=,解得1,2x =. 2118|7AB x x =-=.当k =时,由图形对称性可知187AB =.综上,AB =187AB =. (21)【2013年全国Ⅰ,理21,12分】设函数()2f x x ax b =++,()()x g x e cx d =+.若曲线()y f x =和曲线()y g x =都过点()0,2P ,且在点P 处有相同的切线42y x =+.(1)求a ,b ,c ,d 的值;(2)若2x ≥-时,()()f x kg x ≤,求k 的取值范围.解:(1)由已知得()02f =,()02g =,()04f '=,()04g '=.而()2f x x a '=+,()()x g x e cx d c '=++, 故2b =,2d =,4a =,4d c +=.从而4a =,2b =,2c =,2d =. (2)由(1)知,()242f x x x =++,()()21x g x e x =+.设函数()()()()22142x F x kg x f x ke x x x =-=+---,()()()()2224221x x F x ke x x x ke '=+--=+-.()00F ≥ ,即1k ≥.令()0F x '=得1ln x k =-,22x =-. ①若21k e ≤<,则120x -<≤.从而当12()x x ∈-,时,()0F x '<;当1()x x ∈+∞,时,()0F x '>. 即()F x 在1(2)x -,单调递减,在1()x +∞,单调递增.故()F x 在[)2-+∞,的最小值为()1F x . 而()()11111224220F x x x x x =+---=-+≥.故当2x ≥-时,()0F x ≥,即()()f x kg x ≤恒成立. ②若2k e =,则()()()2222x F x e x e e -'=+-.∴当2x >-时,()0F x '>,即()F x 在()2-+∞,单调递增. 而()20F -=,故当2x ≥-时,()0F x ≥,即()()f x kg x ≤恒成立. ③若2k e >,则()()22222220F k eek e ---=-+=--<.从而当2x ≥-时,()()f x kg x ≤不可能恒成立.综上,k 的取值范围是2[1]e ,. 请考生在(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个题目计分,做答时,请用2B 铅笔在答题卡上将所选题号后的方框涂黑.(22)【2013年全国Ⅰ,理22,10分】(选修4-1:几何证明选讲)如图,直线AB为圆的切线,切点为B ,点C 在圆上,ABC ∠的角平分线BE 交圆于点E ,DB 垂直BE 交圆 于点D . (1)证明:DB DC =;(2)设圆的半径为1,BC =CE 交AB 于点F ,求BCF ∆外接圆的半径. 解:(1)连结DE ,交BC 于点G .由弦切角定理得,ABE BCE ∠=∠.而ABE CBE ∠=∠,故CBE BCE ∠=∠,BE CE =.又因为DB BE ⊥,所以DE 为直径,90DCE ∠=︒,DB DC =.(2)由(1)知,CDE BDE ∠=∠,DB DC =,故DG 是BC的中垂线,所以BG =设DE 的中点为O ,连结BO ,则60BOG ∠=︒.从而30ABE BCE CBE ∠=∠=∠=︒,所以CF BF ⊥,故Rt BCF ∆.(23)【2013年全国Ⅰ,理23,10分】(选修4-4:坐标系与参数方程)已知曲线1C 的参数方程为45cos 55sin x ty t=+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2sin ρθ=. (1)把1C 的参数方程化为极坐标方程;(2)求1C 与2C 交点的极坐标(0ρ≥,02θπ≤<).解:(1)将45cos 55sin x t y t =+⎧⎨=+⎩消去参数t ,化为普通方程()()224525x y -+-=,即221810160C x y x y +--+=:.将cos sin x y ρθρθ=⎧⎨=⎩代入22810160x y x y +--+=得28cos 10sin 160ρρθρθ--+=. 所以1C 的极坐标方程为28cos 10sin 160ρρθρθ--+=.(2)2C 的普通方程为2220x y y +-=.由222281016020x y x y x y y ⎧+--+=⎨+-=⎩,解得11x y =⎧⎨=⎩或02x y =⎧⎨=⎩, 所以1C 与2C交点的极坐标分别为π4⎫⎪⎭,π2,2⎛⎫ ⎪⎝⎭.(24)【2013年全国Ⅰ,理24,10分】(选修4-5:不等式选讲)已知函数()212f x x x a =-++,()3g x x =+.(1)当2a =-时,求不等式()()f x g x <的解集;(2)设1a >-,且当1,22a x ⎡⎫∈-⎪⎢⎣⎭时,()()f x g x ≤,求a 的取值范围.解:(1)当2a =-时,()()f x g x <化为212230x x x -+---<.设函数21223y x x x =-+---,则y =15,212,1236,1x x y x x x x ⎧-<⎪⎪⎪=--≤≤⎨⎪->⎪⎪⎩,其图像如图所示.从图像可知,当且仅当()0,2x ∈时,0y <.所以原不等式的解集是{}2|0x x <<.(2)当1,22x a ⎡⎫-⎪⎢⎣⎭∈时,()1f x a =+.不等式()()f x g x ≤化为13a x +≤+.所以2x a ≥-,对1,22x a ⎡⎫-⎪⎢⎣⎭∈都成立.故22a a -≥-,即43a ≤.从而a 的取值范围是41,3⎛⎤- ⎥⎝⎦.。
2013届高考数学复习_最新3年高考2年模拟(12)几何证明选讲
用心 爱心 专心
7
1.(天津理 12)如图,已知圆中两条弦 AB 与CD 相交于F : FB : BE = 4 : 2 :1. 若CE 与圆相切,则 线段 CE 的长为__________.
7
【答案】 2
2.(上海理 5)在极坐标系中,直线 ρ(2cosθ + sinθ ) = 2 与直线 ρ cosθ = 1的夹角大小为
【点评】本题主要考查圆的切线的性质、三角形相似的判断与性质,考查推理论证能力和 数形结合思想,重在考查对平面几何基础知识、基本方法的掌握,难度较小. 11. 【命题意图】本题主要考查线线平行判定、三角形相似的判定等基础知识,是简单题. 【∵解CF析∥】AB(,Ⅰ)∴∵BCDF,DE 是分平别行为四AB边,A形C 的, 中点,∴DE∥BC, ∴CF=BD=AD, 连结 AF,∴ADCF 是平行四边形, ∴CD=AF, ∵(ⅡC)F∥∵ABF,G∥∴BCB,C=∴AFG,B=C∴F,CD=BC; 由(Ⅰ)可知 BD=CF,∴GB=BD, ∵∠DGB=∠EFC=∠DBC, ∴△BCD∽△GBD. 12. 【解析】(1)CF / , / AB DF / /BC ⇒ CF / /BD/ /AD ⇒ CD = BF
CF / / AB ⇒ AF = BC ⇔ BC = CD
(2) BC / /GF ⇒ BG = FC = BD
1【和证3.数明命形【:题B(C结答意1/合案)图/G思由与】F想解本A⇒C,析题与】重∠主G在要eD考O考E查相查=对切圆∠平于的B面G切AD几线,何=的得∠基性∠D础质CB知A、CB识三==、∠∠角A基B形DD本相BC方似,⇒法的同的∆判理B掌断C∠握D与A,C性: B难∆质=度G∠,B较D考D小A查B。推,理论证能力
2013年高考解析分类汇编(文数)16:选修部分
2013年高考解析分类汇编16:选修部分一、选择题1 .(2013年高考大纲卷(文4))不等式222x -<的解集是( )A .()-1,1B .()-2,2C .()()-1,00,1D .()()-2,00,2【答案】D【解析】2|2|2<-x ,所以⎪⎩⎪⎨⎧->-<-222222x x ,所以402<<x ,所以22<<-x ,且0≠x ,故选D.二、填空题2 .(2013年高考陕西卷(文15))(几何证明选做题) 如图, AB 与CD 相交于点E , 过E 作BC的平行线与AD 的延长线相交于点P . 已知A C ∠=∠, PD = 2DA = 2, 则PE = ______.P【答案】.6【解析】//.BC PE BCD PED ∴∠=∠且在圆中.BCD BAD PED BAD ∠=∠⇒∠=∠.6.623∽2==⋅=⋅=⇒=⇒∆∆⇒PE PD PA PE PEPDPA PE APE EPD 所以3 .(2013年高考广东卷(文))(坐标系与参数方程选做题)已知曲线C 的极坐标方程为2cos ρθ=.以极点为原点,极轴为x 轴的正半轴建立直角坐标系,则曲线C 的参数方程为____________.【答案】1cos sin x y θθ=+⎧⎨=⎩(θ为参数)【解析】本题考了备考弱点.讲参数方程的时候,参数的意义要理解清楚.先化成直角坐标方程()2211x y -+=,易的则曲线C 的参数方程为1cos sin x y θθ=+⎧⎨=⎩ (θ为参数)。
4 .(2013年高考陕西卷(文))A . (不等式选做题) 设a , b ∈R , |a -b |>2, 则关于实数x 的不等式||||2x a x b -+->的解集是______.【答案】R【解析】 考察绝对值不等式的基本知识。
函数||||)(b x a x x f -+-=的值域为:2||)().|,[|>-≥∈∀+∞-b a x f R x b a 时,因此,当.所以,不等式2||||>-+-b x a x的解集为R 。
(新课标)2013高考数学 三轮必考热点集中营 热点22选修平面几何问题(教师版)
A BC.E D .(新课标)2013高考数学 三轮必考热点集中营 热点22选修平面几何问题(教师版)【三年真题重温】【2011⋅新课标全国理,22】【2011⋅新课标全国文,22】选修4—1:几何证明选讲 如图,D ,E 分别为△ABC 的边AB ,AC 上的点,且不与△ABC 的顶点重合.已知AE 的长为m ,AC 的长为n ,AD ,AB 的长是关于x 的方程2140x x mn -+=的两个根.(Ⅰ) 证明:C ,B ,D ,E 四点共圆;(Ⅱ) 若∠90A =︒,且4m =,6n =,求C ,B ,D ,E 所在圆的半径.【2010⋅新课标全国理,22】【2010⋅新课标全国文,22】如图,已经圆上的弧 AC BC=,过C 点的圆切线与BA 的延长线交于E 点,证明:(Ⅰ)ACE BCD ∠=∠;(Ⅱ)2BC BE CD =⨯.【2012⋅新课标全国理,22】【2012⋅新课标全国文,22】选修4-1:几何证明选讲 如图,,D E 分别为ABC ∆边,AB AC 的中点,直线DE 交ABC ∆的外接圆于,F G 两点,若//CF AB ,证明:(1)CD BC =;(2)BCD GBD ∆∆【命题意图猜想】2011年高考涉及到对证明四点故圆问题,可证对角互补或一外角等于内对角或通过证明其中三点与非这四点中另外两点分别在两个圆上,因这两个圆的由不共线的三个公共点,必重合而得证,求圆的半径注意利用圆的性质.2010年高考主要考查几何选讲中圆、三角形相似等知识,考查分析问题、解决问题的能力,属于基础题.2012年高考主要以圆为几何背景考查线线平行、相等的证明及相似三角形的证明,可以运用平行四边形的知识证平行、相等,运用相似三角形的基本证明方法求证.预测2013年高考很可能考查相交弦定理、圆内接四边形的性质定理与判定定理、切割线定理为工具解决问题的能力.【最新考纲解读】1.复习相似三角形的定义与性质,了解平行截割定理,证明直角三角形射影定理.2.证明圆周角定理、圆的切线的判定定理及性质定理.3.证明相交弦定理、圆内接四边形的性质定理与判定定理、切割线定理.【回归课本整合】一、相似三角形1.相似三角形(1)定义:对应角相等,对应边成比例的两个三角形叫做相似三角形,相似三角形对应边的比值叫做相似比(或相似系数).(2)判定①判定定理1 两角对应相等的两个三角形相似.判定定理2 三边对应成比例的两个三角形相似.判定定理3 两边对应成比例且夹角相等的两三角形相似.②如果两个直角三角形有一个锐角对应相等,那么它们相似.如果两个直角三角形的两条直角边对应成比例,那么它们相似.如果一个直角三角形的斜边与一条直角边和另一个直角三角形的斜边与一条直角边对应成比例,那么这两个三角形相似.(3)性质①性质定理1 相似三角形对应边上的高、中线和它们周长的比都等于相似比.②性质定理2 相似三角形面积的比等于相似比的平方.相似三角形对应角的平分线的比,外接圆直径的比、周长的比,内切圆直径的比、周长的比都等于相似比.相似三角形外接圆面积的比,内切圆面积的比都等于相似比的平方.2.平行截割定理平行截割定理:三条平行线截两条直线,所得的对应线段成比例.推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.3.直角三角形的射影定理:若Rt△ABC斜边AB上的高为CD,则CD2=AD·BD,BC2=BD·AB,AC2=AD·AB.二、圆幂定理与圆锥截线1.圆的切线(1)切线判定定理经过半径外端且垂直于这条半径的直线是圆的切线.(2)切线性质定理圆的切线垂直于经过切点的半径.①经过圆心且垂直于切线的直线必过切点.②经过切点垂直于切线的直线必经过圆心.推论1 从圆外一点所引圆的两条切线长相等.推论2 经过圆外一点和圆心的直线平分从这点向圆所引两条切线的夹角.(3)内切圆、旁切圆与一个三角形三边都相切的圆,叫做这个三角形的内切圆;与三角形的一边和其它两边的延长线都相切的圆,叫做三角形的旁切圆.2.圆心角定理圆心角的度数等于它所对的弧的度数.3.圆周角定理圆周角的度数等于它所对弧的度数的一半.推论1 直径(或半圆)所对的圆周角都是直角.推论2 同弧或等弧所对的圆周角相等.推论3 等于直角的圆周角所对的弦是圆的直径.4.弦切角定理弦切角的度数等于它所夹的弧的度数的一半.推论:弦切角等于它所夹的弧所对的圆周角.。
【高考精品复习】选修4-1 几何证明选讲 第1讲 平行截割定理与相似三角形
第1讲平行截割定理与相似三角形【高考会这样考】考查相似三角形的判定和性质定理的应用及直角三角形的射影定理的应用.【复习指导】复习本讲时,只要掌握好教材上的内容,熟练教材上的习题即可达到高考的要求,该部分的复习以基础知识、基本方法为主,掌握好解决问题的基本技能即可.基础梳理1.平行截割定理(1)平行线等分线段定理及其推论①定理:如果一组平行线在一条直线上截得的线段相等,那么在任一条(与这组平行线相交的)直线上截得的线段也相等.②推论:经过梯形一腰的中点而且平行于底边的直线平分另一腰.(2)平行截割定理及其推论①定理:两条直线与一组平行线相交,它们被这组平行线截得的对应线段成比例.②推论:平行于三角形一边的直线截其他两边(或两边的延长线),截得的三角形与原三角形的对应边成比例.(3)三角形角平分线的性质三角形的内角平分线分对边成两段的长度比等于夹角两边长度的比.(4)梯形的中位线定理梯形的中位线平行于两底,并且等于两底和的一半.2.相似三角形(1)相似三角形的判定①判定定理a.两角对应相等的两个三角形相似.b .两边对应成比例且夹角相等的两个三角形相似.c .三边对应成比例的两个三角形相似.②推论:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似.③直角三角形相似的特殊判定斜边与一条直角边对应成比例的两个直角三角形相似. (2)相似三角形的性质相似三角形的对应线段的比等于相似比,面积比等于相似比的平方. (3)直角三角形射影定理直角三角形一条直角边的平方等于该直角边在斜边上射影与斜边的乘积,斜边上的高的平方等于两条直角边在斜边上射影的乘积.双基自测1.如图所示,已知a ∥b ∥c ,直线m 、n 分别与a 、b 、c 交于点A ,B ,C 和A ′,B ′,C ′,如果AB =BC =1,A ′B ′=32,则B ′C ′=________.解析 由平行线等分线段定理可直接得到答案.答案 322.如图所示,BD 、CE 是△ABC 的高,BD 、CE 交于F ,写出图中所有与△ACE 相似的三角形________.解析 由Rt △ACE 与Rt △FCD 和Rt △ABD 各共一个锐角,因而它们均相似,又易知∠BFE =∠A ,故Rt △ACE ∽Rt △FBE . 答案 △FCD 、△FBE 、△ABD3.(2011·西安模拟)如图,在△ABC 中,M 、N 分别是AB 、BC 的中点,AN 、CM 交于点O ,那么△MON 与△AOC 面积的比是________. 解析 ∵M 、N 分别是AB 、BC 中点,故MN 綉12AC , ∴△MON ∽△COA ,∴S △MON S △AOC =MN 2AC 2=14.答案 1∶44.如图所示,已知DE ∥BC ,BF ∶EF =3∶2,则AC ∶AE =______,AD ∶DB =________.解析 ∵DE ∥BC ,∴AE AC =DE BC =EFBF .∵BF ∶EF =3∶2,∴AE AC =EF BF =23.∴AC ∶AE =3∶2.同理DE ∥BC ,得AB ∶AD =3∶2,即AB AD =32. ∴AD AB =23,即AD AB -AD =23-2=2.即ADBD =2.∴AD ∶BD =2∶1. 答案 3∶2 2∶15.(2010·广东)如图,在直角梯形ABCD 中,DC ∥AB ,CB ⊥AB ,AB =AD =a ,CD =a2,点E 、F 分别为线段AB 、AD 的中点,则EF =________.解析 连接DE 和BD ,依题知,EB ∥DC ,EB =DC =a2,∴EBCD 为平行四边形,∵CB ⊥AB ,∴DE ⊥AB ,又E 是AB 的中点,故AD =DB =a ,∵E ,F 分别是AD 、AB 的中点,∴EF =12DB =12a . 答案 a 2考向一 平行截割定理的应用【例1】►(2011·广州测试(二))在梯形ABCD 中,AD ∥BC ,AD =2,BC =5,点E 、F 分别在AB 、CD 上,且EF ∥AD ,若AE EB =34,则EF 的长为________. [审题视点] 把梯形的两腰BA 、CD 分别延长交于一点,利用平行截割定理可求解.解析 如图所示,延长BA 、CD 交于点P ,∵AD ∥BC ,∴P A PB =AD BC =25,∴P A AB =23,又∵AE EB =34,∴AE AB =37,∴P A AE =149,∴P A PE =1423.∵AD ∥EF ,∴AD EF =P A PE =1423,又AD =2,∴EF =237. 答案 237在解题时要注意添加辅助线.【训练1】 如图,在△ABC 中,DE ∥BC ,EF ∥CD ,若BC =3,DE =2,DF =1,则AB 的长为________.解析由⎩⎨⎧DE ∥BC ,EF ∥CD ,BC =3,DE =2⇒AE AC =AF AD =DE BC =23,又DF =1,故可解得AF =2,∴AD =3,又AD AB =23,∴AB =92. 答案 92考向二 相似三角形的判定和性质的应用【例2】►已知,如图,在△ABC 中,AB =AC ,BD ⊥AC ,点D 是垂足. 求证:BC 2=2CD ·AC .[审题视点] 作AE ⊥BC ,证明△AEC 和△BDC 相似即可.证明 过点A 作AE ⊥BC ,垂足为E , ∴CE =BE =12BC ,由BD ⊥AC ,AE ⊥BC . 又∴∠C =∠C ,∴△AEC ∽△BDC . ∴EC DC =ACBC ,∴12BC CD =AC BC , 即BC 2=2CD ·AC.判定两个三角形相似要注意结合图形的性质特点灵活选择判定定理.在一个题目中,相似三角形的判定定理和性质定理可能多次用到. 【训练2】 (2011·惠州调研)如图,在△ABC 中,DE ∥BC ,DF ∥AC ,AE ∶AC =3∶5,DE =6,则BF =________.解析 因为DE ∥BC ,所以△ADE ∽△ABC ,所以AE AC =DE BC ,即35=6BC ,所以BC =10.又DF ∥AC ,所以四边形DECF 是平行四边形,故BF =BC -FC =BC -DE =10-6=4. 答案 4考向三直角三角形射影定理的应用【例3】►已知圆的直径AB=13,C为圆上一点,过C作CD⊥AB于D(AD>BD),若CD=6,则AD=________.[审题视点] △ACB为直角三角形,可直接利用射影定理求解.解析如图,连接AC,CB,∵AB是⊙O的直径,∴∠ACB=90°设AD=x,∵CD⊥AB于D,∴由射影定理得CD2=AD·DB,即62=x(13-x),∴x2-13x+36=0,解得x1=4,x2=9.∵AD>BD,∴AD=9.答案9注意射影定理的应用条件.【训练3】在△ABC中,∠ACB=90°,CD⊥AB于D,AD∶BD=2∶3.则△ACD 与△CBD的相似比为________.解析如图所示,在Rt△ACB中,CD⊥AB,由射影定理得:CD2=AD·BD,又∵AD∶BD=2∶3,令AD=2x,BD=3x(x>0),∴CD2=6x2,∴CD=6x.又∵∠ADC=∠BDC=90°,∴△ACD∽△CBD.易知△ACD与△CBD的相似比为ADCD=2x6x=63.即相似比为6∶3.答案6∶3高考中几何证明选讲问题(一)从近两年新课标高考试题可以看出,高考主要以填空题的形式考查平行截割定理和相似三角形判定定理的应用,难度不大.【示例1】►(2011·陕西)如图,∠B=∠D,AE⊥BC,∠ACD=90°,且AB=6,AC=4,AD=12,则AE=________.【示例2】►(2011·广东)如图,在梯形ABCD中,AB∥CD,AB=4,CD=2,E,F分别为AD,BC上的点,且EF=3,EF∥AB,则梯形ABFE与梯形EFCD的面积比为________.。
高考数学选修部分几何证明选讲第1讲相似三角形的判定及有关性质知能选修4_122-
第1讲 相似三角形的判定及有关性质1.如图,AB ∥EM ∥DC ,AE =ED ,EF ∥BC ,EF =12 cm ,求BC 的长.解:⎭⎪⎬⎪⎫AB ∥EM ∥DC AE =ED ⇒E 为AD 的中点,M 为BC 的中点.又EF ∥BC ⇒EF =MC =12 cm , 所以BC =2MC =24 cm.2.在平行四边形ABCD 中,点E 在边AB 上,且AE ∶EB =1∶2,DE 与AC 交于点F ,若△AEF 的面积为6 cm 2,求△ABC 的面积.解:在平行四边形ABCD 中,AB 綊CD .因为AE ∶EB =1∶2,所以AE ∶DC =1∶3,所以△AEF 与△CDF 对应边AE 与DC 上的高的比为1∶3, 所以△AEF 与△ABC ,AE 与AB 边上的高的比为1∶4. 因为AE ∶AB =1∶3,所以S △AEF ∶S △ABC =1∶12,所以S △ABC =6×12=72(cm 2). 3.如图,在△ABC 中,D 是AC 的中点,E 是BC 延长线上一点,过A 作AH ∥BE .连接ED 并延长,交AB 于F ,交AH 于H .若AB =4AF ,EH =8,求DF 的长. 解:因为AH ∥BE ,所以HF HE =AF AB. 因为AB =4AF ,所以HF HE =14.因为HE =8,所以HF =2.因为AH ∥BE ,所以HD DE =AD DC. 因为D 是AC 的中点,所以HDDE=1.因为HE =HD +DE =8,所以HD =4. 所以DF =HD -HF =4-2=2.4.如图所示,在△ABC 中,AD 为BC 边上的中线,F 为AB 上任意一点,CF 交AD 于点E .求证:AE ·BF =2DE ·AF .证明:取AC 的中点M ,连接DM 交CF 于点N .在△BCF 中,D 是BC 的中点,DN ∥BF ,所以DN =12BF .因为DN ∥AF ,所以△AFE ∽△DNE , 所以AE AF =DE DN. 又因为DN =12BF ,所以AE AF =2DEBF,即AE ·BF =2DE ·AF . 5.如图,在△ABC 中,AB =AC ,AD 是中线,P 为AD 上一点,CF ∥AB ,BP 的延长线交AC 、CF 于E 、F 两点,求证:PB 2=PE ·PF . 证明:如图,连接PC .易证PC =PB ,∠ABP =∠ACP . 因为CF ∥AB , 所以∠F =∠ABP . 从而∠F =∠ACP .又∠EPC 为△CPE 与△FPC 的公共角,从而△CPE ∽△FPC ,所以CP FP =PE PC. 所以PC 2=PE ·PF .又PC =PB ,所以PB 2=PE ·PF . 6.已知在△ABC 中,D 是BC 边的中点,且AD =AC ,DE ⊥BC ,DE 与AB 相交于点E ,EC 与AD 相交于点F .(1)求证:△ABC ∽△FCD ;(2)若S △FCD =5,BC =10,求DE 的长.解:(1)证明:因为DE ⊥BC ,D 是BC 的中点,所以EB =EC ,所以∠B =∠1.又因为AD =AC ,所以∠2=∠ACB .所以△ABC ∽△FCD .(2)如图,过点A 作AM ⊥BC ,垂足为点M .因为△ABC ∽△FCD ,BC =2CD ,所以S △ABC S △FCD =⎝⎛⎭⎫BC CD 2=4.又因为S △FCD =5,所以S △ABC =20.因为S △ABC =12BC ·AM ,BC =10,所以20=12×10×AM ,所以AM =4.因为DE ∥AM ,所以DE AM =BD BM .因为DM =12DC =52,BM =BD +DM ,BD =12BC =5,所以DE 4=55+52,解得DE =83.。
2013高考全国2卷数学理科试题及答案详解
2013年普通高等学校招生全国统一考试数学(全国新课标卷II)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013课标全国Ⅱ,理1)已知集合M={x|(x-1)2<4,x∈R},N={-1,0,1,2,3},则M∩N=( ).A.{0,1,2} B.{-1,0,1,2} C.{-1,0,2,3} D.{0,1,2,3}2.(2013课标全国Ⅱ,理2)设复数z满足(1-i)z=2i,则z=( ).A.-1+i B.-1-I C.1+i D.1-i3.(2013课标全国Ⅱ,理3)等比数列{a n}的前n项和为S n.已知S3=a2+10a1,a5=9,则a1=( ).A.13 B .13-C.19 D.19-4.(2013课标全国Ⅱ,理4)已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,lα,lβ,则( ).A.α∥β且l∥α B.α⊥β且l⊥βC.α与β相交,且交线垂直于l D.α与β相交,且交线平行于l5.(2013课标全国Ⅱ,理5)已知(1+ax)(1+x)5的展开式中x2的系数为5,则a=( ).A.-4 B.-3 C.-2 D.-16.(2013课标全国Ⅱ,理6)执行下面的程序框图,如果输入的N=10,那么输出的S=( ).A .111 1+2310+++B.111 1+2!3!10!+++C.111 1+2311+++D.111 1+2!3!11!+++7.(2013课标全国Ⅱ,理7)一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到的正视图可以为( ).8.(2013课标全国Ⅱ,理8)设a=log36,b=log510,c=log714,则( ).A.c>b>a B.b>c>a C.a>c>b D.a>b>c9.(2013课标全国Ⅱ,理9)已知a>0,x,y满足约束条件1,3,3.xx yy a x≥⎧⎪+≤⎨⎪≥(-)⎩若z=2x+y的最小值为1,则a=( ).A.14 B.12 C.1 D.210.(2013课标全国Ⅱ,理10)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是( ).A.∃x0∈R,f(x0)=0B.函数y=f(x)的图像是中心对称图形C.若x0是f(x)的极小值点,则f(x)在区间(-∞,x0)单调递减D.若x0是f(x)的极值点,则f′(x0)=011.(2013课标全国Ⅱ,理11)设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为( ).A.y2=4x或y2=8x B.y2=2x或y2=8xC.y2=4x或y2=16x D.y2=2x或y2=16x12.(2013课标全国Ⅱ,理12)已知点A(-1,0),B(1,0),C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是( ).A.(0,1) B.112⎛⎫-⎪⎪⎝⎭ C.113⎛⎤⎥⎝⎦ D.11,32⎡⎫⎪⎢⎣⎭第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须做答。
选修4-1 几何证明选讲 (3)
解析:∴∠HAD=30°,∠AHD=90°,
∴∠D=60°,由圆内接四边形的对角和是180°,得∠B=120°
答案:120°
4.如图所示,⊙O的直径AC=2,∠BAD=75°,∠ACD=45°,则四边形ABCD 的周长为________.(结果取准确值)
解析:∵∠BAD=75°,∴∠BCD=105°,
圆内接四边形的问题,要抓住角度的相等或互补,转化为四点共圆;同样利用 四点共圆,可以得到相关的角度相等. 【例3】在梯形ABCD中,AB∥DC,AB>CD,K,M分别在AD,BC上,∠DAM= ∠CBK.求证:C,D,K,M四点共圆.
思路点拨:由∠DAM=∠CBK,易得A,B,M,K四点共圆,由此转化到相关 角相等与互补,再证C,D,K,M四点共圆.
说在这个三角形中B,D,H,E四点共圆的充要条件是∠B=60°.
【知识链接】
三角形中的4个心
外心:三角形三条边的垂直平分线交于一点,这个点叫做三角形的外心;内心:三 角形的三条角平分线交于一点,这个点叫做三角形的内心;重心:三角形的三条中
线交于一点,这个点叫做三角形的重心;垂心:三角形的三条高线交于一点,这个
证明:在四边形ABMK中.∵∠DAM=∠CBK, ∴A,B,M,K四点共圆.连接KM,有∠DAB=∠CMK. ∵∠DAB+∠ADC=180°,∴∠CMK+∠KDC=180°. 故C,D,K,M四点共圆.
变式3:在梯形ABCD中,AB∥DC,AB>CD,K,M分别在AD,BC上,∠DAM= ∠CBK. 求证:∠DMA=∠CKB. 证明:易知A,B,M,K四点共圆,则∠AMB=∠BKA. 连接KM,如图所示, 有∠DAB=∠CMK.∵∠DAB+∠ADC=180°, ∴∠CMK+∠KDC=180°.故C,D,K,M四点共圆⇒∠CMD=∠DKC. 又∠AMB=∠BKA,∴∠DMA=∠CKB.
2013年高考文科数学全国新课标卷2试题与答案word解析版
2013年普通高等学校夏季招生全国统一考试数学文史类(全国卷II 新课标)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2013课标全国Ⅱ,文1)已知集合M ={x |-3<x <1},N ={-3,-2,-1,0,1},则M ∩N =( ).A .{-2,-1,0,1}B .{-3,-2,-1,0}C .{-2,-1,0}D ..{-3,-2,-1} 2.(2013课标全国Ⅱ,文2)21i+=( ). A. B .2 CD ..13.(2013课标全国Ⅱ,文3)设x ,y 满足约束条件10,10,3,x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩则z =2x -3y 的最小值是( ).A .-7B .-6C .-5D .-34.(2013课标全国Ⅱ,文4)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =2,π6B =,π4C =,则△ABC 的面积为( ).A. BC.2 D15.(2013课标全国Ⅱ,文5)设椭圆C :2222=1x y a b+(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为( ).A. B .13 C .12 D.6.(2013课标全国Ⅱ,文6)已知sin 2α=23,则2πcos 4α⎛⎫+ ⎪⎝⎭=( ). A .16 B .13 C .12 D .237.(2013课标全国Ⅱ,文7)执行下面的程序框图,如果输入的N =4,那么输出的S =( ).A .1111+234++B .1111+232432++⨯⨯⨯C .11111+2345+++D .11111+2324325432+++⨯⨯⨯⨯⨯⨯8.(2013课标全国Ⅱ,文8)设a =log 32,b =log 52,c =log 23,则( ).A .a >c >bB .b >c >aC .c >b >aD .c >a >b 9.(2013课标全国Ⅱ,文9)一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( ).10.(2013课标全国Ⅱ,文10)设抛物线C :y 2=4x 的焦点为F ,直线l 过F 且与C 交于A ,B 两点.若|AF |=3|BF |,则l 的方程为( ).A .y =x -1或y =-x +1B .y=(1)3x -或y=1)x -C.y=(1)3x-或y=(1)3x--D.y=(1)2x-或y=(1)2x--11.(2013课标全国Ⅱ,文11)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是( ).A.∃x0∈R,f(x0)=0B.函数y=f(x)的图像是中心对称图形C.若x0是f(x)的极小值点,则f(x)在区间(-∞,x0)单调递减D.若x0是f(x)的极值点,则f′(x0)=012.(2013课标全国Ⅱ,文12)若存在正数x使2x(x-a)<1成立,则a的取值范围是( ).A.(-∞,+∞) B.(-2,+∞) C.(0,+∞) D.(-1,+∞)第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.(2013课标全国Ⅱ,文13)从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是__________.14.(2013课标全国Ⅱ,文14)已知正方形ABCD的边长为2,E为CD的中点,则AE BD⋅=__________.15.(2013课标全国Ⅱ,文15)已知正四棱锥O-ABCD的体积为2,则以O为球心,OA为半径的球的表面积为__________.16.(2013课标全国Ⅱ,文16)函数y=cos(2x+φ)(-π≤φ<π)的图像向右平移π2个单位后,与函数y=πsin23x⎛⎫+⎪⎝⎭的图像重合,则φ=__________.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(2013课标全国Ⅱ,文17)(本小题满分12分)已知等差数列{a n}的公差不为零,a1=25,且a1,a11,a13成等比数列.(1)求{a n}的通项公式;(2)求a1+a4+a7+…+a3n-2.18.(2013课标全国Ⅱ,文18)(本小题满分12分)如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点.19.(2013课标全国Ⅱ,文19)(本小题满分12分)经销商经销某种农产品,在一个销售季度内,每售出1 t 该产品获利润500元,未售出的产品,每1 t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130 t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T表示为X的函数;(2)根据直方图估计利润T不少于57 000元的概率.20.(2013课标全国Ⅱ,文20)(本小题满分12分)在平面直角坐标系xOy中,已知圆P在x轴上截得线段长为y轴上截得线段长为(1)求圆心P的轨迹方程;,求圆P的方程.(2)若P点到直线y=x的距离为221.(2013课标全国Ⅱ,文21)(本小题满分12分)已知函数f(x)=x2e-x.(1)求f(x)的极小值和极大值;(2)当曲线y=f(x)的切线l的斜率为负数时,求l在x轴上截距的取值范围.22.(2013课标全国Ⅱ,文22)(本小题满分10分)选修4—1:几何证明选讲如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E,F分别为弦AB与弦AC上的点,且BC·AE =DC·AF,B,E,F,C四点共圆.23.(2013课标全国Ⅱ,文23)(本小题满分10分)选修4—4:坐标系与参数方程已知动点P,Q都在曲线C:2cos,2sinx ty t=⎧⎨=⎩(t为参数)上,对应参数分别为t=α与t=2α(0<α<2π),M为PQ的中点.(1)求M的轨迹的参数方程;(2)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点.24.(2013课标全国Ⅱ,文24)(本小题满分10分)选修4—5:不等式选讲设a,b,c均为正数,且a+b+c=1.证明:(1)ab+bc+ca≤13;(2)222a b cb c a++≥1.2013年普通高等学校夏季招生全国统一考试数学文史类(全国卷II 新课标)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 答案:C解析:由题意可得,M ∩N ={-2,-1,0}.故选C. 2. 答案:C 解析:∵21i+=1-i ,∴21i +=|1-i|.3. 答案:B解析:如图所示,约束条件所表示的区域为图中的阴影部分,而目标函数可化为233zy x =-,先画出l 0:y =23x ,当z 最小时,直线在y 轴上的截距最大,故最优点为图中的点C ,由3,10,x x y =⎧⎨-+=⎩可得C (3,4),代入目标函数得,z min =2×3-3×4=-6.4. 答案:B解析:A =π-(B +C )=ππ7ππ6412⎛⎫-+= ⎪⎝⎭, 由正弦定理得sin sin a bA B=,则7π2sinsin 12πsin sin 6b A a B === ∴S △ABC=11sin 21222ab C =⨯⨯⨯=. 5.答案:D解析:如图所示,在Rt △PF 1F 2中,|F 1F 2|=2c , 设|PF 2|=x ,则|PF 1|=2x , 由tan 30°=212||||23PF x F F c ==,得3x =.而由椭圆定义得,|PF 1|+|PF 2|=2a =3x ,∴32a x ==,∴c e a ===6. 答案:A解析:由半角公式可得,2πcos 4α⎛⎫+⎪⎝⎭=π21cos 211sin 21232226αα⎛⎫++- ⎪-⎝⎭===. 7.答案:B解析:由程序框图依次可得,输入N =4, T =1,S =1,k =2;12T =,11+2S =,k =3; 132T =⨯,S =111+232+⨯,k =4; 1432T =⨯⨯,1111232432S =+++⨯⨯⨯,k =5; 输出1111232432S =+++⨯⨯⨯. 8. 答案:D解析:∵log 25>log 23>1,∴log 23>1>21log 3>21log 5>0,即log 23>1>log 32>log 52>0,∴c >a >b .9. 答案:A解析:如图所示,该四面体在空间直角坐标系O -xyz 的图像为下图:则它在平面zOx 的投影即正视图为,故选A. 10. 答案:C解析:由题意可得抛物线焦点F (1,0),准线方程为x =-1.当直线l 的斜率大于0时,如图所示,过A ,B 两点分别向准线x =-1作垂线,垂足分别为M ,N ,则由抛物线定义可得,|AM |=|AF |,|BN |=|BF |.设|AM |=|AF |=3t (t >0),|BN |=|BF |=t ,|BK |=x ,而|GF |=2,在△AMK 中,由||||||||NB BK AM AK =,得34t xt x t=+,解得x =2t ,则cos ∠NBK =||1||2NB t BK x ==, ∴∠NBK =60°,则∠GFK =60°,即直线AB 的倾斜角为60°. ∴斜率ky1)x -.当直线l 的斜率小于0时,如图所示,同理可得直线方程为y=1)x -,故选C.11. 答案:C解析:若x 0是f (x )的极小值点,则y =f (x )的图像大致如下图所示,则在(-∞,x 0)上不单调,故C 不正确.12. 答案:D解析:由题意可得,12xa x ⎛⎫>- ⎪⎝⎭(x >0).令f (x )=12xx ⎛⎫- ⎪⎝⎭,该函数在(0,+∞)上为增函数,可知f (x )的值域为(-1,+∞),故a >-1时,存在正数x 使原不等式成立.第Ⅱ卷本卷包括必考题和选考题两部分。
广东历年高考——15几何证明选讲选做题
1历年广东高考——几何证明选讲选做题15.几何证明选讲(2007年高考广东卷第15题)如图4所示,圆O 的直径6AB =,C 为圆周上一点,3BC =,过C 作圆的切线l ,过A 作l 的垂线AD ,垂足为D ,则DAC ∠=.【解析】由Rt ∆ACB 的各边的长度关系知∠CAB= 30︒, 而弦切角BCl ∠=∠CAB= 30︒。
那么在Rt ∆ADC 中∠ACD=60︒,故∠DAC=30︒。
(2008年高考广东卷第15题)已知PA 是圆O 的切线,切点为A ,PA=2。
AC 是圆O 的直径,PC 与圆O 交于点B ,PB=1,则圆O 的半径R = ________ 【解析】依题意,我们知道PBAPAC ∆∆,由相似三角形的性质我们有2PA PBR AB=,即2221PA AB R PB ∙===⨯(2009年高考广东卷第15小题),点A 、B 、C 是圆O 上的点,且AB=4,30ACB ∠=o ,则圆O 的面积等于 .【解析】连结AO,OB,因为 30ACB ∠=o ,所以60AOB ∠=o,AOB ∆为等边三角形,故圆O 的半径4r OA AB ===,圆O 的面积216S r ππ==. 【答案】16π(2010年高考广东卷第15小题)如图3,在直角梯形ABCD 中,DC ∥AB ,CB ⊥AB ,AB =AD =a ,CD =2a,点E ,F 分别为线段AB ,AD 的中点,则EF = .解:连结DE ,可知AED ∆为直角三角形。
则EF 是DEA Rt ∆斜边上的中线,等于斜边的一半,为2a .(2011年高考广东卷第15题)如图,在梯形ABCD 中,//,AB CD 4,2,,3//A B C D E FA DBC E F E F A B ===分别为,上的点,且,,则梯形ABFE 与梯形EFCD 的面积比为 .A l图4FDCBA E解析:75如图,延长,AD BC,AD BC P=∵23CDEF=,∴4PCDPEFSS∆∆∵24CDAB=,∴416PCDPEFSS∆∆=∴75ABEFEFCDSS=梯形梯形(2012年高考广东卷第15题)15.(几何证明选讲选做题)如图3所示,直线PB与圆O想切于点B,D是弦AC上的点,PBA DBA∠=∠,若,AD m AC n==,则AB=_______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年全国高考理科数学试题分类汇编17:几何证明
一、填空题[
1 .(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))如图,在ABC
中,090C ∠=,060,20A AB ∠==,过C 作ABC 的外接圆的切线CD ,BD CD ⊥,BD 与外接圆交于点E ,则DE 的长为_
_________
【答案】5
2 .(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))如图, △ABC 为圆的内接三角形, BD
为圆的弦, 且BD //AC . 过点A 做圆的切线与DB 的延长线交于点E , AD 与BC 交于点F . 若AB = AC , AE = 6, BD = 5, 则线段CF 的长为
______.[
【答案】83
3 .(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))(几何证明选讲选做题)如图,AB 是
圆O 的直径,点C 在圆O 上,延长BC 到D 使BC CD =,过C 作圆O 的切线交AD 于E .若6AB =,2ED =,则BC =_________.
【答案】
4 .(2013年高考四川卷(理))设12,,,n P P P 为平面α内的n 个点,在平面α内的所有点中,若点P 到
12,,,n P P P 点的距离之和最小,则称点P 为12,,
,n P P P 点的一个“中位点”.例如,线段AB 上的任意点都是端点,A B 的中位点.则有下列命题:
①若,,A B C 三个点共线,C 在线AB 上,则C 是,,A B C 的中位点;
.
A E
D C
B O 第15题图
②直角三角形斜边的点是该直角三角形三个顶点的中位点;
③若四个点,,,A B C D 共线,则它们的中位点存在且唯一; ④梯形对角线的交点是该梯形四个顶点的唯一中位点.
其中的真命题是____________.(写出所有真命题的序号数学社区)
【答案】①④
5 .(2013年高考陕西卷(理))B. (几何证明选做题) 如图, 弦AB 与CD 相交于O 内一点E , 过E 作BC
的平行线与AD 的延长线相交于点P . 已知PD =2DA =2, 则PE =_____.
[ 【答案】.6
6 .(
2013年高考湖南卷(理))如图2,O 中,弦,AB CD 相交于点,2P PA PB =
=,1PD =,则圆心O 到弦CD 的距离为____________.
【答案】2
3 [ 7 .(2013年高考湖北卷(理))如图,圆O 上一点C 在直线AB 上的射影为D ,点D 在半径OC 上的射影为E .若3AB AD =,则
CE EO 的值为___________.
【答案】8 8 .(2013年高考北京卷(理))如图,AB 为圆O 的直径,PA 为圆O 的切线,PB 与圆O 相交于 D.若
PA=3,916PD DB =:
:,则PD=_________;AB=___________. O D E
B
A 第15题图
C
【答案】
95
;4 二、解答题
9 .(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))选修4—1几何证明选讲:如图,CD 为△ABC 外接圆的切线,AB 的延长线交直线CD 于点D ,,E F 分别为弦AB 与弦AC 上的点,且BC AE DC AF ⋅=⋅,,,,B E F C 四点共圆.
(Ⅰ)证明:CA 是△ABC 外接圆的直径;
(Ⅱ)若DB BE EA ==,求过,,,B E F C 四点的圆的面积与△ABC 外接圆面积的比值.
【答案】[
[
10.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))选修4-1:几何证明选讲
如图,.AB O CD O E AD CD D 为直径,直线与相切于垂直于于,
BC 垂直于CD 于C EF ,,垂直于F ,连接,AE BE .证明:
(I);FEB CEB ∠=∠ (II)2
.EF AD BC =
【答案】[
11.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))A.[选修4-1:
几何证明选讲]本小题满分10分.
如图,AB 和BC 分别与圆O 相切于点D ,,C AC 经过圆心O ,且2BC OC =
求证:2AC AD =[
【答案】A 证明:连接OD,∵AB 与BC 分别与圆O 相切于点D 与C
∴090=∠=∠ACB ADO ,又∵A A ∠=∠ [
∴ADO RT ∆~ACB RT ∆ ∴AD
AC OD BC = 又∵BC=2OC=2OD ∴AC=2AD 12.(2013年高考新课标1(理))选修4—1:几何证明选讲 如图,直线AB 为圆的切线,切点为B,点C 在
圆上,∠ABC 的角平分线BE 交圆于点E,DB 垂直BE 交圆于D.
(Ⅰ)证明:DB=DC;[
(Ⅱ)设圆的半径为1,BC= ,延长CE 交AB 于点F,求△BCF 外接圆的半径.
【答案】(Ⅰ)连结DE,交BC 与点G.
由弦切角定理得,∠ABF=∠BCE,∵∠ABE=∠CBE,∴∠CBE=∠BCE,BE=CE, 又∵DB⊥BE,∴DE 是直径,∠DCE=0
90,由勾股定理可得DB=DC.
(Ⅱ)由(Ⅰ)知,∠C DE=∠BDE,BD=DC,故DG 是BC . 设DE 中点为O,连结BO,则∠BOG=o 60,∠ABE=∠BCE=∠CBE=o 30,
∴CF⊥BF, ∴Rt△BCF .。